]> git.ipfire.org Git - thirdparty/u-boot.git/blame - drivers/mtd/nand/omap_gpmc.c
nand: Embed mtd_info in struct nand_chip
[thirdparty/u-boot.git] / drivers / mtd / nand / omap_gpmc.c
CommitLineData
12201a13
DB
1/*
2 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3 * Rohit Choraria <rohitkc@ti.com>
4 *
1a459660 5 * SPDX-License-Identifier: GPL-2.0+
12201a13
DB
6 */
7
8#include <common.h>
9#include <asm/io.h>
10#include <asm/errno.h>
11#include <asm/arch/mem.h>
6aff0509 12#include <linux/mtd/omap_gpmc.h>
12201a13 13#include <linux/mtd/nand_ecc.h>
4a093006 14#include <linux/bch.h>
f7dad8f1 15#include <linux/compiler.h>
12201a13 16#include <nand.h>
2eda892f 17#include <linux/mtd/omap_elm.h>
d016dc42 18
19#define BADBLOCK_MARKER_LENGTH 2
20#define SECTOR_BYTES 512
f5f1f614 21#define ECCCLEAR (0x1 << 8)
22#define ECCRESULTREG1 (0x1 << 0)
6e562b11 23/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24#define BCH4_BIT_PAD 4
25
71a7f956 26#ifdef CONFIG_BCH
27static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28 0x97, 0x79, 0xe5, 0x24, 0xb5};
29#endif
5c3f7e0e 30static uint8_t cs_next;
d016dc42 31static __maybe_unused struct nand_ecclayout omap_ecclayout;
12201a13 32
d8af3933
MS
33#if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
34static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
35 { CONFIG_NAND_OMAP_GPMC_WSCFG };
36#else
37/* wscfg is preset to zero since its a static variable */
38static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
39#endif
40
5c3f7e0e
RL
41/*
42 * Driver configurations
43 */
44struct omap_nand_info {
45 struct bch_control *control;
46 enum omap_ecc ecc_scheme;
d8af3933
MS
47 uint8_t cs;
48 uint8_t ws; /* wait status pin (0,1) */
5c3f7e0e
RL
49};
50
51/* We are wasting a bit of memory but al least we are safe */
52static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
53
12201a13
DB
54/*
55 * omap_nand_hwcontrol - Set the address pointers corretly for the
56 * following address/data/command operation
57 */
58static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
59 uint32_t ctrl)
60{
61 register struct nand_chip *this = mtd->priv;
5c3f7e0e
RL
62 struct omap_nand_info *info = this->priv;
63 int cs = info->cs;
12201a13
DB
64
65 /*
66 * Point the IO_ADDR to DATA and ADDRESS registers instead
67 * of chip address
68 */
69 switch (ctrl) {
70 case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
89411352 71 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
12201a13
DB
72 break;
73 case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
89411352 74 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
12201a13
DB
75 break;
76 case NAND_CTRL_CHANGE | NAND_NCE:
89411352 77 this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
12201a13
DB
78 break;
79 }
80
81 if (cmd != NAND_CMD_NONE)
82 writeb(cmd, this->IO_ADDR_W);
83}
84
12c2f1ee 85/* Check wait pin as dev ready indicator */
fb384c47 86static int omap_dev_ready(struct mtd_info *mtd)
12c2f1ee 87{
d8af3933
MS
88 register struct nand_chip *this = mtd->priv;
89 struct omap_nand_info *info = this->priv;
90 return gpmc_cfg->status & (1 << (8 + info->ws));
12c2f1ee 91}
12201a13
DB
92
93/*
94 * gen_true_ecc - This function will generate true ECC value, which
95 * can be used when correcting data read from NAND flash memory core
96 *
97 * @ecc_buf: buffer to store ecc code
98 *
99 * @return: re-formatted ECC value
100 */
101static uint32_t gen_true_ecc(uint8_t *ecc_buf)
102{
103 return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
104 ((ecc_buf[2] & 0x0F) << 8);
105}
106
107/*
108 * omap_correct_data - Compares the ecc read from nand spare area with ECC
eae4b2b6 109 * registers values and corrects one bit error if it has occurred
12201a13
DB
110 * Further details can be had from OMAP TRM and the following selected links:
111 * http://en.wikipedia.org/wiki/Hamming_code
112 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
113 *
114 * @mtd: MTD device structure
115 * @dat: page data
116 * @read_ecc: ecc read from nand flash
117 * @calc_ecc: ecc read from ECC registers
118 *
119 * @return 0 if data is OK or corrected, else returns -1
120 */
f7dad8f1 121static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
12201a13
DB
122 uint8_t *read_ecc, uint8_t *calc_ecc)
123{
124 uint32_t orig_ecc, new_ecc, res, hm;
125 uint16_t parity_bits, byte;
126 uint8_t bit;
127
128 /* Regenerate the orginal ECC */
129 orig_ecc = gen_true_ecc(read_ecc);
130 new_ecc = gen_true_ecc(calc_ecc);
131 /* Get the XOR of real ecc */
132 res = orig_ecc ^ new_ecc;
133 if (res) {
134 /* Get the hamming width */
135 hm = hweight32(res);
136 /* Single bit errors can be corrected! */
137 if (hm == 12) {
138 /* Correctable data! */
139 parity_bits = res >> 16;
140 bit = (parity_bits & 0x7);
141 byte = (parity_bits >> 3) & 0x1FF;
142 /* Flip the bit to correct */
143 dat[byte] ^= (0x1 << bit);
144 } else if (hm == 1) {
145 printf("Error: Ecc is wrong\n");
146 /* ECC itself is corrupted */
147 return 2;
148 } else {
149 /*
150 * hm distance != parity pairs OR one, could mean 2 bit
151 * error OR potentially be on a blank page..
