]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/net/can/mcp251x.c
bnx2x: Don't set netdev->trans_start
[thirdparty/linux.git] / drivers / net / can / mcp251x.c
CommitLineData
e0000163
CP
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 *
34 *
35 *
36 * Your platform definition file should specify something like:
37 *
38 * static struct mcp251x_platform_data mcp251x_info = {
39 * .oscillator_frequency = 8000000,
40 * .board_specific_setup = &mcp251x_setup,
41 * .model = CAN_MCP251X_MCP2510,
42 * .power_enable = mcp251x_power_enable,
43 * .transceiver_enable = NULL,
44 * };
45 *
46 * static struct spi_board_info spi_board_info[] = {
47 * {
48 * .modalias = "mcp251x",
49 * .platform_data = &mcp251x_info,
50 * .irq = IRQ_EINT13,
51 * .max_speed_hz = 2*1000*1000,
52 * .chip_select = 2,
53 * },
54 * };
55 *
56 * Please see mcp251x.h for a description of the fields in
57 * struct mcp251x_platform_data.
58 *
59 */
60
61#include <linux/can.h>
62#include <linux/can/core.h>
63#include <linux/can/dev.h>
64#include <linux/can/platform/mcp251x.h>
65#include <linux/completion.h>
66#include <linux/delay.h>
67#include <linux/device.h>
68#include <linux/dma-mapping.h>
69#include <linux/freezer.h>
70#include <linux/interrupt.h>
71#include <linux/io.h>
72#include <linux/kernel.h>
73#include <linux/module.h>
74#include <linux/netdevice.h>
75#include <linux/platform_device.h>
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
78
79/* SPI interface instruction set */
80#define INSTRUCTION_WRITE 0x02
81#define INSTRUCTION_READ 0x03
82#define INSTRUCTION_BIT_MODIFY 0x05
83#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
84#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
85#define INSTRUCTION_RESET 0xC0
86
87/* MPC251x registers */
88#define CANSTAT 0x0e
89#define CANCTRL 0x0f
90# define CANCTRL_REQOP_MASK 0xe0
91# define CANCTRL_REQOP_CONF 0x80
92# define CANCTRL_REQOP_LISTEN_ONLY 0x60
93# define CANCTRL_REQOP_LOOPBACK 0x40
94# define CANCTRL_REQOP_SLEEP 0x20
95# define CANCTRL_REQOP_NORMAL 0x00
96# define CANCTRL_OSM 0x08
97# define CANCTRL_ABAT 0x10
98#define TEC 0x1c
99#define REC 0x1d
100#define CNF1 0x2a
101# define CNF1_SJW_SHIFT 6
102#define CNF2 0x29
103# define CNF2_BTLMODE 0x80
104# define CNF2_SAM 0x40
105# define CNF2_PS1_SHIFT 3
106#define CNF3 0x28
107# define CNF3_SOF 0x08
108# define CNF3_WAKFIL 0x04
109# define CNF3_PHSEG2_MASK 0x07
110#define CANINTE 0x2b
111# define CANINTE_MERRE 0x80
112# define CANINTE_WAKIE 0x40
113# define CANINTE_ERRIE 0x20
114# define CANINTE_TX2IE 0x10
115# define CANINTE_TX1IE 0x08
116# define CANINTE_TX0IE 0x04
117# define CANINTE_RX1IE 0x02
118# define CANINTE_RX0IE 0x01
119#define CANINTF 0x2c
120# define CANINTF_MERRF 0x80
121# define CANINTF_WAKIF 0x40
122# define CANINTF_ERRIF 0x20
123# define CANINTF_TX2IF 0x10
124# define CANINTF_TX1IF 0x08
125# define CANINTF_TX0IF 0x04
126# define CANINTF_RX1IF 0x02
127# define CANINTF_RX0IF 0x01
128#define EFLG 0x2d
129# define EFLG_EWARN 0x01
130# define EFLG_RXWAR 0x02
131# define EFLG_TXWAR 0x04
132# define EFLG_RXEP 0x08
133# define EFLG_TXEP 0x10
134# define EFLG_TXBO 0x20
135# define EFLG_RX0OVR 0x40
136# define EFLG_RX1OVR 0x80
137#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
138# define TXBCTRL_ABTF 0x40
139# define TXBCTRL_MLOA 0x20
140# define TXBCTRL_TXERR 0x10
141# define TXBCTRL_TXREQ 0x08
142#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
143# define SIDH_SHIFT 3
144#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
145# define SIDL_SID_MASK 7
146# define SIDL_SID_SHIFT 5
147# define SIDL_EXIDE_SHIFT 3
148# define SIDL_EID_SHIFT 16
149# define SIDL_EID_MASK 3
150#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
