]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/net/can/mcp251x.c
can: mcp251x: Improve mcp251x_hw_reset()
[thirdparty/linux.git] / drivers / net / can / mcp251x.c
CommitLineData
e0000163
CP
1/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
05780d98 31 * along with this program; if not, see <http://www.gnu.org/licenses/>.
e0000163
CP
32 *
33 *
34 *
35 * Your platform definition file should specify something like:
36 *
37 * static struct mcp251x_platform_data mcp251x_info = {
38 * .oscillator_frequency = 8000000,
e0000163
CP
39 * };
40 *
41 * static struct spi_board_info spi_board_info[] = {
42 * {
f1f8c6cb
MKB
43 * .modalias = "mcp2510",
44 * // or "mcp2515" depending on your controller
e0000163
CP
45 * .platform_data = &mcp251x_info,
46 * .irq = IRQ_EINT13,
47 * .max_speed_hz = 2*1000*1000,
48 * .chip_select = 2,
49 * },
50 * };
51 *
52 * Please see mcp251x.h for a description of the fields in
53 * struct mcp251x_platform_data.
54 *
55 */
56
e0000163
CP
57#include <linux/can/core.h>
58#include <linux/can/dev.h>
eb072a9b 59#include <linux/can/led.h>
e0000163 60#include <linux/can/platform/mcp251x.h>
66606aaf 61#include <linux/clk.h>
e0000163
CP
62#include <linux/completion.h>
63#include <linux/delay.h>
64#include <linux/device.h>
65#include <linux/dma-mapping.h>
66#include <linux/freezer.h>
67#include <linux/interrupt.h>
68#include <linux/io.h>
69#include <linux/kernel.h>
70#include <linux/module.h>
71#include <linux/netdevice.h>
66606aaf
AS
72#include <linux/of.h>
73#include <linux/of_device.h>
e0000163 74#include <linux/platform_device.h>
5a0e3ad6 75#include <linux/slab.h>
e0000163
CP
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
1ddff7da 78#include <linux/regulator/consumer.h>
e0000163
CP
79
80/* SPI interface instruction set */
81#define INSTRUCTION_WRITE 0x02
82#define INSTRUCTION_READ 0x03
83#define INSTRUCTION_BIT_MODIFY 0x05
84#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
85#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
86#define INSTRUCTION_RESET 0xC0
cab32f39
BL
87#define RTS_TXB0 0x01
88#define RTS_TXB1 0x02
89#define RTS_TXB2 0x04
90#define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
91
e0000163
CP
92
93/* MPC251x registers */
94#define CANSTAT 0x0e
95#define CANCTRL 0x0f
96# define CANCTRL_REQOP_MASK 0xe0
97# define CANCTRL_REQOP_CONF 0x80
98# define CANCTRL_REQOP_LISTEN_ONLY 0x60
99# define CANCTRL_REQOP_LOOPBACK 0x40
100# define CANCTRL_REQOP_SLEEP 0x20
101# define CANCTRL_REQOP_NORMAL 0x00
102# define CANCTRL_OSM 0x08
103# define CANCTRL_ABAT 0x10
104#define TEC 0x1c
105#define REC 0x1d
106#define CNF1 0x2a
107# define CNF1_SJW_SHIFT 6
108#define CNF2 0x29
109# define CNF2_BTLMODE 0x80
110# define CNF2_SAM 0x40
111# define CNF2_PS1_SHIFT 3
112#define CNF3 0x28
113# define CNF3_SOF 0x08
114# define CNF3_WAKFIL 0x04
115# define CNF3_PHSEG2_MASK 0x07
116#define CANINTE 0x2b
117# define CANINTE_MERRE 0x80
118# define CANINTE_WAKIE 0x40
119# define CANINTE_ERRIE 0x20
120# define CANINTE_TX2IE 0x10
121# define CANINTE_TX1IE 0x08
122# define CANINTE_TX0IE 0x04
123# define CANINTE_RX1IE 0x02
124# define CANINTE_RX0IE 0x01
125#define CANINTF 0x2c
126# define CANINTF_MERRF 0x80
127# define CANINTF_WAKIF 0x40
128# define CANINTF_ERRIF 0x20
129# define CANINTF_TX2IF 0x10
130# define CANINTF_TX1IF 0x08
131# define CANINTF_TX0IF 0x04
132# define CANINTF_RX1IF 0x02
133# define CANINTF_RX0IF 0x01
5601b2df
MKB
134# define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
135# define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
136# define CANINTF_ERR (CANINTF_ERRIF)
e0000163
CP
137#define EFLG 0x2d
138# define EFLG_EWARN 0x01
139# define EFLG_RXWAR 0x02
140# define EFLG_TXWAR 0x04
141# define EFLG_RXEP 0x08
142# define EFLG_TXEP 0x10
143# define EFLG_TXBO 0x20
144# define EFLG_RX0OVR 0x40
145# define EFLG_RX1OVR 0x80
146#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
147# define TXBCTRL_ABTF 0x40
148# define TXBCTRL_MLOA 0x20
149# define TXBCTRL_TXERR 0x10
150# define TXBCTRL_TXREQ 0x08
151#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
152# define SIDH_SHIFT 3
153#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
154# define SIDL_SID_MASK 7
155# define SIDL_SID_SHIFT 5
156# define SIDL_EXIDE_SHIFT 3
157# define SIDL_EID_SHIFT 16
158# define SIDL_EID_MASK 3
159#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
160#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
161#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
162# define DLC_RTR_SHIFT 6
163#define TXBCTRL_OFF 0
164#define TXBSIDH_OFF 1
165#define TXBSIDL_OFF 2
166#define TXBEID8_OFF 3