152 * orig_ecc: contains spare area data from nand flash.
153 * new_ecc: generated ecc while reading data area.
154 * Note: if the ecc = 0, all data bits from which it was
155 * generated are 0xFF.
156 * The 3 byte(24 bits) ecc is generated per 512byte
157 * chunk of a page. If orig_ecc(from spare area)
158 * is 0xFF && new_ecc(computed now from data area)=0x0,
159 * this means that data area is 0xFF and spare area is
160 * 0xFF. A sure sign of a erased page!
161 */
162 if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
163 return 0;
164 printf("Error: Bad compare! failed\n");
165 /* detected 2 bit error */
166 return -1;
167 }
168 }
169 return 0;
170}
171
4a093006 172/*
f5f1f614 173 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
4a093006
AB
174 * @mtd: MTD device structure
175 * @mode: Read/Write mode
176 */
177__maybe_unused
f5f1f614 178static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
4a093006 179{
f5f1f614 180 struct nand_chip *nand = mtd->priv;
9233279f 181 struct omap_nand_info *info = nand->priv;
f5f1f614 182 unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
183 unsigned int ecc_algo = 0;
184 unsigned int bch_type = 0;
185 unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
186 u32 ecc_size_config_val = 0;
187 u32 ecc_config_val = 0;
5c3f7e0e 188 int cs = info->cs;
f5f1f614 189
190 /* configure GPMC for specific ecc-scheme */
9233279f 191 switch (info->ecc_scheme) {
f5f1f614 192 case OMAP_ECC_HAM1_CODE_SW:
193 return;
194 case OMAP_ECC_HAM1_CODE_HW:
195 ecc_algo = 0x0;
196 bch_type = 0x0;
197 bch_wrapmode = 0x00;
198 eccsize0 = 0xFF;
199 eccsize1 = 0xFF;
200 break;
201 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
202 case OMAP_ECC_BCH8_CODE_HW:
203 ecc_algo = 0x1;
204 bch_type = 0x1;
205 if (mode == NAND_ECC_WRITE) {
206 bch_wrapmode = 0x01;
207 eccsize0 = 0; /* extra bits in nibbles per sector */
208 eccsize1 = 28; /* OOB bits in nibbles per sector */
209 } else {
210 bch_wrapmode = 0x01;
211 eccsize0 = 26; /* ECC bits in nibbles per sector */
212 eccsize1 = 2; /* non-ECC bits in nibbles per sector */
5d7a49b9 213 }
f5f1f614 214 break;
46840f66 215 case OMAP_ECC_BCH16_CODE_HW:
216 ecc_algo = 0x1;
217 bch_type = 0x2;
218 if (mode == NAND_ECC_WRITE) {
219 bch_wrapmode = 0x01;
220 eccsize0 = 0; /* extra bits in nibbles per sector */
221 eccsize1 = 52; /* OOB bits in nibbles per sector */
222 } else {
223 bch_wrapmode = 0x01;
224 eccsize0 = 52; /* ECC bits in nibbles per sector */
225 eccsize1 = 0; /* non-ECC bits in nibbles per sector */
226 }
227 break;
f5f1f614 228 default:
229 return;
d016dc42 230 }
f5f1f614 231 /* Clear ecc and enable bits */
232 writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
233 /* Configure ecc size for BCH */
234 ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
235 writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
236
237 /* Configure device details for BCH engine */
238 ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
239 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
240 (bch_wrapmode << 8) | /* wrap mode */
241 (dev_width << 7) | /* bus width */
242 (0x0 << 4) | /* number of sectors */
243 (cs << 1) | /* ECC CS */
244 (0x1)); /* enable ECC */
245 writel(ecc_config_val, &gpmc_cfg->ecc_config);
4a093006
AB
246}
247
248/*
71a7f956 249 * omap_calculate_ecc - Read ECC result
250 * @mtd: MTD structure
251 * @dat: unused
252 * @ecc_code: ecc_code buffer
253 * Using noninverted ECC can be considered ugly since writing a blank
254 * page ie. padding will clear the ECC bytes. This is no problem as
255 * long nobody is trying to write data on the seemingly unused page.
