]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - drivers/md/bcache/btree.c
bcache: display rate debug parameters to 0 when writeback is not running
[thirdparty/kernel/stable.git] / drivers / md / bcache / btree.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
cafe5635
KO
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
5fb94e9c 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
cafe5635
KO
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
65d45231 27#include "extents.h"
cafe5635
KO
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
72a44517 32#include <linux/kthread.h>
cd953ed0 33#include <linux/prefetch.h>
cafe5635
KO
34#include <linux/random.h>
35#include <linux/rcupdate.h>
e6017571 36#include <linux/sched/clock.h>
b2d09103
IM
37#include <linux/rculist.h>
38
cafe5635
KO
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
cafe5635
KO
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
cafe5635
KO
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
cafe5635
KO
91#define MAX_NEED_GC 64
92#define MAX_SAVE_PRIO 72
7f4a59de 93#define MAX_GC_TIMES 100
5c25c4fc
TJ
94#define MIN_GC_NODES 100
95#define GC_SLEEP_MS 100
cafe5635
KO
96
97#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99#define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
df8e8970
KO
102#define insert_lock(s, b) ((b)->level <= (s)->lock)
103
104/*
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
108 *
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
113 */
114
115/**
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
121 */
122#define btree(fn, key, b, op, ...) \
123({ \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
2452cc89
SP
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
127 _w, b); \
df8e8970 128 if (!IS_ERR(_child)) { \
df8e8970
KO
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
131 } else \
132 _r = PTR_ERR(_child); \
133 _r; \
134})
135
136/**
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
139 * @c: cache set
140 * @op: pointer to struct btree_op
141 */
142#define btree_root(fn, c, op, ...) \
143({ \
144 int _r = -EINTR; \
145 do { \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
df8e8970
KO
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
152 } \
153 rw_unlock(_w, _b); \
0a63b66d 154 bch_cannibalize_unlock(c); \
78365411
KO
155 if (_r == -EINTR) \
156 schedule(); \
df8e8970
KO
157 } while (_r == -EINTR); \
158 \
0a63b66d 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
df8e8970
KO
160 _r; \
161})
162
a85e968e
KO
163static inline struct bset *write_block(struct btree *b)
164{
165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166}
167
2a285686
KO
168static void bch_btree_init_next(struct btree *b)
169{
170 /* If not a leaf node, always sort */
171 if (b->level && b->keys.nsets)
172 bch_btree_sort(&b->keys, &b->c->sort);
173 else
174 bch_btree_sort_lazy(&b->keys, &b->c->sort);
175
176 if (b->written < btree_blocks(b))
177 bch_bset_init_next(&b->keys, write_block(b),
178 bset_magic(&b->c->sb));
179
180}
181
cafe5635
KO
182/* Btree key manipulation */
183
3a3b6a4e 184void bkey_put(struct cache_set *c, struct bkey *k)
e7c590eb
KO
185{
186 unsigned i;
187
188 for (i = 0; i < KEY_PTRS(k); i++)
189 if (ptr_available(c, k, i))
190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191}
192
cafe5635
KO
193/* Btree IO */
194
195static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196{
197 uint64_t crc = b->key.ptr[0];
fafff81c 198 void *data = (void *) i + 8, *end = bset_bkey_last(i);
cafe5635 199
169ef1cf 200 crc = bch_crc64_update(crc, data, end - data);
c19ed23a 201 return crc ^ 0xffffffffffffffffULL;
cafe5635
KO
202}
203
78b77bf8 204void bch_btree_node_read_done(struct btree *b)
cafe5635 205{
cafe5635 206 const char *err = "bad btree header";
ee811287 207 struct bset *i = btree_bset_first(b);
57943511 208 struct btree_iter *iter;
cafe5635 209
d19936a2 210 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
57943511 211 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
cafe5635
KO
212 iter->used = 0;
213
280481d0 214#ifdef CONFIG_BCACHE_DEBUG
c052dd9a 215 iter->b = &b->keys;
280481d0
KO
216#endif
217
57943511 218 if (!i->seq)
cafe5635
KO
219 goto err;
220
221 for (;
a85e968e 222 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
cafe5635
KO
223 i = write_block(b)) {
224 err = "unsupported bset version";
225 if (i->version > BCACHE_BSET_VERSION)
226 goto err;
227
228 err = "bad btree header";
ee811287
KO
229 if (b->written + set_blocks(i, block_bytes(b->c)) >
230 btree_blocks(b))
cafe5635
KO
231 goto err;
232
233 err = "bad magic";
81ab4190 234 if (i->magic != bset_magic(&b->c->sb))
cafe5635
KO
235 goto err;
236
237 err = "bad checksum";
238 switch (i->version) {
239 case 0:
240 if (i->csum != csum_set(i))
241 goto err;
242 break;
243 case BCACHE_BSET_VERSION:
244 if (i->csum != btree_csum_set(b, i))
245 goto err;
246 break;
247 }
248
249 err = "empty set";
a85e968e 250 if (i != b->keys.set[0].data && !i->keys)
cafe5635
KO
251 goto err;
252
fafff81c 253 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
cafe5635 254
ee811287 255 b->written += set_blocks(i, block_bytes(b->c));
cafe5635
KO
256 }
257
258 err = "corrupted btree";
259 for (i = write_block(b);
a85e968e 260 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
cafe5635 261 i = ((void *) i) + block_bytes(b->c))
a85e968e 262 if (i->seq == b->keys.set[0].data->seq)
cafe5635
KO
263 goto err;
264
a85e968e 265 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
cafe5635 266
a85e968e 267 i = b->keys.set[0].data;
cafe5635 268 err = "short btree key";
a85e968e
KO
269 if (b->keys.set[0].size &&
270 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
cafe5635
KO
271 goto err;
272
273 if (b->written < btree_blocks(b))
a85e968e
KO
274 bch_bset_init_next(&b->keys, write_block(b),
275 bset_magic(&b->c->sb));
cafe5635 276out:
d19936a2 277 mempool_free(iter, &b->c->fill_iter);
57943511 278 return;
cafe5635
KO
279err:
280 set_btree_node_io_error(b);
88b9f8c4 281 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
cafe5635 282 err, PTR_BUCKET_NR(b->c, &b->key, 0),
88b9f8c4 283 bset_block_offset(b, i), i->keys);
cafe5635
KO
284 goto out;
285}
286
4246a0b6 287static void btree_node_read_endio(struct bio *bio)
cafe5635 288{
57943511
KO
289 struct closure *cl = bio->bi_private;
290 closure_put(cl);
291}
cafe5635 292
78b77bf8 293static void bch_btree_node_read(struct btree *b)
57943511
KO
294{
295 uint64_t start_time = local_clock();
296 struct closure cl;
297 struct bio *bio;
cafe5635 298
c37511b8
KO
299 trace_bcache_btree_read(b);
300
57943511 301 closure_init_stack(&cl);
cafe5635 302
57943511 303 bio = bch_bbio_alloc(b->c);
4f024f37 304 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
57943511
KO
305 bio->bi_end_io = btree_node_read_endio;
306 bio->bi_private = &cl;
70fd7614 307 bio->bi_opf = REQ_OP_READ | REQ_META;
cafe5635 308
a85e968e 309 bch_bio_map(bio, b->keys.set[0].data);
cafe5635 310
57943511
KO
311 bch_submit_bbio(bio, b->c, &b->key, 0);
312 closure_sync(&cl);
cafe5635 313
4e4cbee9 314 if (bio->bi_status)
57943511
KO
315 set_btree_node_io_error(b);
316
317 bch_bbio_free(bio, b->c);
318
319 if (btree_node_io_error(b))
320 goto err;
321
322 bch_btree_node_read_done(b);
57943511 323 bch_time_stats_update(&b->c->btree_read_time, start_time);
57943511
KO
324
325 return;
326err:
61cbd250 327 bch_cache_set_error(b->c, "io error reading bucket %zu",
57943511 328 PTR_BUCKET_NR(b->c, &b->key, 0));
cafe5635
KO
329}
330
331static void btree_complete_write(struct btree *b, struct btree_write *w)
332{
333 if (w->prio_blocked &&
334 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
119ba0f8 335 wake_up_allocators(b->c);
cafe5635
KO
336
337 if (w->journal) {
338 atomic_dec_bug(w->journal);
339 __closure_wake_up(&b->c->journal.wait);
340 }
341
cafe5635
KO
342 w->prio_blocked = 0;
343 w->journal = NULL;
cafe5635
KO
344}
345
cb7a583e
KO
346static void btree_node_write_unlock(struct closure *cl)
347{
348 struct btree *b = container_of(cl, struct btree, io);
349
350 up(&b->io_mutex);
351}
352
57943511 353static void __btree_node_write_done(struct closure *cl)
cafe5635 354{
cb7a583e 355 struct btree *b = container_of(cl, struct btree, io);
cafe5635
KO
356 struct btree_write *w = btree_prev_write(b);
357
358 bch_bbio_free(b->bio, b->c);
359 b->bio = NULL;
360 btree_complete_write(b, w);
361
362 if (btree_node_dirty(b))
56b30770 363 schedule_delayed_work(&b->work, 30 * HZ);
cafe5635 364
cb7a583e 365 closure_return_with_destructor(cl, btree_node_write_unlock);
cafe5635
KO
366}
367
57943511 368static void btree_node_write_done(struct closure *cl)
cafe5635 369{
cb7a583e 370 struct btree *b = container_of(cl, struct btree, io);
cafe5635 371
491221f8 372 bio_free_pages(b->bio);
57943511 373 __btree_node_write_done(cl);
cafe5635
KO
374}
375
4246a0b6 376static void btree_node_write_endio(struct bio *bio)
57943511
KO
377{
378 struct closure *cl = bio->bi_private;
cb7a583e 379 struct btree *b = container_of(cl, struct btree, io);
57943511 380
4e4cbee9 381 if (bio->bi_status)
57943511
KO
382 set_btree_node_io_error(b);
383
4e4cbee9 384 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
57943511
KO
385 closure_put(cl);
386}
387
388static void do_btree_node_write(struct btree *b)
cafe5635 389{
cb7a583e 390 struct closure *cl = &b->io;
ee811287 391 struct bset *i = btree_bset_last(b);
cafe5635
KO
392 BKEY_PADDED(key) k;
393
394 i->version = BCACHE_BSET_VERSION;
395 i->csum = btree_csum_set(b, i);
396
57943511
KO
397 BUG_ON(b->bio);
398 b->bio = bch_bbio_alloc(b->c);
399
400 b->bio->bi_end_io = btree_node_write_endio;
faadf0c9 401 b->bio->bi_private = cl;
ee811287 402 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
70fd7614 403 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
169ef1cf 404 bch_bio_map(b->bio, i);
cafe5635 405
e49c7c37
KO
406 /*
407 * If we're appending to a leaf node, we don't technically need FUA -
408 * this write just needs to be persisted before the next journal write,
409 * which will be marked FLUSH|FUA.
410 *
411 * Similarly if we're writing a new btree root - the pointer is going to
412 * be in the next journal entry.
