]> git.ipfire.org Git - people/ms/linux.git/blame - drivers/net/can/c_can/c_can.c
can: make struct proto const
[people/ms/linux.git] / drivers / net / can / c_can / c_can.c
CommitLineData
881ff67a
BS
1/*
2 * CAN bus driver for Bosch C_CAN controller
3 *
4 * Copyright (C) 2010 ST Microelectronics
5 * Bhupesh Sharma <bhupesh.sharma@st.com>
6 *
7 * Borrowed heavily from the C_CAN driver originally written by:
8 * Copyright (C) 2007
9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
11 *
12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
13 * written by:
14 * Copyright
15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
17 *
18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
19 * Bosch C_CAN user manual can be obtained from:
20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
21 * users_manual_c_can.pdf
22 *
23 * This file is licensed under the terms of the GNU General Public
24 * License version 2. This program is licensed "as is" without any
25 * warranty of any kind, whether express or implied.
26 */
27
28#include <linux/kernel.h>
29#include <linux/version.h>
30#include <linux/module.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/if_arp.h>
35#include <linux/if_ether.h>
36#include <linux/list.h>
37#include <linux/delay.h>
38#include <linux/io.h>
39
40#include <linux/can.h>
41#include <linux/can/dev.h>
42#include <linux/can/error.h>
43
44#include "c_can.h"
45
46/* control register */
47#define CONTROL_TEST BIT(7)
48#define CONTROL_CCE BIT(6)
49#define CONTROL_DISABLE_AR BIT(5)
50#define CONTROL_ENABLE_AR (0 << 5)
51#define CONTROL_EIE BIT(3)
52#define CONTROL_SIE BIT(2)
53#define CONTROL_IE BIT(1)
54#define CONTROL_INIT BIT(0)
55
56/* test register */
57#define TEST_RX BIT(7)
58#define TEST_TX1 BIT(6)
59#define TEST_TX2 BIT(5)
60#define TEST_LBACK BIT(4)
61#define TEST_SILENT BIT(3)
62#define TEST_BASIC BIT(2)
63
64/* status register */
65#define STATUS_BOFF BIT(7)
66#define STATUS_EWARN BIT(6)
67#define STATUS_EPASS BIT(5)
68#define STATUS_RXOK BIT(4)
69#define STATUS_TXOK BIT(3)
70
71/* error counter register */
72#define ERR_CNT_TEC_MASK 0xff
73#define ERR_CNT_TEC_SHIFT 0
74#define ERR_CNT_REC_SHIFT 8
75#define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
76#define ERR_CNT_RP_SHIFT 15
77#define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
78
79/* bit-timing register */
80#define BTR_BRP_MASK 0x3f
81#define BTR_BRP_SHIFT 0
82#define BTR_SJW_SHIFT 6
83#define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
84#define BTR_TSEG1_SHIFT 8
85#define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
86#define BTR_TSEG2_SHIFT 12
87#define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
88
89/* brp extension register */
90#define BRP_EXT_BRPE_MASK 0x0f
91#define BRP_EXT_BRPE_SHIFT 0
92
93/* IFx command request */
94#define IF_COMR_BUSY BIT(15)
95
96/* IFx command mask */
97#define IF_COMM_WR BIT(7)
98#define IF_COMM_MASK BIT(6)
99#define IF_COMM_ARB BIT(5)
100#define IF_COMM_CONTROL BIT(4)
101#define IF_COMM_CLR_INT_PND BIT(3)
102#define IF_COMM_TXRQST BIT(2)
103#define IF_COMM_DATAA BIT(1)
104#define IF_COMM_DATAB BIT(0)
105#define IF_COMM_ALL (IF_COMM_MASK | IF_COMM_ARB | \
106 IF_COMM_CONTROL | IF_COMM_TXRQST | \
107 IF_COMM_DATAA | IF_COMM_DATAB)
108
109/* IFx arbitration */
110#define IF_ARB_MSGVAL BIT(15)
111#define IF_ARB_MSGXTD BIT(14)
112#define IF_ARB_TRANSMIT BIT(13)
113
114/* IFx message control */
115#define IF_MCONT_NEWDAT BIT(15)
116#define IF_MCONT_MSGLST BIT(14)
117#define IF_MCONT_CLR_MSGLST (0 << 14)
118#define IF_MCONT_INTPND BIT(13)
119#define IF_MCONT_UMASK BIT(12)
120#define IF_MCONT_TXIE BIT(11)
121#define IF_MCONT_RXIE BIT(10)
122#define IF_MCONT_RMTEN BIT(9)
123#define IF_MCONT_TXRQST BIT(8)
