]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/mtd/nand/omap_gpmc.c
treewide: replace #include <asm/errno.h> with <linux/errno.h>
[people/ms/u-boot.git] / drivers / mtd / nand / omap_gpmc.c
CommitLineData
12201a13
DB
1/*
2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
4 *
1a459660 5 * SPDX-License-Identifier: GPL-2.0+
12201a13
DB
6 */
7
8#include <common.h>
9#include <asm/io.h>
1221ce45 10#include <linux/errno.h>
12201a13 11#include <asm/arch/mem.h>
6aff0509 12#include <linux/mtd/omap_gpmc.h>
12201a13 13#include <linux/mtd/nand_ecc.h>
4a093006 14#include <linux/bch.h>
f7dad8f1 15#include <linux/compiler.h>
12201a13 16#include <nand.h>
2eda892f 17#include <linux/mtd/omap_elm.h>
d016dc42 18
19#define BADBLOCK_MARKER_LENGTH 2
20#define SECTOR_BYTES 512
f5f1f614 21#define ECCCLEAR (0x1 << 8)
22#define ECCRESULTREG1 (0x1 << 0)
6e562b11 23/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24#define BCH4_BIT_PAD 4
25
71a7f956 26#ifdef CONFIG_BCH
27static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28 0x97, 0x79, 0xe5, 0x24, 0xb5};
29#endif
5c3f7e0e 30static uint8_t cs_next;
d016dc42 31static __maybe_unused struct nand_ecclayout omap_ecclayout;
12201a13 32
d8af3933
MS
33#if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
34static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
35 { CONFIG_NAND_OMAP_GPMC_WSCFG };
36#else
37/* wscfg is preset to zero since its a static variable */
38static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
39#endif
40
5c3f7e0e
RL
41/*
42 * Driver configurations
43 */
44struct omap_nand_info {
45 struct bch_control *control;
46 enum omap_ecc ecc_scheme;
d8af3933
MS
47 uint8_t cs;
48 uint8_t ws; /* wait status pin (0,1) */
5c3f7e0e
RL
49};
50
51/* We are wasting a bit of memory but al least we are safe */
52static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
53
12201a13
DB
54/*
55 * omap_nand_hwcontrol - Set the address pointers corretly for the
56 * following address/data/command operation
57 */
58static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
59 uint32_t ctrl)
60{
17cb4b8f
SW
61 register struct nand_chip *this = mtd_to_nand(mtd);
62 struct omap_nand_info *info = nand_get_controller_data(this);
5c3f7e0e 63 int cs = info->cs;
12201a13
DB
64
65 /*
66 * Point the IO_ADDR to DATA and ADDRESS registers instead
67 * of chip address
68 */
69 switch (ctrl) {
70 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
89411352 71 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
12201a13
DB
72 break;
73 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
89411352 74 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
12201a13
DB
75 break;
76 case NAND_CTRL_CHANGE | NAND_NCE:
89411352 77 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
12201a13
DB
78 break;
79 }
80
81 if (cmd != NAND_CMD_NONE)
82 writeb(cmd, this->IO_ADDR_W);
83}
84
12c2f1ee 85/* Check wait pin as dev ready indicator */
fb384c47 86static int omap_dev_ready(struct mtd_info *mtd)
12c2f1ee 87{
17cb4b8f
SW
88 register struct nand_chip *this = mtd_to_nand(mtd);
89 struct omap_nand_info *info = nand_get_controller_data(this);
d8af3933 90 return gpmc_cfg->status & (1 << (8 + info->ws));
12c2f1ee 91}
12201a13
DB
92
93/*
94 * gen_true_ecc - This function will generate true ECC value, which
95 * can be used when correcting data read from NAND flash memory core
96 *
97 * @ecc_buf: buffer to store ecc code
98 *
99 * @return: re-formatted ECC value
100 */
101static uint32_t gen_true_ecc(uint8_t *ecc_buf)
102{
103 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
104 ((ecc_buf[2] & 0x0F) << 8);
105}
106
107/*
108 * omap_correct_data - Compares the ecc read from nand spare area with ECC
eae4b2b6 109 * registers values and corrects one bit error if it has occurred
12201a13
DB
110 * Further details can be had from OMAP TRM and the following selected links:
111 * http://en.wikipedia.org/wiki/Hamming_code
112 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
113 *
114 * @mtd: MTD device structure
115 * @dat: page data
116 * @read_ecc: ecc read from nand flash
117 * @calc_ecc: ecc read from ECC registers
118 *
119 * @return 0 if data is OK or corrected, else returns -1
120 */
f7dad8f1 121static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
12201a13
DB
122 uint8_t *read_ecc, uint8_t *calc_ecc)
123{
124 uint32_t orig_ecc, new_ecc, res, hm;
125 uint16_t parity_bits, byte;
126 uint8_t bit;
127
128 /* Regenerate the orginal ECC */
129 orig_ecc = gen_true_ecc(read_ecc);
130 new_ecc = gen_true_ecc(calc_ecc);
131 /* Get the XOR of real ecc */
132 res = orig_ecc ^ new_ecc;
133 if (res) {
134 /* Get the hamming width */
135 hm = hweight32(res);
136 /* Single bit errors can be corrected! */
137 if (hm == 12) {
138 /* Correctable data! */
139 parity_bits = res >> 16;
140 bit = (parity_bits & 0x7);
141 byte = (parity_bits >> 3) & 0x1FF;
142 /* Flip the bit to correct */
143 dat[byte] ^= (0x1 << bit);
144 } else if (hm == 1) {
145 printf("Error: Ecc is wrong\n");
146 /* ECC itself is corrupted */
147 return 2;
148 } else {
149 /*
150 * hm distance != parity pairs OR one, could mean 2 bit
151 * error OR potentially be on a blank page..