256 * Reading an erased page will produce an ECC mismatch between
257 * generated and read ECC bytes that has to be dealt with separately.
258 * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
259 * is used, the result of read will be 0x0 while the ECC offsets of the
260 * spare area will be 0xFF which will result in an ECC mismatch.
c3754e9c 261 */
71a7f956 262static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
c3754e9c
MA
263 uint8_t *ecc_code)
264{
71a7f956 265 struct nand_chip *chip = mtd->priv;
9233279f 266 struct omap_nand_info *info = chip->priv;
71a7f956 267 uint32_t *ptr, val = 0;
c3754e9c
MA
268 int8_t i = 0, j;
269
9233279f 270 switch (info->ecc_scheme) {
71a7f956 271 case OMAP_ECC_HAM1_CODE_HW:
272 val = readl(&gpmc_cfg->ecc1_result);
273 ecc_code[0] = val & 0xFF;
274 ecc_code[1] = (val >> 16) & 0xFF;
275 ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
276 break;
277#ifdef CONFIG_BCH
278 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
279#endif
280 case OMAP_ECC_BCH8_CODE_HW:
c3754e9c 281 ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
71a7f956 282 val = readl(ptr);
283 ecc_code[i++] = (val >> 0) & 0xFF;
c3754e9c
MA
284 ptr--;
285 for (j = 0; j < 3; j++) {
71a7f956 286 val = readl(ptr);
287 ecc_code[i++] = (val >> 24) & 0xFF;
288 ecc_code[i++] = (val >> 16) & 0xFF;
289 ecc_code[i++] = (val >> 8) & 0xFF;
290 ecc_code[i++] = (val >> 0) & 0xFF;
c3754e9c
MA
291 ptr--;
292 }
71a7f956 293 break;
46840f66 294 case OMAP_ECC_BCH16_CODE_HW:
295 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
296 ecc_code[i++] = (val >> 8) & 0xFF;
297 ecc_code[i++] = (val >> 0) & 0xFF;
298 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
299 ecc_code[i++] = (val >> 24) & 0xFF;
300 ecc_code[i++] = (val >> 16) & 0xFF;
301 ecc_code[i++] = (val >> 8) & 0xFF;
302 ecc_code[i++] = (val >> 0) & 0xFF;
303 val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
304 ecc_code[i++] = (val >> 24) & 0xFF;
305 ecc_code[i++] = (val >> 16) & 0xFF;
306 ecc_code[i++] = (val >> 8) & 0xFF;
307 ecc_code[i++] = (val >> 0) & 0xFF;
308 for (j = 3; j >= 0; j--) {
309 val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
310 );
311 ecc_code[i++] = (val >> 24) & 0xFF;
312 ecc_code[i++] = (val >> 16) & 0xFF;
313 ecc_code[i++] = (val >> 8) & 0xFF;
314 ecc_code[i++] = (val >> 0) & 0xFF;
315 }
316 break;
71a7f956 317 default:
318 return -EINVAL;
319 }
320 /* ECC scheme specific syndrome customizations */
9233279f 321 switch (info->ecc_scheme) {
71a7f956 322 case OMAP_ECC_HAM1_CODE_HW:
323 break;
324#ifdef CONFIG_BCH
325 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
326
327 for (i = 0; i < chip->ecc.bytes; i++)
328 *(ecc_code + i) = *(ecc_code + i) ^
329 bch8_polynomial[i];
330 break;
331#endif
332 case OMAP_ECC_BCH8_CODE_HW:
333 ecc_code[chip->ecc.bytes - 1] = 0x00;
334 break;
46840f66 335 case OMAP_ECC_BCH16_CODE_HW:
336 break;
71a7f956 337 default:
338 return -EINVAL;
c3754e9c 339 }
71a7f956 340 return 0;
c3754e9c
MA
341}
342
c0736114
JH
343#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
344
345#define PREFETCH_CONFIG1_CS_SHIFT 24
346#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
347#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
348#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
349#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
350#define ENABLE_PREFETCH (1 << 7)
351
352/**
353 * omap_prefetch_enable - configures and starts prefetch transfer
354 * @fifo_th: fifo threshold to be used for read/ write
355 * @count: number of bytes to be transferred
356 * @is_write: prefetch read(0) or write post(1) mode
357 * @cs: chip select to use
358 */
359static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
360{
361 uint32_t val;
362
363 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
364 return -EINVAL;
365
366 if (readl(&gpmc_cfg->prefetch_control))
367 return -EBUSY;
368
369 /* Set the amount of bytes to be prefetched */
370 writel(count, &gpmc_cfg->prefetch_config2);
371
372 val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
373 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
374 writel(val, &gpmc_cfg->prefetch_config1);
375
376 /* Start the prefetch engine */
377 writel(1, &gpmc_cfg->prefetch_control);
378
379 return 0;
380}
381
382/**
383 * omap_prefetch_reset - disables and stops the prefetch engine
384 */
385static void omap_prefetch_reset(void)
386{
387 writel(0, &gpmc_cfg->prefetch_control);
388 writel(0, &gpmc_cfg->prefetch_config1);
389}
390
391static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
392{
393 int ret;
394 uint32_t cnt;
395 struct omap_nand_info *info = chip->priv;
396
397 ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
398 if (ret < 0)
399 return ret;
400
401 do {
402 int i;
403
404 cnt = readl(&gpmc_cfg->prefetch_status);
405 cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
406
407 for (i = 0; i < cnt / 4; i++) {
408 *buf++ = readl(CONFIG_SYS_NAND_BASE);
409 len -= 4;
410 }
411 } while (len);
412
413 omap_prefetch_reset();
414
415 return 0;
416}
417
cb2fc338
JH
418static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
419{
420 struct nand_chip *chip = mtd->priv;
421
422 if (chip->options & NAND_BUSWIDTH_16)
423 nand_read_buf16(mtd, buf, len);
424 else
425 nand_read_buf(mtd, buf, len);
426}
427
428static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
c0736114
JH
429{
430 int ret;
431 uint32_t head, tail;
432 struct nand_chip *chip = mtd->priv;
433
434 /*
435 * If the destination buffer is unaligned, start with reading
436 * the overlap byte-wise.