413 *
414 * But if we're writing a new btree node (that isn't a root) or
415 * appending to a non leaf btree node, we need either FUA or a flush
416 * when we write the parent with the new pointer. FUA is cheaper than a
417 * flush, and writes appending to leaf nodes aren't blocking anything so
418 * just make all btree node writes FUA to keep things sane.
419 */
420
cafe5635 421 bkey_copy(&k.key, &b->key);
ee811287 422 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
a85e968e 423 bset_sector_offset(&b->keys, i));
cafe5635 424
25d8be77 425 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
cafe5635
KO
426 int j;
427 struct bio_vec *bv;
428 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
429
7988613b 430 bio_for_each_segment_all(bv, b->bio, j)
cafe5635
KO
431 memcpy(page_address(bv->bv_page),
432 base + j * PAGE_SIZE, PAGE_SIZE);
433
cafe5635
KO
434 bch_submit_bbio(b->bio, b->c, &k.key, 0);
435
57943511 436 continue_at(cl, btree_node_write_done, NULL);
cafe5635 437 } else {
c2421edf 438 /* No problem for multipage bvec since the bio is just allocated */
cafe5635 439 b->bio->bi_vcnt = 0;
169ef1cf 440 bch_bio_map(b->bio, i);
cafe5635 441
cafe5635
KO
442 bch_submit_bbio(b->bio, b->c, &k.key, 0);
443
444 closure_sync(cl);
cb7a583e 445 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
cafe5635
KO
446 }
447}
448
2a285686 449void __bch_btree_node_write(struct btree *b, struct closure *parent)
cafe5635 450{
ee811287 451 struct bset *i = btree_bset_last(b);
cafe5635 452
2a285686
KO
453 lockdep_assert_held(&b->write_lock);
454
c37511b8
KO
455 trace_bcache_btree_write(b);
456
cafe5635 457 BUG_ON(current->bio_list);
57943511
KO
458 BUG_ON(b->written >= btree_blocks(b));
459 BUG_ON(b->written && !i->keys);
ee811287 460 BUG_ON(btree_bset_first(b)->seq != i->seq);
dc9d98d6 461 bch_check_keys(&b->keys, "writing");
cafe5635 462
cafe5635
KO
463 cancel_delayed_work(&b->work);
464
57943511 465 /* If caller isn't waiting for write, parent refcount is cache set */
cb7a583e
KO
466 down(&b->io_mutex);
467 closure_init(&b->io, parent ?: &b->c->cl);
57943511 468
cafe5635
KO
469 clear_bit(BTREE_NODE_dirty, &b->flags);
470 change_bit(BTREE_NODE_write_idx, &b->flags);
471
57943511 472 do_btree_node_write(b);
cafe5635 473
ee811287 474 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
cafe5635
KO
475 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
476
a85e968e 477 b->written += set_blocks(i, block_bytes(b->c));
2a285686 478}
a85e968e 479
2a285686
KO
480void bch_btree_node_write(struct btree *b, struct closure *parent)
481{
482 unsigned nsets = b->keys.nsets;
483
484 lockdep_assert_held(&b->lock);
485
486 __bch_btree_node_write(b, parent);
cafe5635 487
78b77bf8
KO
488 /*
489 * do verify if there was more than one set initially (i.e. we did a
490 * sort) and we sorted down to a single set:
491 */
2a285686 492 if (nsets && !b->keys.nsets)
78b77bf8
KO
493 bch_btree_verify(b);
494
2a285686 495 bch_btree_init_next(b);
cafe5635
KO
496}
497
f269af5a
KO
498static void bch_btree_node_write_sync(struct btree *b)
499{
500 struct closure cl;
501
502 closure_init_stack(&cl);
2a285686
KO
503
504 mutex_lock(&b->write_lock);
f269af5a 505 bch_btree_node_write(b, &cl);
2a285686
KO
506 mutex_unlock(&b->write_lock);
507
f269af5a
KO
508 closure_sync(&cl);
509}
510
57943511 511static void btree_node_write_work(struct work_struct *w)
cafe5635
KO
512{
513 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
514
2a285686 515 mutex_lock(&b->write_lock);
cafe5635 516 if (btree_node_dirty(b))
2a285686
KO
517 __bch_btree_node_write(b, NULL);
518 mutex_unlock(&b->write_lock);
cafe5635
KO
519}
520
c18536a7 521static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
cafe5635 522{
ee811287 523 struct bset *i = btree_bset_last(b);
cafe5635
KO
524 struct btree_write *w = btree_current_write(b);
525
2a285686
KO
526 lockdep_assert_held(&b->write_lock);
527
57943511
KO
528 BUG_ON(!b->written);
529 BUG_ON(!i->keys);
cafe5635 530
57943511 531 if (!btree_node_dirty(b))
56b30770 532 schedule_delayed_work(&b->work, 30 * HZ);
cafe5635 533
57943511 534 set_btree_node_dirty(b);
cafe5635 535
c18536a7 536 if (journal_ref) {
cafe5635 537 if (w->journal &&
c18536a7 538 journal_pin_cmp(b->c, w->journal, journal_ref)) {
cafe5635
KO
539 atomic_dec_bug(w->journal);
540 w->journal = NULL;
541 }
542
543 if (!w->journal) {
c18536a7 544 w->journal = journal_ref;
cafe5635
KO
545 atomic_inc(w->journal);
546 }
547 }
548
cafe5635 549 /* Force write if set is too big */
57943511
KO
550 if (set_bytes(i) > PAGE_SIZE - 48 &&
551 !current->bio_list)
552 bch_btree_node_write(b, NULL);
cafe5635
KO
553}
554
555/*
556 * Btree in memory cache - allocation/freeing
557 * mca -> memory cache
558 */
559
cafe5635
KO
560#define mca_reserve(c) (((c->root && c->root->level) \
561 ? c->root->level : 1) * 8 + 16)
562#define mca_can_free(c) \
0a63b66d 563 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
cafe5635
KO
564
565static void mca_data_free(struct btree *b)
566{
cb7a583e 567 BUG_ON(b->io_mutex.count != 1);
cafe5635 568
a85e968e 569 bch_btree_keys_free(&b->keys);
cafe5635 570
0a63b66d 571 b->c->btree_cache_used--;
ee811287 572 list_move(&b->list, &b->c->btree_cache_freed);
cafe5635
KO
573}
574
575static void mca_bucket_free(struct btree *b)
576{
577 BUG_ON(btree_node_dirty(b));
578
579 b->key.ptr[0] = 0;
580 hlist_del_init_rcu(&b->hash);
581 list_move(&b->list, &b->c->btree_cache_freeable);
582}
583
584static unsigned btree_order(struct bkey *k)
585{
586 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
587}
588
589static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
590{
a85e968e 591 if (!bch_btree_keys_alloc(&b->keys,
ee811287
KO
592 max_t(unsigned,
593 ilog2(b->c->btree_pages),
594 btree_order(k)),
595 gfp)) {
0a63b66d 596 b->c->btree_cache_used++;
ee811287
KO
597 list_move(&b->list, &b->c->btree_cache);
598 } else {
599 list_move(&b->list, &b->c->btree_cache_freed);
600 }
cafe5635
KO
601}
602
603static struct btree *mca_bucket_alloc(struct cache_set *c,
604 struct bkey *k, gfp_t gfp)
605{
606 struct btree *b = kzalloc(sizeof(struct btree), gfp);
607 if (!b)
608 return NULL;
609
610 init_rwsem(&b->lock);
611 lockdep_set_novalidate_class(&b->lock);
2a285686
KO
612 mutex_init(&b->write_lock);
613 lockdep_set_novalidate_class(&b->write_lock);
cafe5635 614 INIT_LIST_HEAD(&b->list);
57943511 615 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
cafe5635 616 b->c = c;
cb7a583e 617 sema_init(&b->io_mutex, 1);
cafe5635
KO
618
619 mca_data_alloc(b, k, gfp);
620 return b;
621}
622
e8e1d468 623static int mca_reap(struct btree *b, unsigned min_order, bool flush)
cafe5635 624{
e8e1d468
KO
625 struct closure cl;
626
627 closure_init_stack(&cl);
cafe5635
KO
628 lockdep_assert_held(&b->c->bucket_lock);
629
630 if (!down_write_trylock(&b->lock))
631 return -ENOMEM;
632
a85e968e 633 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
e8e1d468 634
a85e968e 635 if (b->keys.page_order < min_order)
cb7a583e
KO
636 goto out_unlock;
637
638 if (!flush) {
639 if (btree_node_dirty(b))
640 goto out_unlock;
641
642 if (down_trylock(&b->io_mutex))
643 goto out_unlock;
644 up(&b->io_mutex);
cafe5635
KO
645 }
646
2a285686 647 mutex_lock(&b->write_lock);
f269af5a 648 if (btree_node_dirty(b))
2a285686
KO
649 __bch_btree_node_write(b, &cl);
650 mutex_unlock(&b->write_lock);
651
652 closure_sync(&cl);
cafe5635 653
e8e1d468 654 /* wait for any in flight btree write */
cb7a583e
KO
655 down(&b->io_mutex);
656 up(&b->io_mutex);
e8e1d468 657
cafe5635 658 return 0;
cb7a583e
KO
659out_unlock:
660 rw_unlock(true, b);
661 return -ENOMEM;
cafe5635
KO
662}
663
7dc19d5a
DC
664static unsigned long bch_mca_scan(struct shrinker *shrink,
665 struct shrink_control *sc)
cafe5635
KO
666{
667 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
668 struct btree *b, *t;
669 unsigned long i, nr = sc->nr_to_scan;
7dc19d5a 670 unsigned long freed = 0;
ca71df31 671 unsigned int btree_cache_used;
cafe5635
KO
672
673 if (c->shrinker_disabled)
7dc19d5a 674 return SHRINK_STOP;
cafe5635 675
0a63b66d 676 if (c->btree_cache_alloc_lock)
7dc19d5a 677 return SHRINK_STOP;
cafe5635
KO
678
679 /* Return -1 if we can't do anything right now */
a698e08c 680 if (sc->gfp_mask & __GFP_IO)
cafe5635
KO
681 mutex_lock(&c->bucket_lock);
682 else if (!mutex_trylock(&c->bucket_lock))
683 return -1;
684
36c9ea98
KO
