]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/e1000.c
power: pwm_regulator: remove redundant code
[people/ms/u-boot.git] / drivers / net / e1000.c
CommitLineData
682011ff 1/**************************************************************************
ac3315c2 2Intel Pro 1000 for ppcboot/das-u-boot
682011ff
WD
3Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
8bde7f77 9
682011ff 10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
8bde7f77 11
1a459660 12 * SPDX-License-Identifier: GPL-2.0+
8bde7f77 13
682011ff
WD
14 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18*******************************************************************************/
19/*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
2c2668f9
RZ
28 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
682011ff
WD
30 */
31
c752cd2a 32#include <common.h>
c6d80a15 33#include <dm.h>
5c5e707a 34#include <errno.h>
cf92e05c 35#include <memalign.h>
5c5e707a 36#include <pci.h>
682011ff
WD
37#include "e1000.h"
38
682011ff
WD
39#define TOUT_LOOP 100000
40
81dab9af
BM
41#ifdef CONFIG_DM_ETH
42#define virt_to_bus(devno, v) dm_pci_virt_to_mem(devno, (void *) (v))
43#define bus_to_phys(devno, a) dm_pci_mem_to_phys(devno, a)
44#else
f81ecb5d 45#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
682011ff 46#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
81dab9af 47#endif
682011ff 48
9ea005fb
RZ
49#define E1000_DEFAULT_PCI_PBA 0x00000030
50#define E1000_DEFAULT_PCIE_PBA 0x000a0026
682011ff
WD
51
52/* NIC specific static variables go here */
53
873e8e01
MV
54/* Intel i210 needs the DMA descriptor rings aligned to 128b */
55#define E1000_BUFFER_ALIGN 128
682011ff 56
c6d80a15
SG
57/*
58 * TODO(sjg@chromium.org): Even with driver model we share these buffers.
59 * Concurrent receiving on multiple active Ethernet devices will not work.
60 * Normally U-Boot does not support this anyway. To fix it in this driver,
61 * move these buffers and the tx/rx pointers to struct e1000_hw.
62 */
873e8e01
MV
63DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
64DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
65DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
682011ff
WD
66
67static int tx_tail;
68static int rx_tail, rx_last;
c6d80a15
SG
69#ifdef CONFIG_DM_ETH
70static int num_cards; /* Number of E1000 devices seen so far */
71#endif
682011ff 72
d60626f8 73static struct pci_device_id e1000_supported[] = {
5c5e707a
SG
74 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
75 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
76 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
77 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
78 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
79 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
80 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
81 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
82 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
83 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
84 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
85 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
86 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
87 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
88 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
89 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
90 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
aa070789 91 /* E1000 PCIe card */
5c5e707a
SG
92 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
93 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
94 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
95 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
96 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
97 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
98 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
99 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
100 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
101 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
102 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
103 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
104 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
105 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
106 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
107 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
108 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
109 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
110 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
111 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
112 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
113 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
114 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
115 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
116 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
117 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
118 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
119 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
120 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
121 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
95186063 122
1bc43437 123 {}
682011ff
WD
124};
125
126/* Function forward declarations */
5c5e707a
SG
127static int e1000_setup_link(struct e1000_hw *hw);
128static int e1000_setup_fiber_link(struct e1000_hw *hw);
129static int e1000_setup_copper_link(struct e1000_hw *hw);
682011ff
WD
130static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
131static void e1000_config_collision_dist(struct e1000_hw *hw);
132static int e1000_config_mac_to_phy(struct e1000_hw *hw);
133static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
5c5e707a 134static int e1000_check_for_link(struct e1000_hw *hw);
682011ff 135static int e1000_wait_autoneg(struct e1000_hw *hw);
aa070789 136static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
682011ff
WD
137 uint16_t * duplex);
138static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
139 uint16_t * phy_data);
140static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
141 uint16_t phy_data);
aa070789 142static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
682011ff
WD
143static int e1000_phy_reset(struct e1000_hw *hw);
144static int e1000_detect_gig_phy(struct e1000_hw *hw);
aa070789
RZ
145static void e1000_set_media_type(struct e1000_hw *hw);
146
147static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
7e2d991d 148static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
aa070789 149static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
682011ff 150
8712adfd
RI
151#ifndef CONFIG_E1000_NO_NVM
152static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
ecbd2078
RZ
153static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
154 uint16_t words,
155 uint16_t *data);
682011ff
WD
156/******************************************************************************
157 * Raises the EEPROM's clock input.
158 *
159 * hw - Struct containing variables accessed by shared code
160 * eecd - EECD's current value
161 *****************************************************************************/
2326a94d 162void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
682011ff
WD
163{
164 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
165 * wait 50 microseconds.
166 */
167 *eecd = *eecd | E1000_EECD_SK;
168 E1000_WRITE_REG(hw, EECD, *eecd);
169 E1000_WRITE_FLUSH(hw);
170 udelay(50);
171}
172
173/******************************************************************************
174 * Lowers the EEPROM's clock input.
175 *
8bde7f77 176 * hw - Struct containing variables accessed by shared code
682011ff
WD
177 * eecd - EECD's current value
178 *****************************************************************************/
2326a94d 179void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
682011ff 180{
8bde7f77
WD
181 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
182 * wait 50 microseconds.
682011ff
WD
183 */
184 *eecd = *eecd & ~E1000_EECD_SK;
185 E1000_WRITE_REG(hw, EECD, *eecd);
186 E1000_WRITE_FLUSH(hw);
187 udelay(50);
188}
189
190/******************************************************************************
191 * Shift data bits out to the EEPROM.
192 *
193 * hw - Struct containing variables accessed by shared code
194 * data - data to send to the EEPROM
195 * count - number of bits to shift out
196 *****************************************************************************/
197static void
198e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
199{
200 uint32_t eecd;
201 uint32_t mask;
202
203 /* We need to shift "count" bits out to the EEPROM. So, value in the
204 * "data" parameter will be shifted out to the EEPROM one bit at a time.
8bde7f77 205 * In order to do this, "data" must be broken down into bits.
682011ff
WD
206 */
207 mask = 0x01 << (count - 1);
208 eecd = E1000_READ_REG(hw, EECD);
209 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
210 do {
211 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
212 * and then raising and then lowering the clock (the SK bit controls
213 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
214 * by setting "DI" to "0" and then raising and then lowering the clock.
215 */
216 eecd &= ~E1000_EECD_DI;
217
218 if (data & mask)
219 eecd |= E1000_EECD_DI;
220
221 E1000_WRITE_REG(hw, EECD, eecd);
222 E1000_WRITE_FLUSH(hw);
223
224 udelay(50);
225
226 e1000_raise_ee_clk(hw, &eecd);
227 e1000_lower_ee_clk(hw, &eecd);
228
229 mask = mask >> 1;
230
231 } while (mask);
232
233 /* We leave the "DI" bit set to "0" when we leave this routine. */
234 eecd &= ~E1000_EECD_DI;
235 E1000_WRITE_REG(hw, EECD, eecd);
236}
237
238/******************************************************************************
239 * Shift data bits in from the EEPROM
240 *
241 * hw - Struct containing variables accessed by shared code
242 *****************************************************************************/
243static uint16_t
aa070789 244e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
682011ff
WD
245{
246 uint32_t eecd;
247 uint32_t i;
248 uint16_t data;
249
aa070789
RZ
250 /* In order to read a register from the EEPROM, we need to shift 'count'
251 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
252 * input to the EEPROM (setting the SK bit), and then reading the
253 * value of the "DO" bit. During this "shifting in" process the
254 * "DI" bit should always be clear.
682011ff
WD
255 */
256
257 eecd = E1000_READ_REG(hw, EECD);
258
259 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
260 data = 0;
261
aa070789 262 for (i = 0; i < count; i++) {
682011ff
WD
263 data = data << 1;
264 e1000_raise_ee_clk(hw, &eecd);
265
266 eecd = E1000_READ_REG(hw, EECD);
267
268 eecd &= ~(E1000_EECD_DI);
269 if (eecd & E1000_EECD_DO)
270 data |= 1;
271
272 e1000_lower_ee_clk(hw, &eecd);
273 }
274
275 return data;
276}
277
278/******************************************************************************
aa070789 279 * Returns EEPROM to a "standby" state
682011ff
WD
280 *
281 * hw - Struct containing variables accessed by shared code
682011ff 282 *****************************************************************************/
2326a94d 283void e1000_standby_eeprom(struct e1000_hw *hw)
682011ff 284{
aa070789 285 struct e1000_eeprom_info *eeprom = &hw->eeprom;
682011ff
WD
286 uint32_t eecd;
287
288 eecd = E1000_READ_REG(hw, EECD);
289
aa070789
RZ
290 if (eeprom->type == e1000_eeprom_microwire) {
291 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
292 E1000_WRITE_REG(hw, EECD, eecd);
293 E1000_WRITE_FLUSH(hw);
294 udelay(eeprom->delay_usec);
682011ff 295
aa070789
RZ
296 /* Clock high */
297 eecd |= E1000_EECD_SK;
298 E1000_WRITE_REG(hw, EECD, eecd);
299 E1000_WRITE_FLUSH(hw);
300 udelay(eeprom->delay_usec);
301
302 /* Select EEPROM */
303 eecd |= E1000_EECD_CS;
304 E1000_WRITE_REG(hw, EECD, eecd);
305 E1000_WRITE_FLUSH(hw);
306 udelay(eeprom->delay_usec);
307
308 /* Clock low */
309 eecd &= ~E1000_EECD_SK;
310 E1000_WRITE_REG(hw, EECD, eecd);
311 E1000_WRITE_FLUSH(hw);
312 udelay(eeprom->delay_usec);
313 } else if (eeprom->type == e1000_eeprom_spi) {
314 /* Toggle CS to flush commands */
315 eecd |= E1000_EECD_CS;
316 E1000_WRITE_REG(hw, EECD, eecd);
317 E1000_WRITE_FLUSH(hw);
318 udelay(eeprom->delay_usec);
319 eecd &= ~E1000_EECD_CS;
320 E1000_WRITE_REG(hw, EECD, eecd);
321 E1000_WRITE_FLUSH(hw);
322 udelay(eeprom->delay_usec);
323 }
324}
325
326/***************************************************************************
327* Description: Determines if the onboard NVM is FLASH or EEPROM.
328*
329* hw - Struct containing variables accessed by shared code
330****************************************************************************/
472d5460 331static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
aa070789
RZ
332{
333 uint32_t eecd = 0;
334
335 DEBUGFUNC();
336
337 if (hw->mac_type == e1000_ich8lan)
472d5460 338 return false;
aa070789 339
2c2668f9 340 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
aa070789
RZ
341 eecd = E1000_READ_REG(hw, EECD);
342
343 /* Isolate bits 15 & 16 */
344 eecd = ((eecd >> 15) & 0x03);
345
346 /* If both bits are set, device is Flash type */
347 if (eecd == 0x03)
472d5460 348 return false;
aa070789 349 }
472d5460 350 return true;
682011ff
WD
351}
352
353/******************************************************************************
aa070789 354 * Prepares EEPROM for access
8bde7f77 355 *
682011ff 356 * hw - Struct containing variables accessed by shared code
aa070789
RZ
357 *
358 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
359 * function should be called before issuing a command to the EEPROM.
682011ff 360 *****************************************************************************/
2326a94d 361int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
682011ff 362{
aa070789
RZ
363 struct e1000_eeprom_info *eeprom = &hw->eeprom;
364 uint32_t eecd, i = 0;
682011ff 365
f81ecb5d 366 DEBUGFUNC();
aa070789
RZ
367
368 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
369 return -E1000_ERR_SWFW_SYNC;
682011ff
WD
370 eecd = E1000_READ_REG(hw, EECD);
371
95186063 372 if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
aa070789
RZ
373 /* Request EEPROM Access */
374 if (hw->mac_type > e1000_82544) {
375 eecd |= E1000_EECD_REQ;
376 E1000_WRITE_REG(hw, EECD, eecd);
377 eecd = E1000_READ_REG(hw, EECD);
378 while ((!(eecd & E1000_EECD_GNT)) &&
379 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
380 i++;
381 udelay(5);
382 eecd = E1000_READ_REG(hw, EECD);
383 }
384 if (!(eecd & E1000_EECD_GNT)) {
385 eecd &= ~E1000_EECD_REQ;
386 E1000_WRITE_REG(hw, EECD, eecd);
387 DEBUGOUT("Could not acquire EEPROM grant\n");
388 return -E1000_ERR_EEPROM;
389 }
390 }
391 }
682011ff 392
aa070789 393 /* Setup EEPROM for Read/Write */
682011ff 394
aa070789
RZ
395 if (eeprom->type == e1000_eeprom_microwire) {
396 /* Clear SK and DI */
397 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
398 E1000_WRITE_REG(hw, EECD, eecd);
682011ff 399
aa070789
RZ
400 /* Set CS */
401 eecd |= E1000_EECD_CS;
402 E1000_WRITE_REG(hw, EECD, eecd);
403 } else if (eeprom->type == e1000_eeprom_spi) {
404 /* Clear SK and CS */
405 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
406 E1000_WRITE_REG(hw, EECD, eecd);
407 udelay(1);
408 }
409
410 return E1000_SUCCESS;
682011ff
WD
411}
412
413/******************************************************************************
aa070789
RZ
414 * Sets up eeprom variables in the hw struct. Must be called after mac_type
415 * is configured. Additionally, if this is ICH8, the flash controller GbE
416 * registers must be mapped, or this will crash.
682011ff
WD
417 *
418 * hw - Struct containing variables accessed by shared code
682011ff 419 *****************************************************************************/
aa070789 420static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
682011ff 421{
aa070789 422 struct e1000_eeprom_info *eeprom = &hw->eeprom;
95186063 423 uint32_t eecd;
aa070789
RZ
424 int32_t ret_val = E1000_SUCCESS;
425 uint16_t eeprom_size;
682011ff 426
95186063
MV
427 if (hw->mac_type == e1000_igb)
428 eecd = E1000_READ_REG(hw, I210_EECD);
429 else
430 eecd = E1000_READ_REG(hw, EECD);
431
f81ecb5d 432 DEBUGFUNC();
aa070789
RZ
433
434 switch (hw->mac_type) {
435 case e1000_82542_rev2_0:
436 case e1000_82542_rev2_1:
437 case e1000_82543:
438 case e1000_82544:
439 eeprom->type = e1000_eeprom_microwire;
440 eeprom->word_size = 64;
441 eeprom->opcode_bits = 3;
442 eeprom->address_bits = 6;
443 eeprom->delay_usec = 50;
472d5460
YS
444 eeprom->use_eerd = false;
445 eeprom->use_eewr = false;
aa070789
RZ
446 break;
447 case e1000_82540:
448 case e1000_82545:
449 case e1000_82545_rev_3:
450 case e1000_82546:
451 case e1000_82546_rev_3:
452 eeprom->type = e1000_eeprom_microwire;
453 eeprom->opcode_bits = 3;
454 eeprom->delay_usec = 50;
455 if (eecd & E1000_EECD_SIZE) {
456 eeprom->word_size = 256;
457 eeprom->address_bits = 8;
458 } else {
459 eeprom->word_size = 64;
460 eeprom->address_bits = 6;
461 }
472d5460
YS
462 eeprom->use_eerd = false;
463 eeprom->use_eewr = false;
aa070789
RZ
464 break;
465 case e1000_82541:
466 case e1000_82541_rev_2:
467 case e1000_82547:
468 case e1000_82547_rev_2:
469 if (eecd & E1000_EECD_TYPE) {
470 eeprom->type = e1000_eeprom_spi;
471 eeprom->opcode_bits = 8;
472 eeprom->delay_usec = 1;
473 if (eecd & E1000_EECD_ADDR_BITS) {
474 eeprom->page_size = 32;
475 eeprom->address_bits = 16;
476 } else {
477 eeprom->page_size = 8;
478 eeprom->address_bits = 8;
479 }
480 } else {
481 eeprom->type = e1000_eeprom_microwire;
482 eeprom->opcode_bits = 3;
483 eeprom->delay_usec = 50;
484 if (eecd & E1000_EECD_ADDR_BITS) {
485 eeprom->word_size = 256;
486 eeprom->address_bits = 8;
487 } else {
488 eeprom->word_size = 64;
489 eeprom->address_bits = 6;
490 }
491 }
472d5460
YS
492 eeprom->use_eerd = false;
493 eeprom->use_eewr = false;
aa070789
RZ
494 break;
495 case e1000_82571:
496 case e1000_82572:
497 eeprom->type = e1000_eeprom_spi;
498 eeprom->opcode_bits = 8;
499 eeprom->delay_usec = 1;
500 if (eecd & E1000_EECD_ADDR_BITS) {
501 eeprom->page_size = 32;
502 eeprom->address_bits = 16;
503 } else {
504 eeprom->page_size = 8;
505 eeprom->address_bits = 8;
506 }
472d5460
YS
507 eeprom->use_eerd = false;
508 eeprom->use_eewr = false;
aa070789
RZ
509 break;
510 case e1000_82573:
2c2668f9 511 case e1000_82574:
aa070789
RZ
512 eeprom->type = e1000_eeprom_spi;
513 eeprom->opcode_bits = 8;
514 eeprom->delay_usec = 1;
515 if (eecd & E1000_EECD_ADDR_BITS) {
516 eeprom->page_size = 32;
517 eeprom->address_bits = 16;
518 } else {
519 eeprom->page_size = 8;
520 eeprom->address_bits = 8;
682011ff 521 }
472d5460 522 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
95186063
MV
523 eeprom->use_eerd = true;
524 eeprom->use_eewr = true;
525
aa070789
RZ
526 eeprom->type = e1000_eeprom_flash;
527 eeprom->word_size = 2048;
528
529 /* Ensure that the Autonomous FLASH update bit is cleared due to
530 * Flash update issue on parts which use a FLASH for NVM. */
531 eecd &= ~E1000_EECD_AUPDEN;
682011ff 532 E1000_WRITE_REG(hw, EECD, eecd);
682011ff 533 }
aa070789
RZ
534 break;
535 case e1000_80003es2lan:
536 eeprom->type = e1000_eeprom_spi;
537 eeprom->opcode_bits = 8;
538 eeprom->delay_usec = 1;
539 if (eecd & E1000_EECD_ADDR_BITS) {
540 eeprom->page_size = 32;
541 eeprom->address_bits = 16;
542 } else {
543 eeprom->page_size = 8;
544 eeprom->address_bits = 8;
545 }
472d5460
YS
546 eeprom->use_eerd = true;
547 eeprom->use_eewr = false;
aa070789 548 break;
95186063
MV
549 case e1000_igb:
550 /* i210 has 4k of iNVM mapped as EEPROM */
551 eeprom->type = e1000_eeprom_invm;
552 eeprom->opcode_bits = 8;
553 eeprom->delay_usec = 1;
554 eeprom->page_size = 32;
555 eeprom->address_bits = 16;
556 eeprom->use_eerd = true;
557 eeprom->use_eewr = false;
558 break;
aa070789
RZ
559 default:
560 break;
682011ff
WD
561 }
562
95186063
MV
563 if (eeprom->type == e1000_eeprom_spi ||
564 eeprom->type == e1000_eeprom_invm) {
aa070789
RZ
565 /* eeprom_size will be an enum [0..8] that maps
566 * to eeprom sizes 128B to
567 * 32KB (incremented by powers of 2).
568 */
569 if (hw->mac_type <= e1000_82547_rev_2) {
570 /* Set to default value for initial eeprom read. */
571 eeprom->word_size = 64;
572 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
573 &eeprom_size);
574 if (ret_val)
575 return ret_val;
576 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
577 >> EEPROM_SIZE_SHIFT;
578 /* 256B eeprom size was not supported in earlier
579 * hardware, so we bump eeprom_size up one to
580 * ensure that "1" (which maps to 256B) is never
581 * the result used in the shifting logic below. */
582 if (eeprom_size)
583 eeprom_size++;
584 } else {
585 eeprom_size = (uint16_t)((eecd &
586 E1000_EECD_SIZE_EX_MASK) >>
587 E1000_EECD_SIZE_EX_SHIFT);
588 }
589
590 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
591 }
592 return ret_val;
682011ff
WD
593}
594
aa070789
RZ
595/******************************************************************************
596 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
597 *
598 * hw - Struct containing variables accessed by shared code
599 *****************************************************************************/
600static int32_t
601e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
682011ff 602{
aa070789
RZ
603 uint32_t attempts = 100000;
604 uint32_t i, reg = 0;
605 int32_t done = E1000_ERR_EEPROM;
682011ff 606
aa070789 607 for (i = 0; i < attempts; i++) {
95186063
MV
608 if (eerd == E1000_EEPROM_POLL_READ) {
609 if (hw->mac_type == e1000_igb)
610 reg = E1000_READ_REG(hw, I210_EERD);
611 else
612 reg = E1000_READ_REG(hw, EERD);
613 } else {
614 if (hw->mac_type == e1000_igb)
615 reg = E1000_READ_REG(hw, I210_EEWR);
616 else
617 reg = E1000_READ_REG(hw, EEWR);
618 }
aa070789
RZ
619
620 if (reg & E1000_EEPROM_RW_REG_DONE) {
621 done = E1000_SUCCESS;
622 break;
623 }
624 udelay(5);
625 }
626
627 return done;
682011ff
WD
628}
629
aa070789
RZ
630/******************************************************************************
631 * Reads a 16 bit word from the EEPROM using the EERD register.
632 *
633 * hw - Struct containing variables accessed by shared code
634 * offset - offset of word in the EEPROM to read
635 * data - word read from the EEPROM
636 * words - number of words to read
637 *****************************************************************************/
638static int32_t
639e1000_read_eeprom_eerd(struct e1000_hw *hw,
640 uint16_t offset,
641 uint16_t words,
642 uint16_t *data)
682011ff 643{
aa070789
RZ
644 uint32_t i, eerd = 0;
645 int32_t error = 0;
646
647 for (i = 0; i < words; i++) {
648 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
649 E1000_EEPROM_RW_REG_START;
650
95186063
MV
651 if (hw->mac_type == e1000_igb)
652 E1000_WRITE_REG(hw, I210_EERD, eerd);
653 else
654 E1000_WRITE_REG(hw, EERD, eerd);
655
aa070789
RZ
656 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
657
658 if (error)
659 break;
95186063
MV
660
661 if (hw->mac_type == e1000_igb) {
662 data[i] = (E1000_READ_REG(hw, I210_EERD) >>
663 E1000_EEPROM_RW_REG_DATA);
664 } else {
665 data[i] = (E1000_READ_REG(hw, EERD) >>
aa070789 666 E1000_EEPROM_RW_REG_DATA);
95186063 667 }
682011ff 668
682011ff 669 }
aa070789
RZ
670
671 return error;
682011ff
WD
672}
673
2326a94d 674void e1000_release_eeprom(struct e1000_hw *hw)
682011ff
WD
675{
676 uint32_t eecd;
682011ff 677
aa070789
RZ
678 DEBUGFUNC();
679
680 eecd = E1000_READ_REG(hw, EECD);
681
682 if (hw->eeprom.type == e1000_eeprom_spi) {
683 eecd |= E1000_EECD_CS; /* Pull CS high */
684 eecd &= ~E1000_EECD_SK; /* Lower SCK */
685
682011ff 686 E1000_WRITE_REG(hw, EECD, eecd);
aa070789
RZ
687
688 udelay(hw->eeprom.delay_usec);
689 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
690 /* cleanup eeprom */
691
692 /* CS on Microwire is active-high */
693 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
694
695 E1000_WRITE_REG(hw, EECD, eecd);
696
697 /* Rising edge of clock */
698 eecd |= E1000_EECD_SK;
699 E1000_WRITE_REG(hw, EECD, eecd);
700 E1000_WRITE_FLUSH(hw);
701 udelay(hw->eeprom.delay_usec);
702
703 /* Falling edge of clock */
704 eecd &= ~E1000_EECD_SK;
705 E1000_WRITE_REG(hw, EECD, eecd);
706 E1000_WRITE_FLUSH(hw);
707 udelay(hw->eeprom.delay_usec);
682011ff 708 }
682011ff
WD
709
710 /* Stop requesting EEPROM access */
711 if (hw->mac_type > e1000_82544) {
682011ff
WD
712 eecd &= ~E1000_EECD_REQ;
713 E1000_WRITE_REG(hw, EECD, eecd);
714 }
7e2d991d
TH
715
716 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
682011ff 717}
7e2d991d 718
682011ff 719/******************************************************************************
aa070789 720 * Reads a 16 bit word from the EEPROM.
