]> git.ipfire.org Git - thirdparty/u-boot.git/blame - drivers/mtd/nand/fsl_ifc_spl.c
SPDX: Convert all of our single license tags to Linux Kernel style
[thirdparty/u-boot.git] / drivers / mtd / nand / fsl_ifc_spl.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
3a88179d
PK
2/*
3 * NAND boot for Freescale Integrated Flash Controller, NAND FCM
4 *
5 * Copyright 2011 Freescale Semiconductor, Inc.
6 * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
3a88179d
PK
7 */
8
9#include <common.h>
10#include <asm/io.h>
0b66513b 11#include <fsl_ifc.h>
6ae3900a 12#include <linux/mtd/rawnand.h>
8f01397b
SG
13#ifdef CONFIG_CHAIN_OF_TRUST
14#include <fsl_validate.h>
15#endif
3a88179d
PK
16
17static inline int is_blank(uchar *addr, int page_size)
18{
19 int i;
20
21 for (i = 0; i < page_size; i++) {
22 if (__raw_readb(&addr[i]) != 0xff)
23 return 0;
24 }
25
26 /*
27 * For the SPL, don't worry about uncorrectable errors
28 * where the main area is all FFs but shouldn't be.
29 */
30 return 1;
31}
32
33/* returns nonzero if entire page is blank */
34static inline int check_read_ecc(uchar *buf, u32 *eccstat,
35 unsigned int bufnum, int page_size)
36{
37 u32 reg = eccstat[bufnum / 4];
38 int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
39
40 if (errors == 0xf) { /* uncorrectable */
41 /* Blank pages fail hw ECC checks */
42 if (is_blank(buf, page_size))
43 return 1;
44
45 puts("ecc error\n");
46 for (;;)
47 ;
48 }
49
50 return 0;
51}
52
39b0bbbb
JS
53static inline struct fsl_ifc_runtime *runtime_regs_address(void)
54{
55 struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
56 int ver = 0;
57
58 ver = ifc_in32(&regs.gregs->ifc_rev);
59 if (ver >= FSL_IFC_V2_0_0)
60 regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
61 else
62 regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
63
64 return regs.rregs;
65}
66
3a88179d
PK
67static inline void nand_wait(uchar *buf, int bufnum, int page_size)
68{
39b0bbbb 69 struct fsl_ifc_runtime *ifc = runtime_regs_address();
3a88179d 70 u32 status;
b2d5ac59 71 u32 eccstat[8];
3a88179d
PK
72 int bufperpage = page_size / 512;
73 int bufnum_end, i;
74
75 bufnum *= bufperpage;
76 bufnum_end = bufnum + bufperpage - 1;
77
78 do {
1b4175d6 79 status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
3a88179d
PK
80 } while (!(status & IFC_NAND_EVTER_STAT_OPC));
81
82 if (status & IFC_NAND_EVTER_STAT_FTOER) {
83 puts("flash time out error\n");
84 for (;;)
85 ;
86 }
87
88 for (i = bufnum / 4; i <= bufnum_end / 4; i++)
1b4175d6 89 eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
3a88179d
PK
90
91 for (i = bufnum; i <= bufnum_end; i++) {
92 if (check_read_ecc(buf, eccstat, i, page_size))
93 break;
94 }
95
1b4175d6 96 ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
3a88179d
PK
97}
98
99static inline int bad_block(uchar *marker, int port_size)
100{
101 if (port_size == 8)
102 return __raw_readb(marker) != 0xff;
103 else
104 return __raw_readw((u16 *)marker) != 0xffff;
105}
106
6609916e 107int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
3a88179d 108{
39b0bbbb
JS
109 struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
110 struct fsl_ifc_runtime *ifc = NULL;
3a88179d
PK
111 uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
112 int page_size;
113 int port_size;
114 int pages_per_blk;
115 int blk_size;
116 int bad_marker = 0;
591dd192 117 int bufnum_mask, bufnum, ver = 0;
3a88179d
PK
118
119 int csor, cspr;
120 int pos = 0;
121 int j = 0;
122
123 int sram_addr;
124 int pg_no;
6609916e 125 uchar *dst = vdst;
3a88179d 126
39b0bbbb
JS
127 ifc = runtime_regs_address();
128
3a88179d
PK
129 /* Get NAND Flash configuration */
130 csor = CONFIG_SYS_NAND_CSOR;
131 cspr = CONFIG_SYS_NAND_CSPR;
132
133 port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
134
71220f80
PK
135 if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
136 page_size = 8192;
137 bufnum_mask = 0x0;
138 } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
3a88179d
PK
139 page_size = 4096;
140 bufnum_mask = 0x1;
71220f80 141 } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
3a88179d
PK
142 page_size = 2048;
143 bufnum_mask = 0x3;
144 } else {
145 page_size = 512;
146 bufnum_mask = 0xf;
147
148 if (port_size == 8)
149 bad_marker = 5;
150 }
151
39b0bbbb 152 ver = ifc_in32(&gregs->ifc_rev);
591dd192
PK
153 if (ver >= FSL_IFC_V2_0_0)
154 bufnum_mask = (bufnum_mask * 2) + 1;
155
3a88179d
PK
156 pages_per_blk =
157 32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
158
159 blk_size = pages_per_blk * page_size;
160
161 /* Open Full SRAM mapping for spare are access */
1b4175d6 162 ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
3a88179d
PK
163