685 /*
686 * It's _really_ critical that we don't free too many btree nodes - we
687 * have to always leave ourselves a reserve. The reserve is how we
688 * guarantee that allocating memory for a new btree node can always
689 * succeed, so that inserting keys into the btree can always succeed and
690 * IO can always make forward progress:
691 */
cafe5635
KO
692 nr /= c->btree_pages;
693 nr = min_t(unsigned long, nr, mca_can_free(c));
694
695 i = 0;
ca71df31 696 btree_cache_used = c->btree_cache_used;
cafe5635 697 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
ca71df31
TJ
698 if (nr <= 0)
699 goto out;
cafe5635
KO
700
701 if (++i > 3 &&
e8e1d468 702 !mca_reap(b, 0, false)) {
cafe5635
KO
703 mca_data_free(b);
704 rw_unlock(true, b);
7dc19d5a 705 freed++;
cafe5635 706 }
ca71df31 707 nr--;
cafe5635
KO
708 }
709
ca71df31 710 for (; (nr--) && i < btree_cache_used; i++) {
b0f32a56
KO
711 if (list_empty(&c->btree_cache))
712 goto out;
713
cafe5635
KO
714 b = list_first_entry(&c->btree_cache, struct btree, list);
715 list_rotate_left(&c->btree_cache);
716
717 if (!b->accessed &&
e8e1d468 718 !mca_reap(b, 0, false)) {
cafe5635
KO
719 mca_bucket_free(b);
720 mca_data_free(b);
721 rw_unlock(true, b);
7dc19d5a 722 freed++;
cafe5635
KO
723 } else
724 b->accessed = 0;
725 }
726out:
cafe5635 727 mutex_unlock(&c->bucket_lock);
f3641c3a 728 return freed * c->btree_pages;
7dc19d5a
DC
729}
730
731static unsigned long bch_mca_count(struct shrinker *shrink,
732 struct shrink_control *sc)
733{
734 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
735
736 if (c->shrinker_disabled)
737 return 0;
738
0a63b66d 739 if (c->btree_cache_alloc_lock)
7dc19d5a
DC
740 return 0;
741
742 return mca_can_free(c) * c->btree_pages;
cafe5635
KO
743}
744
745void bch_btree_cache_free(struct cache_set *c)
746{
747 struct btree *b;
748 struct closure cl;
749 closure_init_stack(&cl);
750
751 if (c->shrink.list.next)
752 unregister_shrinker(&c->shrink);
753
754 mutex_lock(&c->bucket_lock);
755
756#ifdef CONFIG_BCACHE_DEBUG
757 if (c->verify_data)
758 list_move(&c->verify_data->list, &c->btree_cache);
78b77bf8
KO
759
760 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
cafe5635
KO
761#endif
762
763 list_splice(&c->btree_cache_freeable,
764 &c->btree_cache);
765
766 while (!list_empty(&c->btree_cache)) {
767 b = list_first_entry(&c->btree_cache, struct btree, list);
768
769 if (btree_node_dirty(b))
770 btree_complete_write(b, btree_current_write(b));
771 clear_bit(BTREE_NODE_dirty, &b->flags);
772
773 mca_data_free(b);
774 }
775
776 while (!list_empty(&c->btree_cache_freed)) {
777 b = list_first_entry(&c->btree_cache_freed,
778 struct btree, list);
779 list_del(&b->list);
780 cancel_delayed_work_sync(&b->work);
781 kfree(b);
782 }
783
784 mutex_unlock(&c->bucket_lock);
785}
786
787int bch_btree_cache_alloc(struct cache_set *c)
788{
789 unsigned i;
790
cafe5635 791 for (i = 0; i < mca_reserve(c); i++)
72a44517
KO
792 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
793 return -ENOMEM;
cafe5635
KO
794
795 list_splice_init(&c->btree_cache,
796 &c->btree_cache_freeable);
797
798#ifdef CONFIG_BCACHE_DEBUG
799 mutex_init(&c->verify_lock);
800
78b77bf8
KO
801 c->verify_ondisk = (void *)
802 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
803
cafe5635
KO
804 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
805
806 if (c->verify_data &&
a85e968e 807 c->verify_data->keys.set->data)
cafe5635
KO
808 list_del_init(&c->verify_data->list);
809 else
810 c->verify_data = NULL;
811#endif
812
7dc19d5a
DC
813 c->shrink.count_objects = bch_mca_count;
814 c->shrink.scan_objects = bch_mca_scan;
cafe5635
KO
815 c->shrink.seeks = 4;
816 c->shrink.batch = c->btree_pages * 2;
6c4ca1e3
ML
817
818 if (register_shrinker(&c->shrink))
819 pr_warn("bcache: %s: could not register shrinker",
820 __func__);
cafe5635
KO
821
822 return 0;
823}
824
825/* Btree in memory cache - hash table */
826
827static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
828{
829 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
830}
831
832static struct btree *mca_find(struct cache_set *c, struct bkey *k)
833{
834 struct btree *b;
835
836 rcu_read_lock();
837 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
838 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
839 goto out;
840 b = NULL;
841out:
842 rcu_read_unlock();
843 return b;
844}
845
0a63b66d
KO
846static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
847{
848 struct task_struct *old;
849
850 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
851 if (old && old != current) {
852 if (op)
853 prepare_to_wait(&c->btree_cache_wait, &op->wait,
854 TASK_UNINTERRUPTIBLE);
855 return -EINTR;
856 }
857
858 return 0;
859}
860
861static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
862 struct bkey *k)
cafe5635 863{
e8e1d468 864 struct btree *b;
cafe5635 865
c37511b8
KO
866 trace_bcache_btree_cache_cannibalize(c);
867
0a63b66d
KO
868 if (mca_cannibalize_lock(c, op))
869 return ERR_PTR(-EINTR);
cafe5635 870
e8e1d468
KO
871 list_for_each_entry_reverse(b, &c->btree_cache, list)
872 if (!mca_reap(b, btree_order(k), false))
873 return b;
cafe5635 874
e8e1d468
KO
875 list_for_each_entry_reverse(b, &c->btree_cache, list)
876 if (!mca_reap(b, btree_order(k), true))
877 return b;
cafe5635 878
0a63b66d 879 WARN(1, "btree cache cannibalize failed\n");
e8e1d468 880 return ERR_PTR(-ENOMEM);
cafe5635
KO
881}
882
883/*
884 * We can only have one thread cannibalizing other cached btree nodes at a time,
885 * or we'll deadlock. We use an open coded mutex to ensure that, which a
886 * cannibalize_bucket() will take. This means every time we unlock the root of
887 * the btree, we need to release this lock if we have it held.
888 */
df8e8970 889static void bch_cannibalize_unlock(struct cache_set *c)
cafe5635 890{
0a63b66d
KO
891 if (c->btree_cache_alloc_lock == current) {
892 c->btree_cache_alloc_lock = NULL;
893 wake_up(&c->btree_cache_wait);
cafe5635
KO
894 }
895}
896
0a63b66d
KO
897static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
898 struct bkey *k, int level)
cafe5635
KO
899{
900 struct btree *b;
901
e8e1d468
KO
902 BUG_ON(current->bio_list);
903
cafe5635
KO
904 lockdep_assert_held(&c->bucket_lock);
905
906 if (mca_find(c, k))
907 return NULL;
908
909 /* btree_free() doesn't free memory; it sticks the node on the end of
910 * the list. Check if there's any freed nodes there:
911 */
912 list_for_each_entry(b, &c->btree_cache_freeable, list)
e8e1d468 913 if (!mca_reap(b, btree_order(k), false))
cafe5635
KO
914 goto out;
915
916 /* We never free struct btree itself, just the memory that holds the on
917 * disk node. Check the freed list before allocating a new one:
918 */
919 list_for_each_entry(b, &c->btree_cache_freed, list)
e8e1d468 920 if (!mca_reap(b, 0, false)) {
cafe5635 921 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
a85e968e 922 if (!b->keys.set[0].data)
cafe5635
KO
923 goto err;
924 else
925 goto out;
926 }
927
928 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
929 if (!b)
930 goto err;
931
932 BUG_ON(!down_write_trylock(&b->lock));
a85e968e 933 if (!b->keys.set->data)
cafe5635
KO
934 goto err;
935out:
cb7a583e 936 BUG_ON(b->io_mutex.count != 1);
cafe5635
KO
937
938 bkey_copy(&b->key, k);
939 list_move(&b->list, &c->btree_cache);
940 hlist_del_init_rcu(&b->hash);
941 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
942
943 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
d6fd3b11 944 b->parent = (void *) ~0UL;
a85e968e
KO
945 b->flags = 0;
946 b->written = 0;
947 b->level = level;
cafe5635 948
65d45231 949 if (!b->level)
a85e968e
KO
950 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
951 &b->c->expensive_debug_checks);
65d45231 952 else
a85e968e
KO
953 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
954 &b->c->expensive_debug_checks);
cafe5635
KO
955
956 return b;
957err:
958 if (b)
959 rw_unlock(true, b);
960
0a63b66d 961 b = mca_cannibalize(c, op, k);
cafe5635
KO
962 if (!IS_ERR(b))
963 goto out;
964
965 return b;
966}
967
47344e33 968/*
cafe5635
KO
969 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
970 * in from disk if necessary.
971 *
b54d6934 972 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
cafe5635
KO
973 *
974 * The btree node will have either a read or a write lock held, depending on
975 * level and op->lock.
