]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/mtd/mtdpart.c
Merge branch 'next' of ../next
[people/ms/u-boot.git] / drivers / mtd / mtdpart.c
CommitLineData
e29c22f5
KP
1/*
2 * Simple MTD partitioning layer
3 *
4 * (C) 2000 Nicolas Pitre <nico@cam.org>
5 *
6 * This code is GPL
7 *
8 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
9 * added support for read_oob, write_oob
10 */
11
12#include <common.h>
13#include <malloc.h>
14#include <asm/errno.h>
15
16#include <linux/types.h>
17#include <linux/list.h>
18#include <linux/mtd/mtd.h>
19#include <linux/mtd/partitions.h>
20#include <linux/mtd/compat.h>
21
22/* Our partition linked list */
9def12ca 23struct list_head mtd_partitions;
e29c22f5
KP
24
25/* Our partition node structure */
26struct mtd_part {
27 struct mtd_info mtd;
28 struct mtd_info *master;
8d2effea 29 uint64_t offset;
e29c22f5
KP
30 int index;
31 struct list_head list;
32 int registered;
33};
34
35/*
36 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
37 * the pointer to that structure with this macro.
38 */
39#define PART(x) ((struct mtd_part *)(x))
40
41
42/*
43 * MTD methods which simply translate the effective address and pass through
44 * to the _real_ device.
45 */
46
8d2effea
SR
47static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
48 size_t *retlen, u_char *buf)
e29c22f5
KP
49{
50 struct mtd_part *part = PART(mtd);
8d2effea 51 struct mtd_ecc_stats stats;
e29c22f5
KP
52 int res;
53
8d2effea
SR
54 stats = part->master->ecc_stats;
55
e29c22f5
KP
56 if (from >= mtd->size)
57 len = 0;
58 else if (from + len > mtd->size)
59 len = mtd->size - from;
8d2effea 60 res = part->master->read(part->master, from + part->offset,
e29c22f5
KP
61 len, retlen, buf);
62 if (unlikely(res)) {
63 if (res == -EUCLEAN)
8d2effea 64 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
e29c22f5 65 if (res == -EBADMSG)
8d2effea 66 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
e29c22f5
KP
67 }
68 return res;
69}
70
e29c22f5 71static int part_read_oob(struct mtd_info *mtd, loff_t from,
8d2effea 72 struct mtd_oob_ops *ops)
e29c22f5
KP
73{
74 struct mtd_part *part = PART(mtd);
75 int res;
76
77 if (from >= mtd->size)
78 return -EINVAL;
79 if (ops->datbuf && from + ops->len > mtd->size)
80 return -EINVAL;
81 res = part->master->read_oob(part->master, from + part->offset, ops);
82
83 if (unlikely(res)) {
84 if (res == -EUCLEAN)
85 mtd->ecc_stats.corrected++;
86 if (res == -EBADMSG)
87 mtd->ecc_stats.failed++;
88 }
89 return res;
90}
91
8d2effea
SR
92static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
93 size_t len, size_t *retlen, u_char *buf)
e29c22f5
KP
94{
95 struct mtd_part *part = PART(mtd);
8d2effea 96 return part->master->read_user_prot_reg(part->master, from,
e29c22f5
KP
97 len, retlen, buf);
98}
99
8d2effea
SR
100static int part_get_user_prot_info(struct mtd_info *mtd,
101 struct otp_info *buf, size_t len)
e29c22f5
KP
102{
103 struct mtd_part *part = PART(mtd);
8d2effea 104 return part->master->get_user_prot_info(part->master, buf, len);
e29c22f5
KP
105}
106
8d2effea
SR
107static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
108 size_t len, size_t *retlen, u_char *buf)
e29c22f5
KP
109{
110 struct mtd_part *part = PART(mtd);
8d2effea 111 return part->master->read_fact_prot_reg(part->master, from,
e29c22f5
KP
112 len, retlen, buf);
113}
114
8d2effea
SR
115static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
116 size_t len)
e29c22f5
KP
117{
118 struct mtd_part *part = PART(mtd);
8d2effea 119 return part->master->get_fact_prot_info(part->master, buf, len);
e29c22f5
KP
120}
121
8d2effea
SR
122static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
123 size_t *retlen, const u_char *buf)
e29c22f5
KP
124{
125 struct mtd_part *part = PART(mtd);
126 if (!(mtd->flags & MTD_WRITEABLE))
127 return -EROFS;
128 if (to >= mtd->size)
129 len = 0;
130 else if (to + len > mtd->size)
131 len = mtd->size - to;
8d2effea 132 return part->master->write(part->master, to + part->offset,
e29c22f5
KP
133 len, retlen, buf);
134}
135
8d2effea
SR
136static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
