]> git.ipfire.org Git - people/ms/linux.git/blame - drivers/net/can/m_can/m_can.c
can: m_can: fix not set can_dlc for remote frame
[people/ms/linux.git] / drivers / net / can / m_can / m_can.c
CommitLineData
e0d1f481
DA
1/*
2 * CAN bus driver for Bosch M_CAN controller
3 *
4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
5 * Dong Aisheng <b29396@freescale.com>
6 *
7 * Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/interrupt.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/netdevice.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/platform_device.h>
26
27#include <linux/can/dev.h>
28
29/* napi related */
30#define M_CAN_NAPI_WEIGHT 64
31
32/* message ram configuration data length */
33#define MRAM_CFG_LEN 8
34
35/* registers definition */
36enum m_can_reg {
37 M_CAN_CREL = 0x0,
38 M_CAN_ENDN = 0x4,
39 M_CAN_CUST = 0x8,
40 M_CAN_FBTP = 0xc,
41 M_CAN_TEST = 0x10,
42 M_CAN_RWD = 0x14,
43 M_CAN_CCCR = 0x18,
44 M_CAN_BTP = 0x1c,
45 M_CAN_TSCC = 0x20,
46 M_CAN_TSCV = 0x24,
47 M_CAN_TOCC = 0x28,
48 M_CAN_TOCV = 0x2c,
49 M_CAN_ECR = 0x40,
50 M_CAN_PSR = 0x44,
51 M_CAN_IR = 0x50,
52 M_CAN_IE = 0x54,
53 M_CAN_ILS = 0x58,
54 M_CAN_ILE = 0x5c,
55 M_CAN_GFC = 0x80,
56 M_CAN_SIDFC = 0x84,
57 M_CAN_XIDFC = 0x88,
58 M_CAN_XIDAM = 0x90,
59 M_CAN_HPMS = 0x94,
60 M_CAN_NDAT1 = 0x98,
61 M_CAN_NDAT2 = 0x9c,
62 M_CAN_RXF0C = 0xa0,
63 M_CAN_RXF0S = 0xa4,
64 M_CAN_RXF0A = 0xa8,
65 M_CAN_RXBC = 0xac,
66 M_CAN_RXF1C = 0xb0,
67 M_CAN_RXF1S = 0xb4,
68 M_CAN_RXF1A = 0xb8,
69 M_CAN_RXESC = 0xbc,
70 M_CAN_TXBC = 0xc0,
71 M_CAN_TXFQS = 0xc4,
72 M_CAN_TXESC = 0xc8,
73 M_CAN_TXBRP = 0xcc,
74 M_CAN_TXBAR = 0xd0,
75 M_CAN_TXBCR = 0xd4,
76 M_CAN_TXBTO = 0xd8,
77 M_CAN_TXBCF = 0xdc,
78 M_CAN_TXBTIE = 0xe0,
79 M_CAN_TXBCIE = 0xe4,
80 M_CAN_TXEFC = 0xf0,
81 M_CAN_TXEFS = 0xf4,
82 M_CAN_TXEFA = 0xf8,
83};
84
85/* m_can lec values */
86enum m_can_lec_type {
87 LEC_NO_ERROR = 0,
88 LEC_STUFF_ERROR,
89 LEC_FORM_ERROR,
90 LEC_ACK_ERROR,
91 LEC_BIT1_ERROR,
92 LEC_BIT0_ERROR,
93 LEC_CRC_ERROR,
94 LEC_UNUSED,
95};
96
97enum m_can_mram_cfg {
98 MRAM_SIDF = 0,
99 MRAM_XIDF,
100 MRAM_RXF0,
101 MRAM_RXF1,
102 MRAM_RXB,
103 MRAM_TXE,
104 MRAM_TXB,
105 MRAM_CFG_NUM,
106};
107
108/* Test Register (TEST) */
109#define TEST_LBCK BIT(4)
110
111/* CC Control Register(CCCR) */
112#define CCCR_TEST BIT(7)
113#define CCCR_MON BIT(5)
114#define CCCR_CCE BIT(1)
115#define CCCR_INIT BIT(0)
116
117/* Bit Timing & Prescaler Register (BTP) */
118#define BTR_BRP_MASK 0x3ff
119#define BTR_BRP_SHIFT 16
120#define BTR_TSEG1_SHIFT 8
121#define BTR_TSEG1_MASK (0x3f << BTR_TSEG1_SHIFT)
122#define BTR_TSEG2_SHIFT 4
123#define BTR_TSEG2_MASK (0xf << BTR_TSEG2_SHIFT)
124#define BTR_SJW_SHIFT 0
125#define BTR_SJW_MASK 0xf
126
127/* Error Counter Register(ECR) */
128#define ECR_RP BIT(15)
129#define ECR_REC_SHIFT 8
130#define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
131#define ECR_TEC_SHIFT 0
132#define ECR_TEC_MASK 0xff
133
134/* Protocol Status Register(PSR) */
135#define PSR_BO BIT(7)
136#define PSR_EW BIT(6)
137#define PSR_EP BIT(5)
138#define PSR_LEC_MASK 0x7
139
140/* Interrupt Register(IR) */
141#define IR_ALL_INT 0xffffffff
142#define IR_STE BIT(31)
143#define IR_FOE BIT(30)
144#define IR_ACKE BIT(29)
145#define IR_BE BIT(28)
146#define IR_CRCE BIT(27)
147#define IR_WDI BIT(26)
148#define IR_BO BIT(25)
149#define IR_EW BIT(24)
150#define IR_EP BIT(23)
151#define IR_ELO BIT(22)
152#define IR_BEU BIT(21)
153#define IR_BEC BIT(20)
154#define IR_DRX BIT(19)
155#define IR_TOO BIT(18)
156#define IR_MRAF BIT(17)
157#define IR_TSW BIT(16)
158#define IR_TEFL BIT(15)
159#define IR_TEFF BIT(14)
160#define IR_TEFW BIT(13)
