]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/mfd/db8500-prcmu.c
mfd: twl4030-power: Fix regression with missing compatible flag
[thirdparty/linux.git] / drivers / mfd / db8500-prcmu.c
CommitLineData
e3726fcf 1/*
e0befb23
MP
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
e3726fcf
LW
4 *
5 * License Terms: GNU General Public License v2
e0befb23
MP
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
e3726fcf
LW
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
e0befb23
MP
10 * U8500 PRCM Unit interface driver
11 *
e3726fcf 12 */
e3726fcf 13#include <linux/module.h>
3df57bcf
MN
14#include <linux/kernel.h>
15#include <linux/delay.h>
e3726fcf
LW
16#include <linux/errno.h>
17#include <linux/err.h>
3df57bcf 18#include <linux/spinlock.h>
e3726fcf 19#include <linux/io.h>
3df57bcf 20#include <linux/slab.h>
e3726fcf
LW
21#include <linux/mutex.h>
22#include <linux/completion.h>
3df57bcf 23#include <linux/irq.h>
e3726fcf
LW
24#include <linux/jiffies.h>
25#include <linux/bitops.h>
3df57bcf 26#include <linux/fs.h>
d98a5384 27#include <linux/of.h>
f864c46a 28#include <linux/of_irq.h>
3df57bcf
MN
29#include <linux/platform_device.h>
30#include <linux/uaccess.h>
31#include <linux/mfd/core.h>
73180f85 32#include <linux/mfd/dbx500-prcmu.h>
3a8e39c9 33#include <linux/mfd/abx500/ab8500.h>
1032fbfd
BJ
34#include <linux/regulator/db8500-prcmu.h>
35#include <linux/regulator/machine.h>
c280f45f 36#include <linux/cpufreq.h>
b3aac62b 37#include <linux/platform_data/ux500_wdt.h>
55b175d7 38#include <linux/platform_data/db8500_thermal.h>
73180f85 39#include "dbx500-prcmu-regs.h"
3df57bcf 40
3df57bcf
MN
41/* Index of different voltages to be used when accessing AVSData */
42#define PRCM_AVS_BASE 0x2FC
43#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56
57#define PRCM_AVS_VOLTAGE 0
58#define PRCM_AVS_VOLTAGE_MASK 0x3f
59#define PRCM_AVS_ISSLOWSTARTUP 6
60#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61#define PRCM_AVS_ISMODEENABLE 7
62#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63
64#define PRCM_BOOT_STATUS 0xFFF
65#define PRCM_ROMCODE_A2P 0xFFE
66#define PRCM_ROMCODE_P2A 0xFFD
67#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68
69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79
80/* Req Mailboxes */
81#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87
88/* Ack Mailboxes */
89#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96/* Mailbox 0 headers */
97#define MB0H_POWER_STATE_TRANS 0
98#define MB0H_CONFIG_WAKEUPS_EXE 1
99#define MB0H_READ_WAKEUP_ACK 3
100#define MB0H_CONFIG_WAKEUPS_SLEEP 4
101
102#define MB0H_WAKEUP_EXE 2
103#define MB0H_WAKEUP_SLEEP 5
104
105/* Mailbox 0 REQs */
106#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112
113/* Mailbox 0 ACKs */
114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122/* Mailbox 1 headers */
123#define MB1H_ARM_APE_OPP 0x0
124#define MB1H_RESET_MODEM 0x2
125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127#define MB1H_RELEASE_USB_WAKEUP 0x5
a592c2e2 128#define MB1H_PLL_ON_OFF 0x6
3df57bcf
MN
129
130/* Mailbox 1 Requests */
131#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
a592c2e2 133#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
6b6fae2b
MN
134#define PLL_SOC0_OFF 0x1
135#define PLL_SOC0_ON 0x2
a592c2e2
MN
136#define PLL_SOC1_OFF 0x4
137#define PLL_SOC1_ON 0x8
3df57bcf
MN
138
139/* Mailbox 1 ACKs */
140#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144
145/* Mailbox 2 headers */
146#define MB2H_DPS 0x0
147#define MB2H_AUTO_PWR 0x1
148
149/* Mailbox 2 REQs */
150#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160
161/* Mailbox 2 ACKs */
162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163#define HWACC_PWR_ST_OK 0xFE
164
165/* Mailbox 3 headers */
166#define MB3H_ANC 0x0
167#define MB3H_SIDETONE 0x1
168#define MB3H_SYSCLK 0xE
169
170/* Mailbox 3 Requests */
171#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178
179/* Mailbox 4 headers */
180#define MB4H_DDR_INIT 0x0
181#define MB4H_MEM_ST 0x1
182#define MB4H_HOTDOG 0x12
183#define MB4H_HOTMON 0x13
184#define MB4H_HOT_PERIOD 0x14
a592c2e2
MN
185#define MB4H_A9WDOG_CONF 0x16
186#define MB4H_A9WDOG_EN 0x17
187#define MB4H_A9WDOG_DIS 0x18
188#define MB4H_A9WDOG_LOAD 0x19
189#define MB4H_A9WDOG_KICK 0x20
3df57bcf
MN
190
191/* Mailbox 4 Requests */
192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200#define HOTMON_CONFIG_LOW BIT(0)
201#define HOTMON_CONFIG_HIGH BIT(1)
a592c2e2
MN
202#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206#define A9WDOG_AUTO_OFF_EN BIT(7)
207#define A9WDOG_AUTO_OFF_DIS 0
208#define A9WDOG_ID_MASK 0xf
3df57bcf
MN
209
210/* Mailbox 5 Requests */
211#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
7a4f2609
LW
215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
3df57bcf
MN
217#define PRCMU_I2C_STOP_EN BIT(3)
218
219/* Mailbox 5 ACKs */
220#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222#define I2C_WR_OK 0x1
223#define I2C_RD_OK 0x2
224
225#define NUM_MB 8
226#define MBOX_BIT BIT
227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229/*
230 * Wakeups/IRQs
231 */
232
233#define WAKEUP_BIT_RTC BIT(0)
234#define WAKEUP_BIT_RTT0 BIT(1)
235#define WAKEUP_BIT_RTT1 BIT(2)
236#define WAKEUP_BIT_HSI0 BIT(3)
237#define WAKEUP_BIT_HSI1 BIT(4)
238#define WAKEUP_BIT_CA_WAKE BIT(5)
239#define WAKEUP_BIT_USB BIT(6)
240#define WAKEUP_BIT_ABB BIT(7)
241#define WAKEUP_BIT_ABB_FIFO BIT(8)
242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
243#define WAKEUP_BIT_CA_SLEEP BIT(10)
244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246#define WAKEUP_BIT_ANC_OK BIT(13)
247#define WAKEUP_BIT_SW_ERROR BIT(14)
248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249#define WAKEUP_BIT_ARM BIT(17)
250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253#define WAKEUP_BIT_GPIO0 BIT(23)
254#define WAKEUP_BIT_GPIO1 BIT(24)
255#define WAKEUP_BIT_GPIO2 BIT(25)
256#define WAKEUP_BIT_GPIO3 BIT(26)
257#define WAKEUP_BIT_GPIO4 BIT(27)
258#define WAKEUP_BIT_GPIO5 BIT(28)
259#define WAKEUP_BIT_GPIO6 BIT(29)
260#define WAKEUP_BIT_GPIO7 BIT(30)
261#define WAKEUP_BIT_GPIO8 BIT(31)
262
b58d12fe
MN
263static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266} fw_info;
267
f3f1f0a1
LJ
268static struct irq_domain *db8500_irq_domain;
269
3df57bcf
MN
270/*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
55b175d7 278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
3df57bcf 279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
55b175d7
AB
280
281#define IRQ_PRCMU_RTC 0
282#define IRQ_PRCMU_RTT0 1
283#define IRQ_PRCMU_RTT1 2
284#define IRQ_PRCMU_HSI0 3
285#define IRQ_PRCMU_HSI1 4
286#define IRQ_PRCMU_CA_WAKE 5
287#define IRQ_PRCMU_USB 6
288#define IRQ_PRCMU_ABB 7
289#define IRQ_PRCMU_ABB_FIFO 8
290#define IRQ_PRCMU_ARM 9
291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292#define IRQ_PRCMU_GPIO0 11
293#define IRQ_PRCMU_GPIO1 12
294#define IRQ_PRCMU_GPIO2 13
295#define IRQ_PRCMU_GPIO3 14
296#define IRQ_PRCMU_GPIO4 15
297#define IRQ_PRCMU_GPIO5 16
298#define IRQ_PRCMU_GPIO6 17
299#define IRQ_PRCMU_GPIO7 18
300#define IRQ_PRCMU_GPIO8 19
301#define IRQ_PRCMU_CA_SLEEP 20
302#define IRQ_PRCMU_HOTMON_LOW 21
303#define IRQ_PRCMU_HOTMON_HIGH 22
304#define NUM_PRCMU_WAKEUPS 23
305
3df57bcf
MN
306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
330};
331
332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
344};
345
346/*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
353 */
354static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365} mb0_transfer;
366
367/*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
4d64d2e3 371 * @ape_opp: The current APE OPP.
3df57bcf
MN
372 * @ack: Reply ("acknowledge") data.