152 * orig_ecc: contains spare area data from nand flash.
153 * new_ecc: generated ecc while reading data area.
154 * Note: if the ecc = 0, all data bits from which it was
155 * generated are 0xFF.
156 * The 3 byte(24 bits) ecc is generated per 512byte
157 * chunk of a page. If orig_ecc(from spare area)
158 * is 0xFF && new_ecc(computed now from data area)=0x0,
159 * this means that data area is 0xFF and spare area is
160 * 0xFF. A sure sign of a erased page!
161 */
162 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
163 return 0;
164 printf("Error: Bad compare! failed\n");
165 /* detected 2 bit error */
ceee07b6 166 return -EBADMSG;
12201a13
DB
167 }
168 }
169 return 0;
170}
171
4a093006 172/*
f5f1f614 173 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
4a093006
AB
174 * @mtd: MTD device structure
175 * @mode: Read/Write mode
176 */
177__maybe_unused
f5f1f614 178static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
4a093006 179{
17cb4b8f
SW
180 struct nand_chip *nand = mtd_to_nand(mtd);
181 struct omap_nand_info *info = nand_get_controller_data(nand);
f5f1f614 182 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
183 unsigned int ecc_algo = 0;
184 unsigned int bch_type = 0;
185 unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
186 u32 ecc_size_config_val = 0;
187 u32 ecc_config_val = 0;
5c3f7e0e 188 int cs = info->cs;
f5f1f614 189
190 /* configure GPMC for specific ecc-scheme */
9233279f 191 switch (info->ecc_scheme) {
f5f1f614 192 case OMAP_ECC_HAM1_CODE_SW:
193 return;
194 case OMAP_ECC_HAM1_CODE_HW:
195 ecc_algo = 0x0;
196 bch_type = 0x0;
197 bch_wrapmode = 0x00;
198 eccsize0 = 0xFF;
199 eccsize1 = 0xFF;
200 break;
201 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
202 case OMAP_ECC_BCH8_CODE_HW:
203 ecc_algo = 0x1;
204 bch_type = 0x1;
205 if (mode == NAND_ECC_WRITE) {
206 bch_wrapmode = 0x01;
207 eccsize0 = 0; /* extra bits in nibbles per sector */
208 eccsize1 = 28; /* OOB bits in nibbles per sector */
209 } else {
210 bch_wrapmode = 0x01;
211 eccsize0 = 26; /* ECC bits in nibbles per sector */
212 eccsize1 = 2; /* non-ECC bits in nibbles per sector */
5d7a49b9 213 }
f5f1f614 214 break;
46840f66 215 case OMAP_ECC_BCH16_CODE_HW:
216 ecc_algo = 0x1;
217 bch_type = 0x2;
218 if (mode == NAND_ECC_WRITE) {
219 bch_wrapmode = 0x01;
220 eccsize0 = 0; /* extra bits in nibbles per sector */
221 eccsize1 = 52; /* OOB bits in nibbles per sector */
222 } else {
223 bch_wrapmode = 0x01;
224 eccsize0 = 52; /* ECC bits in nibbles per sector */
225 eccsize1 = 0; /* non-ECC bits in nibbles per sector */
226 }
227 break;
f5f1f614 228 default:
229 return;
d016dc42 230 }
f5f1f614 231 /* Clear ecc and enable bits */
232 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
233 /* Configure ecc size for BCH */
234 ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
235 writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
236
237 /* Configure device details for BCH engine */
238 ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
239 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
240 (bch_wrapmode << 8) | /* wrap mode */
241 (dev_width << 7) | /* bus width */
242 (0x0 << 4) | /* number of sectors */
243 (cs << 1) | /* ECC CS */
244 (0x1)); /* enable ECC */
245 writel(ecc_config_val, &gpmc_cfg->ecc_config);
4a093006
AB
246}
247
248/*
71a7f956 249 * omap_calculate_ecc - Read ECC result
250 * @mtd: MTD structure
251 * @dat: unused
252 * @ecc_code: ecc_code buffer
253 * Using noninverted ECC can be considered ugly since writing a blank
254 * page ie. padding will clear the ECC bytes. This is no problem as
255 * long nobody is trying to write data on the seemingly unused page.