8bde7f77 721 *
682011ff 722 * hw - Struct containing variables accessed by shared code
682011ff 723 *****************************************************************************/
aa070789
RZ
724static int32_t
725e1000_spi_eeprom_ready(struct e1000_hw *hw)
682011ff 726{
aa070789
RZ
727 uint16_t retry_count = 0;
728 uint8_t spi_stat_reg;
682011ff
WD
729
730 DEBUGFUNC();
731
aa070789
RZ
732 /* Read "Status Register" repeatedly until the LSB is cleared. The
733 * EEPROM will signal that the command has been completed by clearing
734 * bit 0 of the internal status register. If it's not cleared within
735 * 5 milliseconds, then error out.
736 */
737 retry_count = 0;
738 do {
739 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
740 hw->eeprom.opcode_bits);
741 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
742 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
743 break;
8bde7f77 744
aa070789
RZ
745 udelay(5);
746 retry_count += 5;
747
748 e1000_standby_eeprom(hw);
749 } while (retry_count < EEPROM_MAX_RETRY_SPI);
750
751 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
752 * only 0-5mSec on 5V devices)
753 */
754 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
755 DEBUGOUT("SPI EEPROM Status error\n");
682011ff
WD
756 return -E1000_ERR_EEPROM;
757 }
aa070789
RZ
758
759 return E1000_SUCCESS;
682011ff
WD
760}
761
762/******************************************************************************
aa070789 763 * Reads a 16 bit word from the EEPROM.
682011ff 764 *
aa070789
RZ
765 * hw - Struct containing variables accessed by shared code
766 * offset - offset of word in the EEPROM to read
767 * data - word read from the EEPROM
682011ff 768 *****************************************************************************/
aa070789
RZ
769static int32_t
770e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
771 uint16_t words, uint16_t *data)
682011ff 772{
aa070789
RZ
773 struct e1000_eeprom_info *eeprom = &hw->eeprom;
774 uint32_t i = 0;
682011ff
WD
775
776 DEBUGFUNC();
777
aa070789
RZ
778 /* If eeprom is not yet detected, do so now */
779 if (eeprom->word_size == 0)
780 e1000_init_eeprom_params(hw);
781
782 /* A check for invalid values: offset too large, too many words,
783 * and not enough words.
784 */
785 if ((offset >= eeprom->word_size) ||
786 (words > eeprom->word_size - offset) ||
787 (words == 0)) {
788 DEBUGOUT("\"words\" parameter out of bounds."
789 "Words = %d, size = %d\n", offset, eeprom->word_size);
790 return -E1000_ERR_EEPROM;
791 }
792
793 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
794 * directly. In this case, we need to acquire the EEPROM so that
795 * FW or other port software does not interrupt.
796 */
472d5460
YS
797 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
798 hw->eeprom.use_eerd == false) {
aa070789
RZ
799
800 /* Prepare the EEPROM for bit-bang reading */
801 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
802 return -E1000_ERR_EEPROM;
803 }
804
805 /* Eerd register EEPROM access requires no eeprom aquire/release */
472d5460 806 if (eeprom->use_eerd == true)
aa070789
RZ
807 return e1000_read_eeprom_eerd(hw, offset, words, data);
808
aa070789
RZ
809 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
810 * acquired the EEPROM at this point, so any returns should relase it */
811 if (eeprom->type == e1000_eeprom_spi) {
812 uint16_t word_in;
813 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
814
815 if (e1000_spi_eeprom_ready(hw)) {
816 e1000_release_eeprom(hw);
817 return -E1000_ERR_EEPROM;
818 }
819
820 e1000_standby_eeprom(hw);
821
822 /* Some SPI eeproms use the 8th address bit embedded in
823 * the opcode */
824 if ((eeprom->address_bits == 8) && (offset >= 128))
825 read_opcode |= EEPROM_A8_OPCODE_SPI;
826
827 /* Send the READ command (opcode + addr) */
828 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
829 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
830 eeprom->address_bits);
831
832 /* Read the data. The address of the eeprom internally
833 * increments with each byte (spi) being read, saving on the
834 * overhead of eeprom setup and tear-down. The address
835 * counter will roll over if reading beyond the size of
836 * the eeprom, thus allowing the entire memory to be read
837 * starting from any offset. */
838 for (i = 0; i < words; i++) {
839 word_in = e1000_shift_in_ee_bits(hw, 16);
840 data[i] = (word_in >> 8) | (word_in << 8);
841 }
842 } else if (eeprom->type == e1000_eeprom_microwire) {
843 for (i = 0; i < words; i++) {
844 /* Send the READ command (opcode + addr) */
845 e1000_shift_out_ee_bits(hw,
846 EEPROM_READ_OPCODE_MICROWIRE,
847 eeprom->opcode_bits);
848 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
849 eeprom->address_bits);
850
851 /* Read the data. For microwire, each word requires
852 * the overhead of eeprom setup and tear-down. */
853 data[i] = e1000_shift_in_ee_bits(hw, 16);
854 e1000_standby_eeprom(hw);
855 }
856 }
857
858 /* End this read operation */
859 e1000_release_eeprom(hw);
860
861 return E1000_SUCCESS;
862}
863
864/******************************************************************************
865 * Verifies that the EEPROM has a valid checksum
866 *
867 * hw - Struct containing variables accessed by shared code
868 *
869 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
870 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
871 * valid.
872 *****************************************************************************/
114d7fc0 873static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
aa070789 874{
114d7fc0 875 uint16_t i, checksum, checksum_reg, *buf;
aa070789
RZ
876
877 DEBUGFUNC();
878
114d7fc0
KM
879 /* Allocate a temporary buffer */
880 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
881 if (!buf) {
5c5e707a 882 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
114d7fc0 883 return -E1000_ERR_EEPROM;
aa070789
RZ
884 }
885
114d7fc0
KM
886 /* Read the EEPROM */
887 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
5c5e707a 888 E1000_ERR(hw, "Unable to read EEPROM!\n");
aa070789
RZ
889 return -E1000_ERR_EEPROM;
890 }
114d7fc0
KM
891
892 /* Compute the checksum */
7a341066 893 checksum = 0;
114d7fc0
KM
894 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
895 checksum += buf[i];
896 checksum = ((uint16_t)EEPROM_SUM) - checksum;
897 checksum_reg = buf[i];
898
899 /* Verify it! */
900 if (checksum == checksum_reg)
901 return 0;
902
903 /* Hrm, verification failed, print an error */
5c5e707a
SG
904 E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
905 E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
906 checksum_reg, checksum);
114d7fc0
KM
907
908 return -E1000_ERR_EEPROM;
aa070789 909}
8712adfd 910#endif /* CONFIG_E1000_NO_NVM */
ecbd2078
RZ
911
912/*****************************************************************************
913 * Set PHY to class A mode
914 * Assumes the following operations will follow to enable the new class mode.
915 * 1. Do a PHY soft reset
916 * 2. Restart auto-negotiation or force link.
917 *
918 * hw - Struct containing variables accessed by shared code
919 ****************************************************************************/
920static int32_t
921e1000_set_phy_mode(struct e1000_hw *hw)
922{
8712adfd 923#ifndef CONFIG_E1000_NO_NVM
ecbd2078
RZ
924 int32_t ret_val;
925 uint16_t eeprom_data;
926
927 DEBUGFUNC();
928
929 if ((hw->mac_type == e1000_82545_rev_3) &&
930 (hw->media_type == e1000_media_type_copper)) {
931 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
932 1, &eeprom_data);
933 if (ret_val)
934 return ret_val;
935
936 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
937 (eeprom_data & EEPROM_PHY_CLASS_A)) {
938 ret_val = e1000_write_phy_reg(hw,
939 M88E1000_PHY_PAGE_SELECT, 0x000B);
940 if (ret_val)
941 return ret_val;
942 ret_val = e1000_write_phy_reg(hw,
943 M88E1000_PHY_GEN_CONTROL, 0x8104);
944 if (ret_val)
945 return ret_val;
946
472d5460 947 hw->phy_reset_disable = false;
ecbd2078
RZ
948 }
949 }
8712adfd 950#endif
ecbd2078
RZ
951 return E1000_SUCCESS;
952}
aa070789 953
8712adfd 954#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
955/***************************************************************************
956 *
957 * Obtaining software semaphore bit (SMBI) before resetting PHY.
958 *
959 * hw: Struct containing variables accessed by shared code
960 *
961 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
962 * E1000_SUCCESS at any other case.
963 *
964 ***************************************************************************/
965static int32_t
966e1000_get_software_semaphore(struct e1000_hw *hw)
967{
968 int32_t timeout = hw->eeprom.word_size + 1;
969 uint32_t swsm;
970
971 DEBUGFUNC();
972
973 if (hw->mac_type != e1000_80003es2lan)
974 return E1000_SUCCESS;
975
976 while (timeout) {
977 swsm = E1000_READ_REG(hw, SWSM);
978 /* If SMBI bit cleared, it is now set and we hold
979 * the semaphore */
980 if (!(swsm & E1000_SWSM_SMBI))
981 break;
982 mdelay(1);
983 timeout--;
984 }
985
986 if (!timeout) {
987 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
988 return -E1000_ERR_RESET;
989 }
990
991 return E1000_SUCCESS;
992}
8712adfd 993#endif
aa070789
RZ
994
995/***************************************************************************
996 * This function clears HW semaphore bits.
997 *
998 * hw: Struct containing variables accessed by shared code
999 *
1000 * returns: - None.
1001 *
1002 ***************************************************************************/
1003static void
1004e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1005{
8712adfd 1006#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
1007 uint32_t swsm;
1008
1009 DEBUGFUNC();
1010
1011 if (!hw->eeprom_semaphore_present)
1012 return;
1013
1014 swsm = E1000_READ_REG(hw, SWSM);
1015 if (hw->mac_type == e1000_80003es2lan) {
1016 /* Release both semaphores. */
1017 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1018 } else
1019 swsm &= ~(E1000_SWSM_SWESMBI);
1020 E1000_WRITE_REG(hw, SWSM, swsm);
8712adfd 1021#endif
aa070789
RZ
1022}
1023
1024/***************************************************************************
1025 *
1026 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1027 * adapter or Eeprom access.
1028 *
1029 * hw: Struct containing variables accessed by shared code
1030 *
1031 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1032 * E1000_SUCCESS at any other case.
1033 *
1034 ***************************************************************************/
1035static int32_t
1036e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1037{
8712adfd 1038#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
1039 int32_t timeout;
1040 uint32_t swsm;
1041
1042 DEBUGFUNC();
1043
1044 if (!hw->eeprom_semaphore_present)
1045 return E1000_SUCCESS;
1046
1047 if (hw->mac_type == e1000_80003es2lan) {
1048 /* Get the SW semaphore. */
1049 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1050 return -E1000_ERR_EEPROM;
1051 }
1052
1053 /* Get the FW semaphore. */
1054 timeout = hw->eeprom.word_size + 1;
1055 while (timeout) {
1056 swsm = E1000_READ_REG(hw, SWSM);
1057 swsm |= E1000_SWSM_SWESMBI;
1058 E1000_WRITE_REG(hw, SWSM, swsm);
1059 /* if we managed to set the bit we got the semaphore. */
1060 swsm = E1000_READ_REG(hw, SWSM);
1061 if (swsm & E1000_SWSM_SWESMBI)
1062 break;
1063
1064 udelay(50);
1065 timeout--;
1066 }
1067
1068 if (!timeout) {
1069 /* Release semaphores */
1070 e1000_put_hw_eeprom_semaphore(hw);
1071 DEBUGOUT("Driver can't access the Eeprom - "
1072 "SWESMBI bit is set.\n");
1073 return -E1000_ERR_EEPROM;
1074 }
8712adfd 1075#endif
aa070789
RZ
1076 return E1000_SUCCESS;
1077}
1078
7e2d991d 1079/* Take ownership of the PHY */
aa070789
RZ
1080static int32_t
1081e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1082{
1083 uint32_t swfw_sync = 0;
1084 uint32_t swmask = mask;
1085 uint32_t fwmask = mask << 16;
1086 int32_t timeout = 200;
1087
1088 DEBUGFUNC();
1089 while (timeout) {
1090 if (e1000_get_hw_eeprom_semaphore(hw))
1091 return -E1000_ERR_SWFW_SYNC;
1092
3c63dd53 1093 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
76f8cdb2 1094 if (!(swfw_sync & (fwmask | swmask)))
aa070789
RZ
1095 break;
1096
1097 /* firmware currently using resource (fwmask) */
1098 /* or other software thread currently using resource (swmask) */
1099 e1000_put_hw_eeprom_semaphore(hw);
1100 mdelay(5);
1101 timeout--;
1102 }
1103
1104 if (!timeout) {
1105 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1106 return -E1000_ERR_SWFW_SYNC;
1107 }
1108
1109 swfw_sync |= swmask;
1110 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1111
1112 e1000_put_hw_eeprom_semaphore(hw);
1113 return E1000_SUCCESS;
1114}
1115
7e2d991d
TH
1116static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1117{
1118 uint32_t swfw_sync = 0;
1119
1120 DEBUGFUNC();
1121 while (e1000_get_hw_eeprom_semaphore(hw))
1122 ; /* Empty */
1123
1124 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1125 swfw_sync &= ~mask;
1126 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1127
1128 e1000_put_hw_eeprom_semaphore(hw);
1129}
1130
472d5460 1131static bool e1000_is_second_port(struct e1000_hw *hw)
987b43a1
KM
1132{
1133 switch (hw->mac_type) {
1134 case e1000_80003es2lan:
1135 case e1000_82546:
1136 case e1000_82571:
1137 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
472d5460 1138 return true;
987b43a1
KM
1139 /* Fallthrough */
1140 default:
472d5460 1141 return false;
987b43a1
KM
1142 }
1143}
1144
8712adfd 1145#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
1146/******************************************************************************
1147 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1148 * second function of dual function devices
1149 *
1150 * nic - Struct containing variables accessed by shared code
1151 *****************************************************************************/
1152static int
5c5e707a 1153e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
aa070789 1154{
aa070789
RZ
1155 uint16_t offset;
1156 uint16_t eeprom_data;
95186063 1157 uint32_t reg_data = 0;
aa070789
RZ
1158 int i;
1159
1160 DEBUGFUNC();
1161
1162 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1163 offset = i >> 1;
95186063
MV
1164 if (hw->mac_type == e1000_igb) {
1165 /* i210 preloads MAC address into RAL/RAH registers */
1166 if (offset == 0)
1167 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1168 else if (offset == 1)
1169 reg_data >>= 16;
1170 else if (offset == 2)
1171 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1172 eeprom_data = reg_data & 0xffff;
1173 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
682011ff
WD
1174 DEBUGOUT("EEPROM Read Error\n");
1175 return -E1000_ERR_EEPROM;
1176 }
5c5e707a
SG
1177 enetaddr[i] = eeprom_data & 0xff;
1178 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
682011ff 1179 }
987b43a1
KM
1180
1181 /* Invert the last bit if this is the second device */
1182 if (e1000_is_second_port(hw))
5c5e707a 1183 enetaddr[5] ^= 1;
987b43a1 1184
682011ff
WD
1185 return 0;
1186}
8712adfd 1187#endif
682011ff
WD
1188
1189/******************************************************************************
1190 * Initializes receive address filters.
1191 *
8bde7f77 1192 * hw - Struct containing variables accessed by shared code
682011ff
WD
1193 *
1194 * Places the MAC address in receive address register 0 and clears the rest
1195 * of the receive addresss registers. Clears the multicast table. Assumes
1196 * the receiver is in reset when the routine is called.
1197 *****************************************************************************/
1198static void
5c5e707a 1199e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
682011ff 1200{
682011ff
WD
1201 uint32_t i;
1202 uint32_t addr_low;
1203 uint32_t addr_high;
1204
1205 DEBUGFUNC();
1206
1207 /* Setup the receive address. */
1208 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5c5e707a
SG
1209 addr_low = (enetaddr[0] |
1210 (enetaddr[1] << 8) |
1211 (enetaddr[2] << 16) | (enetaddr[3] << 24));
682011ff 1212
5c5e707a 1213 addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
682011ff
WD
1214
1215 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1216 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1217
1218 /* Zero out the other 15 receive addresses. */
1219 DEBUGOUT("Clearing RAR[1-15]\n");
1220 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1221 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1222 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1223 }
1224}
1225
1226/******************************************************************************
1227 * Clears the VLAN filer table
1228 *
1229 * hw - Struct containing variables accessed by shared code
1230 *****************************************************************************/
1231static void
1232e1000_clear_vfta(struct e1000_hw *hw)
1233{
1234 uint32_t offset;
1235
1236 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1237 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1238}
1239
1240/******************************************************************************
1241 * Set the mac type member in the hw struct.
8bde7f77 1242 *
682011ff
WD
1243 * hw - Struct containing variables accessed by shared code
1244 *****************************************************************************/
aa070789 1245int32_t
682011ff
WD
1246e1000_set_mac_type(struct e1000_hw *hw)
1247{
1248 DEBUGFUNC();
1249
1250 switch (hw->device_id) {
1251 case E1000_DEV_ID_82542:
1252 switch (hw->revision_id) {
1253 case E1000_82542_2_0_REV_ID:
1254 hw->mac_type = e1000_82542_rev2_0;
1255 break;
1256 case E1000_82542_2_1_REV_ID:
1257 hw->mac_type = e1000_82542_rev2_1;
1258 break;
1259 default:
1260 /* Invalid 82542 revision ID */
1261 return -E1000_ERR_MAC_TYPE;
1262 }
1263 break;
1264 case E1000_DEV_ID_82543GC_FIBER:
1265 case E1000_DEV_ID_82543GC_COPPER:
1266 hw->mac_type = e1000_82543;
1267 break;
1268 case E1000_DEV_ID_82544EI_COPPER:
1269 case E1000_DEV_ID_82544EI_FIBER:
1270 case E1000_DEV_ID_82544GC_COPPER:
1271 case E1000_DEV_ID_82544GC_LOM:
1272 hw->mac_type = e1000_82544;
1273 break;
1274 case E1000_DEV_ID_82540EM:
1275 case E1000_DEV_ID_82540EM_LOM:
aa070789
RZ
1276 case E1000_DEV_ID_82540EP:
1277 case E1000_DEV_ID_82540EP_LOM:
1278 case E1000_DEV_ID_82540EP_LP:
682011ff
WD
1279 hw->mac_type = e1000_82540;
1280 break;
1281 case E1000_DEV_ID_82545EM_COPPER:
1282 case E1000_DEV_ID_82545EM_FIBER:
1283 hw->mac_type = e1000_82545;
1284 break;
aa070789
RZ
1285 case E1000_DEV_ID_82545GM_COPPER:
1286 case E1000_DEV_ID_82545GM_FIBER:
1287 case E1000_DEV_ID_82545GM_SERDES:
1288 hw->mac_type = e1000_82545_rev_3;
1289 break;
682011ff
WD
1290 case E1000_DEV_ID_82546EB_COPPER:
1291 case E1000_DEV_ID_82546EB_FIBER:
aa070789 1292 case E1000_DEV_ID_82546EB_QUAD_COPPER:
682011ff
WD
1293 hw->mac_type = e1000_82546;
1294 break;
aa070789
RZ
1295 case E1000_DEV_ID_82546GB_COPPER:
1296 case E1000_DEV_ID_82546GB_FIBER:
1297 case E1000_DEV_ID_82546GB_SERDES:
1298 case E1000_DEV_ID_82546GB_PCIE:
1299 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1300 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1301 hw->mac_type = e1000_82546_rev_3;
1302 break;
1303 case E1000_DEV_ID_82541EI:
1304 case E1000_DEV_ID_82541EI_MOBILE:
1305 case E1000_DEV_ID_82541ER_LOM:
1306 hw->mac_type = e1000_82541;
1307 break;
ac3315c2 1308 case E1000_DEV_ID_82541ER:
aa070789 1309 case E1000_DEV_ID_82541GI:
aa3b8bf9 1310 case E1000_DEV_ID_82541GI_LF:
aa070789 1311 case E1000_DEV_ID_82541GI_MOBILE:
1aeed8d7
WD
1312 hw->mac_type = e1000_82541_rev_2;
1313 break;
aa070789
RZ
1314 case E1000_DEV_ID_82547EI:
1315 case E1000_DEV_ID_82547EI_MOBILE:
1316 hw->mac_type = e1000_82547;
1317 break;
1318 case E1000_DEV_ID_82547GI:
1319 hw->mac_type = e1000_82547_rev_2;
1320 break;
1321 case E1000_DEV_ID_82571EB_COPPER:
1322 case E1000_DEV_ID_82571EB_FIBER:
1323 case E1000_DEV_ID_82571EB_SERDES:
1324 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1325 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1326 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1327 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1328 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1329 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1330 hw->mac_type = e1000_82571;
1331 break;
1332 case E1000_DEV_ID_82572EI_COPPER:
1333 case E1000_DEV_ID_82572EI_FIBER:
1334 case E1000_DEV_ID_82572EI_SERDES:
1335 case E1000_DEV_ID_82572EI:
1336 hw->mac_type = e1000_82572;
1337 break;
1338 case E1000_DEV_ID_82573E:
1339 case E1000_DEV_ID_82573E_IAMT:
1340 case E1000_DEV_ID_82573L:
1341 hw->mac_type = e1000_82573;
1342 break;
2c2668f9
RZ
1343 case E1000_DEV_ID_82574L:
1344 hw->mac_type = e1000_82574;
1345 break;
aa070789
RZ
1346 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1347 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1348 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1349 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1350 hw->mac_type = e1000_80003es2lan;
1351 break;
1352 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1353 case E1000_DEV_ID_ICH8_IGP_AMT:
1354 case E1000_DEV_ID_ICH8_IGP_C:
1355 case E1000_DEV_ID_ICH8_IFE:
1356 case E1000_DEV_ID_ICH8_IFE_GT:
1357 case E1000_DEV_ID_ICH8_IFE_G:
1358 case E1000_DEV_ID_ICH8_IGP_M:
1359 hw->mac_type = e1000_ich8lan;
1360 break;
6c499abe
MZ
1361 case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1362 case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
95186063 1363 case PCI_DEVICE_ID_INTEL_I210_COPPER:
6c499abe 1364 case PCI_DEVICE_ID_INTEL_I211_COPPER:
95186063
MV
1365 case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1366 case PCI_DEVICE_ID_INTEL_I210_SERDES:
1367 case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1368 case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1369 hw->mac_type = e1000_igb;
1370 break;
682011ff
WD
1371 default:
1372 /* Should never have loaded on this device */
1373 return -E1000_ERR_MAC_TYPE;
1374 }
1375 return E1000_SUCCESS;
1376}
1377
1378/******************************************************************************
1379 * Reset the transmit and receive units; mask and clear all interrupts.
1380 *
1381 * hw - Struct containing variables accessed by shared code
1382 *****************************************************************************/
1383void
1384e1000_reset_hw(struct e1000_hw *hw)
1385{
1386 uint32_t ctrl;
1387 uint32_t ctrl_ext;
682011ff 1388 uint32_t manc;
9ea005fb 1389 uint32_t pba = 0;
95186063 1390 uint32_t reg;
682011ff
WD
1391
1392 DEBUGFUNC();
1393
9ea005fb
RZ
1394 /* get the correct pba value for both PCI and PCIe*/
1395 if (hw->mac_type < e1000_82571)
1396 pba = E1000_DEFAULT_PCI_PBA;
1397 else
1398 pba = E1000_DEFAULT_PCIE_PBA;
1399
682011ff
WD
1400 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1401 if (hw->mac_type == e1000_82542_rev2_0) {
1402 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
81dab9af
BM
1403#ifdef CONFIG_DM_ETH
1404 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1405 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1406#else
682011ff 1407 pci_write_config_word(hw->pdev, PCI_COMMAND,
aa070789 1408 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
81dab9af 1409#endif
682011ff
WD
1410 }
1411
1412 /* Clear interrupt mask to stop board from generating interrupts */
1413 DEBUGOUT("Masking off all interrupts\n");
95186063
MV
1414 if (hw->mac_type == e1000_igb)
1415 E1000_WRITE_REG(hw, I210_IAM, 0);
682011ff
WD
1416 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1417
1418 /* Disable the Transmit and Receive units. Then delay to allow
1419 * any pending transactions to complete before we hit the MAC with
1420 * the global reset.