167#define TXBEID0_OFF 4
168#define TXBDLC_OFF 5
169#define TXBDAT_OFF 6
170#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
171# define RXBCTRL_BUKT 0x04
172# define RXBCTRL_RXM0 0x20
173# define RXBCTRL_RXM1 0x40
174#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
175# define RXBSIDH_SHIFT 3
176#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
177# define RXBSIDL_IDE 0x08
b9958a95 178# define RXBSIDL_SRR 0x10
e0000163
CP
179# define RXBSIDL_EID 3
180# define RXBSIDL_SHIFT 5
181#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
182#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
183#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
184# define RXBDLC_LEN_MASK 0x0f
185# define RXBDLC_RTR 0x40
186#define RXBCTRL_OFF 0
187#define RXBSIDH_OFF 1
188#define RXBSIDL_OFF 2
189#define RXBEID8_OFF 3
190#define RXBEID0_OFF 4
191#define RXBDLC_OFF 5
192#define RXBDAT_OFF 6
bf66f373
CP
193#define RXFSIDH(n) ((n) * 4)
194#define RXFSIDL(n) ((n) * 4 + 1)
195#define RXFEID8(n) ((n) * 4 + 2)
196#define RXFEID0(n) ((n) * 4 + 3)
197#define RXMSIDH(n) ((n) * 4 + 0x20)
198#define RXMSIDL(n) ((n) * 4 + 0x21)
199#define RXMEID8(n) ((n) * 4 + 0x22)
200#define RXMEID0(n) ((n) * 4 + 0x23)
e0000163
CP
201
202#define GET_BYTE(val, byte) \
203 (((val) >> ((byte) * 8)) & 0xff)
204#define SET_BYTE(val, byte) \
205 (((val) & 0xff) << ((byte) * 8))
206
207/*
208 * Buffer size required for the largest SPI transfer (i.e., reading a
209 * frame)
210 */
211#define CAN_FRAME_MAX_DATA_LEN 8
212#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
213#define CAN_FRAME_MAX_BITS 128
214
215#define TX_ECHO_SKB_MAX 1
216
ff06d611
AS
217#define MCP251X_OST_DELAY_MS (5)
218
e0000163
CP
219#define DEVICE_NAME "mcp251x"
220
221static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
222module_param(mcp251x_enable_dma, int, S_IRUGO);
223MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
224
194b9a4c 225static const struct can_bittiming_const mcp251x_bittiming_const = {
e0000163
CP
226 .name = DEVICE_NAME,
227 .tseg1_min = 3,
228 .tseg1_max = 16,
229 .tseg2_min = 2,
230 .tseg2_max = 8,
231 .sjw_max = 4,
232 .brp_min = 1,
233 .brp_max = 64,
234 .brp_inc = 1,
235};
236
f1f8c6cb
MKB
237enum mcp251x_model {
238 CAN_MCP251X_MCP2510 = 0x2510,
239 CAN_MCP251X_MCP2515 = 0x2515,
240};
241
e0000163
CP
242struct mcp251x_priv {
243 struct can_priv can;
244 struct net_device *net;
245 struct spi_device *spi;
f1f8c6cb 246 enum mcp251x_model model;
e0000163 247
bf66f373
CP
248 struct mutex mcp_lock; /* SPI device lock */
249
e0000163
CP
250 u8 *spi_tx_buf;
251 u8 *spi_rx_buf;
252 dma_addr_t spi_tx_dma;
253 dma_addr_t spi_rx_dma;
254
255 struct sk_buff *tx_skb;
256 int tx_len;
bf66f373 257
e0000163
CP
258 struct workqueue_struct *wq;
259 struct work_struct tx_work;
bf66f373
CP
260 struct work_struct restart_work;
261
e0000163
CP
262 int force_quit;
263 int after_suspend;
264#define AFTER_SUSPEND_UP 1
265#define AFTER_SUSPEND_DOWN 2
266#define AFTER_SUSPEND_POWER 4
267#define AFTER_SUSPEND_RESTART 8
268 int restart_tx;
1ddff7da
AS
269 struct regulator *power;
270 struct regulator *transceiver;
66606aaf 271 struct clk *clk;
e0000163
CP
272};
273
beab675c
MKB
274#define MCP251X_IS(_model) \
275static inline int mcp251x_is_##_model(struct spi_device *spi) \
276{ \
fce5c293 277 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
beab675c
MKB
278 return priv->model == CAN_MCP251X_MCP##_model; \
279}
280
281MCP251X_IS(2510);
282MCP251X_IS(2515);
283
e0000163
CP
284static void mcp251x_clean(struct net_device *net)
285{
286 struct mcp251x_priv *priv = netdev_priv(net);
287
bf66f373
CP
288 if (priv->tx_skb || priv->tx_len)
289 net->stats.tx_errors++;
e0000163
CP
290 if (priv->tx_skb)
291 dev_kfree_skb(priv->tx_skb);
292 if (priv->tx_len)
293 can_free_echo_skb(priv->net, 0);
294 priv->tx_skb = NULL;
295 priv->tx_len = 0;
296}
297
298/*
299 * Note about handling of error return of mcp251x_spi_trans: accessing
300 * registers via SPI is not really different conceptually than using
301 * normal I/O assembler instructions, although it's much more
302 * complicated from a practical POV. So it's not advisable to always
303 * check the return value of this function. Imagine that every
304 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
305 * error();", it would be a great mess (well there are some situation
306 * when exception handling C++ like could be useful after all). So we
307 * just check that transfers are OK at the beginning of our
308 * conversation with the chip and to avoid doing really nasty things
309 * (like injecting bogus packets in the network stack).
