]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/net/e1000.c
e1000: remove unnecessary clearing of SWSM.SWSM_SMBI
[people/ms/u-boot.git] / drivers / net / e1000.c
CommitLineData
682011ff 1/**************************************************************************
ac3315c2 2Intel Pro 1000 for ppcboot/das-u-boot
682011ff
WD
3Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
8bde7f77 9
682011ff 10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
8bde7f77 11
1a459660 12 * SPDX-License-Identifier: GPL-2.0+
8bde7f77 13
682011ff
WD
14 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18*******************************************************************************/
19/*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
2c2668f9
RZ
28 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
682011ff
WD
30 */
31
32#include "e1000.h"
33
682011ff
WD
34#define TOUT_LOOP 100000
35
f81ecb5d 36#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
682011ff 37#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
682011ff 38
9ea005fb
RZ
39#define E1000_DEFAULT_PCI_PBA 0x00000030
40#define E1000_DEFAULT_PCIE_PBA 0x000a0026
682011ff
WD
41
42/* NIC specific static variables go here */
43
873e8e01
MV
44/* Intel i210 needs the DMA descriptor rings aligned to 128b */
45#define E1000_BUFFER_ALIGN 128
682011ff 46
873e8e01
MV
47DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
48DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
49DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
682011ff
WD
50
51static int tx_tail;
52static int rx_tail, rx_last;
53
d60626f8 54static struct pci_device_id e1000_supported[] = {
682011ff
WD
55 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
8915f118 64 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
682011ff
WD
65 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
2ab4a4d0 68 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
682011ff 69 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
ac3315c2 70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
aa3b8bf9 71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
aa070789
RZ
72 /* E1000 PCIe card */
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
2c2668f9 89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
aa070789
RZ
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
6c499abe
MZ
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED},
95186063 97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER},
6c499abe 98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER},
95186063
MV
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX},
103
1bc43437 104 {}
682011ff
WD
105};
106
107/* Function forward declarations */
108static int e1000_setup_link(struct eth_device *nic);
109static int e1000_setup_fiber_link(struct eth_device *nic);
110static int e1000_setup_copper_link(struct eth_device *nic);
111static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
112static void e1000_config_collision_dist(struct e1000_hw *hw);
113static int e1000_config_mac_to_phy(struct e1000_hw *hw);
114static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
115static int e1000_check_for_link(struct eth_device *nic);
116static int e1000_wait_autoneg(struct e1000_hw *hw);
aa070789 117static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
682011ff
WD
118 uint16_t * duplex);
119static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
120 uint16_t * phy_data);
121static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
122 uint16_t phy_data);
aa070789 123static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
682011ff
WD
124static int e1000_phy_reset(struct e1000_hw *hw);
125static int e1000_detect_gig_phy(struct e1000_hw *hw);
aa070789
RZ
126static void e1000_set_media_type(struct e1000_hw *hw);
127
128static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
7e2d991d 129static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
aa070789 130static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
682011ff 131
8712adfd
RI
132#ifndef CONFIG_E1000_NO_NVM
133static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
ecbd2078
RZ
134static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
135 uint16_t words,
136 uint16_t *data);
682011ff
WD
137/******************************************************************************
138 * Raises the EEPROM's clock input.
139 *
140 * hw - Struct containing variables accessed by shared code
141 * eecd - EECD's current value
142 *****************************************************************************/
2326a94d 143void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
682011ff
WD
144{
145 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
146 * wait 50 microseconds.
147 */
148 *eecd = *eecd | E1000_EECD_SK;
149 E1000_WRITE_REG(hw, EECD, *eecd);
150 E1000_WRITE_FLUSH(hw);
151 udelay(50);
152}
153
154/******************************************************************************
155 * Lowers the EEPROM's clock input.
156 *
8bde7f77 157 * hw - Struct containing variables accessed by shared code
682011ff
WD
158 * eecd - EECD's current value
159 *****************************************************************************/
2326a94d 160void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
682011ff 161{
8bde7f77
WD
162 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
163 * wait 50 microseconds.
682011ff
WD
164 */
165 *eecd = *eecd & ~E1000_EECD_SK;
166 E1000_WRITE_REG(hw, EECD, *eecd);
167 E1000_WRITE_FLUSH(hw);
168 udelay(50);
169}
170
171/******************************************************************************
172 * Shift data bits out to the EEPROM.
173 *
174 * hw - Struct containing variables accessed by shared code
175 * data - data to send to the EEPROM
176 * count - number of bits to shift out
177 *****************************************************************************/
178static void
179e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
180{
181 uint32_t eecd;
182 uint32_t mask;
183
184 /* We need to shift "count" bits out to the EEPROM. So, value in the
185 * "data" parameter will be shifted out to the EEPROM one bit at a time.
8bde7f77 186 * In order to do this, "data" must be broken down into bits.
682011ff
WD
187 */
188 mask = 0x01 << (count - 1);
189 eecd = E1000_READ_REG(hw, EECD);
190 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
191 do {
192 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
193 * and then raising and then lowering the clock (the SK bit controls
194 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
195 * by setting "DI" to "0" and then raising and then lowering the clock.
196 */
197 eecd &= ~E1000_EECD_DI;
198
199 if (data & mask)
200 eecd |= E1000_EECD_DI;
201
202 E1000_WRITE_REG(hw, EECD, eecd);
203 E1000_WRITE_FLUSH(hw);
204
205 udelay(50);
206
207 e1000_raise_ee_clk(hw, &eecd);
208 e1000_lower_ee_clk(hw, &eecd);
209
210 mask = mask >> 1;
211
212 } while (mask);
213
214 /* We leave the "DI" bit set to "0" when we leave this routine. */
215 eecd &= ~E1000_EECD_DI;
216 E1000_WRITE_REG(hw, EECD, eecd);
217}
218
219/******************************************************************************
220 * Shift data bits in from the EEPROM
221 *
222 * hw - Struct containing variables accessed by shared code
223 *****************************************************************************/
224static uint16_t
aa070789 225e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
682011ff
WD
226{
227 uint32_t eecd;
228 uint32_t i;
229 uint16_t data;
230
aa070789
RZ
231 /* In order to read a register from the EEPROM, we need to shift 'count'
232 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
233 * input to the EEPROM (setting the SK bit), and then reading the
234 * value of the "DO" bit. During this "shifting in" process the
235 * "DI" bit should always be clear.
682011ff
WD
236 */
237
238 eecd = E1000_READ_REG(hw, EECD);
239
240 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
241 data = 0;
242
aa070789 243 for (i = 0; i < count; i++) {
682011ff
WD
244 data = data << 1;
245 e1000_raise_ee_clk(hw, &eecd);
246
247 eecd = E1000_READ_REG(hw, EECD);
248
249 eecd &= ~(E1000_EECD_DI);
250 if (eecd & E1000_EECD_DO)
251 data |= 1;
252
253 e1000_lower_ee_clk(hw, &eecd);
254 }
255
256 return data;
257}
258
259/******************************************************************************
aa070789 260 * Returns EEPROM to a "standby" state
682011ff
WD
261 *
262 * hw - Struct containing variables accessed by shared code
682011ff 263 *****************************************************************************/
2326a94d 264void e1000_standby_eeprom(struct e1000_hw *hw)
682011ff 265{
aa070789 266 struct e1000_eeprom_info *eeprom = &hw->eeprom;
682011ff
WD
267 uint32_t eecd;
268
269 eecd = E1000_READ_REG(hw, EECD);
270
aa070789
RZ
271 if (eeprom->type == e1000_eeprom_microwire) {
272 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
273 E1000_WRITE_REG(hw, EECD, eecd);
274 E1000_WRITE_FLUSH(hw);
275 udelay(eeprom->delay_usec);
682011ff 276
aa070789
RZ
277 /* Clock high */
278 eecd |= E1000_EECD_SK;
279 E1000_WRITE_REG(hw, EECD, eecd);
280 E1000_WRITE_FLUSH(hw);
281 udelay(eeprom->delay_usec);
282
283 /* Select EEPROM */
284 eecd |= E1000_EECD_CS;
285 E1000_WRITE_REG(hw, EECD, eecd);
286 E1000_WRITE_FLUSH(hw);
287 udelay(eeprom->delay_usec);
288
289 /* Clock low */
290 eecd &= ~E1000_EECD_SK;
291 E1000_WRITE_REG(hw, EECD, eecd);
292 E1000_WRITE_FLUSH(hw);
293 udelay(eeprom->delay_usec);
294 } else if (eeprom->type == e1000_eeprom_spi) {
295 /* Toggle CS to flush commands */
296 eecd |= E1000_EECD_CS;
297 E1000_WRITE_REG(hw, EECD, eecd);
298 E1000_WRITE_FLUSH(hw);
299 udelay(eeprom->delay_usec);
300 eecd &= ~E1000_EECD_CS;
301 E1000_WRITE_REG(hw, EECD, eecd);
302 E1000_WRITE_FLUSH(hw);
303 udelay(eeprom->delay_usec);
304 }
305}
306
307/***************************************************************************
308* Description: Determines if the onboard NVM is FLASH or EEPROM.
309*
310* hw - Struct containing variables accessed by shared code
311****************************************************************************/
472d5460 312static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
aa070789
RZ
313{
314 uint32_t eecd = 0;
315
316 DEBUGFUNC();
317
318 if (hw->mac_type == e1000_ich8lan)
472d5460 319 return false;
aa070789 320
2c2668f9 321 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
aa070789
RZ
322 eecd = E1000_READ_REG(hw, EECD);
323
324 /* Isolate bits 15 & 16 */
325 eecd = ((eecd >> 15) & 0x03);
326
327 /* If both bits are set, device is Flash type */
328 if (eecd == 0x03)
472d5460 329 return false;
aa070789 330 }
472d5460 331 return true;
682011ff
WD
332}
333
334/******************************************************************************
aa070789 335 * Prepares EEPROM for access
8bde7f77 336 *
682011ff 337 * hw - Struct containing variables accessed by shared code
aa070789
RZ
338 *
339 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
340 * function should be called before issuing a command to the EEPROM.
682011ff 341 *****************************************************************************/
2326a94d 342int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
682011ff 343{
aa070789
RZ
344 struct e1000_eeprom_info *eeprom = &hw->eeprom;
345 uint32_t eecd, i = 0;
682011ff 346
f81ecb5d 347 DEBUGFUNC();
aa070789
RZ
348
349 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
350 return -E1000_ERR_SWFW_SYNC;
682011ff
WD
351 eecd = E1000_READ_REG(hw, EECD);
352
95186063 353 if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
aa070789
RZ
354 /* Request EEPROM Access */
355 if (hw->mac_type > e1000_82544) {
356 eecd |= E1000_EECD_REQ;
357 E1000_WRITE_REG(hw, EECD, eecd);
358 eecd = E1000_READ_REG(hw, EECD);
359 while ((!(eecd & E1000_EECD_GNT)) &&
360 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
361 i++;
362 udelay(5);
363 eecd = E1000_READ_REG(hw, EECD);
364 }
365 if (!(eecd & E1000_EECD_GNT)) {
366 eecd &= ~E1000_EECD_REQ;
367 E1000_WRITE_REG(hw, EECD, eecd);
368 DEBUGOUT("Could not acquire EEPROM grant\n");
369 return -E1000_ERR_EEPROM;
370 }
371 }
372 }
682011ff 373
aa070789 374 /* Setup EEPROM for Read/Write */
682011ff 375
aa070789
RZ
376 if (eeprom->type == e1000_eeprom_microwire) {
377 /* Clear SK and DI */
378 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
379 E1000_WRITE_REG(hw, EECD, eecd);
682011ff 380
aa070789
RZ
381 /* Set CS */
382 eecd |= E1000_EECD_CS;
383 E1000_WRITE_REG(hw, EECD, eecd);
384 } else if (eeprom->type == e1000_eeprom_spi) {
385 /* Clear SK and CS */
386 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
387 E1000_WRITE_REG(hw, EECD, eecd);
388 udelay(1);
389 }
390
391 return E1000_SUCCESS;
682011ff
WD
392}
393
394/******************************************************************************
aa070789
RZ
395 * Sets up eeprom variables in the hw struct. Must be called after mac_type
396 * is configured. Additionally, if this is ICH8, the flash controller GbE
397 * registers must be mapped, or this will crash.