256 * Reading an erased page will produce an ECC mismatch between
257 * generated and read ECC bytes that has to be dealt with separately.
258 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
259 * is used, the result of read will be 0x0 while the ECC offsets of the
260 * spare area will be 0xFF which will result in an ECC mismatch.
c3754e9c 261 */
71a7f956 262static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
c3754e9c
MA
263 uint8_t *ecc_code)
264{
17cb4b8f
SW
265 struct nand_chip *chip = mtd_to_nand(mtd);
266 struct omap_nand_info *info = nand_get_controller_data(chip);
0568dd06
LM
267 const uint32_t *ptr;
268 uint32_t val = 0;
c3754e9c
MA
269 int8_t i = 0, j;
270
9233279f 271 switch (info->ecc_scheme) {
71a7f956 272 case OMAP_ECC_HAM1_CODE_HW:
273 val = readl(&gpmc_cfg->ecc1_result);
274 ecc_code[0] = val & 0xFF;
275 ecc_code[1] = (val >> 16) & 0xFF;
276 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
277 break;
278#ifdef CONFIG_BCH
279 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
280#endif
281 case OMAP_ECC_BCH8_CODE_HW:
c3754e9c 282 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
71a7f956 283 val = readl(ptr);
284 ecc_code[i++] = (val >> 0) & 0xFF;
c3754e9c
MA
285 ptr--;
286 for (j = 0; j < 3; j++) {
71a7f956 287 val = readl(ptr);
288 ecc_code[i++] = (val >> 24) & 0xFF;
289 ecc_code[i++] = (val >> 16) & 0xFF;
290 ecc_code[i++] = (val >> 8) & 0xFF;
291 ecc_code[i++] = (val >> 0) & 0xFF;
c3754e9c
MA
292 ptr--;
293 }
71a7f956 294 break;
46840f66 295 case OMAP_ECC_BCH16_CODE_HW:
296 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
297 ecc_code[i++] = (val >> 8) & 0xFF;
298 ecc_code[i++] = (val >> 0) & 0xFF;
299 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
300 ecc_code[i++] = (val >> 24) & 0xFF;
301 ecc_code[i++] = (val >> 16) & 0xFF;
302 ecc_code[i++] = (val >> 8) & 0xFF;
303 ecc_code[i++] = (val >> 0) & 0xFF;
304 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
305 ecc_code[i++] = (val >> 24) & 0xFF;
306 ecc_code[i++] = (val >> 16) & 0xFF;
307 ecc_code[i++] = (val >> 8) & 0xFF;
308 ecc_code[i++] = (val >> 0) & 0xFF;
309 for (j = 3; j >= 0; j--) {
310 val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
311 );
312 ecc_code[i++] = (val >> 24) & 0xFF;
313 ecc_code[i++] = (val >> 16) & 0xFF;
314 ecc_code[i++] = (val >> 8) & 0xFF;
315 ecc_code[i++] = (val >> 0) & 0xFF;
316 }
317 break;
71a7f956 318 default:
319 return -EINVAL;
320 }
321 /* ECC scheme specific syndrome customizations */
9233279f 322 switch (info->ecc_scheme) {
71a7f956 323 case OMAP_ECC_HAM1_CODE_HW:
324 break;
325#ifdef CONFIG_BCH
326 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
327
328 for (i = 0; i < chip->ecc.bytes; i++)
329 *(ecc_code + i) = *(ecc_code + i) ^
330 bch8_polynomial[i];
331 break;
332#endif
333 case OMAP_ECC_BCH8_CODE_HW:
334 ecc_code[chip->ecc.bytes - 1] = 0x00;
335 break;
46840f66 336 case OMAP_ECC_BCH16_CODE_HW:
337 break;
71a7f956 338 default:
339 return -EINVAL;
c3754e9c 340 }
71a7f956 341 return 0;
c3754e9c
MA
342}
343
c0736114
JH
344#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
345
346#define PREFETCH_CONFIG1_CS_SHIFT 24
347#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
348#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
349#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
350#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
351#define ENABLE_PREFETCH (1 << 7)
352
353/**
354 * omap_prefetch_enable - configures and starts prefetch transfer
355 * @fifo_th: fifo threshold to be used for read/ write
356 * @count: number of bytes to be transferred
357 * @is_write: prefetch read(0) or write post(1) mode
358 * @cs: chip select to use
359 */
360static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
361{
362 uint32_t val;
363
364 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
365 return -EINVAL;
366
367 if (readl(&gpmc_cfg->prefetch_control))
368 return -EBUSY;
369
370 /* Set the amount of bytes to be prefetched */
371 writel(count, &gpmc_cfg->prefetch_config2);
372
373 val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
374 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
375 writel(val, &gpmc_cfg->prefetch_config1);
376
377 /* Start the prefetch engine */
378 writel(1, &gpmc_cfg->prefetch_control);
