]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - drivers/md/bcache/btree.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[thirdparty/kernel/stable.git] / drivers / md / bcache / btree.c
CommitLineData
cafe5635
KO
1/*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23#include "bcache.h"
24#include "btree.h"
25#include "debug.h"
65d45231 26#include "extents.h"
cafe5635
KO
27
28#include <linux/slab.h>
29#include <linux/bitops.h>
30#include <linux/hash.h>
72a44517 31#include <linux/kthread.h>
cd953ed0 32#include <linux/prefetch.h>
cafe5635
KO
33#include <linux/random.h>
34#include <linux/rcupdate.h>
35#include <trace/events/bcache.h>
36
37/*
38 * Todo:
39 * register_bcache: Return errors out to userspace correctly
40 *
41 * Writeback: don't undirty key until after a cache flush
42 *
43 * Create an iterator for key pointers
44 *
45 * On btree write error, mark bucket such that it won't be freed from the cache
46 *
47 * Journalling:
48 * Check for bad keys in replay
49 * Propagate barriers
50 * Refcount journal entries in journal_replay
51 *
52 * Garbage collection:
53 * Finish incremental gc
54 * Gc should free old UUIDs, data for invalid UUIDs
55 *
56 * Provide a way to list backing device UUIDs we have data cached for, and
57 * probably how long it's been since we've seen them, and a way to invalidate
58 * dirty data for devices that will never be attached again
59 *
60 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
61 * that based on that and how much dirty data we have we can keep writeback
62 * from being starved
63 *
64 * Add a tracepoint or somesuch to watch for writeback starvation
65 *
66 * When btree depth > 1 and splitting an interior node, we have to make sure
67 * alloc_bucket() cannot fail. This should be true but is not completely
68 * obvious.
69 *
cafe5635
KO
70 * Plugging?
71 *
72 * If data write is less than hard sector size of ssd, round up offset in open
73 * bucket to the next whole sector
74 *
cafe5635
KO
75 * Superblock needs to be fleshed out for multiple cache devices
76 *
77 * Add a sysfs tunable for the number of writeback IOs in flight
78 *
79 * Add a sysfs tunable for the number of open data buckets
80 *
81 * IO tracking: Can we track when one process is doing io on behalf of another?
82 * IO tracking: Don't use just an average, weigh more recent stuff higher
83 *
84 * Test module load/unload
85 */
86
cafe5635
KO
87#define MAX_NEED_GC 64
88#define MAX_SAVE_PRIO 72
89
90#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
91
92#define PTR_HASH(c, k) \
93 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
94
df8e8970
KO
95#define insert_lock(s, b) ((b)->level <= (s)->lock)
96
97/*
98 * These macros are for recursing down the btree - they handle the details of
99 * locking and looking up nodes in the cache for you. They're best treated as
100 * mere syntax when reading code that uses them.
101 *
102 * op->lock determines whether we take a read or a write lock at a given depth.
103 * If you've got a read lock and find that you need a write lock (i.e. you're
104 * going to have to split), set op->lock and return -EINTR; btree_root() will
105 * call you again and you'll have the correct lock.
106 */
107
108/**
109 * btree - recurse down the btree on a specified key
110 * @fn: function to call, which will be passed the child node
111 * @key: key to recurse on
112 * @b: parent btree node
113 * @op: pointer to struct btree_op
114 */
115#define btree(fn, key, b, op, ...) \
116({ \
117 int _r, l = (b)->level - 1; \
118 bool _w = l <= (op)->lock; \
2452cc89
SP
119 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
120 _w, b); \
df8e8970 121 if (!IS_ERR(_child)) { \
df8e8970
KO
122 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
123 rw_unlock(_w, _child); \
124 } else \
125 _r = PTR_ERR(_child); \
126 _r; \
127})
128
129/**
130 * btree_root - call a function on the root of the btree
131 * @fn: function to call, which will be passed the child node
132 * @c: cache set
133 * @op: pointer to struct btree_op
134 */
135#define btree_root(fn, c, op, ...) \
136({ \
137 int _r = -EINTR; \
138 do { \
139 struct btree *_b = (c)->root; \
140 bool _w = insert_lock(op, _b); \
141 rw_lock(_w, _b, _b->level); \
142 if (_b == (c)->root && \
143 _w == insert_lock(op, _b)) { \
df8e8970
KO
144 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
145 } \
146 rw_unlock(_w, _b); \
0a63b66d 147 bch_cannibalize_unlock(c); \
78365411
KO
148 if (_r == -EINTR) \
149 schedule(); \
df8e8970
KO
150 } while (_r == -EINTR); \
151 \
0a63b66d 152 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
df8e8970
KO
153 _r; \
154})
155
a85e968e
KO
156static inline struct bset *write_block(struct btree *b)
157{
158 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
159}
160
2a285686
KO
161static void bch_btree_init_next(struct btree *b)
162{
163 /* If not a leaf node, always sort */
164 if (b->level && b->keys.nsets)
165 bch_btree_sort(&b->keys, &b->c->sort);
166 else
167 bch_btree_sort_lazy(&b->keys, &b->c->sort);
168
169 if (b->written < btree_blocks(b))
170 bch_bset_init_next(&b->keys, write_block(b),
171 bset_magic(&b->c->sb));
172
173}
174
cafe5635
KO
175/* Btree key manipulation */
176
3a3b6a4e 177void bkey_put(struct cache_set *c, struct bkey *k)
e7c590eb
KO
178{
179 unsigned i;
180
181 for (i = 0; i < KEY_PTRS(k); i++)
182 if (ptr_available(c, k, i))
183 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
184}
185
cafe5635
KO
186/* Btree IO */
187
188static uint64_t btree_csum_set(struct btree *b, struct bset *i)
189{
190 uint64_t crc = b->key.ptr[0];
fafff81c 191 void *data = (void *) i + 8, *end = bset_bkey_last(i);
cafe5635 192
169ef1cf 193 crc = bch_crc64_update(crc, data, end - data);
c19ed23a 194 return crc ^ 0xffffffffffffffffULL;
cafe5635
KO
195}
196
78b77bf8 197void bch_btree_node_read_done(struct btree *b)
cafe5635 198{
cafe5635 199 const char *err = "bad btree header";
ee811287 200 struct bset *i = btree_bset_first(b);
57943511 201 struct btree_iter *iter;
cafe5635 202
bcf090e0 203 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
57943511 204 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
cafe5635
KO
205 iter->used = 0;
206
280481d0 207#ifdef CONFIG_BCACHE_DEBUG
c052dd9a 208 iter->b = &b->keys;
280481d0
KO
209#endif
210
57943511 211 if (!i->seq)
cafe5635
KO
212 goto err;
213
214 for (;
a85e968e 215 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
cafe5635
KO
216 i = write_block(b)) {
217 err = "unsupported bset version";
218 if (i->version > BCACHE_BSET_VERSION)
219 goto err;
220
221 err = "bad btree header";
ee811287
KO
222 if (b->written + set_blocks(i, block_bytes(b->c)) >
223 btree_blocks(b))
cafe5635
KO
224 goto err;
225
226 err = "bad magic";
81ab4190 227 if (i->magic != bset_magic(&b->c->sb))
cafe5635
KO
228 goto err;
229
230 err = "bad checksum";
231 switch (i->version) {
232 case 0:
233 if (i->csum != csum_set(i))
234 goto err;
235 break;
236 case BCACHE_BSET_VERSION:
237 if (i->csum != btree_csum_set(b, i))
238 goto err;
239 break;
240 }
241
242 err = "empty set";
a85e968e 243 if (i != b->keys.set[0].data && !i->keys)
cafe5635
KO
244 goto err;
245
fafff81c 246 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
cafe5635 247
ee811287 248 b->written += set_blocks(i, block_bytes(b->c));
cafe5635
KO
249 }
250
251 err = "corrupted btree";
252 for (i = write_block(b);
a85e968e 253 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
cafe5635 254 i = ((void *) i) + block_bytes(b->c))
a85e968e 255 if (i->seq == b->keys.set[0].data->seq)
cafe5635
KO
256 goto err;
257
a85e968e 258 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
cafe5635 259
a85e968e 260 i = b->keys.set[0].data;
cafe5635 261 err = "short btree key";
a85e968e
KO
262 if (b->keys.set[0].size &&
263 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
cafe5635
KO
264 goto err;
265
266 if (b->written < btree_blocks(b))
a85e968e
KO
267 bch_bset_init_next(&b->keys, write_block(b),
268 bset_magic(&b->c->sb));
cafe5635 269out:
57943511
KO
270 mempool_free(iter, b->c->fill_iter);
271 return;
cafe5635
KO
272err:
273 set_btree_node_io_error(b);
88b9f8c4 274 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
cafe5635 275 err, PTR_BUCKET_NR(b->c, &b->key, 0),
88b9f8c4 276 bset_block_offset(b, i), i->keys);
cafe5635
KO
277 goto out;
278}
279
4246a0b6 280static void btree_node_read_endio(struct bio *bio)
cafe5635 281{
57943511
KO
282 struct closure *cl = bio->bi_private;
283 closure_put(cl);
284}
cafe5635 285
78b77bf8 286static void bch_btree_node_read(struct btree *b)
57943511
KO
287{
288 uint64_t start_time = local_clock();
289 struct closure cl;
290 struct bio *bio;
cafe5635 291
c37511b8
KO
292 trace_bcache_btree_read(b);
293
57943511 294 closure_init_stack(&cl);
cafe5635 295
57943511 296 bio = bch_bbio_alloc(b->c);
4f024f37 297 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
57943511
KO
298 bio->bi_end_io = btree_node_read_endio;
299 bio->bi_private = &cl;
70fd7614 300 bio->bi_opf = REQ_OP_READ | REQ_META;
cafe5635 301
a85e968e 302 bch_bio_map(bio, b->keys.set[0].data);
cafe5635 303
57943511
KO
304 bch_submit_bbio(bio, b->c, &b->key, 0);
305 closure_sync(&cl);
cafe5635 306
4246a0b6 307 if (bio->bi_error)
57943511
KO
308 set_btree_node_io_error(b);
309
310 bch_bbio_free(bio, b->c);
311
312 if (btree_node_io_error(b))
313 goto err;
314
315 bch_btree_node_read_done(b);
57943511 316 bch_time_stats_update(&b->c->btree_read_time, start_time);
57943511
KO
317
318 return;
319err:
61cbd250 320 bch_cache_set_error(b->c, "io error reading bucket %zu",
57943511 321 PTR_BUCKET_NR(b->c, &b->key, 0));
cafe5635
KO
322}
323
324static void btree_complete_write(struct btree *b, struct btree_write *w)
325{
326 if (w->prio_blocked &&
327 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
119ba0f8 328 wake_up_allocators(b->c);
cafe5635
KO
329
330 if (w->journal) {
331 atomic_dec_bug(w->journal);
332 __closure_wake_up(&b->c->journal.wait);
333 }
334
cafe5635
KO
335 w->prio_blocked = 0;
336 w->journal = NULL;
cafe5635
KO
337}
338
cb7a583e
KO
339static void btree_node_write_unlock(struct closure *cl)
340{
341 struct btree *b = container_of(cl, struct btree, io);
342
343 up(&b->io_mutex);
344}
345
57943511 346static void __btree_node_write_done(struct closure *cl)
cafe5635 347{
cb7a583e 348 struct btree *b = container_of(cl, struct btree, io);
cafe5635
KO
349 struct btree_write *w = btree_prev_write(b);
350
351 bch_bbio_free(b->bio, b->c);
352 b->bio = NULL;
353 btree_complete_write(b, w);
354
355 if (btree_node_dirty(b))
56b30770 356 schedule_delayed_work(&b->work, 30 * HZ);
cafe5635 357
cb7a583e 358 closure_return_with_destructor(cl, btree_node_write_unlock);
cafe5635
KO
359}
360
57943511 361static void btree_node_write_done(struct closure *cl)
cafe5635 362{
cb7a583e 363 struct btree *b = container_of(cl, struct btree, io);
cafe5635 364
491221f8 365 bio_free_pages(b->bio);
57943511 366 __btree_node_write_done(cl);
cafe5635
KO
367}
368
4246a0b6 369static void btree_node_write_endio(struct bio *bio)
57943511
KO
370{
371 struct closure *cl = bio->bi_private;
cb7a583e 372 struct btree *b = container_of(cl, struct btree, io);
57943511 373
4246a0b6 374 if (bio->bi_error)
57943511
KO
375 set_btree_node_io_error(b);
376
4246a0b6 377 bch_bbio_count_io_errors(b->c, bio, bio->bi_error, "writing btree");
57943511
KO
378 closure_put(cl);
379}
380
381static void do_btree_node_write(struct btree *b)
cafe5635 382{
cb7a583e 383 struct closure *cl = &b->io;
ee811287 384 struct bset *i = btree_bset_last(b);
cafe5635
KO
385 BKEY_PADDED(key) k;
386
387 i->version = BCACHE_BSET_VERSION;
388 i->csum = btree_csum_set(b, i);
389
57943511
KO
390 BUG_ON(b->bio);
391 b->bio = bch_bbio_alloc(b->c);
392
393 b->bio->bi_end_io = btree_node_write_endio;
faadf0c9 394 b->bio->bi_private = cl;
ee811287 395 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
70fd7614 396 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
169ef1cf 397 bch_bio_map(b->bio, i);
cafe5635 398
e49c7c37
KO
399 /*
400 * If we're appending to a leaf node, we don't technically need FUA -
401 * this write just needs to be persisted before the next journal write,
402 * which will be marked FLUSH|FUA.