373 */
374static struct {
375 struct mutex lock;
376 struct completion work;
4d64d2e3 377 u8 ape_opp;
3df57bcf
MN
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384} mb1_transfer;
385
386/*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
394 */
395static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403} mb2_transfer;
404
405/*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
410 */
411static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415} mb3_transfer;
416
417/*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
421 */
422static struct {
423 struct mutex lock;
424 struct completion work;
425} mb4_transfer;
426
427/*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
432 */
433static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440} mb5_transfer;
441
442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444/* Spinlocks */
b4a6dbd5 445static DEFINE_SPINLOCK(prcmu_lock);
3df57bcf 446static DEFINE_SPINLOCK(clkout_lock);
3df57bcf
MN
447
448/* Global var to runtime determine TCDM base for v2 or v1 */
449static __iomem void *tcdm_base;
b047d981 450static __iomem void *prcmu_base;
3df57bcf
MN
451
452struct clk_mgt {
b047d981 453 u32 offset;
3df57bcf 454 u32 pllsw;
6b6fae2b
MN
455 int branch;
456 bool clk38div;
457};
458
459enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
3df57bcf
MN
463};
464
465static DEFINE_SPINLOCK(clk_mgt_lock);
466
6b6fae2b
MN
467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
6746f232 469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
6b6fae2b
MN
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499};
500
501struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505};
506
507static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518};
519
520struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524};
525
526static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
3df57bcf
MN
542};
543
20aee5b6 544
3df57bcf
MN
545/*
546* Used by MCDE to setup all necessary PRCMU registers
547*/
548#define PRCMU_RESET_DSIPLL 0x00004000
549#define PRCMU_UNCLAMP_DSIPLL 0x00400800
550
551#define PRCMU_CLK_PLL_DIV_SHIFT 0
552#define PRCMU_CLK_PLL_SW_SHIFT 5
553#define PRCMU_CLK_38 (1 << 9)
554#define PRCMU_CLK_38_SRC (1 << 10)
555#define PRCMU_CLK_38_DIV (1 << 11)
556
557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
558#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559
3df57bcf
MN
560/* DPI 50000000 Hz */
561#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564
565/* D=101, N=1, R=4, SELDIV2=0 */
566#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567
3df57bcf
MN
568#define PRCMU_ENABLE_PLLDSI 0x00000001
569#define PRCMU_DISABLE_PLLDSI 0x00000000
570#define PRCMU_RELEASE_RESET_DSS 0x0000400C
571#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572/* ESC clk, div0=1, div1=1, div2=3 */
573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575#define PRCMU_DSI_RESET_SW 0x00000007
576
577#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578
73180f85 579int db8500_prcmu_enable_dsipll(void)
3df57bcf
MN
580{
581 int i;
3df57bcf
MN
582
583 /* Clear DSIPLL_RESETN */
c553b3ca 584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
3df57bcf 585 /* Unclamp DSIPLL in/out */
c553b3ca 586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
3df57bcf 587
3df57bcf 588 /* Set DSI PLL FREQ */
c72fe851 589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
c553b3ca 590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
3df57bcf 591 /* Enable Escape clocks */
c553b3ca 592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
593
594 /* Start DSI PLL */
c553b3ca 595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 596 /* Reset DSI PLL */
c553b3ca 597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
3df57bcf 598 for (i = 0; i < 10; i++) {
c553b3ca 599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
3df57bcf
MN
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
603 }
604 /* Set DSIPLL_RESETN */
c553b3ca 605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
3df57bcf
MN
606 return 0;
607}
608
73180f85 609int db8500_prcmu_disable_dsipll(void)
3df57bcf
MN
610{
611 /* Disable dsi pll */
c553b3ca 612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
3df57bcf 613 /* Disable escapeclock */
c553b3ca 614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
3df57bcf
MN
615 return 0;
616}
617
73180f85 618int db8500_prcmu_set_display_clocks(void)
3df57bcf
MN
619{
620 unsigned long flags;
3df57bcf
MN
621
622 spin_lock_irqsave(&clk_mgt_lock, flags);
623
624 /* Grab the HW semaphore. */
c553b3ca 625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
626 cpu_relax();
627
b047d981
LW
628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
3df57bcf
MN
631
632 /* Release the HW semaphore. */
c553b3ca 633 writel(0, PRCM_SEM);
3df57bcf
MN
634
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637 return 0;
638}
639
b4a6dbd5
MN
640u32 db8500_prcmu_read(unsigned int reg)
641{
b047d981 642 return readl(prcmu_base + reg);
b4a6dbd5
MN
643}
644
645void db8500_prcmu_write(unsigned int reg, u32 value)
3df57bcf 646{
3df57bcf
MN
647 unsigned long flags;
648
b4a6dbd5 649 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 650 writel(value, (prcmu_base + reg));
b4a6dbd5 651 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
652}
653
b4a6dbd5 654void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
3df57bcf 655{
b4a6dbd5 656 u32 val;
3df57bcf
MN
657 unsigned long flags;
658
b4a6dbd5 659 spin_lock_irqsave(&prcmu_lock, flags);
b047d981 660 val = readl(prcmu_base + reg);
b4a6dbd5 661 val = ((val & ~mask) | (value & mask));
b047d981 662 writel(val, (prcmu_base + reg));
b4a6dbd5 663 spin_unlock_irqrestore(&prcmu_lock, flags);
3df57bcf
MN
664}
665
b58d12fe
MN
666struct prcmu_fw_version *prcmu_get_fw_version(void)
667{
668 return fw_info.valid ? &fw_info.version : NULL;
669}
670
3df57bcf
MN
671bool prcmu_has_arm_maxopp(void)
672{
673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675}
676
3df57bcf
MN
677/**
678 * prcmu_get_boot_status - PRCMU boot status checking
679 * Returns: the current PRCMU boot status
680 */
681int prcmu_get_boot_status(void)
682{
683 return readb(tcdm_base + PRCM_BOOT_STATUS);
684}
685
686/**
687 * prcmu_set_rc_a2p - This function is used to run few power state sequences
688 * @val: Value to be set, i.e. transition requested
689 * Returns: 0 on success, -EINVAL on invalid argument
690 *
691 * This function is used to run the following power state sequences -
692 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
693 */
694int prcmu_set_rc_a2p(enum romcode_write val)
695{
696 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
697 return -EINVAL;
698 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
699 return 0;
700}
701
702/**
703 * prcmu_get_rc_p2a - This function is used to get power state sequences
704 * Returns: the power transition that has last happened
705 *
706 * This function can return the following transitions-
707 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
708 */
709enum romcode_read prcmu_get_rc_p2a(void)
710{
711 return readb(tcdm_base + PRCM_ROMCODE_P2A);
712}
713
714/**
715 * prcmu_get_current_mode - Return the current XP70 power mode
716 * Returns: Returns the current AP(ARM) power mode: init,
717 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
718 */
719enum ap_pwrst prcmu_get_xp70_current_state(void)
720{
721 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
722}
723
724/**
725 * prcmu_config_clkout - Configure one of the programmable clock outputs.
726 * @clkout: The CLKOUT number (0 or 1).
727 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
728 * @div: The divider to be applied.
729 *
730 * Configures one of the programmable clock outputs (CLKOUTs).
731 * @div should be in the range [1,63] to request a configuration, or 0 to
732 * inform that the configuration is no longer requested.
733 */
734int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
735{
736 static int requests[2];
737 int r = 0;
738 unsigned long flags;
739 u32 val;
740 u32 bits;
741 u32 mask;
742 u32 div_mask;
743
744 BUG_ON(clkout > 1);
745 BUG_ON(div > 63);
746 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
747
748 if (!div && !requests[clkout])
749 return -EINVAL;
750
751 switch (clkout) {
752 case 0:
753 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
754 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
755 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
756 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
757 break;
758 case 1:
759 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
760 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
761 PRCM_CLKOCR_CLK1TYPE);
762 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
763 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
764 break;
765 }
766 bits &= mask;
767
768 spin_lock_irqsave(&clkout_lock, flags);
769
c553b3ca 770 val = readl(PRCM_CLKOCR);
3df57bcf
MN
771 if (val & div_mask) {
772 if (div) {
773 if ((val & mask) != bits) {
774 r = -EBUSY;
775 goto unlock_and_return;
776 }
777 } else {
778 if ((val & mask & ~div_mask) != bits) {
779 r = -EINVAL;
780 goto unlock_and_return;
781 }
782 }
783 }
c553b3ca 784 writel((bits | (val & ~mask)), PRCM_CLKOCR);
3df57bcf
MN
785 requests[clkout] += (div ? 1 : -1);
786
787unlock_and_return:
788 spin_unlock_irqrestore(&clkout_lock, flags);
789
790 return r;
791}
792
73180f85 793int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
3df57bcf
MN
794{
795 unsigned long flags;
796
797 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
798
799 spin_lock_irqsave(&mb0_transfer.lock, flags);
800
c553b3ca 801 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
802 cpu_relax();
803
804 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
805 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
806 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
807 writeb((keep_ulp_clk ? 1 : 0),
808 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
809 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
c553b3ca 810 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
811
812 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
813
814 return 0;
815}
816
4d64d2e3
MN
817u8 db8500_prcmu_get_power_state_result(void)
818{
819 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
820}
821
3df57bcf
MN
822/* This function should only be called while mb0_transfer.lock is held. */
823static void config_wakeups(void)
824{
825 const u8 header[2] = {
826 MB0H_CONFIG_WAKEUPS_EXE,
827 MB0H_CONFIG_WAKEUPS_SLEEP
828 };
829 static u32 last_dbb_events;
830 static u32 last_abb_events;
831 u32 dbb_events;
832 u32 abb_events;
833 unsigned int i;
834
835 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
836 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
837
838 abb_events = mb0_transfer.req.abb_events;
839
840 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
841 return;
842
843 for (i = 0; i < 2; i++) {
c553b3ca 844 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
845 cpu_relax();
846 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
847 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
848 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 849 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
850 }
851 last_dbb_events = dbb_events;
852 last_abb_events = abb_events;
853}
854
73180f85 855void db8500_prcmu_enable_wakeups(u32 wakeups)
3df57bcf
MN
856{
857 unsigned long flags;
858 u32 bits;
859 int i;
860
861 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
862
863 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
864 if (wakeups & BIT(i))
865 bits |= prcmu_wakeup_bit[i];
866 }
867
868 spin_lock_irqsave(&mb0_transfer.lock, flags);
869
870 mb0_transfer.req.dbb_wakeups = bits;
871 config_wakeups();
872
873 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874}
875
73180f85 876void db8500_prcmu_config_abb_event_readout(u32 abb_events)
3df57bcf
MN
877{
878 unsigned long flags;
879
880 spin_lock_irqsave(&mb0_transfer.lock, flags);
881
882 mb0_transfer.req.abb_events = abb_events;
883 config_wakeups();
884
885 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
886}
887
73180f85 888void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
3df57bcf
MN
889{
890 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
891 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
892 else
893 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
894}
895
896/**
73180f85 897 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
3df57bcf
MN
898 * @opp: The new ARM operating point to which transition is to be made
899 * Returns: 0 on success, non-zero on failure
900 *
901 * This function sets the the operating point of the ARM.
902 */
73180f85 903int db8500_prcmu_set_arm_opp(u8 opp)
3df57bcf
MN
904{
905 int r;
906
907 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
908 return -EINVAL;
909
910 r = 0;
911
912 mutex_lock(&mb1_transfer.lock);
913
c553b3ca 914 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
915 cpu_relax();
916
917 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
918 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
919 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
920
c553b3ca 921 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
922 wait_for_completion(&mb1_transfer.work);
923
924 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
925 (mb1_transfer.ack.arm_opp != opp))
926 r = -EIO;
927
928 mutex_unlock(&mb1_transfer.lock);
929
930 return r;
931}
932
933/**
73180f85 934 * db8500_prcmu_get_arm_opp - get the current ARM OPP
3df57bcf
MN
935 *
936 * Returns: the current ARM OPP
937 */
73180f85 938int db8500_prcmu_get_arm_opp(void)
3df57bcf
MN
939{
940 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
941}
942
943/**
0508901c 944 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
3df57bcf
MN
945 *
946 * Returns: the current DDR OPP
947 */
0508901c 948int db8500_prcmu_get_ddr_opp(void)
3df57bcf 949{
c553b3ca 950 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
951}
952
953/**
0508901c 954 * db8500_set_ddr_opp - set the appropriate DDR OPP
3df57bcf
MN
955 * @opp: The new DDR operating point to which transition is to be made
956 * Returns: 0 on success, non-zero on failure
957 *
958 * This function sets the operating point of the DDR.
959 */
7a4f2609 960static bool enable_set_ddr_opp;
0508901c 961int db8500_prcmu_set_ddr_opp(u8 opp)
3df57bcf
MN
962{
963 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
964 return -EINVAL;
965 /* Changing the DDR OPP can hang the hardware pre-v21 */
7a4f2609 966 if (enable_set_ddr_opp)
c553b3ca 967 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
3df57bcf
MN
968
969 return 0;
970}
6b6fae2b 971
4d64d2e3
MN
972/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
973static void request_even_slower_clocks(bool enable)
974{
b047d981 975 u32 clock_reg[] = {
4d64d2e3
MN
976 PRCM_ACLK_MGT,
977 PRCM_DMACLK_MGT
978 };
979 unsigned long flags;
980 unsigned int i;
981
982 spin_lock_irqsave(&clk_mgt_lock, flags);
983
984 /* Grab the HW semaphore. */
985 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
986 cpu_relax();
987
988 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
989 u32 val;
990 u32 div;
991
b047d981 992 val = readl(prcmu_base + clock_reg[i]);
4d64d2e3
MN
993 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
994 if (enable) {
995 if ((div <= 1) || (div > 15)) {
996 pr_err("prcmu: Bad clock divider %d in %s\n",
997 div, __func__);
998 goto unlock_and_return;
999 }
1000 div <<= 1;
1001 } else {
1002 if (div <= 2)
1003 goto unlock_and_return;
1004 div >>= 1;
1005 }
1006 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1007 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
b047d981 1008 writel(val, prcmu_base + clock_reg[i]);
4d64d2e3
MN
1009 }
1010
1011unlock_and_return:
1012 /* Release the HW semaphore. */
1013 writel(0, PRCM_SEM);
1014
1015 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1016}
1017
3df57bcf 1018/**
0508901c 1019 * db8500_set_ape_opp - set the appropriate APE OPP
3df57bcf
MN
1020 * @opp: The new APE operating point to which transition is to be made
1021 * Returns: 0 on success, non-zero on failure
1022 *
1023 * This function sets the operating point of the APE.