310 */
311static int mcp251x_spi_trans(struct spi_device *spi, int len)
312{
fce5c293 313 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
314 struct spi_transfer t = {
315 .tx_buf = priv->spi_tx_buf,
316 .rx_buf = priv->spi_rx_buf,
317 .len = len,
318 .cs_change = 0,
319 };
320 struct spi_message m;
321 int ret;
322
323 spi_message_init(&m);
324
325 if (mcp251x_enable_dma) {
326 t.tx_dma = priv->spi_tx_dma;
327 t.rx_dma = priv->spi_rx_dma;
328 m.is_dma_mapped = 1;
329 }
330
331 spi_message_add_tail(&t, &m);
332
333 ret = spi_sync(spi, &m);
334 if (ret)
335 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
336 return ret;
337}
338
339static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
340{
fce5c293 341 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
342 u8 val = 0;
343
e0000163
CP
344 priv->spi_tx_buf[0] = INSTRUCTION_READ;
345 priv->spi_tx_buf[1] = reg;
346
347 mcp251x_spi_trans(spi, 3);
348 val = priv->spi_rx_buf[2];
349
e0000163
CP
350 return val;
351}
352
f3a3ed31
SH
353static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
354 uint8_t *v1, uint8_t *v2)
355{
fce5c293 356 struct mcp251x_priv *priv = spi_get_drvdata(spi);
f3a3ed31
SH
357
358 priv->spi_tx_buf[0] = INSTRUCTION_READ;
359 priv->spi_tx_buf[1] = reg;
360
361 mcp251x_spi_trans(spi, 4);
362
363 *v1 = priv->spi_rx_buf[2];
364 *v2 = priv->spi_rx_buf[3];
365}
366
e0000163
CP
367static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
368{
fce5c293 369 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 370
e0000163
CP
371 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
372 priv->spi_tx_buf[1] = reg;
373 priv->spi_tx_buf[2] = val;
374
375 mcp251x_spi_trans(spi, 3);
e0000163
CP
376}
377
378static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
379 u8 mask, uint8_t val)
380{
fce5c293 381 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 382
e0000163
CP
383 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
384 priv->spi_tx_buf[1] = reg;
385 priv->spi_tx_buf[2] = mask;
386 priv->spi_tx_buf[3] = val;
387
388 mcp251x_spi_trans(spi, 4);
e0000163
CP
389}
390
391static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
392 int len, int tx_buf_idx)
393{
fce5c293 394 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 395
beab675c 396 if (mcp251x_is_2510(spi)) {
e0000163
CP
397 int i;
398
399 for (i = 1; i < TXBDAT_OFF + len; i++)
400 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
401 buf[i]);
402 } else {
e0000163
CP
403 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
404 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
e0000163
CP
405 }
406}
407
408static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
409 int tx_buf_idx)
410{
fce5c293 411 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
412 u32 sid, eid, exide, rtr;
413 u8 buf[SPI_TRANSFER_BUF_LEN];
414
415 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
416 if (exide)
417 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
418 else
419 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
420 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
421 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
422
423 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
424 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
425 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
426 (exide << SIDL_EXIDE_SHIFT) |
427 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
428 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
429 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
430 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
431 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
432 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
cab32f39
BL
433
434 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
435 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
436 mcp251x_spi_trans(priv->spi, 1);
e0000163
CP
437}
438
439static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
440 int buf_idx)
441{
fce5c293 442 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163 443
beab675c 444 if (mcp251x_is_2510(spi)) {
e0000163
CP
445 int i, len;
446
447 for (i = 1; i < RXBDAT_OFF; i++)
448 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
c7cd606f
OH
449
450 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
451 for (; i < (RXBDAT_OFF + len); i++)
452 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
453 } else {
e0000163
CP
454 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
455 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
456 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
e0000163
CP
457 }
458}
459
460static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
461{
fce5c293 462 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
463 struct sk_buff *skb;
464 struct can_frame *frame;
465 u8 buf[SPI_TRANSFER_BUF_LEN];
466
467 skb = alloc_can_skb(priv->net, &frame);
468 if (!skb) {
469 dev_err(&spi->dev, "cannot allocate RX skb\n");
470 priv->net->stats.rx_dropped++;
471 return;
472 }
473
474 mcp251x_hw_rx_frame(spi, buf, buf_idx);
475 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
476 /* Extended ID format */
477 frame->can_id = CAN_EFF_FLAG;
478 frame->can_id |=
479 /* Extended ID part */
480 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
481 SET_BYTE(buf[RXBEID8_OFF], 1) |
482 SET_BYTE(buf[RXBEID0_OFF], 0) |
483 /* Standard ID part */