437 */
438 head = ((uint32_t) buf) % 4;
439 if (head) {
cb2fc338 440 omap_nand_read(mtd, buf, head);
c0736114
JH
441 buf += head;
442 len -= head;
443 }
444
445 /*
446 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
447 * If there's a residue, care for it byte-wise afterwards.
448 */
449 tail = len % 4;
450
cb2fc338 451 ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
c0736114
JH
452 if (ret < 0) {
453 /* fallback in case the prefetch engine is busy */
cb2fc338 454 omap_nand_read(mtd, buf, len);
c0736114
JH
455 } else if (tail) {
456 buf += len - tail;
cb2fc338 457 omap_nand_read(mtd, buf, tail);
c0736114
JH
458 }
459}
460#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
461
71a7f956 462#ifdef CONFIG_NAND_OMAP_ELM
44152979
JH
463/*
464 * omap_reverse_list - re-orders list elements in reverse order [internal]
465 * @list: pointer to start of list
466 * @length: length of list
467*/
468static void omap_reverse_list(u8 *list, unsigned int length)
469{
470 unsigned int i, j;
471 unsigned int half_length = length / 2;
472 u8 tmp;
473 for (i = 0, j = length - 1; i < half_length; i++, j--) {
474 tmp = list[i];
475 list[i] = list[j];
476 list[j] = tmp;
477 }
478}
479
c3754e9c
MA
480/*
481 * omap_correct_data_bch - Compares the ecc read from nand spare area
eae4b2b6 482 * with ECC registers values and corrects one bit error if it has occurred
c3754e9c
MA
483 *
484 * @mtd: MTD device structure
485 * @dat: page data
486 * @read_ecc: ecc read from nand flash (ignored)
487 * @calc_ecc: ecc read from ECC registers
488 *
489 * @return 0 if data is OK or corrected, else returns -1
490 */
491static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
492 uint8_t *read_ecc, uint8_t *calc_ecc)
493{
494 struct nand_chip *chip = mtd->priv;
9233279f 495 struct omap_nand_info *info = chip->priv;
a09431da 496 struct nand_ecc_ctrl *ecc = &chip->ecc;
6e562b11 497 uint32_t error_count = 0, error_max;
46840f66 498 uint32_t error_loc[ELM_MAX_ERROR_COUNT];
d21e77ff 499 enum bch_level bch_type;
6e562b11 500 uint32_t i, ecc_flag = 0;
eb54d2c7 501 uint8_t count;
6e562b11 502 uint32_t byte_pos, bit_pos;
eb54d2c7 503 int err = 0;
6e562b11 504
505 /* check calculated ecc */
a09431da 506 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
6e562b11 507 if (calc_ecc[i] != 0x00)
508 ecc_flag = 1;
509 }
510 if (!ecc_flag)
511 return 0;
c3754e9c 512
6e562b11 513 /* check for whether its a erased-page */
c3754e9c 514 ecc_flag = 0;
a09431da 515 for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
c3754e9c
MA
516 if (read_ecc[i] != 0xff)
517 ecc_flag = 1;
6e562b11 518 }
c3754e9c
MA
519 if (!ecc_flag)
520 return 0;
521
c3754e9c
MA
522 /*
523 * while reading ECC result we read it in big endian.
524 * Hence while loading to ELM we have rotate to get the right endian.