161#define IR_TEFN BIT(12)
162#define IR_TFE BIT(11)
163#define IR_TCF BIT(10)
164#define IR_TC BIT(9)
165#define IR_HPM BIT(8)
166#define IR_RF1L BIT(7)
167#define IR_RF1F BIT(6)
168#define IR_RF1W BIT(5)
169#define IR_RF1N BIT(4)
170#define IR_RF0L BIT(3)
171#define IR_RF0F BIT(2)
172#define IR_RF0W BIT(1)
173#define IR_RF0N BIT(0)
174#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
175#define IR_ERR_LEC (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
176#define IR_ERR_BUS (IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
177 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
178 IR_RF1L | IR_RF0L)
179#define IR_ERR_ALL (IR_ERR_STATE | IR_ERR_BUS)
180
181/* Interrupt Line Select (ILS) */
182#define ILS_ALL_INT0 0x0
183#define ILS_ALL_INT1 0xFFFFFFFF
184
185/* Interrupt Line Enable (ILE) */
186#define ILE_EINT0 BIT(0)
187#define ILE_EINT1 BIT(1)
188
189/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
190#define RXFC_FWM_OFF 24
191#define RXFC_FWM_MASK 0x7f
192#define RXFC_FWM_1 (1 << RXFC_FWM_OFF)
193#define RXFC_FS_OFF 16
194#define RXFC_FS_MASK 0x7f
195
196/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
197#define RXFS_RFL BIT(25)
198#define RXFS_FF BIT(24)
199#define RXFS_FPI_OFF 16
200#define RXFS_FPI_MASK 0x3f0000
201#define RXFS_FGI_OFF 8
202#define RXFS_FGI_MASK 0x3f00
203#define RXFS_FFL_MASK 0x7f
204
205/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
206#define M_CAN_RXESC_8BYTES 0x0
207
208/* Tx Buffer Configuration(TXBC) */
209#define TXBC_NDTB_OFF 16
210#define TXBC_NDTB_MASK 0x3f
211
212/* Tx Buffer Element Size Configuration(TXESC) */
213#define TXESC_TBDS_8BYTES 0x0
214
215/* Tx Event FIFO Con.guration (TXEFC) */
216#define TXEFC_EFS_OFF 16
217#define TXEFC_EFS_MASK 0x3f
218
219/* Message RAM Configuration (in bytes) */
220#define SIDF_ELEMENT_SIZE 4
221#define XIDF_ELEMENT_SIZE 8
222#define RXF0_ELEMENT_SIZE 16
223#define RXF1_ELEMENT_SIZE 16
224#define RXB_ELEMENT_SIZE 16
225#define TXE_ELEMENT_SIZE 8
226#define TXB_ELEMENT_SIZE 16
227
228/* Message RAM Elements */
229#define M_CAN_FIFO_ID 0x0
230#define M_CAN_FIFO_DLC 0x4
231#define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
232
233/* Rx Buffer Element */
234#define RX_BUF_ESI BIT(31)
235#define RX_BUF_XTD BIT(30)
236#define RX_BUF_RTR BIT(29)
237
238/* Tx Buffer Element */
239#define TX_BUF_XTD BIT(30)
240#define TX_BUF_RTR BIT(29)
241
242/* address offset and element number for each FIFO/Buffer in the Message RAM */
243struct mram_cfg {
244 u16 off;
245 u8 num;
246};
247
248/* m_can private data structure */
249struct m_can_priv {
250 struct can_priv can; /* must be the first member */
251 struct napi_struct napi;
252 struct net_device *dev;
253 struct device *device;
254 struct clk *hclk;
255 struct clk *cclk;
256 void __iomem *base;
257 u32 irqstatus;
258
259 /* message ram configuration */
260 void __iomem *mram_base;
261 struct mram_cfg mcfg[MRAM_CFG_NUM];
262};
263
264static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
265{
266 return readl(priv->base + reg);
267}
268
269static inline void m_can_write(const struct m_can_priv *priv,
270 enum m_can_reg reg, u32 val)
271{
272 writel(val, priv->base + reg);
273}
274
275static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
276 u32 fgi, unsigned int offset)
277{
278 return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
279 fgi * RXF0_ELEMENT_SIZE + offset);
280}
281
282static inline void m_can_fifo_write(const struct m_can_priv *priv,
283 u32 fpi, unsigned int offset, u32 val)
284{
285 return writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
286 fpi * TXB_ELEMENT_SIZE + offset);
287}