403 *
404 * Similarly if we're writing a new btree root - the pointer is going to
405 * be in the next journal entry.
406 *
407 * But if we're writing a new btree node (that isn't a root) or
408 * appending to a non leaf btree node, we need either FUA or a flush
409 * when we write the parent with the new pointer. FUA is cheaper than a
410 * flush, and writes appending to leaf nodes aren't blocking anything so
411 * just make all btree node writes FUA to keep things sane.
412 */
413
cafe5635 414 bkey_copy(&k.key, &b->key);
ee811287 415 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
a85e968e 416 bset_sector_offset(&b->keys, i));
cafe5635 417
501d52a9 418 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
cafe5635
KO
419 int j;
420 struct bio_vec *bv;
421 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
422
7988613b 423 bio_for_each_segment_all(bv, b->bio, j)
cafe5635
KO
424 memcpy(page_address(bv->bv_page),
425 base + j * PAGE_SIZE, PAGE_SIZE);
426
cafe5635
KO
427 bch_submit_bbio(b->bio, b->c, &k.key, 0);
428
57943511 429 continue_at(cl, btree_node_write_done, NULL);
cafe5635
KO
430 } else {
431 b->bio->bi_vcnt = 0;
169ef1cf 432 bch_bio_map(b->bio, i);
cafe5635 433
cafe5635
KO
434 bch_submit_bbio(b->bio, b->c, &k.key, 0);
435
436 closure_sync(cl);
cb7a583e 437 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
cafe5635
KO
438 }
439}
440
2a285686 441void __bch_btree_node_write(struct btree *b, struct closure *parent)
cafe5635 442{
ee811287 443 struct bset *i = btree_bset_last(b);
cafe5635 444
2a285686
KO
445 lockdep_assert_held(&b->write_lock);
446
c37511b8
KO
447 trace_bcache_btree_write(b);
448
cafe5635 449 BUG_ON(current->bio_list);
57943511
KO
450 BUG_ON(b->written >= btree_blocks(b));
451 BUG_ON(b->written && !i->keys);
ee811287 452 BUG_ON(btree_bset_first(b)->seq != i->seq);
dc9d98d6 453 bch_check_keys(&b->keys, "writing");
cafe5635 454
cafe5635
KO
455 cancel_delayed_work(&b->work);
456
57943511 457 /* If caller isn't waiting for write, parent refcount is cache set */
cb7a583e
KO
458 down(&b->io_mutex);
459 closure_init(&b->io, parent ?: &b->c->cl);
57943511 460
cafe5635
KO
461 clear_bit(BTREE_NODE_dirty, &b->flags);
462 change_bit(BTREE_NODE_write_idx, &b->flags);
463
57943511 464 do_btree_node_write(b);
cafe5635 465
ee811287 466 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
cafe5635
KO
467 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
468
a85e968e 469 b->written += set_blocks(i, block_bytes(b->c));
2a285686 470}
a85e968e 471
2a285686
KO
472void bch_btree_node_write(struct btree *b, struct closure *parent)
473{
474 unsigned nsets = b->keys.nsets;
475
476 lockdep_assert_held(&b->lock);
477
478 __bch_btree_node_write(b, parent);
cafe5635 479
78b77bf8
KO
480 /*
481 * do verify if there was more than one set initially (i.e. we did a
482 * sort) and we sorted down to a single set:
483 */
2a285686 484 if (nsets && !b->keys.nsets)
78b77bf8
KO
485 bch_btree_verify(b);
486
2a285686 487 bch_btree_init_next(b);
cafe5635
KO
488}
489
f269af5a
KO
490static void bch_btree_node_write_sync(struct btree *b)
491{
492 struct closure cl;
493
494 closure_init_stack(&cl);
2a285686
KO
495
496 mutex_lock(&b->write_lock);
f269af5a 497 bch_btree_node_write(b, &cl);
2a285686
KO
498 mutex_unlock(&b->write_lock);
499
f269af5a
KO
500 closure_sync(&cl);
501}
502
57943511 503static void btree_node_write_work(struct work_struct *w)
cafe5635
KO
504{
505 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
506
2a285686 507 mutex_lock(&b->write_lock);
cafe5635 508 if (btree_node_dirty(b))
2a285686
KO
509 __bch_btree_node_write(b, NULL);
510 mutex_unlock(&b->write_lock);
cafe5635
KO
511}
512
c18536a7 513static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
cafe5635 514{
ee811287 515 struct bset *i = btree_bset_last(b);
cafe5635
KO
516 struct btree_write *w = btree_current_write(b);
517
2a285686
KO
518 lockdep_assert_held(&b->write_lock);
519
57943511
KO
520 BUG_ON(!b->written);
521 BUG_ON(!i->keys);
cafe5635 522
57943511 523 if (!btree_node_dirty(b))
56b30770 524 schedule_delayed_work(&b->work, 30 * HZ);
cafe5635 525
57943511 526 set_btree_node_dirty(b);
cafe5635 527
c18536a7 528 if (journal_ref) {
cafe5635 529 if (w->journal &&
c18536a7 530 journal_pin_cmp(b->c, w->journal, journal_ref)) {
cafe5635
KO
531 atomic_dec_bug(w->journal);
532 w->journal = NULL;
533 }
534
535 if (!w->journal) {
c18536a7 536 w->journal = journal_ref;
cafe5635
KO
537 atomic_inc(w->journal);
538 }
539 }
540
cafe5635 541 /* Force write if set is too big */
57943511
KO
542 if (set_bytes(i) > PAGE_SIZE - 48 &&
543 !current->bio_list)
544 bch_btree_node_write(b, NULL);
cafe5635
KO
545}
546
547/*
548 * Btree in memory cache - allocation/freeing
549 * mca -> memory cache
550 */
551
cafe5635
KO
552#define mca_reserve(c) (((c->root && c->root->level) \
553 ? c->root->level : 1) * 8 + 16)
554#define mca_can_free(c) \
0a63b66d 555 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
cafe5635
KO
556
557static void mca_data_free(struct btree *b)
558{
cb7a583e 559 BUG_ON(b->io_mutex.count != 1);
cafe5635 560
a85e968e 561 bch_btree_keys_free(&b->keys);
cafe5635 562
0a63b66d 563 b->c->btree_cache_used--;
ee811287 564 list_move(&b->list, &b->c->btree_cache_freed);
cafe5635
KO
565}
566
567static void mca_bucket_free(struct btree *b)
568{
569 BUG_ON(btree_node_dirty(b));
570
571 b->key.ptr[0] = 0;
572 hlist_del_init_rcu(&b->hash);
573 list_move(&b->list, &b->c->btree_cache_freeable);
574}
575
576static unsigned btree_order(struct bkey *k)
577{
578 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
579}
580
581static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
582{
a85e968e 583 if (!bch_btree_keys_alloc(&b->keys,
ee811287
KO
584 max_t(unsigned,
585 ilog2(b->c->btree_pages),
586 btree_order(k)),
587 gfp)) {
0a63b66d 588 b->c->btree_cache_used++;
ee811287
KO
589 list_move(&b->list, &b->c->btree_cache);
590 } else {
591 list_move(&b->list, &b->c->btree_cache_freed);
592 }
cafe5635
KO
593}
594
595static struct btree *mca_bucket_alloc(struct cache_set *c,
596 struct bkey *k, gfp_t gfp)
597{
598 struct btree *b = kzalloc(sizeof(struct btree), gfp);
599 if (!b)
600 return NULL;
601
602 init_rwsem(&b->lock);
603 lockdep_set_novalidate_class(&b->lock);
2a285686
KO
604 mutex_init(&b->write_lock);
605 lockdep_set_novalidate_class(&b->write_lock);
cafe5635 606 INIT_LIST_HEAD(&b->list);
57943511 607 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
cafe5635 608 b->c = c;
cb7a583e 609 sema_init(&b->io_mutex, 1);
cafe5635
KO
610
611 mca_data_alloc(b, k, gfp);
612 return b;
613}
614
e8e1d468 615static int mca_reap(struct btree *b, unsigned min_order, bool flush)
cafe5635 616{
e8e1d468
KO
617 struct closure cl;
618
619 closure_init_stack(&cl);
cafe5635
KO
620 lockdep_assert_held(&b->c->bucket_lock);
621
622 if (!down_write_trylock(&b->lock))
623 return -ENOMEM;
624
a85e968e 625 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
e8e1d468 626
a85e968e 627 if (b->keys.page_order < min_order)
cb7a583e
KO
628 goto out_unlock;
629
630 if (!flush) {
631 if (btree_node_dirty(b))
632 goto out_unlock;
633
634 if (down_trylock(&b->io_mutex))
635 goto out_unlock;
636 up(&b->io_mutex);
cafe5635
KO
637 }
638
2a285686 639 mutex_lock(&b->write_lock);
f269af5a 640 if (btree_node_dirty(b))
2a285686
KO
641 __bch_btree_node_write(b, &cl);
642 mutex_unlock(&b->write_lock);
643
644 closure_sync(&cl);
cafe5635 645
e8e1d468 646 /* wait for any in flight btree write */
cb7a583e
KO
647 down(&b->io_mutex);
648 up(&b->io_mutex);
e8e1d468 649
cafe5635 650 return 0;
cb7a583e
KO
651out_unlock:
652 rw_unlock(true, b);
653 return -ENOMEM;
cafe5635
KO
654}
655
7dc19d5a
DC
656static unsigned long bch_mca_scan(struct shrinker *shrink,
657 struct shrink_control *sc)
cafe5635
KO
658{
659 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
660 struct btree *b, *t;
661 unsigned long i, nr = sc->nr_to_scan;
7dc19d5a 662 unsigned long freed = 0;
cafe5635
KO
663
664 if (c->shrinker_disabled)
7dc19d5a 665 return SHRINK_STOP;
cafe5635 666
0a63b66d 667 if (c->btree_cache_alloc_lock)
7dc19d5a 668 return SHRINK_STOP;
cafe5635
KO
669
670 /* Return -1 if we can't do anything right now */
a698e08c 671 if (sc->gfp_mask & __GFP_IO)
cafe5635
KO