379
380 return 0;
381}
382
383/**
384 * omap_prefetch_reset - disables and stops the prefetch engine
385 */
386static void omap_prefetch_reset(void)
387{
388 writel(0, &gpmc_cfg->prefetch_control);
389 writel(0, &gpmc_cfg->prefetch_config1);
390}
391
392static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
393{
394 int ret;
395 uint32_t cnt;
17cb4b8f 396 struct omap_nand_info *info = nand_get_controller_data(chip);
c0736114
JH
397
398 ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
399 if (ret < 0)
400 return ret;
401
402 do {
403 int i;
404
405 cnt = readl(&gpmc_cfg->prefetch_status);
406 cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
407
408 for (i = 0; i < cnt / 4; i++) {
409 *buf++ = readl(CONFIG_SYS_NAND_BASE);
410 len -= 4;
411 }
412 } while (len);
413
414 omap_prefetch_reset();
415
416 return 0;
417}
418
cb2fc338
JH
419static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
420{
17cb4b8f 421 struct nand_chip *chip = mtd_to_nand(mtd);
cb2fc338
JH
422
423 if (chip->options & NAND_BUSWIDTH_16)
424 nand_read_buf16(mtd, buf, len);
425 else
426 nand_read_buf(mtd, buf, len);
427}
428
429static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
c0736114
JH
430{
431 int ret;
432 uint32_t head, tail;
17cb4b8f 433 struct nand_chip *chip = mtd_to_nand(mtd);
c0736114
JH
434
435 /*
436 * If the destination buffer is unaligned, start with reading
437 * the overlap byte-wise.
438 */
439 head = ((uint32_t) buf) % 4;
440 if (head) {
cb2fc338 441 omap_nand_read(mtd, buf, head);
c0736114
JH
442 buf += head;
443 len -= head;
444 }
445
446 /*
447 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
448 * If there's a residue, care for it byte-wise afterwards.
449 */
450 tail = len % 4;
451
cb2fc338 452 ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
c0736114
JH
453 if (ret < 0) {
454 /* fallback in case the prefetch engine is busy */
cb2fc338 455 omap_nand_read(mtd, buf, len);
c0736114
JH
456 } else if (tail) {
457 buf += len - tail;
cb2fc338 458 omap_nand_read(mtd, buf, tail);
c0736114
JH
459 }
460}
461#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
462
71a7f956 463#ifdef CONFIG_NAND_OMAP_ELM
44152979
JH
464/*
465 * omap_reverse_list - re-orders list elements in reverse order [internal]
466 * @list: pointer to start of list
467 * @length: length of list
468*/
469static void omap_reverse_list(u8 *list, unsigned int length)
470{
471 unsigned int i, j;
472 unsigned int half_length = length / 2;
473 u8 tmp;
474 for (i = 0, j = length - 1; i < half_length; i++, j--) {
475 tmp = list[i];
476 list[i] = list[j];
477 list[j] = tmp;
478 }
479}
480
c3754e9c
MA
481/*
482 * omap_correct_data_bch - Compares the ecc read from nand spare area
eae4b2b6 483 * with ECC registers values and corrects one bit error if it has occurred
c3754e9c
MA
484 *
485 * @mtd: MTD device structure
486 * @dat: page data
487 * @read_ecc: ecc read from nand flash (ignored)
488 * @calc_ecc: ecc read from ECC registers
489 *
490 * @return 0 if data is OK or corrected, else returns -1
491 */
492static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
493 uint8_t *read_ecc, uint8_t *calc_ecc)
494{
17cb4b8f
SW
495 struct nand_chip *chip = mtd_to_nand(mtd);
496 struct omap_nand_info *info = nand_get_controller_data(chip);
a09431da 497 struct nand_ecc_ctrl *ecc = &chip->ecc;
6e562b11 498 uint32_t error_count = 0, error_max;
46840f66 499 uint32_t error_loc[ELM_MAX_ERROR_COUNT];
d21e77ff 500 enum bch_level bch_type;
6e562b11 501 uint32_t i, ecc_flag = 0;
eb54d2c7 502 uint8_t count;
6e562b11 503 uint32_t byte_pos, bit_pos;
eb54d2c7 504 int err = 0;
6e562b11 505
506 /* check calculated ecc */
a09431da 507 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
6e562b11 508 if (calc_ecc[i] != 0x00)
509 ecc_flag = 1;
510 }
511 if (!ecc_flag)
512 return 0;
c3754e9c 513
6e562b11 514 /* check for whether its a erased-page */
c3754e9c 515 ecc_flag = 0;
a09431da 516 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
c3754e9c
MA
517 if (read_ecc[i] != 0xff)
518 ecc_flag = 1;
6e562b11 519 }
c3754e9c
MA
520 if (!ecc_flag)
521 return 0;
522
c3754e9c
MA
523 /*
524 * while reading ECC result we read it in big endian.
525 * Hence while loading to ELM we have rotate to get the right endian.