288
289static inline void m_can_config_endisable(const struct m_can_priv *priv,
290 bool enable)
291{
292 u32 cccr = m_can_read(priv, M_CAN_CCCR);
293 u32 timeout = 10;
294 u32 val = 0;
295
296 if (enable) {
297 /* enable m_can configuration */
298 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
299 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
300 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
301 } else {
302 m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
303 }
304
305 /* there's a delay for module initialization */
306 if (enable)
307 val = CCCR_INIT | CCCR_CCE;
308
309 while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
310 if (timeout == 0) {
311 netdev_warn(priv->dev, "Failed to init module\n");
312 return;
313 }
314 timeout--;
315 udelay(1);
316 }
317}
318
319static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
320{
321 m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
322}
323
324static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
325{
326 m_can_write(priv, M_CAN_ILE, 0x0);
327}
328
329static void m_can_read_fifo(const struct net_device *dev, struct can_frame *cf,
330 u32 rxfs)
331{
332 struct m_can_priv *priv = netdev_priv(dev);
921f1681 333 u32 id, fgi, dlc;
e0d1f481
DA
334
335 /* calculate the fifo get index for where to read data */
336 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
337 id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
338 if (id & RX_BUF_XTD)
339 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
340 else
341 cf->can_id = (id >> 18) & CAN_SFF_MASK;
342
921f1681
DA
343 dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
344 cf->can_dlc = get_can_dlc((dlc >> 16) & 0x0F);
345
e0d1f481
DA
346 if (id & RX_BUF_RTR) {
347 cf->can_id |= CAN_RTR_FLAG;
348 } else {
e0d1f481
DA
349 *(u32 *)(cf->data + 0) = m_can_fifo_read(priv, fgi,
350 M_CAN_FIFO_DATA(0));
351 *(u32 *)(cf->data + 4) = m_can_fifo_read(priv, fgi,
352 M_CAN_FIFO_DATA(1));
353 }
354
355 /* acknowledge rx fifo 0 */
356 m_can_write(priv, M_CAN_RXF0A, fgi);
357}
358
359static int m_can_do_rx_poll(struct net_device *dev, int quota)
360{
361 struct m_can_priv *priv = netdev_priv(dev);
362 struct net_device_stats *stats = &dev->stats;
363 struct sk_buff *skb;
364 struct can_frame *frame;
365 u32 pkts = 0;
366 u32 rxfs;
367
368 rxfs = m_can_read(priv, M_CAN_RXF0S);
369 if (!(rxfs & RXFS_FFL_MASK)) {
370 netdev_dbg(dev, "no messages in fifo0\n");
371 return 0;
372 }
373
374 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
375 if (rxfs & RXFS_RFL)
376 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
377
378 skb = alloc_can_skb(dev, &frame);
379 if (!skb) {
380 stats->rx_dropped++;
381 return pkts;
382 }
383
384 m_can_read_fifo(dev, frame, rxfs);
385
386 stats->rx_packets++;
387 stats->rx_bytes += frame->can_dlc;
388
389 netif_receive_skb(skb);
390
391 quota--;
392 pkts++;
393 rxfs = m_can_read(priv, M_CAN_RXF0S);
394 }
395
396 if (pkts)
397 can_led_event(dev, CAN_LED_EVENT_RX);
398
399 return pkts;
400}
401
402static int m_can_handle_lost_msg(struct net_device *dev)
403{
404 struct net_device_stats *stats = &dev->stats;
405 struct sk_buff *skb;
406 struct can_frame *frame;
407
408 netdev_err(dev, "msg lost in rxf0\n");
409
410 stats->rx_errors++;
411 stats->rx_over_errors++;
412
413 skb = alloc_can_err_skb(dev, &frame);
414 if (unlikely(!skb))
415 return 0;
416
417 frame->can_id |= CAN_ERR_CRTL;
418 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
419
420 netif_receive_skb(skb);
421
422 return 1;
423}
424
425static int m_can_handle_lec_err(struct net_device *dev,
426 enum m_can_lec_type lec_type)
427{