151#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
152#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
153# define DLC_RTR_SHIFT 6
154#define TXBCTRL_OFF 0
155#define TXBSIDH_OFF 1
156#define TXBSIDL_OFF 2
157#define TXBEID8_OFF 3
158#define TXBEID0_OFF 4
159#define TXBDLC_OFF 5
160#define TXBDAT_OFF 6
161#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
162# define RXBCTRL_BUKT 0x04
163# define RXBCTRL_RXM0 0x20
164# define RXBCTRL_RXM1 0x40
165#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
166# define RXBSIDH_SHIFT 3
167#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
168# define RXBSIDL_IDE 0x08
169# define RXBSIDL_EID 3
170# define RXBSIDL_SHIFT 5
171#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
172#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
173#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
174# define RXBDLC_LEN_MASK 0x0f
175# define RXBDLC_RTR 0x40
176#define RXBCTRL_OFF 0
177#define RXBSIDH_OFF 1
178#define RXBSIDL_OFF 2
179#define RXBEID8_OFF 3
180#define RXBEID0_OFF 4
181#define RXBDLC_OFF 5
182#define RXBDAT_OFF 6
183
184#define GET_BYTE(val, byte) \
185 (((val) >> ((byte) * 8)) & 0xff)
186#define SET_BYTE(val, byte) \
187 (((val) & 0xff) << ((byte) * 8))
188
189/*
190 * Buffer size required for the largest SPI transfer (i.e., reading a
191 * frame)
192 */
193#define CAN_FRAME_MAX_DATA_LEN 8
194#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
195#define CAN_FRAME_MAX_BITS 128
196
197#define TX_ECHO_SKB_MAX 1
198
199#define DEVICE_NAME "mcp251x"
200
201static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
202module_param(mcp251x_enable_dma, int, S_IRUGO);
203MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
204
205static struct can_bittiming_const mcp251x_bittiming_const = {
206 .name = DEVICE_NAME,
207 .tseg1_min = 3,
208 .tseg1_max = 16,
209 .tseg2_min = 2,
210 .tseg2_max = 8,
211 .sjw_max = 4,
212 .brp_min = 1,
213 .brp_max = 64,
214 .brp_inc = 1,
215};
216
217struct mcp251x_priv {
218 struct can_priv can;
219 struct net_device *net;
220 struct spi_device *spi;
221
222 struct mutex spi_lock; /* SPI buffer lock */
223 u8 *spi_tx_buf;
224 u8 *spi_rx_buf;
225 dma_addr_t spi_tx_dma;
226 dma_addr_t spi_rx_dma;
227
228 struct sk_buff *tx_skb;
229 int tx_len;
230 struct workqueue_struct *wq;
231 struct work_struct tx_work;
232 struct work_struct irq_work;
233 struct completion awake;
234 int wake;
235 int force_quit;
236 int after_suspend;
237#define AFTER_SUSPEND_UP 1
238#define AFTER_SUSPEND_DOWN 2
239#define AFTER_SUSPEND_POWER 4
240#define AFTER_SUSPEND_RESTART 8
241 int restart_tx;
242};
243
244static void mcp251x_clean(struct net_device *net)
245{
246 struct mcp251x_priv *priv = netdev_priv(net);
247
248 net->stats.tx_errors++;
249 if (priv->tx_skb)
250 dev_kfree_skb(priv->tx_skb);
251 if (priv->tx_len)
252 can_free_echo_skb(priv->net, 0);
253 priv->tx_skb = NULL;
254 priv->tx_len = 0;
255}
256
257/*
258 * Note about handling of error return of mcp251x_spi_trans: accessing
259 * registers via SPI is not really different conceptually than using
260 * normal I/O assembler instructions, although it's much more
261 * complicated from a practical POV. So it's not advisable to always
262 * check the return value of this function. Imagine that every
263 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
264 * error();", it would be a great mess (well there are some situation
265 * when exception handling C++ like could be useful after all). So we
266 * just check that transfers are OK at the beginning of our
267 * conversation with the chip and to avoid doing really nasty things
268 * (like injecting bogus packets in the network stack).