526 */
9233279f 527 switch (info->ecc_scheme) {
6e562b11 528 case OMAP_ECC_BCH8_CODE_HW:
d21e77ff 529 bch_type = BCH_8_BIT;
a09431da 530 omap_reverse_list(calc_ecc, ecc->bytes - 1);
6e562b11 531 break;
46840f66 532 case OMAP_ECC_BCH16_CODE_HW:
533 bch_type = BCH_16_BIT;
534 omap_reverse_list(calc_ecc, ecc->bytes);
535 break;
6e562b11 536 default:
537 return -EINVAL;
538 }
c3754e9c 539 /* use elm module to check for errors */
d21e77ff 540 elm_config(bch_type);
3f990dc8 541 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
542 if (err)
543 return err;
544
c3754e9c 545 /* correct bch error */
6e562b11 546 for (count = 0; count < error_count; count++) {
9233279f 547 switch (info->ecc_scheme) {
d21e77ff 548 case OMAP_ECC_BCH8_CODE_HW:
6e562b11 549 /* 14th byte in ECC is reserved to match ROM layout */
a09431da 550 error_max = SECTOR_BYTES + (ecc->bytes - 1);
6e562b11 551 break;
46840f66 552 case OMAP_ECC_BCH16_CODE_HW:
553 error_max = SECTOR_BYTES + ecc->bytes;
554 break;
6e562b11 555 default:
556 return -EINVAL;
557 }
558 byte_pos = error_max - (error_loc[count] / 8) - 1;
559 bit_pos = error_loc[count] % 8;
560 if (byte_pos < SECTOR_BYTES) {
561 dat[byte_pos] ^= 1 << bit_pos;
d1d01676 562 debug("nand: bit-flip corrected @data=%d\n", byte_pos);
6e562b11 563 } else if (byte_pos < error_max) {
97eeae1a 564 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
d1d01676 565 debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
6e562b11 566 SECTOR_BYTES);
567 } else {
568 err = -EBADMSG;
569 printf("nand: error: invalid bit-flip location\n");
570 }
571 }
572 return (err) ? err : error_count;
c3754e9c 573}
c3754e9c
MA
574
575/**
576 * omap_read_page_bch - hardware ecc based page read function
577 * @mtd: mtd info structure
578 * @chip: nand chip info structure
579 * @buf: buffer to store read data
dfe64e2c 580 * @oob_required: caller expects OOB data read to chip->oob_poi
c3754e9c
MA
581 * @page: page number to read
582 *
583 */
584static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
dfe64e2c 585 uint8_t *buf, int oob_required, int page)
c3754e9c
MA
586{
587 int i, eccsize = chip->ecc.size;
588 int eccbytes = chip->ecc.bytes;
589 int eccsteps = chip->ecc.steps;
590 uint8_t *p = buf;
591 uint8_t *ecc_calc = chip->buffers->ecccalc;
592 uint8_t *ecc_code = chip->buffers->ecccode;
593 uint32_t *eccpos = chip->ecc.layout->eccpos;
594 uint8_t *oob = chip->oob_poi;
595 uint32_t data_pos;
596 uint32_t oob_pos;
597
598 data_pos = 0;
599 /* oob area start */
600 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
601 oob += chip->ecc.layout->eccpos[0];
602
603 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
604 oob += eccbytes) {
605 chip->ecc.hwctl(mtd, NAND_ECC_READ);
606 /* read data */
cc81a529 607 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
c3754e9c
MA
608 chip->read_buf(mtd, p, eccsize);
609
610 /* read respective ecc from oob area */
cc81a529 611 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
c3754e9c
MA
612 chip->read_buf(mtd, oob, eccbytes);
613 /* read syndrome */
614 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
615
616 data_pos += eccsize;
617 oob_pos += eccbytes;
618 }
619
620 for (i = 0; i < chip->ecc.total; i++)
621 ecc_code[i] = chip->oob_poi[eccpos[i]];
622
623 eccsteps = chip->ecc.steps;
624 p = buf;
625
626 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
627 int stat;
628
629 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
630 if (stat < 0)
631 mtd->ecc_stats.failed++;
632 else
633 mtd->ecc_stats.corrected += stat;
634 }
635 return 0;
636}
d016dc42 637#endif /* CONFIG_NAND_OMAP_ELM */
c3754e9c 638
4a093006
AB
639/*
640 * OMAP3 BCH8 support (with BCH library)
641 */
d016dc42 642#ifdef CONFIG_BCH
4a093006 643/**
d016dc42 644 * omap_correct_data_bch_sw - Decode received data and correct errors
4a093006
AB
645 * @mtd: MTD device structure
646 * @data: page data
647 * @read_ecc: ecc read from nand flash
648 * @calc_ecc: ecc read from HW ECC registers
649 */
d016dc42 650static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
4a093006
AB
651 u_char *read_ecc, u_char *calc_ecc)
652{
653 int i, count;
654 /* cannot correct more than 8 errors */
655 unsigned int errloc[8];
17cb4b8f
SW
656 struct nand_chip *chip = mtd_to_nand(mtd);
657 struct omap_nand_info *info = nand_get_controller_data(chip);
4a093006 658
9233279f 659 count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
660 NULL, errloc);
4a093006
AB
661 if (count > 0) {
662 /* correct errors */
663 for (i = 0; i < count; i++) {
664 /* correct data only, not ecc bytes */
665 if (errloc[i] < 8*512)
666 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
d1d01676 667 debug("corrected bitflip %u\n", errloc[i]);
4a093006
AB
668#ifdef DEBUG
669 puts("read_ecc: ");
670 /*
671 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
672 * here!