124#define IF_MCONT_EOB BIT(7)
125#define IF_MCONT_DLC_MASK 0xf
126
127/*
128 * IFx register masks:
129 * allow easy operation on 16-bit registers when the
130 * argument is 32-bit instead
131 */
132#define IFX_WRITE_LOW_16BIT(x) ((x) & 0xFFFF)
133#define IFX_WRITE_HIGH_16BIT(x) (((x) & 0xFFFF0000) >> 16)
134
135/* message object split */
136#define C_CAN_NO_OF_OBJECTS 32
137#define C_CAN_MSG_OBJ_RX_NUM 16
138#define C_CAN_MSG_OBJ_TX_NUM 16
139
140#define C_CAN_MSG_OBJ_RX_FIRST 1
141#define C_CAN_MSG_OBJ_RX_LAST (C_CAN_MSG_OBJ_RX_FIRST + \
142 C_CAN_MSG_OBJ_RX_NUM - 1)
143
144#define C_CAN_MSG_OBJ_TX_FIRST (C_CAN_MSG_OBJ_RX_LAST + 1)
145#define C_CAN_MSG_OBJ_TX_LAST (C_CAN_MSG_OBJ_TX_FIRST + \
146 C_CAN_MSG_OBJ_TX_NUM - 1)
147
148#define C_CAN_MSG_OBJ_RX_SPLIT 9
149#define C_CAN_MSG_RX_LOW_LAST (C_CAN_MSG_OBJ_RX_SPLIT - 1)
150
151#define C_CAN_NEXT_MSG_OBJ_MASK (C_CAN_MSG_OBJ_TX_NUM - 1)
152#define RECEIVE_OBJECT_BITS 0x0000ffff
153
154/* status interrupt */
155#define STATUS_INTERRUPT 0x8000
156
157/* global interrupt masks */
158#define ENABLE_ALL_INTERRUPTS 1
159#define DISABLE_ALL_INTERRUPTS 0
160
161/* minimum timeout for checking BUSY status */
162#define MIN_TIMEOUT_VALUE 6
163
164/* napi related */
165#define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
166
167/* c_can lec values */
168enum c_can_lec_type {
169 LEC_NO_ERROR = 0,
170 LEC_STUFF_ERROR,
171 LEC_FORM_ERROR,
172 LEC_ACK_ERROR,
173 LEC_BIT1_ERROR,
174 LEC_BIT0_ERROR,
175 LEC_CRC_ERROR,
176 LEC_UNUSED,
177};
178
179/*
180 * c_can error types:
181 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
182 */
183enum c_can_bus_error_types {
184 C_CAN_NO_ERROR = 0,
185 C_CAN_BUS_OFF,
186 C_CAN_ERROR_WARNING,
187 C_CAN_ERROR_PASSIVE,
188};
189
190static struct can_bittiming_const c_can_bittiming_const = {
191 .name = KBUILD_MODNAME,
192 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
193 .tseg1_max = 16,
194 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
195 .tseg2_max = 8,
196 .sjw_max = 4,
197 .brp_min = 1,
198 .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
199 .brp_inc = 1,
200};
201
202static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
203{
204 return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
205 C_CAN_MSG_OBJ_TX_FIRST;
206}
207
208static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
209{
210 return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
211 C_CAN_MSG_OBJ_TX_FIRST;
212}
213
214static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
215{
216 u32 val = priv->read_reg(priv, reg);
217 val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
218 return val;
219}
220
221static void c_can_enable_all_interrupts(struct c_can_priv *priv,
222 int enable)
223{
224 unsigned int cntrl_save = priv->read_reg(priv,
225 &priv->regs->control);
226
227 if (enable)
228 cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
229 else
230 cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
231
232 priv->write_reg(priv, &priv->regs->control, cntrl_save);
233}
234
235static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
236{
237 int count = MIN_TIMEOUT_VALUE;
238
239 while (count && priv->read_reg(priv,
240 &priv->regs->ifregs[iface].com_req) &
241 IF_COMR_BUSY) {
242 count--;
243 udelay(1);
244 }
245
246 if (!count)
247 return 1;
248
249 return 0;
250}
251
252static inline void c_can_object_get(struct net_device *dev,
253 int iface, int objno, int mask)
254{
255 struct c_can_priv *priv = netdev_priv(dev);
256
257 /*
258 * As per specs, after writting the message object number in the
259 * IF command request register the transfer b/w interface
260 * register and message RAM must be complete in 6 CAN-CLK
261 * period.