269 */
270static int mcp251x_spi_trans(struct spi_device *spi, int len)
271{
272 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
273 struct spi_transfer t = {
274 .tx_buf = priv->spi_tx_buf,
275 .rx_buf = priv->spi_rx_buf,
276 .len = len,
277 .cs_change = 0,
278 };
279 struct spi_message m;
280 int ret;
281
282 spi_message_init(&m);
283
284 if (mcp251x_enable_dma) {
285 t.tx_dma = priv->spi_tx_dma;
286 t.rx_dma = priv->spi_rx_dma;
287 m.is_dma_mapped = 1;
288 }
289
290 spi_message_add_tail(&t, &m);
291
292 ret = spi_sync(spi, &m);
293 if (ret)
294 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
295 return ret;
296}
297
298static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
299{
300 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
301 u8 val = 0;
302
303 mutex_lock(&priv->spi_lock);
304
305 priv->spi_tx_buf[0] = INSTRUCTION_READ;
306 priv->spi_tx_buf[1] = reg;
307
308 mcp251x_spi_trans(spi, 3);
309 val = priv->spi_rx_buf[2];
310
311 mutex_unlock(&priv->spi_lock);
312
313 return val;
314}
315
316static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
317{
318 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
319
320 mutex_lock(&priv->spi_lock);
321
322 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
323 priv->spi_tx_buf[1] = reg;
324 priv->spi_tx_buf[2] = val;
325
326 mcp251x_spi_trans(spi, 3);
327
328 mutex_unlock(&priv->spi_lock);
329}
330
331static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
332 u8 mask, uint8_t val)
333{
334 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
335
336 mutex_lock(&priv->spi_lock);
337
338 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
339 priv->spi_tx_buf[1] = reg;
340 priv->spi_tx_buf[2] = mask;
341 priv->spi_tx_buf[3] = val;
342
343 mcp251x_spi_trans(spi, 4);
344
345 mutex_unlock(&priv->spi_lock);
346}
347
348static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
349 int len, int tx_buf_idx)
350{
351 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
352 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
353
354 if (pdata->model == CAN_MCP251X_MCP2510) {
355 int i;
356
357 for (i = 1; i < TXBDAT_OFF + len; i++)
358 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
359 buf[i]);
360 } else {
361 mutex_lock(&priv->spi_lock);
362 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
363 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
364 mutex_unlock(&priv->spi_lock);
365 }
366}
367
368static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
369 int tx_buf_idx)
370{
371 u32 sid, eid, exide, rtr;
372 u8 buf[SPI_TRANSFER_BUF_LEN];
373
374 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
375 if (exide)
376 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
377 else
378 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
379 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
380 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
381
382 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
383 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
384 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
385 (exide << SIDL_EXIDE_SHIFT) |
386 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
387 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
388 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
389 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
390 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
391 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
392 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
393}
394
395static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
396 int buf_idx)
397{
398 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
399 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
400
401 if (pdata->model == CAN_MCP251X_MCP2510) {
402 int i, len;
403
404 for (i = 1; i < RXBDAT_OFF; i++)
405 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
406 len = buf[RXBDLC_OFF] & RXBDLC_LEN_MASK;
407 if (len > 8)
408 len = 8;
409 for (; i < (RXBDAT_OFF + len); i++)
410 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
411 } else {
412 mutex_lock(&priv->spi_lock);
413