673 */
674 for (i = 0; i < 13; i++)
675 printf("%02x ", read_ecc[i]);
676 puts("\n");
677 puts("calc_ecc: ");
678 for (i = 0; i < 13; i++)
679 printf("%02x ", calc_ecc[i]);
680 puts("\n");
681#endif
682 }
683 } else if (count < 0) {
684 puts("ecc unrecoverable error\n");
685 }
686 return count;
687}
688
689/**
690 * omap_free_bch - Release BCH ecc resources
691 * @mtd: MTD device structure
692 */
693static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
694{
17cb4b8f
SW
695 struct nand_chip *chip = mtd_to_nand(mtd);
696 struct omap_nand_info *info = nand_get_controller_data(chip);
4a093006 697
9233279f 698 if (info->control) {
699 free_bch(info->control);
700 info->control = NULL;
4a093006
AB
701 }
702}
d016dc42 703#endif /* CONFIG_BCH */
704
705/**
706 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
707 * @nand: NAND chip device structure
708 * @ecc_scheme: ecc scheme to configure
709 * @pagesize: number of main-area bytes per page of NAND device
710 * @oobsize: number of OOB/spare bytes per page of NAND device
711 */
712static int omap_select_ecc_scheme(struct nand_chip *nand,
713 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
17cb4b8f 714 struct omap_nand_info *info = nand_get_controller_data(nand);
eb237a15 715 struct nand_ecclayout *ecclayout = &omap_ecclayout;
d016dc42 716 int eccsteps = pagesize / SECTOR_BYTES;
717 int i;
718
719 switch (ecc_scheme) {
720 case OMAP_ECC_HAM1_CODE_SW:
721 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
722 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
723 * initialized in nand_scan_tail(), so just set ecc.mode */
9233279f 724 info->control = NULL;
d016dc42 725 nand->ecc.mode = NAND_ECC_SOFT;
726 nand->ecc.layout = NULL;
2528460c 727 nand->ecc.size = 0;
d016dc42 728 break;
729
730 case OMAP_ECC_HAM1_CODE_HW:
731 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
732 /* check ecc-scheme requirements before updating ecc info */
733 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
734 printf("nand: error: insufficient OOB: require=%d\n", (
735 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
736 return -EINVAL;
737 }
9233279f 738 info->control = NULL;
d016dc42 739 /* populate ecc specific fields */
fcd05245 740 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 741 nand->ecc.mode = NAND_ECC_HW;
742 nand->ecc.strength = 1;
743 nand->ecc.size = SECTOR_BYTES;
744 nand->ecc.bytes = 3;
745 nand->ecc.hwctl = omap_enable_hwecc;
746 nand->ecc.correct = omap_correct_data;
747 nand->ecc.calculate = omap_calculate_ecc;
748 /* define ecc-layout */
749 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
69cc97f8 750 for (i = 0; i < ecclayout->eccbytes; i++) {
751 if (nand->options & NAND_BUSWIDTH_16)
752 ecclayout->eccpos[i] = i + 2;
753 else
754 ecclayout->eccpos[i] = i + 1;
755 }
d016dc42 756 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
757 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
758 BADBLOCK_MARKER_LENGTH;
d016dc42 759 break;
760
761 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
762#ifdef CONFIG_BCH
763 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
764 /* check ecc-scheme requirements before updating ecc info */
765 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
766 printf("nand: error: insufficient OOB: require=%d\n", (
767 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
768 return -EINVAL;
769 }
770 /* check if BCH S/W library can be used for error detection */
9233279f 771 info->control = init_bch(13, 8, 0x201b);
772 if (!info->control) {
d016dc42 773 printf("nand: error: could not init_bch()\n");
774 return -ENODEV;
775 }
d016dc42 776 /* populate ecc specific fields */
fcd05245 777 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 778 nand->ecc.mode = NAND_ECC_HW;
779 nand->ecc.strength = 8;
780 nand->ecc.size = SECTOR_BYTES;
781 nand->ecc.bytes = 13;
f5f1f614 782 nand->ecc.hwctl = omap_enable_hwecc;
d016dc42 783 nand->ecc.correct = omap_correct_data_bch_sw;
71a7f956 784 nand->ecc.calculate = omap_calculate_ecc;
d016dc42 785 /* define ecc-layout */
786 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
787 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
788 for (i = 1; i < ecclayout->eccbytes; i++) {
789 if (i % nand->ecc.bytes)
790 ecclayout->eccpos[i] =
791 ecclayout->eccpos[i - 1] + 1;
792 else
793 ecclayout->eccpos[i] =
794 ecclayout->eccpos[i - 1] + 2;
795 }
796 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
797 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
798 BADBLOCK_MARKER_LENGTH;