1024 */
0508901c 1025int db8500_prcmu_set_ape_opp(u8 opp)
3df57bcf
MN
1026{
1027 int r = 0;
1028
4d64d2e3
MN
1029 if (opp == mb1_transfer.ape_opp)
1030 return 0;
1031
3df57bcf
MN
1032 mutex_lock(&mb1_transfer.lock);
1033
4d64d2e3
MN
1034 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1035 request_even_slower_clocks(false);
1036
1037 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1038 goto skip_message;
1039
c553b3ca 1040 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1041 cpu_relax();
1042
1043 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1044 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
4d64d2e3
MN
1045 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1046 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
3df57bcf 1047
c553b3ca 1048 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1049 wait_for_completion(&mb1_transfer.work);
1050
1051 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1052 (mb1_transfer.ack.ape_opp != opp))
1053 r = -EIO;
1054
4d64d2e3
MN
1055skip_message:
1056 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1057 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1058 request_even_slower_clocks(true);
1059 if (!r)
1060 mb1_transfer.ape_opp = opp;
1061
3df57bcf
MN
1062 mutex_unlock(&mb1_transfer.lock);
1063
1064 return r;
1065}
1066
1067/**
0508901c 1068 * db8500_prcmu_get_ape_opp - get the current APE OPP
3df57bcf
MN
1069 *
1070 * Returns: the current APE OPP
1071 */
0508901c 1072int db8500_prcmu_get_ape_opp(void)
3df57bcf
MN
1073{
1074 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1075}
1076
1077/**
686f871b 1078 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
3df57bcf
MN
1079 * @enable: true to request the higher voltage, false to drop a request.
1080 *
1081 * Calls to this function to enable and disable requests must be balanced.
1082 */
686f871b 1083int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
3df57bcf
MN
1084{
1085 int r = 0;
1086 u8 header;
1087 static unsigned int requests;
1088
1089 mutex_lock(&mb1_transfer.lock);
1090
1091 if (enable) {
1092 if (0 != requests++)
1093 goto unlock_and_return;
1094 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1095 } else {
1096 if (requests == 0) {
1097 r = -EIO;
1098 goto unlock_and_return;
1099 } else if (1 != requests--) {
1100 goto unlock_and_return;
1101 }
1102 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1103 }
1104
c553b3ca 1105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1106 cpu_relax();
1107
1108 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1109
c553b3ca 1110 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1111 wait_for_completion(&mb1_transfer.work);
1112
1113 if ((mb1_transfer.ack.header != header) ||
1114 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1115 r = -EIO;
1116
1117unlock_and_return:
1118 mutex_unlock(&mb1_transfer.lock);
1119
1120 return r;
1121}
1122
1123/**
1124 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1125 *
1126 * This function releases the power state requirements of a USB wakeup.
1127 */
1128int prcmu_release_usb_wakeup_state(void)
1129{
1130 int r = 0;
1131
1132 mutex_lock(&mb1_transfer.lock);
1133
c553b3ca 1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
1135 cpu_relax();
1136
1137 writeb(MB1H_RELEASE_USB_WAKEUP,
1138 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139
c553b3ca 1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1141 wait_for_completion(&mb1_transfer.work);
1142
1143 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1144 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1145 r = -EIO;
1146
1147 mutex_unlock(&mb1_transfer.lock);
1148
1149 return r;
1150}
1151
0837bb72
MN
1152static int request_pll(u8 clock, bool enable)
1153{
1154 int r = 0;
1155
6b6fae2b
MN
1156 if (clock == PRCMU_PLLSOC0)
1157 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1158 else if (clock == PRCMU_PLLSOC1)
0837bb72
MN
1159 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1160 else
1161 return -EINVAL;
1162
1163 mutex_lock(&mb1_transfer.lock);
1164
1165 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1166 cpu_relax();
1167
1168 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1169 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1170
1171 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1172 wait_for_completion(&mb1_transfer.work);
1173
1174 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1175 r = -EIO;
1176
1177 mutex_unlock(&mb1_transfer.lock);
1178
1179 return r;
1180}
1181
3df57bcf 1182/**
73180f85 1183 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
3df57bcf
MN
1184 * @epod_id: The EPOD to set
1185 * @epod_state: The new EPOD state
1186 *
1187 * This function sets the state of a EPOD (power domain). It may not be called
1188 * from interrupt context.
1189 */
73180f85 1190int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
3df57bcf
MN
1191{
1192 int r = 0;
1193 bool ram_retention = false;
1194 int i;
1195
1196 /* check argument */
1197 BUG_ON(epod_id >= NUM_EPOD_ID);
1198
1199 /* set flag if retention is possible */
1200 switch (epod_id) {
1201 case EPOD_ID_SVAMMDSP:
1202 case EPOD_ID_SIAMMDSP:
1203 case EPOD_ID_ESRAM12:
1204 case EPOD_ID_ESRAM34:
1205 ram_retention = true;
1206 break;
1207 }
1208
1209 /* check argument */
1210 BUG_ON(epod_state > EPOD_STATE_ON);
1211 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1212
1213 /* get lock */
1214 mutex_lock(&mb2_transfer.lock);
1215
1216 /* wait for mailbox */
c553b3ca 1217 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
3df57bcf
MN
1218 cpu_relax();
1219
1220 /* fill in mailbox */
1221 for (i = 0; i < NUM_EPOD_ID; i++)
1222 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1223 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1224
1225 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1226
c553b3ca 1227 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
3df57bcf
MN
1228
1229 /*
1230 * The current firmware version does not handle errors correctly,
1231 * and we cannot recover if there is an error.
1232 * This is expected to change when the firmware is updated.
1233 */
1234 if (!wait_for_completion_timeout(&mb2_transfer.work,
1235 msecs_to_jiffies(20000))) {
1236 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1237 __func__);
1238 r = -EIO;
1239 goto unlock_and_return;
1240 }
1241
1242 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1243 r = -EIO;
1244
1245unlock_and_return:
1246 mutex_unlock(&mb2_transfer.lock);
1247 return r;
1248}
1249
1250/**
1251 * prcmu_configure_auto_pm - Configure autonomous power management.
1252 * @sleep: Configuration for ApSleep.
1253 * @idle: Configuration for ApIdle.
1254 */
1255void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1256 struct prcmu_auto_pm_config *idle)
1257{
1258 u32 sleep_cfg;
1259 u32 idle_cfg;
1260 unsigned long flags;
e3726fcf 1261
3df57bcf 1262 BUG_ON((sleep == NULL) || (idle == NULL));
650c2a21 1263
3df57bcf
MN
1264 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1265 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1266 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1267 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1268 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1269 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
e3726fcf 1270
3df57bcf
MN
1271 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1272 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1273 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1274 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1275 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1276 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
e3726fcf 1277
3df57bcf 1278 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
e0befb23 1279
3df57bcf
MN
1280 /*
1281 * The autonomous power management configuration is done through
1282 * fields in mailbox 2, but these fields are only used as shared
1283 * variables - i.e. there is no need to send a message.
1284 */
1285 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1286 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
e0befb23 1287
3df57bcf
MN
1288 mb2_transfer.auto_pm_enabled =
1289 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1291 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1292 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
e0befb23 1293
3df57bcf
MN
1294 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1295}
1296EXPORT_SYMBOL(prcmu_configure_auto_pm);
e3726fcf 1297
3df57bcf
MN
1298bool prcmu_is_auto_pm_enabled(void)
1299{
1300 return mb2_transfer.auto_pm_enabled;
1301}
e0befb23 1302
3df57bcf
MN
1303static int request_sysclk(bool enable)
1304{
1305 int r;
1306 unsigned long flags;
e3726fcf 1307
3df57bcf 1308 r = 0;
e3726fcf 1309
3df57bcf 1310 mutex_lock(&mb3_transfer.sysclk_lock);
e0befb23 1311
3df57bcf 1312 spin_lock_irqsave(&mb3_transfer.lock, flags);
e0befb23 1313
c553b3ca 1314 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
3df57bcf 1315 cpu_relax();
e0befb23 1316
3df57bcf 1317 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
e3726fcf 1318
3df57bcf 1319 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
c553b3ca 1320 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
e3726fcf 1321
3df57bcf
MN
1322 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1323
1324 /*
1325 * The firmware only sends an ACK if we want to enable the
1326 * SysClk, and it succeeds.
1327 */
1328 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1329 msecs_to_jiffies(20000))) {
1330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1331 __func__);
1332 r = -EIO;
1333 }
1334
1335 mutex_unlock(&mb3_transfer.sysclk_lock);
1336
1337 return r;
1338}
1339
1340static int request_timclk(bool enable)
1341{
1342 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1343
1344 if (!enable)
1345 val |= PRCM_TCR_STOP_TIMERS;
c553b3ca 1346 writel(val, PRCM_TCR);
3df57bcf
MN
1347
1348 return 0;
1349}
1350
6b6fae2b 1351static int request_clock(u8 clock, bool enable)
3df57bcf
MN
1352{
1353 u32 val;
1354 unsigned long flags;
1355
1356 spin_lock_irqsave(&clk_mgt_lock, flags);
1357
1358 /* Grab the HW semaphore. */
c553b3ca 1359 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
3df57bcf
MN
1360 cpu_relax();
1361
b047d981 1362 val = readl(prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1363 if (enable) {
1364 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1365 } else {
1366 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1367 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1368 }
b047d981 1369 writel(val, prcmu_base + clk_mgt[clock].offset);
3df57bcf
MN
1370
1371 /* Release the HW semaphore. */
c553b3ca 1372 writel(0, PRCM_SEM);
3df57bcf
MN
1373
1374 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1375
1376 return 0;
1377}
1378
0837bb72
MN
1379static int request_sga_clock(u8 clock, bool enable)
1380{
1381 u32 val;
1382 int ret;
1383
1384 if (enable) {
1385 val = readl(PRCM_CGATING_BYPASS);
1386 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1387 }
1388
6b6fae2b 1389 ret = request_clock(clock, enable);
0837bb72
MN
1390
1391 if (!ret && !enable) {
1392 val = readl(PRCM_CGATING_BYPASS);
1393 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1394 }
1395
1396 return ret;
1397}
1398
6b6fae2b
MN
1399static inline bool plldsi_locked(void)
1400{
1401 return (readl(PRCM_PLLDSI_LOCKP) &
1402 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1403 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1404 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1405 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1406}
1407
1408static int request_plldsi(bool enable)
1409{
1410 int r = 0;
1411 u32 val;
1412
1413 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1414 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1415 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1416
1417 val = readl(PRCM_PLLDSI_ENABLE);
1418 if (enable)
1419 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1420 else
1421 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1422 writel(val, PRCM_PLLDSI_ENABLE);
1423
1424 if (enable) {
1425 unsigned int i;
1426 bool locked = plldsi_locked();
1427
1428 for (i = 10; !locked && (i > 0); --i) {
1429 udelay(100);
1430 locked = plldsi_locked();
1431 }
1432 if (locked) {
1433 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1434 PRCM_APE_RESETN_SET);
1435 } else {
1436 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1437 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1438 PRCM_MMIP_LS_CLAMP_SET);
1439 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1440 writel(val, PRCM_PLLDSI_ENABLE);
1441 r = -EAGAIN;
1442 }
1443 } else {
1444 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1445 }
1446 return r;
1447}
1448
1449static int request_dsiclk(u8 n, bool enable)
1450{
1451 u32 val;
1452
1453 val = readl(PRCM_DSI_PLLOUT_SEL);
1454 val &= ~dsiclk[n].divsel_mask;
1455 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1456 dsiclk[n].divsel_shift);
1457 writel(val, PRCM_DSI_PLLOUT_SEL);
1458 return 0;
1459}
1460
1461static int request_dsiescclk(u8 n, bool enable)
1462{
1463 u32 val;
1464
1465 val = readl(PRCM_DSITVCLK_DIV);
1466 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1467 writel(val, PRCM_DSITVCLK_DIV);
1468 return 0;
1469}
1470
3df57bcf 1471/**
73180f85 1472 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
3df57bcf
MN
1473 * @clock: The clock for which the request is made.