484 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
485 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
486 /* Remote transmission request */
487 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
488 frame->can_id |= CAN_RTR_FLAG;
489 } else {
490 /* Standard ID format */
491 frame->can_id =
492 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
493 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
b9958a95
MKB
494 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
495 frame->can_id |= CAN_RTR_FLAG;
e0000163
CP
496 }
497 /* Data length */
c7cd606f 498 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
e0000163
CP
499 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
500
501 priv->net->stats.rx_packets++;
502 priv->net->stats.rx_bytes += frame->can_dlc;
eb072a9b
FB
503
504 can_led_event(priv->net, CAN_LED_EVENT_RX);
505
57d3c7b0 506 netif_rx_ni(skb);
e0000163
CP
507}
508
509static void mcp251x_hw_sleep(struct spi_device *spi)
510{
511 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
512}
513
e0000163
CP
514static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
515 struct net_device *net)
516{
517 struct mcp251x_priv *priv = netdev_priv(net);
518 struct spi_device *spi = priv->spi;
519
520 if (priv->tx_skb || priv->tx_len) {
521 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
e0000163
CP
522 return NETDEV_TX_BUSY;
523 }
524
3ccd4c61 525 if (can_dropped_invalid_skb(net, skb))
e0000163 526 return NETDEV_TX_OK;
e0000163
CP
527
528 netif_stop_queue(net);
529 priv->tx_skb = skb;
e0000163
CP
530 queue_work(priv->wq, &priv->tx_work);
531
532 return NETDEV_TX_OK;
533}
534
535static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
536{
537 struct mcp251x_priv *priv = netdev_priv(net);
538
539 switch (mode) {
540 case CAN_MODE_START:
bf66f373 541 mcp251x_clean(net);
e0000163
CP
542 /* We have to delay work since SPI I/O may sleep */
543 priv->can.state = CAN_STATE_ERROR_ACTIVE;
544 priv->restart_tx = 1;
545 if (priv->can.restart_ms == 0)
546 priv->after_suspend = AFTER_SUSPEND_RESTART;
bf66f373 547 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
548 break;
549 default:
550 return -EOPNOTSUPP;
551 }
552
553 return 0;
554}
555
bf66f373 556static int mcp251x_set_normal_mode(struct spi_device *spi)
e0000163 557{
fce5c293 558 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
559 unsigned long timeout;
560
561 /* Enable interrupts */
562 mcp251x_write_reg(spi, CANINTE,
563 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
bf66f373 564 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
e0000163
CP
565
566 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
567 /* Put device into loopback mode */
568 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
ad72c347
CP
569 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
570 /* Put device into listen-only mode */
571 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
e0000163
CP
572 } else {
573 /* Put device into normal mode */
bf66f373 574 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
e0000163
CP
575
576 /* Wait for the device to enter normal mode */
577 timeout = jiffies + HZ;
578 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
579 schedule();
580 if (time_after(jiffies, timeout)) {
581 dev_err(&spi->dev, "MCP251x didn't"
582 " enter in normal mode\n");
bf66f373 583 return -EBUSY;
e0000163
CP
584 }
585 }
586 }
587 priv->can.state = CAN_STATE_ERROR_ACTIVE;
bf66f373 588 return 0;
e0000163
CP
589}
590
591static int mcp251x_do_set_bittiming(struct net_device *net)
592{
593 struct mcp251x_priv *priv = netdev_priv(net);
594 struct can_bittiming *bt = &priv->can.bittiming;
595 struct spi_device *spi = priv->spi;
596
597 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
598 (bt->brp - 1));
599 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
600 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
601 CNF2_SAM : 0) |
602 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
603 (bt->prop_seg - 1));
604 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
605 (bt->phase_seg2 - 1));
1e6cacdb
AS
606 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
607 mcp251x_read_reg(spi, CNF1),
608 mcp251x_read_reg(spi, CNF2),
609 mcp251x_read_reg(spi, CNF3));
e0000163
CP
610
611 return 0;
612}
613
614static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
615 struct spi_device *spi)
616{
615534bc 617 mcp251x_do_set_bittiming(net);
e0000163 618
bf66f373
CP
619 mcp251x_write_reg(spi, RXBCTRL(0),
620 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
621 mcp251x_write_reg(spi, RXBCTRL(1),
622 RXBCTRL_RXM0 | RXBCTRL_RXM1);
e0000163
CP
623 return 0;
624}
625
bf66f373 626static int mcp251x_hw_reset(struct spi_device *spi)
e0000163 627{
fce5c293 628 struct mcp251x_priv *priv = spi_get_drvdata(spi);
ff06d611 629 u8 reg;
e0000163 630 int ret;
ff06d611
AS
631
632 /* Wait for oscillator startup timer after power up */
633 mdelay(MCP251X_OST_DELAY_MS);
e0000163
CP
634
635 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
ff06d611
AS
636 ret = mcp251x_spi_trans(spi, 1);
637 if (ret)
638 return ret;
639
640 /* Wait for oscillator startup timer after reset */
641 mdelay(MCP251X_OST_DELAY_MS);
642
643 reg = mcp251x_read_reg(spi, CANSTAT);
644 if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF)
645 return -ENODEV;
bf66f373 646
bf66f373 647 return 0;
e0000163
CP
648}
649
650static int mcp251x_hw_probe(struct spi_device *spi)