262 */
263 priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
264 IFX_WRITE_LOW_16BIT(mask));
265 priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
266 IFX_WRITE_LOW_16BIT(objno));
267
268 if (c_can_msg_obj_is_busy(priv, iface))
269 netdev_err(dev, "timed out in object get\n");
270}
271
272static inline void c_can_object_put(struct net_device *dev,
273 int iface, int objno, int mask)
274{
275 struct c_can_priv *priv = netdev_priv(dev);
276
277 /*
278 * As per specs, after writting the message object number in the
279 * IF command request register the transfer b/w interface
280 * register and message RAM must be complete in 6 CAN-CLK
281 * period.
282 */
283 priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
284 (IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
285 priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
286 IFX_WRITE_LOW_16BIT(objno));
287
288 if (c_can_msg_obj_is_busy(priv, iface))
289 netdev_err(dev, "timed out in object put\n");
290}
291
292static void c_can_write_msg_object(struct net_device *dev,
293 int iface, struct can_frame *frame, int objno)
294{
295 int i;
296 u16 flags = 0;
297 unsigned int id;
298 struct c_can_priv *priv = netdev_priv(dev);
299
300 if (!(frame->can_id & CAN_RTR_FLAG))
301 flags |= IF_ARB_TRANSMIT;
302
303 if (frame->can_id & CAN_EFF_FLAG) {
304 id = frame->can_id & CAN_EFF_MASK;
305 flags |= IF_ARB_MSGXTD;
306 } else
307 id = ((frame->can_id & CAN_SFF_MASK) << 18);
308
309 flags |= IF_ARB_MSGVAL;
310
311 priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
312 IFX_WRITE_LOW_16BIT(id));
313 priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
314 IFX_WRITE_HIGH_16BIT(id));
315
316 for (i = 0; i < frame->can_dlc; i += 2) {
317 priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
318 frame->data[i] | (frame->data[i + 1] << 8));
319 }
320
321 /* enable interrupt for this message object */
322 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
323 IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
324 frame->can_dlc);
325 c_can_object_put(dev, iface, objno, IF_COMM_ALL);
326}
327
328static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
329 int iface, int ctrl_mask,
330 int obj)
331{
332 struct c_can_priv *priv = netdev_priv(dev);
333
334 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
335 ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
336 c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
337
338}
339
340static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
341 int iface,
342 int ctrl_mask)
343{
344 int i;
345 struct c_can_priv *priv = netdev_priv(dev);
346
347 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
348 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
349 ctrl_mask & ~(IF_MCONT_MSGLST |
350 IF_MCONT_INTPND | IF_MCONT_NEWDAT));
351 c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
352 }
353}
354
355static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
356 int iface, int ctrl_mask,
357 int obj)
358{
359 struct c_can_priv *priv = netdev_priv(dev);
360
361 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
362 ctrl_mask & ~(IF_MCONT_MSGLST |
363 IF_MCONT_INTPND | IF_MCONT_NEWDAT));
364 c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
365}
366
367static void c_can_handle_lost_msg_obj(struct net_device *dev,
368 int iface, int objno)
369{
370 struct c_can_priv *priv = netdev_priv(dev);
371 struct net_device_stats *stats = &dev->stats;
372 struct sk_buff *skb;
373 struct can_frame *frame;
374
375 netdev_err(dev, "msg lost in buffer %d\n", objno);
376
377 c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
378
379 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
380 IF_MCONT_CLR_MSGLST);
381
382 c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
383
384 /* create an error msg */
385 skb = alloc_can_err_skb(dev, &frame);
386 if (unlikely(!skb))
387 return;
388
389 frame->can_id |= CAN_ERR_CRTL;
390 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
391 stats->rx_errors++;
392 stats->rx_over_errors++;
393
394 netif_receive_skb(skb);
395}
396
397static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
398{
399 u16 flags, data;
400 int i;
401 unsigned int val;
402 struct c_can_priv *priv = netdev_priv(dev);
403 struct net_device_stats *stats = &dev->stats;
404 struct sk_buff *skb;
405 struct can_frame *frame;
406
407 skb = alloc_can_skb(dev, &frame);
408 if (!skb) {
409 stats->rx_dropped++;
410 return -ENOMEM;
411 }
412
413 frame->can_dlc = get_can_dlc(ctrl & 0x0F);
414
415 flags = priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
416 val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
417 (flags << 16);