1474 * @enable: Whether the clock should be enabled (true) or disabled (false).
1475 *
1476 * This function should only be used by the clock implementation.
1477 * Do not use it from any other place!
1478 */
73180f85 1479int db8500_prcmu_request_clock(u8 clock, bool enable)
3df57bcf 1480{
6b6fae2b 1481 if (clock == PRCMU_SGACLK)
0837bb72 1482 return request_sga_clock(clock, enable);
6b6fae2b
MN
1483 else if (clock < PRCMU_NUM_REG_CLOCKS)
1484 return request_clock(clock, enable);
1485 else if (clock == PRCMU_TIMCLK)
3df57bcf 1486 return request_timclk(enable);
6b6fae2b
MN
1487 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1488 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1489 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1490 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1491 else if (clock == PRCMU_PLLDSI)
1492 return request_plldsi(enable);
1493 else if (clock == PRCMU_SYSCLK)
3df57bcf 1494 return request_sysclk(enable);
6b6fae2b 1495 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
0837bb72 1496 return request_pll(clock, enable);
6b6fae2b
MN
1497 else
1498 return -EINVAL;
1499}
1500
1501static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1502 int branch)
1503{
1504 u64 rate;
1505 u32 val;
1506 u32 d;
1507 u32 div = 1;
1508
1509 val = readl(reg);
1510
1511 rate = src_rate;
1512 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1513
1514 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1515 if (d > 1)
1516 div *= d;
1517
1518 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1519 if (d > 1)
1520 div *= d;
1521
1522 if (val & PRCM_PLL_FREQ_SELDIV2)
1523 div *= 2;
1524
1525 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1526 (val & PRCM_PLL_FREQ_DIV2EN) &&
1527 ((reg == PRCM_PLLSOC0_FREQ) ||
20aee5b6 1528 (reg == PRCM_PLLARM_FREQ) ||
6b6fae2b
MN
1529 (reg == PRCM_PLLDDR_FREQ))))
1530 div *= 2;
1531
1532 (void)do_div(rate, div);
1533
1534 return (unsigned long)rate;
1535}
1536
1537#define ROOT_CLOCK_RATE 38400000
1538
1539static unsigned long clock_rate(u8 clock)
1540{
1541 u32 val;
1542 u32 pllsw;
1543 unsigned long rate = ROOT_CLOCK_RATE;
1544
b047d981 1545 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1546
1547 if (val & PRCM_CLK_MGT_CLK38) {
1548 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1549 rate /= 2;
1550 return rate;
1551 }
1552
1553 val |= clk_mgt[clock].pllsw;
1554 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1555
1556 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1557 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1558 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1559 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1560 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1561 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1562 else
1563 return 0;
1564
1565 if ((clock == PRCMU_SGACLK) &&
1566 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1567 u64 r = (rate * 10);
1568
1569 (void)do_div(r, 25);
1570 return (unsigned long)r;
1571 }
1572 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1573 if (val)
1574 return rate / val;
1575 else
1576 return 0;
1577}
20aee5b6 1578
b2302c87 1579static unsigned long armss_rate(void)
20aee5b6
MJ
1580{
1581 u32 r;
1582 unsigned long rate;
1583
1584 r = readl(PRCM_ARM_CHGCLKREQ);
1585
1586 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1587 /* External ARMCLKFIX clock */
1588
1589 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1590
1591 /* Check PRCM_ARM_CHGCLKREQ divider */
1592 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1593 rate /= 2;
1594
1595 /* Check PRCM_ARMCLKFIX_MGT divider */
1596 r = readl(PRCM_ARMCLKFIX_MGT);
1597 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1598 rate /= r;
1599
1600 } else {/* ARM PLL */
1601 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1602 }
1603
b2302c87 1604 return rate;
20aee5b6 1605}
6b6fae2b
MN
1606
1607static unsigned long dsiclk_rate(u8 n)
1608{
1609 u32 divsel;
1610 u32 div = 1;
1611
1612 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1613 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1614
1615 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1616 divsel = dsiclk[n].divsel;
e9d7b4b5
UH
1617 else
1618 dsiclk[n].divsel = divsel;
6b6fae2b
MN
1619
1620 switch (divsel) {
1621 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1622 div *= 2;
1623 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1624 div *= 2;
1625 case PRCM_DSI_PLLOUT_SEL_PHI:
1626 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1627 PLL_RAW) / div;
e62ccf3a 1628 default:
6b6fae2b 1629 return 0;
e62ccf3a 1630 }
6b6fae2b
MN
1631}
1632
1633static unsigned long dsiescclk_rate(u8 n)
1634{
1635 u32 div;
1636
1637 div = readl(PRCM_DSITVCLK_DIV);
1638 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1639 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1640}
1641
1642unsigned long prcmu_clock_rate(u8 clock)
1643{
e62ccf3a 1644 if (clock < PRCMU_NUM_REG_CLOCKS)
6b6fae2b
MN
1645 return clock_rate(clock);
1646 else if (clock == PRCMU_TIMCLK)
1647 return ROOT_CLOCK_RATE / 16;
1648 else if (clock == PRCMU_SYSCLK)
1649 return ROOT_CLOCK_RATE;
1650 else if (clock == PRCMU_PLLSOC0)
1651 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1652 else if (clock == PRCMU_PLLSOC1)
1653 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
20aee5b6
MJ
1654 else if (clock == PRCMU_ARMSS)
1655 return armss_rate();
6b6fae2b
MN
1656 else if (clock == PRCMU_PLLDDR)
1657 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1658 else if (clock == PRCMU_PLLDSI)
1659 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1660 PLL_RAW);
1661 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1662 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1663 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1664 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1665 else
1666 return 0;
1667}
1668
1669static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1670{
1671 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1672 return ROOT_CLOCK_RATE;
1673 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1674 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1675 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1676 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1677 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1678 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1679 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1680 else
1681 return 0;
1682}
1683
1684static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1685{
1686 u32 div;
1687
1688 div = (src_rate / rate);
1689 if (div == 0)
1690 return 1;
1691 if (rate < (src_rate / div))
1692 div++;
1693 return div;
1694}
1695
1696static long round_clock_rate(u8 clock, unsigned long rate)
1697{
1698 u32 val;
1699 u32 div;
1700 unsigned long src_rate;
1701 long rounded_rate;
1702
b047d981 1703 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1704 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1705 clk_mgt[clock].branch);
1706 div = clock_divider(src_rate, rate);
1707 if (val & PRCM_CLK_MGT_CLK38) {
1708 if (clk_mgt[clock].clk38div) {
1709 if (div > 2)
1710 div = 2;
1711 } else {
1712 div = 1;
1713 }
1714 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1715 u64 r = (src_rate * 10);
1716
1717 (void)do_div(r, 25);
1718 if (r <= rate)
1719 return (unsigned long)r;
1720 }
1721 rounded_rate = (src_rate / min(div, (u32)31));
1722
1723 return rounded_rate;
1724}
1725
b2302c87
UH
1726/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1727static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
50701588
VK
1728 { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1729 { .frequency = 400000, .driver_data = ARM_50_OPP,},
1730 { .frequency = 800000, .driver_data = ARM_100_OPP,},
b2302c87
UH
1731 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1732 { .frequency = CPUFREQ_TABLE_END,},
1733};
1734
1735static long round_armss_rate(unsigned long rate)
1736{
fdb56c45 1737 struct cpufreq_frequency_table *pos;
b2302c87 1738 long freq = 0;
b2302c87
UH
1739
1740 /* cpufreq table frequencies is in KHz. */
1741 rate = rate / 1000;
1742
1743 /* Find the corresponding arm opp from the cpufreq table. */
fdb56c45
SK
1744 cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1745 freq = pos->frequency;
b2302c87
UH
1746 if (freq == rate)
1747 break;
b2302c87
UH
1748 }
1749
1750 /* Return the last valid value, even if a match was not found. */
1751 return freq * 1000;
1752}
1753
6b6fae2b
MN
1754#define MIN_PLL_VCO_RATE 600000000ULL
1755#define MAX_PLL_VCO_RATE 1680640000ULL
1756
1757static long round_plldsi_rate(unsigned long rate)
1758{
1759 long rounded_rate = 0;
1760 unsigned long src_rate;
1761 unsigned long rem;
1762 u32 r;
1763
1764 src_rate = clock_rate(PRCMU_HDMICLK);
1765 rem = rate;
1766
1767 for (r = 7; (rem > 0) && (r > 0); r--) {
1768 u64 d;
1769
1770 d = (r * rate);
1771 (void)do_div(d, src_rate);
1772 if (d < 6)
1773 d = 6;
1774 else if (d > 255)
1775 d = 255;
1776 d *= src_rate;
1777 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1778 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1779 continue;
1780 (void)do_div(d, r);
1781 if (rate < d) {
1782 if (rounded_rate == 0)
1783 rounded_rate = (long)d;
1784 break;
1785 }
1786 if ((rate - d) < rem) {
1787 rem = (rate - d);
1788 rounded_rate = (long)d;
1789 }
1790 }
1791 return rounded_rate;
1792}
1793
1794static long round_dsiclk_rate(unsigned long rate)
1795{
1796 u32 div;
1797 unsigned long src_rate;
1798 long rounded_rate;
1799
1800 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1801 PLL_RAW);
1802 div = clock_divider(src_rate, rate);
1803 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1804
1805 return rounded_rate;
1806}
1807
1808static long round_dsiescclk_rate(unsigned long rate)
1809{
1810 u32 div;
1811 unsigned long src_rate;
1812 long rounded_rate;
1813
1814 src_rate = clock_rate(PRCMU_TVCLK);
1815 div = clock_divider(src_rate, rate);
1816 rounded_rate = (src_rate / min(div, (u32)255));
1817
1818 return rounded_rate;
1819}
1820
1821long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1822{
1823 if (clock < PRCMU_NUM_REG_CLOCKS)
1824 return round_clock_rate(clock, rate);
b2302c87
UH
1825 else if (clock == PRCMU_ARMSS)
1826 return round_armss_rate(rate);
6b6fae2b
MN
1827 else if (clock == PRCMU_PLLDSI)
1828 return round_plldsi_rate(rate);
1829 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1830 return round_dsiclk_rate(rate);
1831 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1832 return round_dsiescclk_rate(rate);
1833 else
1834 return (long)prcmu_clock_rate(clock);
1835}
1836
1837static void set_clock_rate(u8 clock, unsigned long rate)
1838{
1839 u32 val;
1840 u32 div;
1841 unsigned long src_rate;
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&clk_mgt_lock, flags);
1845
1846 /* Grab the HW semaphore. */
1847 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1848 cpu_relax();
1849
b047d981 1850 val = readl(prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1851 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1852 clk_mgt[clock].branch);
1853 div = clock_divider(src_rate, rate);
1854 if (val & PRCM_CLK_MGT_CLK38) {
1855 if (clk_mgt[clock].clk38div) {
1856 if (div > 1)