682011ff
WD
398 *
399 * hw - Struct containing variables accessed by shared code
682011ff 400 *****************************************************************************/
aa070789 401static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
682011ff 402{
aa070789 403 struct e1000_eeprom_info *eeprom = &hw->eeprom;
95186063 404 uint32_t eecd;
aa070789
RZ
405 int32_t ret_val = E1000_SUCCESS;
406 uint16_t eeprom_size;
682011ff 407
95186063
MV
408 if (hw->mac_type == e1000_igb)
409 eecd = E1000_READ_REG(hw, I210_EECD);
410 else
411 eecd = E1000_READ_REG(hw, EECD);
412
f81ecb5d 413 DEBUGFUNC();
aa070789
RZ
414
415 switch (hw->mac_type) {
416 case e1000_82542_rev2_0:
417 case e1000_82542_rev2_1:
418 case e1000_82543:
419 case e1000_82544:
420 eeprom->type = e1000_eeprom_microwire;
421 eeprom->word_size = 64;
422 eeprom->opcode_bits = 3;
423 eeprom->address_bits = 6;
424 eeprom->delay_usec = 50;
472d5460
YS
425 eeprom->use_eerd = false;
426 eeprom->use_eewr = false;
aa070789
RZ
427 break;
428 case e1000_82540:
429 case e1000_82545:
430 case e1000_82545_rev_3:
431 case e1000_82546:
432 case e1000_82546_rev_3:
433 eeprom->type = e1000_eeprom_microwire;
434 eeprom->opcode_bits = 3;
435 eeprom->delay_usec = 50;
436 if (eecd & E1000_EECD_SIZE) {
437 eeprom->word_size = 256;
438 eeprom->address_bits = 8;
439 } else {
440 eeprom->word_size = 64;
441 eeprom->address_bits = 6;
442 }
472d5460
YS
443 eeprom->use_eerd = false;
444 eeprom->use_eewr = false;
aa070789
RZ
445 break;
446 case e1000_82541:
447 case e1000_82541_rev_2:
448 case e1000_82547:
449 case e1000_82547_rev_2:
450 if (eecd & E1000_EECD_TYPE) {
451 eeprom->type = e1000_eeprom_spi;
452 eeprom->opcode_bits = 8;
453 eeprom->delay_usec = 1;
454 if (eecd & E1000_EECD_ADDR_BITS) {
455 eeprom->page_size = 32;
456 eeprom->address_bits = 16;
457 } else {
458 eeprom->page_size = 8;
459 eeprom->address_bits = 8;
460 }
461 } else {
462 eeprom->type = e1000_eeprom_microwire;
463 eeprom->opcode_bits = 3;
464 eeprom->delay_usec = 50;
465 if (eecd & E1000_EECD_ADDR_BITS) {
466 eeprom->word_size = 256;
467 eeprom->address_bits = 8;
468 } else {
469 eeprom->word_size = 64;
470 eeprom->address_bits = 6;
471 }
472 }
472d5460
YS
473 eeprom->use_eerd = false;
474 eeprom->use_eewr = false;
aa070789
RZ
475 break;
476 case e1000_82571:
477 case e1000_82572:
478 eeprom->type = e1000_eeprom_spi;
479 eeprom->opcode_bits = 8;
480 eeprom->delay_usec = 1;
481 if (eecd & E1000_EECD_ADDR_BITS) {
482 eeprom->page_size = 32;
483 eeprom->address_bits = 16;
484 } else {
485 eeprom->page_size = 8;
486 eeprom->address_bits = 8;
487 }
472d5460
YS
488 eeprom->use_eerd = false;
489 eeprom->use_eewr = false;
aa070789
RZ
490 break;
491 case e1000_82573:
2c2668f9 492 case e1000_82574:
aa070789
RZ
493 eeprom->type = e1000_eeprom_spi;
494 eeprom->opcode_bits = 8;
495 eeprom->delay_usec = 1;
496 if (eecd & E1000_EECD_ADDR_BITS) {
497 eeprom->page_size = 32;
498 eeprom->address_bits = 16;
499 } else {
500 eeprom->page_size = 8;
501 eeprom->address_bits = 8;
682011ff 502 }
472d5460 503 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
95186063
MV
504 eeprom->use_eerd = true;
505 eeprom->use_eewr = true;
506
aa070789
RZ
507 eeprom->type = e1000_eeprom_flash;
508 eeprom->word_size = 2048;
509
510 /* Ensure that the Autonomous FLASH update bit is cleared due to
511 * Flash update issue on parts which use a FLASH for NVM. */
512 eecd &= ~E1000_EECD_AUPDEN;
682011ff 513 E1000_WRITE_REG(hw, EECD, eecd);
682011ff 514 }
aa070789
RZ
515 break;
516 case e1000_80003es2lan:
517 eeprom->type = e1000_eeprom_spi;
518 eeprom->opcode_bits = 8;
519 eeprom->delay_usec = 1;
520 if (eecd & E1000_EECD_ADDR_BITS) {
521 eeprom->page_size = 32;
522 eeprom->address_bits = 16;
523 } else {
524 eeprom->page_size = 8;
525 eeprom->address_bits = 8;
526 }
472d5460
YS
527 eeprom->use_eerd = true;
528 eeprom->use_eewr = false;
aa070789 529 break;
95186063
MV
530 case e1000_igb:
531 /* i210 has 4k of iNVM mapped as EEPROM */
532 eeprom->type = e1000_eeprom_invm;
533 eeprom->opcode_bits = 8;
534 eeprom->delay_usec = 1;
535 eeprom->page_size = 32;
536 eeprom->address_bits = 16;
537 eeprom->use_eerd = true;
538 eeprom->use_eewr = false;
539 break;
682011ff 540
aa070789
RZ
541 /* ich8lan does not support currently. if needed, please
542 * add corresponding code and functions.
543 */
544#if 0
545 case e1000_ich8lan:
546 {
547 int32_t i = 0;
548
549 eeprom->type = e1000_eeprom_ich8;
472d5460
YS
550 eeprom->use_eerd = false;
551 eeprom->use_eewr = false;
aa070789
RZ
552 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
553 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
554 ICH_FLASH_GFPREG);
555 /* Zero the shadow RAM structure. But don't load it from NVM
556 * so as to save time for driver init */
557 if (hw->eeprom_shadow_ram != NULL) {
558 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
472d5460 559 hw->eeprom_shadow_ram[i].modified = false;
aa070789
RZ
560 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
561 }
562 }
682011ff 563
aa070789
RZ
564 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
565 ICH_FLASH_SECTOR_SIZE;
682011ff 566
aa070789
RZ
567 hw->flash_bank_size = ((flash_size >> 16)
568 & ICH_GFPREG_BASE_MASK) + 1;
569 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
682011ff 570
aa070789 571 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
682011ff 572
aa070789
RZ
573 hw->flash_bank_size /= 2 * sizeof(uint16_t);
574 break;
575 }
576#endif
577 default:
578 break;
682011ff
WD
579 }
580
95186063
MV
581 if (eeprom->type == e1000_eeprom_spi ||
582 eeprom->type == e1000_eeprom_invm) {
aa070789
RZ
583 /* eeprom_size will be an enum [0..8] that maps
584 * to eeprom sizes 128B to
585 * 32KB (incremented by powers of 2).
586 */
587 if (hw->mac_type <= e1000_82547_rev_2) {
588 /* Set to default value for initial eeprom read. */
589 eeprom->word_size = 64;
590 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
591 &eeprom_size);
592 if (ret_val)
593 return ret_val;
594 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
595 >> EEPROM_SIZE_SHIFT;
596 /* 256B eeprom size was not supported in earlier
597 * hardware, so we bump eeprom_size up one to
598 * ensure that "1" (which maps to 256B) is never
599 * the result used in the shifting logic below. */
600 if (eeprom_size)
601 eeprom_size++;
602 } else {
603 eeprom_size = (uint16_t)((eecd &
604 E1000_EECD_SIZE_EX_MASK) >>
605 E1000_EECD_SIZE_EX_SHIFT);
606 }
607
608 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
609 }
610 return ret_val;
682011ff
WD
611}
612
aa070789
RZ
613/******************************************************************************
614 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
615 *
616 * hw - Struct containing variables accessed by shared code
617 *****************************************************************************/
618static int32_t
619e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
682011ff 620{
aa070789
RZ
621 uint32_t attempts = 100000;
622 uint32_t i, reg = 0;
623 int32_t done = E1000_ERR_EEPROM;
682011ff 624
aa070789 625 for (i = 0; i < attempts; i++) {
95186063
MV
626 if (eerd == E1000_EEPROM_POLL_READ) {
627 if (hw->mac_type == e1000_igb)
628 reg = E1000_READ_REG(hw, I210_EERD);
629 else
630 reg = E1000_READ_REG(hw, EERD);
631 } else {
632 if (hw->mac_type == e1000_igb)
633 reg = E1000_READ_REG(hw, I210_EEWR);
634 else
635 reg = E1000_READ_REG(hw, EEWR);
636 }
aa070789
RZ
637
638 if (reg & E1000_EEPROM_RW_REG_DONE) {
639 done = E1000_SUCCESS;
640 break;
641 }
642 udelay(5);
643 }
644
645 return done;
682011ff
WD
646}
647
aa070789
RZ
648/******************************************************************************
649 * Reads a 16 bit word from the EEPROM using the EERD register.
650 *
651 * hw - Struct containing variables accessed by shared code
652 * offset - offset of word in the EEPROM to read
653 * data - word read from the EEPROM
654 * words - number of words to read
655 *****************************************************************************/
656static int32_t
657e1000_read_eeprom_eerd(struct e1000_hw *hw,
658 uint16_t offset,
659 uint16_t words,
660 uint16_t *data)
682011ff 661{
aa070789
RZ
662 uint32_t i, eerd = 0;
663 int32_t error = 0;
664
665 for (i = 0; i < words; i++) {
666 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
667 E1000_EEPROM_RW_REG_START;
668
95186063
MV
669 if (hw->mac_type == e1000_igb)
670 E1000_WRITE_REG(hw, I210_EERD, eerd);
671 else
672 E1000_WRITE_REG(hw, EERD, eerd);
673
aa070789
RZ
674 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
675
676 if (error)
677 break;
95186063
MV
678
679 if (hw->mac_type == e1000_igb) {
680 data[i] = (E1000_READ_REG(hw, I210_EERD) >>
681 E1000_EEPROM_RW_REG_DATA);
682 } else {
683 data[i] = (E1000_READ_REG(hw, EERD) >>
aa070789 684 E1000_EEPROM_RW_REG_DATA);
95186063 685 }
682011ff 686
682011ff 687 }
aa070789
RZ
688
689 return error;
682011ff
WD
690}
691
2326a94d 692void e1000_release_eeprom(struct e1000_hw *hw)
682011ff
WD
693{
694 uint32_t eecd;
682011ff 695
aa070789
RZ
696 DEBUGFUNC();
697
698 eecd = E1000_READ_REG(hw, EECD);
699
700 if (hw->eeprom.type == e1000_eeprom_spi) {
701 eecd |= E1000_EECD_CS; /* Pull CS high */
702 eecd &= ~E1000_EECD_SK; /* Lower SCK */
703
682011ff 704 E1000_WRITE_REG(hw, EECD, eecd);
aa070789
RZ
705
706 udelay(hw->eeprom.delay_usec);
707 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
708 /* cleanup eeprom */
709
710 /* CS on Microwire is active-high */
711 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
712
713 E1000_WRITE_REG(hw, EECD, eecd);
714
715 /* Rising edge of clock */
716 eecd |= E1000_EECD_SK;
717 E1000_WRITE_REG(hw, EECD, eecd);
718 E1000_WRITE_FLUSH(hw);
719 udelay(hw->eeprom.delay_usec);
720
721 /* Falling edge of clock */
722 eecd &= ~E1000_EECD_SK;
723 E1000_WRITE_REG(hw, EECD, eecd);
724 E1000_WRITE_FLUSH(hw);
725 udelay(hw->eeprom.delay_usec);
682011ff 726 }
682011ff
WD
727
728 /* Stop requesting EEPROM access */
729 if (hw->mac_type > e1000_82544) {
682011ff
WD
730 eecd &= ~E1000_EECD_REQ;
731 E1000_WRITE_REG(hw, EECD, eecd);
732 }
7e2d991d
TH
733
734 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
682011ff 735}
7e2d991d 736
682011ff 737/******************************************************************************
aa070789 738 * Reads a 16 bit word from the EEPROM.
8bde7f77 739 *
682011ff 740 * hw - Struct containing variables accessed by shared code
682011ff 741 *****************************************************************************/
aa070789
RZ
742static int32_t
743e1000_spi_eeprom_ready(struct e1000_hw *hw)
682011ff 744{
aa070789
RZ
745 uint16_t retry_count = 0;
746 uint8_t spi_stat_reg;
682011ff
WD
747
748 DEBUGFUNC();
749
aa070789
RZ
750 /* Read "Status Register" repeatedly until the LSB is cleared. The
751 * EEPROM will signal that the command has been completed by clearing
752 * bit 0 of the internal status register. If it's not cleared within
753 * 5 milliseconds, then error out.
754 */
755 retry_count = 0;
756 do {
757 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
758 hw->eeprom.opcode_bits);
759 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
760 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
761 break;
8bde7f77 762
aa070789
RZ
763 udelay(5);
764 retry_count += 5;
765
766 e1000_standby_eeprom(hw);
767 } while (retry_count < EEPROM_MAX_RETRY_SPI);
768
769 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
770 * only 0-5mSec on 5V devices)
771 */
772 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
773 DEBUGOUT("SPI EEPROM Status error\n");
682011ff
WD
774 return -E1000_ERR_EEPROM;
775 }
aa070789
RZ
776
777 return E1000_SUCCESS;
682011ff
WD
778}
779
780/******************************************************************************
aa070789 781 * Reads a 16 bit word from the EEPROM.
682011ff 782 *
aa070789
RZ
783 * hw - Struct containing variables accessed by shared code
784 * offset - offset of word in the EEPROM to read
785 * data - word read from the EEPROM
682011ff 786 *****************************************************************************/
aa070789
RZ
787static int32_t
788e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
789 uint16_t words, uint16_t *data)
682011ff 790{
aa070789
RZ
791 struct e1000_eeprom_info *eeprom = &hw->eeprom;
792 uint32_t i = 0;
682011ff
WD
793
794 DEBUGFUNC();
795
aa070789
RZ
796 /* If eeprom is not yet detected, do so now */
797 if (eeprom->word_size == 0)
798 e1000_init_eeprom_params(hw);
799
800 /* A check for invalid values: offset too large, too many words,
801 * and not enough words.
802 */
803 if ((offset >= eeprom->word_size) ||
804 (words > eeprom->word_size - offset) ||
805 (words == 0)) {
806 DEBUGOUT("\"words\" parameter out of bounds."
807 "Words = %d, size = %d\n", offset, eeprom->word_size);
808 return -E1000_ERR_EEPROM;
809 }
810
811 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
812 * directly. In this case, we need to acquire the EEPROM so that
813 * FW or other port software does not interrupt.
814 */
472d5460
YS
815 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
816 hw->eeprom.use_eerd == false) {
aa070789
RZ
817
818 /* Prepare the EEPROM for bit-bang reading */
819 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
820 return -E1000_ERR_EEPROM;
821 }
822
823 /* Eerd register EEPROM access requires no eeprom aquire/release */
472d5460 824 if (eeprom->use_eerd == true)
aa070789
RZ
825 return e1000_read_eeprom_eerd(hw, offset, words, data);
826
827 /* ich8lan does not support currently. if needed, please
828 * add corresponding code and functions.