d016dc42 799 break;
800#else
801 printf("nand: error: CONFIG_BCH required for ECC\n");
802 return -EINVAL;
803#endif
804
805 case OMAP_ECC_BCH8_CODE_HW:
806#ifdef CONFIG_NAND_OMAP_ELM
807 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
808 /* check ecc-scheme requirements before updating ecc info */
809 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
810 printf("nand: error: insufficient OOB: require=%d\n", (
811 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
812 return -EINVAL;
813 }
814 /* intialize ELM for ECC error detection */
815 elm_init();
9233279f 816 info->control = NULL;
d016dc42 817 /* populate ecc specific fields */
fcd05245 818 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 819 nand->ecc.mode = NAND_ECC_HW;
820 nand->ecc.strength = 8;
821 nand->ecc.size = SECTOR_BYTES;
822 nand->ecc.bytes = 14;
f5f1f614 823 nand->ecc.hwctl = omap_enable_hwecc;
d016dc42 824 nand->ecc.correct = omap_correct_data_bch;
71a7f956 825 nand->ecc.calculate = omap_calculate_ecc;
d016dc42 826 nand->ecc.read_page = omap_read_page_bch;
827 /* define ecc-layout */
828 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
829 for (i = 0; i < ecclayout->eccbytes; i++)
830 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
831 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
832 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
833 BADBLOCK_MARKER_LENGTH;
d016dc42 834 break;
835#else
836 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
837 return -EINVAL;
838#endif
839
46840f66 840 case OMAP_ECC_BCH16_CODE_HW:
841#ifdef CONFIG_NAND_OMAP_ELM
842 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
843 /* check ecc-scheme requirements before updating ecc info */
844 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
845 printf("nand: error: insufficient OOB: require=%d\n", (
846 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
847 return -EINVAL;
848 }
849 /* intialize ELM for ECC error detection */
850 elm_init();
851 /* populate ecc specific fields */
852 nand->ecc.mode = NAND_ECC_HW;
853 nand->ecc.size = SECTOR_BYTES;
854 nand->ecc.bytes = 26;
855 nand->ecc.strength = 16;
856 nand->ecc.hwctl = omap_enable_hwecc;
857 nand->ecc.correct = omap_correct_data_bch;
858 nand->ecc.calculate = omap_calculate_ecc;
859 nand->ecc.read_page = omap_read_page_bch;
860 /* define ecc-layout */
861 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
862 for (i = 0; i < ecclayout->eccbytes; i++)
863 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
864 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
865 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
866 BADBLOCK_MARKER_LENGTH;
867 break;
868#else
869 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
870 return -EINVAL;
871#endif
d016dc42 872 default:
873 debug("nand: error: ecc scheme not enabled or supported\n");
874 return -EINVAL;
875 }
eb237a15
NK
876
877 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
878 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
879 nand->ecc.layout = ecclayout;
880
9233279f 881 info->ecc_scheme = ecc_scheme;
d016dc42 882 return 0;
883}
4a093006 884
12c2f1ee 885#ifndef CONFIG_SPL_BUILD
12201a13 886/*
da634ae3
AB
887 * omap_nand_switch_ecc - switch the ECC operation between different engines
888 * (h/w and s/w) and different algorithms (hamming and BCHx)
12201a13 889 *
da634ae3
AB
890 * @hardware - true if one of the HW engines should be used
891 * @eccstrength - the number of bits that could be corrected
892 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
12201a13 893 */
d016dc42 894int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
12201a13
DB
895{
896 struct nand_chip *nand;
897 struct mtd_info *mtd;
d016dc42 898 int err = 0;
12201a13
DB
899
900 if (nand_curr_device < 0 ||
901 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
8b7d5124 902 !nand_info[nand_curr_device]) {
d016dc42 903 printf("nand: error: no NAND devices found\n");
904 return -ENODEV;
12201a13
DB
905 }
906
b616d9b0 907 mtd = nand_info[nand_curr_device];
17cb4b8f 908 nand = mtd_to_nand(mtd);
12201a13 909 nand->options |= NAND_OWN_BUFFERS;
13fbde6e 910 nand->options &= ~NAND_SUBPAGE_READ;
12201a13 911 /* Setup the ecc configurations again */
da634ae3
AB
912 if (hardware) {
913 if (eccstrength == 1) {
d016dc42 914 err = omap_select_ecc_scheme(nand,
915 OMAP_ECC_HAM1_CODE_HW,
916 mtd->writesize, mtd->oobsize);
917 } else if (eccstrength == 8) {
918 err = omap_select_ecc_scheme(nand,
919 OMAP_ECC_BCH8_CODE_HW,
920 mtd->writesize, mtd->oobsize);