1857 val |= PRCM_CLK_MGT_CLK38DIV;
1858 else
1859 val &= ~PRCM_CLK_MGT_CLK38DIV;
1860 }
1861 } else if (clock == PRCMU_SGACLK) {
1862 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1863 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1864 if (div == 3) {
1865 u64 r = (src_rate * 10);
1866
1867 (void)do_div(r, 25);
1868 if (r <= rate) {
1869 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1870 div = 0;
1871 }
1872 }
1873 val |= min(div, (u32)31);
1874 } else {
1875 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1876 val |= min(div, (u32)31);
1877 }
b047d981 1878 writel(val, prcmu_base + clk_mgt[clock].offset);
6b6fae2b
MN
1879
1880 /* Release the HW semaphore. */
1881 writel(0, PRCM_SEM);
1882
1883 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1884}
1885
b2302c87
UH
1886static int set_armss_rate(unsigned long rate)
1887{
fdb56c45 1888 struct cpufreq_frequency_table *pos;
b2302c87
UH
1889
1890 /* cpufreq table frequencies is in KHz. */
1891 rate = rate / 1000;
1892
1893 /* Find the corresponding arm opp from the cpufreq table. */
fdb56c45
SK
1894 cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1895 if (pos->frequency == rate)
b2302c87 1896 break;
b2302c87 1897
fdb56c45 1898 if (pos->frequency != rate)
b2302c87
UH
1899 return -EINVAL;
1900
1901 /* Set the new arm opp. */
fdb56c45 1902 return db8500_prcmu_set_arm_opp(pos->driver_data);
b2302c87
UH
1903}
1904
6b6fae2b
MN
1905static int set_plldsi_rate(unsigned long rate)
1906{
1907 unsigned long src_rate;
1908 unsigned long rem;
1909 u32 pll_freq = 0;
1910 u32 r;
1911
1912 src_rate = clock_rate(PRCMU_HDMICLK);
1913 rem = rate;
1914
1915 for (r = 7; (rem > 0) && (r > 0); r--) {
1916 u64 d;
1917 u64 hwrate;
1918
1919 d = (r * rate);
1920 (void)do_div(d, src_rate);
1921 if (d < 6)
1922 d = 6;
1923 else if (d > 255)
1924 d = 255;
1925 hwrate = (d * src_rate);
1926 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1927 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1928 continue;
1929 (void)do_div(hwrate, r);
1930 if (rate < hwrate) {
1931 if (pll_freq == 0)
1932 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1933 (r << PRCM_PLL_FREQ_R_SHIFT));
1934 break;
1935 }
1936 if ((rate - hwrate) < rem) {
1937 rem = (rate - hwrate);
1938 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1939 (r << PRCM_PLL_FREQ_R_SHIFT));
1940 }
1941 }
1942 if (pll_freq == 0)
1943 return -EINVAL;
1944
1945 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1946 writel(pll_freq, PRCM_PLLDSI_FREQ);
1947
1948 return 0;
1949}
1950
1951static void set_dsiclk_rate(u8 n, unsigned long rate)
1952{
1953 u32 val;
1954 u32 div;
1955
1956 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1957 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1958
1959 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1960 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1961 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1962
1963 val = readl(PRCM_DSI_PLLOUT_SEL);
1964 val &= ~dsiclk[n].divsel_mask;
1965 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1966 writel(val, PRCM_DSI_PLLOUT_SEL);
1967}
1968
1969static void set_dsiescclk_rate(u8 n, unsigned long rate)
1970{
1971 u32 val;
1972 u32 div;
1973
1974 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1975 val = readl(PRCM_DSITVCLK_DIV);
1976 val &= ~dsiescclk[n].div_mask;
1977 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1978 writel(val, PRCM_DSITVCLK_DIV);
1979}
1980
1981int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1982{
1983 if (clock < PRCMU_NUM_REG_CLOCKS)
1984 set_clock_rate(clock, rate);
b2302c87
UH
1985 else if (clock == PRCMU_ARMSS)
1986 return set_armss_rate(rate);
6b6fae2b
MN
1987 else if (clock == PRCMU_PLLDSI)
1988 return set_plldsi_rate(rate);
1989 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1990 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1991 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1992 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1993 return 0;
3df57bcf
MN
1994}
1995
73180f85 1996int db8500_prcmu_config_esram0_deep_sleep(u8 state)
3df57bcf
MN
1997{
1998 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1999 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2000 return -EINVAL;
2001
2002 mutex_lock(&mb4_transfer.lock);
2003
c553b3ca 2004 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2005 cpu_relax();
2006
2007 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2008 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2009 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2010 writeb(DDR_PWR_STATE_ON,
2011 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2012 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2013
c553b3ca 2014 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2015 wait_for_completion(&mb4_transfer.work);
2016
2017 mutex_unlock(&mb4_transfer.lock);
2018
2019 return 0;
2020}
2021
0508901c 2022int db8500_prcmu_config_hotdog(u8 threshold)
3df57bcf
MN
2023{
2024 mutex_lock(&mb4_transfer.lock);
2025
c553b3ca 2026 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2027 cpu_relax();
2028
2029 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2030 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
c553b3ca 2032 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2033 wait_for_completion(&mb4_transfer.work);
2034
2035 mutex_unlock(&mb4_transfer.lock);
2036
2037 return 0;
2038}
2039
0508901c 2040int db8500_prcmu_config_hotmon(u8 low, u8 high)
3df57bcf
MN
2041{
2042 mutex_lock(&mb4_transfer.lock);
2043
c553b3ca 2044 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2045 cpu_relax();
2046
2047 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2048 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2049 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2050 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2051 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2052
c553b3ca 2053 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2054 wait_for_completion(&mb4_transfer.work);
2055
2056 mutex_unlock(&mb4_transfer.lock);
2057
2058 return 0;
2059}
2060
2061static int config_hot_period(u16 val)
2062{
2063 mutex_lock(&mb4_transfer.lock);
2064
c553b3ca 2065 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
3df57bcf
MN
2066 cpu_relax();
2067
2068 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2069 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2070
c553b3ca 2071 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2072 wait_for_completion(&mb4_transfer.work);
2073
2074 mutex_unlock(&mb4_transfer.lock);
2075
2076 return 0;
2077}
2078
0508901c 2079int db8500_prcmu_start_temp_sense(u16 cycles32k)
3df57bcf
MN
2080{
2081 if (cycles32k == 0xFFFF)
2082 return -EINVAL;
2083
2084 return config_hot_period(cycles32k);
2085}
2086
0508901c 2087int db8500_prcmu_stop_temp_sense(void)
3df57bcf
MN
2088{
2089 return config_hot_period(0xFFFF);
2090}
2091
84165b80
JA
2092static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2093{
2094
2095 mutex_lock(&mb4_transfer.lock);
2096
2097 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2098 cpu_relax();
2099
2100 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2101 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2102 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2103 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2104
2105 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2106
2107 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2108 wait_for_completion(&mb4_transfer.work);
2109
2110 mutex_unlock(&mb4_transfer.lock);
2111
2112 return 0;
2113
2114}
2115
0508901c 2116int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
84165b80
JA
2117{
2118 BUG_ON(num == 0 || num > 0xf);
2119 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2120 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2121 A9WDOG_AUTO_OFF_DIS);
2122}
6f8cfa99 2123EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
84165b80 2124
0508901c 2125int db8500_prcmu_enable_a9wdog(u8 id)
84165b80
JA
2126{
2127 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2128}
6f8cfa99 2129EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
84165b80 2130
0508901c 2131int db8500_prcmu_disable_a9wdog(u8 id)
84165b80
JA
2132{
2133 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2134}
6f8cfa99 2135EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
84165b80 2136
0508901c 2137int db8500_prcmu_kick_a9wdog(u8 id)
84165b80
JA
2138{
2139 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2140}
6f8cfa99 2141EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
84165b80
JA
2142
2143/*
2144 * timeout is 28 bit, in ms.
2145 */
0508901c 2146int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
84165b80 2147{
84165b80
JA
2148 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2149 (id & A9WDOG_ID_MASK) |
2150 /*
2151 * Put the lowest 28 bits of timeout at
2152 * offset 4. Four first bits are used for id.
2153 */
2154 (u8)((timeout << 4) & 0xf0),
2155 (u8)((timeout >> 4) & 0xff),
2156 (u8)((timeout >> 12) & 0xff),
2157 (u8)((timeout >> 20) & 0xff));
2158}
6f8cfa99 2159EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
84165b80 2160
e3726fcf
LW
2161/**
2162 * prcmu_abb_read() - Read register value(s) from the ABB.
2163 * @slave: The I2C slave address.
2164 * @reg: The (start) register address.
2165 * @value: The read out value(s).
2166 * @size: The number of registers to read.
2167 *
2168 * Reads register value(s) from the ABB.
2169 * @size has to be 1 for the current firmware version.
2170 */
2171int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2172{
2173 int r;
2174
2175 if (size != 1)
2176 return -EINVAL;
2177
3df57bcf 2178 mutex_lock(&mb5_transfer.lock);
e3726fcf 2179
c553b3ca 2180 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2181 cpu_relax();
2182
3c3e4898 2183 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2184 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2185 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2186 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2187 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2188
c553b3ca 2189 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2190
e3726fcf 2191 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2192 msecs_to_jiffies(20000))) {
2193 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2194 __func__);
e3726fcf 2195 r = -EIO;
3df57bcf
MN
2196 } else {
2197 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
e3726fcf 2198 }
3df57bcf 2199
e3726fcf
LW
2200 if (!r)
2201 *value = mb5_transfer.ack.value;
2202
e3726fcf 2203 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2204
e3726fcf
LW
2205 return r;
2206}
e3726fcf
LW
2207
2208/**
3c3e4898 2209 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
e3726fcf
LW
2210 * @slave: The I2C slave address.
2211 * @reg: The (start) register address.
2212 * @value: The value(s) to write.
3c3e4898 2213 * @mask: The mask(s) to use.
e3726fcf
LW
2214 * @size: The number of registers to write.
2215 *
3c3e4898
MN
2216 * Writes masked register value(s) to the ABB.
2217 * For each @value, only the bits set to 1 in the corresponding @mask
2218 * will be written. The other bits are not changed.
e3726fcf
LW
2219 * @size has to be 1 for the current firmware version.