829 */
830#if 0
831 /* ICH EEPROM access is done via the ICH flash controller */
832 if (eeprom->type == e1000_eeprom_ich8)
833 return e1000_read_eeprom_ich8(hw, offset, words, data);
834#endif
835 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
836 * acquired the EEPROM at this point, so any returns should relase it */
837 if (eeprom->type == e1000_eeprom_spi) {
838 uint16_t word_in;
839 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
840
841 if (e1000_spi_eeprom_ready(hw)) {
842 e1000_release_eeprom(hw);
843 return -E1000_ERR_EEPROM;
844 }
845
846 e1000_standby_eeprom(hw);
847
848 /* Some SPI eeproms use the 8th address bit embedded in
849 * the opcode */
850 if ((eeprom->address_bits == 8) && (offset >= 128))
851 read_opcode |= EEPROM_A8_OPCODE_SPI;
852
853 /* Send the READ command (opcode + addr) */
854 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
855 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
856 eeprom->address_bits);
857
858 /* Read the data. The address of the eeprom internally
859 * increments with each byte (spi) being read, saving on the
860 * overhead of eeprom setup and tear-down. The address
861 * counter will roll over if reading beyond the size of
862 * the eeprom, thus allowing the entire memory to be read
863 * starting from any offset. */
864 for (i = 0; i < words; i++) {
865 word_in = e1000_shift_in_ee_bits(hw, 16);
866 data[i] = (word_in >> 8) | (word_in << 8);
867 }
868 } else if (eeprom->type == e1000_eeprom_microwire) {
869 for (i = 0; i < words; i++) {
870 /* Send the READ command (opcode + addr) */
871 e1000_shift_out_ee_bits(hw,
872 EEPROM_READ_OPCODE_MICROWIRE,
873 eeprom->opcode_bits);
874 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
875 eeprom->address_bits);
876
877 /* Read the data. For microwire, each word requires
878 * the overhead of eeprom setup and tear-down. */
879 data[i] = e1000_shift_in_ee_bits(hw, 16);
880 e1000_standby_eeprom(hw);
881 }
882 }
883
884 /* End this read operation */
885 e1000_release_eeprom(hw);
886
887 return E1000_SUCCESS;
888}
889
890/******************************************************************************
891 * Verifies that the EEPROM has a valid checksum
892 *
893 * hw - Struct containing variables accessed by shared code
894 *
895 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
896 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
897 * valid.
898 *****************************************************************************/
114d7fc0 899static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
aa070789 900{
114d7fc0 901 uint16_t i, checksum, checksum_reg, *buf;
aa070789
RZ
902
903 DEBUGFUNC();
904
114d7fc0
KM
905 /* Allocate a temporary buffer */
906 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
907 if (!buf) {
908 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
909 return -E1000_ERR_EEPROM;
aa070789
RZ
910 }
911
114d7fc0
KM
912 /* Read the EEPROM */
913 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
914 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
aa070789
RZ
915 return -E1000_ERR_EEPROM;
916 }
114d7fc0
KM
917
918 /* Compute the checksum */
7a341066 919 checksum = 0;
114d7fc0
KM
920 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
921 checksum += buf[i];
922 checksum = ((uint16_t)EEPROM_SUM) - checksum;
923 checksum_reg = buf[i];
924
925 /* Verify it! */
926 if (checksum == checksum_reg)
927 return 0;
928
929 /* Hrm, verification failed, print an error */
930 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
931 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
932 checksum_reg, checksum);
933
934 return -E1000_ERR_EEPROM;
aa070789 935}
8712adfd 936#endif /* CONFIG_E1000_NO_NVM */
ecbd2078
RZ
937
938/*****************************************************************************
939 * Set PHY to class A mode
940 * Assumes the following operations will follow to enable the new class mode.
941 * 1. Do a PHY soft reset
942 * 2. Restart auto-negotiation or force link.
943 *
944 * hw - Struct containing variables accessed by shared code
945 ****************************************************************************/
946static int32_t
947e1000_set_phy_mode(struct e1000_hw *hw)
948{
8712adfd 949#ifndef CONFIG_E1000_NO_NVM
ecbd2078
RZ
950 int32_t ret_val;
951 uint16_t eeprom_data;
952
953 DEBUGFUNC();
954
955 if ((hw->mac_type == e1000_82545_rev_3) &&
956 (hw->media_type == e1000_media_type_copper)) {
957 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
958 1, &eeprom_data);
959 if (ret_val)
960 return ret_val;
961
962 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
963 (eeprom_data & EEPROM_PHY_CLASS_A)) {
964 ret_val = e1000_write_phy_reg(hw,
965 M88E1000_PHY_PAGE_SELECT, 0x000B);
966 if (ret_val)
967 return ret_val;
968 ret_val = e1000_write_phy_reg(hw,
969 M88E1000_PHY_GEN_CONTROL, 0x8104);
970 if (ret_val)
971 return ret_val;
972
472d5460 973 hw->phy_reset_disable = false;
ecbd2078
RZ
974 }
975 }
8712adfd 976#endif
ecbd2078
RZ
977 return E1000_SUCCESS;
978}
aa070789 979
8712adfd 980#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
981/***************************************************************************
982 *
983 * Obtaining software semaphore bit (SMBI) before resetting PHY.
984 *
985 * hw: Struct containing variables accessed by shared code
986 *
987 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
988 * E1000_SUCCESS at any other case.
989 *
990 ***************************************************************************/
991static int32_t
992e1000_get_software_semaphore(struct e1000_hw *hw)
993{
994 int32_t timeout = hw->eeprom.word_size + 1;
995 uint32_t swsm;
996
997 DEBUGFUNC();
998
999 if (hw->mac_type != e1000_80003es2lan)
1000 return E1000_SUCCESS;
1001
1002 while (timeout) {
1003 swsm = E1000_READ_REG(hw, SWSM);
1004 /* If SMBI bit cleared, it is now set and we hold
1005 * the semaphore */
1006 if (!(swsm & E1000_SWSM_SMBI))
1007 break;
1008 mdelay(1);
1009 timeout--;
1010 }
1011
1012 if (!timeout) {
1013 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1014 return -E1000_ERR_RESET;
1015 }
1016
1017 return E1000_SUCCESS;
1018}
8712adfd 1019#endif
aa070789
RZ
1020
1021/***************************************************************************
1022 * This function clears HW semaphore bits.
1023 *
1024 * hw: Struct containing variables accessed by shared code
1025 *
1026 * returns: - None.
1027 *
1028 ***************************************************************************/
1029static void
1030e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1031{
8712adfd 1032#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
1033 uint32_t swsm;
1034
1035 DEBUGFUNC();
1036
1037 if (!hw->eeprom_semaphore_present)
1038 return;
1039
1040 swsm = E1000_READ_REG(hw, SWSM);
1041 if (hw->mac_type == e1000_80003es2lan) {
1042 /* Release both semaphores. */
1043 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1044 } else
1045 swsm &= ~(E1000_SWSM_SWESMBI);
1046 E1000_WRITE_REG(hw, SWSM, swsm);
8712adfd 1047#endif
aa070789
RZ
1048}
1049
1050/***************************************************************************
1051 *
1052 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1053 * adapter or Eeprom access.
1054 *
1055 * hw: Struct containing variables accessed by shared code
1056 *
1057 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1058 * E1000_SUCCESS at any other case.
1059 *
1060 ***************************************************************************/
1061static int32_t
1062e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1063{
8712adfd 1064#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
1065 int32_t timeout;
1066 uint32_t swsm;
1067
1068 DEBUGFUNC();
1069
1070 if (!hw->eeprom_semaphore_present)
1071 return E1000_SUCCESS;
1072
1073 if (hw->mac_type == e1000_80003es2lan) {
1074 /* Get the SW semaphore. */
1075 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1076 return -E1000_ERR_EEPROM;
1077 }
1078
1079 /* Get the FW semaphore. */
1080 timeout = hw->eeprom.word_size + 1;
1081 while (timeout) {
1082 swsm = E1000_READ_REG(hw, SWSM);
1083 swsm |= E1000_SWSM_SWESMBI;
1084 E1000_WRITE_REG(hw, SWSM, swsm);
1085 /* if we managed to set the bit we got the semaphore. */
1086 swsm = E1000_READ_REG(hw, SWSM);
1087 if (swsm & E1000_SWSM_SWESMBI)
1088 break;
1089
1090 udelay(50);
1091 timeout--;
1092 }
1093
1094 if (!timeout) {
1095 /* Release semaphores */
1096 e1000_put_hw_eeprom_semaphore(hw);
1097 DEBUGOUT("Driver can't access the Eeprom - "
1098 "SWESMBI bit is set.\n");
1099 return -E1000_ERR_EEPROM;
1100 }
8712adfd 1101#endif
aa070789
RZ
1102 return E1000_SUCCESS;
1103}
1104
7e2d991d 1105/* Take ownership of the PHY */
aa070789
RZ
1106static int32_t
1107e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1108{
1109 uint32_t swfw_sync = 0;
1110 uint32_t swmask = mask;
1111 uint32_t fwmask = mask << 16;
1112 int32_t timeout = 200;
1113
1114 DEBUGFUNC();
1115 while (timeout) {
1116 if (e1000_get_hw_eeprom_semaphore(hw))
1117 return -E1000_ERR_SWFW_SYNC;
1118
3c63dd53 1119 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
76f8cdb2 1120 if (!(swfw_sync & (fwmask | swmask)))
aa070789
RZ
1121 break;
1122
1123 /* firmware currently using resource (fwmask) */
1124 /* or other software thread currently using resource (swmask) */
1125 e1000_put_hw_eeprom_semaphore(hw);
1126 mdelay(5);
1127 timeout--;
1128 }
1129
1130 if (!timeout) {
1131 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1132 return -E1000_ERR_SWFW_SYNC;
1133 }
1134
1135 swfw_sync |= swmask;
1136 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1137
1138 e1000_put_hw_eeprom_semaphore(hw);
1139 return E1000_SUCCESS;
1140}
1141
7e2d991d
TH
1142static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1143{
1144 uint32_t swfw_sync = 0;
1145
1146 DEBUGFUNC();
1147 while (e1000_get_hw_eeprom_semaphore(hw))
1148 ; /* Empty */
1149
1150 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1151 swfw_sync &= ~mask;
1152 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1153
1154 e1000_put_hw_eeprom_semaphore(hw);
1155}
1156
472d5460 1157static bool e1000_is_second_port(struct e1000_hw *hw)
987b43a1
KM
1158{
1159 switch (hw->mac_type) {
1160 case e1000_80003es2lan:
1161 case e1000_82546:
1162 case e1000_82571:
1163 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
472d5460 1164 return true;
987b43a1
KM
1165 /* Fallthrough */
1166 default:
472d5460 1167 return false;
987b43a1
KM
1168 }
1169}
1170
8712adfd 1171#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
1172/******************************************************************************
1173 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1174 * second function of dual function devices
1175 *
1176 * nic - Struct containing variables accessed by shared code
1177 *****************************************************************************/
1178static int
1179e1000_read_mac_addr(struct eth_device *nic)
1180{
aa070789
RZ
1181 struct e1000_hw *hw = nic->priv;
1182 uint16_t offset;
1183 uint16_t eeprom_data;
95186063 1184 uint32_t reg_data = 0;
aa070789
RZ
1185 int i;
1186
1187 DEBUGFUNC();
1188
1189 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1190 offset = i >> 1;
95186063
MV
1191 if (hw->mac_type == e1000_igb) {
1192 /* i210 preloads MAC address into RAL/RAH registers */
1193 if (offset == 0)
1194 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1195 else if (offset == 1)
1196 reg_data >>= 16;
1197 else if (offset == 2)
1198 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1199 eeprom_data = reg_data & 0xffff;
1200 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
682011ff
WD
1201 DEBUGOUT("EEPROM Read Error\n");
1202 return -E1000_ERR_EEPROM;
1203 }
1204 nic->enetaddr[i] = eeprom_data & 0xff;
1205 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1206 }
987b43a1
KM
1207
1208 /* Invert the last bit if this is the second device */
1209 if (e1000_is_second_port(hw))
1210 nic->enetaddr[5] ^= 1;
1211
ac3315c2 1212#ifdef CONFIG_E1000_FALLBACK_MAC
0adb5b76 1213 if (!is_valid_ethaddr(nic->enetaddr)) {
f2302d44
SR
1214 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1215
1216 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1217 }
7521af1c 1218#endif
682011ff
WD
1219 return 0;
1220}
8712adfd 1221#endif
682011ff
WD
1222
1223/******************************************************************************
1224 * Initializes receive address filters.
1225 *
8bde7f77 1226 * hw - Struct containing variables accessed by shared code
682011ff
WD
1227 *
1228 * Places the MAC address in receive address register 0 and clears the rest
1229 * of the receive addresss registers. Clears the multicast table. Assumes
1230 * the receiver is in reset when the routine is called.
1231 *****************************************************************************/
1232static void
1233e1000_init_rx_addrs(struct eth_device *nic)
1234{
1235 struct e1000_hw *hw = nic->priv;
1236 uint32_t i;
1237 uint32_t addr_low;
1238 uint32_t addr_high;
1239
1240 DEBUGFUNC();
1241
1242 /* Setup the receive address. */
1243 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1244 addr_low = (nic->enetaddr[0] |
1245 (nic->enetaddr[1] << 8) |
1246 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1247
1248 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1249
1250 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1251 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1252
1253 /* Zero out the other 15 receive addresses. */
1254 DEBUGOUT("Clearing RAR[1-15]\n");
1255 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1256 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1257 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1258 }
1259}
1260
1261/******************************************************************************
1262 * Clears the VLAN filer table
1263 *
1264 * hw - Struct containing variables accessed by shared code
1265 *****************************************************************************/
1266static void
1267e1000_clear_vfta(struct e1000_hw *hw)
1268{
1269 uint32_t offset;
1270
1271 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1272 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1273}
1274
1275/******************************************************************************
1276 * Set the mac type member in the hw struct.