428 struct m_can_priv *priv = netdev_priv(dev);
429 struct net_device_stats *stats = &dev->stats;
430 struct can_frame *cf;
431 struct sk_buff *skb;
432
433 priv->can.can_stats.bus_error++;
434 stats->rx_errors++;
435
436 /* propagate the error condition to the CAN stack */
437 skb = alloc_can_err_skb(dev, &cf);
438 if (unlikely(!skb))
439 return 0;
440
441 /* check for 'last error code' which tells us the
442 * type of the last error to occur on the CAN bus
443 */
444 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
445 cf->data[2] |= CAN_ERR_PROT_UNSPEC;
446
447 switch (lec_type) {
448 case LEC_STUFF_ERROR:
449 netdev_dbg(dev, "stuff error\n");
450 cf->data[2] |= CAN_ERR_PROT_STUFF;
451 break;
452 case LEC_FORM_ERROR:
453 netdev_dbg(dev, "form error\n");
454 cf->data[2] |= CAN_ERR_PROT_FORM;
455 break;
456 case LEC_ACK_ERROR:
457 netdev_dbg(dev, "ack error\n");
458 cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
459 CAN_ERR_PROT_LOC_ACK_DEL);
460 break;
461 case LEC_BIT1_ERROR:
462 netdev_dbg(dev, "bit1 error\n");
463 cf->data[2] |= CAN_ERR_PROT_BIT1;
464 break;
465 case LEC_BIT0_ERROR:
466 netdev_dbg(dev, "bit0 error\n");
467 cf->data[2] |= CAN_ERR_PROT_BIT0;
468 break;
469 case LEC_CRC_ERROR:
470 netdev_dbg(dev, "CRC error\n");
471 cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
472 CAN_ERR_PROT_LOC_CRC_DEL);
473 break;
474 default:
475 break;
476 }
477
478 stats->rx_packets++;
479 stats->rx_bytes += cf->can_dlc;
480 netif_receive_skb(skb);
481
482 return 1;
483}
484
f6a99649
DA
485static int __m_can_get_berr_counter(const struct net_device *dev,
486 struct can_berr_counter *bec)
487{
488 struct m_can_priv *priv = netdev_priv(dev);
489 unsigned int ecr;
490
491 ecr = m_can_read(priv, M_CAN_ECR);
492 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
493 bec->txerr = ecr & ECR_TEC_MASK;
494
495 return 0;
496}
497
e0d1f481
DA
498static int m_can_get_berr_counter(const struct net_device *dev,
499 struct can_berr_counter *bec)
500{
501 struct m_can_priv *priv = netdev_priv(dev);
e0d1f481
DA
502 int err;
503
504 err = clk_prepare_enable(priv->hclk);
505 if (err)
506 return err;
507
508 err = clk_prepare_enable(priv->cclk);
509 if (err) {
510 clk_disable_unprepare(priv->hclk);
511 return err;
512 }
513
f6a99649 514 __m_can_get_berr_counter(dev, bec);
e0d1f481
DA
515
516 clk_disable_unprepare(priv->cclk);
517 clk_disable_unprepare(priv->hclk);
518
519 return 0;
520}
521
522static int m_can_handle_state_change(struct net_device *dev,
523 enum can_state new_state)
524{
525 struct m_can_priv *priv = netdev_priv(dev);
526 struct net_device_stats *stats = &dev->stats;
527 struct can_frame *cf;
528 struct sk_buff *skb;
529 struct can_berr_counter bec;
530 unsigned int ecr;
531
532 switch (new_state) {
533 case CAN_STATE_ERROR_ACTIVE:
534 /* error warning state */
535 priv->can.can_stats.error_warning++;
536 priv->can.state = CAN_STATE_ERROR_WARNING;
537 break;
538 case CAN_STATE_ERROR_PASSIVE:
539 /* error passive state */
540 priv->can.can_stats.error_passive++;
541 priv->can.state = CAN_STATE_ERROR_PASSIVE;
542 break;
543 case CAN_STATE_BUS_OFF:
544 /* bus-off state */
545 priv->can.state = CAN_STATE_BUS_OFF;
546 m_can_disable_all_interrupts(priv);
547 can_bus_off(dev);
548 break;
549 default:
550 break;
551 }
552
553 /* propagate the error condition to the CAN stack */
554 skb = alloc_can_err_skb(dev, &cf);
555 if (unlikely(!skb))
556 return 0;
557
f6a99649 558 __m_can_get_berr_counter(dev, &bec);
e0d1f481
DA
559
560 switch (new_state) {
561 case CAN_STATE_ERROR_ACTIVE:
562 /* error warning state */
563 cf->can_id |= CAN_ERR_CRTL;
564 cf->data[1] = (bec.txerr > bec.rxerr) ?