137 size_t *retlen, const u_char *buf)
e29c22f5
KP
138{
139 struct mtd_part *part = PART(mtd);
140 if (!(mtd->flags & MTD_WRITEABLE))
141 return -EROFS;
142 if (to >= mtd->size)
143 len = 0;
144 else if (to + len > mtd->size)
145 len = mtd->size - to;
8d2effea 146 return part->master->panic_write(part->master, to + part->offset,
e29c22f5
KP
147 len, retlen, buf);
148}
e29c22f5
KP
149
150static int part_write_oob(struct mtd_info *mtd, loff_t to,
8d2effea 151 struct mtd_oob_ops *ops)
e29c22f5
KP
152{
153 struct mtd_part *part = PART(mtd);
154
155 if (!(mtd->flags & MTD_WRITEABLE))
156 return -EROFS;
157
158 if (to >= mtd->size)
159 return -EINVAL;
160 if (ops->datbuf && to + ops->len > mtd->size)
161 return -EINVAL;
162 return part->master->write_oob(part->master, to + part->offset, ops);
163}
164
8d2effea
SR
165static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
166 size_t len, size_t *retlen, u_char *buf)
e29c22f5
KP
167{
168 struct mtd_part *part = PART(mtd);
8d2effea 169 return part->master->write_user_prot_reg(part->master, from,
e29c22f5
KP
170 len, retlen, buf);
171}
172
8d2effea
SR
173static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
174 size_t len)
e29c22f5
KP
175{
176 struct mtd_part *part = PART(mtd);
8d2effea 177 return part->master->lock_user_prot_reg(part->master, from, len);
e29c22f5 178}
e29c22f5 179
8d2effea 180static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
e29c22f5
KP
181{
182 struct mtd_part *part = PART(mtd);
183 int ret;
184 if (!(mtd->flags & MTD_WRITEABLE))
185 return -EROFS;
186 if (instr->addr >= mtd->size)
187 return -EINVAL;
188 instr->addr += part->offset;
189 ret = part->master->erase(part->master, instr);
190 if (ret) {
8d2effea 191 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
e29c22f5
KP
192 instr->fail_addr -= part->offset;
193 instr->addr -= part->offset;
194 }
195 return ret;
196}
197
198void mtd_erase_callback(struct erase_info *instr)
199{
200 if (instr->mtd->erase == part_erase) {
201 struct mtd_part *part = PART(instr->mtd);
202
8d2effea 203 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
e29c22f5
KP
204 instr->fail_addr -= part->offset;
205 instr->addr -= part->offset;
206 }
207 if (instr->callback)
208 instr->callback(instr);
209}
e29c22f5 210
8d2effea 211static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
e29c22f5
KP
212{
213 struct mtd_part *part = PART(mtd);
214 if ((len + ofs) > mtd->size)
215 return -EINVAL;
216 return part->master->lock(part->master, ofs + part->offset, len);
217}
218
8d2effea 219static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
e29c22f5
KP
220{
221 struct mtd_part *part = PART(mtd);
222 if ((len + ofs) > mtd->size)
223 return -EINVAL;
224 return part->master->unlock(part->master, ofs + part->offset, len);
225}
e29c22f5
KP
226
227static void part_sync(struct mtd_info *mtd)
228{
229 struct mtd_part *part = PART(mtd);
230 part->master->sync(part->master);
231}
232
e29c22f5
KP
233static int part_suspend(struct mtd_info *mtd)
234{
235 struct mtd_part *part = PART(mtd);
236 return part->master->suspend(part->master);
237}
238
239static void part_resume(struct mtd_info *mtd)
240{
241 struct mtd_part *part = PART(mtd);
242 part->master->resume(part->master);
243}
e29c22f5 244
8d2effea 245static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
e29c22f5
KP
246{
247 struct mtd_part *part = PART(mtd);
248 if (ofs >= mtd->size)
249 return -EINVAL;
250 ofs += part->offset;
251 return part->master->block_isbad(part->master, ofs);
252}
253
8d2effea 254static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
e29c22f5
KP
255{
256 struct mtd_part *part = PART(mtd);
257 int res;
258
259 if (!(mtd->flags & MTD_WRITEABLE))
260 return -EROFS;
261 if (ofs >= mtd->size)
262 return -EINVAL;
263 ofs += part->offset;
264 res = part->master->block_markbad(part->master, ofs);
e29c22f5
KP
265 if (!res)
266 mtd->ecc_stats.badblocks++;
e29c22f5
KP
267 return res;
268}
269
270/*
271 * This function unregisters and destroy all slave MTD objects which are
272 * attached to the given master MTD object.