164 /* Clear Boot events */
1b4175d6 165 ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
3a88179d
PK
166
167 /* Program FIR/FCR for Large/Small page */
168 if (page_size > 512) {
1b4175d6
PK
169 ifc_out32(&ifc->ifc_nand.nand_fir0,
170 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
171 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
172 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
173 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
174 (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
175 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
176
177 ifc_out32(&ifc->ifc_nand.nand_fcr0,
178 (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
179 (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
3a88179d 180 } else {
1b4175d6
PK
181 ifc_out32(&ifc->ifc_nand.nand_fir0,
182 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
183 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
184 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
185 (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
186 ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
187
188 ifc_out32(&ifc->ifc_nand.nand_fcr0,
189 NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
3a88179d
PK
190 }
191
192 /* Program FBCR = 0 for full page read */
1b4175d6 193 ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
3a88179d
PK
194
195 /* Read and copy u-boot on SDRAM from NAND device, In parallel
196 * check for Bad block if found skip it and read continue to
197 * next Block
198 */
199 while (pos < uboot_size) {
200 int i = 0;
201 do {
202 pg_no = offs / page_size;
203 bufnum = pg_no & bufnum_mask;
204 sram_addr = bufnum * page_size * 2;
205
1b4175d6
PK
206 ifc_out32(&ifc->ifc_nand.row0, pg_no);
207 ifc_out32(&ifc->ifc_nand.col0, 0);
3a88179d 208 /* start read */
1b4175d6
PK
209 ifc_out32(&ifc->ifc_nand.nandseq_strt,
210 IFC_NAND_SEQ_STRT_FIR_STRT);
3a88179d
PK
211
212 /* wait for read to complete */
213 nand_wait(&buf[sram_addr], bufnum, page_size);
214
215 /*
216 * If either of the first two pages are marked bad,
217 * continue to the next block.
218 */
219 if (i++ < 2 &&
220 bad_block(&buf[sram_addr + page_size + bad_marker],
221 port_size)) {
222 puts("skipping\n");
223 offs = (offs + blk_size) & ~(blk_size - 1);
224 pos &= ~(blk_size - 1);
225 break;
226 }
227
228 for (j = 0; j < page_size; j++)
229 dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
230
231 pos += page_size;
232 offs += page_size;
233 } while ((offs & (blk_size - 1)) && (pos < uboot_size));
234 }
6609916e
PL
235
236 return 0;
3a88179d
PK
237}
238
239/*
240 * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
a187559e 241 * configured and available since this code loads the main U-Boot image
3a88179d
PK
242 * from NAND into SDRAM and starts from there.
243 */
244void nand_boot(void)
245{
246 __attribute__((noreturn)) void (*uboot)(void);
247 /*
248 * Load U-Boot image from NAND into RAM
249 */
6609916e
PL
250 nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
251 CONFIG_SYS_NAND_U_BOOT_SIZE,
252 (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
3a88179d
PK
253
254#ifdef CONFIG_NAND_ENV_DST
6609916e
PL
255 nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
256 (uchar *)CONFIG_NAND_ENV_DST);
3a88179d
PK
257
258#ifdef CONFIG_ENV_OFFSET_REDUND
6609916e
PL
259 nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
260 (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
3a88179d
PK
261#endif
262#endif
263 /*
264 * Jump to U-Boot image
265 */
266#ifdef CONFIG_SPL_FLUSH_IMAGE
267 /*
268 * Clean d-cache and invalidate i-cache, to
269 * make sure that no stale data is executed.
270 */
271 flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
272#endif
8f01397b
SG
273
274#ifdef CONFIG_CHAIN_OF_TRUST
275 /*
276 * U-Boot header is appended at end of U-boot image, so
277 * calculate U-boot header address using U-boot header size.
278 */
279#define CONFIG_U_BOOT_HDR_ADDR \
280 ((CONFIG_SYS_NAND_U_BOOT_START + \
281 CONFIG_SYS_NAND_U_BOOT_SIZE) - \
282 CONFIG_U_BOOT_HDR_SIZE)
283 spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
284 CONFIG_SYS_NAND_U_BOOT_START);
285 /*
286 * In case of failure in validation, spl_validate_uboot would
287 * not return back in case of Production environment with ITS=1.
288 * Thus U-Boot will not start.
289 * In Development environment (ITS=0 and SB_EN=1), the function
290 * may return back in case of non-fatal failures.
291 */
292#endif
293
3a88179d
PK
294 uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
295 uboot();
296}
8ab967b6
AW
297
298#ifndef CONFIG_SPL_NAND_INIT
299void nand_init(void)
300{
301}
302
303void nand_deselect(void)
304{
305}
306#endif