976 */
0a63b66d 977struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
2452cc89
SP
978 struct bkey *k, int level, bool write,
979 struct btree *parent)
cafe5635
KO
980{
981 int i = 0;
cafe5635
KO
982 struct btree *b;
983
984 BUG_ON(level < 0);
985retry:
986 b = mca_find(c, k);
987
988 if (!b) {
57943511
KO
989 if (current->bio_list)
990 return ERR_PTR(-EAGAIN);
991
cafe5635 992 mutex_lock(&c->bucket_lock);
0a63b66d 993 b = mca_alloc(c, op, k, level);
cafe5635
KO
994 mutex_unlock(&c->bucket_lock);
995
996 if (!b)
997 goto retry;
998 if (IS_ERR(b))
999 return b;
1000
57943511 1001 bch_btree_node_read(b);
cafe5635
KO
1002
1003 if (!write)
1004 downgrade_write(&b->lock);
1005 } else {
1006 rw_lock(write, b, level);
1007 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1008 rw_unlock(write, b);
1009 goto retry;
1010 }
1011 BUG_ON(b->level != level);
1012 }
1013
2452cc89 1014 b->parent = parent;
cafe5635
KO
1015 b->accessed = 1;
1016
a85e968e
KO
1017 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1018 prefetch(b->keys.set[i].tree);
1019 prefetch(b->keys.set[i].data);
cafe5635
KO
1020 }
1021
a85e968e
KO
1022 for (; i <= b->keys.nsets; i++)
1023 prefetch(b->keys.set[i].data);
cafe5635 1024
57943511 1025 if (btree_node_io_error(b)) {
cafe5635 1026 rw_unlock(write, b);
57943511
KO
1027 return ERR_PTR(-EIO);
1028 }
1029
1030 BUG_ON(!b->written);
cafe5635
KO
1031
1032 return b;
1033}
1034
2452cc89 1035static void btree_node_prefetch(struct btree *parent, struct bkey *k)
cafe5635
KO
1036{
1037 struct btree *b;
1038
2452cc89
SP
1039 mutex_lock(&parent->c->bucket_lock);
1040 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1041 mutex_unlock(&parent->c->bucket_lock);
cafe5635
KO
1042
1043 if (!IS_ERR_OR_NULL(b)) {
2452cc89 1044 b->parent = parent;
57943511 1045 bch_btree_node_read(b);
cafe5635
KO
1046 rw_unlock(true, b);
1047 }
1048}
1049
1050/* Btree alloc */
1051
e8e1d468 1052static void btree_node_free(struct btree *b)
cafe5635 1053{
c37511b8
KO
1054 trace_bcache_btree_node_free(b);
1055
cafe5635 1056 BUG_ON(b == b->c->root);
cafe5635 1057
2a285686
KO
1058 mutex_lock(&b->write_lock);
1059
cafe5635
KO
1060 if (btree_node_dirty(b))
1061 btree_complete_write(b, btree_current_write(b));
1062 clear_bit(BTREE_NODE_dirty, &b->flags);
1063
2a285686
KO
1064 mutex_unlock(&b->write_lock);
1065
cafe5635
KO
1066 cancel_delayed_work(&b->work);
1067
1068 mutex_lock(&b->c->bucket_lock);
cafe5635
KO
1069 bch_bucket_free(b->c, &b->key);
1070 mca_bucket_free(b);
1071 mutex_unlock(&b->c->bucket_lock);
1072}
1073
c5aa4a31 1074struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
2452cc89
SP
1075 int level, bool wait,
1076 struct btree *parent)
cafe5635
KO
1077{
1078 BKEY_PADDED(key) k;
1079 struct btree *b = ERR_PTR(-EAGAIN);
1080
1081 mutex_lock(&c->bucket_lock);
1082retry:
c5aa4a31 1083 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
cafe5635
KO
1084 goto err;
1085
3a3b6a4e 1086 bkey_put(c, &k.key);
cafe5635
KO
1087 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1088
0a63b66d 1089 b = mca_alloc(c, op, &k.key, level);
cafe5635
KO
1090 if (IS_ERR(b))
1091 goto err_free;
1092
1093 if (!b) {
b1a67b0f
KO
1094 cache_bug(c,
1095 "Tried to allocate bucket that was in btree cache");
cafe5635
KO
1096 goto retry;
1097 }
1098
cafe5635 1099 b->accessed = 1;
2452cc89 1100 b->parent = parent;
a85e968e 1101 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
cafe5635
KO
1102
1103 mutex_unlock(&c->bucket_lock);
c37511b8
KO
1104
1105 trace_bcache_btree_node_alloc(b);
cafe5635
KO
1106 return b;
1107err_free:
1108 bch_bucket_free(c, &k.key);
cafe5635
KO
1109err:
1110 mutex_unlock(&c->bucket_lock);
c37511b8 1111
913dc33f 1112 trace_bcache_btree_node_alloc_fail(c);
cafe5635
KO
1113 return b;
1114}
1115
c5aa4a31 1116static struct btree *bch_btree_node_alloc(struct cache_set *c,
2452cc89
SP
1117 struct btree_op *op, int level,
1118 struct btree *parent)
c5aa4a31 1119{
2452cc89 1120 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
c5aa4a31
SP
1121}
1122
0a63b66d
KO
1123static struct btree *btree_node_alloc_replacement(struct btree *b,
1124 struct btree_op *op)
cafe5635 1125{
2452cc89 1126 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
67539e85 1127 if (!IS_ERR_OR_NULL(n)) {
2a285686 1128 mutex_lock(&n->write_lock);
89ebb4a2 1129 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
67539e85 1130 bkey_copy_key(&n->key, &b->key);
2a285686 1131 mutex_unlock(&n->write_lock);
67539e85 1132 }
cafe5635
KO
1133
1134 return n;
1135}
1136
8835c123
KO
1137static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1138{
1139 unsigned i;
1140
05335cff
KO
1141 mutex_lock(&b->c->bucket_lock);
1142
1143 atomic_inc(&b->c->prio_blocked);
1144
8835c123
KO
1145 bkey_copy(k, &b->key);
1146 bkey_copy_key(k, &ZERO_KEY);
1147
05335cff
KO
1148 for (i = 0; i < KEY_PTRS(k); i++)
1149 SET_PTR_GEN(k, i,
1150 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1151 PTR_BUCKET(b->c, &b->key, i)));
8835c123 1152
05335cff 1153 mutex_unlock(&b->c->bucket_lock);
8835c123
KO
1154}
1155
78365411
KO
1156static int btree_check_reserve(struct btree *b, struct btree_op *op)
1157{
1158 struct cache_set *c = b->c;
1159 struct cache *ca;
0a63b66d 1160 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
78365411
KO
1161
1162 mutex_lock(&c->bucket_lock);
1163
1164 for_each_cache(ca, c, i)
1165 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1166 if (op)
0a63b66d 1167 prepare_to_wait(&c->btree_cache_wait, &op->wait,
78365411 1168 TASK_UNINTERRUPTIBLE);
0a63b66d
KO
1169 mutex_unlock(&c->bucket_lock);
1170 return -EINTR;
78365411
KO
1171 }
1172
1173 mutex_unlock(&c->bucket_lock);
0a63b66d
KO
1174
1175 return mca_cannibalize_lock(b->c, op);
78365411
KO
1176}
1177
cafe5635
KO
1178/* Garbage collection */
1179
487dded8
KO
1180static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1181 struct bkey *k)
cafe5635
KO
1182{
1183 uint8_t stale = 0;
1184 unsigned i;
1185 struct bucket *g;
1186
1187 /*
1188 * ptr_invalid() can't return true for the keys that mark btree nodes as
1189 * freed, but since ptr_bad() returns true we'll never actually use them
1190 * for anything and thus we don't want mark their pointers here
1191 */
1192 if (!bkey_cmp(k, &ZERO_KEY))
1193 return stale;
1194
1195 for (i = 0; i < KEY_PTRS(k); i++) {
1196 if (!ptr_available(c, k, i))
1197 continue;
1198
1199 g = PTR_BUCKET(c, k, i);
1200
3a2fd9d5
KO
1201 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1202 g->last_gc = PTR_GEN(k, i);
cafe5635
KO
1203
1204 if (ptr_stale(c, k, i)) {
1205 stale = max(stale, ptr_stale(c, k, i));
1206 continue;
1207 }
1208
1209 cache_bug_on(GC_MARK(g) &&
1210 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1211 c, "inconsistent ptrs: mark = %llu, level = %i",
1212 GC_MARK(g), level);
1213
1214 if (level)
1215 SET_GC_MARK(g, GC_MARK_METADATA);
1216 else if (KEY_DIRTY(k))
1217 SET_GC_MARK(g, GC_MARK_DIRTY);
4fe6a816
KO
1218 else if (!GC_MARK(g))
1219 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
cafe5635
KO
1220
1221 /* guard against overflow */
1222 SET_GC_SECTORS_USED(g, min_t(unsigned,
1223 GC_SECTORS_USED(g) + KEY_SIZE(k),
94717447 1224 MAX_GC_SECTORS_USED));
cafe5635
KO
1225
1226 BUG_ON(!GC_SECTORS_USED(g));
1227 }
1228
1229 return stale;
1230}
1231
1232#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1233
487dded8
KO
1234void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1235{
1236 unsigned i;
1237
1238 for (i = 0; i < KEY_PTRS(k); i++)
1239 if (ptr_available(c, k, i) &&
1240 !ptr_stale(c, k, i)) {
1241 struct bucket *b = PTR_BUCKET(c, k, i);
1242
1243 b->gen = PTR_GEN(k, i);
1244
1245 if (level && bkey_cmp(k, &ZERO_KEY))
1246 b->prio = BTREE_PRIO;
1247 else if (!level && b->prio == BTREE_PRIO)
1248 b->prio = INITIAL_PRIO;
1249 }
1250
1251 __bch_btree_mark_key(c, level, k);
1252}
1253
d44c2f9e
TJ
1254void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1255{
1256 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1257}
1258
a1f0358b 1259static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
cafe5635
KO
1260{
1261 uint8_t stale = 0;
a1f0358b 1262 unsigned keys = 0, good_keys = 0;
cafe5635
KO
1263 struct bkey *k;
1264 struct btree_iter iter;
1265 struct bset_tree *t;
1266
1267 gc->nodes++;
1268
c052dd9a 1269 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
cafe5635 1270 stale = max(stale, btree_mark_key(b, k));
a1f0358b 1271 keys++;
cafe5635 1272
a85e968e 1273 if (bch_ptr_bad(&b->keys, k))
cafe5635
KO
1274 continue;
1275
cafe5635
KO
1276 gc->key_bytes += bkey_u64s(k);
1277 gc->nkeys++;
a1f0358b 1278 good_keys++;
cafe5635
KO
1279
1280 gc->data += KEY_SIZE(k);
cafe5635
KO
1281 }
1282
a85e968e 1283 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
cafe5635 1284 btree_bug_on(t->size &&
a85e968e 1285 bset_written(&b->keys, t) &&
cafe5635
KO
1286 bkey_cmp(&b->key, &t->end) < 0,
1287 b, "found short btree key in gc");
1288
a1f0358b
KO
1289 if (b->c->gc_always_rewrite)
1290 return true;
cafe5635 1291
a1f0358b
KO
1292 if (stale > 10)
1293 return true;
cafe5635 1294
a1f0358b
KO
1295 if ((keys - good_keys) * 2 > keys)
1296 return true;
cafe5635 1297
a1f0358b 1298 return false;
cafe5635
KO
1299}
1300
a1f0358b 1301#define GC_MERGE_NODES 4U
cafe5635
KO
1302
1303struct gc_merge_info {
1304 struct btree *b;