1421 */
1422 E1000_WRITE_REG(hw, RCTL, 0);
1423 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1424 E1000_WRITE_FLUSH(hw);
1425
1426 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
472d5460 1427 hw->tbi_compatibility_on = false;
682011ff
WD
1428
1429 /* Delay to allow any outstanding PCI transactions to complete before
1430 * resetting the device
1431 */
1432 mdelay(10);
1433
1434 /* Issue a global reset to the MAC. This will reset the chip's
1435 * transmit, receive, DMA, and link units. It will not effect
1436 * the current PCI configuration. The global reset bit is self-
1437 * clearing, and should clear within a microsecond.
1438 */
1439 DEBUGOUT("Issuing a global reset to MAC\n");
1440 ctrl = E1000_READ_REG(hw, CTRL);
1441
aa070789 1442 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
682011ff
WD
1443
1444 /* Force a reload from the EEPROM if necessary */
95186063
MV
1445 if (hw->mac_type == e1000_igb) {
1446 mdelay(20);
1447 reg = E1000_READ_REG(hw, STATUS);
1448 if (reg & E1000_STATUS_PF_RST_DONE)
1449 DEBUGOUT("PF OK\n");
1450 reg = E1000_READ_REG(hw, I210_EECD);
1451 if (reg & E1000_EECD_AUTO_RD)
1452 DEBUGOUT("EEC OK\n");
1453 } else if (hw->mac_type < e1000_82540) {
682011ff
WD
1454 /* Wait for reset to complete */
1455 udelay(10);
1456 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1457 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1458 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1459 E1000_WRITE_FLUSH(hw);
1460 /* Wait for EEPROM reload */
1461 mdelay(2);
1462 } else {
1463 /* Wait for EEPROM reload (it happens automatically) */
1464 mdelay(4);
1465 /* Dissable HW ARPs on ASF enabled adapters */
1466 manc = E1000_READ_REG(hw, MANC);
1467 manc &= ~(E1000_MANC_ARP_EN);
1468 E1000_WRITE_REG(hw, MANC, manc);
1469 }
1470
1471 /* Clear interrupt mask to stop board from generating interrupts */
1472 DEBUGOUT("Masking off all interrupts\n");
95186063
MV
1473 if (hw->mac_type == e1000_igb)
1474 E1000_WRITE_REG(hw, I210_IAM, 0);
682011ff
WD
1475 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1476
1477 /* Clear any pending interrupt events. */
56b13b1e 1478 E1000_READ_REG(hw, ICR);
682011ff
WD
1479
1480 /* If MWI was previously enabled, reenable it. */
1481 if (hw->mac_type == e1000_82542_rev2_0) {
81dab9af
BM
1482#ifdef CONFIG_DM_ETH
1483 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1484#else
682011ff 1485 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
81dab9af 1486#endif
682011ff 1487 }
95186063
MV
1488 if (hw->mac_type != e1000_igb)
1489 E1000_WRITE_REG(hw, PBA, pba);
aa070789
RZ
1490}
1491
1492/******************************************************************************
1493 *
1494 * Initialize a number of hardware-dependent bits
1495 *
1496 * hw: Struct containing variables accessed by shared code
1497 *
1498 * This function contains hardware limitation workarounds for PCI-E adapters
1499 *
1500 *****************************************************************************/
1501static void
1502e1000_initialize_hardware_bits(struct e1000_hw *hw)
1503{
1504 if ((hw->mac_type >= e1000_82571) &&
1505 (!hw->initialize_hw_bits_disable)) {
1506 /* Settings common to all PCI-express silicon */
1507 uint32_t reg_ctrl, reg_ctrl_ext;
1508 uint32_t reg_tarc0, reg_tarc1;
1509 uint32_t reg_tctl;
1510 uint32_t reg_txdctl, reg_txdctl1;
1511
1512 /* link autonegotiation/sync workarounds */
1513 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1514 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1515
1516 /* Enable not-done TX descriptor counting */
1517 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1518 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1519 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1520
1521 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1522 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1523 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1524
95186063 1525
aa070789 1526 switch (hw->mac_type) {
063bb708
AP
1527 case e1000_igb: /* IGB is cool */
1528 return;
aa070789
RZ
1529 case e1000_82571:
1530 case e1000_82572:
1531 /* Clear PHY TX compatible mode bits */
1532 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1533 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1534
1535 /* link autonegotiation/sync workarounds */
1536 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1537
1538 /* TX ring control fixes */
1539 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1540
1541 /* Multiple read bit is reversed polarity */
1542 reg_tctl = E1000_READ_REG(hw, TCTL);
1543 if (reg_tctl & E1000_TCTL_MULR)
1544 reg_tarc1 &= ~(1 << 28);
1545 else
1546 reg_tarc1 |= (1 << 28);
1547
1548 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1549 break;
1550 case e1000_82573:
2c2668f9 1551 case e1000_82574:
aa070789
RZ
1552 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1553 reg_ctrl_ext &= ~(1 << 23);
1554 reg_ctrl_ext |= (1 << 22);
1555
1556 /* TX byte count fix */
1557 reg_ctrl = E1000_READ_REG(hw, CTRL);
1558 reg_ctrl &= ~(1 << 29);
1559
1560 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1561 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1562 break;
1563 case e1000_80003es2lan:
1564 /* improve small packet performace for fiber/serdes */
1565 if ((hw->media_type == e1000_media_type_fiber)
1566 || (hw->media_type ==
1567 e1000_media_type_internal_serdes)) {
1568 reg_tarc0 &= ~(1 << 20);
1569 }
1570
1571 /* Multiple read bit is reversed polarity */
1572 reg_tctl = E1000_READ_REG(hw, TCTL);
1573 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1574 if (reg_tctl & E1000_TCTL_MULR)
1575 reg_tarc1 &= ~(1 << 28);
1576 else
1577 reg_tarc1 |= (1 << 28);
1578
1579 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1580 break;
1581 case e1000_ich8lan:
1582 /* Reduce concurrent DMA requests to 3 from 4 */
1583 if ((hw->revision_id < 3) ||
1584 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1585 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1586 reg_tarc0 |= ((1 << 29)|(1 << 28));
1587
1588 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1589 reg_ctrl_ext |= (1 << 22);
1590 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1591
1592 /* workaround TX hang with TSO=on */
1593 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1594
1595 /* Multiple read bit is reversed polarity */
1596 reg_tctl = E1000_READ_REG(hw, TCTL);
1597 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1598 if (reg_tctl & E1000_TCTL_MULR)
1599 reg_tarc1 &= ~(1 << 28);
1600 else
1601 reg_tarc1 |= (1 << 28);
1602
1603 /* workaround TX hang with TSO=on */
1604 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1605
1606 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1607 break;
1608 default:
1609 break;
1610 }
1611
1612 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1613 }
682011ff
WD
1614}
1615
1616/******************************************************************************
1617 * Performs basic configuration of the adapter.
1618 *
1619 * hw - Struct containing variables accessed by shared code
8bde7f77
WD
1620 *
1621 * Assumes that the controller has previously been reset and is in a
682011ff
WD
1622 * post-reset uninitialized state. Initializes the receive address registers,
1623 * multicast table, and VLAN filter table. Calls routines to setup link
1624 * configuration and flow control settings. Clears all on-chip counters. Leaves
1625 * the transmit and receive units disabled and uninitialized.
1626 *****************************************************************************/
1627static int
5c5e707a 1628e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
682011ff 1629{
aa070789 1630 uint32_t ctrl;
682011ff
WD
1631 uint32_t i;
1632 int32_t ret_val;
1633 uint16_t pcix_cmd_word;
1634 uint16_t pcix_stat_hi_word;
1635 uint16_t cmd_mmrbc;
1636 uint16_t stat_mmrbc;
aa070789
RZ
1637 uint32_t mta_size;
1638 uint32_t reg_data;
1639 uint32_t ctrl_ext;
682011ff 1640 DEBUGFUNC();
aa070789
RZ
1641 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1642 if ((hw->mac_type == e1000_ich8lan) &&
1643 ((hw->revision_id < 3) ||
1644 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1645 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1646 reg_data = E1000_READ_REG(hw, STATUS);
1647 reg_data &= ~0x80000000;
1648 E1000_WRITE_REG(hw, STATUS, reg_data);
682011ff 1649 }
aa070789 1650 /* Do not need initialize Identification LED */
682011ff 1651
aa070789
RZ
1652 /* Set the media type and TBI compatibility */
1653 e1000_set_media_type(hw);
1654
1655 /* Must be called after e1000_set_media_type
1656 * because media_type is used */
1657 e1000_initialize_hardware_bits(hw);
682011ff
WD
1658
1659 /* Disabling VLAN filtering. */
1660 DEBUGOUT("Initializing the IEEE VLAN\n");
aa070789
RZ
1661 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1662 if (hw->mac_type != e1000_ich8lan) {
1663 if (hw->mac_type < e1000_82545_rev_3)
1664 E1000_WRITE_REG(hw, VET, 0);
1665 e1000_clear_vfta(hw);
1666 }
682011ff
WD
1667
1668 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1669 if (hw->mac_type == e1000_82542_rev2_0) {
1670 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
81dab9af
BM
1671#ifdef CONFIG_DM_ETH
1672 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1673 hw->
1674 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1675#else
682011ff
WD
1676 pci_write_config_word(hw->pdev, PCI_COMMAND,
1677 hw->
1678 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
81dab9af 1679#endif
682011ff
WD
1680 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1681 E1000_WRITE_FLUSH(hw);
1682 mdelay(5);
1683 }
1684
1685 /* Setup the receive address. This involves initializing all of the Receive
1686 * Address Registers (RARs 0 - 15).
1687 */
5c5e707a 1688 e1000_init_rx_addrs(hw, enetaddr);
682011ff
WD
1689
1690 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1691 if (hw->mac_type == e1000_82542_rev2_0) {
1692 E1000_WRITE_REG(hw, RCTL, 0);
1693 E1000_WRITE_FLUSH(hw);
1694 mdelay(1);
81dab9af
BM
1695#ifdef CONFIG_DM_ETH
1696 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1697#else
682011ff 1698 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
81dab9af 1699#endif
682011ff
WD
1700 }
1701
1702 /* Zero out the Multicast HASH table */
1703 DEBUGOUT("Zeroing the MTA\n");
aa070789
RZ
1704 mta_size = E1000_MC_TBL_SIZE;
1705 if (hw->mac_type == e1000_ich8lan)
1706 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1707 for (i = 0; i < mta_size; i++) {
682011ff 1708 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
aa070789
RZ
1709 /* use write flush to prevent Memory Write Block (MWB) from
1710 * occuring when accessing our register space */
1711 E1000_WRITE_FLUSH(hw);
1712 }
e97f7fbb 1713
aa070789
RZ
1714 switch (hw->mac_type) {
1715 case e1000_82545_rev_3:
1716 case e1000_82546_rev_3:
95186063 1717 case e1000_igb:
aa070789
RZ
1718 break;
1719 default:
682011ff 1720 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
aa070789 1721 if (hw->bus_type == e1000_bus_type_pcix) {
81dab9af
BM
1722#ifdef CONFIG_DM_ETH
1723 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1724 &pcix_cmd_word);
1725 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1726 &pcix_stat_hi_word);
1727#else
682011ff
WD
1728 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1729 &pcix_cmd_word);
1730 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1731 &pcix_stat_hi_word);
81dab9af 1732#endif
682011ff
WD
1733 cmd_mmrbc =
1734 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1735 PCIX_COMMAND_MMRBC_SHIFT;
1736 stat_mmrbc =
1737 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1738 PCIX_STATUS_HI_MMRBC_SHIFT;
1739 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1740 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1741 if (cmd_mmrbc > stat_mmrbc) {
1742 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1743 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
81dab9af
BM
1744#ifdef CONFIG_DM_ETH
1745 dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1746 pcix_cmd_word);
1747#else
682011ff
WD
1748 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1749 pcix_cmd_word);
81dab9af 1750#endif
682011ff
WD
1751 }
1752 }
aa070789
RZ
1753 break;
1754 }
1755
1756 /* More time needed for PHY to initialize */
1757 if (hw->mac_type == e1000_ich8lan)
1758 mdelay(15);
95186063
MV
1759 if (hw->mac_type == e1000_igb)
1760 mdelay(15);
682011ff
WD
1761
1762 /* Call a subroutine to configure the link and setup flow control. */
5c5e707a 1763 ret_val = e1000_setup_link(hw);
682011ff
WD
1764
1765 /* Set the transmit descriptor write-back policy */
1766 if (hw->mac_type > e1000_82544) {
1767 ctrl = E1000_READ_REG(hw, TXDCTL);
1768 ctrl =
1769 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1770 E1000_TXDCTL_FULL_TX_DESC_WB;
1771 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1772 }
aa070789 1773
776e66e8 1774 /* Set the receive descriptor write back policy */
776e66e8
RG
1775 if (hw->mac_type >= e1000_82571) {
1776 ctrl = E1000_READ_REG(hw, RXDCTL);
1777 ctrl =
1778 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1779 E1000_RXDCTL_FULL_RX_DESC_WB;
1780 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1781 }
1782
aa070789
RZ
1783 switch (hw->mac_type) {
1784 default:
1785 break;
1786 case e1000_80003es2lan:
1787 /* Enable retransmit on late collisions */
1788 reg_data = E1000_READ_REG(hw, TCTL);
1789 reg_data |= E1000_TCTL_RTLC;
1790 E1000_WRITE_REG(hw, TCTL, reg_data);
1791
1792 /* Configure Gigabit Carry Extend Padding */
1793 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1794 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1795 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1796 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1797
1798 /* Configure Transmit Inter-Packet Gap */
1799 reg_data = E1000_READ_REG(hw, TIPG);
1800 reg_data &= ~E1000_TIPG_IPGT_MASK;
1801 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1802 E1000_WRITE_REG(hw, TIPG, reg_data);
1803
1804 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1805 reg_data &= ~0x00100000;
1806 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1807 /* Fall through */
1808 case e1000_82571:
1809 case e1000_82572:
1810 case e1000_ich8lan:
1811 ctrl = E1000_READ_REG(hw, TXDCTL1);
1812 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1813 | E1000_TXDCTL_FULL_TX_DESC_WB;
1814 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1815 break;
2c2668f9
RZ
1816 case e1000_82573:
1817 case e1000_82574:
1818 reg_data = E1000_READ_REG(hw, GCR);
1819 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1820 E1000_WRITE_REG(hw, GCR, reg_data);
95186063
MV
1821 case e1000_igb:
1822 break;
aa070789
RZ
1823 }
1824
aa070789
RZ
1825 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1826 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1827 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1828 /* Relaxed ordering must be disabled to avoid a parity
1829 * error crash in a PCI slot. */
1830 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1831 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1832 }
1833
682011ff
WD
1834 return ret_val;
1835}
1836
1837/******************************************************************************
1838 * Configures flow control and link settings.
8bde7f77 1839 *
682011ff 1840 * hw - Struct containing variables accessed by shared code
8bde7f77 1841 *
682011ff
WD
1842 * Determines which flow control settings to use. Calls the apropriate media-
1843 * specific link configuration function. Configures the flow control settings.
1844 * Assuming the adapter has a valid link partner, a valid link should be
8bde7f77 1845 * established. Assumes the hardware has previously been reset and the
682011ff
WD
1846 * transmitter and receiver are not enabled.
1847 *****************************************************************************/
1848static int
5c5e707a 1849e1000_setup_link(struct e1000_hw *hw)
682011ff 1850{
682011ff 1851 int32_t ret_val;
8712adfd
RI
1852#ifndef CONFIG_E1000_NO_NVM
1853 uint32_t ctrl_ext;
682011ff 1854 uint16_t eeprom_data;
8712adfd 1855#endif
682011ff
WD
1856
1857 DEBUGFUNC();
1858
aa070789
RZ
1859 /* In the case of the phy reset being blocked, we already have a link.
1860 * We do not have to set it up again. */
1861 if (e1000_check_phy_reset_block(hw))
1862 return E1000_SUCCESS;
1863
8712adfd 1864#ifndef CONFIG_E1000_NO_NVM
682011ff
WD
1865 /* Read and store word 0x0F of the EEPROM. This word contains bits
1866 * that determine the hardware's default PAUSE (flow control) mode,
1867 * a bit that determines whether the HW defaults to enabling or
1868 * disabling auto-negotiation, and the direction of the
1869 * SW defined pins. If there is no SW over-ride of the flow
1870 * control setting, then the variable hw->fc will
1871 * be initialized based on a value in the EEPROM.
1872 */
aa070789
RZ
1873 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1874 &eeprom_data) < 0) {
682011ff
WD
1875 DEBUGOUT("EEPROM Read Error\n");
1876 return -E1000_ERR_EEPROM;
1877 }
8712adfd 1878#endif
682011ff 1879 if (hw->fc == e1000_fc_default) {
aa070789
RZ
1880 switch (hw->mac_type) {
1881 case e1000_ich8lan:
1882 case e1000_82573:
2c2668f9 1883 case e1000_82574:
95186063 1884 case e1000_igb:
682011ff 1885 hw->fc = e1000_fc_full;
aa070789
RZ
1886 break;
1887 default:
8712adfd 1888#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
1889 ret_val = e1000_read_eeprom(hw,
1890 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1891 if (ret_val) {
1892 DEBUGOUT("EEPROM Read Error\n");
1893 return -E1000_ERR_EEPROM;
1894 }
aa070789
RZ
1895 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1896 hw->fc = e1000_fc_none;
1897 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1898 EEPROM_WORD0F_ASM_DIR)
1899 hw->fc = e1000_fc_tx_pause;
1900 else
8712adfd 1901#endif
aa070789
RZ
1902 hw->fc = e1000_fc_full;
1903 break;
1904 }
682011ff
WD
1905 }
1906
1907 /* We want to save off the original Flow Control configuration just
1908 * in case we get disconnected and then reconnected into a different
1909 * hub or switch with different Flow Control capabilities.
1910 */
1911 if (hw->mac_type == e1000_82542_rev2_0)
1912 hw->fc &= (~e1000_fc_tx_pause);
1913
1914 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1915 hw->fc &= (~e1000_fc_rx_pause);
1916
1917 hw->original_fc = hw->fc;
1918
1919 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1920
8712adfd 1921#ifndef CONFIG_E1000_NO_NVM
682011ff
WD
1922 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1923 * polarity value for the SW controlled pins, and setup the
1924 * Extended Device Control reg with that info.
1925 * This is needed because one of the SW controlled pins is used for
1926 * signal detection. So this should be done before e1000_setup_pcs_link()
1927 * or e1000_phy_setup() is called.
1928 */
1929 if (hw->mac_type == e1000_82543) {
1930 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1931 SWDPIO__EXT_SHIFT);
1932 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1933 }
8712adfd 1934#endif
682011ff
WD
1935
1936 /* Call the necessary subroutine to configure the link. */
1937 ret_val = (hw->media_type == e1000_media_type_fiber) ?
5c5e707a 1938 e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
682011ff
WD
1939 if (ret_val < 0) {
1940 return ret_val;
1941 }
1942
1943 /* Initialize the flow control address, type, and PAUSE timer
1944 * registers to their default values. This is done even if flow
1945 * control is disabled, because it does not hurt anything to
1946 * initialize these registers.
1947 */
aa070789
RZ
1948 DEBUGOUT("Initializing the Flow Control address, type"
1949 "and timer regs\n");
1950
1951 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1952 if (hw->mac_type != e1000_ich8lan) {
1953 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1954 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1955 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1956 }
682011ff 1957
682011ff
WD
1958 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1959
1960 /* Set the flow control receive threshold registers. Normally,
1961 * these registers will be set to a default threshold that may be
1962 * adjusted later by the driver's runtime code. However, if the
1963 * ability to transmit pause frames in not enabled, then these
8bde7f77 1964 * registers will be set to 0.
682011ff
WD
1965 */
1966 if (!(hw->fc & e1000_fc_tx_pause)) {
1967 E1000_WRITE_REG(hw, FCRTL, 0);
1968 E1000_WRITE_REG(hw, FCRTH, 0);
1969 } else {
1970 /* We need to set up the Receive Threshold high and low water marks
1971 * as well as (optionally) enabling the transmission of XON frames.
1972 */
1973 if (hw->fc_send_xon) {
1974 E1000_WRITE_REG(hw, FCRTL,
1975 (hw->fc_low_water | E1000_FCRTL_XONE));
1976 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1977 } else {
1978 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1979 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1980 }
1981 }
1982 return ret_val;
1983}
1984
1985/******************************************************************************
1986 * Sets up link for a fiber based adapter
1987 *
1988 * hw - Struct containing variables accessed by shared code
1989 *
1990 * Manipulates Physical Coding Sublayer functions in order to configure
1991 * link. Assumes the hardware has been previously reset and the transmitter
1992 * and receiver are not enabled.
1993 *****************************************************************************/
1994static int
5c5e707a 1995e1000_setup_fiber_link(struct e1000_hw *hw)
682011ff 1996{
682011ff
WD
1997 uint32_t ctrl;
1998 uint32_t status;
1999 uint32_t txcw = 0;
2000 uint32_t i;
2001 uint32_t signal;
2002 int32_t ret_val;
2003
2004 DEBUGFUNC();
8bde7f77
WD
2005 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2006 * set when the optics detect a signal. On older adapters, it will be
682011ff
WD
2007 * cleared when there is a signal
2008 */
2009 ctrl = E1000_READ_REG(hw, CTRL);
2010 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2011 signal = E1000_CTRL_SWDPIN1;
2012 else
2013 signal = 0;
2014
5c5e707a 2015 printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
682011ff
WD
2016 ctrl);
2017 /* Take the link out of reset */
2018 ctrl &= ~(E1000_CTRL_LRST);
2019
2020 e1000_config_collision_dist(hw);
2021
2022 /* Check for a software override of the flow control settings, and setup
2023 * the device accordingly. If auto-negotiation is enabled, then software
2024 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2025 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
8bde7f77 2026 * auto-negotiation is disabled, then software will have to manually
682011ff
WD
2027 * configure the two flow control enable bits in the CTRL register.
2028 *
2029 * The possible values of the "fc" parameter are:
1aeed8d7
WD
2030 * 0: Flow control is completely disabled
2031 * 1: Rx flow control is enabled (we can receive pause frames, but
2032 * not send pause frames).
2033 * 2: Tx flow control is enabled (we can send pause frames but we do
2034 * not support receiving pause frames).
2035 * 3: Both Rx and TX flow control (symmetric) are enabled.
682011ff
WD
2036 */
2037 switch (hw->fc) {
2038 case e1000_fc_none:
2039 /* Flow control is completely disabled by a software over-ride. */
2040 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2041 break;
2042 case e1000_fc_rx_pause:
8bde7f77
WD
2043 /* RX Flow control is enabled and TX Flow control is disabled by a
2044 * software over-ride. Since there really isn't a way to advertise
682011ff
WD
2045 * that we are capable of RX Pause ONLY, we will advertise that we
2046 * support both symmetric and asymmetric RX PAUSE. Later, we will
2047 * disable the adapter's ability to send PAUSE frames.
2048 */
2049 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2050 break;
2051 case e1000_fc_tx_pause:
8bde7f77 2052 /* TX Flow control is enabled, and RX Flow control is disabled, by a
682011ff
WD
2053 * software over-ride.
2054 */
2055 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2056 break;
2057 case e1000_fc_full:
2058 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2059 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2060 break;
2061 default:
2062 DEBUGOUT("Flow control param set incorrectly\n");
2063 return -E1000_ERR_CONFIG;
2064 break;
2065 }
2066
2067 /* Since auto-negotiation is enabled, take the link out of reset (the link
2068 * will be in reset, because we previously reset the chip). This will
2069 * restart auto-negotiation. If auto-neogtiation is successful then the
2070 * link-up status bit will be set and the flow control enable bits (RFCE
2071 * and TFCE) will be set according to their negotiated value.