672 mutex_lock(&c->bucket_lock);
673 else if (!mutex_trylock(&c->bucket_lock))
674 return -1;
675
36c9ea98
KO
676 /*
677 * It's _really_ critical that we don't free too many btree nodes - we
678 * have to always leave ourselves a reserve. The reserve is how we
679 * guarantee that allocating memory for a new btree node can always
680 * succeed, so that inserting keys into the btree can always succeed and
681 * IO can always make forward progress:
682 */
cafe5635
KO
683 nr /= c->btree_pages;
684 nr = min_t(unsigned long, nr, mca_can_free(c));
685
686 i = 0;
687 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
7dc19d5a 688 if (freed >= nr)
cafe5635
KO
689 break;
690
691 if (++i > 3 &&
e8e1d468 692 !mca_reap(b, 0, false)) {
cafe5635
KO
693 mca_data_free(b);
694 rw_unlock(true, b);
7dc19d5a 695 freed++;
cafe5635
KO
696 }
697 }
698
0a63b66d 699 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
b0f32a56
KO
700 if (list_empty(&c->btree_cache))
701 goto out;
702
cafe5635
KO
703 b = list_first_entry(&c->btree_cache, struct btree, list);
704 list_rotate_left(&c->btree_cache);
705
706 if (!b->accessed &&
e8e1d468 707 !mca_reap(b, 0, false)) {
cafe5635
KO
708 mca_bucket_free(b);
709 mca_data_free(b);
710 rw_unlock(true, b);
7dc19d5a 711 freed++;
cafe5635
KO
712 } else
713 b->accessed = 0;
714 }
715out:
cafe5635 716 mutex_unlock(&c->bucket_lock);
7dc19d5a
DC
717 return freed;
718}
719
720static unsigned long bch_mca_count(struct shrinker *shrink,
721 struct shrink_control *sc)
722{
723 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
724
725 if (c->shrinker_disabled)
726 return 0;
727
0a63b66d 728 if (c->btree_cache_alloc_lock)
7dc19d5a
DC
729 return 0;
730
731 return mca_can_free(c) * c->btree_pages;
cafe5635
KO
732}
733
734void bch_btree_cache_free(struct cache_set *c)
735{
736 struct btree *b;
737 struct closure cl;
738 closure_init_stack(&cl);
739
740 if (c->shrink.list.next)
741 unregister_shrinker(&c->shrink);
742
743 mutex_lock(&c->bucket_lock);
744
745#ifdef CONFIG_BCACHE_DEBUG
746 if (c->verify_data)
747 list_move(&c->verify_data->list, &c->btree_cache);
78b77bf8
KO
748
749 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
cafe5635
KO
750#endif
751
752 list_splice(&c->btree_cache_freeable,
753 &c->btree_cache);
754
755 while (!list_empty(&c->btree_cache)) {
756 b = list_first_entry(&c->btree_cache, struct btree, list);
757
758 if (btree_node_dirty(b))
759 btree_complete_write(b, btree_current_write(b));
760 clear_bit(BTREE_NODE_dirty, &b->flags);
761
762 mca_data_free(b);
763 }
764
765 while (!list_empty(&c->btree_cache_freed)) {
766 b = list_first_entry(&c->btree_cache_freed,
767 struct btree, list);
768 list_del(&b->list);
769 cancel_delayed_work_sync(&b->work);
770 kfree(b);
771 }
772
773 mutex_unlock(&c->bucket_lock);
774}
775
776int bch_btree_cache_alloc(struct cache_set *c)
777{
778 unsigned i;
779
cafe5635 780 for (i = 0; i < mca_reserve(c); i++)
72a44517
KO
781 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
782 return -ENOMEM;
cafe5635
KO
783
784 list_splice_init(&c->btree_cache,
785 &c->btree_cache_freeable);
786
787#ifdef CONFIG_BCACHE_DEBUG
788 mutex_init(&c->verify_lock);
789
78b77bf8
KO
790 c->verify_ondisk = (void *)
791 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
792
cafe5635
KO
793 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
794
795 if (c->verify_data &&
a85e968e 796 c->verify_data->keys.set->data)
cafe5635
KO
797 list_del_init(&c->verify_data->list);
798 else
799 c->verify_data = NULL;
800#endif
801
7dc19d5a
DC
802 c->shrink.count_objects = bch_mca_count;
803 c->shrink.scan_objects = bch_mca_scan;
cafe5635
KO
804 c->shrink.seeks = 4;
805 c->shrink.batch = c->btree_pages * 2;
806 register_shrinker(&c->shrink);
807
808 return 0;
809}
810
811/* Btree in memory cache - hash table */
812
813static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
814{
815 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
816}
817
818static struct btree *mca_find(struct cache_set *c, struct bkey *k)
819{
820 struct btree *b;
821
822 rcu_read_lock();
823 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
824 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
825 goto out;
826 b = NULL;
827out:
828 rcu_read_unlock();
829 return b;
830}
831
0a63b66d
KO
832static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
833{
834 struct task_struct *old;
835
836 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
837 if (old && old != current) {
838 if (op)
839 prepare_to_wait(&c->btree_cache_wait, &op->wait,
840 TASK_UNINTERRUPTIBLE);
841 return -EINTR;
842 }
843
844 return 0;
845}
846
847static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
848 struct bkey *k)
cafe5635 849{
e8e1d468 850 struct btree *b;
cafe5635 851
c37511b8
KO
852 trace_bcache_btree_cache_cannibalize(c);
853
0a63b66d
KO
854 if (mca_cannibalize_lock(c, op))
855 return ERR_PTR(-EINTR);
cafe5635 856
e8e1d468
KO
857 list_for_each_entry_reverse(b, &c->btree_cache, list)
858 if (!mca_reap(b, btree_order(k), false))
859 return b;
cafe5635 860
e8e1d468
KO
861 list_for_each_entry_reverse(b, &c->btree_cache, list)
862 if (!mca_reap(b, btree_order(k), true))
863 return b;
cafe5635 864
0a63b66d 865 WARN(1, "btree cache cannibalize failed\n");
e8e1d468 866 return ERR_PTR(-ENOMEM);
cafe5635
KO
867}
868
869/*
870 * We can only have one thread cannibalizing other cached btree nodes at a time,
871 * or we'll deadlock. We use an open coded mutex to ensure that, which a
872 * cannibalize_bucket() will take. This means every time we unlock the root of
873 * the btree, we need to release this lock if we have it held.
874 */
df8e8970 875static void bch_cannibalize_unlock(struct cache_set *c)
cafe5635 876{
0a63b66d
KO
877 if (c->btree_cache_alloc_lock == current) {
878 c->btree_cache_alloc_lock = NULL;
879 wake_up(&c->btree_cache_wait);
cafe5635
KO
880 }
881}
882
0a63b66d
KO
883static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
884 struct bkey *k, int level)
cafe5635
KO
885{
886 struct btree *b;
887
e8e1d468
KO
888 BUG_ON(current->bio_list);
889
cafe5635
KO
890 lockdep_assert_held(&c->bucket_lock);
891
892 if (mca_find(c, k))
893 return NULL;
894
895 /* btree_free() doesn't free memory; it sticks the node on the end of
896 * the list. Check if there's any freed nodes there:
897 */
898 list_for_each_entry(b, &c->btree_cache_freeable, list)
e8e1d468 899 if (!mca_reap(b, btree_order(k), false))
cafe5635
KO
900 goto out;
901
902 /* We never free struct btree itself, just the memory that holds the on
903 * disk node. Check the freed list before allocating a new one:
904 */
905 list_for_each_entry(b, &c->btree_cache_freed, list)
e8e1d468 906 if (!mca_reap(b, 0, false)) {
cafe5635 907 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
a85e968e 908 if (!b->keys.set[0].data)
cafe5635
KO
909 goto err;
910 else
911 goto out;
912 }
913
914 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
915 if (!b)
916 goto err;
917
918 BUG_ON(!down_write_trylock(&b->lock));
a85e968e 919 if (!b->keys.set->data)
cafe5635
KO
920 goto err;
921out:
cb7a583e 922 BUG_ON(b->io_mutex.count != 1);
cafe5635
KO
923
924 bkey_copy(&b->key, k);
925 list_move(&b->list, &c->btree_cache);
926 hlist_del_init_rcu(&b->hash);
927 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
928
929 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
d6fd3b11 930 b->parent = (void *) ~0UL;
a85e968e
KO
931 b->flags = 0;
932 b->written = 0;
933 b->level = level;
cafe5635 934
65d45231 935 if (!b->level)
a85e968e
KO
936 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
937 &b->c->expensive_debug_checks);
65d45231 938 else
a85e968e
KO
939 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
940 &b->c->expensive_debug_checks);
cafe5635
KO
941
942 return b;
943err:
944 if (b)
945 rw_unlock(true, b);
946
0a63b66d 947 b = mca_cannibalize(c, op, k);
cafe5635
KO
948 if (!IS_ERR(b))
949 goto out;
950
951 return b;
952}
953
954/**
955 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
956 * in from disk if necessary.
957 *
b54d6934 958 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
cafe5635
KO
959 *
960 * The btree node will have either a read or a write lock held, depending on
961 * level and op->lock.