273 */
274
275int del_mtd_partitions(struct mtd_info *master)
276{
8d2effea 277 struct mtd_part *slave, *next;
e29c22f5 278
8d2effea 279 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
e29c22f5 280 if (slave->master == master) {
8d2effea
SR
281 list_del(&slave->list);
282 if (slave->registered)
e29c22f5
KP
283 del_mtd_device(&slave->mtd);
284 kfree(slave);
e29c22f5 285 }
e29c22f5
KP
286
287 return 0;
288}
289
8d2effea
SR
290static struct mtd_part *add_one_partition(struct mtd_info *master,
291 const struct mtd_partition *part, int partno,
292 uint64_t cur_offset)
293{
294 struct mtd_part *slave;
295
296 /* allocate the partition structure */
297 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
298 if (!slave) {
299 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
300 master->name);
301 del_mtd_partitions(master);
302 return NULL;
303 }
304 list_add(&slave->list, &mtd_partitions);
305
306 /* set up the MTD object for this partition */
307 slave->mtd.type = master->type;
308 slave->mtd.flags = master->flags & ~part->mask_flags;
309 slave->mtd.size = part->size;
310 slave->mtd.writesize = master->writesize;
311 slave->mtd.oobsize = master->oobsize;
312 slave->mtd.oobavail = master->oobavail;
313 slave->mtd.subpage_sft = master->subpage_sft;
314
315 slave->mtd.name = part->name;
316 slave->mtd.owner = master->owner;
317
318 slave->mtd.read = part_read;
319 slave->mtd.write = part_write;
320
321 if (master->panic_write)
322 slave->mtd.panic_write = part_panic_write;
323
324 if (master->read_oob)
325 slave->mtd.read_oob = part_read_oob;
326 if (master->write_oob)
327 slave->mtd.write_oob = part_write_oob;
328 if (master->read_user_prot_reg)
329 slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
330 if (master->read_fact_prot_reg)
331 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
332 if (master->write_user_prot_reg)
333 slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
334 if (master->lock_user_prot_reg)
335 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
336 if (master->get_user_prot_info)
337 slave->mtd.get_user_prot_info = part_get_user_prot_info;
338 if (master->get_fact_prot_info)
339 slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
340 if (master->sync)
341 slave->mtd.sync = part_sync;
342 if (!partno && master->suspend && master->resume) {
343 slave->mtd.suspend = part_suspend;
344 slave->mtd.resume = part_resume;
345 }
346 if (master->lock)
347 slave->mtd.lock = part_lock;
348 if (master->unlock)
349 slave->mtd.unlock = part_unlock;
350 if (master->block_isbad)
351 slave->mtd.block_isbad = part_block_isbad;
352 if (master->block_markbad)
353 slave->mtd.block_markbad = part_block_markbad;
354 slave->mtd.erase = part_erase;
355 slave->master = master;
356 slave->offset = part->offset;
357 slave->index = partno;
358
359 if (slave->offset == MTDPART_OFS_APPEND)
360 slave->offset = cur_offset;
361 if (slave->offset == MTDPART_OFS_NXTBLK) {
362 slave->offset = cur_offset;
363 if (mtd_mod_by_eb(cur_offset, master) != 0) {
364 /* Round up to next erasesize */
365 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
366 printk(KERN_NOTICE "Moving partition %d: "
367 "0x%012llx -> 0x%012llx\n", partno,
368 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
369 }
370 }
371 if (slave->mtd.size == MTDPART_SIZ_FULL)
372 slave->mtd.size = master->size - slave->offset;
373
374 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
375 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
376
377 /* let's do some sanity checks */
378 if (slave->offset >= master->size) {