2072 */
2073 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2074
2075 E1000_WRITE_REG(hw, TXCW, txcw);
2076 E1000_WRITE_REG(hw, CTRL, ctrl);
2077 E1000_WRITE_FLUSH(hw);
2078
2079 hw->txcw = txcw;
2080 mdelay(1);
2081
2082 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
8bde7f77
WD
2083 * indication in the Device Status Register. Time-out if a link isn't
2084 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
682011ff
WD
2085 * less than 500 milliseconds even if the other end is doing it in SW).
2086 */
2087 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2088 DEBUGOUT("Looking for Link\n");
2089 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2090 mdelay(10);
2091 status = E1000_READ_REG(hw, STATUS);
2092 if (status & E1000_STATUS_LU)
2093 break;
2094 }
2095 if (i == (LINK_UP_TIMEOUT / 10)) {
8bde7f77 2096 /* AutoNeg failed to achieve a link, so we'll call
682011ff
WD
2097 * e1000_check_for_link. This routine will force the link up if we
2098 * detect a signal. This will allow us to communicate with
2099 * non-autonegotiating link partners.
2100 */
2101 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2102 hw->autoneg_failed = 1;
5c5e707a 2103 ret_val = e1000_check_for_link(hw);
682011ff
WD
2104 if (ret_val < 0) {
2105 DEBUGOUT("Error while checking for link\n");
2106 return ret_val;
2107 }
2108 hw->autoneg_failed = 0;
2109 } else {
2110 hw->autoneg_failed = 0;
2111 DEBUGOUT("Valid Link Found\n");
2112 }
aa070789
RZ
2113 } else {
2114 DEBUGOUT("No Signal Detected\n");
2115 return -E1000_ERR_NOLINK;
2116 }
2117 return 0;
2118}
2119
aa070789
RZ
2120/******************************************************************************
2121* Make sure we have a valid PHY and change PHY mode before link setup.
2122*
2123* hw - Struct containing variables accessed by shared code
2124******************************************************************************/
2125static int32_t
2126e1000_copper_link_preconfig(struct e1000_hw *hw)
2127{
2128 uint32_t ctrl;
2129 int32_t ret_val;
2130 uint16_t phy_data;
2131
2132 DEBUGFUNC();
2133
2134 ctrl = E1000_READ_REG(hw, CTRL);
2135 /* With 82543, we need to force speed and duplex on the MAC equal to what
2136 * the PHY speed and duplex configuration is. In addition, we need to
2137 * perform a hardware reset on the PHY to take it out of reset.
2138 */
2139 if (hw->mac_type > e1000_82543) {
2140 ctrl |= E1000_CTRL_SLU;
2141 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2142 E1000_WRITE_REG(hw, CTRL, ctrl);
2143 } else {
2144 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2145 | E1000_CTRL_SLU);
2146 E1000_WRITE_REG(hw, CTRL, ctrl);
2147 ret_val = e1000_phy_hw_reset(hw);
2148 if (ret_val)
2149 return ret_val;
2150 }
2151
2152 /* Make sure we have a valid PHY */
2153 ret_val = e1000_detect_gig_phy(hw);
2154 if (ret_val) {
2155 DEBUGOUT("Error, did not detect valid phy.\n");
2156 return ret_val;
2157 }
5abf13e4 2158 DEBUGOUT("Phy ID = %x\n", hw->phy_id);
aa070789 2159
aa070789
RZ
2160 /* Set PHY to class A mode (if necessary) */
2161 ret_val = e1000_set_phy_mode(hw);
2162 if (ret_val)
2163 return ret_val;
aa070789
RZ
2164 if ((hw->mac_type == e1000_82545_rev_3) ||
2165 (hw->mac_type == e1000_82546_rev_3)) {
2166 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2167 &phy_data);
2168 phy_data |= 0x00000008;
2169 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2170 phy_data);
2171 }
2172
2173 if (hw->mac_type <= e1000_82543 ||
2174 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2175 hw->mac_type == e1000_82541_rev_2
2176 || hw->mac_type == e1000_82547_rev_2)
472d5460 2177 hw->phy_reset_disable = false;
aa070789
RZ
2178
2179 return E1000_SUCCESS;
2180}
2181
2182/*****************************************************************************
2183 *
2184 * This function sets the lplu state according to the active flag. When
2185 * activating lplu this function also disables smart speed and vise versa.
2186 * lplu will not be activated unless the device autonegotiation advertisment
2187 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2188 * hw: Struct containing variables accessed by shared code
2189 * active - true to enable lplu false to disable lplu.
2190 *
2191 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2192 * E1000_SUCCESS at any other case.
2193 *
2194 ****************************************************************************/
2195
2196static int32_t
472d5460 2197e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
aa070789
RZ
2198{
2199 uint32_t phy_ctrl = 0;
2200 int32_t ret_val;
2201 uint16_t phy_data;
2202 DEBUGFUNC();
2203
2204 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2205 && hw->phy_type != e1000_phy_igp_3)
2206 return E1000_SUCCESS;
2207
2208 /* During driver activity LPLU should not be used or it will attain link
2209 * from the lowest speeds starting from 10Mbps. The capability is used
2210 * for Dx transitions and states */
2211 if (hw->mac_type == e1000_82541_rev_2
2212 || hw->mac_type == e1000_82547_rev_2) {
2213 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2214 &phy_data);
2215 if (ret_val)
2216 return ret_val;
2217 } else if (hw->mac_type == e1000_ich8lan) {
2218 /* MAC writes into PHY register based on the state transition
2219 * and start auto-negotiation. SW driver can overwrite the
2220 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2221 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2222 } else {
2223 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2224 &phy_data);
2225 if (ret_val)
2226 return ret_val;
2227 }
2228
2229 if (!active) {
2230 if (hw->mac_type == e1000_82541_rev_2 ||
2231 hw->mac_type == e1000_82547_rev_2) {
2232 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2233 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2234 phy_data);
2235 if (ret_val)
2236 return ret_val;
2237 } else {
2238 if (hw->mac_type == e1000_ich8lan) {
2239 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2240 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2241 } else {
2242 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2243 ret_val = e1000_write_phy_reg(hw,
2244 IGP02E1000_PHY_POWER_MGMT, phy_data);
2245 if (ret_val)
2246 return ret_val;
2247 }
2248 }
2249
2250 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2251 * Dx states where the power conservation is most important. During
2252 * driver activity we should enable SmartSpeed, so performance is
2253 * maintained. */
2254 if (hw->smart_speed == e1000_smart_speed_on) {
2255 ret_val = e1000_read_phy_reg(hw,
2256 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2257 if (ret_val)
2258 return ret_val;
2259
2260 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2261 ret_val = e1000_write_phy_reg(hw,
2262 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2263 if (ret_val)
2264 return ret_val;
2265 } else if (hw->smart_speed == e1000_smart_speed_off) {
2266 ret_val = e1000_read_phy_reg(hw,
2267 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2268 if (ret_val)
2269 return ret_val;
2270
2271 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2272 ret_val = e1000_write_phy_reg(hw,
2273 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2274 if (ret_val)
2275 return ret_val;
2276 }
2277
2278 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2279 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2280 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2281
2282 if (hw->mac_type == e1000_82541_rev_2 ||
2283 hw->mac_type == e1000_82547_rev_2) {
2284 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2285 ret_val = e1000_write_phy_reg(hw,
2286 IGP01E1000_GMII_FIFO, phy_data);
2287 if (ret_val)
2288 return ret_val;
2289 } else {
2290 if (hw->mac_type == e1000_ich8lan) {
2291 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2292 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2293 } else {
2294 phy_data |= IGP02E1000_PM_D3_LPLU;
2295 ret_val = e1000_write_phy_reg(hw,
2296 IGP02E1000_PHY_POWER_MGMT, phy_data);
2297 if (ret_val)
2298 return ret_val;
2299 }
2300 }
2301
2302 /* When LPLU is enabled we should disable SmartSpeed */
2303 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2304 &phy_data);
2305 if (ret_val)
2306 return ret_val;
2307
2308 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2309 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2310 phy_data);
2311 if (ret_val)
2312 return ret_val;
2313 }
2314 return E1000_SUCCESS;
2315}
2316
2317/*****************************************************************************
2318 *
2319 * This function sets the lplu d0 state according to the active flag. When
2320 * activating lplu this function also disables smart speed and vise versa.
2321 * lplu will not be activated unless the device autonegotiation advertisment
2322 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2323 * hw: Struct containing variables accessed by shared code
2324 * active - true to enable lplu false to disable lplu.
2325 *
2326 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2327 * E1000_SUCCESS at any other case.
2328 *
2329 ****************************************************************************/
2330
2331static int32_t
472d5460 2332e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
aa070789
RZ
2333{
2334 uint32_t phy_ctrl = 0;
2335 int32_t ret_val;
2336 uint16_t phy_data;
2337 DEBUGFUNC();
2338
2339 if (hw->mac_type <= e1000_82547_rev_2)
2340 return E1000_SUCCESS;
2341
2342 if (hw->mac_type == e1000_ich8lan) {
2343 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
95186063
MV
2344 } else if (hw->mac_type == e1000_igb) {
2345 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
aa070789
RZ
2346 } else {
2347 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2348 &phy_data);
2349 if (ret_val)
2350 return ret_val;
2351 }
2352
2353 if (!active) {
2354 if (hw->mac_type == e1000_ich8lan) {
2355 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2356 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
95186063
MV
2357 } else if (hw->mac_type == e1000_igb) {
2358 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2359 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
aa070789
RZ
2360 } else {
2361 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2362 ret_val = e1000_write_phy_reg(hw,
2363 IGP02E1000_PHY_POWER_MGMT, phy_data);
2364 if (ret_val)
2365 return ret_val;
2366 }
2367
95186063
MV
2368 if (hw->mac_type == e1000_igb)
2369 return E1000_SUCCESS;
2370
aa070789
RZ
2371 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2372 * Dx states where the power conservation is most important. During
2373 * driver activity we should enable SmartSpeed, so performance is
2374 * maintained. */
2375 if (hw->smart_speed == e1000_smart_speed_on) {
2376 ret_val = e1000_read_phy_reg(hw,
2377 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2378 if (ret_val)
2379 return ret_val;
2380
2381 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2382 ret_val = e1000_write_phy_reg(hw,
2383 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2384 if (ret_val)
2385 return ret_val;
2386 } else if (hw->smart_speed == e1000_smart_speed_off) {
2387 ret_val = e1000_read_phy_reg(hw,
2388 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2389 if (ret_val)
2390 return ret_val;
2391
2392 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2393 ret_val = e1000_write_phy_reg(hw,
2394 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2395 if (ret_val)
2396 return ret_val;
2397 }
2398
2399
2400 } else {
2401
2402 if (hw->mac_type == e1000_ich8lan) {
2403 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2404 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
95186063
MV
2405 } else if (hw->mac_type == e1000_igb) {
2406 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2407 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
aa070789
RZ
2408 } else {
2409 phy_data |= IGP02E1000_PM_D0_LPLU;
2410 ret_val = e1000_write_phy_reg(hw,
2411 IGP02E1000_PHY_POWER_MGMT, phy_data);
2412 if (ret_val)
2413 return ret_val;
2414 }
2415
95186063
MV
2416 if (hw->mac_type == e1000_igb)
2417 return E1000_SUCCESS;
2418
aa070789
RZ
2419 /* When LPLU is enabled we should disable SmartSpeed */
2420 ret_val = e1000_read_phy_reg(hw,
2421 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2422 if (ret_val)
2423 return ret_val;
2424
2425 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2426 ret_val = e1000_write_phy_reg(hw,
2427 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2428 if (ret_val)
2429 return ret_val;
2430
2431 }
2432 return E1000_SUCCESS;
2433}
2434
2435/********************************************************************
2436* Copper link setup for e1000_phy_igp series.
2437*
2438* hw - Struct containing variables accessed by shared code
2439*********************************************************************/
2440static int32_t
2441e1000_copper_link_igp_setup(struct e1000_hw *hw)
2442{
2443 uint32_t led_ctrl;
2444 int32_t ret_val;
2445 uint16_t phy_data;
2446
f81ecb5d 2447 DEBUGFUNC();
aa070789
RZ
2448
2449 if (hw->phy_reset_disable)
2450 return E1000_SUCCESS;
2451
2452 ret_val = e1000_phy_reset(hw);
2453 if (ret_val) {
2454 DEBUGOUT("Error Resetting the PHY\n");
2455 return ret_val;
2456 }
2457
2458 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2459 mdelay(15);
2460 if (hw->mac_type != e1000_ich8lan) {
2461 /* Configure activity LED after PHY reset */
2462 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2463 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2464 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2465 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2466 }
2467
2468 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2469 if (hw->phy_type == e1000_phy_igp) {
2470 /* disable lplu d3 during driver init */
472d5460 2471 ret_val = e1000_set_d3_lplu_state(hw, false);
aa070789
RZ
2472 if (ret_val) {
2473 DEBUGOUT("Error Disabling LPLU D3\n");
2474 return ret_val;
2475 }
2476 }
2477
2478 /* disable lplu d0 during driver init */
472d5460 2479 ret_val = e1000_set_d0_lplu_state(hw, false);
aa070789
RZ
2480 if (ret_val) {
2481 DEBUGOUT("Error Disabling LPLU D0\n");
2482 return ret_val;
2483 }
2484 /* Configure mdi-mdix settings */
2485 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2486 if (ret_val)
2487 return ret_val;
2488
2489 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2490 hw->dsp_config_state = e1000_dsp_config_disabled;
2491 /* Force MDI for earlier revs of the IGP PHY */
2492 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2493 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2494 hw->mdix = 1;
2495
2496 } else {
2497 hw->dsp_config_state = e1000_dsp_config_enabled;
2498 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2499
2500 switch (hw->mdix) {
2501 case 1:
2502 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2503 break;
2504 case 2:
2505 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2506 break;
2507 case 0:
2508 default:
2509 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2510 break;
2511 }
2512 }
2513 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2514 if (ret_val)
2515 return ret_val;
2516
2517 /* set auto-master slave resolution settings */
2518 if (hw->autoneg) {
2519 e1000_ms_type phy_ms_setting = hw->master_slave;
2520
2521 if (hw->ffe_config_state == e1000_ffe_config_active)
2522 hw->ffe_config_state = e1000_ffe_config_enabled;
2523
2524 if (hw->dsp_config_state == e1000_dsp_config_activated)
2525 hw->dsp_config_state = e1000_dsp_config_enabled;
2526
2527 /* when autonegotiation advertisment is only 1000Mbps then we
2528 * should disable SmartSpeed and enable Auto MasterSlave
2529 * resolution as hardware default. */
2530 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2531 /* Disable SmartSpeed */
2532 ret_val = e1000_read_phy_reg(hw,
2533 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2534 if (ret_val)
2535 return ret_val;
2536 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2537 ret_val = e1000_write_phy_reg(hw,
2538 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2539 if (ret_val)
2540 return ret_val;
2541 /* Set auto Master/Slave resolution process */
2542 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2543 &phy_data);
2544 if (ret_val)
2545 return ret_val;
2546 phy_data &= ~CR_1000T_MS_ENABLE;
2547 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2548 phy_data);
2549 if (ret_val)
2550 return ret_val;
2551 }
2552
2553 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2554 if (ret_val)
2555 return ret_val;
2556
2557 /* load defaults for future use */
2558 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2559 ((phy_data & CR_1000T_MS_VALUE) ?
2560 e1000_ms_force_master :
2561 e1000_ms_force_slave) :
2562 e1000_ms_auto;
2563
2564 switch (phy_ms_setting) {
2565 case e1000_ms_force_master:
2566 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2567 break;
2568 case e1000_ms_force_slave:
2569 phy_data |= CR_1000T_MS_ENABLE;
2570 phy_data &= ~(CR_1000T_MS_VALUE);
2571 break;
2572 case e1000_ms_auto:
2573 phy_data &= ~CR_1000T_MS_ENABLE;
2574 default:
2575 break;
2576 }
2577 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2578 if (ret_val)
2579 return ret_val;
2580 }
2581
2582 return E1000_SUCCESS;
2583}
2584
2585/*****************************************************************************
2586 * This function checks the mode of the firmware.
2587 *
472d5460 2588 * returns - true when the mode is IAMT or false.
aa070789 2589 ****************************************************************************/
472d5460 2590bool
aa070789
RZ
2591e1000_check_mng_mode(struct e1000_hw *hw)
2592{
2593 uint32_t fwsm;
2594 DEBUGFUNC();
2595
2596 fwsm = E1000_READ_REG(hw, FWSM);
2597
2598 if (hw->mac_type == e1000_ich8lan) {
2599 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2600 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
472d5460 2601 return true;
aa070789
RZ
2602 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2603 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
472d5460 2604 return true;
aa070789 2605
472d5460 2606 return false;
aa070789
RZ
2607}
2608
2609static int32_t
2610e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2611{
987b43a1 2612 uint16_t swfw = E1000_SWFW_PHY0_SM;
aa070789 2613 uint32_t reg_val;
aa070789
RZ
2614 DEBUGFUNC();
2615
987b43a1 2616 if (e1000_is_second_port(hw))
aa070789 2617 swfw = E1000_SWFW_PHY1_SM;
987b43a1 2618
aa070789
RZ
2619 if (e1000_swfw_sync_acquire(hw, swfw))
2620 return -E1000_ERR_SWFW_SYNC;
2621
2622 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2623 & E1000_KUMCTRLSTA_OFFSET) | data;
2624 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2625 udelay(2);
2626
2627 return E1000_SUCCESS;
2628}
2629
2630static int32_t
2631e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2632{
987b43a1 2633 uint16_t swfw = E1000_SWFW_PHY0_SM;
aa070789 2634 uint32_t reg_val;
aa070789
RZ
2635 DEBUGFUNC();
2636
987b43a1 2637 if (e1000_is_second_port(hw))
aa070789 2638 swfw = E1000_SWFW_PHY1_SM;
987b43a1 2639
95186063
MV
2640 if (e1000_swfw_sync_acquire(hw, swfw)) {
2641 debug("%s[%i]\n", __func__, __LINE__);
aa070789 2642 return -E1000_ERR_SWFW_SYNC;
95186063 2643 }
aa070789
RZ
2644
2645 /* Write register address */
2646 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2647 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2648 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2649 udelay(2);
2650
2651 /* Read the data returned */
2652 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2653 *data = (uint16_t)reg_val;
2654
2655 return E1000_SUCCESS;
2656}
2657
2658/********************************************************************
2659* Copper link setup for e1000_phy_gg82563 series.
2660*
2661* hw - Struct containing variables accessed by shared code
2662*********************************************************************/
2663static int32_t
2664e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2665{
2666 int32_t ret_val;
2667 uint16_t phy_data;
2668 uint32_t reg_data;
2669
2670 DEBUGFUNC();
2671
2672 if (!hw->phy_reset_disable) {
2673 /* Enable CRS on TX for half-duplex operation. */
2674 ret_val = e1000_read_phy_reg(hw,
2675 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2676 if (ret_val)
2677 return ret_val;
2678
2679 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2680 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2681 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2682
2683 ret_val = e1000_write_phy_reg(hw,
2684 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2685 if (ret_val)
2686 return ret_val;
2687
2688 /* Options:
2689 * MDI/MDI-X = 0 (default)
2690 * 0 - Auto for all speeds
2691 * 1 - MDI mode
2692 * 2 - MDI-X mode
2693 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2694 */
2695 ret_val = e1000_read_phy_reg(hw,
2696 GG82563_PHY_SPEC_CTRL, &phy_data);
2697 if (ret_val)
2698 return ret_val;
2699
2700 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2701
2702 switch (hw->mdix) {
2703 case 1:
2704 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2705 break;
2706 case 2:
2707 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2708 break;
2709 case 0:
2710 default:
2711 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2712 break;
2713 }
2714
2715 /* Options:
2716 * disable_polarity_correction = 0 (default)
2717 * Automatic Correction for Reversed Cable Polarity
2718 * 0 - Disabled
2719 * 1 - Enabled
2720 */
2721 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2722 ret_val = e1000_write_phy_reg(hw,
2723 GG82563_PHY_SPEC_CTRL, phy_data);
2724
2725 if (ret_val)
2726 return ret_val;
2727
2728 /* SW Reset the PHY so all changes take effect */
2729 ret_val = e1000_phy_reset(hw);
2730 if (ret_val) {
2731 DEBUGOUT("Error Resetting the PHY\n");
2732 return ret_val;
2733 }
2734 } /* phy_reset_disable */
2735
2736 if (hw->mac_type == e1000_80003es2lan) {
2737 /* Bypass RX and TX FIFO's */
2738 ret_val = e1000_write_kmrn_reg(hw,
2739 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2740 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2741 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2742 if (ret_val)
2743 return ret_val;
2744
2745 ret_val = e1000_read_phy_reg(hw,
2746 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2747 if (ret_val)
2748 return ret_val;
2749
2750 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2751 ret_val = e1000_write_phy_reg(hw,
2752 GG82563_PHY_SPEC_CTRL_2, phy_data);
2753
2754 if (ret_val)
2755 return ret_val;
2756
2757 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2758 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2759 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2760
2761 ret_val = e1000_read_phy_reg(hw,
2762 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2763 if (ret_val)
2764 return ret_val;
2765
2766 /* Do not init these registers when the HW is in IAMT mode, since the
2767 * firmware will have already initialized them. We only initialize
2768 * them if the HW is not in IAMT mode.
2769 */
472d5460 2770 if (e1000_check_mng_mode(hw) == false) {
aa070789
RZ
2771 /* Enable Electrical Idle on the PHY */
2772 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2773 ret_val = e1000_write_phy_reg(hw,
2774 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2775 if (ret_val)
2776 return ret_val;
2777
2778 ret_val = e1000_read_phy_reg(hw,
2779 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2780 if (ret_val)
2781 return ret_val;
2782
2783 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2784 ret_val = e1000_write_phy_reg(hw,
2785 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2786
2787 if (ret_val)
2788 return ret_val;
2789 }
2790
2791 /* Workaround: Disable padding in Kumeran interface in the MAC
2792 * and in the PHY to avoid CRC errors.
2793 */
2794 ret_val = e1000_read_phy_reg(hw,
2795 GG82563_PHY_INBAND_CTRL, &phy_data);
2796 if (ret_val)
2797 return ret_val;
2798 phy_data |= GG82563_ICR_DIS_PADDING;
2799 ret_val = e1000_write_phy_reg(hw,
2800 GG82563_PHY_INBAND_CTRL, phy_data);
2801 if (ret_val)
2802 return ret_val;
682011ff 2803 }
aa070789 2804 return E1000_SUCCESS;
682011ff
WD
2805}
2806
aa070789
RZ
2807/********************************************************************
2808* Copper link setup for e1000_phy_m88 series.
682011ff
WD
2809*
2810* hw - Struct containing variables accessed by shared code
aa070789
RZ
2811*********************************************************************/
2812static int32_t
2813e1000_copper_link_mgp_setup(struct e1000_hw *hw)
682011ff 2814{
682011ff 2815 int32_t ret_val;
682011ff
WD
2816 uint16_t phy_data;
2817
2818 DEBUGFUNC();
2819
aa070789
RZ
2820 if (hw->phy_reset_disable)
2821 return E1000_SUCCESS;
682011ff 2822
aa070789
RZ
2823 /* Enable CRS on TX. This must be set for half-duplex operation. */
2824 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2825 if (ret_val)
682011ff 2826 return ret_val;
682011ff 2827
682011ff
WD
2828 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2829
682011ff
WD
2830 /* Options:
2831 * MDI/MDI-X = 0 (default)
2832 * 0 - Auto for all speeds
2833 * 1 - MDI mode
2834 * 2 - MDI-X mode
2835 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2836 */
2837 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
aa070789 2838
682011ff
WD
2839 switch (hw->mdix) {
2840 case 1:
2841 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2842 break;
2843 case 2:
2844 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2845 break;
2846 case 3:
2847 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2848 break;
2849 case 0:
2850 default:
2851 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2852 break;
2853 }
682011ff 2854
682011ff
WD
2855 /* Options:
2856 * disable_polarity_correction = 0 (default)
aa070789 2857 * Automatic Correction for Reversed Cable Polarity
682011ff
WD
2858 * 0 - Disabled
2859 * 1 - Enabled
2860 */
2861 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
aa070789
RZ
2862 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2863 if (ret_val)
2864 return ret_val;
682011ff 2865
aa070789
RZ
2866 if (hw->phy_revision < M88E1011_I_REV_4) {
2867 /* Force TX_CLK in the Extended PHY Specific Control Register
2868 * to 25MHz clock.