962 */
0a63b66d 963struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
2452cc89
SP
964 struct bkey *k, int level, bool write,
965 struct btree *parent)
cafe5635
KO
966{
967 int i = 0;
cafe5635
KO
968 struct btree *b;
969
970 BUG_ON(level < 0);
971retry:
972 b = mca_find(c, k);
973
974 if (!b) {
57943511
KO
975 if (current->bio_list)
976 return ERR_PTR(-EAGAIN);
977
cafe5635 978 mutex_lock(&c->bucket_lock);
0a63b66d 979 b = mca_alloc(c, op, k, level);
cafe5635
KO
980 mutex_unlock(&c->bucket_lock);
981
982 if (!b)
983 goto retry;
984 if (IS_ERR(b))
985 return b;
986
57943511 987 bch_btree_node_read(b);
cafe5635
KO
988
989 if (!write)
990 downgrade_write(&b->lock);
991 } else {
992 rw_lock(write, b, level);
993 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
994 rw_unlock(write, b);
995 goto retry;
996 }
997 BUG_ON(b->level != level);
998 }
999
2452cc89 1000 b->parent = parent;
cafe5635
KO
1001 b->accessed = 1;
1002
a85e968e
KO
1003 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1004 prefetch(b->keys.set[i].tree);
1005 prefetch(b->keys.set[i].data);
cafe5635
KO
1006 }
1007
a85e968e
KO
1008 for (; i <= b->keys.nsets; i++)
1009 prefetch(b->keys.set[i].data);
cafe5635 1010
57943511 1011 if (btree_node_io_error(b)) {
cafe5635 1012 rw_unlock(write, b);
57943511
KO
1013 return ERR_PTR(-EIO);
1014 }
1015
1016 BUG_ON(!b->written);
cafe5635
KO
1017
1018 return b;
1019}
1020
2452cc89 1021static void btree_node_prefetch(struct btree *parent, struct bkey *k)
cafe5635
KO
1022{
1023 struct btree *b;
1024
2452cc89
SP
1025 mutex_lock(&parent->c->bucket_lock);
1026 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1027 mutex_unlock(&parent->c->bucket_lock);
cafe5635
KO
1028
1029 if (!IS_ERR_OR_NULL(b)) {
2452cc89 1030 b->parent = parent;
57943511 1031 bch_btree_node_read(b);
cafe5635
KO
1032 rw_unlock(true, b);
1033 }
1034}
1035
1036/* Btree alloc */
1037
e8e1d468 1038static void btree_node_free(struct btree *b)
cafe5635 1039{
c37511b8
KO
1040 trace_bcache_btree_node_free(b);
1041
cafe5635 1042 BUG_ON(b == b->c->root);
cafe5635 1043
2a285686
KO
1044 mutex_lock(&b->write_lock);
1045
cafe5635
KO
1046 if (btree_node_dirty(b))
1047 btree_complete_write(b, btree_current_write(b));
1048 clear_bit(BTREE_NODE_dirty, &b->flags);
1049
2a285686
KO
1050 mutex_unlock(&b->write_lock);
1051
cafe5635
KO
1052 cancel_delayed_work(&b->work);
1053
1054 mutex_lock(&b->c->bucket_lock);
cafe5635
KO
1055 bch_bucket_free(b->c, &b->key);
1056 mca_bucket_free(b);
1057 mutex_unlock(&b->c->bucket_lock);
1058}
1059
c5aa4a31 1060struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
2452cc89
SP
1061 int level, bool wait,
1062 struct btree *parent)
cafe5635
KO
1063{
1064 BKEY_PADDED(key) k;
1065 struct btree *b = ERR_PTR(-EAGAIN);
1066
1067 mutex_lock(&c->bucket_lock);
1068retry:
c5aa4a31 1069 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
cafe5635
KO
1070 goto err;
1071
3a3b6a4e 1072 bkey_put(c, &k.key);
cafe5635
KO
1073 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1074
0a63b66d 1075 b = mca_alloc(c, op, &k.key, level);
cafe5635
KO
1076 if (IS_ERR(b))
1077 goto err_free;
1078
1079 if (!b) {
b1a67b0f
KO
1080 cache_bug(c,
1081 "Tried to allocate bucket that was in btree cache");
cafe5635
KO
1082 goto retry;
1083 }
1084
cafe5635 1085 b->accessed = 1;
2452cc89 1086 b->parent = parent;
a85e968e 1087 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
cafe5635
KO
1088
1089 mutex_unlock(&c->bucket_lock);
c37511b8
KO
1090
1091 trace_bcache_btree_node_alloc(b);
cafe5635
KO
1092 return b;
1093err_free:
1094 bch_bucket_free(c, &k.key);
cafe5635
KO
1095err:
1096 mutex_unlock(&c->bucket_lock);
c37511b8 1097
913dc33f 1098 trace_bcache_btree_node_alloc_fail(c);
cafe5635
KO
1099 return b;
1100}
1101
c5aa4a31 1102static struct btree *bch_btree_node_alloc(struct cache_set *c,
2452cc89
SP
1103 struct btree_op *op, int level,
1104 struct btree *parent)
c5aa4a31 1105{
2452cc89 1106 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
c5aa4a31
SP
1107}
1108
0a63b66d
KO
1109static struct btree *btree_node_alloc_replacement(struct btree *b,
1110 struct btree_op *op)
cafe5635 1111{
2452cc89 1112 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
67539e85 1113 if (!IS_ERR_OR_NULL(n)) {
2a285686 1114 mutex_lock(&n->write_lock);
89ebb4a2 1115 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
67539e85 1116 bkey_copy_key(&n->key, &b->key);
2a285686 1117 mutex_unlock(&n->write_lock);
67539e85 1118 }
cafe5635
KO
1119
1120 return n;
1121}
1122
8835c123
KO
1123static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1124{
1125 unsigned i;
1126
05335cff
KO
1127 mutex_lock(&b->c->bucket_lock);
1128
1129 atomic_inc(&b->c->prio_blocked);
1130
8835c123
KO
1131 bkey_copy(k, &b->key);
1132 bkey_copy_key(k, &ZERO_KEY);
1133
05335cff
KO
1134 for (i = 0; i < KEY_PTRS(k); i++)
1135 SET_PTR_GEN(k, i,
1136 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1137 PTR_BUCKET(b->c, &b->key, i)));
8835c123 1138
05335cff 1139 mutex_unlock(&b->c->bucket_lock);
8835c123
KO
1140}
1141
78365411
KO
1142static int btree_check_reserve(struct btree *b, struct btree_op *op)
1143{
1144 struct cache_set *c = b->c;
1145 struct cache *ca;
0a63b66d 1146 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
78365411
KO
1147
1148 mutex_lock(&c->bucket_lock);
1149
1150 for_each_cache(ca, c, i)
1151 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1152 if (op)
0a63b66d 1153 prepare_to_wait(&c->btree_cache_wait, &op->wait,
78365411 1154 TASK_UNINTERRUPTIBLE);
0a63b66d
KO
1155 mutex_unlock(&c->bucket_lock);
1156 return -EINTR;
78365411
KO
1157 }
1158
1159 mutex_unlock(&c->bucket_lock);
0a63b66d
KO
1160
1161 return mca_cannibalize_lock(b->c, op);
78365411
KO
1162}
1163
cafe5635
KO
1164/* Garbage collection */
1165
487dded8
KO
1166static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1167 struct bkey *k)
cafe5635
KO
1168{
1169 uint8_t stale = 0;
1170 unsigned i;
1171 struct bucket *g;
1172
1173 /*
1174 * ptr_invalid() can't return true for the keys that mark btree nodes as
1175 * freed, but since ptr_bad() returns true we'll never actually use them
1176 * for anything and thus we don't want mark their pointers here
1177 */
1178 if (!bkey_cmp(k, &ZERO_KEY))
1179 return stale;
1180
1181 for (i = 0; i < KEY_PTRS(k); i++) {
1182 if (!ptr_available(c, k, i))
1183 continue;
1184
1185 g = PTR_BUCKET(c, k, i);
1186
3a2fd9d5
KO
1187 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1188 g->last_gc = PTR_GEN(k, i);
cafe5635
KO
1189
1190 if (ptr_stale(c, k, i)) {
1191 stale = max(stale, ptr_stale(c, k, i));
1192 continue;
1193 }
1194
1195 cache_bug_on(GC_MARK(g) &&
1196 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1197 c, "inconsistent ptrs: mark = %llu, level = %i",
1198 GC_MARK(g), level);
1199
1200 if (level)
1201 SET_GC_MARK(g, GC_MARK_METADATA);
1202 else if (KEY_DIRTY(k))
1203 SET_GC_MARK(g, GC_MARK_DIRTY);
4fe6a816
KO
1204 else if (!GC_MARK(g))
1205 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
cafe5635
KO
1206
1207 /* guard against overflow */
1208 SET_GC_SECTORS_USED(g, min_t(unsigned,
1209 GC_SECTORS_USED(g) + KEY_SIZE(k),
94717447 1210 MAX_GC_SECTORS_USED));
cafe5635
KO
1211
1212 BUG_ON(!GC_SECTORS_USED(g));
1213 }
1214
1215 return stale;
1216}
1217
1218#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1219
487dded8
KO
1220void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1221{
1222 unsigned i;
1223
1224 for (i = 0; i < KEY_PTRS(k); i++)
1225 if (ptr_available(c, k, i) &&
1226 !ptr_stale(c, k, i)) {
1227 struct bucket *b = PTR_BUCKET(c, k, i);
1228
1229 b->gen = PTR_GEN(k, i);
1230
1231 if (level && bkey_cmp(k, &ZERO_KEY))
1232 b->prio = BTREE_PRIO;
1233 else if (!level && b->prio == BTREE_PRIO)
1234 b->prio = INITIAL_PRIO;
1235 }
1236
1237 __bch_btree_mark_key(c, level, k);
1238}
1239
a1f0358b 1240static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
cafe5635
KO
1241{
1242 uint8_t stale = 0;
a1f0358b 1243 unsigned keys = 0, good_keys = 0;
cafe5635
KO
1244 struct bkey *k;
1245 struct btree_iter iter;
1246 struct bset_tree *t;
1247
1248 gc->nodes++;
1249
c052dd9a 1250 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
cafe5635 1251 stale = max(stale, btree_mark_key(b, k));
a1f0358b 1252 keys++;
cafe5635 1253
a85e968e 1254 if (bch_ptr_bad(&b->keys, k))
cafe5635
KO
1255 continue;
1256
cafe5635
KO
1257 gc->key_bytes += bkey_u64s(k);
1258 gc->nkeys++;
a1f0358b 1259 good_keys++;
cafe5635
KO
1260
1261 gc->data += KEY_SIZE(k);
cafe5635
KO
1262 }
1263
a85e968e 1264 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
cafe5635 1265 btree_bug_on(t->size &&
a85e968e 1266 bset_written(&b->keys, t) &&
cafe5635
KO