418
419 if (flags & IF_ARB_MSGXTD)
420 frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
421 else
422 frame->can_id = (val >> 18) & CAN_SFF_MASK;
423
424 if (flags & IF_ARB_TRANSMIT)
425 frame->can_id |= CAN_RTR_FLAG;
426 else {
427 for (i = 0; i < frame->can_dlc; i += 2) {
428 data = priv->read_reg(priv,
429 &priv->regs->ifregs[iface].data[i / 2]);
430 frame->data[i] = data;
431 frame->data[i + 1] = data >> 8;
432 }
433 }
434
435 netif_receive_skb(skb);
436
437 stats->rx_packets++;
438 stats->rx_bytes += frame->can_dlc;
439
440 return 0;
441}
442
443static void c_can_setup_receive_object(struct net_device *dev, int iface,
444 int objno, unsigned int mask,
445 unsigned int id, unsigned int mcont)
446{
447 struct c_can_priv *priv = netdev_priv(dev);
448
449 priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
450 IFX_WRITE_LOW_16BIT(mask));
451 priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
452 IFX_WRITE_HIGH_16BIT(mask));
453
454 priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
455 IFX_WRITE_LOW_16BIT(id));
456 priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
457 (IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
458
459 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
460 c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
461
462 netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
463 c_can_read_reg32(priv, &priv->regs->msgval1));
464}
465
466static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
467{
468 struct c_can_priv *priv = netdev_priv(dev);
469
470 priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
471 priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
472 priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
473
474 c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
475
476 netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
477 c_can_read_reg32(priv, &priv->regs->msgval1));
478}
479
480static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
481{
482 int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
483
484 /*
485 * as transmission request register's bit n-1 corresponds to
486 * message object n, we need to handle the same properly.
487 */
488 if (val & (1 << (objno - 1)))
489 return 1;
490
491 return 0;
492}
493
494static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
495 struct net_device *dev)
496{
497 u32 msg_obj_no;
498 struct c_can_priv *priv = netdev_priv(dev);
499 struct can_frame *frame = (struct can_frame *)skb->data;
500
501 if (can_dropped_invalid_skb(dev, skb))
502 return NETDEV_TX_OK;
503
504 msg_obj_no = get_tx_next_msg_obj(priv);
505
506 /* prepare message object for transmission */
507 c_can_write_msg_object(dev, 0, frame, msg_obj_no);
508 can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
509
510 /*
511 * we have to stop the queue in case of a wrap around or
512 * if the next TX message object is still in use
513 */
514 priv->tx_next++;
515 if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
516 (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
517 netif_stop_queue(dev);
518
519 return NETDEV_TX_OK;
520}
521
522static int c_can_set_bittiming(struct net_device *dev)
523{
524 unsigned int reg_btr, reg_brpe, ctrl_save;
525 u8 brp, brpe, sjw, tseg1, tseg2;
526 u32 ten_bit_brp;
527 struct c_can_priv *priv = netdev_priv(dev);
528 const struct can_bittiming *bt = &priv->can.bittiming;
529
530 /* c_can provides a 6-bit brp and 4-bit brpe fields */
531 ten_bit_brp = bt->brp - 1;
532 brp = ten_bit_brp & BTR_BRP_MASK;
533 brpe = ten_bit_brp >> 6;
534
535 sjw = bt->sjw - 1;
536 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
537 tseg2 = bt->phase_seg2 - 1;
538 reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
539 (tseg2 << BTR_TSEG2_SHIFT);
540 reg_brpe = brpe & BRP_EXT_BRPE_MASK;
541
542 netdev_info(dev,
543 "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
544
545 ctrl_save = priv->read_reg(priv, &priv->regs->control);
546 priv->write_reg(priv, &priv->regs->control,
547 ctrl_save | CONTROL_CCE | CONTROL_INIT);
548 priv->write_reg(priv, &priv->regs->btr, reg_btr);
549 priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
550 priv->write_reg(priv, &priv->regs->control, ctrl_save);
551
552 return 0;
553}
554
555/*
556 * Configure C_CAN message objects for Tx and Rx purposes:
557 * C_CAN provides a total of 32 message objects that can be configured
558 * either for Tx or Rx purposes. Here the first 16 message objects are used as
559 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
560 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
561 * See user guide document for further details on configuring message
562 * objects.