2869 */
2870 ret_val = e1000_read_phy_reg(hw,
2871 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2872 if (ret_val)
2873 return ret_val;
2874
2875 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2876
2877 if ((hw->phy_revision == E1000_REVISION_2) &&
2878 (hw->phy_id == M88E1111_I_PHY_ID)) {
2879 /* Vidalia Phy, set the downshift counter to 5x */
2880 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2881 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2882 ret_val = e1000_write_phy_reg(hw,
2883 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2884 if (ret_val)
2885 return ret_val;
2886 } else {
2887 /* Configure Master and Slave downshift values */
2888 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2889 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2890 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2891 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2892 ret_val = e1000_write_phy_reg(hw,
2893 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2894 if (ret_val)
2895 return ret_val;
2896 }
682011ff
WD
2897 }
2898
2899 /* SW Reset the PHY so all changes take effect */
2900 ret_val = e1000_phy_reset(hw);
aa070789 2901 if (ret_val) {
682011ff
WD
2902 DEBUGOUT("Error Resetting the PHY\n");
2903 return ret_val;
2904 }
2905
aa070789
RZ
2906 return E1000_SUCCESS;
2907}
2908
2909/********************************************************************
2910* Setup auto-negotiation and flow control advertisements,
2911* and then perform auto-negotiation.
2912*
2913* hw - Struct containing variables accessed by shared code
2914*********************************************************************/
2915static int32_t
2916e1000_copper_link_autoneg(struct e1000_hw *hw)
2917{
2918 int32_t ret_val;
2919 uint16_t phy_data;
2920
2921 DEBUGFUNC();
682011ff 2922
682011ff
WD
2923 /* Perform some bounds checking on the hw->autoneg_advertised
2924 * parameter. If this variable is zero, then set it to the default.
2925 */
2926 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2927
2928 /* If autoneg_advertised is zero, we assume it was not defaulted
2929 * by the calling code so we set to advertise full capability.
2930 */
2931 if (hw->autoneg_advertised == 0)
2932 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2933
aa070789
RZ
2934 /* IFE phy only supports 10/100 */
2935 if (hw->phy_type == e1000_phy_ife)
2936 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2937
682011ff
WD
2938 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2939 ret_val = e1000_phy_setup_autoneg(hw);
aa070789 2940 if (ret_val) {
682011ff
WD
2941 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2942 return ret_val;
2943 }
2944 DEBUGOUT("Restarting Auto-Neg\n");
2945
2946 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2947 * the Auto Neg Restart bit in the PHY control register.
2948 */
aa070789
RZ
2949 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2950 if (ret_val)
2951 return ret_val;
2952
682011ff 2953 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
aa070789
RZ
2954 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2955 if (ret_val)
2956 return ret_val;
2957
682011ff
WD
2958 /* Does the user want to wait for Auto-Neg to complete here, or
2959 * check at a later time (for example, callback routine).
2960 */
aa070789
RZ
2961 /* If we do not wait for autonegtation to complete I
2962 * do not see a valid link status.
2963 * wait_autoneg_complete = 1 .
2964 */
682011ff
WD
2965 if (hw->wait_autoneg_complete) {
2966 ret_val = e1000_wait_autoneg(hw);
aa070789
RZ
2967 if (ret_val) {
2968 DEBUGOUT("Error while waiting for autoneg"
2969 "to complete\n");
682011ff
WD
2970 return ret_val;
2971 }
2972 }
aa070789 2973
472d5460 2974 hw->get_link_status = true;
aa070789
RZ
2975
2976 return E1000_SUCCESS;
2977}
2978
2979/******************************************************************************
2980* Config the MAC and the PHY after link is up.
2981* 1) Set up the MAC to the current PHY speed/duplex
2982* if we are on 82543. If we
2983* are on newer silicon, we only need to configure
2984* collision distance in the Transmit Control Register.
2985* 2) Set up flow control on the MAC to that established with
2986* the link partner.
2987* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2988*
2989* hw - Struct containing variables accessed by shared code
2990******************************************************************************/
2991static int32_t
2992e1000_copper_link_postconfig(struct e1000_hw *hw)
2993{
2994 int32_t ret_val;
2995 DEBUGFUNC();
2996
2997 if (hw->mac_type >= e1000_82544) {
2998 e1000_config_collision_dist(hw);
2999 } else {
3000 ret_val = e1000_config_mac_to_phy(hw);
3001 if (ret_val) {
3002 DEBUGOUT("Error configuring MAC to PHY settings\n");
3003 return ret_val;
3004 }
3005 }
3006 ret_val = e1000_config_fc_after_link_up(hw);
3007 if (ret_val) {
3008 DEBUGOUT("Error Configuring Flow Control\n");
682011ff
WD
3009 return ret_val;
3010 }
aa070789
RZ
3011 return E1000_SUCCESS;
3012}
3013
3014/******************************************************************************
3015* Detects which PHY is present and setup the speed and duplex
3016*
3017* hw - Struct containing variables accessed by shared code
3018******************************************************************************/
3019static int
5c5e707a 3020e1000_setup_copper_link(struct e1000_hw *hw)
aa070789 3021{
aa070789
RZ
3022 int32_t ret_val;
3023 uint16_t i;
3024 uint16_t phy_data;
3025 uint16_t reg_data;
3026
3027 DEBUGFUNC();
3028
3029 switch (hw->mac_type) {
3030 case e1000_80003es2lan:
3031 case e1000_ich8lan:
3032 /* Set the mac to wait the maximum time between each
3033 * iteration and increase the max iterations when
3034 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3035 ret_val = e1000_write_kmrn_reg(hw,
3036 GG82563_REG(0x34, 4), 0xFFFF);
3037 if (ret_val)
3038 return ret_val;
3039 ret_val = e1000_read_kmrn_reg(hw,
3040 GG82563_REG(0x34, 9), &reg_data);
3041 if (ret_val)
3042 return ret_val;
3043 reg_data |= 0x3F;
3044 ret_val = e1000_write_kmrn_reg(hw,
3045 GG82563_REG(0x34, 9), reg_data);
3046 if (ret_val)
3047 return ret_val;
3048 default:
3049 break;
3050 }
3051
3052 /* Check if it is a valid PHY and set PHY mode if necessary. */
3053 ret_val = e1000_copper_link_preconfig(hw);
3054 if (ret_val)
3055 return ret_val;
3056 switch (hw->mac_type) {
3057 case e1000_80003es2lan:
3058 /* Kumeran registers are written-only */
3059 reg_data =
3060 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3061 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3062 ret_val = e1000_write_kmrn_reg(hw,
3063 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3064 if (ret_val)
3065 return ret_val;
3066 break;
3067 default:
3068 break;
3069 }
3070
3071 if (hw->phy_type == e1000_phy_igp ||
3072 hw->phy_type == e1000_phy_igp_3 ||
3073 hw->phy_type == e1000_phy_igp_2) {
3074 ret_val = e1000_copper_link_igp_setup(hw);
3075 if (ret_val)
3076 return ret_val;
95186063
MV
3077 } else if (hw->phy_type == e1000_phy_m88 ||
3078 hw->phy_type == e1000_phy_igb) {
aa070789
RZ
3079 ret_val = e1000_copper_link_mgp_setup(hw);
3080 if (ret_val)
3081 return ret_val;
3082 } else if (hw->phy_type == e1000_phy_gg82563) {
3083 ret_val = e1000_copper_link_ggp_setup(hw);
3084 if (ret_val)
3085 return ret_val;
3086 }
3087
3088 /* always auto */
3089 /* Setup autoneg and flow control advertisement
3090 * and perform autonegotiation */
3091 ret_val = e1000_copper_link_autoneg(hw);
3092 if (ret_val)
3093 return ret_val;
682011ff
WD
3094
3095 /* Check link status. Wait up to 100 microseconds for link to become
3096 * valid.
3097 */
3098 for (i = 0; i < 10; i++) {
aa070789
RZ
3099 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3100 if (ret_val)
3101 return ret_val;
3102 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3103 if (ret_val)
3104 return ret_val;
3105
682011ff 3106 if (phy_data & MII_SR_LINK_STATUS) {
aa070789
RZ
3107 /* Config the MAC and PHY after link is up */
3108 ret_val = e1000_copper_link_postconfig(hw);
3109 if (ret_val)
682011ff 3110 return ret_val;
aa070789 3111
682011ff 3112 DEBUGOUT("Valid link established!!!\n");
aa070789 3113 return E1000_SUCCESS;
682011ff
WD
3114 }
3115 udelay(10);
3116 }
3117
3118 DEBUGOUT("Unable to establish link!!!\n");
aa070789 3119 return E1000_SUCCESS;
682011ff
WD
3120}
3121
3122/******************************************************************************
3123* Configures PHY autoneg and flow control advertisement settings
3124*
3125* hw - Struct containing variables accessed by shared code
3126******************************************************************************/
aa070789 3127int32_t
682011ff
WD
3128e1000_phy_setup_autoneg(struct e1000_hw *hw)
3129{
aa070789 3130 int32_t ret_val;
682011ff
WD
3131 uint16_t mii_autoneg_adv_reg;
3132 uint16_t mii_1000t_ctrl_reg;
3133
3134 DEBUGFUNC();
3135
3136 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
aa070789
RZ
3137 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3138 if (ret_val)
3139 return ret_val;
682011ff 3140
aa070789
RZ
3141 if (hw->phy_type != e1000_phy_ife) {
3142 /* Read the MII 1000Base-T Control Register (Address 9). */
3143 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3144 &mii_1000t_ctrl_reg);
3145 if (ret_val)
3146 return ret_val;
3147 } else
3148 mii_1000t_ctrl_reg = 0;
682011ff
WD
3149
3150 /* Need to parse both autoneg_advertised and fc and set up
3151 * the appropriate PHY registers. First we will parse for
3152 * autoneg_advertised software override. Since we can advertise
3153 * a plethora of combinations, we need to check each bit
3154 * individually.
3155 */
3156
3157 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3158 * Advertisement Register (Address 4) and the 1000 mb speed bits in
aa070789 3159 * the 1000Base-T Control Register (Address 9).
682011ff
WD
3160 */
3161 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3162 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3163
3164 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3165
3166 /* Do we want to advertise 10 Mb Half Duplex? */
3167 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3168 DEBUGOUT("Advertise 10mb Half duplex\n");
3169 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3170 }
3171
3172 /* Do we want to advertise 10 Mb Full Duplex? */
3173 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3174 DEBUGOUT("Advertise 10mb Full duplex\n");
3175 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3176 }
3177
3178 /* Do we want to advertise 100 Mb Half Duplex? */
3179 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3180 DEBUGOUT("Advertise 100mb Half duplex\n");
3181 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3182 }
3183
3184 /* Do we want to advertise 100 Mb Full Duplex? */
3185 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3186 DEBUGOUT("Advertise 100mb Full duplex\n");
3187 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3188 }
3189
3190 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3191 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3192 DEBUGOUT
3193 ("Advertise 1000mb Half duplex requested, request denied!\n");
3194 }
3195
3196 /* Do we want to advertise 1000 Mb Full Duplex? */
3197 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3198 DEBUGOUT("Advertise 1000mb Full duplex\n");
3199 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3200 }
3201
3202 /* Check for a software override of the flow control settings, and
3203 * setup the PHY advertisement registers accordingly. If
3204 * auto-negotiation is enabled, then software will have to set the
3205 * "PAUSE" bits to the correct value in the Auto-Negotiation
3206 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3207 *
3208 * The possible values of the "fc" parameter are:
1aeed8d7
WD
3209 * 0: Flow control is completely disabled
3210 * 1: Rx flow control is enabled (we can receive pause frames
3211 * but not send pause frames).
3212 * 2: Tx flow control is enabled (we can send pause frames
3213 * but we do not support receiving pause frames).
3214 * 3: Both Rx and TX flow control (symmetric) are enabled.
682011ff 3215 * other: No software override. The flow control configuration
1aeed8d7 3216 * in the EEPROM is used.
682011ff
WD
3217 */
3218 switch (hw->fc) {
3219 case e1000_fc_none: /* 0 */
3220 /* Flow control (RX & TX) is completely disabled by a
3221 * software over-ride.
3222 */
3223 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3224 break;
3225 case e1000_fc_rx_pause: /* 1 */
3226 /* RX Flow control is enabled, and TX Flow control is
3227 * disabled, by a software over-ride.
3228 */
3229 /* Since there really isn't a way to advertise that we are
3230 * capable of RX Pause ONLY, we will advertise that we
3231 * support both symmetric and asymmetric RX PAUSE. Later
3232 * (in e1000_config_fc_after_link_up) we will disable the
3233 *hw's ability to send PAUSE frames.
3234 */
3235 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3236 break;
3237 case e1000_fc_tx_pause: /* 2 */
3238 /* TX Flow control is enabled, and RX Flow control is
3239 * disabled, by a software over-ride.
3240 */
3241 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3242 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3243 break;
3244 case e1000_fc_full: /* 3 */
3245 /* Flow control (both RX and TX) is enabled by a software
3246 * over-ride.
3247 */
3248 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3249 break;
3250 default:
3251 DEBUGOUT("Flow control param set incorrectly\n");
3252 return -E1000_ERR_CONFIG;
3253 }
3254
aa070789
RZ
3255 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3256 if (ret_val)
3257 return ret_val;
682011ff
WD
3258
3259 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3260
aa070789
RZ
3261 if (hw->phy_type != e1000_phy_ife) {
3262 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3263 mii_1000t_ctrl_reg);
3264 if (ret_val)
3265 return ret_val;
682011ff 3266 }
aa070789
RZ
3267
3268 return E1000_SUCCESS;
682011ff
WD
3269}
3270
3271/******************************************************************************
3272* Sets the collision distance in the Transmit Control register
3273*
3274* hw - Struct containing variables accessed by shared code
3275*
3276* Link should have been established previously. Reads the speed and duplex
3277* information from the Device Status register.
3278******************************************************************************/
3279static void
3280e1000_config_collision_dist(struct e1000_hw *hw)
3281{
aa070789
RZ
3282 uint32_t tctl, coll_dist;
3283
3284 DEBUGFUNC();
3285
3286 if (hw->mac_type < e1000_82543)
3287 coll_dist = E1000_COLLISION_DISTANCE_82542;
3288 else
3289 coll_dist = E1000_COLLISION_DISTANCE;
682011ff
WD
3290
3291 tctl = E1000_READ_REG(hw, TCTL);
3292
3293 tctl &= ~E1000_TCTL_COLD;
aa070789 3294 tctl |= coll_dist << E1000_COLD_SHIFT;
682011ff
WD
3295
3296 E1000_WRITE_REG(hw, TCTL, tctl);
3297 E1000_WRITE_FLUSH(hw);
3298}
3299
3300/******************************************************************************
3301* Sets MAC speed and duplex settings to reflect the those in the PHY
3302*
3303* hw - Struct containing variables accessed by shared code
3304* mii_reg - data to write to the MII control register
3305*
3306* The contents of the PHY register containing the needed information need to
3307* be passed in.
3308******************************************************************************/
3309static int
3310e1000_config_mac_to_phy(struct e1000_hw *hw)
3311{
3312 uint32_t ctrl;
3313 uint16_t phy_data;
3314
3315 DEBUGFUNC();
3316
3317 /* Read the Device Control Register and set the bits to Force Speed
3318 * and Duplex.
3319 */
3320 ctrl = E1000_READ_REG(hw, CTRL);
3321 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
95186063
MV
3322 ctrl &= ~(E1000_CTRL_ILOS);
3323 ctrl |= (E1000_CTRL_SPD_SEL);
682011ff
WD
3324
3325 /* Set up duplex in the Device Control and Transmit Control
3326 * registers depending on negotiated values.
3327 */
3328 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3329 DEBUGOUT("PHY Read Error\n");
3330 return -E1000_ERR_PHY;
3331 }
3332 if (phy_data & M88E1000_PSSR_DPLX)
3333 ctrl |= E1000_CTRL_FD;
3334 else
3335 ctrl &= ~E1000_CTRL_FD;
3336
3337 e1000_config_collision_dist(hw);
3338
3339 /* Set up speed in the Device Control register depending on
3340 * negotiated values.
3341 */
3342 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3343 ctrl |= E1000_CTRL_SPD_1000;
3344 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3345 ctrl |= E1000_CTRL_SPD_100;
3346 /* Write the configured values back to the Device Control Reg. */
3347 E1000_WRITE_REG(hw, CTRL, ctrl);
3348 return 0;
3349}
3350
3351/******************************************************************************
3352 * Forces the MAC's flow control settings.
8bde7f77 3353 *
682011ff
WD
3354 * hw - Struct containing variables accessed by shared code
3355 *
3356 * Sets the TFCE and RFCE bits in the device control register to reflect
3357 * the adapter settings. TFCE and RFCE need to be explicitly set by
3358 * software when a Copper PHY is used because autonegotiation is managed
3359 * by the PHY rather than the MAC. Software must also configure these
3360 * bits when link is forced on a fiber connection.
3361 *****************************************************************************/
3362static int
3363e1000_force_mac_fc(struct e1000_hw *hw)
3364{
3365 uint32_t ctrl;
3366
3367 DEBUGFUNC();
3368
3369 /* Get the current configuration of the Device Control Register */
3370 ctrl = E1000_READ_REG(hw, CTRL);
3371
3372 /* Because we didn't get link via the internal auto-negotiation
3373 * mechanism (we either forced link or we got link via PHY
3374 * auto-neg), we have to manually enable/disable transmit an
3375 * receive flow control.
3376 *
3377 * The "Case" statement below enables/disable flow control
3378 * according to the "hw->fc" parameter.
3379 *
3380 * The possible values of the "fc" parameter are:
1aeed8d7
WD
3381 * 0: Flow control is completely disabled
3382 * 1: Rx flow control is enabled (we can receive pause
3383 * frames but not send pause frames).
3384 * 2: Tx flow control is enabled (we can send pause frames
3385 * frames but we do not receive pause frames).
3386 * 3: Both Rx and TX flow control (symmetric) is enabled.
682011ff
WD
3387 * other: No other values should be possible at this point.
3388 */
3389
3390 switch (hw->fc) {
3391 case e1000_fc_none:
3392 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3393 break;
3394 case e1000_fc_rx_pause:
3395 ctrl &= (~E1000_CTRL_TFCE);
3396 ctrl |= E1000_CTRL_RFCE;
3397 break;
3398 case e1000_fc_tx_pause:
3399 ctrl &= (~E1000_CTRL_RFCE);
3400 ctrl |= E1000_CTRL_TFCE;
3401 break;
3402 case e1000_fc_full:
3403 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3404 break;
3405 default:
3406 DEBUGOUT("Flow control param set incorrectly\n");
3407 return -E1000_ERR_CONFIG;
3408 }
3409
3410 /* Disable TX Flow Control for 82542 (rev 2.0) */
3411 if (hw->mac_type == e1000_82542_rev2_0)
3412 ctrl &= (~E1000_CTRL_TFCE);
3413
3414 E1000_WRITE_REG(hw, CTRL, ctrl);
3415 return 0;
3416}
3417
3418/******************************************************************************
3419 * Configures flow control settings after link is established
8bde7f77 3420 *
682011ff
WD
3421 * hw - Struct containing variables accessed by shared code
3422 *
3423 * Should be called immediately after a valid link has been established.
3424 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3425 * and autonegotiation is enabled, the MAC flow control settings will be set
3426 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3427 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3428 *****************************************************************************/
aa070789 3429static int32_t
682011ff
WD
3430e1000_config_fc_after_link_up(struct e1000_hw *hw)
3431{
3432 int32_t ret_val;
3433 uint16_t mii_status_reg;
3434 uint16_t mii_nway_adv_reg;
3435 uint16_t mii_nway_lp_ability_reg;
3436 uint16_t speed;
3437 uint16_t duplex;
3438
3439 DEBUGFUNC();
3440
3441 /* Check for the case where we have fiber media and auto-neg failed
3442 * so we had to force link. In this case, we need to force the
3443 * configuration of the MAC to match the "fc" parameter.
3444 */
aa070789
RZ
3445 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3446 || ((hw->media_type == e1000_media_type_internal_serdes)
3447 && (hw->autoneg_failed))
3448 || ((hw->media_type == e1000_media_type_copper)
3449 && (!hw->autoneg))) {
682011ff
WD
3450 ret_val = e1000_force_mac_fc(hw);
3451 if (ret_val < 0) {
3452 DEBUGOUT("Error forcing flow control settings\n");
3453 return ret_val;
3454 }
3455 }
3456
3457 /* Check for the case where we have copper media and auto-neg is
3458 * enabled. In this case, we need to check and see if Auto-Neg
3459 * has completed, and if so, how the PHY and link partner has
3460 * flow control configured.
3461 */
3462 if (hw->media_type == e1000_media_type_copper) {
3463 /* Read the MII Status Register and check to see if AutoNeg
3464 * has completed. We read this twice because this reg has
3465 * some "sticky" (latched) bits.
3466 */
3467 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
5abf13e4 3468 DEBUGOUT("PHY Read Error\n");
682011ff
WD
3469 return -E1000_ERR_PHY;
3470 }
3471 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
5abf13e4 3472 DEBUGOUT("PHY Read Error\n");
682011ff
WD
3473 return -E1000_ERR_PHY;
3474 }
3475
3476 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3477 /* The AutoNeg process has completed, so we now need to
3478 * read both the Auto Negotiation Advertisement Register
3479 * (Address 4) and the Auto_Negotiation Base Page Ability
3480 * Register (Address 5) to determine how flow control was
3481 * negotiated.
3482 */
3483 if (e1000_read_phy_reg
3484 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3485 DEBUGOUT("PHY Read Error\n");
3486 return -E1000_ERR_PHY;
3487 }
3488 if (e1000_read_phy_reg
3489 (hw, PHY_LP_ABILITY,
3490 &mii_nway_lp_ability_reg) < 0) {
3491 DEBUGOUT("PHY Read Error\n");
3492 return -E1000_ERR_PHY;
3493 }
3494
3495 /* Two bits in the Auto Negotiation Advertisement Register
3496 * (Address 4) and two bits in the Auto Negotiation Base
3497 * Page Ability Register (Address 5) determine flow control
3498 * for both the PHY and the link partner. The following
3499 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3500 * 1999, describes these PAUSE resolution bits and how flow
3501 * control is determined based upon these settings.
3502 * NOTE: DC = Don't Care
3503 *
3504 * LOCAL DEVICE | LINK PARTNER
3505 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3506 *-------|---------|-------|---------|--------------------
1aeed8d7
WD
3507 * 0 | 0 | DC | DC | e1000_fc_none
3508 * 0 | 1 | 0 | DC | e1000_fc_none
3509 * 0 | 1 | 1 | 0 | e1000_fc_none
3510 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3511 * 1 | 0 | 0 | DC | e1000_fc_none
3512 * 1 | DC | 1 | DC | e1000_fc_full
3513 * 1 | 1 | 0 | 0 | e1000_fc_none
3514 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
682011ff
WD
3515 *
3516 */
3517 /* Are both PAUSE bits set to 1? If so, this implies
3518 * Symmetric Flow Control is enabled at both ends. The
3519 * ASM_DIR bits are irrelevant per the spec.
3520 *
3521 * For Symmetric Flow Control:
3522 *
3523 * LOCAL DEVICE | LINK PARTNER
3524 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3525 *-------|---------|-------|---------|--------------------
1aeed8d7 3526 * 1 | DC | 1 | DC | e1000_fc_full
682011ff
WD
3527 *
3528 */
3529 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3530 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3531 /* Now we need to check if the user selected RX ONLY
3532 * of pause frames. In this case, we had to advertise
3533 * FULL flow control because we could not advertise RX
3534 * ONLY. Hence, we must now check to see if we need to
3535 * turn OFF the TRANSMISSION of PAUSE frames.
3536 */
3537 if (hw->original_fc == e1000_fc_full) {
3538 hw->fc = e1000_fc_full;
3539 DEBUGOUT("Flow Control = FULL.\r\n");
3540 } else {
3541 hw->fc = e1000_fc_rx_pause;
3542 DEBUGOUT
3543 ("Flow Control = RX PAUSE frames only.\r\n");
3544 }
3545 }
3546 /* For receiving PAUSE frames ONLY.