1267 bkey_cmp(&b->key, &t->end) < 0,
1268 b, "found short btree key in gc");
1269
a1f0358b
KO
1270 if (b->c->gc_always_rewrite)
1271 return true;
cafe5635 1272
a1f0358b
KO
1273 if (stale > 10)
1274 return true;
cafe5635 1275
a1f0358b
KO
1276 if ((keys - good_keys) * 2 > keys)
1277 return true;
cafe5635 1278
a1f0358b 1279 return false;
cafe5635
KO
1280}
1281
a1f0358b 1282#define GC_MERGE_NODES 4U
cafe5635
KO
1283
1284struct gc_merge_info {
1285 struct btree *b;
cafe5635
KO
1286 unsigned keys;
1287};
1288
a1f0358b
KO
1289static int bch_btree_insert_node(struct btree *, struct btree_op *,
1290 struct keylist *, atomic_t *, struct bkey *);
1291
1292static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
0a63b66d 1293 struct gc_stat *gc, struct gc_merge_info *r)
cafe5635 1294{
a1f0358b
KO
1295 unsigned i, nodes = 0, keys = 0, blocks;
1296 struct btree *new_nodes[GC_MERGE_NODES];
0a63b66d 1297 struct keylist keylist;
b54d6934 1298 struct closure cl;
a1f0358b 1299 struct bkey *k;
b54d6934 1300
0a63b66d
KO
1301 bch_keylist_init(&keylist);
1302
1303 if (btree_check_reserve(b, NULL))
1304 return 0;
1305
a1f0358b 1306 memset(new_nodes, 0, sizeof(new_nodes));
b54d6934 1307 closure_init_stack(&cl);
cafe5635 1308
a1f0358b 1309 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
cafe5635
KO
1310 keys += r[nodes++].keys;
1311
1312 blocks = btree_default_blocks(b->c) * 2 / 3;
1313
1314 if (nodes < 2 ||
a85e968e 1315 __set_blocks(b->keys.set[0].data, keys,
ee811287 1316 block_bytes(b->c)) > blocks * (nodes - 1))
a1f0358b 1317 return 0;
cafe5635 1318
a1f0358b 1319 for (i = 0; i < nodes; i++) {
0a63b66d 1320 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
a1f0358b
KO
1321 if (IS_ERR_OR_NULL(new_nodes[i]))
1322 goto out_nocoalesce;
cafe5635
KO
1323 }
1324
0a63b66d
KO
1325 /*
1326 * We have to check the reserve here, after we've allocated our new
1327 * nodes, to make sure the insert below will succeed - we also check
1328 * before as an optimization to potentially avoid a bunch of expensive
1329 * allocs/sorts
1330 */
1331 if (btree_check_reserve(b, NULL))
1332 goto out_nocoalesce;
1333
2a285686
KO
1334 for (i = 0; i < nodes; i++)
1335 mutex_lock(&new_nodes[i]->write_lock);
1336
cafe5635 1337 for (i = nodes - 1; i > 0; --i) {
ee811287
KO
1338 struct bset *n1 = btree_bset_first(new_nodes[i]);
1339 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
cafe5635
KO
1340 struct bkey *k, *last = NULL;
1341
1342 keys = 0;
1343
a1f0358b
KO
1344 if (i > 1) {
1345 for (k = n2->start;
fafff81c 1346 k < bset_bkey_last(n2);
a1f0358b
KO
1347 k = bkey_next(k)) {
1348 if (__set_blocks(n1, n1->keys + keys +
ee811287
KO
1349 bkey_u64s(k),
1350 block_bytes(b->c)) > blocks)
a1f0358b
KO
1351 break;
1352
1353 last = k;
1354 keys += bkey_u64s(k);
1355 }
1356 } else {
cafe5635
KO
1357 /*
1358 * Last node we're not getting rid of - we're getting
1359 * rid of the node at r[0]. Have to try and fit all of
1360 * the remaining keys into this node; we can't ensure
1361 * they will always fit due to rounding and variable
1362 * length keys (shouldn't be possible in practice,
1363 * though)
1364 */
a1f0358b 1365 if (__set_blocks(n1, n1->keys + n2->keys,
ee811287
KO
1366 block_bytes(b->c)) >
1367 btree_blocks(new_nodes[i]))
a1f0358b 1368 goto out_nocoalesce;
cafe5635
KO
1369
1370 keys = n2->keys;
a1f0358b 1371 /* Take the key of the node we're getting rid of */
cafe5635 1372 last = &r->b->key;
a1f0358b 1373 }
cafe5635 1374
ee811287
KO
1375 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1376 btree_blocks(new_nodes[i]));
cafe5635 1377
a1f0358b
KO
1378 if (last)
1379 bkey_copy_key(&new_nodes[i]->key, last);
cafe5635 1380
fafff81c 1381 memcpy(bset_bkey_last(n1),
cafe5635 1382 n2->start,
fafff81c 1383 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
cafe5635
KO
1384
1385 n1->keys += keys;
a1f0358b 1386 r[i].keys = n1->keys;
cafe5635
KO
1387
1388 memmove(n2->start,
fafff81c
KO
1389 bset_bkey_idx(n2, keys),
1390 (void *) bset_bkey_last(n2) -
1391 (void *) bset_bkey_idx(n2, keys));
cafe5635
KO
1392
1393 n2->keys -= keys;
1394
0a63b66d 1395 if (__bch_keylist_realloc(&keylist,
085d2a3d 1396 bkey_u64s(&new_nodes[i]->key)))
a1f0358b
KO
1397 goto out_nocoalesce;
1398
1399 bch_btree_node_write(new_nodes[i], &cl);
0a63b66d 1400 bch_keylist_add(&keylist, &new_nodes[i]->key);
cafe5635
KO
1401 }
1402
2a285686
KO
1403 for (i = 0; i < nodes; i++)
1404 mutex_unlock(&new_nodes[i]->write_lock);
1405
05335cff
KO
1406 closure_sync(&cl);
1407
1408 /* We emptied out this node */
1409 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1410 btree_node_free(new_nodes[0]);
1411 rw_unlock(true, new_nodes[0]);
400ffaa2 1412 new_nodes[0] = NULL;
05335cff 1413
a1f0358b 1414 for (i = 0; i < nodes; i++) {
0a63b66d 1415 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
a1f0358b 1416 goto out_nocoalesce;
cafe5635 1417
0a63b66d
KO
1418 make_btree_freeing_key(r[i].b, keylist.top);
1419 bch_keylist_push(&keylist);
a1f0358b 1420 }
cafe5635 1421
0a63b66d
KO
1422 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1423 BUG_ON(!bch_keylist_empty(&keylist));
a1f0358b
KO
1424
1425 for (i = 0; i < nodes; i++) {
1426 btree_node_free(r[i].b);
1427 rw_unlock(true, r[i].b);
1428
1429 r[i].b = new_nodes[i];
1430 }
1431
a1f0358b
KO
1432 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1433 r[nodes - 1].b = ERR_PTR(-EINTR);
1434
1435 trace_bcache_btree_gc_coalesce(nodes);
cafe5635 1436 gc->nodes--;
cafe5635 1437
0a63b66d
KO
1438 bch_keylist_free(&keylist);
1439
a1f0358b
KO
1440 /* Invalidated our iterator */
1441 return -EINTR;
1442
1443out_nocoalesce:
1444 closure_sync(&cl);
0a63b66d 1445 bch_keylist_free(&keylist);
a1f0358b 1446
0a63b66d 1447 while ((k = bch_keylist_pop(&keylist)))
a1f0358b
KO
1448 if (!bkey_cmp(k, &ZERO_KEY))
1449 atomic_dec(&b->c->prio_blocked);
1450
1451 for (i = 0; i < nodes; i++)
1452 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1453 btree_node_free(new_nodes[i]);
1454 rw_unlock(true, new_nodes[i]);
1455 }
1456 return 0;
cafe5635
KO
1457}
1458
0a63b66d
KO
1459static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1460 struct btree *replace)
1461{
1462 struct keylist keys;
1463 struct btree *n;
1464
1465 if (btree_check_reserve(b, NULL))
1466 return 0;
1467
1468 n = btree_node_alloc_replacement(replace, NULL);
1469
1470 /* recheck reserve after allocating replacement node */
1471 if (btree_check_reserve(b, NULL)) {
1472 btree_node_free(n);
1473 rw_unlock(true, n);
1474 return 0;
1475 }
1476
1477 bch_btree_node_write_sync(n);
1478
1479 bch_keylist_init(&keys);
1480 bch_keylist_add(&keys, &n->key);
1481
1482 make_btree_freeing_key(replace, keys.top);
1483 bch_keylist_push(&keys);
1484
1485 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1486 BUG_ON(!bch_keylist_empty(&keys));
1487
1488 btree_node_free(replace);
1489 rw_unlock(true, n);
1490
1491 /* Invalidated our iterator */
1492 return -EINTR;
1493}
1494
a1f0358b 1495static unsigned btree_gc_count_keys(struct btree *b)
cafe5635 1496{
a1f0358b
KO
1497 struct bkey *k;
1498 struct btree_iter iter;
1499 unsigned ret = 0;
cafe5635 1500
c052dd9a 1501 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
a1f0358b
KO
1502 ret += bkey_u64s(k);
1503
1504 return ret;
1505}
cafe5635 1506
a1f0358b
KO
1507static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1508 struct closure *writes, struct gc_stat *gc)
1509{
a1f0358b
KO
1510 int ret = 0;
1511 bool should_rewrite;
a1f0358b 1512 struct bkey *k;
a1f0358b 1513 struct btree_iter iter;
cafe5635 1514 struct gc_merge_info r[GC_MERGE_NODES];
2a285686 1515 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
cafe5635 1516
c052dd9a 1517 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
cafe5635 1518
2a285686
KO
1519 for (i = r; i < r + ARRAY_SIZE(r); i++)
1520 i->b = ERR_PTR(-EINTR);
cafe5635 1521
a1f0358b 1522 while (1) {
a85e968e 1523 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
a1f0358b 1524 if (k) {
0a63b66d 1525 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
2452cc89 1526 true, b);
a1f0358b
KO
1527 if (IS_ERR(r->b)) {
1528 ret = PTR_ERR(r->b);
1529 break;
1530 }
1531
1532 r->keys = btree_gc_count_keys(r->b);
1533
0a63b66d 1534 ret = btree_gc_coalesce(b, op, gc, r);
a1f0358b
KO
1535 if (ret)
1536 break;
cafe5635
KO
1537 }
1538
a1f0358b
KO
1539 if (!last->b)
1540 break;
cafe5635 1541
a1f0358b
KO
1542 if (!IS_ERR(last->b)) {
1543 should_rewrite = btree_gc_mark_node(last->b, gc);
0a63b66d
KO
1544 if (should_rewrite) {
1545 ret = btree_gc_rewrite_node(b, op, last->b);
1546 if (ret)
a1f0358b 1547 break;
a1f0358b
KO
1548 }
1549
1550 if (last->b->level) {
1551 ret = btree_gc_recurse(last->b, op, writes, gc);