8bde7f77 1277 *
682011ff
WD
1278 * hw - Struct containing variables accessed by shared code
1279 *****************************************************************************/
aa070789 1280int32_t
682011ff
WD
1281e1000_set_mac_type(struct e1000_hw *hw)
1282{
1283 DEBUGFUNC();
1284
1285 switch (hw->device_id) {
1286 case E1000_DEV_ID_82542:
1287 switch (hw->revision_id) {
1288 case E1000_82542_2_0_REV_ID:
1289 hw->mac_type = e1000_82542_rev2_0;
1290 break;
1291 case E1000_82542_2_1_REV_ID:
1292 hw->mac_type = e1000_82542_rev2_1;
1293 break;
1294 default:
1295 /* Invalid 82542 revision ID */
1296 return -E1000_ERR_MAC_TYPE;
1297 }
1298 break;
1299 case E1000_DEV_ID_82543GC_FIBER:
1300 case E1000_DEV_ID_82543GC_COPPER:
1301 hw->mac_type = e1000_82543;
1302 break;
1303 case E1000_DEV_ID_82544EI_COPPER:
1304 case E1000_DEV_ID_82544EI_FIBER:
1305 case E1000_DEV_ID_82544GC_COPPER:
1306 case E1000_DEV_ID_82544GC_LOM:
1307 hw->mac_type = e1000_82544;
1308 break;
1309 case E1000_DEV_ID_82540EM:
1310 case E1000_DEV_ID_82540EM_LOM:
aa070789
RZ
1311 case E1000_DEV_ID_82540EP:
1312 case E1000_DEV_ID_82540EP_LOM:
1313 case E1000_DEV_ID_82540EP_LP:
682011ff
WD
1314 hw->mac_type = e1000_82540;
1315 break;
1316 case E1000_DEV_ID_82545EM_COPPER:
1317 case E1000_DEV_ID_82545EM_FIBER:
1318 hw->mac_type = e1000_82545;
1319 break;
aa070789
RZ
1320 case E1000_DEV_ID_82545GM_COPPER:
1321 case E1000_DEV_ID_82545GM_FIBER:
1322 case E1000_DEV_ID_82545GM_SERDES:
1323 hw->mac_type = e1000_82545_rev_3;
1324 break;
682011ff
WD
1325 case E1000_DEV_ID_82546EB_COPPER:
1326 case E1000_DEV_ID_82546EB_FIBER:
aa070789 1327 case E1000_DEV_ID_82546EB_QUAD_COPPER:
682011ff
WD
1328 hw->mac_type = e1000_82546;
1329 break;
aa070789
RZ
1330 case E1000_DEV_ID_82546GB_COPPER:
1331 case E1000_DEV_ID_82546GB_FIBER:
1332 case E1000_DEV_ID_82546GB_SERDES:
1333 case E1000_DEV_ID_82546GB_PCIE:
1334 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1335 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1336 hw->mac_type = e1000_82546_rev_3;
1337 break;
1338 case E1000_DEV_ID_82541EI:
1339 case E1000_DEV_ID_82541EI_MOBILE:
1340 case E1000_DEV_ID_82541ER_LOM:
1341 hw->mac_type = e1000_82541;
1342 break;
ac3315c2 1343 case E1000_DEV_ID_82541ER:
aa070789 1344 case E1000_DEV_ID_82541GI:
aa3b8bf9 1345 case E1000_DEV_ID_82541GI_LF:
aa070789 1346 case E1000_DEV_ID_82541GI_MOBILE:
1aeed8d7
WD
1347 hw->mac_type = e1000_82541_rev_2;
1348 break;
aa070789
RZ
1349 case E1000_DEV_ID_82547EI:
1350 case E1000_DEV_ID_82547EI_MOBILE:
1351 hw->mac_type = e1000_82547;
1352 break;
1353 case E1000_DEV_ID_82547GI:
1354 hw->mac_type = e1000_82547_rev_2;
1355 break;
1356 case E1000_DEV_ID_82571EB_COPPER:
1357 case E1000_DEV_ID_82571EB_FIBER:
1358 case E1000_DEV_ID_82571EB_SERDES:
1359 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1360 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1361 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1362 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1363 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1364 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1365 hw->mac_type = e1000_82571;
1366 break;
1367 case E1000_DEV_ID_82572EI_COPPER:
1368 case E1000_DEV_ID_82572EI_FIBER:
1369 case E1000_DEV_ID_82572EI_SERDES:
1370 case E1000_DEV_ID_82572EI:
1371 hw->mac_type = e1000_82572;
1372 break;
1373 case E1000_DEV_ID_82573E:
1374 case E1000_DEV_ID_82573E_IAMT:
1375 case E1000_DEV_ID_82573L:
1376 hw->mac_type = e1000_82573;
1377 break;
2c2668f9
RZ
1378 case E1000_DEV_ID_82574L:
1379 hw->mac_type = e1000_82574;
1380 break;
aa070789
RZ
1381 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1382 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1383 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1384 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1385 hw->mac_type = e1000_80003es2lan;
1386 break;
1387 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1388 case E1000_DEV_ID_ICH8_IGP_AMT:
1389 case E1000_DEV_ID_ICH8_IGP_C:
1390 case E1000_DEV_ID_ICH8_IFE:
1391 case E1000_DEV_ID_ICH8_IFE_GT:
1392 case E1000_DEV_ID_ICH8_IFE_G:
1393 case E1000_DEV_ID_ICH8_IGP_M:
1394 hw->mac_type = e1000_ich8lan;
1395 break;
6c499abe
MZ
1396 case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1397 case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
95186063 1398 case PCI_DEVICE_ID_INTEL_I210_COPPER:
6c499abe 1399 case PCI_DEVICE_ID_INTEL_I211_COPPER:
95186063
MV
1400 case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1401 case PCI_DEVICE_ID_INTEL_I210_SERDES:
1402 case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1403 case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1404 hw->mac_type = e1000_igb;
1405 break;
682011ff
WD
1406 default:
1407 /* Should never have loaded on this device */
1408 return -E1000_ERR_MAC_TYPE;
1409 }
1410 return E1000_SUCCESS;
1411}
1412
1413/******************************************************************************
1414 * Reset the transmit and receive units; mask and clear all interrupts.
1415 *
1416 * hw - Struct containing variables accessed by shared code
1417 *****************************************************************************/
1418void
1419e1000_reset_hw(struct e1000_hw *hw)
1420{
1421 uint32_t ctrl;
1422 uint32_t ctrl_ext;
682011ff 1423 uint32_t manc;
9ea005fb 1424 uint32_t pba = 0;
95186063 1425 uint32_t reg;
682011ff
WD
1426
1427 DEBUGFUNC();
1428
9ea005fb
RZ
1429 /* get the correct pba value for both PCI and PCIe*/
1430 if (hw->mac_type < e1000_82571)
1431 pba = E1000_DEFAULT_PCI_PBA;
1432 else
1433 pba = E1000_DEFAULT_PCIE_PBA;
1434
682011ff
WD
1435 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1436 if (hw->mac_type == e1000_82542_rev2_0) {
1437 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1438 pci_write_config_word(hw->pdev, PCI_COMMAND,
aa070789 1439 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
682011ff
WD
1440 }
1441
1442 /* Clear interrupt mask to stop board from generating interrupts */
1443 DEBUGOUT("Masking off all interrupts\n");
95186063
MV
1444 if (hw->mac_type == e1000_igb)
1445 E1000_WRITE_REG(hw, I210_IAM, 0);
682011ff
WD
1446 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1447
1448 /* Disable the Transmit and Receive units. Then delay to allow
1449 * any pending transactions to complete before we hit the MAC with
1450 * the global reset.
1451 */
1452 E1000_WRITE_REG(hw, RCTL, 0);
1453 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1454 E1000_WRITE_FLUSH(hw);
1455
1456 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
472d5460 1457 hw->tbi_compatibility_on = false;
682011ff
WD
1458
1459 /* Delay to allow any outstanding PCI transactions to complete before
1460 * resetting the device
1461 */
1462 mdelay(10);
1463
1464 /* Issue a global reset to the MAC. This will reset the chip's
1465 * transmit, receive, DMA, and link units. It will not effect
1466 * the current PCI configuration. The global reset bit is self-
1467 * clearing, and should clear within a microsecond.
1468 */
1469 DEBUGOUT("Issuing a global reset to MAC\n");
1470 ctrl = E1000_READ_REG(hw, CTRL);
1471
aa070789 1472 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
682011ff
WD
1473
1474 /* Force a reload from the EEPROM if necessary */
95186063
MV
1475 if (hw->mac_type == e1000_igb) {
1476 mdelay(20);
1477 reg = E1000_READ_REG(hw, STATUS);
1478 if (reg & E1000_STATUS_PF_RST_DONE)
1479 DEBUGOUT("PF OK\n");
1480 reg = E1000_READ_REG(hw, I210_EECD);
1481 if (reg & E1000_EECD_AUTO_RD)
1482 DEBUGOUT("EEC OK\n");
1483 } else if (hw->mac_type < e1000_82540) {
682011ff
WD
1484 /* Wait for reset to complete */
1485 udelay(10);
1486 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1487 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1488 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1489 E1000_WRITE_FLUSH(hw);
1490 /* Wait for EEPROM reload */
1491 mdelay(2);
1492 } else {
1493 /* Wait for EEPROM reload (it happens automatically) */
1494 mdelay(4);
1495 /* Dissable HW ARPs on ASF enabled adapters */
1496 manc = E1000_READ_REG(hw, MANC);
1497 manc &= ~(E1000_MANC_ARP_EN);
1498 E1000_WRITE_REG(hw, MANC, manc);
1499 }
1500
1501 /* Clear interrupt mask to stop board from generating interrupts */
1502 DEBUGOUT("Masking off all interrupts\n");
95186063
MV
1503 if (hw->mac_type == e1000_igb)
1504 E1000_WRITE_REG(hw, I210_IAM, 0);
682011ff
WD
1505 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1506
1507 /* Clear any pending interrupt events. */
56b13b1e 1508 E1000_READ_REG(hw, ICR);
682011ff
WD
1509
1510 /* If MWI was previously enabled, reenable it. */
1511 if (hw->mac_type == e1000_82542_rev2_0) {
1512 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1513 }
95186063
MV
1514 if (hw->mac_type != e1000_igb)
1515 E1000_WRITE_REG(hw, PBA, pba);
aa070789
RZ
1516}
1517
1518/******************************************************************************
1519 *
1520 * Initialize a number of hardware-dependent bits
1521 *
1522 * hw: Struct containing variables accessed by shared code
1523 *
1524 * This function contains hardware limitation workarounds for PCI-E adapters
1525 *
1526 *****************************************************************************/
1527static void
1528e1000_initialize_hardware_bits(struct e1000_hw *hw)
1529{
1530 if ((hw->mac_type >= e1000_82571) &&
1531 (!hw->initialize_hw_bits_disable)) {
1532 /* Settings common to all PCI-express silicon */
1533 uint32_t reg_ctrl, reg_ctrl_ext;
1534 uint32_t reg_tarc0, reg_tarc1;
1535 uint32_t reg_tctl;
1536 uint32_t reg_txdctl, reg_txdctl1;
1537
1538 /* link autonegotiation/sync workarounds */
1539 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1540 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1541
1542 /* Enable not-done TX descriptor counting */
1543 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1544 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1545 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1546
1547 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1548 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1549 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1550
95186063
MV
1551 /* IGB is cool */
1552 if (hw->mac_type == e1000_igb)
1553 return;
1554
aa070789
RZ
1555 switch (hw->mac_type) {
1556 case e1000_82571:
1557 case e1000_82572:
1558 /* Clear PHY TX compatible mode bits */
1559 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1560 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1561
1562 /* link autonegotiation/sync workarounds */
1563 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1564
1565 /* TX ring control fixes */
1566 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1567
1568 /* Multiple read bit is reversed polarity */
1569 reg_tctl = E1000_READ_REG(hw, TCTL);
1570 if (reg_tctl & E1000_TCTL_MULR)
1571 reg_tarc1 &= ~(1 << 28);
1572 else
1573 reg_tarc1 |= (1 << 28);
1574
1575 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1576 break;
1577 case e1000_82573:
2c2668f9 1578 case e1000_82574:
aa070789
RZ
1579 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1580 reg_ctrl_ext &= ~(1 << 23);
1581 reg_ctrl_ext |= (1 << 22);
1582
1583 /* TX byte count fix */
1584 reg_ctrl = E1000_READ_REG(hw, CTRL);
1585 reg_ctrl &= ~(1 << 29);
1586
1587 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1588 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1589 break;
1590 case e1000_80003es2lan:
1591 /* improve small packet performace for fiber/serdes */
1592 if ((hw->media_type == e1000_media_type_fiber)
1593 || (hw->media_type ==
1594 e1000_media_type_internal_serdes)) {
1595 reg_tarc0 &= ~(1 << 20);
1596 }
1597
1598 /* Multiple read bit is reversed polarity */
1599 reg_tctl = E1000_READ_REG(hw, TCTL);
1600 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1601 if (reg_tctl & E1000_TCTL_MULR)
1602 reg_tarc1 &= ~(1 << 28);
1603 else
1604 reg_tarc1 |= (1 << 28);
1605
1606 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1607 break;
1608 case e1000_ich8lan:
1609 /* Reduce concurrent DMA requests to 3 from 4 */
1610 if ((hw->revision_id < 3) ||
1611 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1612 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1613 reg_tarc0 |= ((1 << 29)|(1 << 28));
1614
1615 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1616 reg_ctrl_ext |= (1 << 22);
1617 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1618
1619 /* workaround TX hang with TSO=on */
1620 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1621
1622 /* Multiple read bit is reversed polarity */
1623 reg_tctl = E1000_READ_REG(hw, TCTL);
1624 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1625 if (reg_tctl & E1000_TCTL_MULR)
1626 reg_tarc1 &= ~(1 << 28);
1627 else
1628 reg_tarc1 |= (1 << 28);
1629
1630 /* workaround TX hang with TSO=on */
1631 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1632
1633 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1634 break;
1635 default:
1636 break;
1637 }
1638
1639 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1640 }
682011ff
WD
1641}
1642
1643/******************************************************************************
1644 * Performs basic configuration of the adapter.
1645 *
1646 * hw - Struct containing variables accessed by shared code
8bde7f77
WD
1647 *
1648 * Assumes that the controller has previously been reset and is in a
682011ff
WD
1649 * post-reset uninitialized state. Initializes the receive address registers,
1650 * multicast table, and VLAN filter table. Calls routines to setup link
1651 * configuration and flow control settings. Clears all on-chip counters. Leaves
1652 * the transmit and receive units disabled and uninitialized.