563 */
564static void c_can_configure_msg_objects(struct net_device *dev)
565{
566 int i;
567
568 /* first invalidate all message objects */
569 for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
570 c_can_inval_msg_object(dev, 0, i);
571
572 /* setup receive message objects */
573 for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
574 c_can_setup_receive_object(dev, 0, i, 0, 0,
575 (IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
576
577 c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
578 IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
579}
580
581/*
582 * Configure C_CAN chip:
583 * - enable/disable auto-retransmission
584 * - set operating mode
585 * - configure message objects
586 */
587static void c_can_chip_config(struct net_device *dev)
588{
589 struct c_can_priv *priv = netdev_priv(dev);
590
591 if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
592 /* disable automatic retransmission */
593 priv->write_reg(priv, &priv->regs->control,
594 CONTROL_DISABLE_AR);
595 else
596 /* enable automatic retransmission */
597 priv->write_reg(priv, &priv->regs->control,
598 CONTROL_ENABLE_AR);
599
600 if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY &
601 CAN_CTRLMODE_LOOPBACK)) {
602 /* loopback + silent mode : useful for hot self-test */
603 priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
604 CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
605 priv->write_reg(priv, &priv->regs->test,
606 TEST_LBACK | TEST_SILENT);
607 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
608 /* loopback mode : useful for self-test function */
609 priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
610 CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
611 priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
612 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
613 /* silent mode : bus-monitoring mode */
614 priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
615 CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
616 priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
617 } else
618 /* normal mode*/
619 priv->write_reg(priv, &priv->regs->control,
620 CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
621
622 /* configure message objects */
623 c_can_configure_msg_objects(dev);
624
625 /* set a `lec` value so that we can check for updates later */
626 priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
627
628 /* set bittiming params */
629 c_can_set_bittiming(dev);
630}
631
632static void c_can_start(struct net_device *dev)
633{
634 struct c_can_priv *priv = netdev_priv(dev);
635
881ff67a
BS
636 /* basic c_can configuration */
637 c_can_chip_config(dev);
638
639 priv->can.state = CAN_STATE_ERROR_ACTIVE;
640
641 /* reset tx helper pointers */
642 priv->tx_next = priv->tx_echo = 0;
4f2d56c4
JA
643
644 /* enable status change, error and module interrupts */
645 c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
881ff67a
BS
646}
647
648static void c_can_stop(struct net_device *dev)
649{
650 struct c_can_priv *priv = netdev_priv(dev);
651
652 /* disable all interrupts */
653 c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
654
655 /* set the state as STOPPED */
656 priv->can.state = CAN_STATE_STOPPED;
657}
658
659static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
660{
661 switch (mode) {
662 case CAN_MODE_START:
663 c_can_start(dev);
664 netif_wake_queue(dev);
665 break;
666 default:
667 return -EOPNOTSUPP;
668 }
669
670 return 0;
671}
672
673static int c_can_get_berr_counter(const struct net_device *dev,
674 struct can_berr_counter *bec)
675{
676 unsigned int reg_err_counter;
677 struct c_can_priv *priv = netdev_priv(dev);
678
679 reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
680 bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
681 ERR_CNT_REC_SHIFT;
682 bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
683
684 return 0;
685}
686
687/*
688 * theory of operation:
689 *
690 * priv->tx_echo holds the number of the oldest can_frame put for
691 * transmission into the hardware, but not yet ACKed by the CAN tx
692 * complete IRQ.
693 *
694 * We iterate from priv->tx_echo to priv->tx_next and check if the
695 * packet has been transmitted, echo it back to the CAN framework.
696 * If we discover a not yet transmitted package, stop looking for more.
697 */
698static void c_can_do_tx(struct net_device *dev)
699{
700 u32 val;
701 u32 msg_obj_no;
702 struct c_can_priv *priv = netdev_priv(dev);
703 struct net_device_stats *stats = &dev->stats;
704
705 for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
706 msg_obj_no = get_tx_echo_msg_obj(priv);
707 c_can_inval_msg_object(dev, 0, msg_obj_no);
708 val = c_can_read_reg32(priv, &priv->regs->txrqst1);
709 if (!(val & (1 << msg_obj_no))) {
710 can_get_echo_skb(dev,
711 msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
712 stats->tx_bytes += priv->read_reg(priv,
713 &priv->regs->ifregs[0].msg_cntrl)
714 & IF_MCONT_DLC_MASK;
715 stats->tx_packets++;
716 }
717 }
718
719 /* restart queue if wrap-up or if queue stalled on last pkt */
720 if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
721 ((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
722 netif_wake_queue(dev);
723}
724
725/*
726 * theory of operation:
727 *
728 * c_can core saves a received CAN message into the first free message
729 * object it finds free (starting with the lowest). Bits NEWDAT and
730 * INTPND are set for this message object indicating that a new message
731 * has arrived. To work-around this issue, we keep two groups of message
732 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
733 *
734 * To ensure in-order frame reception we use the following
735 * approach while re-activating a message object to receive further
736 * frames:
737 * - if the current message object number is lower than
738 * C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
739 * the INTPND bit.