1552 if (ret)
1553 break;
1554 }
cafe5635 1555
a1f0358b
KO
1556 bkey_copy_key(&b->c->gc_done, &last->b->key);
1557
1558 /*
1559 * Must flush leaf nodes before gc ends, since replace
1560 * operations aren't journalled
1561 */
2a285686 1562 mutex_lock(&last->b->write_lock);
a1f0358b
KO
1563 if (btree_node_dirty(last->b))
1564 bch_btree_node_write(last->b, writes);
2a285686 1565 mutex_unlock(&last->b->write_lock);
a1f0358b
KO
1566 rw_unlock(true, last->b);
1567 }
1568
1569 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1570 r->b = NULL;
cafe5635 1571
cafe5635
KO
1572 if (need_resched()) {
1573 ret = -EAGAIN;
1574 break;
1575 }
cafe5635
KO
1576 }
1577
2a285686
KO
1578 for (i = r; i < r + ARRAY_SIZE(r); i++)
1579 if (!IS_ERR_OR_NULL(i->b)) {
1580 mutex_lock(&i->b->write_lock);
1581 if (btree_node_dirty(i->b))
1582 bch_btree_node_write(i->b, writes);
1583 mutex_unlock(&i->b->write_lock);
1584 rw_unlock(true, i->b);
a1f0358b 1585 }
cafe5635 1586
cafe5635
KO
1587 return ret;
1588}
1589
1590static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1591 struct closure *writes, struct gc_stat *gc)
1592{
1593 struct btree *n = NULL;
a1f0358b
KO
1594 int ret = 0;
1595 bool should_rewrite;
cafe5635 1596
a1f0358b
KO
1597 should_rewrite = btree_gc_mark_node(b, gc);
1598 if (should_rewrite) {
0a63b66d 1599 n = btree_node_alloc_replacement(b, NULL);
cafe5635 1600
a1f0358b
KO
1601 if (!IS_ERR_OR_NULL(n)) {
1602 bch_btree_node_write_sync(n);
2a285686 1603
a1f0358b
KO
1604 bch_btree_set_root(n);
1605 btree_node_free(b);
1606 rw_unlock(true, n);
cafe5635 1607
a1f0358b
KO
1608 return -EINTR;
1609 }
1610 }
cafe5635 1611
487dded8
KO
1612 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1613
a1f0358b
KO
1614 if (b->level) {
1615 ret = btree_gc_recurse(b, op, writes, gc);
1616 if (ret)
1617 return ret;
cafe5635
KO
1618 }
1619
a1f0358b
KO
1620 bkey_copy_key(&b->c->gc_done, &b->key);
1621
cafe5635
KO
1622 return ret;
1623}
1624
1625static void btree_gc_start(struct cache_set *c)
1626{
1627 struct cache *ca;
1628 struct bucket *b;
cafe5635
KO
1629 unsigned i;
1630
1631 if (!c->gc_mark_valid)
1632 return;
1633
1634 mutex_lock(&c->bucket_lock);
1635
1636 c->gc_mark_valid = 0;
1637 c->gc_done = ZERO_KEY;
1638
1639 for_each_cache(ca, c, i)
1640 for_each_bucket(b, ca) {
3a2fd9d5 1641 b->last_gc = b->gen;
29ebf465 1642 if (!atomic_read(&b->pin)) {
4fe6a816 1643 SET_GC_MARK(b, 0);
29ebf465
KO
1644 SET_GC_SECTORS_USED(b, 0);
1645 }
cafe5635
KO
1646 }
1647
cafe5635
KO
1648 mutex_unlock(&c->bucket_lock);
1649}
1650
2531d9ee 1651static size_t bch_btree_gc_finish(struct cache_set *c)
cafe5635
KO
1652{
1653 size_t available = 0;
1654 struct bucket *b;
1655 struct cache *ca;
cafe5635
KO
1656 unsigned i;
1657
1658 mutex_lock(&c->bucket_lock);
1659
1660 set_gc_sectors(c);
1661 c->gc_mark_valid = 1;
1662 c->need_gc = 0;
1663
cafe5635
KO
1664 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1665 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1666 GC_MARK_METADATA);
1667
bf0a628a
NS
1668 /* don't reclaim buckets to which writeback keys point */
1669 rcu_read_lock();
1670 for (i = 0; i < c->nr_uuids; i++) {
1671 struct bcache_device *d = c->devices[i];
1672 struct cached_dev *dc;
1673 struct keybuf_key *w, *n;
1674 unsigned j;
1675
1676 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1677 continue;
1678 dc = container_of(d, struct cached_dev, disk);
1679
1680 spin_lock(&dc->writeback_keys.lock);
1681 rbtree_postorder_for_each_entry_safe(w, n,
1682 &dc->writeback_keys.keys, node)
1683 for (j = 0; j < KEY_PTRS(&w->key); j++)
1684 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1685 GC_MARK_DIRTY);
1686 spin_unlock(&dc->writeback_keys.lock);
1687 }
1688 rcu_read_unlock();
1689
cafe5635
KO
1690 for_each_cache(ca, c, i) {
1691 uint64_t *i;
1692
1693 ca->invalidate_needs_gc = 0;
1694
1695 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1696 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1697
1698 for (i = ca->prio_buckets;
1699 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1700 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1701
1702 for_each_bucket(b, ca) {
cafe5635
KO
1703 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1704
4fe6a816
KO
1705 if (atomic_read(&b->pin))
1706 continue;
1707
1708 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1709
1710 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
cafe5635 1711 available++;
cafe5635
KO
1712 }
1713 }
1714
cafe5635
KO
1715 mutex_unlock(&c->bucket_lock);
1716 return available;
1717}
1718
72a44517 1719static void bch_btree_gc(struct cache_set *c)
cafe5635 1720{
cafe5635
KO
1721 int ret;
1722 unsigned long available;
1723 struct gc_stat stats;
1724 struct closure writes;
1725 struct btree_op op;
cafe5635 1726 uint64_t start_time = local_clock();
57943511 1727
c37511b8 1728 trace_bcache_gc_start(c);
cafe5635
KO
1729
1730 memset(&stats, 0, sizeof(struct gc_stat));
1731 closure_init_stack(&writes);
b54d6934 1732 bch_btree_op_init(&op, SHRT_MAX);
cafe5635
KO
1733
1734 btree_gc_start(c);
1735
a1f0358b
KO
1736 do {
1737 ret = btree_root(gc_root, c, &op, &writes, &stats);
1738 closure_sync(&writes);
c5f1e5ad 1739 cond_resched();
cafe5635 1740
a1f0358b
KO
1741 if (ret && ret != -EAGAIN)
1742 pr_warn("gc failed!");
1743 } while (ret);
cafe5635
KO
1744
1745 available = bch_btree_gc_finish(c);
57943511
KO
1746 wake_up_allocators(c);
1747
169ef1cf 1748 bch_time_stats_update(&c->btree_gc_time, start_time);
cafe5635
KO
1749
1750 stats.key_bytes *= sizeof(uint64_t);
cafe5635
KO
1751 stats.data <<= 9;
1752 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1753 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
cafe5635 1754
c37511b8 1755 trace_bcache_gc_end(c);
cafe5635 1756
72a44517
KO
1757 bch_moving_gc(c);
1758}
1759
be628be0 1760static bool gc_should_run(struct cache_set *c)
72a44517 1761{
a1f0358b
KO
1762 struct cache *ca;
1763 unsigned i;
72a44517 1764
be628be0
KO
1765 for_each_cache(ca, c, i)
1766 if (ca->invalidate_needs_gc)
1767 return true;
72a44517 1768
be628be0
KO
1769 if (atomic_read(&c->sectors_to_gc) < 0)
1770 return true;
72a44517 1771
be628be0
KO
1772 return false;
1773}
a1f0358b 1774
be628be0
KO
1775static int bch_gc_thread(void *arg)
1776{
1777 struct cache_set *c = arg;
a1f0358b 1778
be628be0
KO
1779 while (1) {
1780 wait_event_interruptible(c->gc_wait,
1781 kthread_should_stop() || gc_should_run(c));
a1f0358b 1782
be628be0
KO
1783 if (kthread_should_stop())
1784 break;
1785
1786 set_gc_sectors(c);
1787 bch_btree_gc(c);
72a44517
KO
1788 }
1789
1790 return 0;
cafe5635
KO
1791}
1792
72a44517 1793int bch_gc_thread_start(struct cache_set *c)
cafe5635 1794{
be628be0 1795 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
72a44517
KO
1796 if (IS_ERR(c->gc_thread))
1797 return PTR_ERR(c->gc_thread);
1798
72a44517 1799 return 0;
cafe5635
KO
1800}
1801
1802/* Initial partial gc */
1803
487dded8 1804static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
cafe5635 1805{
50310164 1806 int ret = 0;
50310164 1807 struct bkey *k, *p = NULL;
cafe5635
KO
1808 struct btree_iter iter;
1809
487dded8
KO
1810 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1811 bch_initial_mark_key(b->c, b->level, k);
cafe5635 1812
487dded8 1813 bch_initial_mark_key(b->c, b->level + 1, &b->key);
cafe5635
KO
1814
1815 if (b->level) {
c052dd9a 1816 bch_btree_iter_init(&b->keys, &iter, NULL);
cafe5635 1817
50310164 1818 do {
a85e968e
KO
1819 k = bch_btree_iter_next_filter(&iter, &b->keys,
1820 bch_ptr_bad);
50310164 1821 if (k)
2452cc89 1822 btree_node_prefetch(b, k);
cafe5635 1823
50310164 1824 if (p)
487dded8 1825 ret = btree(check_recurse, p, b, op);
cafe5635 1826
50310164
KO
1827 p = k;
1828 } while (p && !ret);
cafe5635
KO
1829 }
1830
487dded8 1831 return ret;
cafe5635
KO
1832}
1833
c18536a7 1834int bch_btree_check(struct cache_set *c)
cafe5635 1835{
c18536a7 1836 struct btree_op op;
cafe5635 1837
b54d6934 1838 bch_btree_op_init(&op, SHRT_MAX);
cafe5635 1839
487dded8 1840 return btree_root(check_recurse, c, &op);
cafe5635
KO
1841}
1842
2531d9ee
KO
1843void bch_initial_gc_finish(struct cache_set *c)
1844{
1845 struct cache *ca;
1846 struct bucket *b;
1847 unsigned i;
1848
1849 bch_btree_gc_finish(c);
1850
1851 mutex_lock(&c->bucket_lock);
1852
1853 /*
1854 * We need to put some unused buckets directly on the prio freelist in
1855 * order to get the allocator thread started - it needs freed buckets in
1856 * order to rewrite the prios and gens, and it needs to rewrite prios
1857 * and gens in order to free buckets.
1858 *
1859 * This is only safe for buckets that have no live data in them, which
1860 * there should always be some of.