525 */
9233279f 526 switch (info->ecc_scheme) {
6e562b11 527 case OMAP_ECC_BCH8_CODE_HW:
d21e77ff 528 bch_type = BCH_8_BIT;
a09431da 529 omap_reverse_list(calc_ecc, ecc->bytes - 1);
6e562b11 530 break;
46840f66 531 case OMAP_ECC_BCH16_CODE_HW:
532 bch_type = BCH_16_BIT;
533 omap_reverse_list(calc_ecc, ecc->bytes);
534 break;
6e562b11 535 default:
536 return -EINVAL;
537 }
c3754e9c 538 /* use elm module to check for errors */
d21e77ff 539 elm_config(bch_type);
3f990dc8 540 err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
541 if (err)
542 return err;
543
c3754e9c 544 /* correct bch error */
6e562b11 545 for (count = 0; count < error_count; count++) {
9233279f 546 switch (info->ecc_scheme) {
d21e77ff 547 case OMAP_ECC_BCH8_CODE_HW:
6e562b11 548 /* 14th byte in ECC is reserved to match ROM layout */
a09431da 549 error_max = SECTOR_BYTES + (ecc->bytes - 1);
6e562b11 550 break;
46840f66 551 case OMAP_ECC_BCH16_CODE_HW:
552 error_max = SECTOR_BYTES + ecc->bytes;
553 break;
6e562b11 554 default:
555 return -EINVAL;
556 }
557 byte_pos = error_max - (error_loc[count] / 8) - 1;
558 bit_pos = error_loc[count] % 8;
559 if (byte_pos < SECTOR_BYTES) {
560 dat[byte_pos] ^= 1 << bit_pos;
d1d01676 561 debug("nand: bit-flip corrected @data=%d\n", byte_pos);
6e562b11 562 } else if (byte_pos < error_max) {
97eeae1a 563 read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
d1d01676 564 debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
6e562b11 565 SECTOR_BYTES);
566 } else {
567 err = -EBADMSG;
568 printf("nand: error: invalid bit-flip location\n");
569 }
570 }
571 return (err) ? err : error_count;
c3754e9c 572}
c3754e9c
MA
573
574/**
575 * omap_read_page_bch - hardware ecc based page read function
576 * @mtd: mtd info structure
577 * @chip: nand chip info structure
578 * @buf: buffer to store read data
dfe64e2c 579 * @oob_required: caller expects OOB data read to chip->oob_poi
c3754e9c
MA
580 * @page: page number to read
581 *
582 */
583static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
dfe64e2c 584 uint8_t *buf, int oob_required, int page)
c3754e9c
MA
585{
586 int i, eccsize = chip->ecc.size;
587 int eccbytes = chip->ecc.bytes;
588 int eccsteps = chip->ecc.steps;
589 uint8_t *p = buf;
590 uint8_t *ecc_calc = chip->buffers->ecccalc;
591 uint8_t *ecc_code = chip->buffers->ecccode;
592 uint32_t *eccpos = chip->ecc.layout->eccpos;
593 uint8_t *oob = chip->oob_poi;
594 uint32_t data_pos;
595 uint32_t oob_pos;
596
597 data_pos = 0;
598 /* oob area start */
599 oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
600 oob += chip->ecc.layout->eccpos[0];
601
602 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
603 oob += eccbytes) {
604 chip->ecc.hwctl(mtd, NAND_ECC_READ);
605 /* read data */
cc81a529 606 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
c3754e9c
MA
607 chip->read_buf(mtd, p, eccsize);
608
609 /* read respective ecc from oob area */
cc81a529 610 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
c3754e9c
MA
611 chip->read_buf(mtd, oob, eccbytes);
612 /* read syndrome */
613 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
614
615 data_pos += eccsize;
616 oob_pos += eccbytes;
617 }
618
619 for (i = 0; i < chip->ecc.total; i++)
620 ecc_code[i] = chip->oob_poi[eccpos[i]];
621
622 eccsteps = chip->ecc.steps;
623 p = buf;
624
625 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
626 int stat;
627
628 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
629 if (stat < 0)
630 mtd->ecc_stats.failed++;
631 else
632 mtd->ecc_stats.corrected += stat;
633 }
634 return 0;
635}
d016dc42 636#endif /* CONFIG_NAND_OMAP_ELM */
c3754e9c 637
4a093006
AB
638/*
639 * OMAP3 BCH8 support (with BCH library)
640 */
d016dc42 641#ifdef CONFIG_BCH
4a093006 642/**
d016dc42 643 * omap_correct_data_bch_sw - Decode received data and correct errors
4a093006
AB
644 * @mtd: MTD device structure
645 * @data: page data
646 * @read_ecc: ecc read from nand flash
647 * @calc_ecc: ecc read from HW ECC registers
648 */
d016dc42 649static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
4a093006
AB
650 u_char *read_ecc, u_char *calc_ecc)
651{
652 int i, count;
653 /* cannot correct more than 8 errors */
654 unsigned int errloc[8];
655 struct nand_chip *chip = mtd->priv;
9233279f 656 struct omap_nand_info *info = chip->priv;
4a093006 657
9233279f 658 count = decode_bch(info->control, NULL, 512, read_ecc, calc_ecc,
659 NULL, errloc);
4a093006
AB
660 if (count > 0) {
661 /* correct errors */
662 for (i = 0; i < count; i++) {
663 /* correct data only, not ecc bytes */
664 if (errloc[i] < 8*512)
665 data[errloc[i]/8] ^= 1 << (errloc[i] & 7);
d1d01676 666 debug("corrected bitflip %u\n", errloc[i]);
4a093006
AB
667#ifdef DEBUG
668 puts("read_ecc: ");
669 /*
670 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
671 * here!