cafe5635
KO
1305 unsigned keys;
1306};
1307
a1f0358b
KO
1308static int bch_btree_insert_node(struct btree *, struct btree_op *,
1309 struct keylist *, atomic_t *, struct bkey *);
1310
1311static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
0a63b66d 1312 struct gc_stat *gc, struct gc_merge_info *r)
cafe5635 1313{
a1f0358b
KO
1314 unsigned i, nodes = 0, keys = 0, blocks;
1315 struct btree *new_nodes[GC_MERGE_NODES];
0a63b66d 1316 struct keylist keylist;
b54d6934 1317 struct closure cl;
a1f0358b 1318 struct bkey *k;
b54d6934 1319
0a63b66d
KO
1320 bch_keylist_init(&keylist);
1321
1322 if (btree_check_reserve(b, NULL))
1323 return 0;
1324
a1f0358b 1325 memset(new_nodes, 0, sizeof(new_nodes));
b54d6934 1326 closure_init_stack(&cl);
cafe5635 1327
a1f0358b 1328 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
cafe5635
KO
1329 keys += r[nodes++].keys;
1330
1331 blocks = btree_default_blocks(b->c) * 2 / 3;
1332
1333 if (nodes < 2 ||
a85e968e 1334 __set_blocks(b->keys.set[0].data, keys,
ee811287 1335 block_bytes(b->c)) > blocks * (nodes - 1))
a1f0358b 1336 return 0;
cafe5635 1337
a1f0358b 1338 for (i = 0; i < nodes; i++) {
0a63b66d 1339 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
a1f0358b
KO
1340 if (IS_ERR_OR_NULL(new_nodes[i]))
1341 goto out_nocoalesce;
cafe5635
KO
1342 }
1343
0a63b66d
KO
1344 /*
1345 * We have to check the reserve here, after we've allocated our new
1346 * nodes, to make sure the insert below will succeed - we also check
1347 * before as an optimization to potentially avoid a bunch of expensive
1348 * allocs/sorts
1349 */
1350 if (btree_check_reserve(b, NULL))
1351 goto out_nocoalesce;
1352
2a285686
KO
1353 for (i = 0; i < nodes; i++)
1354 mutex_lock(&new_nodes[i]->write_lock);
1355
cafe5635 1356 for (i = nodes - 1; i > 0; --i) {
ee811287
KO
1357 struct bset *n1 = btree_bset_first(new_nodes[i]);
1358 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
cafe5635
KO
1359 struct bkey *k, *last = NULL;
1360
1361 keys = 0;
1362
a1f0358b
KO
1363 if (i > 1) {
1364 for (k = n2->start;
fafff81c 1365 k < bset_bkey_last(n2);
a1f0358b
KO
1366 k = bkey_next(k)) {
1367 if (__set_blocks(n1, n1->keys + keys +
ee811287
KO
1368 bkey_u64s(k),
1369 block_bytes(b->c)) > blocks)
a1f0358b
KO
1370 break;
1371
1372 last = k;
1373 keys += bkey_u64s(k);
1374 }
1375 } else {
cafe5635
KO
1376 /*
1377 * Last node we're not getting rid of - we're getting
1378 * rid of the node at r[0]. Have to try and fit all of
1379 * the remaining keys into this node; we can't ensure
1380 * they will always fit due to rounding and variable
1381 * length keys (shouldn't be possible in practice,
1382 * though)
1383 */
a1f0358b 1384 if (__set_blocks(n1, n1->keys + n2->keys,
ee811287
KO
1385 block_bytes(b->c)) >
1386 btree_blocks(new_nodes[i]))
a1f0358b 1387 goto out_nocoalesce;
cafe5635
KO
1388
1389 keys = n2->keys;
a1f0358b 1390 /* Take the key of the node we're getting rid of */
cafe5635 1391 last = &r->b->key;
a1f0358b 1392 }
cafe5635 1393
ee811287
KO
1394 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1395 btree_blocks(new_nodes[i]));
cafe5635 1396
a1f0358b
KO
1397 if (last)
1398 bkey_copy_key(&new_nodes[i]->key, last);
cafe5635 1399
fafff81c 1400 memcpy(bset_bkey_last(n1),
cafe5635 1401 n2->start,
fafff81c 1402 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
cafe5635
KO
1403
1404 n1->keys += keys;
a1f0358b 1405 r[i].keys = n1->keys;
cafe5635
KO
1406
1407 memmove(n2->start,
fafff81c
KO
1408 bset_bkey_idx(n2, keys),
1409 (void *) bset_bkey_last(n2) -
1410 (void *) bset_bkey_idx(n2, keys));
cafe5635
KO
1411
1412 n2->keys -= keys;
1413
0a63b66d 1414 if (__bch_keylist_realloc(&keylist,
085d2a3d 1415 bkey_u64s(&new_nodes[i]->key)))
a1f0358b
KO
1416 goto out_nocoalesce;
1417
1418 bch_btree_node_write(new_nodes[i], &cl);
0a63b66d 1419 bch_keylist_add(&keylist, &new_nodes[i]->key);
cafe5635
KO
1420 }
1421
2a285686
KO
1422 for (i = 0; i < nodes; i++)
1423 mutex_unlock(&new_nodes[i]->write_lock);
1424
05335cff
KO
1425 closure_sync(&cl);
1426
1427 /* We emptied out this node */
1428 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1429 btree_node_free(new_nodes[0]);
1430 rw_unlock(true, new_nodes[0]);
400ffaa2 1431 new_nodes[0] = NULL;
05335cff 1432
a1f0358b 1433 for (i = 0; i < nodes; i++) {
0a63b66d 1434 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
a1f0358b 1435 goto out_nocoalesce;
cafe5635 1436
0a63b66d
KO
1437 make_btree_freeing_key(r[i].b, keylist.top);
1438 bch_keylist_push(&keylist);
a1f0358b 1439 }
cafe5635 1440
0a63b66d
KO
1441 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1442 BUG_ON(!bch_keylist_empty(&keylist));
a1f0358b
KO
1443
1444 for (i = 0; i < nodes; i++) {
1445 btree_node_free(r[i].b);
1446 rw_unlock(true, r[i].b);
1447
1448 r[i].b = new_nodes[i];
1449 }
1450
a1f0358b
KO
1451 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1452 r[nodes - 1].b = ERR_PTR(-EINTR);
1453
1454 trace_bcache_btree_gc_coalesce(nodes);
cafe5635 1455 gc->nodes--;
cafe5635 1456
0a63b66d
KO
1457 bch_keylist_free(&keylist);
1458
a1f0358b
KO
1459 /* Invalidated our iterator */
1460 return -EINTR;
1461
1462out_nocoalesce:
1463 closure_sync(&cl);
0a63b66d 1464 bch_keylist_free(&keylist);
a1f0358b 1465
0a63b66d 1466 while ((k = bch_keylist_pop(&keylist)))
a1f0358b
KO
1467 if (!bkey_cmp(k, &ZERO_KEY))
1468 atomic_dec(&b->c->prio_blocked);
1469
1470 for (i = 0; i < nodes; i++)
1471 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1472 btree_node_free(new_nodes[i]);
1473 rw_unlock(true, new_nodes[i]);
1474 }
1475 return 0;
cafe5635
KO
1476}
1477
0a63b66d
KO
1478static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1479 struct btree *replace)
1480{
1481 struct keylist keys;
1482 struct btree *n;
1483
1484 if (btree_check_reserve(b, NULL))
1485 return 0;
1486
1487 n = btree_node_alloc_replacement(replace, NULL);
1488
1489 /* recheck reserve after allocating replacement node */
1490 if (btree_check_reserve(b, NULL)) {
1491 btree_node_free(n);
1492 rw_unlock(true, n);
1493 return 0;
1494 }
1495
1496 bch_btree_node_write_sync(n);
1497
1498 bch_keylist_init(&keys);
1499 bch_keylist_add(&keys, &n->key);
1500
1501 make_btree_freeing_key(replace, keys.top);
1502 bch_keylist_push(&keys);
1503
1504 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1505 BUG_ON(!bch_keylist_empty(&keys));
1506
1507 btree_node_free(replace);
1508 rw_unlock(true, n);
1509
1510 /* Invalidated our iterator */
1511 return -EINTR;
1512}
1513
a1f0358b 1514static unsigned btree_gc_count_keys(struct btree *b)
cafe5635 1515{
a1f0358b
KO
1516 struct bkey *k;
1517 struct btree_iter iter;
1518 unsigned ret = 0;
cafe5635 1519
c052dd9a 1520 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
a1f0358b
KO
1521 ret += bkey_u64s(k);
1522
1523 return ret;
1524}
cafe5635 1525
7f4a59de
TJ
1526static size_t btree_gc_min_nodes(struct cache_set *c)
1527{
1528 size_t min_nodes;
1529
1530 /*
1531 * Since incremental GC would stop 100ms when front
1532 * side I/O comes, so when there are many btree nodes,
1533 * if GC only processes constant (100) nodes each time,
1534 * GC would last a long time, and the front side I/Os
1535 * would run out of the buckets (since no new bucket
1536 * can be allocated during GC), and be blocked again.
1537 * So GC should not process constant nodes, but varied
1538 * nodes according to the number of btree nodes, which
1539 * realized by dividing GC into constant(100) times,
1540 * so when there are many btree nodes, GC can process
1541 * more nodes each time, otherwise, GC will process less
1542 * nodes each time (but no less than MIN_GC_NODES)
1543 */
1544 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1545 if (min_nodes < MIN_GC_NODES)
1546 min_nodes = MIN_GC_NODES;
1547
1548 return min_nodes;
1549}
1550
1551
a1f0358b
KO
1552static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1553 struct closure *writes, struct gc_stat *gc)
1554{
a1f0358b
KO
1555 int ret = 0;
1556 bool should_rewrite;
a1f0358b 1557 struct bkey *k;
a1f0358b 1558 struct btree_iter iter;
cafe5635 1559 struct gc_merge_info r[GC_MERGE_NODES];
2a285686 1560 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
cafe5635 1561
c052dd9a 1562 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
cafe5635 1563
2a285686
KO
1564 for (i = r; i < r + ARRAY_SIZE(r); i++)
1565 i->b = ERR_PTR(-EINTR);
cafe5635 1566
a1f0358b 1567 while (1) {
a85e968e 1568 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
a1f0358b 1569 if (k) {
0a63b66d 1570 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
2452cc89 1571 true, b);
a1f0358b
KO
1572 if (IS_ERR(r->b)) {
1573 ret = PTR_ERR(r->b);
1574 break;
1575 }
1576
1577 r->keys = btree_gc_count_keys(r->b);
1578
0a63b66d 1579 ret = btree_gc_coalesce(b, op, gc, r);
a1f0358b
KO
1580 if (ret)
1581 break;
cafe5635
KO
1582 }
1583
a1f0358b
KO
1584 if (!last->b)
1585 break;
cafe5635 1586
a1f0358b
KO
1587 if (!IS_ERR(last->b)) {
1588 should_rewrite = btree_gc_mark_node(last->b, gc);
0a63b66d
KO
1589 if (should_rewrite) {
1590 ret = btree_gc_rewrite_node(b, op, last->b);
1591 if (ret)
a1f0358b 1592 break;
a1f0358b
KO
1593 }
1594
1595 if (last->b->level) {
1596 ret = btree_gc_recurse(last->b, op, writes, gc);
1597 if (ret)
1598 break;
1599 }
cafe5635 1600
a1f0358b
KO
1601 bkey_copy_key(&b->c->gc_done, &last->b->key);