2220 */
3c3e4898 2221int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
e3726fcf
LW
2222{
2223 int r;
2224
2225 if (size != 1)
2226 return -EINVAL;
2227
3df57bcf 2228 mutex_lock(&mb5_transfer.lock);
e3726fcf 2229
c553b3ca 2230 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
e3726fcf
LW
2231 cpu_relax();
2232
3c3e4898 2233 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
3df57bcf
MN
2234 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2235 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2236 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2237 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2238
c553b3ca 2239 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
e3726fcf 2240
e3726fcf 2241 if (!wait_for_completion_timeout(&mb5_transfer.work,
3df57bcf
MN
2242 msecs_to_jiffies(20000))) {
2243 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2244 __func__);
e3726fcf 2245 r = -EIO;
3df57bcf
MN
2246 } else {
2247 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
e3726fcf 2248 }
e3726fcf 2249
e3726fcf 2250 mutex_unlock(&mb5_transfer.lock);
3df57bcf 2251
e3726fcf
LW
2252 return r;
2253}
e3726fcf 2254
3c3e4898
MN
2255/**
2256 * prcmu_abb_write() - Write register value(s) to the ABB.
2257 * @slave: The I2C slave address.
2258 * @reg: The (start) register address.
2259 * @value: The value(s) to write.
2260 * @size: The number of registers to write.
2261 *
2262 * Writes register value(s) to the ABB.
2263 * @size has to be 1 for the current firmware version.
2264 */
2265int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2266{
2267 u8 mask = ~0;
2268
2269 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2270}
2271
3df57bcf
MN
2272/**
2273 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2274 */
5261e101 2275int prcmu_ac_wake_req(void)
e0befb23 2276{
3df57bcf 2277 u32 val;
5261e101 2278 int ret = 0;
e0befb23 2279
3df57bcf 2280 mutex_lock(&mb0_transfer.ac_wake_lock);
e0befb23 2281
c553b3ca 2282 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2283 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2284 goto unlock_and_return;
e0befb23 2285
3df57bcf 2286 atomic_set(&ac_wake_req_state, 1);
e0befb23 2287
5261e101
AM
2288 /*
2289 * Force Modem Wake-up before hostaccess_req ping-pong.
2290 * It prevents Modem to enter in Sleep while acking the hostaccess
2291 * request. The 31us delay has been calculated by HWI.
2292 */
2293 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2294 writel(val, PRCM_HOSTACCESS_REQ);
2295
2296 udelay(31);
2297
2298 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2299 writel(val, PRCM_HOSTACCESS_REQ);
e0befb23 2300
3df57bcf 2301 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2302 msecs_to_jiffies(5000))) {
57265bc1 2303 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
d6e3002e 2304 __func__);
5261e101 2305 ret = -EFAULT;
3df57bcf 2306 }
e0befb23 2307
3df57bcf
MN
2308unlock_and_return:
2309 mutex_unlock(&mb0_transfer.ac_wake_lock);
5261e101 2310 return ret;
e0befb23
MP
2311}
2312
2313/**
3df57bcf 2314 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
e0befb23 2315 */
ffb01160 2316void prcmu_ac_sleep_req(void)
e0befb23 2317{
3df57bcf
MN
2318 u32 val;
2319
2320 mutex_lock(&mb0_transfer.ac_wake_lock);
2321
c553b3ca 2322 val = readl(PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2323 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2324 goto unlock_and_return;
2325
2326 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
c553b3ca 2327 PRCM_HOSTACCESS_REQ);
3df57bcf
MN
2328
2329 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
d6e3002e 2330 msecs_to_jiffies(5000))) {
57265bc1 2331 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
3df57bcf
MN
2332 __func__);
2333 }
2334
2335 atomic_set(&ac_wake_req_state, 0);
2336
2337unlock_and_return:
2338 mutex_unlock(&mb0_transfer.ac_wake_lock);
e0befb23 2339}
e0befb23 2340
73180f85 2341bool db8500_prcmu_is_ac_wake_requested(void)
e0befb23 2342{
3df57bcf 2343 return (atomic_read(&ac_wake_req_state) != 0);
e0befb23 2344}
e0befb23
MP
2345
2346/**
73180f85 2347 * db8500_prcmu_system_reset - System reset
e0befb23 2348 *
73180f85 2349 * Saves the reset reason code and then sets the APE_SOFTRST register which
3df57bcf 2350 * fires interrupt to fw
e0befb23 2351 */
73180f85 2352void db8500_prcmu_system_reset(u16 reset_code)
e0befb23 2353{
3df57bcf 2354 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
c553b3ca 2355 writel(1, PRCM_APE_SOFTRST);
e0befb23 2356}
e0befb23 2357
597045de
SR
2358/**
2359 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2360 *
2361 * Retrieves the reset reason code stored by prcmu_system_reset() before
2362 * last restart.
2363 */
2364u16 db8500_prcmu_get_reset_code(void)
2365{
2366 return readw(tcdm_base + PRCM_SW_RST_REASON);
2367}
2368
e0befb23 2369/**
0508901c 2370 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
e0befb23 2371 */
0508901c 2372void db8500_prcmu_modem_reset(void)
e0befb23 2373{
3df57bcf
MN
2374 mutex_lock(&mb1_transfer.lock);
2375
c553b3ca 2376 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
3df57bcf
MN
2377 cpu_relax();
2378
2379 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
c553b3ca 2380 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2381 wait_for_completion(&mb1_transfer.work);
2382
2383 /*
2384 * No need to check return from PRCMU as modem should go in reset state
2385 * This state is already managed by upper layer
2386 */
2387
2388 mutex_unlock(&mb1_transfer.lock);
e0befb23 2389}
e0befb23 2390
3df57bcf 2391static void ack_dbb_wakeup(void)
e0befb23 2392{
3df57bcf
MN
2393 unsigned long flags;
2394
2395 spin_lock_irqsave(&mb0_transfer.lock, flags);
2396
c553b3ca 2397 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
3df57bcf
MN
2398 cpu_relax();
2399
2400 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
c553b3ca 2401 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
3df57bcf
MN
2402
2403 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
e0befb23 2404}
e0befb23 2405
3df57bcf 2406static inline void print_unknown_header_warning(u8 n, u8 header)
e0befb23 2407{
3df57bcf
MN
2408 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2409 header, n);
e0befb23
MP
2410}
2411
3df57bcf 2412static bool read_mailbox_0(void)
e3726fcf 2413{
3df57bcf
MN
2414 bool r;
2415 u32 ev;
2416 unsigned int n;
2417 u8 header;
2418
2419 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2420 switch (header) {
2421 case MB0H_WAKEUP_EXE:
2422 case MB0H_WAKEUP_SLEEP:
2423 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2424 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2425 else
2426 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2427
2428 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2429 complete(&mb0_transfer.ac_wake_work);
2430 if (ev & WAKEUP_BIT_SYSCLK_OK)
2431 complete(&mb3_transfer.sysclk_work);
2432
2433 ev &= mb0_transfer.req.dbb_irqs;
2434
2435 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2436 if (ev & prcmu_irq_bit[n])
89d9b1c9 2437 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
3df57bcf
MN
2438 }
2439 r = true;
2440 break;
2441 default:
2442 print_unknown_header_warning(0, header);
2443 r = false;
2444 break;
2445 }
c553b3ca 2446 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
3df57bcf 2447 return r;
e3726fcf
LW
2448}
2449
3df57bcf 2450static bool read_mailbox_1(void)
e3726fcf 2451{
3df57bcf
MN
2452 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2453 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2454 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2455 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2456 PRCM_ACK_MB1_CURRENT_APE_OPP);
2457 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2458 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
c553b3ca 2459 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
e0befb23 2460 complete(&mb1_transfer.work);
3df57bcf 2461 return false;
e3726fcf
LW
2462}
2463
3df57bcf 2464static bool read_mailbox_2(void)
e3726fcf 2465{
3df57bcf 2466 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
c553b3ca 2467 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2468 complete(&mb2_transfer.work);
2469 return false;
e3726fcf
LW
2470}
2471
3df57bcf 2472static bool read_mailbox_3(void)
e3726fcf 2473{
c553b3ca 2474 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
3df57bcf 2475 return false;
e3726fcf
LW
2476}
2477
3df57bcf 2478static bool read_mailbox_4(void)
e3726fcf 2479{
3df57bcf
MN
2480 u8 header;
2481 bool do_complete = true;
2482
2483 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2484 switch (header) {
2485 case MB4H_MEM_ST:
2486 case MB4H_HOTDOG:
2487 case MB4H_HOTMON:
2488 case MB4H_HOT_PERIOD:
a592c2e2
MN
2489 case MB4H_A9WDOG_CONF:
2490 case MB4H_A9WDOG_EN:
2491 case MB4H_A9WDOG_DIS:
2492 case MB4H_A9WDOG_LOAD:
2493 case MB4H_A9WDOG_KICK:
3df57bcf
MN
2494 break;
2495 default:
2496 print_unknown_header_warning(4, header);
2497 do_complete = false;
2498 break;
2499 }
2500
c553b3ca 2501 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
3df57bcf
MN
2502
2503 if (do_complete)
2504 complete(&mb4_transfer.work);
2505
2506 return false;
e3726fcf
LW
2507}
2508
3df57bcf 2509static bool read_mailbox_5(void)
e3726fcf 2510{
3df57bcf
MN
2511 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2512 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
c553b3ca 2513 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
e3726fcf 2514 complete(&mb5_transfer.work);
3df57bcf 2515 return false;
e3726fcf
LW
2516}
2517
3df57bcf 2518static bool read_mailbox_6(void)
e3726fcf 2519{
c553b3ca 2520 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
3df57bcf 2521 return false;
e3726fcf
LW
2522}
2523
3df57bcf 2524static bool read_mailbox_7(void)
e3726fcf 2525{
c553b3ca 2526 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
3df57bcf 2527 return false;
e3726fcf
LW
2528}
2529
3df57bcf 2530static bool (* const read_mailbox[NUM_MB])(void) = {
e3726fcf
LW
2531 read_mailbox_0,
2532 read_mailbox_1,
2533 read_mailbox_2,
2534 read_mailbox_3,
2535 read_mailbox_4,
2536 read_mailbox_5,
2537 read_mailbox_6,
2538 read_mailbox_7
2539};
2540
2541static irqreturn_t prcmu_irq_handler(int irq, void *data)
2542{
2543 u32 bits;
2544 u8 n;
3df57bcf 2545 irqreturn_t r;
e3726fcf 2546
c553b3ca 2547 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
e3726fcf
LW
2548 if (unlikely(!bits))
2549 return IRQ_NONE;
2550
3df57bcf 2551 r = IRQ_HANDLED;
e3726fcf
LW
2552 for (n = 0; bits; n++) {
2553 if (bits & MBOX_BIT(n)) {
2554 bits -= MBOX_BIT(n);
3df57bcf
MN
2555 if (read_mailbox[n]())
2556 r = IRQ_WAKE_THREAD;
e3726fcf
LW
2557 }
2558 }
3df57bcf
MN
2559 return r;
2560}
2561
2562static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2563{
2564 ack_dbb_wakeup();
e3726fcf
LW
2565 return IRQ_HANDLED;
2566}
2567
3df57bcf
MN
2568static void prcmu_mask_work(struct work_struct *work)
2569{
2570 unsigned long flags;
2571
2572 spin_lock_irqsave(&mb0_transfer.lock, flags);
2573
2574 config_wakeups();
2575
2576 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2577}
2578
2579static void prcmu_irq_mask(struct irq_data *d)
2580{