672 */
673 for (i = 0; i < 13; i++)
674 printf("%02x ", read_ecc[i]);
675 puts("\n");
676 puts("calc_ecc: ");
677 for (i = 0; i < 13; i++)
678 printf("%02x ", calc_ecc[i]);
679 puts("\n");
680#endif
681 }
682 } else if (count < 0) {
683 puts("ecc unrecoverable error\n");
684 }
685 return count;
686}
687
688/**
689 * omap_free_bch - Release BCH ecc resources
690 * @mtd: MTD device structure
691 */
692static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
693{
694 struct nand_chip *chip = mtd->priv;
9233279f 695 struct omap_nand_info *info = chip->priv;
4a093006 696
9233279f 697 if (info->control) {
698 free_bch(info->control);
699 info->control = NULL;
4a093006
AB
700 }
701}
d016dc42 702#endif /* CONFIG_BCH */
703
704/**
705 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
706 * @nand: NAND chip device structure
707 * @ecc_scheme: ecc scheme to configure
708 * @pagesize: number of main-area bytes per page of NAND device
709 * @oobsize: number of OOB/spare bytes per page of NAND device
710 */
711static int omap_select_ecc_scheme(struct nand_chip *nand,
712 enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
9233279f 713 struct omap_nand_info *info = nand->priv;
eb237a15 714 struct nand_ecclayout *ecclayout = &omap_ecclayout;
d016dc42 715 int eccsteps = pagesize / SECTOR_BYTES;
716 int i;
717
718 switch (ecc_scheme) {
719 case OMAP_ECC_HAM1_CODE_SW:
720 debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
721 /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
722 * initialized in nand_scan_tail(), so just set ecc.mode */
9233279f 723 info->control = NULL;
d016dc42 724 nand->ecc.mode = NAND_ECC_SOFT;
725 nand->ecc.layout = NULL;
2528460c 726 nand->ecc.size = 0;
d016dc42 727 break;
728
729 case OMAP_ECC_HAM1_CODE_HW:
730 debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
731 /* check ecc-scheme requirements before updating ecc info */
732 if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
733 printf("nand: error: insufficient OOB: require=%d\n", (
734 (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
735 return -EINVAL;
736 }
9233279f 737 info->control = NULL;
d016dc42 738 /* populate ecc specific fields */
fcd05245 739 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 740 nand->ecc.mode = NAND_ECC_HW;
741 nand->ecc.strength = 1;
742 nand->ecc.size = SECTOR_BYTES;
743 nand->ecc.bytes = 3;
744 nand->ecc.hwctl = omap_enable_hwecc;
745 nand->ecc.correct = omap_correct_data;
746 nand->ecc.calculate = omap_calculate_ecc;
747 /* define ecc-layout */
748 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
69cc97f8 749 for (i = 0; i < ecclayout->eccbytes; i++) {
750 if (nand->options & NAND_BUSWIDTH_16)
751 ecclayout->eccpos[i] = i + 2;
752 else
753 ecclayout->eccpos[i] = i + 1;
754 }
d016dc42 755 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
756 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
757 BADBLOCK_MARKER_LENGTH;
d016dc42 758 break;
759
760 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
761#ifdef CONFIG_BCH
762 debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
763 /* check ecc-scheme requirements before updating ecc info */
764 if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
765 printf("nand: error: insufficient OOB: require=%d\n", (
766 (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
767 return -EINVAL;
768 }
769 /* check if BCH S/W library can be used for error detection */
9233279f 770 info->control = init_bch(13, 8, 0x201b);
771 if (!info->control) {
d016dc42 772 printf("nand: error: could not init_bch()\n");
773 return -ENODEV;
774 }
d016dc42 775 /* populate ecc specific fields */
fcd05245 776 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 777 nand->ecc.mode = NAND_ECC_HW;
778 nand->ecc.strength = 8;
779 nand->ecc.size = SECTOR_BYTES;
780 nand->ecc.bytes = 13;
f5f1f614 781 nand->ecc.hwctl = omap_enable_hwecc;
d016dc42 782 nand->ecc.correct = omap_correct_data_bch_sw;
71a7f956 783 nand->ecc.calculate = omap_calculate_ecc;
d016dc42 784 /* define ecc-layout */
785 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
786 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
787 for (i = 1; i < ecclayout->eccbytes; i++) {
788 if (i % nand->ecc.bytes)
789 ecclayout->eccpos[i] =
790 ecclayout->eccpos[i - 1] + 1;
791 else
792 ecclayout->eccpos[i] =
793 ecclayout->eccpos[i - 1] + 2;
794 }
795 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
796 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