3547 *
3548 * LOCAL DEVICE | LINK PARTNER
3549 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3550 *-------|---------|-------|---------|--------------------
1aeed8d7 3551 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
682011ff
WD
3552 *
3553 */
3554 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3555 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3556 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3557 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3558 {
3559 hw->fc = e1000_fc_tx_pause;
3560 DEBUGOUT
3561 ("Flow Control = TX PAUSE frames only.\r\n");
3562 }
3563 /* For transmitting PAUSE frames ONLY.
3564 *
3565 * LOCAL DEVICE | LINK PARTNER
3566 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3567 *-------|---------|-------|---------|--------------------
1aeed8d7 3568 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
682011ff
WD
3569 *
3570 */
3571 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3572 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3573 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3574 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3575 {
3576 hw->fc = e1000_fc_rx_pause;
3577 DEBUGOUT
3578 ("Flow Control = RX PAUSE frames only.\r\n");
3579 }
3580 /* Per the IEEE spec, at this point flow control should be
3581 * disabled. However, we want to consider that we could
3582 * be connected to a legacy switch that doesn't advertise
3583 * desired flow control, but can be forced on the link
3584 * partner. So if we advertised no flow control, that is
3585 * what we will resolve to. If we advertised some kind of
3586 * receive capability (Rx Pause Only or Full Flow Control)
3587 * and the link partner advertised none, we will configure
3588 * ourselves to enable Rx Flow Control only. We can do
3589 * this safely for two reasons: If the link partner really
3590 * didn't want flow control enabled, and we enable Rx, no
3591 * harm done since we won't be receiving any PAUSE frames
3592 * anyway. If the intent on the link partner was to have
3593 * flow control enabled, then by us enabling RX only, we
3594 * can at least receive pause frames and process them.
3595 * This is a good idea because in most cases, since we are
3596 * predominantly a server NIC, more times than not we will
3597 * be asked to delay transmission of packets than asking
3598 * our link partner to pause transmission of frames.
3599 */
3600 else if (hw->original_fc == e1000_fc_none ||
3601 hw->original_fc == e1000_fc_tx_pause) {
3602 hw->fc = e1000_fc_none;
3603 DEBUGOUT("Flow Control = NONE.\r\n");
3604 } else {
3605 hw->fc = e1000_fc_rx_pause;
3606 DEBUGOUT
3607 ("Flow Control = RX PAUSE frames only.\r\n");
3608 }
3609
1aeed8d7 3610 /* Now we need to do one last check... If we auto-
682011ff
WD
3611 * negotiated to HALF DUPLEX, flow control should not be
3612 * enabled per IEEE 802.3 spec.
3613 */
3614 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3615
3616 if (duplex == HALF_DUPLEX)
3617 hw->fc = e1000_fc_none;
3618
3619 /* Now we call a subroutine to actually force the MAC
3620 * controller to use the correct flow control settings.
3621 */
3622 ret_val = e1000_force_mac_fc(hw);
3623 if (ret_val < 0) {
3624 DEBUGOUT
3625 ("Error forcing flow control settings\n");
3626 return ret_val;
3627 }
3628 } else {
3629 DEBUGOUT
3630 ("Copper PHY and Auto Neg has not completed.\r\n");
3631 }
3632 }
aa070789 3633 return E1000_SUCCESS;
682011ff
WD
3634}
3635
3636/******************************************************************************
3637 * Checks to see if the link status of the hardware has changed.
3638 *
3639 * hw - Struct containing variables accessed by shared code
3640 *
3641 * Called by any function that needs to check the link status of the adapter.
3642 *****************************************************************************/
3643static int
5c5e707a 3644e1000_check_for_link(struct e1000_hw *hw)
682011ff 3645{
682011ff
WD
3646 uint32_t rxcw;
3647 uint32_t ctrl;
3648 uint32_t status;
3649 uint32_t rctl;
3650 uint32_t signal;
3651 int32_t ret_val;
3652 uint16_t phy_data;
3653 uint16_t lp_capability;
3654
3655 DEBUGFUNC();
3656
8bde7f77
WD
3657 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3658 * set when the optics detect a signal. On older adapters, it will be
682011ff
WD
3659 * cleared when there is a signal
3660 */
3661 ctrl = E1000_READ_REG(hw, CTRL);
3662 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3663 signal = E1000_CTRL_SWDPIN1;
3664 else
3665 signal = 0;
3666
3667 status = E1000_READ_REG(hw, STATUS);
3668 rxcw = E1000_READ_REG(hw, RXCW);
3669 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3670
3671 /* If we have a copper PHY then we only want to go out to the PHY
3672 * registers to see if Auto-Neg has completed and/or if our link
1aeed8d7 3673 * status has changed. The get_link_status flag will be set if we
682011ff
WD
3674 * receive a Link Status Change interrupt or we have Rx Sequence
3675 * Errors.
3676 */
3677 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3678 /* First we want to see if the MII Status Register reports
3679 * link. If so, then we want to get the current speed/duplex
3680 * of the PHY.
3681 * Read the register twice since the link bit is sticky.
3682 */
3683 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3684 DEBUGOUT("PHY Read Error\n");
3685 return -E1000_ERR_PHY;
3686 }
3687 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3688 DEBUGOUT("PHY Read Error\n");
3689 return -E1000_ERR_PHY;
3690 }
3691
3692 if (phy_data & MII_SR_LINK_STATUS) {
472d5460 3693 hw->get_link_status = false;
682011ff
WD
3694 } else {
3695 /* No link detected */
3696 return -E1000_ERR_NOLINK;
3697 }
3698
3699 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3700 * have Si on board that is 82544 or newer, Auto
3701 * Speed Detection takes care of MAC speed/duplex
3702 * configuration. So we only need to configure Collision
3703 * Distance in the MAC. Otherwise, we need to force
3704 * speed/duplex on the MAC to the current PHY speed/duplex
3705 * settings.
3706 */
3707 if (hw->mac_type >= e1000_82544)
3708 e1000_config_collision_dist(hw);
3709 else {
3710 ret_val = e1000_config_mac_to_phy(hw);
3711 if (ret_val < 0) {
3712 DEBUGOUT
3713 ("Error configuring MAC to PHY settings\n");
3714 return ret_val;
3715 }
3716 }
3717
8bde7f77 3718 /* Configure Flow Control now that Auto-Neg has completed. First, we
682011ff
WD
3719 * need to restore the desired flow control settings because we may
3720 * have had to re-autoneg with a different link partner.
3721 */
3722 ret_val = e1000_config_fc_after_link_up(hw);
3723 if (ret_val < 0) {
3724 DEBUGOUT("Error configuring flow control\n");
3725 return ret_val;
3726 }
3727
3728 /* At this point we know that we are on copper and we have
3729 * auto-negotiated link. These are conditions for checking the link
1aeed8d7 3730 * parter capability register. We use the link partner capability to
682011ff
WD
3731 * determine if TBI Compatibility needs to be turned on or off. If
3732 * the link partner advertises any speed in addition to Gigabit, then
3733 * we assume that they are GMII-based, and TBI compatibility is not
3734 * needed. If no other speeds are advertised, we assume the link
3735 * partner is TBI-based, and we turn on TBI Compatibility.
3736 */
3737 if (hw->tbi_compatibility_en) {
3738 if (e1000_read_phy_reg
3739 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3740 DEBUGOUT("PHY Read Error\n");
3741 return -E1000_ERR_PHY;
3742 }
3743 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3744 NWAY_LPAR_10T_FD_CAPS |
3745 NWAY_LPAR_100TX_HD_CAPS |
3746 NWAY_LPAR_100TX_FD_CAPS |
3747 NWAY_LPAR_100T4_CAPS)) {
8bde7f77 3748 /* If our link partner advertises anything in addition to
682011ff
WD
3749 * gigabit, we do not need to enable TBI compatibility.
3750 */
3751 if (hw->tbi_compatibility_on) {
3752 /* If we previously were in the mode, turn it off. */
3753 rctl = E1000_READ_REG(hw, RCTL);
3754 rctl &= ~E1000_RCTL_SBP;
3755 E1000_WRITE_REG(hw, RCTL, rctl);
472d5460 3756 hw->tbi_compatibility_on = false;
682011ff
WD
3757 }
3758 } else {
3759 /* If TBI compatibility is was previously off, turn it on. For
3760 * compatibility with a TBI link partner, we will store bad
3761 * packets. Some frames have an additional byte on the end and
3762 * will look like CRC errors to to the hardware.
3763 */
3764 if (!hw->tbi_compatibility_on) {
472d5460 3765 hw->tbi_compatibility_on = true;
682011ff
WD
3766 rctl = E1000_READ_REG(hw, RCTL);
3767 rctl |= E1000_RCTL_SBP;
3768 E1000_WRITE_REG(hw, RCTL, rctl);
3769 }
3770 }
3771 }
3772 }
3773 /* If we don't have link (auto-negotiation failed or link partner cannot
3774 * auto-negotiate), the cable is plugged in (we have signal), and our
3775 * link partner is not trying to auto-negotiate with us (we are receiving
3776 * idles or data), we need to force link up. We also need to give
3777 * auto-negotiation time to complete, in case the cable was just plugged
3778 * in. The autoneg_failed flag does this.
3779 */
3780 else if ((hw->media_type == e1000_media_type_fiber) &&
3781 (!(status & E1000_STATUS_LU)) &&
3782 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3783 (!(rxcw & E1000_RXCW_C))) {
3784 if (hw->autoneg_failed == 0) {
3785 hw->autoneg_failed = 1;
3786 return 0;
3787 }
3788 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3789
3790 /* Disable auto-negotiation in the TXCW register */
3791 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3792
3793 /* Force link-up and also force full-duplex. */
3794 ctrl = E1000_READ_REG(hw, CTRL);
3795 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3796 E1000_WRITE_REG(hw, CTRL, ctrl);
3797
3798 /* Configure Flow Control after forcing link up. */
3799 ret_val = e1000_config_fc_after_link_up(hw);
3800 if (ret_val < 0) {
3801 DEBUGOUT("Error configuring flow control\n");
3802 return ret_val;
3803 }
3804 }
3805 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3806 * auto-negotiation in the TXCW register and disable forced link in the
3807 * Device Control register in an attempt to auto-negotiate with our link
3808 * partner.
3809 */
3810 else if ((hw->media_type == e1000_media_type_fiber) &&
3811 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3812 DEBUGOUT
3813 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3814 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3815 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3816 }
3817 return 0;
3818}
3819
aa070789
RZ
3820/******************************************************************************
3821* Configure the MAC-to-PHY interface for 10/100Mbps
3822*
3823* hw - Struct containing variables accessed by shared code
3824******************************************************************************/
3825static int32_t
3826e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3827{
3828 int32_t ret_val = E1000_SUCCESS;
3829 uint32_t tipg;
3830 uint16_t reg_data;
3831
3832 DEBUGFUNC();
3833
3834 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3835 ret_val = e1000_write_kmrn_reg(hw,
3836 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3837 if (ret_val)
3838 return ret_val;
3839
3840 /* Configure Transmit Inter-Packet Gap */
3841 tipg = E1000_READ_REG(hw, TIPG);
3842 tipg &= ~E1000_TIPG_IPGT_MASK;
3843 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3844 E1000_WRITE_REG(hw, TIPG, tipg);
3845
3846 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3847
3848 if (ret_val)
3849 return ret_val;
3850
3851 if (duplex == HALF_DUPLEX)
3852 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3853 else
3854 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3855
3856 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3857
3858 return ret_val;
3859}
3860
3861static int32_t
3862e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3863{
3864 int32_t ret_val = E1000_SUCCESS;
3865 uint16_t reg_data;
3866 uint32_t tipg;
3867
3868 DEBUGFUNC();
3869
3870 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3871 ret_val = e1000_write_kmrn_reg(hw,
3872 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3873 if (ret_val)
3874 return ret_val;
3875
3876 /* Configure Transmit Inter-Packet Gap */
3877 tipg = E1000_READ_REG(hw, TIPG);
3878 tipg &= ~E1000_TIPG_IPGT_MASK;
3879 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3880 E1000_WRITE_REG(hw, TIPG, tipg);
3881
3882 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3883
3884 if (ret_val)
3885 return ret_val;
3886
3887 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3888 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3889
3890 return ret_val;
3891}
3892
682011ff
WD
3893/******************************************************************************
3894 * Detects the current speed and duplex settings of the hardware.
3895 *
3896 * hw - Struct containing variables accessed by shared code
3897 * speed - Speed of the connection
3898 * duplex - Duplex setting of the connection
3899 *****************************************************************************/
aa070789
RZ
3900static int
3901e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3902 uint16_t *duplex)
682011ff
WD
3903{
3904 uint32_t status;
aa070789
RZ
3905 int32_t ret_val;
3906 uint16_t phy_data;
682011ff
WD
3907
3908 DEBUGFUNC();
3909
3910 if (hw->mac_type >= e1000_82543) {
3911 status = E1000_READ_REG(hw, STATUS);
3912 if (status & E1000_STATUS_SPEED_1000) {
3913 *speed = SPEED_1000;
3914 DEBUGOUT("1000 Mbs, ");
3915 } else if (status & E1000_STATUS_SPEED_100) {
3916 *speed = SPEED_100;
3917 DEBUGOUT("100 Mbs, ");
3918 } else {
3919 *speed = SPEED_10;
3920 DEBUGOUT("10 Mbs, ");
3921 }
3922
3923 if (status & E1000_STATUS_FD) {
3924 *duplex = FULL_DUPLEX;
3925 DEBUGOUT("Full Duplex\r\n");
3926 } else {
3927 *duplex = HALF_DUPLEX;
3928 DEBUGOUT(" Half Duplex\r\n");
3929 }
3930 } else {
3931 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3932 *speed = SPEED_1000;
3933 *duplex = FULL_DUPLEX;
3934 }
aa070789
RZ
3935
3936 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3937 * even if it is operating at half duplex. Here we set the duplex
3938 * settings to match the duplex in the link partner's capabilities.
3939 */
3940 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3941 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3942 if (ret_val)
3943 return ret_val;
3944
3945 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3946 *duplex = HALF_DUPLEX;
3947 else {
3948 ret_val = e1000_read_phy_reg(hw,
3949 PHY_LP_ABILITY, &phy_data);
3950 if (ret_val)
3951 return ret_val;
3952 if ((*speed == SPEED_100 &&
3953 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3954 || (*speed == SPEED_10
3955 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3956 *duplex = HALF_DUPLEX;
3957 }
3958 }
3959
3960 if ((hw->mac_type == e1000_80003es2lan) &&
3961 (hw->media_type == e1000_media_type_copper)) {
3962 if (*speed == SPEED_1000)
3963 ret_val = e1000_configure_kmrn_for_1000(hw);
3964 else
3965 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3966 if (ret_val)
3967 return ret_val;
3968 }
3969 return E1000_SUCCESS;
682011ff
WD
3970}
3971
3972/******************************************************************************
3973* Blocks until autoneg completes or times out (~4.5 seconds)
3974*
3975* hw - Struct containing variables accessed by shared code
3976******************************************************************************/
3977static int
3978e1000_wait_autoneg(struct e1000_hw *hw)
3979{
3980 uint16_t i;
3981 uint16_t phy_data;
3982
3983 DEBUGFUNC();
3984 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3985
faa765d4 3986 /* We will wait for autoneg to complete or timeout to expire. */
682011ff
WD
3987 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3988 /* Read the MII Status Register and wait for Auto-Neg
3989 * Complete bit to be set.
3990 */
3991 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3992 DEBUGOUT("PHY Read Error\n");
3993 return -E1000_ERR_PHY;
3994 }
3995 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3996 DEBUGOUT("PHY Read Error\n");
3997 return -E1000_ERR_PHY;
3998 }
3999 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4000 DEBUGOUT("Auto-Neg complete.\n");
4001 return 0;
4002 }
4003 mdelay(100);
4004 }
4005 DEBUGOUT("Auto-Neg timedout.\n");
4006 return -E1000_ERR_TIMEOUT;
4007}
4008
4009/******************************************************************************
4010* Raises the Management Data Clock
4011*
4012* hw - Struct containing variables accessed by shared code
4013* ctrl - Device control register's current value
4014******************************************************************************/
4015static void
4016e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4017{
4018 /* Raise the clock input to the Management Data Clock (by setting the MDC
4019 * bit), and then delay 2 microseconds.
4020 */
4021 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4022 E1000_WRITE_FLUSH(hw);
4023 udelay(2);
4024}
4025
4026/******************************************************************************
4027* Lowers the Management Data Clock
4028*
4029* hw - Struct containing variables accessed by shared code
4030* ctrl - Device control register's current value
4031******************************************************************************/
4032static void
4033e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4034{
4035 /* Lower the clock input to the Management Data Clock (by clearing the MDC
4036 * bit), and then delay 2 microseconds.
4037 */
4038 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4039 E1000_WRITE_FLUSH(hw);
4040 udelay(2);
4041}
4042
4043/******************************************************************************
4044* Shifts data bits out to the PHY
4045*
4046* hw - Struct containing variables accessed by shared code
4047* data - Data to send out to the PHY
4048* count - Number of bits to shift out
4049*
4050* Bits are shifted out in MSB to LSB order.
4051******************************************************************************/
4052static void
4053e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4054{
4055 uint32_t ctrl;
4056 uint32_t mask;
4057
4058 /* We need to shift "count" number of bits out to the PHY. So, the value
8bde7f77 4059 * in the "data" parameter will be shifted out to the PHY one bit at a
682011ff
WD
4060 * time. In order to do this, "data" must be broken down into bits.
4061 */
4062 mask = 0x01;
4063 mask <<= (count - 1);
4064
4065 ctrl = E1000_READ_REG(hw, CTRL);
4066
4067 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4068 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4069
4070 while (mask) {
4071 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4072 * then raising and lowering the Management Data Clock. A "0" is
4073 * shifted out to the PHY by setting the MDIO bit to "0" and then
4074 * raising and lowering the clock.
4075 */
4076 if (data & mask)
4077 ctrl |= E1000_CTRL_MDIO;
4078 else
4079 ctrl &= ~E1000_CTRL_MDIO;
4080
4081 E1000_WRITE_REG(hw, CTRL, ctrl);
4082 E1000_WRITE_FLUSH(hw);
4083
4084 udelay(2);
4085
4086 e1000_raise_mdi_clk(hw, &ctrl);
4087 e1000_lower_mdi_clk(hw, &ctrl);
4088
4089 mask = mask >> 1;
4090 }
4091}
4092
4093/******************************************************************************
4094* Shifts data bits in from the PHY
4095*
4096* hw - Struct containing variables accessed by shared code
4097*
8bde7f77 4098* Bits are shifted in in MSB to LSB order.
682011ff
WD
4099******************************************************************************/
4100static uint16_t
4101e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4102{
4103 uint32_t ctrl;
4104 uint16_t data = 0;
4105 uint8_t i;
4106
4107 /* In order to read a register from the PHY, we need to shift in a total
4108 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4109 * to avoid contention on the MDIO pin when a read operation is performed.
4110 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4111 * by raising the input to the Management Data Clock (setting the MDC bit),
4112 * and then reading the value of the MDIO bit.
4113 */
4114 ctrl = E1000_READ_REG(hw, CTRL);
4115
4116 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4117 ctrl &= ~E1000_CTRL_MDIO_DIR;
4118 ctrl &= ~E1000_CTRL_MDIO;
4119
4120 E1000_WRITE_REG(hw, CTRL, ctrl);
4121 E1000_WRITE_FLUSH(hw);
4122
4123 /* Raise and Lower the clock before reading in the data. This accounts for
4124 * the turnaround bits. The first clock occurred when we clocked out the
4125 * last bit of the Register Address.
4126 */
4127 e1000_raise_mdi_clk(hw, &ctrl);
4128 e1000_lower_mdi_clk(hw, &ctrl);
4129
4130 for (data = 0, i = 0; i < 16; i++) {
4131 data = data << 1;
4132 e1000_raise_mdi_clk(hw, &ctrl);
4133 ctrl = E1000_READ_REG(hw, CTRL);
4134 /* Check to see if we shifted in a "1". */
4135 if (ctrl & E1000_CTRL_MDIO)
4136 data |= 1;
4137 e1000_lower_mdi_clk(hw, &ctrl);
4138 }
4139
4140 e1000_raise_mdi_clk(hw, &ctrl);
4141 e1000_lower_mdi_clk(hw, &ctrl);
4142
4143 return data;
4144}
4145
4146/*****************************************************************************
4147* Reads the value from a PHY register
4148*
4149* hw - Struct containing variables accessed by shared code
4150* reg_addr - address of the PHY register to read
4151******************************************************************************/
4152static int
4153e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4154{
4155 uint32_t i;
4156 uint32_t mdic = 0;
4157 const uint32_t phy_addr = 1;
4158
4159 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4160 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4161 return -E1000_ERR_PARAM;
4162 }
4163
4164 if (hw->mac_type > e1000_82543) {
4165 /* Set up Op-code, Phy Address, and register address in the MDI
4166 * Control register. The MAC will take care of interfacing with the
4167 * PHY to retrieve the desired data.
4168 */
4169 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4170 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4171 (E1000_MDIC_OP_READ));
4172
4173 E1000_WRITE_REG(hw, MDIC, mdic);
4174
4175 /* Poll the ready bit to see if the MDI read completed */
4176 for (i = 0; i < 64; i++) {
4177 udelay(10);
4178 mdic = E1000_READ_REG(hw, MDIC);
4179 if (mdic & E1000_MDIC_READY)
4180 break;
4181 }
4182 if (!(mdic & E1000_MDIC_READY)) {
4183 DEBUGOUT("MDI Read did not complete\n");
4184 return -E1000_ERR_PHY;
4185 }
4186 if (mdic & E1000_MDIC_ERROR) {
4187 DEBUGOUT("MDI Error\n");
4188 return -E1000_ERR_PHY;
4189 }
4190 *phy_data = (uint16_t) mdic;
4191 } else {
4192 /* We must first send a preamble through the MDIO pin to signal the
4193 * beginning of an MII instruction. This is done by sending 32
4194 * consecutive "1" bits.
4195 */
4196 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4197
4198 /* Now combine the next few fields that are required for a read
4199 * operation. We use this method instead of calling the
4200 * e1000_shift_out_mdi_bits routine five different times. The format of
4201 * a MII read instruction consists of a shift out of 14 bits and is
4202 * defined as follows:
4203 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4204 * followed by a shift in of 18 bits. This first two bits shifted in
4205 * are TurnAround bits used to avoid contention on the MDIO pin when a
4206 * READ operation is performed. These two bits are thrown away
4207 * followed by a shift in of 16 bits which contains the desired data.
4208 */
4209 mdic = ((reg_addr) | (phy_addr << 5) |
4210 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4211
4212 e1000_shift_out_mdi_bits(hw, mdic, 14);
4213
4214 /* Now that we've shifted out the read command to the MII, we need to
4215 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4216 * register address.
4217 */
4218 *phy_data = e1000_shift_in_mdi_bits(hw);
4219 }
4220 return 0;
4221}
4222
4223/******************************************************************************
4224* Writes a value to a PHY register
4225*
4226* hw - Struct containing variables accessed by shared code
4227* reg_addr - address of the PHY register to write
4228* data - data to write to the PHY
4229******************************************************************************/
4230static int
4231e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4232{
4233 uint32_t i;
4234 uint32_t mdic = 0;
4235 const uint32_t phy_addr = 1;
4236
4237 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4238 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4239 return -E1000_ERR_PARAM;
4240 }
4241
4242 if (hw->mac_type > e1000_82543) {
4243 /* Set up Op-code, Phy Address, register address, and data intended
4244 * for the PHY register in the MDI Control register. The MAC will take
4245 * care of interfacing with the PHY to send the desired data.
4246 */
4247 mdic = (((uint32_t) phy_data) |
4248 (reg_addr << E1000_MDIC_REG_SHIFT) |
4249 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4250 (E1000_MDIC_OP_WRITE));
4251
4252 E1000_WRITE_REG(hw, MDIC, mdic);
4253
4254 /* Poll the ready bit to see if the MDI read completed */
4255 for (i = 0; i < 64; i++) {
4256 udelay(10);
4257 mdic = E1000_READ_REG(hw, MDIC);
4258 if (mdic & E1000_MDIC_READY)
4259 break;
4260 }
4261 if (!(mdic & E1000_MDIC_READY)) {
4262 DEBUGOUT("MDI Write did not complete\n");
4263 return -E1000_ERR_PHY;
4264 }
4265 } else {
4266 /* We'll need to use the SW defined pins to shift the write command
4267 * out to the PHY. We first send a preamble to the PHY to signal the
8bde7f77 4268 * beginning of the MII instruction. This is done by sending 32
682011ff
WD
4269 * consecutive "1" bits.