740 * - if the current message object number is equal to
741 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
742 * receive message objects.
743 * - if the current message object number is greater than
744 * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
745 * only this message object.
746 */
747static int c_can_do_rx_poll(struct net_device *dev, int quota)
748{
749 u32 num_rx_pkts = 0;
750 unsigned int msg_obj, msg_ctrl_save;
751 struct c_can_priv *priv = netdev_priv(dev);
752 u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
753
754 for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
755 msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
756 val = c_can_read_reg32(priv, &priv->regs->intpnd1),
757 msg_obj++) {
758 /*
759 * as interrupt pending register's bit n-1 corresponds to
760 * message object n, we need to handle the same properly.
761 */
762 if (val & (1 << (msg_obj - 1))) {
763 c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
764 ~IF_COMM_TXRQST);
765 msg_ctrl_save = priv->read_reg(priv,
766 &priv->regs->ifregs[0].msg_cntrl);
767
768 if (msg_ctrl_save & IF_MCONT_EOB)
769 return num_rx_pkts;
770
771 if (msg_ctrl_save & IF_MCONT_MSGLST) {
772 c_can_handle_lost_msg_obj(dev, 0, msg_obj);
773 num_rx_pkts++;
774 quota--;
775 continue;
776 }
777
778 if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
779 continue;
780
781 /* read the data from the message object */
782 c_can_read_msg_object(dev, 0, msg_ctrl_save);
783
784 if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
785 c_can_mark_rx_msg_obj(dev, 0,
786 msg_ctrl_save, msg_obj);
787 else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
788 /* activate this msg obj */
789 c_can_activate_rx_msg_obj(dev, 0,
790 msg_ctrl_save, msg_obj);
791 else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
792 /* activate all lower message objects */
793 c_can_activate_all_lower_rx_msg_obj(dev,
794 0, msg_ctrl_save);
795
796 num_rx_pkts++;
797 quota--;
798 }
799 }
800
801 return num_rx_pkts;
802}
803
804static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
805{
806 return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
807 (priv->current_status & LEC_UNUSED);
808}
809
810static int c_can_handle_state_change(struct net_device *dev,
811 enum c_can_bus_error_types error_type)
812{
813 unsigned int reg_err_counter;
814 unsigned int rx_err_passive;
815 struct c_can_priv *priv = netdev_priv(dev);
816 struct net_device_stats *stats = &dev->stats;
817 struct can_frame *cf;
818 struct sk_buff *skb;
819 struct can_berr_counter bec;
820
821 /* propogate the error condition to the CAN stack */
822 skb = alloc_can_err_skb(dev, &cf);
823 if (unlikely(!skb))
824 return 0;
825
826 c_can_get_berr_counter(dev, &bec);
827 reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
828 rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
829 ERR_CNT_RP_SHIFT;
830
831 switch (error_type) {
832 case C_CAN_ERROR_WARNING:
833 /* error warning state */
834 priv->can.can_stats.error_warning++;
835 priv->can.state = CAN_STATE_ERROR_WARNING;
836 cf->can_id |= CAN_ERR_CRTL;
837 cf->data[1] = (bec.txerr > bec.rxerr) ?
838 CAN_ERR_CRTL_TX_WARNING :
839 CAN_ERR_CRTL_RX_WARNING;
840 cf->data[6] = bec.txerr;
841 cf->data[7] = bec.rxerr;
842
843 break;
844 case C_CAN_ERROR_PASSIVE:
845 /* error passive state */
846 priv->can.can_stats.error_passive++;
847 priv->can.state = CAN_STATE_ERROR_PASSIVE;
848 cf->can_id |= CAN_ERR_CRTL;
849 if (rx_err_passive)
850 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
851 if (bec.txerr > 127)
852 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
853
854 cf->data[6] = bec.txerr;
855 cf->data[7] = bec.rxerr;
856 break;
857 case C_CAN_BUS_OFF:
858 /* bus-off state */
859 priv->can.state = CAN_STATE_BUS_OFF;
860 cf->can_id |= CAN_ERR_BUSOFF;
861 /*
862 * disable all interrupts in bus-off mode to ensure that
863 * the CPU is not hogged down
864 */
865 c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
866 can_bus_off(dev);
867 break;
868 default:
869 break;
870 }
871
872 netif_receive_skb(skb);
873 stats->rx_packets++;
874 stats->rx_bytes += cf->can_dlc;
875
876 return 1;
877}
878
879static int c_can_handle_bus_err(struct net_device *dev,
880 enum c_can_lec_type lec_type)
881{
882 struct c_can_priv *priv = netdev_priv(dev);
883 struct net_device_stats *stats = &dev->stats;
884 struct can_frame *cf;
885 struct sk_buff *skb;
886
887 /*
888 * early exit if no lec update or no error.