651{
652 int st1, st2;
653
654 mcp251x_hw_reset(spi);
655
656 /*
657 * Please note that these are "magic values" based on after
658 * reset defaults taken from data sheet which allows us to see
659 * if we really have a chip on the bus (we avoid common all
660 * zeroes or all ones situations)
661 */
662 st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
663 st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
664
665 dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
666
667 /* Check for power up default values */
668 return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
669}
670
1ddff7da
AS
671static int mcp251x_power_enable(struct regulator *reg, int enable)
672{
76aeec83 673 if (IS_ERR_OR_NULL(reg))
1ddff7da
AS
674 return 0;
675
676 if (enable)
677 return regulator_enable(reg);
678 else
679 return regulator_disable(reg);
680}
681
bf66f373 682static void mcp251x_open_clean(struct net_device *net)
e0000163
CP
683{
684 struct mcp251x_priv *priv = netdev_priv(net);
685 struct spi_device *spi = priv->spi;
615534bc 686
bf66f373
CP
687 free_irq(spi->irq, priv);
688 mcp251x_hw_sleep(spi);
1ddff7da 689 mcp251x_power_enable(priv->transceiver, 0);
bf66f373 690 close_candev(net);
e0000163
CP
691}
692
693static int mcp251x_stop(struct net_device *net)
694{
695 struct mcp251x_priv *priv = netdev_priv(net);
696 struct spi_device *spi = priv->spi;
e0000163
CP
697
698 close_candev(net);
699
bf66f373
CP
700 priv->force_quit = 1;
701 free_irq(spi->irq, priv);
702 destroy_workqueue(priv->wq);
703 priv->wq = NULL;
704
705 mutex_lock(&priv->mcp_lock);
706
e0000163
CP
707 /* Disable and clear pending interrupts */
708 mcp251x_write_reg(spi, CANINTE, 0x00);
709 mcp251x_write_reg(spi, CANINTF, 0x00);
710
e0000163 711 mcp251x_write_reg(spi, TXBCTRL(0), 0);
bf66f373 712 mcp251x_clean(net);
e0000163
CP
713
714 mcp251x_hw_sleep(spi);
715
1ddff7da 716 mcp251x_power_enable(priv->transceiver, 0);
e0000163
CP
717
718 priv->can.state = CAN_STATE_STOPPED;
719
bf66f373
CP
720 mutex_unlock(&priv->mcp_lock);
721
eb072a9b
FB
722 can_led_event(net, CAN_LED_EVENT_STOP);
723
e0000163
CP
724 return 0;
725}
726
bf66f373
CP
727static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
728{
729 struct sk_buff *skb;
730 struct can_frame *frame;
731
732 skb = alloc_can_err_skb(net, &frame);
733 if (skb) {
612eef4f 734 frame->can_id |= can_id;
bf66f373 735 frame->data[1] = data1;
57d3c7b0 736 netif_rx_ni(skb);
bf66f373 737 } else {
aabdfd6a 738 netdev_err(net, "cannot allocate error skb\n");
bf66f373
CP
739 }
740}
741
e0000163
CP
742static void mcp251x_tx_work_handler(struct work_struct *ws)
743{
744 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
745 tx_work);
746 struct spi_device *spi = priv->spi;
747 struct net_device *net = priv->net;
748 struct can_frame *frame;
749
bf66f373 750 mutex_lock(&priv->mcp_lock);
e0000163 751 if (priv->tx_skb) {
e0000163
CP
752 if (priv->can.state == CAN_STATE_BUS_OFF) {
753 mcp251x_clean(net);
bf66f373
CP
754 } else {
755 frame = (struct can_frame *)priv->tx_skb->data;
756
757 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
758 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
759 mcp251x_hw_tx(spi, frame, 0);
760 priv->tx_len = 1 + frame->can_dlc;
761 can_put_echo_skb(priv->tx_skb, net, 0);
762 priv->tx_skb = NULL;
e0000163 763 }
e0000163 764 }
bf66f373 765 mutex_unlock(&priv->mcp_lock);
e0000163
CP
766}
767
bf66f373 768static void mcp251x_restart_work_handler(struct work_struct *ws)
e0000163
CP
769{
770 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
bf66f373 771 restart_work);
e0000163
CP
772 struct spi_device *spi = priv->spi;
773 struct net_device *net = priv->net;
e0000163 774
bf66f373 775 mutex_lock(&priv->mcp_lock);
e0000163 776 if (priv->after_suspend) {
e0000163
CP
777 mcp251x_hw_reset(spi);
778 mcp251x_setup(net, priv, spi);
779 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
780 mcp251x_set_normal_mode(spi);
781 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
782 netif_device_attach(net);
bf66f373 783 mcp251x_clean(net);
e0000163 784 mcp251x_set_normal_mode(spi);
bf66f373 785 netif_wake_queue(net);
e0000163
CP
786 } else {
787 mcp251x_hw_sleep(spi);
788 }
789 priv->after_suspend = 0;
bf66f373 790 priv->force_quit = 0;
e0000163
CP
791 }
792
bf66f373
CP
793 if (priv->restart_tx) {
794 priv->restart_tx = 0;
795 mcp251x_write_reg(spi, TXBCTRL(0), 0);
796 mcp251x_clean(net);
797 netif_wake_queue(net);
798 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
799 }
800 mutex_unlock(&priv->mcp_lock);
801}
e0000163 802
bf66f373
CP
803static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
804{
805 struct mcp251x_priv *priv = dev_id;
806 struct spi_device *spi = priv->spi;
807 struct net_device *net = priv->net;
e0000163 808
bf66f373
CP
809 mutex_lock(&priv->mcp_lock);
810 while (!priv->force_quit) {
811 enum can_state new_state;
f3a3ed31 812 u8 intf, eflag;
d3cd1565 813 u8 clear_intf = 0;
bf66f373 814 int can_id = 0, data1 = 0;
e0000163 815
f3a3ed31
SH
816 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
817
5601b2df
MKB
818 /* mask out flags we don't care about */
819 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
820
d3cd1565 821 /* receive buffer 0 */
bf66f373
CP
822 if (intf & CANINTF_RX0IF) {
823 mcp251x_hw_rx(spi, 0);
9c473fc3
MKB
824 /*
825 * Free one buffer ASAP
826 * (The MCP2515 does this automatically.)