1861 */
1862 for_each_cache(ca, c, i) {
1863 for_each_bucket(b, ca) {
1864 if (fifo_full(&ca->free[RESERVE_PRIO]))
1865 break;
1866
1867 if (bch_can_invalidate_bucket(ca, b) &&
1868 !GC_MARK(b)) {
1869 __bch_invalidate_one_bucket(ca, b);
1870 fifo_push(&ca->free[RESERVE_PRIO],
1871 b - ca->buckets);
1872 }
1873 }
1874 }
1875
1876 mutex_unlock(&c->bucket_lock);
1877}
1878
cafe5635
KO
1879/* Btree insertion */
1880
829a60b9
KO
1881static bool btree_insert_key(struct btree *b, struct bkey *k,
1882 struct bkey *replace_key)
cafe5635 1883{
829a60b9 1884 unsigned status;
cafe5635
KO
1885
1886 BUG_ON(bkey_cmp(k, &b->key) > 0);
1fa8455d 1887
829a60b9
KO
1888 status = bch_btree_insert_key(&b->keys, k, replace_key);
1889 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1890 bch_check_keys(&b->keys, "%u for %s", status,
1891 replace_key ? "replace" : "insert");
cafe5635 1892
829a60b9
KO
1893 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1894 status);
1895 return true;
1896 } else
1897 return false;
cafe5635
KO
1898}
1899
59158fde
KO
1900static size_t insert_u64s_remaining(struct btree *b)
1901{
3572324a 1902 long ret = bch_btree_keys_u64s_remaining(&b->keys);
59158fde
KO
1903
1904 /*
1905 * Might land in the middle of an existing extent and have to split it
1906 */
1907 if (b->keys.ops->is_extents)
1908 ret -= KEY_MAX_U64S;
1909
1910 return max(ret, 0L);
1911}
1912
26c949f8 1913static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1b207d80
KO
1914 struct keylist *insert_keys,
1915 struct bkey *replace_key)
cafe5635
KO
1916{
1917 bool ret = false;
dc9d98d6 1918 int oldsize = bch_count_data(&b->keys);
cafe5635 1919
26c949f8 1920 while (!bch_keylist_empty(insert_keys)) {
c2f95ae2 1921 struct bkey *k = insert_keys->keys;
26c949f8 1922
59158fde 1923 if (bkey_u64s(k) > insert_u64s_remaining(b))
403b6cde
KO
1924 break;
1925
1926 if (bkey_cmp(k, &b->key) <= 0) {
3a3b6a4e
KO
1927 if (!b->level)
1928 bkey_put(b->c, k);
26c949f8 1929
829a60b9 1930 ret |= btree_insert_key(b, k, replace_key);
26c949f8
KO
1931 bch_keylist_pop_front(insert_keys);
1932 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
26c949f8 1933 BKEY_PADDED(key) temp;
c2f95ae2 1934 bkey_copy(&temp.key, insert_keys->keys);
26c949f8
KO
1935
1936 bch_cut_back(&b->key, &temp.key);
c2f95ae2 1937 bch_cut_front(&b->key, insert_keys->keys);
26c949f8 1938
829a60b9 1939 ret |= btree_insert_key(b, &temp.key, replace_key);
26c949f8
KO
1940 break;
1941 } else {
1942 break;
1943 }
cafe5635
KO
1944 }
1945
829a60b9
KO
1946 if (!ret)
1947 op->insert_collision = true;
1948
403b6cde
KO
1949 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1950
dc9d98d6 1951 BUG_ON(bch_count_data(&b->keys) < oldsize);
cafe5635
KO
1952 return ret;
1953}
1954
26c949f8
KO
1955static int btree_split(struct btree *b, struct btree_op *op,
1956 struct keylist *insert_keys,
1b207d80 1957 struct bkey *replace_key)
cafe5635 1958{
d6fd3b11 1959 bool split;
cafe5635
KO
1960 struct btree *n1, *n2 = NULL, *n3 = NULL;
1961 uint64_t start_time = local_clock();
b54d6934 1962 struct closure cl;
17e21a9f 1963 struct keylist parent_keys;
b54d6934
KO
1964
1965 closure_init_stack(&cl);
17e21a9f 1966 bch_keylist_init(&parent_keys);
cafe5635 1967
0a63b66d
KO
1968 if (btree_check_reserve(b, op)) {
1969 if (!b->level)
1970 return -EINTR;
1971 else
1972 WARN(1, "insufficient reserve for split\n");
1973 }
78365411 1974
0a63b66d 1975 n1 = btree_node_alloc_replacement(b, op);
cafe5635
KO
1976 if (IS_ERR(n1))
1977 goto err;
1978
ee811287
KO
1979 split = set_blocks(btree_bset_first(n1),
1980 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
cafe5635 1981
cafe5635
KO
1982 if (split) {
1983 unsigned keys = 0;
1984
ee811287 1985 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
c37511b8 1986
2452cc89 1987 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
cafe5635
KO
1988 if (IS_ERR(n2))
1989 goto err_free1;
1990
d6fd3b11 1991 if (!b->parent) {
2452cc89 1992 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
cafe5635
KO
1993 if (IS_ERR(n3))
1994 goto err_free2;
1995 }
1996
2a285686
KO
1997 mutex_lock(&n1->write_lock);
1998 mutex_lock(&n2->write_lock);
1999
1b207d80 2000 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
cafe5635 2001
d6fd3b11
KO
2002 /*
2003 * Has to be a linear search because we don't have an auxiliary
cafe5635
KO
2004 * search tree yet
2005 */
2006
ee811287
KO
2007 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2008 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
fafff81c 2009 keys));
cafe5635 2010
fafff81c 2011 bkey_copy_key(&n1->key,
ee811287
KO
2012 bset_bkey_idx(btree_bset_first(n1), keys));
2013 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
cafe5635 2014
ee811287
KO
2015 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2016 btree_bset_first(n1)->keys = keys;
cafe5635 2017
ee811287
KO
2018 memcpy(btree_bset_first(n2)->start,
2019 bset_bkey_last(btree_bset_first(n1)),
2020 btree_bset_first(n2)->keys * sizeof(uint64_t));
cafe5635
KO
2021
2022 bkey_copy_key(&n2->key, &b->key);
2023
17e21a9f 2024 bch_keylist_add(&parent_keys, &n2->key);
b54d6934 2025 bch_btree_node_write(n2, &cl);
2a285686 2026 mutex_unlock(&n2->write_lock);
cafe5635 2027 rw_unlock(true, n2);
c37511b8 2028 } else {
ee811287 2029 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
c37511b8 2030
2a285686 2031 mutex_lock(&n1->write_lock);
1b207d80 2032 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
c37511b8 2033 }
cafe5635 2034
17e21a9f 2035 bch_keylist_add(&parent_keys, &n1->key);
b54d6934 2036 bch_btree_node_write(n1, &cl);
2a285686 2037 mutex_unlock(&n1->write_lock);
cafe5635
KO
2038
2039 if (n3) {
d6fd3b11 2040 /* Depth increases, make a new root */
2a285686 2041 mutex_lock(&n3->write_lock);
cafe5635 2042 bkey_copy_key(&n3->key, &MAX_KEY);
17e21a9f 2043 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
b54d6934 2044 bch_btree_node_write(n3, &cl);
2a285686 2045 mutex_unlock(&n3->write_lock);
cafe5635 2046
b54d6934 2047 closure_sync(&cl);
cafe5635
KO
2048 bch_btree_set_root(n3);
2049 rw_unlock(true, n3);
d6fd3b11
KO
2050 } else if (!b->parent) {
2051 /* Root filled up but didn't need to be split */
b54d6934 2052 closure_sync(&cl);
cafe5635
KO
2053 bch_btree_set_root(n1);
2054 } else {
17e21a9f 2055 /* Split a non root node */
b54d6934 2056 closure_sync(&cl);
17e21a9f
KO
2057 make_btree_freeing_key(b, parent_keys.top);
2058 bch_keylist_push(&parent_keys);
2059
17e21a9f
KO
2060 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2061 BUG_ON(!bch_keylist_empty(&parent_keys));
cafe5635
KO
2062 }
2063
05335cff 2064 btree_node_free(b);
cafe5635 2065 rw_unlock(true, n1);
cafe5635 2066
169ef1cf 2067 bch_time_stats_update(&b->c->btree_split_time, start_time);
cafe5635
KO
2068
2069 return 0;
2070err_free2:
5f5837d2 2071 bkey_put(b->c, &n2->key);
e8e1d468 2072 btree_node_free(n2);
cafe5635
KO
2073 rw_unlock(true, n2);
2074err_free1:
5f5837d2 2075 bkey_put(b->c, &n1->key);
e8e1d468 2076 btree_node_free(n1);
cafe5635
KO
2077 rw_unlock(true, n1);
2078err:
0a63b66d 2079 WARN(1, "bcache: btree split failed (level %u)", b->level);
5f5837d2 2080
cafe5635
KO
2081 if (n3 == ERR_PTR(-EAGAIN) ||
2082 n2 == ERR_PTR(-EAGAIN) ||
2083 n1 == ERR_PTR(-EAGAIN))
2084 return -EAGAIN;
2085
cafe5635
KO
2086 return -ENOMEM;
2087}
2088
26c949f8 2089static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
c18536a7 2090 struct keylist *insert_keys,
1b207d80
KO
2091 atomic_t *journal_ref,
2092 struct bkey *replace_key)
cafe5635 2093{
2a285686
KO
2094 struct closure cl;
2095
17e21a9f
KO
2096 BUG_ON(b->level && replace_key);
2097
2a285686
KO
2098 closure_init_stack(&cl);
2099
2100 mutex_lock(&b->write_lock);
2101
2102 if (write_block(b) != btree_bset_last(b) &&
2103 b->keys.last_set_unwritten)
2104 bch_btree_init_next(b); /* just wrote a set */
2105
59158fde 2106 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2a285686
KO
2107 mutex_unlock(&b->write_lock);
2108 goto split;
2109 }
3b3e9e50 2110
2a285686 2111 BUG_ON(write_block(b) != btree_bset_last(b));
cafe5635 2112
2a285686
KO
2113 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2114 if (!b->level)
2115 bch_btree_leaf_dirty(b, journal_ref);
2116 else
2117 bch_btree_node_write(b, &cl);
2118 }
17e21a9f 2119
2a285686
KO
2120 mutex_unlock(&b->write_lock);
2121
2122 /* wait for btree node write if necessary, after unlock */
2123 closure_sync(&cl);
2124
2125 return 0;
2126split:
2127 if (current->bio_list) {
2128 op->lock = b->c->root->level + 1;
2129 return -EAGAIN;
2130 } else if (op->lock <= b->c->root->level) {
2131 op->lock = b->c->root->level + 1;
2132 return -EINTR;
2133 } else {
2134 /* Invalidated all iterators */
2135 int ret = btree_split(b, op, insert_keys, replace_key);
2136
2137 if (bch_keylist_empty(insert_keys))
2138 return 0;
2139 else if (!ret)
2140 return -EINTR;
2141 return ret;
17e21a9f 2142 }
26c949f8 2143}
cafe5635 2144
e7c590eb
KO
2145int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2146 struct bkey *check_key)
2147{
2148 int ret = -EINTR;
2149 uint64_t btree_ptr = b->key.ptr[0];
2150 unsigned long seq = b->seq;
2151 struct keylist insert;
2152 bool upgrade = op->lock == -1;
2153
2154 bch_keylist_init(&insert);
2155
2156 if (upgrade) {
2157 rw_unlock(false, b);
2158 rw_lock(true, b, b->level);
2159
2160 if (b->key.ptr[0] != btree_ptr ||
2ef9ccbf
ZL
2161 b->seq != seq + 1) {
2162 op->lock = b->level;
e7c590eb 2163 goto out;
2ef9ccbf 2164 }
e7c590eb
KO
2165 }
2166
2167 SET_KEY_PTRS(check_key, 1);