565 CAN_ERR_CRTL_TX_WARNING :
566 CAN_ERR_CRTL_RX_WARNING;
567 cf->data[6] = bec.txerr;
568 cf->data[7] = bec.rxerr;
569 break;
570 case CAN_STATE_ERROR_PASSIVE:
571 /* error passive state */
572 cf->can_id |= CAN_ERR_CRTL;
573 ecr = m_can_read(priv, M_CAN_ECR);
574 if (ecr & ECR_RP)
575 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
576 if (bec.txerr > 127)
577 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
578 cf->data[6] = bec.txerr;
579 cf->data[7] = bec.rxerr;
580 break;
581 case CAN_STATE_BUS_OFF:
582 /* bus-off state */
583 cf->can_id |= CAN_ERR_BUSOFF;
584 break;
585 default:
586 break;
587 }
588
589 stats->rx_packets++;
590 stats->rx_bytes += cf->can_dlc;
591 netif_receive_skb(skb);
592
593 return 1;
594}
595
596static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
597{
598 struct m_can_priv *priv = netdev_priv(dev);
599 int work_done = 0;
600
601 if ((psr & PSR_EW) &&
602 (priv->can.state != CAN_STATE_ERROR_WARNING)) {
603 netdev_dbg(dev, "entered error warning state\n");
604 work_done += m_can_handle_state_change(dev,
605 CAN_STATE_ERROR_WARNING);
606 }
607
608 if ((psr & PSR_EP) &&
609 (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
610 netdev_dbg(dev, "entered error warning state\n");
611 work_done += m_can_handle_state_change(dev,
612 CAN_STATE_ERROR_PASSIVE);
613 }
614
615 if ((psr & PSR_BO) &&
616 (priv->can.state != CAN_STATE_BUS_OFF)) {
617 netdev_dbg(dev, "entered error warning state\n");
618 work_done += m_can_handle_state_change(dev,
619 CAN_STATE_BUS_OFF);
620 }
621
622 return work_done;
623}
624
625static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
626{
627 if (irqstatus & IR_WDI)
628 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
629 if (irqstatus & IR_BEU)
630 netdev_err(dev, "Error Logging Overflow\n");
631 if (irqstatus & IR_BEU)
632 netdev_err(dev, "Bit Error Uncorrected\n");
633 if (irqstatus & IR_BEC)
634 netdev_err(dev, "Bit Error Corrected\n");
635 if (irqstatus & IR_TOO)
636 netdev_err(dev, "Timeout reached\n");
637 if (irqstatus & IR_MRAF)
638 netdev_err(dev, "Message RAM access failure occurred\n");
639}
640
641static inline bool is_lec_err(u32 psr)
642{
643 psr &= LEC_UNUSED;
644
645 return psr && (psr != LEC_UNUSED);
646}
647
648static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
649 u32 psr)
650{
651 struct m_can_priv *priv = netdev_priv(dev);
652 int work_done = 0;
653
654 if (irqstatus & IR_RF0L)
655 work_done += m_can_handle_lost_msg(dev);
656
657 /* handle lec errors on the bus */
658 if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
659 is_lec_err(psr))
660 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
661
662 /* other unproccessed error interrupts */
663 m_can_handle_other_err(dev, irqstatus);
664
665 return work_done;
666}
667
668static int m_can_poll(struct napi_struct *napi, int quota)
669{
670 struct net_device *dev = napi->dev;
671 struct m_can_priv *priv = netdev_priv(dev);
672 int work_done = 0;
673 u32 irqstatus, psr;
674
675 irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
676 if (!irqstatus)
677 goto end;
678
679 psr = m_can_read(priv, M_CAN_PSR);
680 if (irqstatus & IR_ERR_STATE)
681 work_done += m_can_handle_state_errors(dev, psr);
682
683 if (irqstatus & IR_ERR_BUS)
684 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
685
686 if (irqstatus & IR_RF0N)
687 work_done += m_can_do_rx_poll(dev, (quota - work_done));
688
689 if (work_done < quota) {
690 napi_complete(napi);
691 m_can_enable_all_interrupts(priv);
692 }
693
694end:
695 return work_done;
696}
697
698static irqreturn_t m_can_isr(int irq, void *dev_id)
699{
700 struct net_device *dev = (struct net_device *)dev_id;
701 struct m_can_priv *priv = netdev_priv(dev);
702 struct net_device_stats *stats = &dev->stats;
703 u32 ir;
704
705 ir = m_can_read(priv, M_CAN_IR);
706 if (!ir)
707 return IRQ_NONE;
708
709 /* ACK all irqs */
710 if (ir & IR_ALL_INT)
711 m_can_write(priv, M_CAN_IR, ir);
712
713 /* schedule NAPI in case of
714 * - rx IRQ
715 * - state change IRQ
716 * - bus error IRQ and bus error reporting
717 */
718 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
719 priv->irqstatus = ir;
720 m_can_disable_all_interrupts(priv);
721 napi_schedule(&priv->napi);
722 }
723
724 /* transmission complete interrupt */
725 if (ir & IR_TC) {
726 stats->tx_bytes += can_get_echo_skb(dev, 0);
727 stats->tx_packets++;
728 can_led_event(dev, CAN_LED_EVENT_TX);
729 netif_wake_queue(dev);
730 }
731
732 return IRQ_HANDLED;
733}
734
735static const struct can_bittiming_const m_can_bittiming_const = {
736 .name = KBUILD_MODNAME,
737 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