827 */
828 if (mcp251x_is_2510(spi))
829 mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
e0000163
CP
830 }
831
d3cd1565
MKB
832 /* receive buffer 1 */
833 if (intf & CANINTF_RX1IF) {
bf66f373 834 mcp251x_hw_rx(spi, 1);
9c473fc3
MKB
835 /* the MCP2515 does this automatically */
836 if (mcp251x_is_2510(spi))
837 clear_intf |= CANINTF_RX1IF;
d3cd1565 838 }
e0000163 839
d3cd1565 840 /* any error or tx interrupt we need to clear? */
5601b2df
MKB
841 if (intf & (CANINTF_ERR | CANINTF_TX))
842 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
d3cd1565
MKB
843 if (clear_intf)
844 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
e0000163 845
7e15de3a
SH
846 if (eflag)
847 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
bf66f373 848
e0000163
CP
849 /* Update can state */
850 if (eflag & EFLG_TXBO) {
851 new_state = CAN_STATE_BUS_OFF;
852 can_id |= CAN_ERR_BUSOFF;
853 } else if (eflag & EFLG_TXEP) {
854 new_state = CAN_STATE_ERROR_PASSIVE;
855 can_id |= CAN_ERR_CRTL;
856 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
857 } else if (eflag & EFLG_RXEP) {
858 new_state = CAN_STATE_ERROR_PASSIVE;
859 can_id |= CAN_ERR_CRTL;
860 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
861 } else if (eflag & EFLG_TXWAR) {
862 new_state = CAN_STATE_ERROR_WARNING;
863 can_id |= CAN_ERR_CRTL;
864 data1 |= CAN_ERR_CRTL_TX_WARNING;
865 } else if (eflag & EFLG_RXWAR) {
866 new_state = CAN_STATE_ERROR_WARNING;
867 can_id |= CAN_ERR_CRTL;
868 data1 |= CAN_ERR_CRTL_RX_WARNING;
869 } else {
870 new_state = CAN_STATE_ERROR_ACTIVE;
871 }
872
873 /* Update can state statistics */
874 switch (priv->can.state) {
875 case CAN_STATE_ERROR_ACTIVE:
876 if (new_state >= CAN_STATE_ERROR_WARNING &&
877 new_state <= CAN_STATE_BUS_OFF)
878 priv->can.can_stats.error_warning++;
879 case CAN_STATE_ERROR_WARNING: /* fallthrough */
880 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
881 new_state <= CAN_STATE_BUS_OFF)
882 priv->can.can_stats.error_passive++;
883 break;
884 default:
885 break;
886 }
887 priv->can.state = new_state;
888
bf66f373
CP
889 if (intf & CANINTF_ERRIF) {
890 /* Handle overflow counters */
891 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
711e4d6e 892 if (eflag & EFLG_RX0OVR) {
bf66f373 893 net->stats.rx_over_errors++;
711e4d6e
SH
894 net->stats.rx_errors++;
895 }
896 if (eflag & EFLG_RX1OVR) {
bf66f373 897 net->stats.rx_over_errors++;
711e4d6e
SH
898 net->stats.rx_errors++;
899 }
bf66f373
CP
900 can_id |= CAN_ERR_CRTL;
901 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
e0000163 902 }
bf66f373 903 mcp251x_error_skb(net, can_id, data1);
e0000163
CP
904 }
905
906 if (priv->can.state == CAN_STATE_BUS_OFF) {
907 if (priv->can.restart_ms == 0) {
bf66f373 908 priv->force_quit = 1;
e0000163
CP
909 can_bus_off(net);
910 mcp251x_hw_sleep(spi);
bf66f373 911 break;
e0000163
CP
912 }
913 }
914
915 if (intf == 0)
916 break;
917
5601b2df 918 if (intf & CANINTF_TX) {
e0000163
CP
919 net->stats.tx_packets++;
920 net->stats.tx_bytes += priv->tx_len - 1;
eb072a9b 921 can_led_event(net, CAN_LED_EVENT_TX);
e0000163
CP
922 if (priv->tx_len) {
923 can_get_echo_skb(net, 0);
924 priv->tx_len = 0;
925 }
926 netif_wake_queue(net);
927 }
928
bf66f373
CP
929 }
930 mutex_unlock(&priv->mcp_lock);
931 return IRQ_HANDLED;
932}
e0000163 933
bf66f373
CP
934static int mcp251x_open(struct net_device *net)
935{
936 struct mcp251x_priv *priv = netdev_priv(net);
937 struct spi_device *spi = priv->spi;
ae5d589e 938 unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING;
bf66f373
CP
939 int ret;
940
941 ret = open_candev(net);
942 if (ret) {
943 dev_err(&spi->dev, "unable to set initial baudrate!\n");
944 return ret;
945 }
946
947 mutex_lock(&priv->mcp_lock);
1ddff7da 948 mcp251x_power_enable(priv->transceiver, 1);
bf66f373
CP
949
950 priv->force_quit = 0;
951 priv->tx_skb = NULL;
952 priv->tx_len = 0;
953
954 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
db388d64 955 flags, DEVICE_NAME, priv);
bf66f373
CP
956 if (ret) {
957 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1ddff7da 958 mcp251x_power_enable(priv->transceiver, 0);
bf66f373
CP
959 close_candev(net);
960 goto open_unlock;
961 }
962
58a69cb4 963 priv->wq = create_freezable_workqueue("mcp251x_wq");
bf66f373
CP
964 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