2168 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2169
2170 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2171
2172 bch_keylist_add(&insert, check_key);
2173
1b207d80 2174 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
e7c590eb
KO
2175
2176 BUG_ON(!ret && !bch_keylist_empty(&insert));
2177out:
2178 if (upgrade)
2179 downgrade_write(&b->lock);
2180 return ret;
2181}
2182
cc7b8819
KO
2183struct btree_insert_op {
2184 struct btree_op op;
2185 struct keylist *keys;
2186 atomic_t *journal_ref;
2187 struct bkey *replace_key;
2188};
cafe5635 2189
08239ca2 2190static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
cc7b8819
KO
2191{
2192 struct btree_insert_op *op = container_of(b_op,
2193 struct btree_insert_op, op);
cafe5635 2194
cc7b8819
KO
2195 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2196 op->journal_ref, op->replace_key);
2197 if (ret && !bch_keylist_empty(op->keys))
2198 return ret;
2199 else
2200 return MAP_DONE;
cafe5635
KO
2201}
2202
cc7b8819
KO
2203int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2204 atomic_t *journal_ref, struct bkey *replace_key)
cafe5635 2205{
cc7b8819 2206 struct btree_insert_op op;
cafe5635 2207 int ret = 0;
cafe5635 2208
cc7b8819 2209 BUG_ON(current->bio_list);
4f3d4014 2210 BUG_ON(bch_keylist_empty(keys));
cafe5635 2211
cc7b8819
KO
2212 bch_btree_op_init(&op.op, 0);
2213 op.keys = keys;
2214 op.journal_ref = journal_ref;
2215 op.replace_key = replace_key;
cafe5635 2216
cc7b8819
KO
2217 while (!ret && !bch_keylist_empty(keys)) {
2218 op.op.lock = 0;
2219 ret = bch_btree_map_leaf_nodes(&op.op, c,
2220 &START_KEY(keys->keys),
2221 btree_insert_fn);
2222 }
cafe5635 2223
cc7b8819
KO
2224 if (ret) {
2225 struct bkey *k;
cafe5635 2226
cc7b8819 2227 pr_err("error %i", ret);
cafe5635 2228
cc7b8819 2229 while ((k = bch_keylist_pop(keys)))
3a3b6a4e 2230 bkey_put(c, k);
cc7b8819
KO
2231 } else if (op.op.insert_collision)
2232 ret = -ESRCH;
6054c6d4 2233
cafe5635
KO
2234 return ret;
2235}
2236
2237void bch_btree_set_root(struct btree *b)
2238{
2239 unsigned i;
e49c7c37
KO
2240 struct closure cl;
2241
2242 closure_init_stack(&cl);
cafe5635 2243
c37511b8
KO
2244 trace_bcache_btree_set_root(b);
2245
cafe5635
KO
2246 BUG_ON(!b->written);
2247
2248 for (i = 0; i < KEY_PTRS(&b->key); i++)
2249 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2250
2251 mutex_lock(&b->c->bucket_lock);
2252 list_del_init(&b->list);
2253 mutex_unlock(&b->c->bucket_lock);
2254
2255 b->c->root = b;
cafe5635 2256
e49c7c37
KO
2257 bch_journal_meta(b->c, &cl);
2258 closure_sync(&cl);
cafe5635
KO
2259}
2260
48dad8ba
KO
2261/* Map across nodes or keys */
2262
2263static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2264 struct bkey *from,
2265 btree_map_nodes_fn *fn, int flags)
2266{
2267 int ret = MAP_CONTINUE;
2268
2269 if (b->level) {
2270 struct bkey *k;
2271 struct btree_iter iter;
2272
c052dd9a 2273 bch_btree_iter_init(&b->keys, &iter, from);
48dad8ba 2274
a85e968e 2275 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
48dad8ba
KO
2276 bch_ptr_bad))) {
2277 ret = btree(map_nodes_recurse, k, b,
2278 op, from, fn, flags);
2279 from = NULL;
2280
2281 if (ret != MAP_CONTINUE)
2282 return ret;
2283 }
2284 }
2285
2286 if (!b->level || flags == MAP_ALL_NODES)
2287 ret = fn(op, b);
2288
2289 return ret;
2290}
2291
2292int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2293 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2294{
b54d6934 2295 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
48dad8ba
KO
2296}
2297
2298static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2299 struct bkey *from, btree_map_keys_fn *fn,
2300 int flags)
2301{
2302 int ret = MAP_CONTINUE;
2303 struct bkey *k;
2304 struct btree_iter iter;
2305
c052dd9a 2306 bch_btree_iter_init(&b->keys, &iter, from);
48dad8ba 2307
a85e968e 2308 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
48dad8ba
KO
2309 ret = !b->level
2310 ? fn(op, b, k)
2311 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2312 from = NULL;
2313
2314 if (ret != MAP_CONTINUE)
2315 return ret;
2316 }
2317
2318 if (!b->level && (flags & MAP_END_KEY))
2319 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2320 KEY_OFFSET(&b->key), 0));
2321
2322 return ret;
2323}
2324
2325int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2326 struct bkey *from, btree_map_keys_fn *fn, int flags)
2327{
b54d6934 2328 return btree_root(map_keys_recurse, c, op, from, fn, flags);
48dad8ba
KO
2329}
2330
cafe5635
KO
2331/* Keybuf code */
2332
2333static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2334{
2335 /* Overlapping keys compare equal */
2336 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2337 return -1;
2338 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2339 return 1;
2340 return 0;
2341}
2342
2343static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2344 struct keybuf_key *r)
2345{
2346 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2347}
2348
48dad8ba
KO
2349struct refill {
2350 struct btree_op op;
48a915a8 2351 unsigned nr_found;
48dad8ba
KO
2352 struct keybuf *buf;
2353 struct bkey *end;
2354 keybuf_pred_fn *pred;
2355};
cafe5635 2356
48dad8ba
KO
2357static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2358 struct bkey *k)
2359{
2360 struct refill *refill = container_of(op, struct refill, op);
2361 struct keybuf *buf = refill->buf;
2362 int ret = MAP_CONTINUE;
cafe5635 2363
48dad8ba
KO
2364 if (bkey_cmp(k, refill->end) >= 0) {
2365 ret = MAP_DONE;
2366 goto out;
2367 }
cafe5635 2368
48dad8ba
KO
2369 if (!KEY_SIZE(k)) /* end key */
2370 goto out;
cafe5635 2371
48dad8ba
KO
2372 if (refill->pred(buf, k)) {
2373 struct keybuf_key *w;
cafe5635 2374
48dad8ba 2375 spin_lock(&buf->lock);
cafe5635 2376
48dad8ba
KO
2377 w = array_alloc(&buf->freelist);
2378 if (!w) {
2379 spin_unlock(&buf->lock);
2380 return MAP_DONE;
2381 }
cafe5635 2382
48dad8ba
KO
2383 w->private = NULL;
2384 bkey_copy(&w->key, k);
cafe5635 2385
48dad8ba
KO
2386 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2387 array_free(&buf->freelist, w);
48a915a8
KO
2388 else
2389 refill->nr_found++;
cafe5635 2390
48dad8ba
KO
2391 if (array_freelist_empty(&buf->freelist))
2392 ret = MAP_DONE;
cafe5635 2393
48dad8ba 2394 spin_unlock(&buf->lock);
cafe5635 2395 }
48dad8ba
KO
2396out:
2397 buf->last_scanned = *k;
2398 return ret;
cafe5635
KO
2399}
2400
2401void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
72c27061 2402 struct bkey *end, keybuf_pred_fn *pred)
cafe5635
KO
2403{
2404 struct bkey start = buf->last_scanned;
48dad8ba 2405 struct refill refill;
cafe5635
KO
2406
2407 cond_resched();
2408
b54d6934 2409 bch_btree_op_init(&refill.op, -1);
48a915a8
KO
2410 refill.nr_found = 0;
2411 refill.buf = buf;
2412 refill.end = end;
2413 refill.pred = pred;
48dad8ba
KO
2414
2415 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2416 refill_keybuf_fn, MAP_END_KEY);
cafe5635 2417
48a915a8
KO
2418 trace_bcache_keyscan(refill.nr_found,
2419 KEY_INODE(&start), KEY_OFFSET(&start),
2420 KEY_INODE(&buf->last_scanned),
2421 KEY_OFFSET(&buf->last_scanned));
cafe5635
KO
2422
2423 spin_lock(&buf->lock);
2424
2425 if (!RB_EMPTY_ROOT(&buf->keys)) {
2426 struct keybuf_key *w;
2427 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2428 buf->start = START_KEY(&w->key);
2429
2430 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2431 buf->end = w->key;
2432 } else {
2433 buf->start = MAX_KEY;
2434 buf->end = MAX_KEY;
2435 }
2436
2437 spin_unlock(&buf->lock);
2438}
2439
2440static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2441{
2442 rb_erase(&w->node, &buf->keys);
2443 array_free(&buf->freelist, w);
2444}
2445
2446void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2447{
2448 spin_lock(&buf->lock);
2449 __bch_keybuf_del(buf, w);
2450 spin_unlock(&buf->lock);
2451}
2452
2453bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2454 struct bkey *end)
2455{
2456 bool ret = false;
2457 struct keybuf_key *p, *w, s;
2458 s.key = *start;
2459
2460 if (bkey_cmp(end, &buf->start) <= 0 ||
2461 bkey_cmp(start, &buf->end) >= 0)
2462 return false;
2463
2464 spin_lock(&buf->lock);
2465 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2466
2467 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2468 p = w;
2469 w = RB_NEXT(w, node);
2470
2471 if (p->private)
2472 ret = true;
2473 else
2474 __bch_keybuf_del(buf, p);
2475 }
2476
2477 spin_unlock(&buf->lock);
2478 return ret;
2479}
2480
2481struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2482{
2483 struct keybuf_key *w;
2484 spin_lock(&buf->lock);
2485
2486 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2487
2488 while (w && w->private)
2489 w = RB_NEXT(w, node);
2490
2491 if (w)
2492 w->private = ERR_PTR(-EINTR);
2493
2494 spin_unlock(&buf->lock);
2495 return w;
2496}
2497
2498struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
48dad8ba
KO
2499 struct keybuf *buf,
2500 struct bkey *end,
2501 keybuf_pred_fn *pred)
cafe5635
KO
2502{
2503 struct keybuf_key *ret;
2504
2505 while (1) {
2506 ret = bch_keybuf_next(buf);
2507 if (ret)
2508 break;
2509
2510 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2511 pr_debug("scan finished");
2512 break;
2513 }
2514
72c27061 2515 bch_refill_keybuf(c, buf, end, pred);
cafe5635
KO
2516 }
2517
2518 return ret;
2519}
2520
72c27061 2521void bch_keybuf_init(struct keybuf *buf)
cafe5635 2522{
cafe5635
KO
2523 buf->last_scanned = MAX_KEY;
2524 buf->keys = RB_ROOT;
2525
2526 spin_lock_init(&buf->lock);
2527 array_allocator_init(&buf->freelist);
2528}