414 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
415 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
416 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
417
418 mutex_unlock(&priv->spi_lock);
419 }
420}
421
422static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
423{
424 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
425 struct sk_buff *skb;
426 struct can_frame *frame;
427 u8 buf[SPI_TRANSFER_BUF_LEN];
428
429 skb = alloc_can_skb(priv->net, &frame);
430 if (!skb) {
431 dev_err(&spi->dev, "cannot allocate RX skb\n");
432 priv->net->stats.rx_dropped++;
433 return;
434 }
435
436 mcp251x_hw_rx_frame(spi, buf, buf_idx);
437 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
438 /* Extended ID format */
439 frame->can_id = CAN_EFF_FLAG;
440 frame->can_id |=
441 /* Extended ID part */
442 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
443 SET_BYTE(buf[RXBEID8_OFF], 1) |
444 SET_BYTE(buf[RXBEID0_OFF], 0) |
445 /* Standard ID part */
446 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
447 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
448 /* Remote transmission request */
449 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
450 frame->can_id |= CAN_RTR_FLAG;
451 } else {
452 /* Standard ID format */
453 frame->can_id =
454 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
455 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
456 }
457 /* Data length */
458 frame->can_dlc = buf[RXBDLC_OFF] & RXBDLC_LEN_MASK;
459 if (frame->can_dlc > 8) {
460 dev_warn(&spi->dev, "invalid frame recevied\n");
461 priv->net->stats.rx_errors++;
462 dev_kfree_skb(skb);
463 return;
464 }
465 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
466
467 priv->net->stats.rx_packets++;
468 priv->net->stats.rx_bytes += frame->can_dlc;
469 netif_rx(skb);
470}
471
472static void mcp251x_hw_sleep(struct spi_device *spi)
473{
474 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
475}
476
477static void mcp251x_hw_wakeup(struct spi_device *spi)
478{
479 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
480
481 priv->wake = 1;
482
483 /* Can only wake up by generating a wake-up interrupt. */
484 mcp251x_write_bits(spi, CANINTE, CANINTE_WAKIE, CANINTE_WAKIE);
485 mcp251x_write_bits(spi, CANINTF, CANINTF_WAKIF, CANINTF_WAKIF);
486
487 /* Wait until the device is awake */
488 if (!wait_for_completion_timeout(&priv->awake, HZ))
489 dev_err(&spi->dev, "MCP251x didn't wake-up\n");
490}
491
492static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
493 struct net_device *net)
494{
495 struct mcp251x_priv *priv = netdev_priv(net);
496 struct spi_device *spi = priv->spi;
497
498 if (priv->tx_skb || priv->tx_len) {
499 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
500 netif_stop_queue(net);
501 return NETDEV_TX_BUSY;
502 }
503
504 if (skb->len != sizeof(struct can_frame)) {
505 dev_err(&spi->dev, "dropping packet - bad length\n");
506 dev_kfree_skb(skb);
507 net->stats.tx_dropped++;
508 return NETDEV_TX_OK;
509 }
510
511 netif_stop_queue(net);
512 priv->tx_skb = skb;
513 net->trans_start = jiffies;
514 queue_work(priv->wq, &priv->tx_work);
515
516 return NETDEV_TX_OK;
517}
518
519static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
520{
521 struct mcp251x_priv *priv = netdev_priv(net);
522
523 switch (mode) {
524 case CAN_MODE_START:
525 /* We have to delay work since SPI I/O may sleep */
526 priv->can.state = CAN_STATE_ERROR_ACTIVE;
527 priv->restart_tx = 1;
528 if (priv->can.restart_ms == 0)
529 priv->after_suspend = AFTER_SUSPEND_RESTART;
530 queue_work(priv->wq, &priv->irq_work);
531 break;
532 default:
533 return -EOPNOTSUPP;
534 }
535
536 return 0;
537}
538
539static void mcp251x_set_normal_mode(struct spi_device *spi)
540{
541 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
542 unsigned long timeout;
543
544 /* Enable interrupts */
545 mcp251x_write_reg(spi, CANINTE,
546 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
547 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE |
548 CANINTF_MERRF);
549
550 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
551 /* Put device into loopback mode */
552 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