2581 unsigned long flags;
2582
2583 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2584
f3f1f0a1 2585 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2586
2587 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2588
2589 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2590 schedule_work(&mb0_transfer.mask_work);
2591}
2592
2593static void prcmu_irq_unmask(struct irq_data *d)
2594{
2595 unsigned long flags;
2596
2597 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2598
f3f1f0a1 2599 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
3df57bcf
MN
2600
2601 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2602
2603 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2604 schedule_work(&mb0_transfer.mask_work);
2605}
2606
2607static void noop(struct irq_data *d)
2608{
2609}
2610
2611static struct irq_chip prcmu_irq_chip = {
2612 .name = "prcmu",
2613 .irq_disable = prcmu_irq_mask,
2614 .irq_ack = noop,
2615 .irq_mask = prcmu_irq_mask,
2616 .irq_unmask = prcmu_irq_unmask,
2617};
2618
05ec260e 2619static __init char *fw_project_name(u32 project)
b58d12fe
MN
2620{
2621 switch (project) {
2622 case PRCMU_FW_PROJECT_U8500:
2623 return "U8500";
05ec260e
LW
2624 case PRCMU_FW_PROJECT_U8400:
2625 return "U8400";
b58d12fe
MN
2626 case PRCMU_FW_PROJECT_U9500:
2627 return "U9500";
05ec260e
LW
2628 case PRCMU_FW_PROJECT_U8500_MBB:
2629 return "U8500 MBB";
2630 case PRCMU_FW_PROJECT_U8500_C1:
2631 return "U8500 C1";
2632 case PRCMU_FW_PROJECT_U8500_C2:
2633 return "U8500 C2";
2634 case PRCMU_FW_PROJECT_U8500_C3:
2635 return "U8500 C3";
2636 case PRCMU_FW_PROJECT_U8500_C4:
2637 return "U8500 C4";
2638 case PRCMU_FW_PROJECT_U9500_MBL:
2639 return "U9500 MBL";
2640 case PRCMU_FW_PROJECT_U8500_MBL:
2641 return "U8500 MBL";
2642 case PRCMU_FW_PROJECT_U8500_MBL2:
2643 return "U8500 MBL2";
5f96a1a6 2644 case PRCMU_FW_PROJECT_U8520:
05ec260e 2645 return "U8520 MBL";
1927ddf6
BJ
2646 case PRCMU_FW_PROJECT_U8420:
2647 return "U8420";
05ec260e
LW
2648 case PRCMU_FW_PROJECT_U9540:
2649 return "U9540";
2650 case PRCMU_FW_PROJECT_A9420:
2651 return "A9420";
2652 case PRCMU_FW_PROJECT_L8540:
2653 return "L8540";
2654 case PRCMU_FW_PROJECT_L8580:
2655 return "L8580";
b58d12fe
MN
2656 default:
2657 return "Unknown";
2658 }
2659}
2660
f3f1f0a1
LJ
2661static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2662 irq_hw_number_t hwirq)
2663{
2664 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2665 handle_simple_irq);
2666 set_irq_flags(virq, IRQF_VALID);
2667
2668 return 0;
2669}
2670
2671static struct irq_domain_ops db8500_irq_ops = {
89d9b1c9
LW
2672 .map = db8500_irq_map,
2673 .xlate = irq_domain_xlate_twocell,
f3f1f0a1
LJ
2674};
2675
f864c46a 2676static int db8500_irq_init(struct device_node *np)
f3f1f0a1 2677{
89d9b1c9 2678 int i;
a7238e43 2679
a7238e43 2680 db8500_irq_domain = irq_domain_add_simple(
f864c46a 2681 np, NUM_PRCMU_WAKEUPS, 0,
a7238e43 2682 &db8500_irq_ops, NULL);
f3f1f0a1
LJ
2683
2684 if (!db8500_irq_domain) {
2685 pr_err("Failed to create irqdomain\n");
2686 return -ENOSYS;
2687 }
2688
89d9b1c9
LW
2689 /* All wakeups will be used, so create mappings for all */
2690 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2691 irq_create_mapping(db8500_irq_domain, i);
2692
f3f1f0a1
LJ
2693 return 0;
2694}
2695
05ec260e
LW
2696static void dbx500_fw_version_init(struct platform_device *pdev,
2697 u32 version_offset)
fcbd458e 2698{
05ec260e
LW
2699 struct resource *res;
2700 void __iomem *tcpm_base;
741cdecf 2701 u32 version;
3df57bcf 2702
05ec260e
LW
2703 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2704 "prcmu-tcpm");
2705 if (!res) {
2706 dev_err(&pdev->dev,
2707 "Error: no prcmu tcpm memory region provided\n");
2708 return;
2709 }
2710 tcpm_base = ioremap(res->start, resource_size(res));
741cdecf
LJ
2711 if (!tcpm_base) {
2712 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2713 return;
fcbd458e 2714 }
741cdecf
LJ
2715
2716 version = readl(tcpm_base + version_offset);
2717 fw_info.version.project = (version & 0xFF);
2718 fw_info.version.api_version = (version >> 8) & 0xFF;
2719 fw_info.version.func_version = (version >> 16) & 0xFF;
2720 fw_info.version.errata = (version >> 24) & 0xFF;
2721 strncpy(fw_info.version.project_name,
2722 fw_project_name(fw_info.version.project),
2723 PRCMU_FW_PROJECT_NAME_LEN);
2724 fw_info.valid = true;
2725 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2726 fw_info.version.project_name,
2727 fw_info.version.project,
2728 fw_info.version.api_version,
2729 fw_info.version.func_version,
2730 fw_info.version.errata);
2731 iounmap(tcpm_base);
05ec260e 2732}
e0befb23 2733
9a47a8dc 2734void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
05ec260e 2735{
9a47a8dc
LW
2736 /*
2737 * This is a temporary remap to bring up the clocks. It is
2738 * subsequently replaces with a real remap. After the merge of
2739 * the mailbox subsystem all of this early code goes away, and the
2740 * clock driver can probe independently. An early initcall will
2741 * still be needed, but it can be diverted into drivers/clk/ux500.
2742 */
2743 prcmu_base = ioremap(phy_base, size);
2744 if (!prcmu_base)
2745 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2746
3df57bcf
MN
2747 spin_lock_init(&mb0_transfer.lock);
2748 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2749 mutex_init(&mb0_transfer.ac_wake_lock);
2750 init_completion(&mb0_transfer.ac_wake_work);
e0befb23
MP
2751 mutex_init(&mb1_transfer.lock);
2752 init_completion(&mb1_transfer.work);
4d64d2e3 2753 mb1_transfer.ape_opp = APE_NO_CHANGE;
3df57bcf
MN
2754 mutex_init(&mb2_transfer.lock);
2755 init_completion(&mb2_transfer.work);
2756 spin_lock_init(&mb2_transfer.auto_pm_lock);
2757 spin_lock_init(&mb3_transfer.lock);
2758 mutex_init(&mb3_transfer.sysclk_lock);
2759 init_completion(&mb3_transfer.sysclk_work);
2760 mutex_init(&mb4_transfer.lock);
2761 init_completion(&mb4_transfer.work);
e3726fcf
LW
2762 mutex_init(&mb5_transfer.lock);
2763 init_completion(&mb5_transfer.work);
2764
3df57bcf 2765 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
3df57bcf
MN
2766}
2767
0508901c 2768static void __init init_prcm_registers(void)
d65e12d7
MN
2769{
2770 u32 val;
2771
2772 val = readl(PRCM_A9PL_FORCE_CLKEN);
2773 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2774 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2775 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2776}
2777
1032fbfd
BJ
2778/*
2779 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2780 */
2781static struct regulator_consumer_supply db8500_vape_consumers[] = {
2782 REGULATOR_SUPPLY("v-ape", NULL),
2783 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2784 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2785 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2786 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
ae840635 2787 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
1032fbfd
BJ
2788 /* "v-mmc" changed to "vcore" in the mainline kernel */
2789 REGULATOR_SUPPLY("vcore", "sdi0"),
2790 REGULATOR_SUPPLY("vcore", "sdi1"),
2791 REGULATOR_SUPPLY("vcore", "sdi2"),
2792 REGULATOR_SUPPLY("vcore", "sdi3"),
2793 REGULATOR_SUPPLY("vcore", "sdi4"),
2794 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2795 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2796 /* "v-uart" changed to "vcore" in the mainline kernel */
2797 REGULATOR_SUPPLY("vcore", "uart0"),
2798 REGULATOR_SUPPLY("vcore", "uart1"),
2799 REGULATOR_SUPPLY("vcore", "uart2"),
2800 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
992b133a 2801 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
bc367481 2802 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
1032fbfd
BJ
2803};
2804
2805static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1032fbfd
BJ
2806 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2807 /* AV8100 regulator */
2808 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2809};
2810
2811static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
992b133a 2812 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
624e87c2
BJ
2813 REGULATOR_SUPPLY("vsupply", "mcde"),
2814};
2815
2816/* SVA MMDSP regulator switch */
2817static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2818 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2819};
2820
2821/* SVA pipe regulator switch */
2822static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2823 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2824};
2825
2826/* SIA MMDSP regulator switch */
2827static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2828 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2829};
2830
2831/* SIA pipe regulator switch */
2832static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2833 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2834};
2835
2836static struct regulator_consumer_supply db8500_sga_consumers[] = {
2837 REGULATOR_SUPPLY("v-mali", NULL),
2838};
2839
2840/* ESRAM1 and 2 regulator switch */
2841static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2842 REGULATOR_SUPPLY("esram12", "cm_control"),
2843};
2844
2845/* ESRAM3 and 4 regulator switch */
2846static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2847 REGULATOR_SUPPLY("v-esram34", "mcde"),
2848 REGULATOR_SUPPLY("esram34", "cm_control"),
992b133a 2849 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
1032fbfd
BJ
2850};
2851
2852static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2853 [DB8500_REGULATOR_VAPE] = {
2854 .constraints = {
2855 .name = "db8500-vape",
2856 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1e45860f 2857 .always_on = true,
1032fbfd
BJ
2858 },
2859 .consumer_supplies = db8500_vape_consumers,
2860 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2861 },
2862 [DB8500_REGULATOR_VARM] = {
2863 .constraints = {
2864 .name = "db8500-varm",
2865 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 },
2867 },
2868 [DB8500_REGULATOR_VMODEM] = {
2869 .constraints = {
2870 .name = "db8500-vmodem",
2871 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2872 },
2873 },
2874 [DB8500_REGULATOR_VPLL] = {
2875 .constraints = {
2876 .name = "db8500-vpll",
2877 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878 },
2879 },
2880 [DB8500_REGULATOR_VSMPS1] = {
2881 .constraints = {
2882 .name = "db8500-vsmps1",
2883 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2884 },
2885 },
2886 [DB8500_REGULATOR_VSMPS2] = {
2887 .constraints = {
2888 .name = "db8500-vsmps2",
2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 },
2891 .consumer_supplies = db8500_vsmps2_consumers,
2892 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2893 },
2894 [DB8500_REGULATOR_VSMPS3] = {
2895 .constraints = {
2896 .name = "db8500-vsmps3",
2897 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898 },
2899 },
2900 [DB8500_REGULATOR_VRF1] = {
2901 .constraints = {
2902 .name = "db8500-vrf1",
2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 },
2905 },
2906 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
992b133a 2907 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2908 .constraints = {
2909 .name = "db8500-sva-mmdsp",