965 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
966
967 ret = mcp251x_hw_reset(spi);
968 if (ret) {
969 mcp251x_open_clean(net);
970 goto open_unlock;
971 }
972 ret = mcp251x_setup(net, priv, spi);
973 if (ret) {
974 mcp251x_open_clean(net);
975 goto open_unlock;
e0000163 976 }
bf66f373
CP
977 ret = mcp251x_set_normal_mode(spi);
978 if (ret) {
979 mcp251x_open_clean(net);
980 goto open_unlock;
981 }
eb072a9b
FB
982
983 can_led_event(net, CAN_LED_EVENT_OPEN);
984
bf66f373
CP
985 netif_wake_queue(net);
986
987open_unlock:
988 mutex_unlock(&priv->mcp_lock);
989 return ret;
e0000163
CP
990}
991
992static const struct net_device_ops mcp251x_netdev_ops = {
993 .ndo_open = mcp251x_open,
994 .ndo_stop = mcp251x_stop,
995 .ndo_start_xmit = mcp251x_hard_start_xmit,
c971fa2a 996 .ndo_change_mtu = can_change_mtu,
e0000163
CP
997};
998
66606aaf
AS
999static const struct of_device_id mcp251x_of_match[] = {
1000 {
1001 .compatible = "microchip,mcp2510",
1002 .data = (void *)CAN_MCP251X_MCP2510,
1003 },
1004 {
1005 .compatible = "microchip,mcp2515",
1006 .data = (void *)CAN_MCP251X_MCP2515,
1007 },
1008 { }
1009};
1010MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1011
1012static const struct spi_device_id mcp251x_id_table[] = {
1013 {
1014 .name = "mcp2510",
1015 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1016 },
1017 {
1018 .name = "mcp2515",
1019 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1020 },
1021 { }
1022};
1023MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1024
3c8ac0f2 1025static int mcp251x_can_probe(struct spi_device *spi)
e0000163 1026{
66606aaf
AS
1027 const struct of_device_id *of_id = of_match_device(mcp251x_of_match,
1028 &spi->dev);
1029 struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
e0000163
CP
1030 struct net_device *net;
1031 struct mcp251x_priv *priv;
66606aaf 1032 struct clk *clk;
31473c28 1033 int freq, ret;
66606aaf
AS
1034
1035 clk = devm_clk_get(&spi->dev, NULL);
1036 if (IS_ERR(clk)) {
1037 if (pdata)
1038 freq = pdata->oscillator_frequency;
1039 else
1040 return PTR_ERR(clk);
1041 } else {
1042 freq = clk_get_rate(clk);
1043 }
e0000163 1044
66606aaf
AS
1045 /* Sanity check */
1046 if (freq < 1000000 || freq > 25000000)
1047 return -ERANGE;
e0000163
CP
1048
1049 /* Allocate can/net device */
1050 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
66606aaf
AS
1051 if (!net)
1052 return -ENOMEM;
1053
1054 if (!IS_ERR(clk)) {
1055 ret = clk_prepare_enable(clk);
1056 if (ret)
1057 goto out_free;
e0000163
CP
1058 }
1059
1060 net->netdev_ops = &mcp251x_netdev_ops;
1061 net->flags |= IFF_ECHO;
1062
1063 priv = netdev_priv(net);
1064 priv->can.bittiming_const = &mcp251x_bittiming_const;
1065 priv->can.do_set_mode = mcp251x_do_set_mode;
66606aaf 1066 priv->can.clock.freq = freq / 2;
ad72c347
CP
1067 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1068 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
66606aaf
AS
1069 if (of_id)
1070 priv->model = (enum mcp251x_model)of_id->data;
1071 else
1072 priv->model = spi_get_device_id(spi)->driver_data;
e0000163 1073 priv->net = net;
66606aaf 1074 priv->clk = clk;
1ddff7da 1075
31473c28
AS
1076 spi_set_drvdata(spi, priv);
1077
1078 /* Configure the SPI bus */
1079 spi->bits_per_word = 8;
1080 if (mcp251x_is_2510(spi))
1081 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1082 else
1083 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1084 ret = spi_setup(spi);
1085 if (ret)
1086 goto out_clk;
1087
1ddff7da
AS
1088 priv->power = devm_regulator_get(&spi->dev, "vdd");
1089 priv->transceiver = devm_regulator_get(&spi->dev, "xceiver");
1090 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1091 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1092 ret = -EPROBE_DEFER;
66606aaf 1093 goto out_clk;
1ddff7da
AS
1094 }
1095
1096 ret = mcp251x_power_enable(priv->power, 1);
1097 if (ret)
66606aaf 1098 goto out_clk;
1ddff7da 1099
e0000163 1100 priv->spi = spi;
bf66f373 1101 mutex_init(&priv->mcp_lock);
e0000163
CP
1102
1103 /* If requested, allocate DMA buffers */
1104 if (mcp251x_enable_dma) {
1105 spi->dev.coherent_dma_mask = ~0;
1106
1107 /*
1108 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
1109 * that much and share it between Tx and Rx DMA buffers.