4270 */
4271 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4272
8bde7f77 4273 /* Now combine the remaining required fields that will indicate a
682011ff
WD
4274 * write operation. We use this method instead of calling the
4275 * e1000_shift_out_mdi_bits routine for each field in the command. The
4276 * format of a MII write instruction is as follows:
4277 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4278 */
4279 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4280 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4281 mdic <<= 16;
4282 mdic |= (uint32_t) phy_data;
4283
4284 e1000_shift_out_mdi_bits(hw, mdic, 32);
4285 }
4286 return 0;
4287}
4288
aa070789
RZ
4289/******************************************************************************
4290 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4291 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4292 * the caller to figure out how to deal with it.
4293 *
4294 * hw - Struct containing variables accessed by shared code
4295 *
4296 * returns: - E1000_BLK_PHY_RESET
4297 * E1000_SUCCESS
4298 *
4299 *****************************************************************************/
4300int32_t
4301e1000_check_phy_reset_block(struct e1000_hw *hw)
4302{
4303 uint32_t manc = 0;
4304 uint32_t fwsm = 0;
4305
4306 if (hw->mac_type == e1000_ich8lan) {
4307 fwsm = E1000_READ_REG(hw, FWSM);
4308 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4309 : E1000_BLK_PHY_RESET;
4310 }
4311
4312 if (hw->mac_type > e1000_82547_rev_2)
4313 manc = E1000_READ_REG(hw, MANC);
4314 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4315 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4316}
4317
4318/***************************************************************************
4319 * Checks if the PHY configuration is done
4320 *
4321 * hw: Struct containing variables accessed by shared code
4322 *
4323 * returns: - E1000_ERR_RESET if fail to reset MAC
4324 * E1000_SUCCESS at any other case.
4325 *
4326 ***************************************************************************/
4327static int32_t
4328e1000_get_phy_cfg_done(struct e1000_hw *hw)
4329{
4330 int32_t timeout = PHY_CFG_TIMEOUT;
4331 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4332
4333 DEBUGFUNC();
4334
4335 switch (hw->mac_type) {
4336 default:
4337 mdelay(10);
4338 break;
987b43a1 4339
aa070789
RZ
4340 case e1000_80003es2lan:
4341 /* Separate *_CFG_DONE_* bit for each port */
987b43a1 4342 if (e1000_is_second_port(hw))
aa070789 4343 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
987b43a1
KM
4344 /* Fall Through */
4345
aa070789
RZ
4346 case e1000_82571:
4347 case e1000_82572:
95186063 4348 case e1000_igb:
aa070789 4349 while (timeout) {
95186063
MV
4350 if (hw->mac_type == e1000_igb) {
4351 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4352 break;
4353 } else {
4354 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4355 break;
4356 }
4357 mdelay(1);
aa070789
RZ
4358 timeout--;
4359 }
4360 if (!timeout) {
4361 DEBUGOUT("MNG configuration cycle has not "
4362 "completed.\n");
4363 return -E1000_ERR_RESET;
4364 }
4365 break;
4366 }
4367
4368 return E1000_SUCCESS;
4369}
4370
682011ff
WD
4371/******************************************************************************
4372* Returns the PHY to the power-on reset state
4373*
4374* hw - Struct containing variables accessed by shared code
4375******************************************************************************/
aa070789 4376int32_t
682011ff
WD
4377e1000_phy_hw_reset(struct e1000_hw *hw)
4378{
987b43a1 4379 uint16_t swfw = E1000_SWFW_PHY0_SM;
aa070789
RZ
4380 uint32_t ctrl, ctrl_ext;
4381 uint32_t led_ctrl;
4382 int32_t ret_val;
682011ff
WD
4383
4384 DEBUGFUNC();
4385
aa070789
RZ
4386 /* In the case of the phy reset being blocked, it's not an error, we
4387 * simply return success without performing the reset. */
4388 ret_val = e1000_check_phy_reset_block(hw);
4389 if (ret_val)
4390 return E1000_SUCCESS;
4391
682011ff
WD
4392 DEBUGOUT("Resetting Phy...\n");
4393
4394 if (hw->mac_type > e1000_82543) {
987b43a1 4395 if (e1000_is_second_port(hw))
aa070789 4396 swfw = E1000_SWFW_PHY1_SM;
987b43a1 4397
aa070789
RZ
4398 if (e1000_swfw_sync_acquire(hw, swfw)) {
4399 DEBUGOUT("Unable to acquire swfw sync\n");
4400 return -E1000_ERR_SWFW_SYNC;
4401 }
987b43a1 4402
682011ff
WD
4403 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4404 * bit. Then, take it out of reset.
4405 */
4406 ctrl = E1000_READ_REG(hw, CTRL);
4407 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4408 E1000_WRITE_FLUSH(hw);
aa070789
RZ
4409
4410 if (hw->mac_type < e1000_82571)
4411 udelay(10);
4412 else
4413 udelay(100);
4414
682011ff
WD
4415 E1000_WRITE_REG(hw, CTRL, ctrl);
4416 E1000_WRITE_FLUSH(hw);
aa070789
RZ
4417
4418 if (hw->mac_type >= e1000_82571)
4419 mdelay(10);
3c63dd53 4420
682011ff
WD
4421 } else {
4422 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4423 * bit to put the PHY into reset. Then, take it out of reset.
4424 */
4425 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4426 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4427 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4428 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4429 E1000_WRITE_FLUSH(hw);
4430 mdelay(10);
4431 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4432 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4433 E1000_WRITE_FLUSH(hw);
4434 }
4435 udelay(150);
aa070789
RZ
4436
4437 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4438 /* Configure activity LED after PHY reset */
4439 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4440 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4441 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4442 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4443 }
4444
7e2d991d
TH
4445 e1000_swfw_sync_release(hw, swfw);
4446
aa070789
RZ
4447 /* Wait for FW to finish PHY configuration. */
4448 ret_val = e1000_get_phy_cfg_done(hw);
4449 if (ret_val != E1000_SUCCESS)
4450 return ret_val;
4451
4452 return ret_val;
4453}
4454
4455/******************************************************************************
4456 * IGP phy init script - initializes the GbE PHY
4457 *
4458 * hw - Struct containing variables accessed by shared code
4459 *****************************************************************************/
4460static void
4461e1000_phy_init_script(struct e1000_hw *hw)
4462{
4463 uint32_t ret_val;
4464 uint16_t phy_saved_data;
4465 DEBUGFUNC();
4466
4467 if (hw->phy_init_script) {
4468 mdelay(20);
4469
4470 /* Save off the current value of register 0x2F5B to be
4471 * restored at the end of this routine. */
4472 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4473
4474 /* Disabled the PHY transmitter */
4475 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4476
4477 mdelay(20);
4478
4479 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4480
4481 mdelay(5);
4482
4483 switch (hw->mac_type) {
4484 case e1000_82541:
4485 case e1000_82547:
4486 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4487
4488 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4489
4490 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4491
4492 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4493
4494 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4495
4496 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4497
4498 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4499
4500 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4501
4502 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4503 break;
4504
4505 case e1000_82541_rev_2:
4506 case e1000_82547_rev_2:
4507 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4508 break;
4509 default:
4510 break;
4511 }
4512
4513 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4514
4515 mdelay(20);
4516
4517 /* Now enable the transmitter */
56b13b1e
ZRR
4518 if (!ret_val)
4519 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
aa070789
RZ
4520
4521 if (hw->mac_type == e1000_82547) {
4522 uint16_t fused, fine, coarse;
4523
4524 /* Move to analog registers page */
4525 e1000_read_phy_reg(hw,
4526 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4527
4528 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4529 e1000_read_phy_reg(hw,
4530 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4531
4532 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4533 coarse = fused
4534 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4535
4536 if (coarse >
4537 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4538 coarse -=
4539 IGP01E1000_ANALOG_FUSE_COARSE_10;
4540 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4541 } else if (coarse
4542 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4543 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4544
4545 fused = (fused
4546 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4547 (fine
4548 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4549 (coarse
4550 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4551
4552 e1000_write_phy_reg(hw,
4553 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4554 e1000_write_phy_reg(hw,
4555 IGP01E1000_ANALOG_FUSE_BYPASS,
4556 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4557 }
4558 }
4559 }
682011ff
WD
4560}
4561
4562/******************************************************************************
4563* Resets the PHY
4564*
4565* hw - Struct containing variables accessed by shared code
4566*
aa070789 4567* Sets bit 15 of the MII Control register
682011ff 4568******************************************************************************/
aa070789 4569int32_t
682011ff
WD
4570e1000_phy_reset(struct e1000_hw *hw)
4571{
aa070789 4572 int32_t ret_val;
682011ff
WD
4573 uint16_t phy_data;
4574
4575 DEBUGFUNC();
4576
aa070789
RZ
4577 /* In the case of the phy reset being blocked, it's not an error, we
4578 * simply return success without performing the reset. */
4579 ret_val = e1000_check_phy_reset_block(hw);
4580 if (ret_val)
4581 return E1000_SUCCESS;
4582
4583 switch (hw->phy_type) {
4584 case e1000_phy_igp:
4585 case e1000_phy_igp_2:
4586 case e1000_phy_igp_3:
4587 case e1000_phy_ife:
95186063 4588 case e1000_phy_igb:
aa070789
RZ
4589 ret_val = e1000_phy_hw_reset(hw);
4590 if (ret_val)
4591 return ret_val;
4592 break;
4593 default:
4594 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4595 if (ret_val)
4596 return ret_val;
4597
4598 phy_data |= MII_CR_RESET;
4599 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4600 if (ret_val)
4601 return ret_val;
4602
4603 udelay(1);
4604 break;
682011ff 4605 }
aa070789
RZ
4606
4607 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4608 e1000_phy_init_script(hw);
4609
4610 return E1000_SUCCESS;
682011ff
WD
4611}
4612
1aeed8d7 4613static int e1000_set_phy_type (struct e1000_hw *hw)
ac3315c2 4614{
1aeed8d7
WD
4615 DEBUGFUNC ();
4616
4617 if (hw->mac_type == e1000_undefined)
4618 return -E1000_ERR_PHY_TYPE;
4619
4620 switch (hw->phy_id) {
4621 case M88E1000_E_PHY_ID:
4622 case M88E1000_I_PHY_ID:
4623 case M88E1011_I_PHY_ID:
aa070789 4624 case M88E1111_I_PHY_ID:
1aeed8d7
WD
4625 hw->phy_type = e1000_phy_m88;
4626 break;
4627 case IGP01E1000_I_PHY_ID:
4628 if (hw->mac_type == e1000_82541 ||
aa070789
RZ
4629 hw->mac_type == e1000_82541_rev_2 ||
4630 hw->mac_type == e1000_82547 ||
4631 hw->mac_type == e1000_82547_rev_2) {
1aeed8d7 4632 hw->phy_type = e1000_phy_igp;
aa070789
RZ
4633 break;
4634 }
4635 case IGP03E1000_E_PHY_ID:
4636 hw->phy_type = e1000_phy_igp_3;
4637 break;
4638 case IFE_E_PHY_ID:
4639 case IFE_PLUS_E_PHY_ID:
4640 case IFE_C_E_PHY_ID:
4641 hw->phy_type = e1000_phy_ife;
4642 break;
4643 case GG82563_E_PHY_ID:
4644 if (hw->mac_type == e1000_80003es2lan) {
4645 hw->phy_type = e1000_phy_gg82563;
1aeed8d7
WD
4646 break;
4647 }
2c2668f9
RZ
4648 case BME1000_E_PHY_ID:
4649 hw->phy_type = e1000_phy_bm;
4650 break;
95186063
MV
4651 case I210_I_PHY_ID:
4652 hw->phy_type = e1000_phy_igb;
4653 break;
1aeed8d7
WD
4654 /* Fall Through */
4655 default:
4656 /* Should never have loaded on this device */
4657 hw->phy_type = e1000_phy_undefined;
4658 return -E1000_ERR_PHY_TYPE;
4659 }
4660
4661 return E1000_SUCCESS;
ac3315c2
AS
4662}
4663
682011ff
WD
4664/******************************************************************************
4665* Probes the expected PHY address for known PHY IDs
4666*
4667* hw - Struct containing variables accessed by shared code
4668******************************************************************************/
aa070789 4669static int32_t
682011ff
WD
4670e1000_detect_gig_phy(struct e1000_hw *hw)
4671{
aa070789 4672 int32_t phy_init_status, ret_val;
682011ff 4673 uint16_t phy_id_high, phy_id_low;
472d5460 4674 bool match = false;
682011ff
WD
4675
4676 DEBUGFUNC();
4677
aa070789
RZ
4678 /* The 82571 firmware may still be configuring the PHY. In this
4679 * case, we cannot access the PHY until the configuration is done. So
4680 * we explicitly set the PHY values. */
4681 if (hw->mac_type == e1000_82571 ||
4682 hw->mac_type == e1000_82572) {
4683 hw->phy_id = IGP01E1000_I_PHY_ID;
4684 hw->phy_type = e1000_phy_igp_2;
4685 return E1000_SUCCESS;
682011ff 4686 }
aa070789
RZ
4687
4688 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4689 * work- around that forces PHY page 0 to be set or the reads fail.
4690 * The rest of the code in this routine uses e1000_read_phy_reg to
4691 * read the PHY ID. So for ESB-2 we need to have this set so our
4692 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4693 * the routines below will figure this out as well. */
4694 if (hw->mac_type == e1000_80003es2lan)
4695 hw->phy_type = e1000_phy_gg82563;
4696
4697 /* Read the PHY ID Registers to identify which PHY is onboard. */
4698 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4699 if (ret_val)
4700 return ret_val;
4701
682011ff 4702 hw->phy_id = (uint32_t) (phy_id_high << 16);
aa070789
RZ
4703 udelay(20);
4704 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4705 if (ret_val)
4706 return ret_val;
4707
682011ff 4708 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
aa070789 4709 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
682011ff
WD
4710
4711 switch (hw->mac_type) {
4712 case e1000_82543:
4713 if (hw->phy_id == M88E1000_E_PHY_ID)
472d5460 4714 match = true;
682011ff
WD
4715 break;
4716 case e1000_82544:
4717 if (hw->phy_id == M88E1000_I_PHY_ID)
472d5460 4718 match = true;
682011ff
WD
4719 break;
4720 case e1000_82540:
4721 case e1000_82545:
aa070789 4722 case e1000_82545_rev_3:
682011ff 4723 case e1000_82546:
aa070789 4724 case e1000_82546_rev_3:
682011ff 4725 if (hw->phy_id == M88E1011_I_PHY_ID)
472d5460 4726 match = true;
682011ff 4727 break;
aa070789 4728 case e1000_82541:
ac3315c2 4729 case e1000_82541_rev_2:
aa070789
RZ
4730 case e1000_82547:
4731 case e1000_82547_rev_2:
ac3315c2 4732 if(hw->phy_id == IGP01E1000_I_PHY_ID)
472d5460 4733 match = true;
ac3315c2
AS
4734
4735 break;
aa070789
RZ
4736 case e1000_82573:
4737 if (hw->phy_id == M88E1111_I_PHY_ID)
472d5460 4738 match = true;
aa070789 4739 break;
2c2668f9
RZ
4740 case e1000_82574:
4741 if (hw->phy_id == BME1000_E_PHY_ID)
472d5460 4742 match = true;
2c2668f9 4743 break;
aa070789
RZ
4744 case e1000_80003es2lan:
4745 if (hw->phy_id == GG82563_E_PHY_ID)
472d5460 4746 match = true;
aa070789
RZ
4747 break;
4748 case e1000_ich8lan:
4749 if (hw->phy_id == IGP03E1000_E_PHY_ID)
472d5460 4750 match = true;
aa070789 4751 if (hw->phy_id == IFE_E_PHY_ID)
472d5460 4752 match = true;
aa070789 4753 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
472d5460 4754 match = true;
aa070789 4755 if (hw->phy_id == IFE_C_E_PHY_ID)
472d5460 4756 match = true;
aa070789 4757 break;
95186063
MV
4758 case e1000_igb:
4759 if (hw->phy_id == I210_I_PHY_ID)
4760 match = true;
4761 break;
682011ff
WD
4762 default:
4763 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4764 return -E1000_ERR_CONFIG;
4765 }
ac3315c2
AS
4766
4767 phy_init_status = e1000_set_phy_type(hw);
4768
4769 if ((match) && (phy_init_status == E1000_SUCCESS)) {
682011ff
WD
4770 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4771 return 0;
4772 }
4773 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4774 return -E1000_ERR_PHY;
4775}
4776
aa070789
RZ
4777/*****************************************************************************
4778 * Set media type and TBI compatibility.
4779 *
4780 * hw - Struct containing variables accessed by shared code
4781 * **************************************************************************/
4782void
4783e1000_set_media_type(struct e1000_hw *hw)
4784{
4785 uint32_t status;
4786
4787 DEBUGFUNC();
4788
4789 if (hw->mac_type != e1000_82543) {
4790 /* tbi_compatibility is only valid on 82543 */
472d5460 4791 hw->tbi_compatibility_en = false;
aa070789
RZ
4792 }
4793
4794 switch (hw->device_id) {
4795 case E1000_DEV_ID_82545GM_SERDES:
4796 case E1000_DEV_ID_82546GB_SERDES:
4797 case E1000_DEV_ID_82571EB_SERDES:
4798 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4799 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4800 case E1000_DEV_ID_82572EI_SERDES:
4801 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4802 hw->media_type = e1000_media_type_internal_serdes;
4803 break;
4804 default:
4805 switch (hw->mac_type) {
4806 case e1000_82542_rev2_0:
4807 case e1000_82542_rev2_1:
4808 hw->media_type = e1000_media_type_fiber;
4809 break;
4810 case e1000_ich8lan:
4811 case e1000_82573:
2c2668f9 4812 case e1000_82574:
95186063 4813 case e1000_igb:
aa070789
RZ
4814 /* The STATUS_TBIMODE bit is reserved or reused
4815 * for the this device.
4816 */
4817 hw->media_type = e1000_media_type_copper;
4818 break;
4819 default:
4820 status = E1000_READ_REG(hw, STATUS);
4821 if (status & E1000_STATUS_TBIMODE) {
4822 hw->media_type = e1000_media_type_fiber;
4823 /* tbi_compatibility not valid on fiber */
472d5460 4824 hw->tbi_compatibility_en = false;
aa070789
RZ
4825 } else {
4826 hw->media_type = e1000_media_type_copper;
4827 }
4828 break;
4829 }
4830 }
4831}
4832
682011ff
WD
4833/**
4834 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4835 *
4836 * e1000_sw_init initializes the Adapter private data structure.
4837 * Fields are initialized based on PCI device information and
4838 * OS network device settings (MTU size).
4839 **/
4840
4841static int
5c5e707a 4842e1000_sw_init(struct e1000_hw *hw)
682011ff 4843{
682011ff
WD
4844 int result;
4845
4846 /* PCI config space info */
81dab9af
BM
4847#ifdef CONFIG_DM_ETH
4848 dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4849 dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4850 dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4851 &hw->subsystem_vendor_id);
4852 dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4853
4854 dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4855 dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4856#else
682011ff
WD
4857 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4858 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4859 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4860 &hw->subsystem_vendor_id);
4861 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4862
4863 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4864 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
81dab9af 4865#endif
682011ff
WD
4866
4867 /* identify the MAC */
4868 result = e1000_set_mac_type(hw);
4869 if (result) {
5c5e707a 4870 E1000_ERR(hw, "Unknown MAC Type\n");
682011ff
WD
4871 return result;
4872 }
4873
aa070789
RZ
4874 switch (hw->mac_type) {
4875 default:
4876 break;
4877 case e1000_82541:
4878 case e1000_82547:
4879 case e1000_82541_rev_2:
4880 case e1000_82547_rev_2:
4881 hw->phy_init_script = 1;
4882 break;
4883 }
4884
682011ff
WD
4885 /* flow control settings */
4886 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4887 hw->fc_low_water = E1000_FC_LOW_THRESH;
4888 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4889 hw->fc_send_xon = 1;
4890
4891 /* Media type - copper or fiber */
95186063 4892 hw->tbi_compatibility_en = true;
aa070789 4893 e1000_set_media_type(hw);
682011ff
WD
4894
4895 if (hw->mac_type >= e1000_82543) {
4896 uint32_t status = E1000_READ_REG(hw, STATUS);
4897
4898 if (status & E1000_STATUS_TBIMODE) {
4899 DEBUGOUT("fiber interface\n");
4900 hw->media_type = e1000_media_type_fiber;
4901 } else {
4902 DEBUGOUT("copper interface\n");
4903 hw->media_type = e1000_media_type_copper;
4904 }
4905 } else {
4906 hw->media_type = e1000_media_type_fiber;
4907 }
4908
472d5460 4909 hw->wait_autoneg_complete = true;
682011ff
WD
4910 if (hw->mac_type < e1000_82543)
4911 hw->report_tx_early = 0;
4912 else
4913 hw->report_tx_early = 1;
4914
682011ff
WD
4915 return E1000_SUCCESS;
4916}
4917
4918void
4919fill_rx(struct e1000_hw *hw)
4920{
4921 struct e1000_rx_desc *rd;
06e07f65 4922 unsigned long flush_start, flush_end;
682011ff
WD
4923
4924 rx_last = rx_tail;
4925 rd = rx_base + rx_tail;
4926 rx_tail = (rx_tail + 1) % 8;
4927 memset(rd, 0, 16);
06e07f65 4928 rd->buffer_addr = cpu_to_le64((unsigned long)packet);
873e8e01
MV
4929
4930 /*
4931 * Make sure there are no stale data in WB over this area, which
4932 * might get written into the memory while the e1000 also writes
4933 * into the same memory area.
4934 */
06e07f65
ML
4935 invalidate_dcache_range((unsigned long)packet,
4936 (unsigned long)packet + 4096);
873e8e01 4937 /* Dump the DMA descriptor into RAM. */
06e07f65 4938 flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
873e8e01
MV
4939 flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4940 flush_dcache_range(flush_start, flush_end);
4941
682011ff
WD
4942 E1000_WRITE_REG(hw, RDT, rx_tail);
4943}
4944
4945/**
4946 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4947 * @adapter: board private structure
4948 *
4949 * Configure the Tx unit of the MAC after a reset.