738 .tseg1_max = 64,
739 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
740 .tseg2_max = 16,
741 .sjw_max = 16,
742 .brp_min = 1,
743 .brp_max = 1024,
744 .brp_inc = 1,
745};
746
747static int m_can_set_bittiming(struct net_device *dev)
748{
749 struct m_can_priv *priv = netdev_priv(dev);
750 const struct can_bittiming *bt = &priv->can.bittiming;
751 u16 brp, sjw, tseg1, tseg2;
752 u32 reg_btp;
753
754 brp = bt->brp - 1;
755 sjw = bt->sjw - 1;
756 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
757 tseg2 = bt->phase_seg2 - 1;
758 reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
759 (tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
760 m_can_write(priv, M_CAN_BTP, reg_btp);
761 netdev_dbg(dev, "setting BTP 0x%x\n", reg_btp);
762
763 return 0;
764}
765
766/* Configure M_CAN chip:
767 * - set rx buffer/fifo element size
768 * - configure rx fifo
769 * - accept non-matching frame into fifo 0
770 * - configure tx buffer
771 * - configure mode
772 * - setup bittiming
773 */
774static void m_can_chip_config(struct net_device *dev)
775{
776 struct m_can_priv *priv = netdev_priv(dev);
777 u32 cccr, test;
778
779 m_can_config_endisable(priv, true);
780
781 /* RX Buffer/FIFO Element Size 8 bytes data field */
782 m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_8BYTES);
783
784 /* Accept Non-matching Frames Into FIFO 0 */
785 m_can_write(priv, M_CAN_GFC, 0x0);
786
787 /* only support one Tx Buffer currently */
788 m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
789 priv->mcfg[MRAM_TXB].off);
790
791 /* only support 8 bytes firstly */
792 m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_8BYTES);
793
794 m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
795 priv->mcfg[MRAM_TXE].off);
796
797 /* rx fifo configuration, blocking mode, fifo size 1 */
798 m_can_write(priv, M_CAN_RXF0C,
799 (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
800 RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
801
802 m_can_write(priv, M_CAN_RXF1C,
803 (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
804 RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
805
806 cccr = m_can_read(priv, M_CAN_CCCR);
807 cccr &= ~(CCCR_TEST | CCCR_MON);
808 test = m_can_read(priv, M_CAN_TEST);
809 test &= ~TEST_LBCK;
810
811 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
812 cccr |= CCCR_MON;
813
814 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
815 cccr |= CCCR_TEST;
816 test |= TEST_LBCK;
817 }
818
819 m_can_write(priv, M_CAN_CCCR, cccr);
820 m_can_write(priv, M_CAN_TEST, test);
821
822 /* enable interrupts */
823 m_can_write(priv, M_CAN_IR, IR_ALL_INT);
824 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
825 m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
826 else
827 m_can_write(priv, M_CAN_IE, IR_ALL_INT);
828
829 /* route all interrupts to INT0 */
830 m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
831
832 /* set bittiming params */
833 m_can_set_bittiming(dev);
834
835 m_can_config_endisable(priv, false);
836}
837
838static void m_can_start(struct net_device *dev)
839{
840 struct m_can_priv *priv = netdev_priv(dev);
841
842 /* basic m_can configuration */
843 m_can_chip_config(dev);
844
845 priv->can.state = CAN_STATE_ERROR_ACTIVE;
846
847 m_can_enable_all_interrupts(priv);
848}
849
850static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
851{
852 switch (mode) {
853 case CAN_MODE_START:
854 m_can_start(dev);
855 netif_wake_queue(dev);
856 break;
857 default:
858 return -EOPNOTSUPP;
859 }
860
861 return 0;
862}
863
864static void free_m_can_dev(struct net_device *dev)
865{
866 free_candev(dev);
867}
868
869static struct net_device *alloc_m_can_dev(void)
870{
871 struct net_device *dev;
872 struct m_can_priv *priv;
873
874 dev = alloc_candev(sizeof(*priv), 1);
875 if (!dev)
876 return NULL;
877
878 priv = netdev_priv(dev);
879 netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
880
881 priv->dev = dev;
882 priv->can.bittiming_const = &m_can_bittiming_const;
883 priv->can.do_set_mode = m_can_set_mode;
884 priv->can.do_get_berr_counter = m_can_get_berr_counter;
885 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
886 CAN_CTRLMODE_LISTENONLY |
887 CAN_CTRLMODE_BERR_REPORTING;
888
889 return dev;
890}
891
892static int m_can_open(struct net_device *dev)
893{
894 struct m_can_priv *priv = netdev_priv(dev);
895 int err;
896
897 err = clk_prepare_enable(priv->hclk);
898 if (err)
899 return err;
900
901 err = clk_prepare_enable(priv->cclk);
902 if (err)
903 goto exit_disable_hclk;
904
905 /* open the can device */
906 err = open_candev(dev);
907 if (err) {