3a504d96
HS
921 } else if (eccstrength == 16) {
922 err = omap_select_ecc_scheme(nand,
923 OMAP_ECC_BCH16_CODE_HW,
924 mtd->writesize, mtd->oobsize);
d016dc42 925 } else {
926 printf("nand: error: unsupported ECC scheme\n");
927 return -EINVAL;
da634ae3 928 }
12201a13 929 } else {
b050898e
AC
930 if (eccstrength == 1) {
931 err = omap_select_ecc_scheme(nand,
932 OMAP_ECC_HAM1_CODE_SW,
933 mtd->writesize, mtd->oobsize);
934 } else if (eccstrength == 8) {
935 err = omap_select_ecc_scheme(nand,
936 OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
d016dc42 937 mtd->writesize, mtd->oobsize);
b050898e
AC
938 } else {
939 printf("nand: error: unsupported ECC scheme\n");
940 return -EINVAL;
941 }
12201a13
DB
942 }
943
944 /* Update NAND handling after ECC mode switch */
d016dc42 945 if (!err)
946 err = nand_scan_tail(mtd);
947 return err;
12201a13 948}
12c2f1ee 949#endif /* CONFIG_SPL_BUILD */
12201a13
DB
950
951/*
952 * Board-specific NAND initialization. The following members of the
953 * argument are board-specific:
954 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
955 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
956 * - cmd_ctrl: hardwarespecific function for accesing control-lines
957 * - waitfunc: hardwarespecific function for accesing device ready/busy line
958 * - ecc.hwctl: function to enable (reset) hardware ecc generator
959 * - ecc.mode: mode of ecc, see defines
960 * - chip_delay: chip dependent delay for transfering data from array to
961 * read regs (tR)
962 * - options: various chip options. They can partly be set to inform
963 * nand_scan about special functionality. See the defines for further
964 * explanation
965 */
966int board_nand_init(struct nand_chip *nand)
967{
968 int32_t gpmc_config = 0;
5c3f7e0e 969 int cs = cs_next++;
d016dc42 970 int err = 0;
12201a13
DB
971 /*
972 * xloader/Uboot's gpmc configuration would have configured GPMC for
973 * nand type of memory. The following logic scans and latches on to the
974 * first CS with NAND type memory.
975 * TBD: need to make this logic generic to handle multiple CS NAND
976 * devices.
977 */
978 while (cs < GPMC_MAX_CS) {
12201a13 979 /* Check if NAND type is set */
89411352 980 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
12201a13
DB
981 /* Found it!! */
982 break;
983 }
984 cs++;
985 }
986 if (cs >= GPMC_MAX_CS) {
d016dc42 987 printf("nand: error: Unable to find NAND settings in "
12201a13
DB
988 "GPMC Configuration - quitting\n");
989 return -ENODEV;
990 }
991
89411352 992 gpmc_config = readl(&gpmc_cfg->config);
12201a13
DB
993 /* Disable Write protect */
994 gpmc_config |= 0x10;
89411352 995 writel(gpmc_config, &gpmc_cfg->config);
12201a13 996
89411352
DB
997 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
998 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
5c3f7e0e
RL
999 omap_nand_info[cs].control = NULL;
1000 omap_nand_info[cs].cs = cs;
d8af3933 1001 omap_nand_info[cs].ws = wscfg[cs];
17cb4b8f 1002 nand_set_controller_data(nand, &omap_nand_info[cs]);
d016dc42 1003 nand->cmd_ctrl = omap_nand_hwcontrol;
1004 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
12201a13 1005 nand->chip_delay = 100;
d016dc42 1006 nand->ecc.layout = &omap_ecclayout;
1007
b80a6603 1008 /* configure driver and controller based on NAND device bus-width */
1009 gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1010#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1011 nand->options |= NAND_BUSWIDTH_16;
1012 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1013#else
1014 nand->options &= ~NAND_BUSWIDTH_16;
1015 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1016#endif
d016dc42 1017 /* select ECC scheme */
3f719069 1018#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1019 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
d016dc42 1020 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
3f719069 1021#else
1022 /* pagesize and oobsize are not required to configure sw ecc-scheme */
d016dc42 1023 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1024 0, 0);
c3754e9c 1025#endif
d016dc42 1026 if (err)
1027 return err;
12c2f1ee 1028
89831112 1029#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
cb2fc338 1030 nand->read_buf = omap_nand_read_prefetch;
89831112 1031#else
cb2fc338
JH
1032 if (nand->options & NAND_BUSWIDTH_16)
1033 nand->read_buf = nand_read_buf16;
89831112
ES
1034 else
1035 nand->read_buf = nand_read_buf;
12c2f1ee 1036#endif
fb384c47
SR
1037
1038 nand->dev_ready = omap_dev_ready;
1039
12201a13
DB
1040 return 0;
1041}