1110 */
1111 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
1112 PAGE_SIZE,
1113 &priv->spi_tx_dma,
1114 GFP_DMA);
1115
1116 if (priv->spi_tx_buf) {
c2fd03a0 1117 priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
e0000163
CP
1118 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
1119 (PAGE_SIZE / 2));
1120 } else {
1121 /* Fall back to non-DMA */
1122 mcp251x_enable_dma = 0;
1123 }
1124 }
1125
1126 /* Allocate non-DMA buffers */
1127 if (!mcp251x_enable_dma) {
21629e1a
AS
1128 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1129 GFP_KERNEL);
e0000163
CP
1130 if (!priv->spi_tx_buf) {
1131 ret = -ENOMEM;
21629e1a 1132 goto error_probe;
e0000163 1133 }
21629e1a
AS
1134 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1135 GFP_KERNEL);
ce739b47 1136 if (!priv->spi_rx_buf) {
e0000163 1137 ret = -ENOMEM;
21629e1a 1138 goto error_probe;
e0000163
CP
1139 }
1140 }
1141
e0000163
CP
1142 SET_NETDEV_DEV(net, &spi->dev);
1143
bf66f373 1144 /* Here is OK to not lock the MCP, no one knows about it yet */
e0000163 1145 if (!mcp251x_hw_probe(spi)) {
1ddff7da 1146 ret = -ENODEV;
e0000163
CP
1147 goto error_probe;
1148 }
1149 mcp251x_hw_sleep(spi);
1150
e0000163 1151 ret = register_candev(net);
eb072a9b
FB
1152 if (ret)
1153 goto error_probe;
1154
1155 devm_can_led_init(net);
1156
eb072a9b
FB
1157 return ret;
1158
e0000163 1159error_probe:
e0000163
CP
1160 if (mcp251x_enable_dma)
1161 dma_free_coherent(&spi->dev, PAGE_SIZE,
1162 priv->spi_tx_buf, priv->spi_tx_dma);
1ddff7da 1163 mcp251x_power_enable(priv->power, 0);
66606aaf
AS
1164
1165out_clk:
1166 if (!IS_ERR(clk))
1167 clk_disable_unprepare(clk);
1168
1169out_free:
1ddff7da 1170 free_candev(net);
66606aaf 1171
e0000163
CP
1172 return ret;
1173}
1174
3c8ac0f2 1175static int mcp251x_can_remove(struct spi_device *spi)
e0000163 1176{
fce5c293 1177 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
1178 struct net_device *net = priv->net;
1179
1180 unregister_candev(net);
e0000163 1181
e0000163
CP
1182 if (mcp251x_enable_dma) {
1183 dma_free_coherent(&spi->dev, PAGE_SIZE,
1184 priv->spi_tx_buf, priv->spi_tx_dma);
e0000163
CP
1185 }
1186
1ddff7da
AS
1187 mcp251x_power_enable(priv->power, 0);
1188
66606aaf
AS
1189 if (!IS_ERR(priv->clk))
1190 clk_disable_unprepare(priv->clk);
1191
1ddff7da 1192 free_candev(net);
e0000163
CP
1193
1194 return 0;
1195}
1196
f16a4210 1197static int __maybe_unused mcp251x_can_suspend(struct device *dev)
e0000163 1198{
612b2a97 1199 struct spi_device *spi = to_spi_device(dev);
fce5c293 1200 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
1201 struct net_device *net = priv->net;
1202
bf66f373
CP
1203 priv->force_quit = 1;
1204 disable_irq(spi->irq);
1205 /*
1206 * Note: at this point neither IST nor workqueues are running.
1207 * open/stop cannot be called anyway so locking is not needed
1208 */
e0000163
CP
1209 if (netif_running(net)) {
1210 netif_device_detach(net);
1211
1212 mcp251x_hw_sleep(spi);
1ddff7da 1213 mcp251x_power_enable(priv->transceiver, 0);
e0000163
CP
1214 priv->after_suspend = AFTER_SUSPEND_UP;
1215 } else {
1216 priv->after_suspend = AFTER_SUSPEND_DOWN;
1217 }
1218
76aeec83 1219 if (!IS_ERR_OR_NULL(priv->power)) {
1ddff7da 1220 regulator_disable(priv->power);
e0000163
CP
1221 priv->after_suspend |= AFTER_SUSPEND_POWER;
1222 }
1223
1224 return 0;
1225}
1226
f16a4210 1227static int __maybe_unused mcp251x_can_resume(struct device *dev)
e0000163 1228{
612b2a97 1229 struct spi_device *spi = to_spi_device(dev);
fce5c293 1230 struct mcp251x_priv *priv = spi_get_drvdata(spi);
e0000163
CP
1231
1232 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1ddff7da 1233 mcp251x_power_enable(priv->power, 1);
bf66f373 1234 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
1235 } else {
1236 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1ddff7da 1237 mcp251x_power_enable(priv->transceiver, 1);
bf66f373 1238 queue_work(priv->wq, &priv->restart_work);
e0000163
CP
1239 } else {
1240 priv->after_suspend = 0;
1241 }
1242 }
bf66f373
CP
1243 priv->force_quit = 0;
1244 enable_irq(spi->irq);
e0000163
CP
1245 return 0;
1246}
612b2a97
LPC
1247
1248static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1249 mcp251x_can_resume);
e0000163
CP
1250
1251static struct spi_driver mcp251x_can_driver = {
1252 .driver = {
1253 .name = DEVICE_NAME,
e0000163 1254 .owner = THIS_MODULE,
66606aaf 1255 .of_match_table = mcp251x_of_match,
4fcc999e 1256 .pm = &mcp251x_can_pm_ops,
e0000163 1257 },
e446630c 1258 .id_table = mcp251x_id_table,
e0000163 1259 .probe = mcp251x_can_probe,
3c8ac0f2 1260 .remove = mcp251x_can_remove,
e0000163 1261};
01b88070 1262module_spi_driver(mcp251x_can_driver);
e0000163
CP
1263
1264MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1265 "Christian Pellegrin <chripell@evolware.org>");
1266MODULE_DESCRIPTION("Microchip 251x CAN driver");
1267MODULE_LICENSE("GPL v2");