1602
1603 /*
1604 * Must flush leaf nodes before gc ends, since replace
1605 * operations aren't journalled
1606 */
2a285686 1607 mutex_lock(&last->b->write_lock);
a1f0358b
KO
1608 if (btree_node_dirty(last->b))
1609 bch_btree_node_write(last->b, writes);
2a285686 1610 mutex_unlock(&last->b->write_lock);
a1f0358b
KO
1611 rw_unlock(true, last->b);
1612 }
1613
1614 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1615 r->b = NULL;
cafe5635 1616
5c25c4fc 1617 if (atomic_read(&b->c->search_inflight) &&
7f4a59de 1618 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
5c25c4fc
TJ
1619 gc->nodes_pre = gc->nodes;
1620 ret = -EAGAIN;
1621 break;
1622 }
1623
cafe5635
KO
1624 if (need_resched()) {
1625 ret = -EAGAIN;
1626 break;
1627 }
cafe5635
KO
1628 }
1629
2a285686
KO
1630 for (i = r; i < r + ARRAY_SIZE(r); i++)
1631 if (!IS_ERR_OR_NULL(i->b)) {
1632 mutex_lock(&i->b->write_lock);
1633 if (btree_node_dirty(i->b))
1634 bch_btree_node_write(i->b, writes);
1635 mutex_unlock(&i->b->write_lock);
1636 rw_unlock(true, i->b);
a1f0358b 1637 }
cafe5635 1638
cafe5635
KO
1639 return ret;
1640}
1641
1642static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1643 struct closure *writes, struct gc_stat *gc)
1644{
1645 struct btree *n = NULL;
a1f0358b
KO
1646 int ret = 0;
1647 bool should_rewrite;
cafe5635 1648
a1f0358b
KO
1649 should_rewrite = btree_gc_mark_node(b, gc);
1650 if (should_rewrite) {
0a63b66d 1651 n = btree_node_alloc_replacement(b, NULL);
cafe5635 1652
a1f0358b
KO
1653 if (!IS_ERR_OR_NULL(n)) {
1654 bch_btree_node_write_sync(n);
2a285686 1655
a1f0358b
KO
1656 bch_btree_set_root(n);
1657 btree_node_free(b);
1658 rw_unlock(true, n);
cafe5635 1659
a1f0358b
KO
1660 return -EINTR;
1661 }
1662 }
cafe5635 1663
487dded8
KO
1664 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1665
a1f0358b
KO
1666 if (b->level) {
1667 ret = btree_gc_recurse(b, op, writes, gc);
1668 if (ret)
1669 return ret;
cafe5635
KO
1670 }
1671
a1f0358b
KO
1672 bkey_copy_key(&b->c->gc_done, &b->key);
1673
cafe5635
KO
1674 return ret;
1675}
1676
1677static void btree_gc_start(struct cache_set *c)
1678{
1679 struct cache *ca;
1680 struct bucket *b;
cafe5635
KO
1681 unsigned i;
1682
1683 if (!c->gc_mark_valid)
1684 return;
1685
1686 mutex_lock(&c->bucket_lock);
1687
1688 c->gc_mark_valid = 0;
1689 c->gc_done = ZERO_KEY;
1690
1691 for_each_cache(ca, c, i)
1692 for_each_bucket(b, ca) {
3a2fd9d5 1693 b->last_gc = b->gen;
29ebf465 1694 if (!atomic_read(&b->pin)) {
4fe6a816 1695 SET_GC_MARK(b, 0);
29ebf465
KO
1696 SET_GC_SECTORS_USED(b, 0);
1697 }
cafe5635
KO
1698 }
1699
cafe5635
KO
1700 mutex_unlock(&c->bucket_lock);
1701}
1702
d44c2f9e 1703static void bch_btree_gc_finish(struct cache_set *c)
cafe5635 1704{
cafe5635
KO
1705 struct bucket *b;
1706 struct cache *ca;
cafe5635
KO
1707 unsigned i;
1708
1709 mutex_lock(&c->bucket_lock);
1710
1711 set_gc_sectors(c);
1712 c->gc_mark_valid = 1;
1713 c->need_gc = 0;
1714
cafe5635
KO
1715 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1716 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1717 GC_MARK_METADATA);
1718
bf0a628a
NS
1719 /* don't reclaim buckets to which writeback keys point */
1720 rcu_read_lock();
2831231d 1721 for (i = 0; i < c->devices_max_used; i++) {
bf0a628a
NS
1722 struct bcache_device *d = c->devices[i];
1723 struct cached_dev *dc;
1724 struct keybuf_key *w, *n;
1725 unsigned j;
1726
1727 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1728 continue;
1729 dc = container_of(d, struct cached_dev, disk);
1730
1731 spin_lock(&dc->writeback_keys.lock);
1732 rbtree_postorder_for_each_entry_safe(w, n,
1733 &dc->writeback_keys.keys, node)
1734 for (j = 0; j < KEY_PTRS(&w->key); j++)
1735 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1736 GC_MARK_DIRTY);
1737 spin_unlock(&dc->writeback_keys.lock);
1738 }
1739 rcu_read_unlock();
1740
d44c2f9e 1741 c->avail_nbuckets = 0;
cafe5635
KO
1742 for_each_cache(ca, c, i) {
1743 uint64_t *i;
1744
1745 ca->invalidate_needs_gc = 0;
1746
1747 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1748 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1749
1750 for (i = ca->prio_buckets;
1751 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1752 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1753
1754 for_each_bucket(b, ca) {
cafe5635
KO
1755 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1756
4fe6a816
KO
1757 if (atomic_read(&b->pin))
1758 continue;
1759
1760 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1761
1762 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
d44c2f9e 1763 c->avail_nbuckets++;
cafe5635
KO
1764 }
1765 }
1766
cafe5635 1767 mutex_unlock(&c->bucket_lock);
cafe5635
KO
1768}
1769
72a44517 1770static void bch_btree_gc(struct cache_set *c)
cafe5635 1771{
cafe5635 1772 int ret;
cafe5635
KO
1773 struct gc_stat stats;
1774 struct closure writes;
1775 struct btree_op op;
cafe5635 1776 uint64_t start_time = local_clock();
57943511 1777
c37511b8 1778 trace_bcache_gc_start(c);
cafe5635
KO
1779
1780 memset(&stats, 0, sizeof(struct gc_stat));
1781 closure_init_stack(&writes);
b54d6934 1782 bch_btree_op_init(&op, SHRT_MAX);
cafe5635
KO
1783
1784 btree_gc_start(c);
1785
771f393e 1786 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
a1f0358b
KO
1787 do {
1788 ret = btree_root(gc_root, c, &op, &writes, &stats);
1789 closure_sync(&writes);
c5f1e5ad 1790 cond_resched();
cafe5635 1791
5c25c4fc
TJ
1792 if (ret == -EAGAIN)
1793 schedule_timeout_interruptible(msecs_to_jiffies
1794 (GC_SLEEP_MS));
1795 else if (ret)
a1f0358b 1796 pr_warn("gc failed!");
771f393e 1797 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
cafe5635 1798
d44c2f9e 1799 bch_btree_gc_finish(c);
57943511
KO
1800 wake_up_allocators(c);
1801
169ef1cf 1802 bch_time_stats_update(&c->btree_gc_time, start_time);
cafe5635
KO
1803
1804 stats.key_bytes *= sizeof(uint64_t);
cafe5635 1805 stats.data <<= 9;
d44c2f9e 1806 bch_update_bucket_in_use(c, &stats);
cafe5635 1807 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
cafe5635 1808
c37511b8 1809 trace_bcache_gc_end(c);
cafe5635 1810
72a44517
KO
1811 bch_moving_gc(c);
1812}
1813
be628be0 1814static bool gc_should_run(struct cache_set *c)
72a44517 1815{
a1f0358b
KO
1816 struct cache *ca;
1817 unsigned i;
72a44517 1818
be628be0
KO
1819 for_each_cache(ca, c, i)
1820 if (ca->invalidate_needs_gc)
1821 return true;
72a44517 1822
be628be0
KO
1823 if (atomic_read(&c->sectors_to_gc) < 0)
1824 return true;
72a44517 1825
be628be0
KO
1826 return false;
1827}
a1f0358b 1828
be628be0
KO
1829static int bch_gc_thread(void *arg)
1830{
1831 struct cache_set *c = arg;
a1f0358b 1832
be628be0
KO
1833 while (1) {
1834 wait_event_interruptible(c->gc_wait,
771f393e
CL
1835 kthread_should_stop() ||
1836 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1837 gc_should_run(c));
a1f0358b 1838
771f393e
CL
1839 if (kthread_should_stop() ||
1840 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
be628be0
KO
1841 break;
1842
1843 set_gc_sectors(c);
1844 bch_btree_gc(c);
72a44517
KO
1845 }
1846
771f393e 1847 wait_for_kthread_stop();
72a44517 1848 return 0;
cafe5635
KO
1849}
1850
72a44517 1851int bch_gc_thread_start(struct cache_set *c)
cafe5635 1852{
be628be0 1853 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
9d134117 1854 return PTR_ERR_OR_ZERO(c->gc_thread);
cafe5635
KO
1855}
1856
1857/* Initial partial gc */
1858
487dded8 1859static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
cafe5635 1860{
50310164 1861 int ret = 0;
50310164 1862 struct bkey *k, *p = NULL;
cafe5635
KO
1863 struct btree_iter iter;
1864
487dded8
KO
1865 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1866 bch_initial_mark_key(b->c, b->level, k);
cafe5635 1867
487dded8 1868 bch_initial_mark_key(b->c, b->level + 1, &b->key);
cafe5635
KO
1869
1870 if (b->level) {
c052dd9a 1871 bch_btree_iter_init(&b->keys, &iter, NULL);
cafe5635 1872
50310164 1873 do {
a85e968e
KO
1874 k = bch_btree_iter_next_filter(&iter, &b->keys,
1875 bch_ptr_bad);
7f4a59de 1876 if (k) {
2452cc89 1877 btree_node_prefetch(b, k);
7f4a59de
TJ
1878 /*
1879 * initiallize c->gc_stats.nodes
1880 * for incremental GC
1881 */
1882 b->c->gc_stats.nodes++;
1883 }
cafe5635 1884
50310164 1885 if (p)
487dded8 1886 ret = btree(check_recurse, p, b, op);
cafe5635 1887
50310164
KO
1888 p = k;
1889 } while (p && !ret);
cafe5635
KO
1890 }
1891
487dded8 1892 return ret;
cafe5635
KO
1893}
1894
c18536a7 1895int bch_btree_check(struct cache_set *c)
cafe5635 1896{
c18536a7 1897 struct btree_op op;
cafe5635 1898
b54d6934 1899 bch_btree_op_init(&op, SHRT_MAX);
cafe5635 1900
487dded8 1901 return btree_root(check_recurse, c, &op);
cafe5635
KO
1902}
1903
2531d9ee
KO
1904void bch_initial_gc_finish(struct cache_set *c)
1905{
1906 struct cache *ca;
1907 struct bucket *b;
1908 unsigned i;
1909
1910 bch_btree_gc_finish(c);
1911
1912 mutex_lock(&c->bucket_lock);
1913
1914 /*
1915 * We need to put some unused buckets directly on the prio freelist in
1916 * order to get the allocator thread started - it needs freed buckets in
1917 * order to rewrite the prios and gens, and it needs to rewrite prios
1918 * and gens in order to free buckets.
1919 *
1920 * This is only safe for buckets that have no live data in them, which
1921 * there should always be some of.