889 * no lec update means that no CAN bus event has been detected
890 * since CPU wrote 0x7 value to status reg.
891 */
892 if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
893 return 0;
894
895 /* propogate the error condition to the CAN stack */
896 skb = alloc_can_err_skb(dev, &cf);
897 if (unlikely(!skb))
898 return 0;
899
900 /*
901 * check for 'last error code' which tells us the
902 * type of the last error to occur on the CAN bus
903 */
904
905 /* common for all type of bus errors */
906 priv->can.can_stats.bus_error++;
907 stats->rx_errors++;
908 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
909 cf->data[2] |= CAN_ERR_PROT_UNSPEC;
910
911 switch (lec_type) {
912 case LEC_STUFF_ERROR:
913 netdev_dbg(dev, "stuff error\n");
914 cf->data[2] |= CAN_ERR_PROT_STUFF;
915 break;
916 case LEC_FORM_ERROR:
917 netdev_dbg(dev, "form error\n");
918 cf->data[2] |= CAN_ERR_PROT_FORM;
919 break;
920 case LEC_ACK_ERROR:
921 netdev_dbg(dev, "ack error\n");
922 cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
923 CAN_ERR_PROT_LOC_ACK_DEL);
924 break;
925 case LEC_BIT1_ERROR:
926 netdev_dbg(dev, "bit1 error\n");
927 cf->data[2] |= CAN_ERR_PROT_BIT1;
928 break;
929 case LEC_BIT0_ERROR:
930 netdev_dbg(dev, "bit0 error\n");
931 cf->data[2] |= CAN_ERR_PROT_BIT0;
932 break;
933 case LEC_CRC_ERROR:
934 netdev_dbg(dev, "CRC error\n");
935 cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
936 CAN_ERR_PROT_LOC_CRC_DEL);
937 break;
938 default:
939 break;
940 }
941
942 /* set a `lec` value so that we can check for updates later */
943 priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
944
945 netif_receive_skb(skb);
946 stats->rx_packets++;
947 stats->rx_bytes += cf->can_dlc;
948
949 return 1;
950}
951
952static int c_can_poll(struct napi_struct *napi, int quota)
953{
954 u16 irqstatus;
955 int lec_type = 0;
956 int work_done = 0;
957 struct net_device *dev = napi->dev;
958 struct c_can_priv *priv = netdev_priv(dev);
959
960 irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
961 if (!irqstatus)
962 goto end;
963
964 /* status events have the highest priority */
965 if (irqstatus == STATUS_INTERRUPT) {
966 priv->current_status = priv->read_reg(priv,
967 &priv->regs->status);
968
969 /* handle Tx/Rx events */
970 if (priv->current_status & STATUS_TXOK)
971 priv->write_reg(priv, &priv->regs->status,
972 priv->current_status & ~STATUS_TXOK);
973
974 if (priv->current_status & STATUS_RXOK)
975 priv->write_reg(priv, &priv->regs->status,
976 priv->current_status & ~STATUS_RXOK);
977
978 /* handle state changes */
979 if ((priv->current_status & STATUS_EWARN) &&
980 (!(priv->last_status & STATUS_EWARN))) {
981 netdev_dbg(dev, "entered error warning state\n");
982 work_done += c_can_handle_state_change(dev,
983 C_CAN_ERROR_WARNING);
984 }
985 if ((priv->current_status & STATUS_EPASS) &&
986 (!(priv->last_status & STATUS_EPASS))) {
987 netdev_dbg(dev, "entered error passive state\n");
988 work_done += c_can_handle_state_change(dev,
989 C_CAN_ERROR_PASSIVE);
990 }
991 if ((priv->current_status & STATUS_BOFF) &&
992 (!(priv->last_status & STATUS_BOFF))) {
993 netdev_dbg(dev, "entered bus off state\n");
994 work_done += c_can_handle_state_change(dev,
995 C_CAN_BUS_OFF);
996 }
997
998 /* handle bus recovery events */
999 if ((!(priv->current_status & STATUS_BOFF)) &&
1000 (priv->last_status & STATUS_BOFF)) {
1001 netdev_dbg(dev, "left bus off state\n");
1002 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1003 }
1004 if ((!(priv->current_status & STATUS_EPASS)) &&
1005 (priv->last_status & STATUS_EPASS)) {
1006 netdev_dbg(dev, "left error passive state\n");
1007 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1008 }
1009
1010 priv->last_status = priv->current_status;
1011
1012 /* handle lec errors on the bus */
1013 lec_type = c_can_has_and_handle_berr(priv);
1014 if (lec_type)
1015 work_done += c_can_handle_bus_err(dev, lec_type);