908 netdev_err(dev, "failed to open can device\n");
909 goto exit_disable_cclk;
910 }
911
912 /* register interrupt handler */
913 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
914 dev);
915 if (err < 0) {
916 netdev_err(dev, "failed to request interrupt\n");
917 goto exit_irq_fail;
918 }
919
920 /* start the m_can controller */
921 m_can_start(dev);
922
923 can_led_event(dev, CAN_LED_EVENT_OPEN);
924 napi_enable(&priv->napi);
925 netif_start_queue(dev);
926
927 return 0;
928
929exit_irq_fail:
930 close_candev(dev);
931exit_disable_cclk:
932 clk_disable_unprepare(priv->cclk);
933exit_disable_hclk:
934 clk_disable_unprepare(priv->hclk);
935 return err;
936}
937
938static void m_can_stop(struct net_device *dev)
939{
940 struct m_can_priv *priv = netdev_priv(dev);
941
942 /* disable all interrupts */
943 m_can_disable_all_interrupts(priv);
944
945 clk_disable_unprepare(priv->hclk);
946 clk_disable_unprepare(priv->cclk);
947
948 /* set the state as STOPPED */
949 priv->can.state = CAN_STATE_STOPPED;
950}
951
952static int m_can_close(struct net_device *dev)
953{
954 struct m_can_priv *priv = netdev_priv(dev);
955
956 netif_stop_queue(dev);
957 napi_disable(&priv->napi);
958 m_can_stop(dev);
959 free_irq(dev->irq, dev);
960 close_candev(dev);
961 can_led_event(dev, CAN_LED_EVENT_STOP);
962
963 return 0;
964}
965
966static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
967 struct net_device *dev)
968{
969 struct m_can_priv *priv = netdev_priv(dev);
970 struct can_frame *cf = (struct can_frame *)skb->data;
971 u32 id;
972
973 if (can_dropped_invalid_skb(dev, skb))
974 return NETDEV_TX_OK;
975
976 netif_stop_queue(dev);
977
978 if (cf->can_id & CAN_EFF_FLAG) {
979 id = cf->can_id & CAN_EFF_MASK;
980 id |= TX_BUF_XTD;
981 } else {
982 id = ((cf->can_id & CAN_SFF_MASK) << 18);
983 }
984
985 if (cf->can_id & CAN_RTR_FLAG)
986 id |= TX_BUF_RTR;
987
988 /* message ram configuration */
989 m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
990 m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, cf->can_dlc << 16);
991 m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(0), *(u32 *)(cf->data + 0));
992 m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(1), *(u32 *)(cf->data + 4));
993 can_put_echo_skb(skb, dev, 0);
994
995 /* enable first TX buffer to start transfer */
996 m_can_write(priv, M_CAN_TXBTIE, 0x1);
997 m_can_write(priv, M_CAN_TXBAR, 0x1);
998
999 return NETDEV_TX_OK;
1000}
1001
1002static const struct net_device_ops m_can_netdev_ops = {
1003 .ndo_open = m_can_open,
1004 .ndo_stop = m_can_close,
1005 .ndo_start_xmit = m_can_start_xmit,
d6fdb38b 1006 .ndo_change_mtu = can_change_mtu,
e0d1f481
DA
1007};
1008
1009static int register_m_can_dev(struct net_device *dev)
1010{
1011 dev->flags |= IFF_ECHO; /* we support local echo */
1012 dev->netdev_ops = &m_can_netdev_ops;
1013
1014 return register_candev(dev);
1015}
1016
1017static int m_can_of_parse_mram(struct platform_device *pdev,
1018 struct m_can_priv *priv)
1019{
1020 struct device_node *np = pdev->dev.of_node;
1021 struct resource *res;
1022 void __iomem *addr;
1023 u32 out_val[MRAM_CFG_LEN];
962845da 1024 int i, start, end, ret;
e0d1f481
DA
1025
1026 /* message ram could be shared */
1027 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1028 if (!res)
1029 return -ENODEV;
1030
1031 addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1032 if (!addr)
1033 return -ENOMEM;
1034
1035 /* get message ram configuration */
1036 ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1037 out_val, sizeof(out_val) / 4);
1038 if (ret) {
1039 dev_err(&pdev->dev, "can not get message ram configuration\n");
1040 return -ENODEV;
1041 }
1042
1043 priv->mram_base = addr;
1044 priv->mcfg[MRAM_SIDF].off = out_val[0];
1045 priv->mcfg[MRAM_SIDF].num = out_val[1];
1046 priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1047 priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1048 priv->mcfg[MRAM_XIDF].num = out_val[2];
1049 priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1050 priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1051 priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
1052 priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1053 priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1054 priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
1055 priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1056 priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1057 priv->mcfg[MRAM_RXB].num = out_val[5];
1058 priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1059 priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1060 priv->mcfg[MRAM_TXE].num = out_val[6];