1653 *****************************************************************************/
1654static int
1655e1000_init_hw(struct eth_device *nic)
1656{
1657 struct e1000_hw *hw = nic->priv;
aa070789 1658 uint32_t ctrl;
682011ff
WD
1659 uint32_t i;
1660 int32_t ret_val;
1661 uint16_t pcix_cmd_word;
1662 uint16_t pcix_stat_hi_word;
1663 uint16_t cmd_mmrbc;
1664 uint16_t stat_mmrbc;
aa070789
RZ
1665 uint32_t mta_size;
1666 uint32_t reg_data;
1667 uint32_t ctrl_ext;
682011ff 1668 DEBUGFUNC();
aa070789
RZ
1669 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1670 if ((hw->mac_type == e1000_ich8lan) &&
1671 ((hw->revision_id < 3) ||
1672 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1673 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1674 reg_data = E1000_READ_REG(hw, STATUS);
1675 reg_data &= ~0x80000000;
1676 E1000_WRITE_REG(hw, STATUS, reg_data);
682011ff 1677 }
aa070789 1678 /* Do not need initialize Identification LED */
682011ff 1679
aa070789
RZ
1680 /* Set the media type and TBI compatibility */
1681 e1000_set_media_type(hw);
1682
1683 /* Must be called after e1000_set_media_type
1684 * because media_type is used */
1685 e1000_initialize_hardware_bits(hw);
682011ff
WD
1686
1687 /* Disabling VLAN filtering. */
1688 DEBUGOUT("Initializing the IEEE VLAN\n");
aa070789
RZ
1689 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1690 if (hw->mac_type != e1000_ich8lan) {
1691 if (hw->mac_type < e1000_82545_rev_3)
1692 E1000_WRITE_REG(hw, VET, 0);
1693 e1000_clear_vfta(hw);
1694 }
682011ff
WD
1695
1696 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1697 if (hw->mac_type == e1000_82542_rev2_0) {
1698 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1699 pci_write_config_word(hw->pdev, PCI_COMMAND,
1700 hw->
1701 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1702 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1703 E1000_WRITE_FLUSH(hw);
1704 mdelay(5);
1705 }
1706
1707 /* Setup the receive address. This involves initializing all of the Receive
1708 * Address Registers (RARs 0 - 15).
1709 */
1710 e1000_init_rx_addrs(nic);
1711
1712 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1713 if (hw->mac_type == e1000_82542_rev2_0) {
1714 E1000_WRITE_REG(hw, RCTL, 0);
1715 E1000_WRITE_FLUSH(hw);
1716 mdelay(1);
1717 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1718 }
1719
1720 /* Zero out the Multicast HASH table */
1721 DEBUGOUT("Zeroing the MTA\n");
aa070789
RZ
1722 mta_size = E1000_MC_TBL_SIZE;
1723 if (hw->mac_type == e1000_ich8lan)
1724 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1725 for (i = 0; i < mta_size; i++) {
682011ff 1726 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
aa070789
RZ
1727 /* use write flush to prevent Memory Write Block (MWB) from
1728 * occuring when accessing our register space */
1729 E1000_WRITE_FLUSH(hw);
1730 }
682011ff
WD
1731#if 0
1732 /* Set the PCI priority bit correctly in the CTRL register. This
1733 * determines if the adapter gives priority to receives, or if it
aa070789
RZ
1734 * gives equal priority to transmits and receives. Valid only on
1735 * 82542 and 82543 silicon.
682011ff 1736 */
aa070789 1737 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
682011ff
WD
1738 ctrl = E1000_READ_REG(hw, CTRL);
1739 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1740 }
1741#endif
aa070789
RZ
1742 switch (hw->mac_type) {
1743 case e1000_82545_rev_3:
1744 case e1000_82546_rev_3:
95186063 1745 case e1000_igb:
aa070789
RZ
1746 break;
1747 default:
682011ff 1748 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
aa070789 1749 if (hw->bus_type == e1000_bus_type_pcix) {
682011ff
WD
1750 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1751 &pcix_cmd_word);
1752 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1753 &pcix_stat_hi_word);
1754 cmd_mmrbc =
1755 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1756 PCIX_COMMAND_MMRBC_SHIFT;
1757 stat_mmrbc =
1758 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1759 PCIX_STATUS_HI_MMRBC_SHIFT;
1760 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1761 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1762 if (cmd_mmrbc > stat_mmrbc) {
1763 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1764 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1765 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1766 pcix_cmd_word);
1767 }
1768 }
aa070789
RZ
1769 break;
1770 }
1771
1772 /* More time needed for PHY to initialize */
1773 if (hw->mac_type == e1000_ich8lan)
1774 mdelay(15);
95186063
MV
1775 if (hw->mac_type == e1000_igb)
1776 mdelay(15);
682011ff
WD
1777
1778 /* Call a subroutine to configure the link and setup flow control. */
1779 ret_val = e1000_setup_link(nic);
1780
1781 /* Set the transmit descriptor write-back policy */
1782 if (hw->mac_type > e1000_82544) {
1783 ctrl = E1000_READ_REG(hw, TXDCTL);
1784 ctrl =
1785 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1786 E1000_TXDCTL_FULL_TX_DESC_WB;
1787 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1788 }
aa070789 1789
776e66e8 1790 /* Set the receive descriptor write back policy */
776e66e8
RG
1791 if (hw->mac_type >= e1000_82571) {
1792 ctrl = E1000_READ_REG(hw, RXDCTL);
1793 ctrl =
1794 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1795 E1000_RXDCTL_FULL_RX_DESC_WB;
1796 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1797 }
1798
aa070789
RZ
1799 switch (hw->mac_type) {
1800 default:
1801 break;
1802 case e1000_80003es2lan:
1803 /* Enable retransmit on late collisions */
1804 reg_data = E1000_READ_REG(hw, TCTL);
1805 reg_data |= E1000_TCTL_RTLC;
1806 E1000_WRITE_REG(hw, TCTL, reg_data);
1807
1808 /* Configure Gigabit Carry Extend Padding */
1809 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1810 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1811 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1812 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1813
1814 /* Configure Transmit Inter-Packet Gap */
1815 reg_data = E1000_READ_REG(hw, TIPG);
1816 reg_data &= ~E1000_TIPG_IPGT_MASK;
1817 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1818 E1000_WRITE_REG(hw, TIPG, reg_data);
1819
1820 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1821 reg_data &= ~0x00100000;
1822 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1823 /* Fall through */
1824 case e1000_82571:
1825 case e1000_82572:
1826 case e1000_ich8lan:
1827 ctrl = E1000_READ_REG(hw, TXDCTL1);
1828 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1829 | E1000_TXDCTL_FULL_TX_DESC_WB;
1830 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1831 break;
2c2668f9
RZ
1832 case e1000_82573:
1833 case e1000_82574:
1834 reg_data = E1000_READ_REG(hw, GCR);
1835 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1836 E1000_WRITE_REG(hw, GCR, reg_data);
95186063
MV
1837 case e1000_igb:
1838 break;
aa070789
RZ
1839 }
1840
682011ff
WD
1841#if 0
1842 /* Clear all of the statistics registers (clear on read). It is
1843 * important that we do this after we have tried to establish link
1844 * because the symbol error count will increment wildly if there
1845 * is no link.
1846 */
1847 e1000_clear_hw_cntrs(hw);
aa070789
RZ
1848
1849 /* ICH8 No-snoop bits are opposite polarity.
1850 * Set to snoop by default after reset. */
1851 if (hw->mac_type == e1000_ich8lan)
1852 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
682011ff
WD
1853#endif
1854
aa070789
RZ
1855 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1856 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1857 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1858 /* Relaxed ordering must be disabled to avoid a parity
1859 * error crash in a PCI slot. */
1860 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1861 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1862 }
1863
682011ff
WD
1864 return ret_val;
1865}
1866
1867/******************************************************************************
1868 * Configures flow control and link settings.
8bde7f77 1869 *
682011ff 1870 * hw - Struct containing variables accessed by shared code
8bde7f77 1871 *
682011ff
WD
1872 * Determines which flow control settings to use. Calls the apropriate media-
1873 * specific link configuration function. Configures the flow control settings.
1874 * Assuming the adapter has a valid link partner, a valid link should be
8bde7f77 1875 * established. Assumes the hardware has previously been reset and the
682011ff
WD
1876 * transmitter and receiver are not enabled.
1877 *****************************************************************************/
1878static int
1879e1000_setup_link(struct eth_device *nic)
1880{
1881 struct e1000_hw *hw = nic->priv;
682011ff 1882 int32_t ret_val;
8712adfd
RI
1883#ifndef CONFIG_E1000_NO_NVM
1884 uint32_t ctrl_ext;
682011ff 1885 uint16_t eeprom_data;
8712adfd 1886#endif
682011ff
WD
1887
1888 DEBUGFUNC();
1889
aa070789
RZ
1890 /* In the case of the phy reset being blocked, we already have a link.
1891 * We do not have to set it up again. */
1892 if (e1000_check_phy_reset_block(hw))
1893 return E1000_SUCCESS;
1894
8712adfd 1895#ifndef CONFIG_E1000_NO_NVM
682011ff
WD
1896 /* Read and store word 0x0F of the EEPROM. This word contains bits
1897 * that determine the hardware's default PAUSE (flow control) mode,
1898 * a bit that determines whether the HW defaults to enabling or
1899 * disabling auto-negotiation, and the direction of the
1900 * SW defined pins. If there is no SW over-ride of the flow
1901 * control setting, then the variable hw->fc will
1902 * be initialized based on a value in the EEPROM.
1903 */
aa070789
RZ
1904 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1905 &eeprom_data) < 0) {
682011ff
WD
1906 DEBUGOUT("EEPROM Read Error\n");
1907 return -E1000_ERR_EEPROM;
1908 }
8712adfd 1909#endif
682011ff 1910 if (hw->fc == e1000_fc_default) {
aa070789
RZ
1911 switch (hw->mac_type) {
1912 case e1000_ich8lan:
1913 case e1000_82573:
2c2668f9 1914 case e1000_82574:
95186063 1915 case e1000_igb:
682011ff 1916 hw->fc = e1000_fc_full;
aa070789
RZ
1917 break;
1918 default:
8712adfd 1919#ifndef CONFIG_E1000_NO_NVM
aa070789
RZ
1920 ret_val = e1000_read_eeprom(hw,
1921 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1922 if (ret_val) {
1923 DEBUGOUT("EEPROM Read Error\n");
1924 return -E1000_ERR_EEPROM;
1925 }
aa070789
RZ
1926 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1927 hw->fc = e1000_fc_none;
1928 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1929 EEPROM_WORD0F_ASM_DIR)
1930 hw->fc = e1000_fc_tx_pause;
1931 else
8712adfd 1932#endif
aa070789
RZ
1933 hw->fc = e1000_fc_full;
1934 break;
1935 }
682011ff
WD
1936 }
1937
1938 /* We want to save off the original Flow Control configuration just
1939 * in case we get disconnected and then reconnected into a different
1940 * hub or switch with different Flow Control capabilities.
1941 */
1942 if (hw->mac_type == e1000_82542_rev2_0)
1943 hw->fc &= (~e1000_fc_tx_pause);
1944
1945 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1946 hw->fc &= (~e1000_fc_rx_pause);
1947
1948 hw->original_fc = hw->fc;
1949
1950 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1951
8712adfd 1952#ifndef CONFIG_E1000_NO_NVM
682011ff
WD
1953 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1954 * polarity value for the SW controlled pins, and setup the
1955 * Extended Device Control reg with that info.
1956 * This is needed because one of the SW controlled pins is used for
1957 * signal detection. So this should be done before e1000_setup_pcs_link()
1958 * or e1000_phy_setup() is called.
1959 */
1960 if (hw->mac_type == e1000_82543) {
1961 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1962 SWDPIO__EXT_SHIFT);
1963 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1964 }
8712adfd 1965#endif
682011ff
WD
1966
1967 /* Call the necessary subroutine to configure the link. */
1968 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1969 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1970 if (ret_val < 0) {
1971 return ret_val;
1972 }
1973
1974 /* Initialize the flow control address, type, and PAUSE timer
1975 * registers to their default values. This is done even if flow
1976 * control is disabled, because it does not hurt anything to
1977 * initialize these registers.
1978 */
aa070789
RZ
1979 DEBUGOUT("Initializing the Flow Control address, type"
1980 "and timer regs\n");
1981
1982 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1983 if (hw->mac_type != e1000_ich8lan) {
1984 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1985 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1986 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1987 }
682011ff 1988
682011ff
WD
1989 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1990
1991 /* Set the flow control receive threshold registers. Normally,
1992 * these registers will be set to a default threshold that may be
1993 * adjusted later by the driver's runtime code. However, if the
1994 * ability to transmit pause frames in not enabled, then these
8bde7f77 1995 * registers will be set to 0.
682011ff
WD
1996 */
1997 if (!(hw->fc & e1000_fc_tx_pause)) {
1998 E1000_WRITE_REG(hw, FCRTL, 0);
1999 E1000_WRITE_REG(hw, FCRTH, 0);
2000 } else {
2001 /* We need to set up the Receive Threshold high and low water marks
2002 * as well as (optionally) enabling the transmission of XON frames.
2003 */
2004 if (hw->fc_send_xon) {
2005 E1000_WRITE_REG(hw, FCRTL,
2006 (hw->fc_low_water | E1000_FCRTL_XONE));
2007 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2008 } else {
2009 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2010 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2011 }
2012 }
2013 return ret_val;
2014}
2015
2016/******************************************************************************
2017 * Sets up link for a fiber based adapter
2018 *
2019 * hw - Struct containing variables accessed by shared code
2020 *
2021 * Manipulates Physical Coding Sublayer functions in order to configure
2022 * link. Assumes the hardware has been previously reset and the transmitter
2023 * and receiver are not enabled.
2024 *****************************************************************************/
2025static int
2026e1000_setup_fiber_link(struct eth_device *nic)
2027{
2028 struct e1000_hw *hw = nic->priv;
2029 uint32_t ctrl;
2030 uint32_t status;
2031 uint32_t txcw = 0;
2032 uint32_t i;
2033 uint32_t signal;
2034 int32_t ret_val;
2035
2036 DEBUGFUNC();
8bde7f77
WD
2037 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2038 * set when the optics detect a signal. On older adapters, it will be
682011ff
WD
2039 * cleared when there is a signal
2040 */
2041 ctrl = E1000_READ_REG(hw, CTRL);
2042 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2043 signal = E1000_CTRL_SWDPIN1;
2044 else
2045 signal = 0;
2046
2047 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
2048 ctrl);
2049 /* Take the link out of reset */
2050 ctrl &= ~(E1000_CTRL_LRST);
2051
2052 e1000_config_collision_dist(hw);
2053
2054 /* Check for a software override of the flow control settings, and setup
2055 * the device accordingly. If auto-negotiation is enabled, then software
2056 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2057 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
8bde7f77 2058 * auto-negotiation is disabled, then software will have to manually
682011ff
WD
2059 * configure the two flow control enable bits in the CTRL register.