553 } else {
554 /* Put device into normal mode */
555 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
556
557 /* Wait for the device to enter normal mode */
558 timeout = jiffies + HZ;
559 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
560 schedule();
561 if (time_after(jiffies, timeout)) {
562 dev_err(&spi->dev, "MCP251x didn't"
563 " enter in normal mode\n");
564 return;
565 }
566 }
567 }
568 priv->can.state = CAN_STATE_ERROR_ACTIVE;
569}
570
571static int mcp251x_do_set_bittiming(struct net_device *net)
572{
573 struct mcp251x_priv *priv = netdev_priv(net);
574 struct can_bittiming *bt = &priv->can.bittiming;
575 struct spi_device *spi = priv->spi;
576
577 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
578 (bt->brp - 1));
579 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
580 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
581 CNF2_SAM : 0) |
582 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
583 (bt->prop_seg - 1));
584 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
585 (bt->phase_seg2 - 1));
586 dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
587 mcp251x_read_reg(spi, CNF1),
588 mcp251x_read_reg(spi, CNF2),
589 mcp251x_read_reg(spi, CNF3));
590
591 return 0;
592}
593
594static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
595 struct spi_device *spi)
596{
597 int ret;
598
599 ret = open_candev(net);
600 if (ret) {
601 dev_err(&spi->dev, "unable to set initial baudrate!\n");
602 return ret;
603 }
604
605 /* Enable RX0->RX1 buffer roll over and disable filters */
606 mcp251x_write_bits(spi, RXBCTRL(0),
607 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1,
608 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
609 mcp251x_write_bits(spi, RXBCTRL(1),
610 RXBCTRL_RXM0 | RXBCTRL_RXM1,
611 RXBCTRL_RXM0 | RXBCTRL_RXM1);
612 return 0;
613}
614
615static void mcp251x_hw_reset(struct spi_device *spi)
616{
617 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
618 int ret;
619
620 mutex_lock(&priv->spi_lock);
621
622 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
623
624 ret = spi_write(spi, priv->spi_tx_buf, 1);
625
626 mutex_unlock(&priv->spi_lock);
627
628 if (ret)
629 dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
630 /* Wait for reset to finish */
631 mdelay(10);
632}
633
634static int mcp251x_hw_probe(struct spi_device *spi)
635{
636 int st1, st2;
637
638 mcp251x_hw_reset(spi);
639
640 /*
641 * Please note that these are "magic values" based on after
642 * reset defaults taken from data sheet which allows us to see
643 * if we really have a chip on the bus (we avoid common all
644 * zeroes or all ones situations)
645 */
646 st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
647 st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
648
649 dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
650
651 /* Check for power up default values */
652 return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
653}
654
655static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
656{
657 struct net_device *net = (struct net_device *)dev_id;
658 struct mcp251x_priv *priv = netdev_priv(net);
659
660 /* Schedule bottom half */
661 if (!work_pending(&priv->irq_work))
662 queue_work(priv->wq, &priv->irq_work);
663
664 return IRQ_HANDLED;
665}
666
667static int mcp251x_open(struct net_device *net)
668{
669 struct mcp251x_priv *priv = netdev_priv(net);
670 struct spi_device *spi = priv->spi;
671 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
672 int ret;
673
674 if (pdata->transceiver_enable)
675 pdata->transceiver_enable(1);
676
677 priv->force_quit = 0;
678 priv->tx_skb = NULL;
679 priv->tx_len = 0;
680
681 ret = request_irq(spi->irq, mcp251x_can_isr,
682 IRQF_TRIGGER_FALLING, DEVICE_NAME, net);
683 if (ret) {
684 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
685 if (pdata->transceiver_enable)
686 pdata->transceiver_enable(0);
687 return ret;
688 }
689
690 mcp251x_hw_wakeup(spi);
691 mcp251x_hw_reset(spi);
692 ret = mcp251x_setup(net, priv, spi);
693 if (ret) {
694 free_irq(spi->irq, net);
695 if (pdata->transceiver_enable)
696 pdata->transceiver_enable(0);