797 BADBLOCK_MARKER_LENGTH;
d016dc42 798 break;
799#else
800 printf("nand: error: CONFIG_BCH required for ECC\n");
801 return -EINVAL;
802#endif
803
804 case OMAP_ECC_BCH8_CODE_HW:
805#ifdef CONFIG_NAND_OMAP_ELM
806 debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
807 /* check ecc-scheme requirements before updating ecc info */
808 if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
809 printf("nand: error: insufficient OOB: require=%d\n", (
810 (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
811 return -EINVAL;
812 }
813 /* intialize ELM for ECC error detection */
814 elm_init();
9233279f 815 info->control = NULL;
d016dc42 816 /* populate ecc specific fields */
fcd05245 817 memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
d016dc42 818 nand->ecc.mode = NAND_ECC_HW;
819 nand->ecc.strength = 8;
820 nand->ecc.size = SECTOR_BYTES;
821 nand->ecc.bytes = 14;
f5f1f614 822 nand->ecc.hwctl = omap_enable_hwecc;
d016dc42 823 nand->ecc.correct = omap_correct_data_bch;
71a7f956 824 nand->ecc.calculate = omap_calculate_ecc;
d016dc42 825 nand->ecc.read_page = omap_read_page_bch;
826 /* define ecc-layout */
827 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
828 for (i = 0; i < ecclayout->eccbytes; i++)
829 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
830 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
831 ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
832 BADBLOCK_MARKER_LENGTH;
d016dc42 833 break;
834#else
835 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
836 return -EINVAL;
837#endif
838
46840f66 839 case OMAP_ECC_BCH16_CODE_HW:
840#ifdef CONFIG_NAND_OMAP_ELM
841 debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
842 /* check ecc-scheme requirements before updating ecc info */
843 if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
844 printf("nand: error: insufficient OOB: require=%d\n", (
845 (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
846 return -EINVAL;
847 }
848 /* intialize ELM for ECC error detection */
849 elm_init();
850 /* populate ecc specific fields */
851 nand->ecc.mode = NAND_ECC_HW;
852 nand->ecc.size = SECTOR_BYTES;
853 nand->ecc.bytes = 26;
854 nand->ecc.strength = 16;
855 nand->ecc.hwctl = omap_enable_hwecc;
856 nand->ecc.correct = omap_correct_data_bch;
857 nand->ecc.calculate = omap_calculate_ecc;
858 nand->ecc.read_page = omap_read_page_bch;
859 /* define ecc-layout */
860 ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
861 for (i = 0; i < ecclayout->eccbytes; i++)
862 ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
863 ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
864 ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
865 BADBLOCK_MARKER_LENGTH;
866 break;
867#else
868 printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
869 return -EINVAL;
870#endif
d016dc42 871 default:
872 debug("nand: error: ecc scheme not enabled or supported\n");
873 return -EINVAL;
874 }
eb237a15
NK
875
876 /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
877 if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
878 nand->ecc.layout = ecclayout;
879
9233279f 880 info->ecc_scheme = ecc_scheme;
d016dc42 881 return 0;
882}
4a093006 883
12c2f1ee 884#ifndef CONFIG_SPL_BUILD
12201a13 885/*
da634ae3
AB
886 * omap_nand_switch_ecc - switch the ECC operation between different engines
887 * (h/w and s/w) and different algorithms (hamming and BCHx)
12201a13 888 *
da634ae3
AB
889 * @hardware - true if one of the HW engines should be used
890 * @eccstrength - the number of bits that could be corrected
891 * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
12201a13 892 */
d016dc42 893int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
12201a13
DB
894{
895 struct nand_chip *nand;
896 struct mtd_info *mtd;
d016dc42 897 int err = 0;
12201a13
DB
898
899 if (nand_curr_device < 0 ||
900 nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
b616d9b0 901 !nand_info[nand_curr_device]->name) {
d016dc42 902 printf("nand: error: no NAND devices found\n");
903 return -ENODEV;
12201a13
DB
904 }
905
b616d9b0 906 mtd = nand_info[nand_curr_device];
12201a13 907 nand = mtd->priv;
12201a13 908 nand->options |= NAND_OWN_BUFFERS;
13fbde6e 909 nand->options &= ~NAND_SUBPAGE_READ;
12201a13 910 /* Setup the ecc configurations again */
da634ae3
AB
911 if (hardware) {
912 if (eccstrength == 1) {
d016dc42 913 err = omap_select_ecc_scheme(nand,
914 OMAP_ECC_HAM1_CODE_HW,
915 mtd->writesize, mtd->oobsize);
916 } else if (eccstrength == 8) {