2060 *
2061 * The possible values of the "fc" parameter are:
1aeed8d7
WD
2062 * 0: Flow control is completely disabled
2063 * 1: Rx flow control is enabled (we can receive pause frames, but
2064 * not send pause frames).
2065 * 2: Tx flow control is enabled (we can send pause frames but we do
2066 * not support receiving pause frames).
2067 * 3: Both Rx and TX flow control (symmetric) are enabled.
682011ff
WD
2068 */
2069 switch (hw->fc) {
2070 case e1000_fc_none:
2071 /* Flow control is completely disabled by a software over-ride. */
2072 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2073 break;
2074 case e1000_fc_rx_pause:
8bde7f77
WD
2075 /* RX Flow control is enabled and TX Flow control is disabled by a
2076 * software over-ride. Since there really isn't a way to advertise
682011ff
WD
2077 * that we are capable of RX Pause ONLY, we will advertise that we
2078 * support both symmetric and asymmetric RX PAUSE. Later, we will
2079 * disable the adapter's ability to send PAUSE frames.
2080 */
2081 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2082 break;
2083 case e1000_fc_tx_pause:
8bde7f77 2084 /* TX Flow control is enabled, and RX Flow control is disabled, by a
682011ff
WD
2085 * software over-ride.
2086 */
2087 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2088 break;
2089 case e1000_fc_full:
2090 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2091 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2092 break;
2093 default:
2094 DEBUGOUT("Flow control param set incorrectly\n");
2095 return -E1000_ERR_CONFIG;
2096 break;
2097 }
2098
2099 /* Since auto-negotiation is enabled, take the link out of reset (the link
2100 * will be in reset, because we previously reset the chip). This will
2101 * restart auto-negotiation. If auto-neogtiation is successful then the
2102 * link-up status bit will be set and the flow control enable bits (RFCE
2103 * and TFCE) will be set according to their negotiated value.
2104 */
2105 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2106
2107 E1000_WRITE_REG(hw, TXCW, txcw);
2108 E1000_WRITE_REG(hw, CTRL, ctrl);
2109 E1000_WRITE_FLUSH(hw);
2110
2111 hw->txcw = txcw;
2112 mdelay(1);
2113
2114 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
8bde7f77
WD
2115 * indication in the Device Status Register. Time-out if a link isn't
2116 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
682011ff
WD
2117 * less than 500 milliseconds even if the other end is doing it in SW).
2118 */
2119 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2120 DEBUGOUT("Looking for Link\n");
2121 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2122 mdelay(10);
2123 status = E1000_READ_REG(hw, STATUS);
2124 if (status & E1000_STATUS_LU)
2125 break;
2126 }
2127 if (i == (LINK_UP_TIMEOUT / 10)) {
8bde7f77 2128 /* AutoNeg failed to achieve a link, so we'll call
682011ff
WD
2129 * e1000_check_for_link. This routine will force the link up if we
2130 * detect a signal. This will allow us to communicate with
2131 * non-autonegotiating link partners.
2132 */
2133 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2134 hw->autoneg_failed = 1;
2135 ret_val = e1000_check_for_link(nic);
2136 if (ret_val < 0) {
2137 DEBUGOUT("Error while checking for link\n");
2138 return ret_val;
2139 }
2140 hw->autoneg_failed = 0;
2141 } else {
2142 hw->autoneg_failed = 0;
2143 DEBUGOUT("Valid Link Found\n");
2144 }
aa070789
RZ
2145 } else {
2146 DEBUGOUT("No Signal Detected\n");
2147 return -E1000_ERR_NOLINK;
2148 }
2149 return 0;
2150}
2151
aa070789
RZ
2152/******************************************************************************
2153* Make sure we have a valid PHY and change PHY mode before link setup.
2154*
2155* hw - Struct containing variables accessed by shared code
2156******************************************************************************/
2157static int32_t
2158e1000_copper_link_preconfig(struct e1000_hw *hw)
2159{
2160 uint32_t ctrl;
2161 int32_t ret_val;
2162 uint16_t phy_data;
2163
2164 DEBUGFUNC();
2165
2166 ctrl = E1000_READ_REG(hw, CTRL);
2167 /* With 82543, we need to force speed and duplex on the MAC equal to what
2168 * the PHY speed and duplex configuration is. In addition, we need to
2169 * perform a hardware reset on the PHY to take it out of reset.
2170 */
2171 if (hw->mac_type > e1000_82543) {
2172 ctrl |= E1000_CTRL_SLU;
2173 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2174 E1000_WRITE_REG(hw, CTRL, ctrl);
2175 } else {
2176 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2177 | E1000_CTRL_SLU);
2178 E1000_WRITE_REG(hw, CTRL, ctrl);
2179 ret_val = e1000_phy_hw_reset(hw);
2180 if (ret_val)
2181 return ret_val;
2182 }
2183
2184 /* Make sure we have a valid PHY */
2185 ret_val = e1000_detect_gig_phy(hw);
2186 if (ret_val) {
2187 DEBUGOUT("Error, did not detect valid phy.\n");
2188 return ret_val;
2189 }
5abf13e4 2190 DEBUGOUT("Phy ID = %x\n", hw->phy_id);
aa070789 2191
aa070789
RZ
2192 /* Set PHY to class A mode (if necessary) */
2193 ret_val = e1000_set_phy_mode(hw);
2194 if (ret_val)
2195 return ret_val;
aa070789
RZ
2196 if ((hw->mac_type == e1000_82545_rev_3) ||
2197 (hw->mac_type == e1000_82546_rev_3)) {
2198 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2199 &phy_data);
2200 phy_data |= 0x00000008;
2201 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2202 phy_data);
2203 }
2204
2205 if (hw->mac_type <= e1000_82543 ||
2206 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2207 hw->mac_type == e1000_82541_rev_2
2208 || hw->mac_type == e1000_82547_rev_2)
472d5460 2209 hw->phy_reset_disable = false;
aa070789
RZ
2210
2211 return E1000_SUCCESS;
2212}
2213
2214/*****************************************************************************
2215 *
2216 * This function sets the lplu state according to the active flag. When
2217 * activating lplu this function also disables smart speed and vise versa.
2218 * lplu will not be activated unless the device autonegotiation advertisment
2219 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2220 * hw: Struct containing variables accessed by shared code
2221 * active - true to enable lplu false to disable lplu.
2222 *
2223 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2224 * E1000_SUCCESS at any other case.
2225 *
2226 ****************************************************************************/
2227
2228static int32_t
472d5460 2229e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
aa070789
RZ
2230{
2231 uint32_t phy_ctrl = 0;
2232 int32_t ret_val;
2233 uint16_t phy_data;
2234 DEBUGFUNC();
2235
2236 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2237 && hw->phy_type != e1000_phy_igp_3)
2238 return E1000_SUCCESS;
2239
2240 /* During driver activity LPLU should not be used or it will attain link
2241 * from the lowest speeds starting from 10Mbps. The capability is used
2242 * for Dx transitions and states */
2243 if (hw->mac_type == e1000_82541_rev_2
2244 || hw->mac_type == e1000_82547_rev_2) {
2245 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2246 &phy_data);
2247 if (ret_val)
2248 return ret_val;
2249 } else if (hw->mac_type == e1000_ich8lan) {
2250 /* MAC writes into PHY register based on the state transition
2251 * and start auto-negotiation. SW driver can overwrite the
2252 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2253 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2254 } else {
2255 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2256 &phy_data);
2257 if (ret_val)
2258 return ret_val;
2259 }
2260
2261 if (!active) {
2262 if (hw->mac_type == e1000_82541_rev_2 ||
2263 hw->mac_type == e1000_82547_rev_2) {
2264 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2265 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2266 phy_data);
2267 if (ret_val)
2268 return ret_val;
2269 } else {
2270 if (hw->mac_type == e1000_ich8lan) {
2271 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2272 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2273 } else {
2274 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2275 ret_val = e1000_write_phy_reg(hw,
2276 IGP02E1000_PHY_POWER_MGMT, phy_data);
2277 if (ret_val)
2278 return ret_val;
2279 }
2280 }
2281
2282 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2283 * Dx states where the power conservation is most important. During
2284 * driver activity we should enable SmartSpeed, so performance is
2285 * maintained. */
2286 if (hw->smart_speed == e1000_smart_speed_on) {
2287 ret_val = e1000_read_phy_reg(hw,
2288 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2289 if (ret_val)
2290 return ret_val;
2291
2292 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2293 ret_val = e1000_write_phy_reg(hw,
2294 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2295 if (ret_val)
2296 return ret_val;
2297 } else if (hw->smart_speed == e1000_smart_speed_off) {
2298 ret_val = e1000_read_phy_reg(hw,
2299 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2300 if (ret_val)
2301 return ret_val;
2302
2303 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2304 ret_val = e1000_write_phy_reg(hw,
2305 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2306 if (ret_val)
2307 return ret_val;
2308 }
2309
2310 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2311 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2312 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2313
2314 if (hw->mac_type == e1000_82541_rev_2 ||
2315 hw->mac_type == e1000_82547_rev_2) {
2316 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2317 ret_val = e1000_write_phy_reg(hw,
2318 IGP01E1000_GMII_FIFO, phy_data);
2319 if (ret_val)
2320 return ret_val;
2321 } else {
2322 if (hw->mac_type == e1000_ich8lan) {
2323 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2324 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2325 } else {
2326 phy_data |= IGP02E1000_PM_D3_LPLU;
2327 ret_val = e1000_write_phy_reg(hw,
2328 IGP02E1000_PHY_POWER_MGMT, phy_data);
2329 if (ret_val)
2330 return ret_val;
2331 }
2332 }
2333
2334 /* When LPLU is enabled we should disable SmartSpeed */
2335 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2336 &phy_data);
2337 if (ret_val)
2338 return ret_val;
2339
2340 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2341 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2342 phy_data);
2343 if (ret_val)
2344 return ret_val;
2345 }
2346 return E1000_SUCCESS;
2347}
2348
2349/*****************************************************************************
2350 *
2351 * This function sets the lplu d0 state according to the active flag. When
2352 * activating lplu this function also disables smart speed and vise versa.
2353 * lplu will not be activated unless the device autonegotiation advertisment
2354 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2355 * hw: Struct containing variables accessed by shared code
2356 * active - true to enable lplu false to disable lplu.
2357 *
2358 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2359 * E1000_SUCCESS at any other case.
2360 *
2361 ****************************************************************************/
2362
2363static int32_t
472d5460 2364e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
aa070789
RZ
2365{
2366 uint32_t phy_ctrl = 0;
2367 int32_t ret_val;
2368 uint16_t phy_data;
2369 DEBUGFUNC();
2370
2371 if (hw->mac_type <= e1000_82547_rev_2)
2372 return E1000_SUCCESS;
2373
2374 if (hw->mac_type == e1000_ich8lan) {
2375 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
95186063
MV
2376 } else if (hw->mac_type == e1000_igb) {
2377 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
aa070789
RZ
2378 } else {
2379 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2380 &phy_data);
2381 if (ret_val)
2382 return ret_val;
2383 }
2384
2385 if (!active) {
2386 if (hw->mac_type == e1000_ich8lan) {
2387 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2388 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
95186063
MV
2389 } else if (hw->mac_type == e1000_igb) {
2390 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2391 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
aa070789
RZ
2392 } else {
2393 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2394 ret_val = e1000_write_phy_reg(hw,
2395 IGP02E1000_PHY_POWER_MGMT, phy_data);
2396 if (ret_val)
2397 return ret_val;
2398 }
2399
95186063
MV
2400 if (hw->mac_type == e1000_igb)
2401 return E1000_SUCCESS;
2402
aa070789
RZ
2403 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2404 * Dx states where the power conservation is most important. During
2405 * driver activity we should enable SmartSpeed, so performance is
2406 * maintained. */
2407 if (hw->smart_speed == e1000_smart_speed_on) {
2408 ret_val = e1000_read_phy_reg(hw,
2409 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2410 if (ret_val)
2411 return ret_val;
2412
2413 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2414 ret_val = e1000_write_phy_reg(hw,
2415 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2416 if (ret_val)
2417 return ret_val;
2418 } else if (hw->smart_speed == e1000_smart_speed_off) {
2419 ret_val = e1000_read_phy_reg(hw,
2420 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2421 if (ret_val)
2422 return ret_val;
2423
2424 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2425 ret_val = e1000_write_phy_reg(hw,
2426 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2427 if (ret_val)
2428 return ret_val;
2429 }
2430
2431
2432 } else {
2433
2434 if (hw->mac_type == e1000_ich8lan) {
2435 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2436 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
95186063
MV
2437 } else if (hw->mac_type == e1000_igb) {
2438 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2439 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
aa070789
RZ
2440 } else {
2441 phy_data |= IGP02E1000_PM_D0_LPLU;
2442 ret_val = e1000_write_phy_reg(hw,
2443 IGP02E1000_PHY_POWER_MGMT, phy_data);
2444 if (ret_val)
2445 return ret_val;
2446 }
2447
95186063
MV
2448 if (hw->mac_type == e1000_igb)
2449 return E1000_SUCCESS;
2450
aa070789
RZ
2451 /* When LPLU is enabled we should disable SmartSpeed */
2452 ret_val = e1000_read_phy_reg(hw,
2453 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2454 if (ret_val)
2455 return ret_val;
2456
2457 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2458 ret_val = e1000_write_phy_reg(hw,
2459 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2460 if (ret_val)
2461 return ret_val;
2462
2463 }
2464 return E1000_SUCCESS;
2465}
2466
2467/********************************************************************
2468* Copper link setup for e1000_phy_igp series.