4950 **/
4951
4952static void
4953e1000_configure_tx(struct e1000_hw *hw)
4954{
682011ff 4955 unsigned long tctl;
aa070789
RZ
4956 unsigned long tipg, tarc;
4957 uint32_t ipgr1, ipgr2;
682011ff 4958
1d8a078b
BM
4959 E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
4960 E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
682011ff
WD
4961
4962 E1000_WRITE_REG(hw, TDLEN, 128);
4963
4964 /* Setup the HW Tx Head and Tail descriptor pointers */
4965 E1000_WRITE_REG(hw, TDH, 0);
4966 E1000_WRITE_REG(hw, TDT, 0);
4967 tx_tail = 0;
4968
aa070789
RZ
4969 /* Set the default values for the Tx Inter Packet Gap timer */
4970 if (hw->mac_type <= e1000_82547_rev_2 &&
4971 (hw->media_type == e1000_media_type_fiber ||
4972 hw->media_type == e1000_media_type_internal_serdes))
4973 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4974 else
4975 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4976
682011ff
WD
4977 /* Set the default values for the Tx Inter Packet Gap timer */
4978 switch (hw->mac_type) {
4979 case e1000_82542_rev2_0:
4980 case e1000_82542_rev2_1:
4981 tipg = DEFAULT_82542_TIPG_IPGT;
aa070789
RZ
4982 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4983 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4984 break;
4985 case e1000_80003es2lan:
4986 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4987 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
682011ff
WD
4988 break;
4989 default:
aa070789
RZ
4990 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4991 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4992 break;
682011ff 4993 }
aa070789
RZ
4994 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4995 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
682011ff 4996 E1000_WRITE_REG(hw, TIPG, tipg);
682011ff
WD
4997 /* Program the Transmit Control Register */
4998 tctl = E1000_READ_REG(hw, TCTL);
4999 tctl &= ~E1000_TCTL_CT;
5000 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5001 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
aa070789
RZ
5002
5003 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5004 tarc = E1000_READ_REG(hw, TARC0);
5005 /* set the speed mode bit, we'll clear it if we're not at
5006 * gigabit link later */
5007 /* git bit can be set to 1*/
5008 } else if (hw->mac_type == e1000_80003es2lan) {
5009 tarc = E1000_READ_REG(hw, TARC0);
5010 tarc |= 1;
5011 E1000_WRITE_REG(hw, TARC0, tarc);
5012 tarc = E1000_READ_REG(hw, TARC1);
5013 tarc |= 1;
5014 E1000_WRITE_REG(hw, TARC1, tarc);
5015 }
5016
682011ff
WD
5017
5018 e1000_config_collision_dist(hw);
aa070789
RZ
5019 /* Setup Transmit Descriptor Settings for eop descriptor */
5020 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
682011ff 5021
aa070789
RZ
5022 /* Need to set up RS bit */
5023 if (hw->mac_type < e1000_82543)
5024 hw->txd_cmd |= E1000_TXD_CMD_RPS;
682011ff 5025 else
aa070789 5026 hw->txd_cmd |= E1000_TXD_CMD_RS;
95186063
MV
5027
5028
5029 if (hw->mac_type == e1000_igb) {
5030 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5031
5032 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5033 reg_txdctl |= 1 << 25;
5034 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5035 mdelay(20);
5036 }
5037
5038
5039
aa070789 5040 E1000_WRITE_REG(hw, TCTL, tctl);
95186063
MV
5041
5042
682011ff
WD
5043}
5044
5045/**
5046 * e1000_setup_rctl - configure the receive control register
5047 * @adapter: Board private structure
5048 **/
5049static void
5050e1000_setup_rctl(struct e1000_hw *hw)
5051{
5052 uint32_t rctl;
5053
5054 rctl = E1000_READ_REG(hw, RCTL);
5055
5056 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5057
aa070789
RZ
5058 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5059 | E1000_RCTL_RDMTS_HALF; /* |
5060 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
682011ff
WD
5061
5062 if (hw->tbi_compatibility_on == 1)
5063 rctl |= E1000_RCTL_SBP;
5064 else
5065 rctl &= ~E1000_RCTL_SBP;
5066
5067 rctl &= ~(E1000_RCTL_SZ_4096);
682011ff
WD
5068 rctl |= E1000_RCTL_SZ_2048;
5069 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
682011ff
WD
5070 E1000_WRITE_REG(hw, RCTL, rctl);
5071}
5072
5073/**
5074 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5075 * @adapter: board private structure
5076 *
5077 * Configure the Rx unit of the MAC after a reset.
5078 **/
5079static void
5080e1000_configure_rx(struct e1000_hw *hw)
5081{
aa070789 5082 unsigned long rctl, ctrl_ext;
682011ff 5083 rx_tail = 0;
1d8a078b 5084
682011ff
WD
5085 /* make sure receives are disabled while setting up the descriptors */
5086 rctl = E1000_READ_REG(hw, RCTL);
5087 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
682011ff 5088 if (hw->mac_type >= e1000_82540) {
682011ff
WD
5089 /* Set the interrupt throttling rate. Value is calculated
5090 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
1aeed8d7
WD
5091#define MAX_INTS_PER_SEC 8000
5092#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
682011ff
WD
5093 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5094 }
5095
aa070789
RZ
5096 if (hw->mac_type >= e1000_82571) {
5097 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5098 /* Reset delay timers after every interrupt */
5099 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5100 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5101 E1000_WRITE_FLUSH(hw);
5102 }
682011ff 5103 /* Setup the Base and Length of the Rx Descriptor Ring */
1d8a078b
BM
5104 E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5105 E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
682011ff
WD
5106
5107 E1000_WRITE_REG(hw, RDLEN, 128);
5108
5109 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5110 E1000_WRITE_REG(hw, RDH, 0);
5111 E1000_WRITE_REG(hw, RDT, 0);
682011ff
WD
5112 /* Enable Receives */
5113
95186063
MV
5114 if (hw->mac_type == e1000_igb) {
5115
5116 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5117 reg_rxdctl |= 1 << 25;
5118 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5119 mdelay(20);
5120 }
5121
682011ff 5122 E1000_WRITE_REG(hw, RCTL, rctl);
95186063 5123
682011ff
WD
5124 fill_rx(hw);
5125}
5126
5127/**************************************************************************
5128POLL - Wait for a frame
5129***************************************************************************/
5130static int
5c5e707a 5131_e1000_poll(struct e1000_hw *hw)
682011ff 5132{
682011ff 5133 struct e1000_rx_desc *rd;
06e07f65 5134 unsigned long inval_start, inval_end;
873e8e01
MV
5135 uint32_t len;
5136
682011ff
WD
5137 /* return true if there's an ethernet packet ready to read */
5138 rd = rx_base + rx_last;
873e8e01
MV
5139
5140 /* Re-load the descriptor from RAM. */
06e07f65 5141 inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
873e8e01
MV
5142 inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5143 invalidate_dcache_range(inval_start, inval_end);
5144
a40b2dff 5145 if (!(rd->status & E1000_RXD_STAT_DD))
682011ff 5146 return 0;
5abf13e4 5147 /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
873e8e01 5148 /* Packet received, make sure the data are re-loaded from RAM. */
a40b2dff 5149 len = le16_to_cpu(rd->length);
06e07f65
ML
5150 invalidate_dcache_range((unsigned long)packet,
5151 (unsigned long)packet +
5152 roundup(len, ARCH_DMA_MINALIGN));
5c5e707a 5153 return len;
682011ff
WD
5154}
5155
5c5e707a 5156static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
682011ff 5157{
873e8e01 5158 void *nv_packet = (void *)txpacket;
682011ff
WD
5159 struct e1000_tx_desc *txp;
5160 int i = 0;
06e07f65 5161 unsigned long flush_start, flush_end;
682011ff
WD
5162
5163 txp = tx_base + tx_tail;
5164 tx_tail = (tx_tail + 1) % 8;
5165
8aa858cb 5166 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
aa070789 5167 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
682011ff 5168 txp->upper.data = 0;
873e8e01
MV
5169
5170 /* Dump the packet into RAM so e1000 can pick them. */
06e07f65
ML
5171 flush_dcache_range((unsigned long)nv_packet,
5172 (unsigned long)nv_packet +
5173 roundup(length, ARCH_DMA_MINALIGN));
873e8e01 5174 /* Dump the descriptor into RAM as well. */
06e07f65 5175 flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
873e8e01
MV
5176 flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5177 flush_dcache_range(flush_start, flush_end);
5178
682011ff
WD
5179 E1000_WRITE_REG(hw, TDT, tx_tail);
5180
aa070789 5181 E1000_WRITE_FLUSH(hw);
873e8e01
MV
5182 while (1) {
5183 invalidate_dcache_range(flush_start, flush_end);
5184 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5185 break;
682011ff
WD
5186 if (i++ > TOUT_LOOP) {
5187 DEBUGOUT("e1000: tx timeout\n");
5188 return 0;
5189 }
5190 udelay(10); /* give the nic a chance to write to the register */
5191 }
5192 return 1;
5193}
5194
682011ff 5195static void
5c5e707a 5196_e1000_disable(struct e1000_hw *hw)
682011ff 5197{
682011ff
WD
5198 /* Turn off the ethernet interface */
5199 E1000_WRITE_REG(hw, RCTL, 0);
5200 E1000_WRITE_REG(hw, TCTL, 0);
5201
5202 /* Clear the transmit ring */
5203 E1000_WRITE_REG(hw, TDH, 0);
5204 E1000_WRITE_REG(hw, TDT, 0);
5205
5206 /* Clear the receive ring */
5207 E1000_WRITE_REG(hw, RDH, 0);
5208 E1000_WRITE_REG(hw, RDT, 0);
5209
682011ff 5210 mdelay(10);
5c5e707a 5211}
682011ff 5212
5c5e707a
SG
5213/*reset function*/
5214static inline int
5215e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5216{
5217 e1000_reset_hw(hw);
5218 if (hw->mac_type >= e1000_82544)
5219 E1000_WRITE_REG(hw, WUC, 0);
5220
5221 return e1000_init_hw(hw, enetaddr);
682011ff
WD
5222}
5223
682011ff 5224static int
5c5e707a 5225_e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
682011ff 5226{
682011ff
WD
5227 int ret_val = 0;
5228
5c5e707a 5229 ret_val = e1000_reset(hw, enetaddr);
682011ff
WD
5230 if (ret_val < 0) {
5231 if ((ret_val == -E1000_ERR_NOLINK) ||
5232 (ret_val == -E1000_ERR_TIMEOUT)) {
5c5e707a 5233 E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
682011ff 5234 } else {
5c5e707a 5235 E1000_ERR(hw, "Hardware Initialization Failed\n");
682011ff 5236 }
5c5e707a 5237 return ret_val;
682011ff
WD
5238 }
5239 e1000_configure_tx(hw);
5240 e1000_setup_rctl(hw);
5241 e1000_configure_rx(hw);
5c5e707a 5242 return 0;
682011ff
WD
5243}
5244
aa070789
RZ
5245/******************************************************************************
5246 * Gets the current PCI bus type of hardware
5247 *
5248 * hw - Struct containing variables accessed by shared code
5249 *****************************************************************************/
5250void e1000_get_bus_type(struct e1000_hw *hw)
5251{
5252 uint32_t status;
5253
5254 switch (hw->mac_type) {
5255 case e1000_82542_rev2_0:
5256 case e1000_82542_rev2_1:
5257 hw->bus_type = e1000_bus_type_pci;
5258 break;
5259 case e1000_82571:
5260 case e1000_82572:
5261 case e1000_82573:
2c2668f9 5262 case e1000_82574:
aa070789 5263 case e1000_80003es2lan:
aa070789 5264 case e1000_ich8lan:
95186063 5265 case e1000_igb:
aa070789
RZ
5266 hw->bus_type = e1000_bus_type_pci_express;
5267 break;
5268 default:
5269 status = E1000_READ_REG(hw, STATUS);
5270 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5271 e1000_bus_type_pcix : e1000_bus_type_pci;
5272 break;
5273 }
5274}
5275
c6d80a15 5276#ifndef CONFIG_DM_ETH
ce5207e1
KM
5277/* A list of all registered e1000 devices */
5278static LIST_HEAD(e1000_hw_list);
c6d80a15 5279#endif
ce5207e1 5280
81dab9af
BM
5281#ifdef CONFIG_DM_ETH
5282static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5283 struct udevice *devno, unsigned char enetaddr[6])
5284#else
5c5e707a
SG
5285static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5286 unsigned char enetaddr[6])
81dab9af 5287#endif
5c5e707a
SG
5288{
5289 u32 val;
5290
5291 /* Assign the passed-in values */
81dab9af 5292#ifdef CONFIG_DM_ETH
5c5e707a 5293 hw->pdev = devno;
81dab9af
BM
5294#else
5295 hw->pdev = devno;
5296#endif
5c5e707a
SG
5297 hw->cardnum = cardnum;
5298
5299 /* Print a debug message with the IO base address */
81dab9af
BM
5300#ifdef CONFIG_DM_ETH
5301 dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5302#else
5c5e707a 5303 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
81dab9af 5304#endif
5c5e707a
SG
5305 E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5306
5307 /* Try to enable I/O accesses and bus-mastering */
5308 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
81dab9af
BM
5309#ifdef CONFIG_DM_ETH
5310 dm_pci_write_config32(devno, PCI_COMMAND, val);
5311#else
5c5e707a 5312 pci_write_config_dword(devno, PCI_COMMAND, val);
81dab9af 5313#endif
5c5e707a
SG
5314
5315 /* Make sure it worked */
81dab9af
BM
5316#ifdef CONFIG_DM_ETH
5317 dm_pci_read_config32(devno, PCI_COMMAND, &val);
5318#else
5c5e707a 5319 pci_read_config_dword(devno, PCI_COMMAND, &val);
81dab9af 5320#endif
5c5e707a
SG
5321 if (!(val & PCI_COMMAND_MEMORY)) {
5322 E1000_ERR(hw, "Can't enable I/O memory\n");
5323 return -ENOSPC;
5324 }
5325 if (!(val & PCI_COMMAND_MASTER)) {
5326 E1000_ERR(hw, "Can't enable bus-mastering\n");
5327 return -EPERM;
5328 }
5329
5330 /* Are these variables needed? */
5331 hw->fc = e1000_fc_default;
5332 hw->original_fc = e1000_fc_default;
5333 hw->autoneg_failed = 0;
5334 hw->autoneg = 1;
5335 hw->get_link_status = true;
5336#ifndef CONFIG_E1000_NO_NVM
5337 hw->eeprom_semaphore_present = true;
5338#endif
81dab9af
BM
5339#ifdef CONFIG_DM_ETH
5340 hw->hw_addr = dm_pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5341 PCI_REGION_MEM);
5342#else
5c5e707a
SG
5343 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5344 PCI_REGION_MEM);
81dab9af 5345#endif
5c5e707a
SG
5346 hw->mac_type = e1000_undefined;
5347
5348 /* MAC and Phy settings */
5349 if (e1000_sw_init(hw) < 0) {
5350 E1000_ERR(hw, "Software init failed\n");
5351 return -EIO;
5352 }
5353 if (e1000_check_phy_reset_block(hw))
5354 E1000_ERR(hw, "PHY Reset is blocked!\n");
5355
5356 /* Basic init was OK, reset the hardware and allow SPI access */
5357 e1000_reset_hw(hw);
5358
5359#ifndef CONFIG_E1000_NO_NVM
5360 /* Validate the EEPROM and get chipset information */
5c5e707a
SG
5361 if (e1000_init_eeprom_params(hw)) {
5362 E1000_ERR(hw, "EEPROM is invalid!\n");
5363 return -EINVAL;
5364 }
5365 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5366 e1000_validate_eeprom_checksum(hw))
5367 return -ENXIO;
5c5e707a
SG
5368 e1000_read_mac_addr(hw, enetaddr);
5369#endif
5370 e1000_get_bus_type(hw);
5371
5372#ifndef CONFIG_E1000_NO_NVM
5373 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
5374 enetaddr[0], enetaddr[1], enetaddr[2],
5375 enetaddr[3], enetaddr[4], enetaddr[5]);
5376#else
5377 memset(enetaddr, 0, 6);
5378 printf("e1000: no NVM\n");
5379#endif
5380
5381 return 0;
5382}
5383
5384/* Put the name of a device in a string */
5385static void e1000_name(char *str, int cardnum)
5386{
5387 sprintf(str, "e1000#%u", cardnum);
5388}
5389
c6d80a15 5390#ifndef CONFIG_DM_ETH
5c5e707a
SG
5391/**************************************************************************
5392TRANSMIT - Transmit a frame
5393***************************************************************************/
5394static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5395{
5396 struct e1000_hw *hw = nic->priv;
5397
5398 return _e1000_transmit(hw, txpacket, length);
5399}
5400
5401/**************************************************************************
5402DISABLE - Turn off ethernet interface
5403***************************************************************************/
5404static void
5405e1000_disable(struct eth_device *nic)
5406{
5407 struct e1000_hw *hw = nic->priv;
5408
5409 _e1000_disable(hw);
5410}
5411
5412/**************************************************************************
5413INIT - set up ethernet interface(s)
5414***************************************************************************/
5415static int
5416e1000_init(struct eth_device *nic, bd_t *bis)
5417{
5418 struct e1000_hw *hw = nic->priv;
5419
5420 return _e1000_init(hw, nic->enetaddr);
5421}
5422
5423static int
5424e1000_poll(struct eth_device *nic)
5425{
5426 struct e1000_hw *hw = nic->priv;
5427 int len;
5428
5429 len = _e1000_poll(hw);
5430 if (len) {
5431 net_process_received_packet((uchar *)packet, len);
5432 fill_rx(hw);
5433 }
5434
5435 return len ? 1 : 0;
5436}
5437
682011ff
WD
5438/**************************************************************************
5439PROBE - Look for an adapter, this routine's visible to the outside
5440You should omit the last argument struct pci_device * for a non-PCI NIC
5441***************************************************************************/
5442int
5443e1000_initialize(bd_t * bis)
5444{
d60626f8 5445 unsigned int i;
682011ff 5446 pci_dev_t devno;
5c5e707a 5447 int ret;
682011ff 5448
f81ecb5d
TT
5449 DEBUGFUNC();
5450
d60626f8
KM
5451 /* Find and probe all the matching PCI devices */
5452 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
d60626f8
KM
5453 /*
5454 * These will never get freed due to errors, this allows us to
a187559e 5455 * perform SPI EEPROM programming from U-Boot, for example.
d60626f8
KM
5456 */
5457 struct eth_device *nic = malloc(sizeof(*nic));
5458 struct e1000_hw *hw = malloc(sizeof(*hw));
5459 if (!nic || !hw) {
5460 printf("e1000#%u: Out of Memory!\n", i);
4b29bdb0 5461 free(nic);
d60626f8
KM
5462 free(hw);
5463 continue;
4b29bdb0
KG
5464 }
5465
d60626f8 5466 /* Make sure all of the fields are initially zeroed */
f7ac99fd 5467 memset(nic, 0, sizeof(*nic));
4b29bdb0 5468 memset(hw, 0, sizeof(*hw));
682011ff 5469 nic->priv = hw;
682011ff 5470
d60626f8 5471 /* Generate a card name */
5c5e707a
SG
5472 e1000_name(nic->name, i);
5473 hw->name = nic->name;
682011ff 5474
5c5e707a
SG
5475 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5476 if (ret)
d60626f8 5477 continue;
ce5207e1 5478 list_add_tail(&hw->list_node, &e1000_hw_list);
d60626f8 5479
5c5e707a 5480 hw->nic = nic;
682011ff 5481
d60626f8 5482 /* Set up the function pointers and register the device */
682011ff
WD
5483 nic->init = e1000_init;
5484 nic->recv = e1000_poll;
5485 nic->send = e1000_transmit;
5486 nic->halt = e1000_disable;
682011ff 5487 eth_register(nic);
682011ff 5488 }
d60626f8
KM
5489
5490 return i;
682011ff 5491}
ce5207e1
KM
5492
5493struct e1000_hw *e1000_find_card(unsigned int cardnum)
5494{
5495 struct e1000_hw *hw;
5496
5497 list_for_each_entry(hw, &e1000_hw_list, list_node)
5498 if (hw->cardnum == cardnum)
5499 return hw;
5500
5501 return NULL;
5502}
c6d80a15 5503#endif /* !CONFIG_DM_ETH */
ce5207e1
KM
5504
5505#ifdef CONFIG_CMD_E1000
5506static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5507 int argc, char * const argv[])
5508{
5c5e707a 5509 unsigned char *mac = NULL;
c6d80a15
SG
5510#ifdef CONFIG_DM_ETH
5511 struct eth_pdata *plat;
5512 struct udevice *dev;
5513 char name[30];
5514 int ret;
eb4e8ceb
AB
5515#endif
5516#if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
ce5207e1 5517 struct e1000_hw *hw;
c6d80a15
SG
5518#endif
5519 int cardnum;
ce5207e1
KM
5520
5521 if (argc < 3) {
5522 cmd_usage(cmdtp);
5523 return 1;
5524 }
5525
5526 /* Make sure we can find the requested e1000 card */
5c5e707a 5527 cardnum = simple_strtoul(argv[1], NULL, 10);
c6d80a15
SG
5528#ifdef CONFIG_DM_ETH
5529 e1000_name(name, cardnum);
5530 ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5531 if (!ret) {
5532 plat = dev_get_platdata(dev);
5533 mac = plat->enetaddr;
5534 }
5535#else
5c5e707a
SG
5536 hw = e1000_find_card(cardnum);
5537 if (hw)
5538 mac = hw->nic->enetaddr;
c6d80a15 5539#endif
5c5e707a 5540 if (!mac) {
ce5207e1
KM
5541 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5542 return 1;
5543 }
5544
5545 if (!strcmp(argv[2], "print-mac-address")) {
ce5207e1
KM
5546 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5547 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5548 return 0;
5549 }
5550
5551#ifdef CONFIG_E1000_SPI
eb4e8ceb
AB
5552#ifdef CONFIG_DM_ETH
5553 hw = dev_get_priv(dev);
5554#endif
ce5207e1
KM
5555 /* Handle the "SPI" subcommand */
5556 if (!strcmp(argv[2], "spi"))
5557 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5558#endif
5559
5560 cmd_usage(cmdtp);
5561 return 1;
5562}
5563
5564U_BOOT_CMD(
5565 e1000, 7, 0, do_e1000,
5566 "Intel e1000 controller management",
5567 /* */"<card#> print-mac-address\n"
5568#ifdef CONFIG_E1000_SPI
5569 "e1000 <card#> spi show [<offset> [<length>]]\n"
5570 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5571 "e1000 <card#> spi program <addr> <offset> <length>\n"
5572 "e1000 <card#> spi checksum [update]\n"
5573#endif
5574 " - Manage the Intel E1000 PCI device"
5575);
5576#endif /* not CONFIG_CMD_E1000 */
c6d80a15
SG
5577
5578#ifdef CONFIG_DM_ETH
5579static int e1000_eth_start(struct udevice *dev)
5580{
5581 struct eth_pdata *plat = dev_get_platdata(dev);
5582 struct e1000_hw *hw = dev_get_priv(dev);
5583
5584 return _e1000_init(hw, plat->enetaddr);
5585}
5586
5587static void e1000_eth_stop(struct udevice *dev)
5588{
5589 struct e1000_hw *hw = dev_get_priv(dev);
5590
5591 _e1000_disable(hw);
5592}
5593
5594static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5595{
5596 struct e1000_hw *hw = dev_get_priv(dev);
5597 int ret;
5598
5599 ret = _e1000_transmit(hw, packet, length);
5600
5601 return ret ? 0 : -ETIMEDOUT;
5602}
5603
5604static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5605{
5606 struct e1000_hw *hw = dev_get_priv(dev);
5607 int len;
5608
5609 len = _e1000_poll(hw);
5610 if (len)
5611 *packetp = packet;
5612
5613 return len ? len : -EAGAIN;
5614}
5615
5616static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5617{
5618 struct e1000_hw *hw = dev_get_priv(dev);
5619
5620 fill_rx(hw);
5621
5622 return 0;
5623}
5624
5625static int e1000_eth_probe(struct udevice *dev)
5626{
5627 struct eth_pdata *plat = dev_get_platdata(dev);
5628 struct e1000_hw *hw = dev_get_priv(dev);
5629 int ret;
5630
5631 hw->name = dev->name;
21ccce1b 5632 ret = e1000_init_one(hw, trailing_strtol(dev->name),
81dab9af 5633 dev, plat->enetaddr);
c6d80a15
SG
5634 if (ret < 0) {
5635 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5636 return ret;
5637 }
5638
5639 return 0;
5640}
5641
5642static int e1000_eth_bind(struct udevice *dev)
5643{
5644 char name[20];
5645
5646 /*
5647 * A simple way to number the devices. When device tree is used this
5648 * is unnecessary, but when the device is just discovered on the PCI
5649 * bus we need a name. We could instead have the uclass figure out
5650 * which devices are different and number them.
5651 */
5652 e1000_name(name, num_cards++);
5653
5654 return device_set_name(dev, name);
5655}
5656
5657static const struct eth_ops e1000_eth_ops = {
5658 .start = e1000_eth_start,
5659 .send = e1000_eth_send,
5660 .recv = e1000_eth_recv,
5661 .stop = e1000_eth_stop,
5662 .free_pkt = e1000_free_pkt,
5663};
5664
5665static const struct udevice_id e1000_eth_ids[] = {
5666 { .compatible = "intel,e1000" },
5667 { }
5668};
5669
5670U_BOOT_DRIVER(eth_e1000) = {
5671 .name = "eth_e1000",
5672 .id = UCLASS_ETH,
5673 .of_match = e1000_eth_ids,
5674 .bind = e1000_eth_bind,
5675 .probe = e1000_eth_probe,
5676 .ops = &e1000_eth_ops,
5677 .priv_auto_alloc_size = sizeof(struct e1000_hw),
5678 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5679};
5680
5681U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5682#endif