379 /* let's register it anyway to preserve ordering */
380 slave->offset = 0;
381 slave->mtd.size = 0;
382 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
383 part->name);
384 goto out_register;
385 }
386 if (slave->offset + slave->mtd.size > master->size) {
387 slave->mtd.size = master->size - slave->offset;
388 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
389 part->name, master->name, (unsigned long long)slave->mtd.size);
390 }
391 if (master->numeraseregions > 1) {
392 /* Deal with variable erase size stuff */
393 int i, max = master->numeraseregions;
394 u64 end = slave->offset + slave->mtd.size;
395 struct mtd_erase_region_info *regions = master->eraseregions;
396
397 /* Find the first erase regions which is part of this
398 * partition. */
399 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
400 ;
401 /* The loop searched for the region _behind_ the first one */
402 i--;
403
404 /* Pick biggest erasesize */
405 for (; i < max && regions[i].offset < end; i++) {
406 if (slave->mtd.erasesize < regions[i].erasesize) {
407 slave->mtd.erasesize = regions[i].erasesize;
408 }
409 }
410 BUG_ON(slave->mtd.erasesize == 0);
411 } else {
412 /* Single erase size */
413 slave->mtd.erasesize = master->erasesize;
414 }
415
416 if ((slave->mtd.flags & MTD_WRITEABLE) &&
417 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
418 /* Doesn't start on a boundary of major erase size */
419 /* FIXME: Let it be writable if it is on a boundary of
420 * _minor_ erase size though */
421 slave->mtd.flags &= ~MTD_WRITEABLE;
422 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
423 part->name);
424 }
425 if ((slave->mtd.flags & MTD_WRITEABLE) &&
426 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
427 slave->mtd.flags &= ~MTD_WRITEABLE;
428 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
429 part->name);
430 }
431
432 slave->mtd.ecclayout = master->ecclayout;
433 if (master->block_isbad) {
434 uint64_t offs = 0;
435
436 while (offs < slave->mtd.size) {
437 if (master->block_isbad(master,
438 offs + slave->offset))
439 slave->mtd.ecc_stats.badblocks++;
440 offs += slave->mtd.erasesize;
441 }
442 }
443
444out_register:
445 if (part->mtdp) {
446 /* store the object pointer (caller may or may not register it*/
447 *part->mtdp = &slave->mtd;
448 slave->registered = 0;
449 } else {
450 /* register our partition */
451 add_mtd_device(&slave->mtd);
452 slave->registered = 1;
453 }
454 return slave;
455}
456
e29c22f5
KP
457/*
458 * This function, given a master MTD object and a partition table, creates
459 * and registers slave MTD objects which are bound to the master according to
460 * the partition definitions.
8d2effea
SR
461 *
462 * We don't register the master, or expect the caller to have done so,
463 * for reasons of data integrity.
e29c22f5
KP
464 */
465
466int add_mtd_partitions(struct mtd_info *master,
467 const struct mtd_partition *parts,
468 int nbparts)
469{
470 struct mtd_part *slave;
8d2effea 471 uint64_t cur_offset = 0;
e29c22f5
KP
472 int i;
473
9def12ca
SR
474 /*
475 * Need to init the list here, since LIST_INIT() does not
476 * work on platforms where relocation has problems (like MIPS
477 * & PPC).
478 */
479 if (mtd_partitions.next == NULL)
480 INIT_LIST_HEAD(&mtd_partitions);
481
8d2effea 482 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
e29c22f5
KP
483
484 for (i = 0; i < nbparts; i++) {
8d2effea
SR
485 slave = add_one_partition(master, parts + i, i, cur_offset);
486 if (!slave)
e29c22f5 487 return -ENOMEM;
e29c22f5 488 cur_offset = slave->offset + slave->mtd.size;
e29c22f5
KP
489 }
490
491 return 0;
492}