2469*
2470* hw - Struct containing variables accessed by shared code
2471*********************************************************************/
2472static int32_t
2473e1000_copper_link_igp_setup(struct e1000_hw *hw)
2474{
2475 uint32_t led_ctrl;
2476 int32_t ret_val;
2477 uint16_t phy_data;
2478
f81ecb5d 2479 DEBUGFUNC();
aa070789
RZ
2480
2481 if (hw->phy_reset_disable)
2482 return E1000_SUCCESS;
2483
2484 ret_val = e1000_phy_reset(hw);
2485 if (ret_val) {
2486 DEBUGOUT("Error Resetting the PHY\n");
2487 return ret_val;
2488 }
2489
2490 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2491 mdelay(15);
2492 if (hw->mac_type != e1000_ich8lan) {
2493 /* Configure activity LED after PHY reset */
2494 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2495 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2496 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2497 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2498 }
2499
2500 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2501 if (hw->phy_type == e1000_phy_igp) {
2502 /* disable lplu d3 during driver init */
472d5460 2503 ret_val = e1000_set_d3_lplu_state(hw, false);
aa070789
RZ
2504 if (ret_val) {
2505 DEBUGOUT("Error Disabling LPLU D3\n");
2506 return ret_val;
2507 }
2508 }
2509
2510 /* disable lplu d0 during driver init */
472d5460 2511 ret_val = e1000_set_d0_lplu_state(hw, false);
aa070789
RZ
2512 if (ret_val) {
2513 DEBUGOUT("Error Disabling LPLU D0\n");
2514 return ret_val;
2515 }
2516 /* Configure mdi-mdix settings */
2517 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2518 if (ret_val)
2519 return ret_val;
2520
2521 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2522 hw->dsp_config_state = e1000_dsp_config_disabled;
2523 /* Force MDI for earlier revs of the IGP PHY */
2524 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2525 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2526 hw->mdix = 1;
2527
2528 } else {
2529 hw->dsp_config_state = e1000_dsp_config_enabled;
2530 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2531
2532 switch (hw->mdix) {
2533 case 1:
2534 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2535 break;
2536 case 2:
2537 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2538 break;
2539 case 0:
2540 default:
2541 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2542 break;
2543 }
2544 }
2545 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2546 if (ret_val)
2547 return ret_val;
2548
2549 /* set auto-master slave resolution settings */
2550 if (hw->autoneg) {
2551 e1000_ms_type phy_ms_setting = hw->master_slave;
2552
2553 if (hw->ffe_config_state == e1000_ffe_config_active)
2554 hw->ffe_config_state = e1000_ffe_config_enabled;
2555
2556 if (hw->dsp_config_state == e1000_dsp_config_activated)
2557 hw->dsp_config_state = e1000_dsp_config_enabled;
2558
2559 /* when autonegotiation advertisment is only 1000Mbps then we
2560 * should disable SmartSpeed and enable Auto MasterSlave
2561 * resolution as hardware default. */
2562 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2563 /* Disable SmartSpeed */
2564 ret_val = e1000_read_phy_reg(hw,
2565 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2566 if (ret_val)
2567 return ret_val;
2568 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2569 ret_val = e1000_write_phy_reg(hw,
2570 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2571 if (ret_val)
2572 return ret_val;
2573 /* Set auto Master/Slave resolution process */
2574 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2575 &phy_data);
2576 if (ret_val)
2577 return ret_val;
2578 phy_data &= ~CR_1000T_MS_ENABLE;
2579 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2580 phy_data);
2581 if (ret_val)
2582 return ret_val;
2583 }
2584
2585 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2586 if (ret_val)
2587 return ret_val;
2588
2589 /* load defaults for future use */
2590 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2591 ((phy_data & CR_1000T_MS_VALUE) ?
2592 e1000_ms_force_master :
2593 e1000_ms_force_slave) :
2594 e1000_ms_auto;
2595
2596 switch (phy_ms_setting) {
2597 case e1000_ms_force_master:
2598 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2599 break;
2600 case e1000_ms_force_slave:
2601 phy_data |= CR_1000T_MS_ENABLE;
2602 phy_data &= ~(CR_1000T_MS_VALUE);
2603 break;
2604 case e1000_ms_auto:
2605 phy_data &= ~CR_1000T_MS_ENABLE;
2606 default:
2607 break;
2608 }
2609 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2610 if (ret_val)
2611 return ret_val;
2612 }
2613
2614 return E1000_SUCCESS;
2615}
2616
2617/*****************************************************************************
2618 * This function checks the mode of the firmware.
2619 *
472d5460 2620 * returns - true when the mode is IAMT or false.
aa070789 2621 ****************************************************************************/
472d5460 2622bool
aa070789
RZ
2623e1000_check_mng_mode(struct e1000_hw *hw)
2624{
2625 uint32_t fwsm;
2626 DEBUGFUNC();
2627
2628 fwsm = E1000_READ_REG(hw, FWSM);
2629
2630 if (hw->mac_type == e1000_ich8lan) {
2631 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2632 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
472d5460 2633 return true;
aa070789
RZ
2634 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2635 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
472d5460 2636 return true;
aa070789 2637
472d5460 2638 return false;
aa070789
RZ
2639}
2640
2641static int32_t
2642e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2643{
987b43a1 2644 uint16_t swfw = E1000_SWFW_PHY0_SM;
aa070789 2645 uint32_t reg_val;
aa070789
RZ
2646 DEBUGFUNC();
2647
987b43a1 2648 if (e1000_is_second_port(hw))
aa070789 2649 swfw = E1000_SWFW_PHY1_SM;
987b43a1 2650
aa070789
RZ
2651 if (e1000_swfw_sync_acquire(hw, swfw))
2652 return -E1000_ERR_SWFW_SYNC;
2653
2654 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2655 & E1000_KUMCTRLSTA_OFFSET) | data;
2656 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2657 udelay(2);
2658
2659 return E1000_SUCCESS;
2660}
2661
2662static int32_t
2663e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2664{
987b43a1 2665 uint16_t swfw = E1000_SWFW_PHY0_SM;
aa070789 2666 uint32_t reg_val;
aa070789
RZ
2667 DEBUGFUNC();
2668
987b43a1 2669 if (e1000_is_second_port(hw))
aa070789 2670 swfw = E1000_SWFW_PHY1_SM;
987b43a1 2671
95186063
MV
2672 if (e1000_swfw_sync_acquire(hw, swfw)) {
2673 debug("%s[%i]\n", __func__, __LINE__);
aa070789 2674 return -E1000_ERR_SWFW_SYNC;
95186063 2675 }
aa070789
RZ
2676
2677 /* Write register address */
2678 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2679 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2680 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2681 udelay(2);
2682
2683 /* Read the data returned */
2684 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2685 *data = (uint16_t)reg_val;
2686
2687 return E1000_SUCCESS;
2688}
2689
2690/********************************************************************
2691* Copper link setup for e1000_phy_gg82563 series.
2692*
2693* hw - Struct containing variables accessed by shared code
2694*********************************************************************/
2695static int32_t
2696e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2697{
2698 int32_t ret_val;
2699 uint16_t phy_data;
2700 uint32_t reg_data;
2701
2702 DEBUGFUNC();
2703
2704 if (!hw->phy_reset_disable) {
2705 /* Enable CRS on TX for half-duplex operation. */
2706 ret_val = e1000_read_phy_reg(hw,
2707 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2708 if (ret_val)
2709 return ret_val;
2710
2711 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2712 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2713 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2714
2715 ret_val = e1000_write_phy_reg(hw,
2716 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2717 if (ret_val)
2718 return ret_val;
2719
2720 /* Options:
2721 * MDI/MDI-X = 0 (default)
2722 * 0 - Auto for all speeds
2723 * 1 - MDI mode
2724 * 2 - MDI-X mode
2725 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2726 */
2727 ret_val = e1000_read_phy_reg(hw,
2728 GG82563_PHY_SPEC_CTRL, &phy_data);
2729 if (ret_val)
2730 return ret_val;
2731
2732 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2733
2734 switch (hw->mdix) {
2735 case 1:
2736 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2737 break;
2738 case 2:
2739 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2740 break;
2741 case 0:
2742 default:
2743 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2744 break;
2745 }
2746
2747 /* Options:
2748 * disable_polarity_correction = 0 (default)
2749 * Automatic Correction for Reversed Cable Polarity
2750 * 0 - Disabled
2751 * 1 - Enabled
2752 */
2753 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2754 ret_val = e1000_write_phy_reg(hw,
2755 GG82563_PHY_SPEC_CTRL, phy_data);
2756
2757 if (ret_val)
2758 return ret_val;
2759
2760 /* SW Reset the PHY so all changes take effect */
2761 ret_val = e1000_phy_reset(hw);
2762 if (ret_val) {
2763 DEBUGOUT("Error Resetting the PHY\n");
2764 return ret_val;
2765 }
2766 } /* phy_reset_disable */
2767
2768 if (hw->mac_type == e1000_80003es2lan) {
2769 /* Bypass RX and TX FIFO's */
2770 ret_val = e1000_write_kmrn_reg(hw,
2771 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2772 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2773 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2774 if (ret_val)
2775 return ret_val;
2776
2777 ret_val = e1000_read_phy_reg(hw,
2778 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2779 if (ret_val)
2780 return ret_val;
2781
2782 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2783 ret_val = e1000_write_phy_reg(hw,
2784 GG82563_PHY_SPEC_CTRL_2, phy_data);
2785
2786 if (ret_val)
2787 return ret_val;
2788
2789 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2790 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2791 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2792
2793 ret_val = e1000_read_phy_reg(hw,
2794 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2795 if (ret_val)
2796 return ret_val;
2797
2798 /* Do not init these registers when the HW is in IAMT mode, since the
2799 * firmware will have already initialized them. We only initialize
2800 * them if the HW is not in IAMT mode.
2801 */
472d5460 2802 if (e1000_check_mng_mode(hw) == false) {
aa070789
RZ
2803 /* Enable Electrical Idle on the PHY */
2804 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2805 ret_val = e1000_write_phy_reg(hw,
2806 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2807 if (ret_val)
2808 return ret_val;
2809
2810 ret_val = e1000_read_phy_reg(hw,
2811 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2812 if (ret_val)
2813 return ret_val;
2814
2815 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2816 ret_val = e1000_write_phy_reg(hw,
2817 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2818
2819 if (ret_val)
2820 return ret_val;
2821 }
2822
2823 /* Workaround: Disable padding in Kumeran interface in the MAC
2824 * and in the PHY to avoid CRC errors.
2825 */
2826 ret_val = e1000_read_phy_reg(hw,
2827 GG82563_PHY_INBAND_CTRL, &phy_data);
2828 if (ret_val)
2829 return ret_val;
2830 phy_data |= GG82563_ICR_DIS_PADDING;
2831 ret_val = e1000_write_phy_reg(hw,
2832 GG82563_PHY_INBAND_CTRL, phy_data);
2833 if (ret_val)
2834 return ret_val;
682011ff 2835 }
aa070789 2836 return E1000_SUCCESS;
682011ff
WD
2837}
2838
aa070789
RZ
2839/********************************************************************
2840* Copper link setup for e1000_phy_m88 series.
682011ff
WD
2841*
2842* hw - Struct containing variables accessed by shared code
aa070789
RZ
2843*********************************************************************/
2844static int32_t
2845e1000_copper_link_mgp_setup(struct e1000_hw *hw)
682011ff 2846{
682011ff 2847 int32_t ret_val;
682011ff
WD
2848 uint16_t phy_data;
2849
2850 DEBUGFUNC();
2851
aa070789
RZ
2852 if (hw->phy_reset_disable)
2853 return E1000_SUCCESS;
682011ff 2854
aa070789
RZ
2855 /* Enable CRS on TX. This must be set for half-duplex operation. */
2856 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2857 if (ret_val)
682011ff 2858 return ret_val;
682011ff 2859
682011ff
WD
2860 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2861
682011ff
WD
2862 /* Options:
2863 * MDI/MDI-X = 0 (default)
2864 * 0 - Auto for all speeds
2865 * 1 - MDI mode
2866 * 2 - MDI-X mode
2867 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2868 */
2869 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
aa070789 2870
682011ff
WD
2871 switch (hw->mdix) {
2872 case 1:
2873 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2874 break;
2875 case 2:
2876 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2877 break;
2878 case 3:
2879 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2880 break;
2881 case 0:
2882 default:
2883 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2884 break;
2885 }
682011ff 2886
682011ff
WD
2887 /* Options:
2888 * disable_polarity_correction = 0 (default)
aa070789 2889 * Automatic Correction for Reversed Cable Polarity
682011ff
WD
2890 * 0 - Disabled
2891 * 1 - Enabled
2892 */
2893 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
aa070789
RZ
2894 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2895 if (ret_val)
2896 return ret_val;
682011ff 2897
aa070789
RZ
2898 if (hw->phy_revision < M88E1011_I_REV_4) {
2899 /* Force TX_CLK in the Extended PHY Specific Control Register
2900 * to 25MHz clock.
2901 */
2902 ret_val = e1000_read_phy_reg(hw,
2903 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2904 if (ret_val)
2905 return ret_val;
2906
2907 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2908
2909 if ((hw->phy_revision == E1000_REVISION_2) &&
2910 (hw->phy_id == M88E1111_I_PHY_ID)) {
2911 /* Vidalia Phy, set the downshift counter to 5x */
2912 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2913 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2914 ret_val = e1000_write_phy_reg(hw,
2915 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2916 if (ret_val)
2917 return ret_val;
2918 } else {
2919 /* Configure Master and Slave downshift values */
2920 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2921 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2922 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2923 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2924 ret_val = e1000_write_phy_reg(hw,
2925 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2926 if (ret_val)
2927 return ret_val;
2928 }
682011ff
WD
2929 }
2930
2931 /* SW Reset the PHY so all changes take effect */
2932 ret_val = e1000_phy_reset(hw);
aa070789 2933 if (ret_val) {
682011ff
WD
2934 DEBUGOUT("Error Resetting the PHY\n");
2935 return ret_val;
2936 }
2937
aa070789
RZ
2938 return E1000_SUCCESS;
2939}
2940
2941/********************************************************************
2942* Setup auto-negotiation and flow control advertisements,
2943* and then perform auto-negotiation.
2944*
2945* hw - Struct containing variables accessed by shared code
2946*********************************************************************/
2947static int32_t
2948e1000_copper_link_autoneg(struct e1000_hw *hw)
2949{
2950 int32_t ret_val;
2951 uint16_t phy_data;
2952
2953 DEBUGFUNC();
682011ff 2954
682011ff
WD
2955 /* Perform some bounds checking on the hw->autoneg_advertised
2956 * parameter. If this variable is zero, then set it to the default.