697 return ret;
698 }
699 mcp251x_set_normal_mode(spi);
700 netif_wake_queue(net);
701
702 return 0;
703}
704
705static int mcp251x_stop(struct net_device *net)
706{
707 struct mcp251x_priv *priv = netdev_priv(net);
708 struct spi_device *spi = priv->spi;
709 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
710
711 close_candev(net);
712
713 /* Disable and clear pending interrupts */
714 mcp251x_write_reg(spi, CANINTE, 0x00);
715 mcp251x_write_reg(spi, CANINTF, 0x00);
716
717 priv->force_quit = 1;
718 free_irq(spi->irq, net);
719 flush_workqueue(priv->wq);
720
721 mcp251x_write_reg(spi, TXBCTRL(0), 0);
722 if (priv->tx_skb || priv->tx_len)
723 mcp251x_clean(net);
724
725 mcp251x_hw_sleep(spi);
726
727 if (pdata->transceiver_enable)
728 pdata->transceiver_enable(0);
729
730 priv->can.state = CAN_STATE_STOPPED;
731
732 return 0;
733}
734
735static void mcp251x_tx_work_handler(struct work_struct *ws)
736{
737 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
738 tx_work);
739 struct spi_device *spi = priv->spi;
740 struct net_device *net = priv->net;
741 struct can_frame *frame;
742
743 if (priv->tx_skb) {
744 frame = (struct can_frame *)priv->tx_skb->data;
745
746 if (priv->can.state == CAN_STATE_BUS_OFF) {
747 mcp251x_clean(net);
748 netif_wake_queue(net);
749 return;
750 }
751 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
752 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
753 mcp251x_hw_tx(spi, frame, 0);
754 priv->tx_len = 1 + frame->can_dlc;
755 can_put_echo_skb(priv->tx_skb, net, 0);
756 priv->tx_skb = NULL;
757 }
758}
759
760static void mcp251x_irq_work_handler(struct work_struct *ws)
761{
762 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
763 irq_work);
764 struct spi_device *spi = priv->spi;
765 struct net_device *net = priv->net;
766 u8 txbnctrl;
767 u8 intf;
768 enum can_state new_state;
769
770 if (priv->after_suspend) {
771 mdelay(10);
772 mcp251x_hw_reset(spi);
773 mcp251x_setup(net, priv, spi);
774 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
775 mcp251x_set_normal_mode(spi);
776 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
777 netif_device_attach(net);
778 /* Clean since we lost tx buffer */
779 if (priv->tx_skb || priv->tx_len) {
780 mcp251x_clean(net);
781 netif_wake_queue(net);
782 }
783 mcp251x_set_normal_mode(spi);
784 } else {
785 mcp251x_hw_sleep(spi);
786 }
787 priv->after_suspend = 0;
788 }
789
790 if (priv->can.restart_ms == 0 && priv->can.state == CAN_STATE_BUS_OFF)
791 return;
792
793 while (!priv->force_quit && !freezing(current)) {
794 u8 eflag = mcp251x_read_reg(spi, EFLG);
795 int can_id = 0, data1 = 0;
796
797 mcp251x_write_reg(spi, EFLG, 0x00);
798
799 if (priv->restart_tx) {
800 priv->restart_tx = 0;
801 mcp251x_write_reg(spi, TXBCTRL(0), 0);
802 if (priv->tx_skb || priv->tx_len)
803 mcp251x_clean(net);
804 netif_wake_queue(net);
805 can_id |= CAN_ERR_RESTARTED;
806 }
807
808 if (priv->wake) {
809 /* Wait whilst the device wakes up */
810 mdelay(10);
811 priv->wake = 0;
812 }
813
814 intf = mcp251x_read_reg(spi, CANINTF);
815 mcp251x_write_bits(spi, CANINTF, intf, 0x00);
816
817 /* Update can state */
818 if (eflag & EFLG_TXBO) {
819 new_state = CAN_STATE_BUS_OFF;
820 can_id |= CAN_ERR_BUSOFF;
821 } else if (eflag & EFLG_TXEP) {
822 new_state = CAN_STATE_ERROR_PASSIVE;
823 can_id |= CAN_ERR_CRTL;
824 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
825 } else if (eflag & EFLG_RXEP) {
826 new_state = CAN_STATE_ERROR_PASSIVE;
827 can_id |= CAN_ERR_CRTL;
828 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
829 } else if (eflag & EFLG_TXWAR) {
830 new_state = CAN_STATE_ERROR_WARNING;
831 can_id |= CAN_ERR_CRTL;
832 data1 |= CAN_ERR_CRTL_TX_WARNING;
833 } else if (eflag & EFLG_RXWAR) {
834 new_state = CAN_STATE_ERROR_WARNING;
835 can_id |= CAN_ERR_CRTL;
836 data1 |= CAN_ERR_CRTL_RX_WARNING;
837 } else {
838 new_state = CAN_STATE_ERROR_ACTIVE;
839 }
840
841 /* Update can state statistics */
842 switch (priv->can.state) {
843 case CAN_STATE_ERROR_ACTIVE:
844 if (new_state >= CAN_STATE_ERROR_WARNING &&
845 new_state <= CAN_STATE_BUS_OFF)
846 priv->can.can_stats.error_warning++;