1061 priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1062 priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1063 priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
1064
1065 dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1066 priv->mram_base,
1067 priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1068 priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1069 priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1070 priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1071 priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1072 priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1073 priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1074
962845da
DA
1075 /* initialize the entire Message RAM in use to avoid possible
1076 * ECC/parity checksum errors when reading an uninitialized buffer
1077 */
1078 start = priv->mcfg[MRAM_SIDF].off;
1079 end = priv->mcfg[MRAM_TXB].off +
1080 priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1081 for (i = start; i < end; i += 4)
1082 writel(0x0, priv->mram_base + i);
1083
e0d1f481
DA
1084 return 0;
1085}
1086
1087static int m_can_plat_probe(struct platform_device *pdev)
1088{
1089 struct net_device *dev;
1090 struct m_can_priv *priv;
1091 struct resource *res;
1092 void __iomem *addr;
1093 struct clk *hclk, *cclk;
1094 int irq, ret;
1095
1096 hclk = devm_clk_get(&pdev->dev, "hclk");
1097 cclk = devm_clk_get(&pdev->dev, "cclk");
1098 if (IS_ERR(hclk) || IS_ERR(cclk)) {
1099 dev_err(&pdev->dev, "no clock find\n");
1100 return -ENODEV;
1101 }
1102
1103 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1104 addr = devm_ioremap_resource(&pdev->dev, res);
1105 irq = platform_get_irq_byname(pdev, "int0");
1106 if (IS_ERR(addr) || irq < 0)
1107 return -EINVAL;
1108
1109 /* allocate the m_can device */
1110 dev = alloc_m_can_dev();
1111 if (!dev)
1112 return -ENOMEM;
1113
1114 priv = netdev_priv(dev);
1115 dev->irq = irq;
1116 priv->base = addr;
1117 priv->device = &pdev->dev;
1118 priv->hclk = hclk;
1119 priv->cclk = cclk;
1120 priv->can.clock.freq = clk_get_rate(cclk);
1121
1122 ret = m_can_of_parse_mram(pdev, priv);
1123 if (ret)
1124 goto failed_free_dev;
1125
1126 platform_set_drvdata(pdev, dev);
1127 SET_NETDEV_DEV(dev, &pdev->dev);
1128
1129 ret = register_m_can_dev(dev);
1130 if (ret) {
1131 dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1132 KBUILD_MODNAME, ret);
1133 goto failed_free_dev;
1134 }
1135
1136 devm_can_led_init(dev);
1137
1138 dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
1139 KBUILD_MODNAME, priv->base, dev->irq);
1140
1141 return 0;
1142
1143failed_free_dev:
1144 free_m_can_dev(dev);
1145 return ret;
1146}
1147
1148static __maybe_unused int m_can_suspend(struct device *dev)
1149{
1150 struct net_device *ndev = dev_get_drvdata(dev);
1151 struct m_can_priv *priv = netdev_priv(ndev);
1152
1153 if (netif_running(ndev)) {
1154 netif_stop_queue(ndev);
1155 netif_device_detach(ndev);
1156 }
1157
1158 /* TODO: enter low power */
1159
1160 priv->can.state = CAN_STATE_SLEEPING;
1161
1162 return 0;
1163}
1164
1165static __maybe_unused int m_can_resume(struct device *dev)
1166{
1167 struct net_device *ndev = dev_get_drvdata(dev);
1168 struct m_can_priv *priv = netdev_priv(ndev);
1169
1170 /* TODO: exit low power */
1171
1172 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1173
1174 if (netif_running(ndev)) {
1175 netif_device_attach(ndev);
1176 netif_start_queue(ndev);
1177 }
1178
1179 return 0;
1180}
1181
1182static void unregister_m_can_dev(struct net_device *dev)
1183{
1184 unregister_candev(dev);
1185}
1186
1187static int m_can_plat_remove(struct platform_device *pdev)
1188{
1189 struct net_device *dev = platform_get_drvdata(pdev);
1190
1191 unregister_m_can_dev(dev);
1192 platform_set_drvdata(pdev, NULL);
1193
1194 free_m_can_dev(dev);
1195
1196 return 0;
1197}
1198
1199static const struct dev_pm_ops m_can_pmops = {
1200 SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1201};
1202
1203static const struct of_device_id m_can_of_table[] = {
1204 { .compatible = "bosch,m_can", .data = NULL },
1205 { /* sentinel */ },
1206};
1207MODULE_DEVICE_TABLE(of, m_can_of_table);
1208
1209static struct platform_driver m_can_plat_driver = {
1210 .driver = {
1211 .name = KBUILD_MODNAME,
1212 .of_match_table = m_can_of_table,
1213 .pm = &m_can_pmops,
1214 },
1215 .probe = m_can_plat_probe,
1216 .remove = m_can_plat_remove,
1217};
1218
1219module_platform_driver(m_can_plat_driver);
1220
1221MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1222MODULE_LICENSE("GPL v2");
1223MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");