1922 */
1923 for_each_cache(ca, c, i) {
1924 for_each_bucket(b, ca) {
682811b3
TJ
1925 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1926 fifo_full(&ca->free[RESERVE_BTREE]))
2531d9ee
KO
1927 break;
1928
1929 if (bch_can_invalidate_bucket(ca, b) &&
1930 !GC_MARK(b)) {
1931 __bch_invalidate_one_bucket(ca, b);
682811b3
TJ
1932 if (!fifo_push(&ca->free[RESERVE_PRIO],
1933 b - ca->buckets))
1934 fifo_push(&ca->free[RESERVE_BTREE],
1935 b - ca->buckets);
2531d9ee
KO
1936 }
1937 }
1938 }
1939
1940 mutex_unlock(&c->bucket_lock);
1941}
1942
cafe5635
KO
1943/* Btree insertion */
1944
829a60b9
KO
1945static bool btree_insert_key(struct btree *b, struct bkey *k,
1946 struct bkey *replace_key)
cafe5635 1947{
829a60b9 1948 unsigned status;
cafe5635
KO
1949
1950 BUG_ON(bkey_cmp(k, &b->key) > 0);
1fa8455d 1951
829a60b9
KO
1952 status = bch_btree_insert_key(&b->keys, k, replace_key);
1953 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1954 bch_check_keys(&b->keys, "%u for %s", status,
1955 replace_key ? "replace" : "insert");
cafe5635 1956
829a60b9
KO
1957 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1958 status);
1959 return true;
1960 } else
1961 return false;
cafe5635
KO
1962}
1963
59158fde
KO
1964static size_t insert_u64s_remaining(struct btree *b)
1965{
3572324a 1966 long ret = bch_btree_keys_u64s_remaining(&b->keys);
59158fde
KO
1967
1968 /*
1969 * Might land in the middle of an existing extent and have to split it
1970 */
1971 if (b->keys.ops->is_extents)
1972 ret -= KEY_MAX_U64S;
1973
1974 return max(ret, 0L);
1975}
1976
26c949f8 1977static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1b207d80
KO
1978 struct keylist *insert_keys,
1979 struct bkey *replace_key)
cafe5635
KO
1980{
1981 bool ret = false;
dc9d98d6 1982 int oldsize = bch_count_data(&b->keys);
cafe5635 1983
26c949f8 1984 while (!bch_keylist_empty(insert_keys)) {
c2f95ae2 1985 struct bkey *k = insert_keys->keys;
26c949f8 1986
59158fde 1987 if (bkey_u64s(k) > insert_u64s_remaining(b))
403b6cde
KO
1988 break;
1989
1990 if (bkey_cmp(k, &b->key) <= 0) {
3a3b6a4e
KO
1991 if (!b->level)
1992 bkey_put(b->c, k);
26c949f8 1993
829a60b9 1994 ret |= btree_insert_key(b, k, replace_key);
26c949f8
KO
1995 bch_keylist_pop_front(insert_keys);
1996 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
26c949f8 1997 BKEY_PADDED(key) temp;
c2f95ae2 1998 bkey_copy(&temp.key, insert_keys->keys);
26c949f8
KO
1999
2000 bch_cut_back(&b->key, &temp.key);
c2f95ae2 2001 bch_cut_front(&b->key, insert_keys->keys);
26c949f8 2002
829a60b9 2003 ret |= btree_insert_key(b, &temp.key, replace_key);
26c949f8
KO
2004 break;
2005 } else {
2006 break;
2007 }
cafe5635
KO
2008 }
2009
829a60b9
KO
2010 if (!ret)
2011 op->insert_collision = true;
2012
403b6cde
KO
2013 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2014
dc9d98d6 2015 BUG_ON(bch_count_data(&b->keys) < oldsize);
cafe5635
KO
2016 return ret;
2017}
2018
26c949f8
KO
2019static int btree_split(struct btree *b, struct btree_op *op,
2020 struct keylist *insert_keys,
1b207d80 2021 struct bkey *replace_key)
cafe5635 2022{
d6fd3b11 2023 bool split;
cafe5635
KO
2024 struct btree *n1, *n2 = NULL, *n3 = NULL;
2025 uint64_t start_time = local_clock();
b54d6934 2026 struct closure cl;
17e21a9f 2027 struct keylist parent_keys;
b54d6934
KO
2028
2029 closure_init_stack(&cl);
17e21a9f 2030 bch_keylist_init(&parent_keys);
cafe5635 2031
0a63b66d
KO
2032 if (btree_check_reserve(b, op)) {
2033 if (!b->level)
2034 return -EINTR;
2035 else
2036 WARN(1, "insufficient reserve for split\n");
2037 }
78365411 2038
0a63b66d 2039 n1 = btree_node_alloc_replacement(b, op);
cafe5635
KO
2040 if (IS_ERR(n1))
2041 goto err;
2042
ee811287
KO
2043 split = set_blocks(btree_bset_first(n1),
2044 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
cafe5635 2045
cafe5635
KO
2046 if (split) {
2047 unsigned keys = 0;
2048
ee811287 2049 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
c37511b8 2050
2452cc89 2051 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
cafe5635
KO
2052 if (IS_ERR(n2))
2053 goto err_free1;
2054
d6fd3b11 2055 if (!b->parent) {
2452cc89 2056 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
cafe5635
KO
2057 if (IS_ERR(n3))
2058 goto err_free2;
2059 }
2060
2a285686
KO
2061 mutex_lock(&n1->write_lock);
2062 mutex_lock(&n2->write_lock);
2063
1b207d80 2064 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
cafe5635 2065
d6fd3b11
KO
2066 /*
2067 * Has to be a linear search because we don't have an auxiliary
cafe5635
KO
2068 * search tree yet
2069 */
2070
ee811287
KO
2071 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2072 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
fafff81c 2073 keys));
cafe5635 2074
fafff81c 2075 bkey_copy_key(&n1->key,
ee811287
KO
2076 bset_bkey_idx(btree_bset_first(n1), keys));
2077 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
cafe5635 2078
ee811287
KO
2079 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2080 btree_bset_first(n1)->keys = keys;
cafe5635 2081
ee811287
KO
2082 memcpy(btree_bset_first(n2)->start,
2083 bset_bkey_last(btree_bset_first(n1)),
2084 btree_bset_first(n2)->keys * sizeof(uint64_t));
cafe5635
KO
2085
2086 bkey_copy_key(&n2->key, &b->key);
2087
17e21a9f 2088 bch_keylist_add(&parent_keys, &n2->key);
b54d6934 2089 bch_btree_node_write(n2, &cl);
2a285686 2090 mutex_unlock(&n2->write_lock);
cafe5635 2091 rw_unlock(true, n2);
c37511b8 2092 } else {
ee811287 2093 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
c37511b8 2094
2a285686 2095 mutex_lock(&n1->write_lock);
1b207d80 2096 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
c37511b8 2097 }
cafe5635 2098
17e21a9f 2099 bch_keylist_add(&parent_keys, &n1->key);
b54d6934 2100 bch_btree_node_write(n1, &cl);
2a285686 2101 mutex_unlock(&n1->write_lock);
cafe5635
KO
2102
2103 if (n3) {
d6fd3b11 2104 /* Depth increases, make a new root */
2a285686 2105 mutex_lock(&n3->write_lock);
cafe5635 2106 bkey_copy_key(&n3->key, &MAX_KEY);
17e21a9f 2107 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
b54d6934 2108 bch_btree_node_write(n3, &cl);
2a285686 2109 mutex_unlock(&n3->write_lock);
cafe5635 2110
b54d6934 2111 closure_sync(&cl);
cafe5635
KO
2112 bch_btree_set_root(n3);
2113 rw_unlock(true, n3);
d6fd3b11
KO
2114 } else if (!b->parent) {
2115 /* Root filled up but didn't need to be split */
b54d6934 2116 closure_sync(&cl);
cafe5635
KO
2117 bch_btree_set_root(n1);
2118 } else {
17e21a9f 2119 /* Split a non root node */
b54d6934 2120 closure_sync(&cl);
17e21a9f
KO
2121 make_btree_freeing_key(b, parent_keys.top);
2122 bch_keylist_push(&parent_keys);
2123
17e21a9f
KO
2124 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2125 BUG_ON(!bch_keylist_empty(&parent_keys));
cafe5635
KO
2126 }
2127
05335cff 2128 btree_node_free(b);
cafe5635 2129 rw_unlock(true, n1);
cafe5635 2130
169ef1cf 2131 bch_time_stats_update(&b->c->btree_split_time, start_time);
cafe5635
KO
2132
2133 return 0;
2134err_free2:
5f5837d2 2135 bkey_put(b->c, &n2->key);
e8e1d468 2136 btree_node_free(n2);
cafe5635
KO
2137 rw_unlock(true, n2);
2138err_free1:
5f5837d2 2139 bkey_put(b->c, &n1->key);
e8e1d468 2140 btree_node_free(n1);
cafe5635
KO
2141 rw_unlock(true, n1);
2142err:
0a63b66d 2143 WARN(1, "bcache: btree split failed (level %u)", b->level);
5f5837d2 2144
cafe5635
KO
2145 if (n3 == ERR_PTR(-EAGAIN) ||
2146 n2 == ERR_PTR(-EAGAIN) ||
2147 n1 == ERR_PTR(-EAGAIN))
2148 return -EAGAIN;
2149
cafe5635
KO
2150 return -ENOMEM;
2151}
2152
26c949f8 2153static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
c18536a7 2154 struct keylist *insert_keys,
1b207d80
KO
2155 atomic_t *journal_ref,
2156 struct bkey *replace_key)
cafe5635 2157{
2a285686
KO
2158 struct closure cl;
2159
17e21a9f
KO
2160 BUG_ON(b->level && replace_key);
2161
2a285686
KO
2162 closure_init_stack(&cl);
2163
2164 mutex_lock(&b->write_lock);
2165
2166 if (write_block(b) != btree_bset_last(b) &&
2167 b->keys.last_set_unwritten)
2168 bch_btree_init_next(b); /* just wrote a set */
2169
59158fde 2170 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2a285686
KO
2171 mutex_unlock(&b->write_lock);
2172 goto split;
2173 }
3b3e9e50 2174
2a285686 2175 BUG_ON(write_block(b) != btree_bset_last(b));
cafe5635 2176
2a285686
KO
2177 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2178 if (!b->level)
2179 bch_btree_leaf_dirty(b, journal_ref);
2180 else
2181 bch_btree_node_write(b, &cl);
2182 }
17e21a9f 2183
2a285686
KO
2184 mutex_unlock(&b->write_lock);
2185
2186 /* wait for btree node write if necessary, after unlock */
2187 closure_sync(&cl);
2188
2189 return 0;
2190split:
2191 if (current->bio_list) {
2192 op->lock = b->c->root->level + 1;
2193 return -EAGAIN;
2194 } else if (op->lock <= b->c->root->level) {
2195 op->lock = b->c->root->level + 1;
2196 return -EINTR;
2197 } else {
2198 /* Invalidated all iterators */
2199 int ret = btree_split(b, op, insert_keys, replace_key);
2200
2201 if (bch_keylist_empty(insert_keys))
2202 return 0;
2203 else if (!ret)
2204 return -EINTR;
2205 return ret;
17e21a9f 2206 }
26c949f8 2207}
cafe5635 2208
e7c590eb
KO
2209int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2210 struct bkey *check_key)
2211{
2212 int ret = -EINTR;
2213 uint64_t btree_ptr = b->key.ptr[0];
2214 unsigned long seq = b->seq;
2215 struct keylist insert;
2216 bool upgrade = op->lock == -1;
2217
2218 bch_keylist_init(&insert);
2219
2220 if (upgrade) {
2221 rw_unlock(false, b);
2222 rw_lock(true, b, b->level);
2223
2224 if (b->key.ptr[0] != btree_ptr ||
2ef9ccbf 2225 b->seq != seq + 1) {
fd01991d 2226 op->lock = b->level;
e7c590eb 2227 goto out;