847 case CAN_STATE_ERROR_WARNING: /* fallthrough */
848 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
849 new_state <= CAN_STATE_BUS_OFF)
850 priv->can.can_stats.error_passive++;
851 break;
852 default:
853 break;
854 }
855 priv->can.state = new_state;
856
857 if ((intf & CANINTF_ERRIF) || (can_id & CAN_ERR_RESTARTED)) {
858 struct sk_buff *skb;
859 struct can_frame *frame;
860
861 /* Create error frame */
862 skb = alloc_can_err_skb(net, &frame);
863 if (skb) {
864 /* Set error frame flags based on bus state */
865 frame->can_id = can_id;
866 frame->data[1] = data1;
867
868 /* Update net stats for overflows */
869 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
870 if (eflag & EFLG_RX0OVR)
871 net->stats.rx_over_errors++;
872 if (eflag & EFLG_RX1OVR)
873 net->stats.rx_over_errors++;
874 frame->can_id |= CAN_ERR_CRTL;
875 frame->data[1] |=
876 CAN_ERR_CRTL_RX_OVERFLOW;
877 }
878
879 netif_rx(skb);
880 } else {
881 dev_info(&spi->dev,
882 "cannot allocate error skb\n");
883 }
884 }
885
886 if (priv->can.state == CAN_STATE_BUS_OFF) {
887 if (priv->can.restart_ms == 0) {
888 can_bus_off(net);
889 mcp251x_hw_sleep(spi);
890 return;
891 }
892 }
893
894 if (intf == 0)
895 break;
896
897 if (intf & CANINTF_WAKIF)
898 complete(&priv->awake);
899
900 if (intf & CANINTF_MERRF) {
901 /* If there are pending Tx buffers, restart queue */
902 txbnctrl = mcp251x_read_reg(spi, TXBCTRL(0));
903 if (!(txbnctrl & TXBCTRL_TXREQ)) {
904 if (priv->tx_skb || priv->tx_len)
905 mcp251x_clean(net);
906 netif_wake_queue(net);
907 }
908 }
909
910 if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
911 net->stats.tx_packets++;
912 net->stats.tx_bytes += priv->tx_len - 1;
913 if (priv->tx_len) {
914 can_get_echo_skb(net, 0);
915 priv->tx_len = 0;
916 }
917 netif_wake_queue(net);
918 }
919
920 if (intf & CANINTF_RX0IF)
921 mcp251x_hw_rx(spi, 0);
922
923 if (intf & CANINTF_RX1IF)
924 mcp251x_hw_rx(spi, 1);
925 }
926}
927
928static const struct net_device_ops mcp251x_netdev_ops = {
929 .ndo_open = mcp251x_open,
930 .ndo_stop = mcp251x_stop,
931 .ndo_start_xmit = mcp251x_hard_start_xmit,
932};
933
934static int __devinit mcp251x_can_probe(struct spi_device *spi)
935{
936 struct net_device *net;
937 struct mcp251x_priv *priv;
938 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
939 int ret = -ENODEV;
940
941 if (!pdata)
942 /* Platform data is required for osc freq */
943 goto error_out;
944
945 /* Allocate can/net device */
946 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
947 if (!net) {
948 ret = -ENOMEM;
949 goto error_alloc;
950 }
951
952 net->netdev_ops = &mcp251x_netdev_ops;
953 net->flags |= IFF_ECHO;
954
955 priv = netdev_priv(net);
956 priv->can.bittiming_const = &mcp251x_bittiming_const;
957 priv->can.do_set_mode = mcp251x_do_set_mode;
958 priv->can.clock.freq = pdata->oscillator_frequency / 2;
959 priv->can.do_set_bittiming = mcp251x_do_set_bittiming;
960 priv->net = net;
961 dev_set_drvdata(&spi->dev, priv);
962
963 priv->spi = spi;
964 mutex_init(&priv->spi_lock);
965
966 /* If requested, allocate DMA buffers */
967 if (mcp251x_enable_dma) {
968 spi->dev.coherent_dma_mask = ~0;
969
970 /*
971 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
972 * that much and share it between Tx and Rx DMA buffers.
973 */
974 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
975 PAGE_SIZE,
976 &priv->spi_tx_dma,
977 GFP_DMA);
978
979 if (priv->spi_tx_buf) {
980 priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
981 (PAGE_SIZE / 2));
982 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
983 (PAGE_SIZE / 2));
984 } else {
985 /* Fall back to non-DMA */
986 mcp251x_enable_dma = 0;
987 }
988 }
989
990 /* Allocate non-DMA buffers */
991 if (!mcp251x_enable_dma) {
992 priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
993 if (!priv->spi_tx_buf) {
994 ret = -ENOMEM;
995 goto error_tx_buf;
996 }
997 priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
998 if (!priv->spi_tx_buf) {
999 ret = -ENOMEM;
1000 goto error_rx_buf;
1001 }
1002 }
1003
1004 if (pdata->power_enable)
1005 pdata->power_enable(1);
1006
1007 /* Call out to platform specific setup */