1016 } else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1017 (irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1018 /* handle events corresponding to receive message objects */
1019 work_done += c_can_do_rx_poll(dev, (quota - work_done));
1020 } else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1021 (irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1022 /* handle events corresponding to transmit message objects */
1023 c_can_do_tx(dev);
1024 }
1025
1026end:
1027 if (work_done < quota) {
1028 napi_complete(napi);
1029 /* enable all IRQs */
1030 c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
1031 }
1032
1033 return work_done;
1034}
1035
1036static irqreturn_t c_can_isr(int irq, void *dev_id)
1037{
1038 u16 irqstatus;
1039 struct net_device *dev = (struct net_device *)dev_id;
1040 struct c_can_priv *priv = netdev_priv(dev);
1041
1042 irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
1043 if (!irqstatus)
1044 return IRQ_NONE;
1045
1046 /* disable all interrupts and schedule the NAPI */
1047 c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1048 napi_schedule(&priv->napi);
1049
1050 return IRQ_HANDLED;
1051}
1052
1053static int c_can_open(struct net_device *dev)
1054{
1055 int err;
1056 struct c_can_priv *priv = netdev_priv(dev);
1057
1058 /* open the can device */
1059 err = open_candev(dev);
1060 if (err) {
1061 netdev_err(dev, "failed to open can device\n");
1062 return err;
1063 }
1064
1065 /* register interrupt handler */
1066 err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1067 dev);
1068 if (err < 0) {
1069 netdev_err(dev, "failed to request interrupt\n");
1070 goto exit_irq_fail;
1071 }
1072
1073 /* start the c_can controller */
1074 c_can_start(dev);
1075
1076 napi_enable(&priv->napi);
1077 netif_start_queue(dev);
1078
1079 return 0;
1080
1081exit_irq_fail:
1082 close_candev(dev);
1083 return err;
1084}
1085
1086static int c_can_close(struct net_device *dev)
1087{
1088 struct c_can_priv *priv = netdev_priv(dev);
1089
1090 netif_stop_queue(dev);
1091 napi_disable(&priv->napi);
1092 c_can_stop(dev);
1093 free_irq(dev->irq, dev);
1094 close_candev(dev);
1095
1096 return 0;
1097}
1098
1099struct net_device *alloc_c_can_dev(void)
1100{
1101 struct net_device *dev;
1102 struct c_can_priv *priv;
1103
1104 dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1105 if (!dev)
1106 return NULL;
1107
1108 priv = netdev_priv(dev);
1109 netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1110
1111 priv->dev = dev;
1112 priv->can.bittiming_const = &c_can_bittiming_const;
1113 priv->can.do_set_mode = c_can_set_mode;
1114 priv->can.do_get_berr_counter = c_can_get_berr_counter;
1115 priv->can.ctrlmode_supported = CAN_CTRLMODE_ONE_SHOT |
1116 CAN_CTRLMODE_LOOPBACK |
1117 CAN_CTRLMODE_LISTENONLY |
1118 CAN_CTRLMODE_BERR_REPORTING;
1119
1120 return dev;
1121}
1122EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1123
1124void free_c_can_dev(struct net_device *dev)
1125{
1126 free_candev(dev);
1127}
1128EXPORT_SYMBOL_GPL(free_c_can_dev);
1129
1130static const struct net_device_ops c_can_netdev_ops = {
1131 .ndo_open = c_can_open,
1132 .ndo_stop = c_can_close,
1133 .ndo_start_xmit = c_can_start_xmit,
1134};
1135
1136int register_c_can_dev(struct net_device *dev)
1137{
1138 dev->flags |= IFF_ECHO; /* we support local echo */
1139 dev->netdev_ops = &c_can_netdev_ops;
1140
1141 return register_candev(dev);
1142}
1143EXPORT_SYMBOL_GPL(register_c_can_dev);
1144
1145void unregister_c_can_dev(struct net_device *dev)
1146{
1147 struct c_can_priv *priv = netdev_priv(dev);
1148
1149 /* disable all interrupts */
1150 c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1151
1152 unregister_candev(dev);
1153}
1154EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1155
1156MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1157MODULE_LICENSE("GPL v2");
1158MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");