2ef9ccbf 2228 }
e7c590eb
KO
2229 }
2230
2231 SET_KEY_PTRS(check_key, 1);
2232 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2233
2234 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2235
2236 bch_keylist_add(&insert, check_key);
2237
1b207d80 2238 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
e7c590eb
KO
2239
2240 BUG_ON(!ret && !bch_keylist_empty(&insert));
2241out:
2242 if (upgrade)
2243 downgrade_write(&b->lock);
2244 return ret;
2245}
2246
cc7b8819
KO
2247struct btree_insert_op {
2248 struct btree_op op;
2249 struct keylist *keys;
2250 atomic_t *journal_ref;
2251 struct bkey *replace_key;
2252};
cafe5635 2253
08239ca2 2254static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
cc7b8819
KO
2255{
2256 struct btree_insert_op *op = container_of(b_op,
2257 struct btree_insert_op, op);
cafe5635 2258
cc7b8819
KO
2259 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2260 op->journal_ref, op->replace_key);
2261 if (ret && !bch_keylist_empty(op->keys))
2262 return ret;
2263 else
2264 return MAP_DONE;
cafe5635
KO
2265}
2266
cc7b8819
KO
2267int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2268 atomic_t *journal_ref, struct bkey *replace_key)
cafe5635 2269{
cc7b8819 2270 struct btree_insert_op op;
cafe5635 2271 int ret = 0;
cafe5635 2272
cc7b8819 2273 BUG_ON(current->bio_list);
4f3d4014 2274 BUG_ON(bch_keylist_empty(keys));
cafe5635 2275
cc7b8819
KO
2276 bch_btree_op_init(&op.op, 0);
2277 op.keys = keys;
2278 op.journal_ref = journal_ref;
2279 op.replace_key = replace_key;
cafe5635 2280
cc7b8819
KO
2281 while (!ret && !bch_keylist_empty(keys)) {
2282 op.op.lock = 0;
2283 ret = bch_btree_map_leaf_nodes(&op.op, c,
2284 &START_KEY(keys->keys),
2285 btree_insert_fn);
2286 }
cafe5635 2287
cc7b8819
KO
2288 if (ret) {
2289 struct bkey *k;
cafe5635 2290
cc7b8819 2291 pr_err("error %i", ret);
cafe5635 2292
cc7b8819 2293 while ((k = bch_keylist_pop(keys)))
3a3b6a4e 2294 bkey_put(c, k);
cc7b8819
KO
2295 } else if (op.op.insert_collision)
2296 ret = -ESRCH;
6054c6d4 2297
cafe5635
KO
2298 return ret;
2299}
2300
2301void bch_btree_set_root(struct btree *b)
2302{
2303 unsigned i;
e49c7c37
KO
2304 struct closure cl;
2305
2306 closure_init_stack(&cl);
cafe5635 2307
c37511b8
KO
2308 trace_bcache_btree_set_root(b);
2309
cafe5635
KO
2310 BUG_ON(!b->written);
2311
2312 for (i = 0; i < KEY_PTRS(&b->key); i++)
2313 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2314
2315 mutex_lock(&b->c->bucket_lock);
2316 list_del_init(&b->list);
2317 mutex_unlock(&b->c->bucket_lock);
2318
2319 b->c->root = b;
cafe5635 2320
e49c7c37
KO
2321 bch_journal_meta(b->c, &cl);
2322 closure_sync(&cl);
cafe5635
KO
2323}
2324
48dad8ba
KO
2325/* Map across nodes or keys */
2326
2327static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2328 struct bkey *from,
2329 btree_map_nodes_fn *fn, int flags)
2330{
2331 int ret = MAP_CONTINUE;
2332
2333 if (b->level) {
2334 struct bkey *k;
2335 struct btree_iter iter;
2336
c052dd9a 2337 bch_btree_iter_init(&b->keys, &iter, from);
48dad8ba 2338
a85e968e 2339 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
48dad8ba
KO
2340 bch_ptr_bad))) {
2341 ret = btree(map_nodes_recurse, k, b,
2342 op, from, fn, flags);
2343 from = NULL;
2344
2345 if (ret != MAP_CONTINUE)
2346 return ret;
2347 }
2348 }
2349
2350 if (!b->level || flags == MAP_ALL_NODES)
2351 ret = fn(op, b);
2352
2353 return ret;
2354}
2355
2356int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2357 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2358{
b54d6934 2359 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
48dad8ba
KO
2360}
2361
2362static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2363 struct bkey *from, btree_map_keys_fn *fn,
2364 int flags)
2365{
2366 int ret = MAP_CONTINUE;
2367 struct bkey *k;
2368 struct btree_iter iter;
2369
c052dd9a 2370 bch_btree_iter_init(&b->keys, &iter, from);
48dad8ba 2371
a85e968e 2372 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
48dad8ba
KO
2373 ret = !b->level
2374 ? fn(op, b, k)
2375 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2376 from = NULL;
2377
2378 if (ret != MAP_CONTINUE)
2379 return ret;
2380 }
2381
2382 if (!b->level && (flags & MAP_END_KEY))
2383 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2384 KEY_OFFSET(&b->key), 0));
2385
2386 return ret;
2387}
2388
2389int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2390 struct bkey *from, btree_map_keys_fn *fn, int flags)
2391{
b54d6934 2392 return btree_root(map_keys_recurse, c, op, from, fn, flags);
48dad8ba
KO
2393}
2394
cafe5635
KO
2395/* Keybuf code */
2396
2397static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2398{
2399 /* Overlapping keys compare equal */
2400 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2401 return -1;
2402 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2403 return 1;
2404 return 0;
2405}
2406
2407static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2408 struct keybuf_key *r)
2409{
2410 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2411}
2412
48dad8ba
KO
2413struct refill {
2414 struct btree_op op;
48a915a8 2415 unsigned nr_found;
48dad8ba
KO
2416 struct keybuf *buf;
2417 struct bkey *end;
2418 keybuf_pred_fn *pred;
2419};
cafe5635 2420
48dad8ba
KO
2421static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2422 struct bkey *k)
2423{
2424 struct refill *refill = container_of(op, struct refill, op);
2425 struct keybuf *buf = refill->buf;
2426 int ret = MAP_CONTINUE;
cafe5635 2427
48dad8ba
KO
2428 if (bkey_cmp(k, refill->end) >= 0) {
2429 ret = MAP_DONE;
2430 goto out;
2431 }
cafe5635 2432
48dad8ba
KO
2433 if (!KEY_SIZE(k)) /* end key */
2434 goto out;
cafe5635 2435
48dad8ba
KO
2436 if (refill->pred(buf, k)) {
2437 struct keybuf_key *w;
cafe5635 2438
48dad8ba 2439 spin_lock(&buf->lock);
cafe5635 2440
48dad8ba
KO
2441 w = array_alloc(&buf->freelist);
2442 if (!w) {
2443 spin_unlock(&buf->lock);
2444 return MAP_DONE;
2445 }
cafe5635 2446
48dad8ba
KO
2447 w->private = NULL;
2448 bkey_copy(&w->key, k);
cafe5635 2449
48dad8ba
KO
2450 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2451 array_free(&buf->freelist, w);
48a915a8
KO
2452 else
2453 refill->nr_found++;
cafe5635 2454
48dad8ba
KO
2455 if (array_freelist_empty(&buf->freelist))
2456 ret = MAP_DONE;
cafe5635 2457
48dad8ba 2458 spin_unlock(&buf->lock);
cafe5635 2459 }
48dad8ba
KO
2460out:
2461 buf->last_scanned = *k;
2462 return ret;
cafe5635
KO
2463}
2464
2465void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
72c27061 2466 struct bkey *end, keybuf_pred_fn *pred)
cafe5635
KO
2467{
2468 struct bkey start = buf->last_scanned;
48dad8ba 2469 struct refill refill;
cafe5635
KO
2470
2471 cond_resched();
2472
b54d6934 2473 bch_btree_op_init(&refill.op, -1);
48a915a8
KO
2474 refill.nr_found = 0;
2475 refill.buf = buf;
2476 refill.end = end;
2477 refill.pred = pred;
48dad8ba
KO
2478
2479 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2480 refill_keybuf_fn, MAP_END_KEY);
cafe5635 2481
48a915a8
KO
2482 trace_bcache_keyscan(refill.nr_found,
2483 KEY_INODE(&start), KEY_OFFSET(&start),
2484 KEY_INODE(&buf->last_scanned),
2485 KEY_OFFSET(&buf->last_scanned));
cafe5635
KO
2486
2487 spin_lock(&buf->lock);
2488
2489 if (!RB_EMPTY_ROOT(&buf->keys)) {
2490 struct keybuf_key *w;
2491 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2492 buf->start = START_KEY(&w->key);
2493
2494 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2495 buf->end = w->key;
2496 } else {
2497 buf->start = MAX_KEY;
2498 buf->end = MAX_KEY;
2499 }
2500
2501 spin_unlock(&buf->lock);
2502}
2503
2504static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2505{
2506 rb_erase(&w->node, &buf->keys);
2507 array_free(&buf->freelist, w);
2508}
2509
2510void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2511{
2512 spin_lock(&buf->lock);
2513 __bch_keybuf_del(buf, w);
2514 spin_unlock(&buf->lock);
2515}
2516
2517bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2518 struct bkey *end)
2519{
2520 bool ret = false;
2521 struct keybuf_key *p, *w, s;
2522 s.key = *start;
2523
2524 if (bkey_cmp(end, &buf->start) <= 0 ||
2525 bkey_cmp(start, &buf->end) >= 0)
2526 return false;
2527
2528 spin_lock(&buf->lock);
2529 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2530
2531 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2532 p = w;
2533 w = RB_NEXT(w, node);
2534
2535 if (p->private)
2536 ret = true;
2537 else
2538 __bch_keybuf_del(buf, p);
2539 }
2540
2541 spin_unlock(&buf->lock);
2542 return ret;
2543}
2544
2545struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2546{
2547 struct keybuf_key *w;
2548 spin_lock(&buf->lock);
2549
2550 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2551
2552 while (w && w->private)
2553 w = RB_NEXT(w, node);
2554
2555 if (w)
2556 w->private = ERR_PTR(-EINTR);
2557
2558 spin_unlock(&buf->lock);
2559 return w;
2560}
2561
2562struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
48dad8ba
KO
2563 struct keybuf *buf,
2564 struct bkey *end,
2565 keybuf_pred_fn *pred)
cafe5635
KO
2566{
2567 struct keybuf_key *ret;
2568
2569 while (1) {
2570 ret = bch_keybuf_next(buf);
2571 if (ret)
2572 break;
2573
2574 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2575 pr_debug("scan finished");
2576 break;
2577 }
2578
72c27061 2579 bch_refill_keybuf(c, buf, end, pred);
cafe5635
KO
2580 }
2581
2582 return ret;
2583}
2584
72c27061 2585void bch_keybuf_init(struct keybuf *buf)
cafe5635 2586{
cafe5635
KO
2587 buf->last_scanned = MAX_KEY;
2588 buf->keys = RB_ROOT;
2589
2590 spin_lock_init(&buf->lock);
2591 array_allocator_init(&buf->freelist);
2592}