1008 if (pdata->board_specific_setup)
1009 pdata->board_specific_setup(spi);
1010
1011 SET_NETDEV_DEV(net, &spi->dev);
1012
1013 priv->wq = create_freezeable_workqueue("mcp251x_wq");
1014
1015 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1016 INIT_WORK(&priv->irq_work, mcp251x_irq_work_handler);
1017
1018 init_completion(&priv->awake);
1019
1020 /* Configure the SPI bus */
1021 spi->mode = SPI_MODE_0;
1022 spi->bits_per_word = 8;
1023 spi_setup(spi);
1024
1025 if (!mcp251x_hw_probe(spi)) {
1026 dev_info(&spi->dev, "Probe failed\n");
1027 goto error_probe;
1028 }
1029 mcp251x_hw_sleep(spi);
1030
1031 if (pdata->transceiver_enable)
1032 pdata->transceiver_enable(0);
1033
1034 ret = register_candev(net);
1035 if (!ret) {
1036 dev_info(&spi->dev, "probed\n");
1037 return ret;
1038 }
1039error_probe:
1040 if (!mcp251x_enable_dma)
1041 kfree(priv->spi_rx_buf);
1042error_rx_buf:
1043 if (!mcp251x_enable_dma)
1044 kfree(priv->spi_tx_buf);
1045error_tx_buf:
1046 free_candev(net);
1047 if (mcp251x_enable_dma)
1048 dma_free_coherent(&spi->dev, PAGE_SIZE,
1049 priv->spi_tx_buf, priv->spi_tx_dma);
1050error_alloc:
1051 if (pdata->power_enable)
1052 pdata->power_enable(0);
1053 dev_err(&spi->dev, "probe failed\n");
1054error_out:
1055 return ret;
1056}
1057
1058static int __devexit mcp251x_can_remove(struct spi_device *spi)
1059{
1060 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1061 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1062 struct net_device *net = priv->net;
1063
1064 unregister_candev(net);
1065 free_candev(net);
1066
1067 priv->force_quit = 1;
1068 flush_workqueue(priv->wq);
1069 destroy_workqueue(priv->wq);
1070
1071 if (mcp251x_enable_dma) {
1072 dma_free_coherent(&spi->dev, PAGE_SIZE,
1073 priv->spi_tx_buf, priv->spi_tx_dma);
1074 } else {
1075 kfree(priv->spi_tx_buf);
1076 kfree(priv->spi_rx_buf);
1077 }
1078
1079 if (pdata->power_enable)
1080 pdata->power_enable(0);
1081
1082 return 0;
1083}
1084
1085#ifdef CONFIG_PM
1086static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1087{
1088 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1089 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1090 struct net_device *net = priv->net;
1091
1092 if (netif_running(net)) {
1093 netif_device_detach(net);
1094
1095 mcp251x_hw_sleep(spi);
1096 if (pdata->transceiver_enable)
1097 pdata->transceiver_enable(0);
1098 priv->after_suspend = AFTER_SUSPEND_UP;
1099 } else {
1100 priv->after_suspend = AFTER_SUSPEND_DOWN;
1101 }
1102
1103 if (pdata->power_enable) {
1104 pdata->power_enable(0);
1105 priv->after_suspend |= AFTER_SUSPEND_POWER;
1106 }
1107
1108 return 0;
1109}
1110
1111static int mcp251x_can_resume(struct spi_device *spi)
1112{
1113 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1114 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1115
1116 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1117 pdata->power_enable(1);
1118 queue_work(priv->wq, &priv->irq_work);
1119 } else {
1120 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1121 if (pdata->transceiver_enable)
1122 pdata->transceiver_enable(1);
1123 queue_work(priv->wq, &priv->irq_work);
1124 } else {
1125 priv->after_suspend = 0;
1126 }
1127 }
1128 return 0;
1129}
1130#else
1131#define mcp251x_can_suspend NULL
1132#define mcp251x_can_resume NULL
1133#endif
1134
1135static struct spi_driver mcp251x_can_driver = {
1136 .driver = {
1137 .name = DEVICE_NAME,
1138 .bus = &spi_bus_type,
1139 .owner = THIS_MODULE,
1140 },
1141
1142 .probe = mcp251x_can_probe,
1143 .remove = __devexit_p(mcp251x_can_remove),
1144 .suspend = mcp251x_can_suspend,
1145 .resume = mcp251x_can_resume,
1146};
1147
1148static int __init mcp251x_can_init(void)
1149{
1150 return spi_register_driver(&mcp251x_can_driver);
1151}
1152
1153static void __exit mcp251x_can_exit(void)
1154{
1155 spi_unregister_driver(&mcp251x_can_driver);
1156}
1157
1158module_init(mcp251x_can_init);
1159module_exit(mcp251x_can_exit);
1160
1161MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1162 "Christian Pellegrin <chripell@evolware.org>");
1163MODULE_DESCRIPTION("Microchip 251x CAN driver");
1164MODULE_LICENSE("GPL v2");