917 err = omap_select_ecc_scheme(nand,
918 OMAP_ECC_BCH8_CODE_HW,
919 mtd->writesize, mtd->oobsize);
920 } else {
921 printf("nand: error: unsupported ECC scheme\n");
922 return -EINVAL;
da634ae3 923 }
12201a13 924 } else {
b050898e
AC
925 if (eccstrength == 1) {
926 err = omap_select_ecc_scheme(nand,
927 OMAP_ECC_HAM1_CODE_SW,
928 mtd->writesize, mtd->oobsize);
929 } else if (eccstrength == 8) {
930 err = omap_select_ecc_scheme(nand,
931 OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
d016dc42 932 mtd->writesize, mtd->oobsize);
b050898e
AC
933 } else {
934 printf("nand: error: unsupported ECC scheme\n");
935 return -EINVAL;
936 }
12201a13
DB
937 }
938
939 /* Update NAND handling after ECC mode switch */
d016dc42 940 if (!err)
941 err = nand_scan_tail(mtd);
942 return err;
12201a13 943}
12c2f1ee 944#endif /* CONFIG_SPL_BUILD */
12201a13
DB
945
946/*
947 * Board-specific NAND initialization. The following members of the
948 * argument are board-specific:
949 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
950 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
951 * - cmd_ctrl: hardwarespecific function for accesing control-lines
952 * - waitfunc: hardwarespecific function for accesing device ready/busy line
953 * - ecc.hwctl: function to enable (reset) hardware ecc generator
954 * - ecc.mode: mode of ecc, see defines
955 * - chip_delay: chip dependent delay for transfering data from array to
956 * read regs (tR)
957 * - options: various chip options. They can partly be set to inform
958 * nand_scan about special functionality. See the defines for further
959 * explanation
960 */
961int board_nand_init(struct nand_chip *nand)
962{
963 int32_t gpmc_config = 0;
5c3f7e0e 964 int cs = cs_next++;
d016dc42 965 int err = 0;
12201a13
DB
966 /*
967 * xloader/Uboot's gpmc configuration would have configured GPMC for
968 * nand type of memory. The following logic scans and latches on to the
969 * first CS with NAND type memory.
970 * TBD: need to make this logic generic to handle multiple CS NAND
971 * devices.
972 */
973 while (cs < GPMC_MAX_CS) {
12201a13 974 /* Check if NAND type is set */
89411352 975 if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
12201a13
DB
976 /* Found it!! */
977 break;
978 }
979 cs++;
980 }
981 if (cs >= GPMC_MAX_CS) {
d016dc42 982 printf("nand: error: Unable to find NAND settings in "
12201a13
DB
983 "GPMC Configuration - quitting\n");
984 return -ENODEV;
985 }
986
89411352 987 gpmc_config = readl(&gpmc_cfg->config);
12201a13
DB
988 /* Disable Write protect */
989 gpmc_config |= 0x10;
89411352 990 writel(gpmc_config, &gpmc_cfg->config);
12201a13 991
89411352
DB
992 nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
993 nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
5c3f7e0e
RL
994 omap_nand_info[cs].control = NULL;
995 omap_nand_info[cs].cs = cs;
d8af3933 996 omap_nand_info[cs].ws = wscfg[cs];
5c3f7e0e 997 nand->priv = &omap_nand_info[cs];
d016dc42 998 nand->cmd_ctrl = omap_nand_hwcontrol;
999 nand->options |= NAND_NO_PADDING | NAND_CACHEPRG;
12201a13 1000 nand->chip_delay = 100;
d016dc42 1001 nand->ecc.layout = &omap_ecclayout;
1002
b80a6603 1003 /* configure driver and controller based on NAND device bus-width */
1004 gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1005#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1006 nand->options |= NAND_BUSWIDTH_16;
1007 writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1008#else
1009 nand->options &= ~NAND_BUSWIDTH_16;
1010 writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1011#endif
d016dc42 1012 /* select ECC scheme */
3f719069 1013#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1014 err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
d016dc42 1015 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
3f719069 1016#else
1017 /* pagesize and oobsize are not required to configure sw ecc-scheme */
d016dc42 1018 err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1019 0, 0);
c3754e9c 1020#endif
d016dc42 1021 if (err)
1022 return err;
12c2f1ee 1023
89831112 1024#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
cb2fc338 1025 nand->read_buf = omap_nand_read_prefetch;
89831112 1026#else
cb2fc338
JH
1027 if (nand->options & NAND_BUSWIDTH_16)
1028 nand->read_buf = nand_read_buf16;
89831112
ES
1029 else
1030 nand->read_buf = nand_read_buf;
12c2f1ee 1031#endif
fb384c47
SR
1032
1033 nand->dev_ready = omap_dev_ready;
1034
12201a13
DB
1035 return 0;
1036}