2910 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 },
624e87c2
BJ
2912 .consumer_supplies = db8500_svammdsp_consumers,
2913 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
1032fbfd
BJ
2914 },
2915 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2916 .constraints = {
2917 /* "ret" means "retention" */
2918 .name = "db8500-sva-mmdsp-ret",
2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 },
2921 },
2922 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
992b133a 2923 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2924 .constraints = {
2925 .name = "db8500-sva-pipe",
2926 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927 },
624e87c2
BJ
2928 .consumer_supplies = db8500_svapipe_consumers,
2929 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
1032fbfd
BJ
2930 },
2931 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
992b133a 2932 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2933 .constraints = {
2934 .name = "db8500-sia-mmdsp",
2935 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2936 },
624e87c2
BJ
2937 .consumer_supplies = db8500_siammdsp_consumers,
2938 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
1032fbfd
BJ
2939 },
2940 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2941 .constraints = {
2942 .name = "db8500-sia-mmdsp-ret",
2943 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944 },
2945 },
2946 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
992b133a 2947 /* dependency to u8500-vape is handled outside regulator framework */
1032fbfd
BJ
2948 .constraints = {
2949 .name = "db8500-sia-pipe",
2950 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951 },
624e87c2
BJ
2952 .consumer_supplies = db8500_siapipe_consumers,
2953 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
1032fbfd
BJ
2954 },
2955 [DB8500_REGULATOR_SWITCH_SGA] = {
2956 .supply_regulator = "db8500-vape",
2957 .constraints = {
2958 .name = "db8500-sga",
2959 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960 },
624e87c2
BJ
2961 .consumer_supplies = db8500_sga_consumers,
2962 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2963
1032fbfd
BJ
2964 },
2965 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2966 .supply_regulator = "db8500-vape",
2967 .constraints = {
2968 .name = "db8500-b2r2-mcde",
2969 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2970 },
2971 .consumer_supplies = db8500_b2r2_mcde_consumers,
2972 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2973 },
2974 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
992b133a
BJ
2975 /*
2976 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2977 * no need to hold Vape
2978 */
1032fbfd
BJ
2979 .constraints = {
2980 .name = "db8500-esram12",
2981 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2982 },
624e87c2
BJ
2983 .consumer_supplies = db8500_esram12_consumers,
2984 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
1032fbfd
BJ
2985 },
2986 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2987 .constraints = {
2988 .name = "db8500-esram12-ret",
2989 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2990 },
2991 },
2992 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
992b133a
BJ
2993 /*
2994 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2995 * no need to hold Vape
2996 */
1032fbfd
BJ
2997 .constraints = {
2998 .name = "db8500-esram34",
2999 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3000 },
624e87c2
BJ
3001 .consumer_supplies = db8500_esram34_consumers,
3002 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
1032fbfd
BJ
3003 },
3004 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3005 .constraints = {
3006 .name = "db8500-esram34-ret",
3007 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3008 },
3009 },
3010};
3011
b3aac62b
FB
3012static struct ux500_wdt_data db8500_wdt_pdata = {
3013 .timeout = 600, /* 10 minutes */
3014 .has_28_bits_resolution = true,
3015};
55b175d7
AB
3016/*
3017 * Thermal Sensor
3018 */
3019
3020static struct resource db8500_thsens_resources[] = {
3021 {
3022 .name = "IRQ_HOTMON_LOW",
3023 .start = IRQ_PRCMU_HOTMON_LOW,
3024 .end = IRQ_PRCMU_HOTMON_LOW,
3025 .flags = IORESOURCE_IRQ,
3026 },
3027 {
3028 .name = "IRQ_HOTMON_HIGH",
3029 .start = IRQ_PRCMU_HOTMON_HIGH,
3030 .end = IRQ_PRCMU_HOTMON_HIGH,
3031 .flags = IORESOURCE_IRQ,
3032 },
3033};
3034
3035static struct db8500_thsens_platform_data db8500_thsens_data = {
3036 .trip_points[0] = {
3037 .temp = 70000,
3038 .type = THERMAL_TRIP_ACTIVE,
3039 .cdev_name = {
3040 [0] = "thermal-cpufreq-0",
3041 },
3042 },
3043 .trip_points[1] = {
3044 .temp = 75000,
3045 .type = THERMAL_TRIP_ACTIVE,
3046 .cdev_name = {
3047 [0] = "thermal-cpufreq-0",
3048 },
3049 },
3050 .trip_points[2] = {
3051 .temp = 80000,
3052 .type = THERMAL_TRIP_ACTIVE,
3053 .cdev_name = {
3054 [0] = "thermal-cpufreq-0",
3055 },
3056 },
3057 .trip_points[3] = {
3058 .temp = 85000,
3059 .type = THERMAL_TRIP_CRITICAL,
3060 },
3061 .num_trips = 4,
3062};
b3aac62b 3063
5ac98553 3064static const struct mfd_cell common_prcmu_devs[] = {
d98a5384
LJ
3065 {
3066 .name = "ux500_wdt",
3067 .platform_data = &db8500_wdt_pdata,
3068 .pdata_size = sizeof(db8500_wdt_pdata),
3069 .id = -1,
3070 },
3071};
3072
5ac98553 3073static const struct mfd_cell db8500_prcmu_devs[] = {
3df57bcf
MN
3074 {
3075 .name = "db8500-prcmu-regulators",
5d90322b 3076 .of_compatible = "stericsson,db8500-prcmu-regulator",
1ed7891f
MW
3077 .platform_data = &db8500_regulators,
3078 .pdata_size = sizeof(db8500_regulators),
3df57bcf
MN
3079 },
3080 {
84c7c20f
LJ
3081 .name = "cpufreq-ux500",
3082 .of_compatible = "stericsson,cpufreq-ux500",
c280f45f
UH
3083 .platform_data = &db8500_cpufreq_table,
3084 .pdata_size = sizeof(db8500_cpufreq_table),
3df57bcf 3085 },
8025395f
LW
3086 {
3087 .name = "cpuidle-dbx500",
3088 .of_compatible = "stericsson,cpuidle-dbx500",
3089 },
6d11d135 3090 {
55b175d7
AB
3091 .name = "db8500-thermal",
3092 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3093 .resources = db8500_thsens_resources,
3094 .platform_data = &db8500_thsens_data,
a3ef0deb 3095 .pdata_size = sizeof(db8500_thsens_data),
6d11d135 3096 },
3df57bcf
MN
3097};
3098
c280f45f
UH
3099static void db8500_prcmu_update_cpufreq(void)
3100{
3101 if (prcmu_has_arm_maxopp()) {
3102 db8500_cpufreq_table[3].frequency = 1000000;
50701588 3103 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
c280f45f
UH
3104 }
3105}
3106
55b175d7 3107static int db8500_prcmu_register_ab8500(struct device *parent,
f864c46a 3108 struct ab8500_platform_data *pdata)
55b175d7 3109{
f864c46a
LW
3110 struct device_node *np;
3111 struct resource ab8500_resource;
5785a97e 3112 const struct mfd_cell ab8500_cell = {
55b175d7
AB
3113 .name = "ab8500-core",
3114 .of_compatible = "stericsson,ab8500",
3115 .id = AB8500_VERSION_AB8500,
3116 .platform_data = pdata,
3117 .pdata_size = sizeof(struct ab8500_platform_data),
3118 .resources = &ab8500_resource,
3119 .num_resources = 1,
3120 };
3121
f864c46a
LW
3122 if (!parent->of_node)
3123 return -ENODEV;
3124
3125 /* Look up the device node, sneak the IRQ out of it */
3126 for_each_child_of_node(parent->of_node, np) {
3127 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3128 break;
3129 }
3130 if (!np) {
3131 dev_info(parent, "could not find AB8500 node in the device tree\n");
3132 return -ENODEV;
3133 }
3134 of_irq_to_resource_table(np, &ab8500_resource, 1);
3135
55b175d7
AB
3136 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3137}
3138
3df57bcf
MN
3139/**
3140 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3141 *
3142 */
f791be49 3143static int db8500_prcmu_probe(struct platform_device *pdev)
3df57bcf 3144{
ca7edd16 3145 struct device_node *np = pdev->dev.of_node;
05ec260e 3146 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
55b175d7 3147 int irq = 0, err = 0;
05ec260e 3148 struct resource *res;
3df57bcf 3149
b047d981
LW
3150 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3151 if (!res) {
3152 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3153 return -ENOENT;
3154 }
3155 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3156 if (!prcmu_base) {
3157 dev_err(&pdev->dev,
3158 "failed to ioremap prcmu register memory\n");
3159 return -ENOENT;
3160 }
0508901c 3161 init_prcm_registers();
05ec260e
LW
3162 dbx500_fw_version_init(pdev, pdata->version_offset);
3163 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3164 if (!res) {
3165 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3166 return -ENOENT;
3167 }
3168 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3169 resource_size(res));
3170
e3726fcf 3171 /* Clean up the mailbox interrupts after pre-kernel code. */
c553b3ca 3172 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3df57bcf 3173
05ec260e
LW
3174 irq = platform_get_irq(pdev, 0);
3175 if (irq <= 0) {
3176 dev_err(&pdev->dev, "no prcmu irq provided\n");
3177 return -ENOENT;
3178 }
ca7edd16
LJ
3179
3180 err = request_threaded_irq(irq, prcmu_irq_handler,
3181 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3df57bcf
MN
3182 if (err < 0) {
3183 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3184 err = -EBUSY;
3185 goto no_irq_return;
3186 }
3187
f864c46a 3188 db8500_irq_init(np);
3a8e39c9 3189
7a4f2609 3190 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3df57bcf 3191
c280f45f
UH
3192 db8500_prcmu_update_cpufreq();
3193
d98a5384
LJ
3194 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3195 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
5d90322b
LJ
3196 if (err) {
3197 pr_err("prcmu: Failed to add subdevices\n");
3198 return err;
ca7edd16 3199 }
e3726fcf 3200
d98a5384
LJ
3201 /* TODO: Remove restriction when clk definitions are available. */
3202 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3203 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3204 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3205 db8500_irq_domain);
3206 if (err) {
3207 mfd_remove_devices(&pdev->dev);
3208 pr_err("prcmu: Failed to add subdevices\n");
3209 goto no_irq_return;
3210 }
3211 }
3212
f864c46a 3213 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
55b175d7
AB
3214 if (err) {
3215 mfd_remove_devices(&pdev->dev);
3216 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3217 goto no_irq_return;
3218 }
3219
ca7edd16 3220 pr_info("DB8500 PRCMU initialized\n");
3df57bcf
MN
3221
3222no_irq_return:
3223 return err;
3224}
3c144762
LJ
3225static const struct of_device_id db8500_prcmu_match[] = {
3226 { .compatible = "stericsson,db8500-prcmu"},
3227 { },
3228};
3df57bcf
MN
3229
3230static struct platform_driver db8500_prcmu_driver = {
3231 .driver = {
3232 .name = "db8500-prcmu",
3233 .owner = THIS_MODULE,
3c144762 3234 .of_match_table = db8500_prcmu_match,
3df57bcf 3235 },
9fc63f67 3236 .probe = db8500_prcmu_probe,
3df57bcf
MN
3237};
3238
3239static int __init db8500_prcmu_init(void)
3240{
9fc63f67 3241 return platform_driver_register(&db8500_prcmu_driver);
e3726fcf
LW
3242}
3243
a661aca4 3244core_initcall(db8500_prcmu_init);
3df57bcf
MN
3245
3246MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3247MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3248MODULE_LICENSE("GPL v2");