2957 */
2958 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2959
2960 /* If autoneg_advertised is zero, we assume it was not defaulted
2961 * by the calling code so we set to advertise full capability.
2962 */
2963 if (hw->autoneg_advertised == 0)
2964 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2965
aa070789
RZ
2966 /* IFE phy only supports 10/100 */
2967 if (hw->phy_type == e1000_phy_ife)
2968 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2969
682011ff
WD
2970 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2971 ret_val = e1000_phy_setup_autoneg(hw);
aa070789 2972 if (ret_val) {
682011ff
WD
2973 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2974 return ret_val;
2975 }
2976 DEBUGOUT("Restarting Auto-Neg\n");
2977
2978 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2979 * the Auto Neg Restart bit in the PHY control register.
2980 */
aa070789
RZ
2981 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2982 if (ret_val)
2983 return ret_val;
2984
682011ff 2985 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
aa070789
RZ
2986 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2987 if (ret_val)
2988 return ret_val;
2989
682011ff
WD
2990 /* Does the user want to wait for Auto-Neg to complete here, or
2991 * check at a later time (for example, callback routine).
2992 */
aa070789
RZ
2993 /* If we do not wait for autonegtation to complete I
2994 * do not see a valid link status.
2995 * wait_autoneg_complete = 1 .
2996 */
682011ff
WD
2997 if (hw->wait_autoneg_complete) {
2998 ret_val = e1000_wait_autoneg(hw);
aa070789
RZ
2999 if (ret_val) {
3000 DEBUGOUT("Error while waiting for autoneg"
3001 "to complete\n");
682011ff
WD
3002 return ret_val;
3003 }
3004 }
aa070789 3005
472d5460 3006 hw->get_link_status = true;
aa070789
RZ
3007
3008 return E1000_SUCCESS;
3009}
3010
3011/******************************************************************************
3012* Config the MAC and the PHY after link is up.
3013* 1) Set up the MAC to the current PHY speed/duplex
3014* if we are on 82543. If we
3015* are on newer silicon, we only need to configure
3016* collision distance in the Transmit Control Register.
3017* 2) Set up flow control on the MAC to that established with
3018* the link partner.
3019* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
3020*
3021* hw - Struct containing variables accessed by shared code
3022******************************************************************************/
3023static int32_t
3024e1000_copper_link_postconfig(struct e1000_hw *hw)
3025{
3026 int32_t ret_val;
3027 DEBUGFUNC();
3028
3029 if (hw->mac_type >= e1000_82544) {
3030 e1000_config_collision_dist(hw);
3031 } else {
3032 ret_val = e1000_config_mac_to_phy(hw);
3033 if (ret_val) {
3034 DEBUGOUT("Error configuring MAC to PHY settings\n");
3035 return ret_val;
3036 }
3037 }
3038 ret_val = e1000_config_fc_after_link_up(hw);
3039 if (ret_val) {
3040 DEBUGOUT("Error Configuring Flow Control\n");
682011ff
WD
3041 return ret_val;
3042 }
aa070789
RZ
3043 return E1000_SUCCESS;
3044}
3045
3046/******************************************************************************
3047* Detects which PHY is present and setup the speed and duplex
3048*
3049* hw - Struct containing variables accessed by shared code
3050******************************************************************************/
3051static int
3052e1000_setup_copper_link(struct eth_device *nic)
3053{
3054 struct e1000_hw *hw = nic->priv;
3055 int32_t ret_val;
3056 uint16_t i;
3057 uint16_t phy_data;
3058 uint16_t reg_data;
3059
3060 DEBUGFUNC();
3061
3062 switch (hw->mac_type) {
3063 case e1000_80003es2lan:
3064 case e1000_ich8lan:
3065 /* Set the mac to wait the maximum time between each
3066 * iteration and increase the max iterations when
3067 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3068 ret_val = e1000_write_kmrn_reg(hw,
3069 GG82563_REG(0x34, 4), 0xFFFF);
3070 if (ret_val)
3071 return ret_val;
3072 ret_val = e1000_read_kmrn_reg(hw,
3073 GG82563_REG(0x34, 9), &reg_data);
3074 if (ret_val)
3075 return ret_val;
3076 reg_data |= 0x3F;
3077 ret_val = e1000_write_kmrn_reg(hw,
3078 GG82563_REG(0x34, 9), reg_data);
3079 if (ret_val)
3080 return ret_val;
3081 default:
3082 break;
3083 }
3084
3085 /* Check if it is a valid PHY and set PHY mode if necessary. */
3086 ret_val = e1000_copper_link_preconfig(hw);
3087 if (ret_val)
3088 return ret_val;
3089 switch (hw->mac_type) {
3090 case e1000_80003es2lan:
3091 /* Kumeran registers are written-only */
3092 reg_data =
3093 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3094 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3095 ret_val = e1000_write_kmrn_reg(hw,
3096 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3097 if (ret_val)
3098 return ret_val;
3099 break;
3100 default:
3101 break;
3102 }
3103
3104 if (hw->phy_type == e1000_phy_igp ||
3105 hw->phy_type == e1000_phy_igp_3 ||
3106 hw->phy_type == e1000_phy_igp_2) {
3107 ret_val = e1000_copper_link_igp_setup(hw);
3108 if (ret_val)
3109 return ret_val;
95186063
MV
3110 } else if (hw->phy_type == e1000_phy_m88 ||
3111 hw->phy_type == e1000_phy_igb) {
aa070789
RZ
3112 ret_val = e1000_copper_link_mgp_setup(hw);
3113 if (ret_val)
3114 return ret_val;
3115 } else if (hw->phy_type == e1000_phy_gg82563) {
3116 ret_val = e1000_copper_link_ggp_setup(hw);
3117 if (ret_val)
3118 return ret_val;
3119 }
3120
3121 /* always auto */
3122 /* Setup autoneg and flow control advertisement
3123 * and perform autonegotiation */
3124 ret_val = e1000_copper_link_autoneg(hw);
3125 if (ret_val)
3126 return ret_val;
682011ff
WD
3127
3128 /* Check link status. Wait up to 100 microseconds for link to become
3129 * valid.
3130 */
3131 for (i = 0; i < 10; i++) {
aa070789
RZ
3132 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3133 if (ret_val)
3134 return ret_val;
3135 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3136 if (ret_val)
3137 return ret_val;
3138
682011ff 3139 if (phy_data & MII_SR_LINK_STATUS) {
aa070789
RZ
3140 /* Config the MAC and PHY after link is up */
3141 ret_val = e1000_copper_link_postconfig(hw);
3142 if (ret_val)
682011ff 3143 return ret_val;
aa070789 3144
682011ff 3145 DEBUGOUT("Valid link established!!!\n");
aa070789 3146 return E1000_SUCCESS;
682011ff
WD
3147 }
3148 udelay(10);
3149 }
3150
3151 DEBUGOUT("Unable to establish link!!!\n");
aa070789 3152 return E1000_SUCCESS;
682011ff
WD
3153}
3154
3155/******************************************************************************
3156* Configures PHY autoneg and flow control advertisement settings
3157*
3158* hw - Struct containing variables accessed by shared code
3159******************************************************************************/
aa070789 3160int32_t
682011ff
WD
3161e1000_phy_setup_autoneg(struct e1000_hw *hw)
3162{
aa070789 3163 int32_t ret_val;
682011ff
WD
3164 uint16_t mii_autoneg_adv_reg;
3165 uint16_t mii_1000t_ctrl_reg;
3166
3167 DEBUGFUNC();
3168
3169 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
aa070789
RZ
3170 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3171 if (ret_val)
3172 return ret_val;
682011ff 3173
aa070789
RZ
3174 if (hw->phy_type != e1000_phy_ife) {
3175 /* Read the MII 1000Base-T Control Register (Address 9). */
3176 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3177 &mii_1000t_ctrl_reg);
3178 if (ret_val)
3179 return ret_val;
3180 } else
3181 mii_1000t_ctrl_reg = 0;
682011ff
WD
3182
3183 /* Need to parse both autoneg_advertised and fc and set up
3184 * the appropriate PHY registers. First we will parse for
3185 * autoneg_advertised software override. Since we can advertise
3186 * a plethora of combinations, we need to check each bit
3187 * individually.
3188 */
3189
3190 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3191 * Advertisement Register (Address 4) and the 1000 mb speed bits in
aa070789 3192 * the 1000Base-T Control Register (Address 9).
682011ff
WD
3193 */
3194 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3195 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3196
3197 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3198
3199 /* Do we want to advertise 10 Mb Half Duplex? */
3200 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3201 DEBUGOUT("Advertise 10mb Half duplex\n");
3202 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3203 }
3204
3205 /* Do we want to advertise 10 Mb Full Duplex? */
3206 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3207 DEBUGOUT("Advertise 10mb Full duplex\n");
3208 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3209 }
3210
3211 /* Do we want to advertise 100 Mb Half Duplex? */
3212 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3213 DEBUGOUT("Advertise 100mb Half duplex\n");
3214 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3215 }
3216
3217 /* Do we want to advertise 100 Mb Full Duplex? */
3218 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3219 DEBUGOUT("Advertise 100mb Full duplex\n");
3220 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3221 }
3222
3223 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3224 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3225 DEBUGOUT
3226 ("Advertise 1000mb Half duplex requested, request denied!\n");
3227 }
3228
3229 /* Do we want to advertise 1000 Mb Full Duplex? */
3230 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3231 DEBUGOUT("Advertise 1000mb Full duplex\n");
3232 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3233 }
3234
3235 /* Check for a software override of the flow control settings, and
3236 * setup the PHY advertisement registers accordingly. If
3237 * auto-negotiation is enabled, then software will have to set the
3238 * "PAUSE" bits to the correct value in the Auto-Negotiation
3239 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3240 *
3241 * The possible values of the "fc" parameter are:
1aeed8d7
WD
3242 * 0: Flow control is completely disabled
3243 * 1: Rx flow control is enabled (we can receive pause frames
3244 * but not send pause frames).
3245 * 2: Tx flow control is enabled (we can send pause frames
3246 * but we do not support receiving pause frames).
3247 * 3: Both Rx and TX flow control (symmetric) are enabled.
682011ff 3248 * other: No software override. The flow control configuration
1aeed8d7 3249 * in the EEPROM is used.
682011ff
WD
3250 */
3251 switch (hw->fc) {
3252 case e1000_fc_none: /* 0 */
3253 /* Flow control (RX & TX) is completely disabled by a
3254 * software over-ride.
3255 */
3256 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3257 break;
3258 case e1000_fc_rx_pause: /* 1 */
3259 /* RX Flow control is enabled, and TX Flow control is
3260 * disabled, by a software over-ride.
3261 */
3262 /* Since there really isn't a way to advertise that we are
3263 * capable of RX Pause ONLY, we will advertise that we
3264 * support both symmetric and asymmetric RX PAUSE. Later
3265 * (in e1000_config_fc_after_link_up) we will disable the
3266 *hw's ability to send PAUSE frames.
3267 */
3268 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3269 break;
3270 case e1000_fc_tx_pause: /* 2 */
3271 /* TX Flow control is enabled, and RX Flow control is
3272 * disabled, by a software over-ride.
3273 */
3274 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3275 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3276 break;
3277 case e1000_fc_full: /* 3 */
3278 /* Flow control (both RX and TX) is enabled by a software
3279 * over-ride.
3280 */
3281 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3282 break;
3283 default:
3284 DEBUGOUT("Flow control param set incorrectly\n");
3285 return -E1000_ERR_CONFIG;
3286 }
3287
aa070789
RZ
3288 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3289 if (ret_val)
3290 return ret_val;
682011ff
WD
3291
3292 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3293
aa070789
RZ
3294 if (hw->phy_type != e1000_phy_ife) {
3295 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3296 mii_1000t_ctrl_reg);
3297 if (ret_val)
3298 return ret_val;
682011ff 3299 }
aa070789
RZ
3300
3301 return E1000_SUCCESS;
682011ff
WD
3302}
3303
3304/******************************************************************************
3305* Sets the collision distance in the Transmit Control register
3306*
3307* hw - Struct containing variables accessed by shared code
3308*
3309* Link should have been established previously. Reads the speed and duplex
3310* information from the Device Status register.
3311******************************************************************************/
3312static void
3313e1000_config_collision_dist(struct e1000_hw *hw)
3314{
aa070789
RZ
3315 uint32_t tctl, coll_dist;
3316
3317 DEBUGFUNC();
3318
3319 if (hw->mac_type < e1000_82543)
3320 coll_dist = E1000_COLLISION_DISTANCE_82542;
3321 else
3322 coll_dist = E1000_COLLISION_DISTANCE;
682011ff
WD
3323
3324 tctl = E1000_READ_REG(hw, TCTL);
3325
3326 tctl &= ~E1000_TCTL_COLD;
aa070789 3327 tctl |= coll_dist << E1000_COLD_SHIFT;
682011ff
WD
3328
3329 E1000_WRITE_REG(hw, TCTL, tctl);
3330 E1000_WRITE_FLUSH(hw);
3331}
3332
3333/******************************************************************************
3334* Sets MAC speed and duplex settings to reflect the those in the PHY
3335*
3336* hw - Struct containing variables accessed by shared code
3337* mii_reg - data to write to the MII control register
3338*
3339* The contents of the PHY register containing the needed information need to
3340* be passed in.
3341******************************************************************************/
3342static int
3343e1000_config_mac_to_phy(struct e1000_hw *hw)
3344{
3345 uint32_t ctrl;
3346 uint16_t phy_data;
3347
3348 DEBUGFUNC();
3349
3350 /* Read the Device Control Register and set the bits to Force Speed
3351 * and Duplex.
3352 */
3353 ctrl = E1000_READ_REG(hw, CTRL);
3354 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
95186063
MV
3355 ctrl &= ~(E1000_CTRL_ILOS);
3356 ctrl |= (E1000_CTRL_SPD_SEL);
682011ff
WD
3357
3358 /* Set up duplex in the Device Control and Transmit Control
3359 * registers depending on negotiated values.
3360 */
3361 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3362 DEBUGOUT("PHY Read Error\n");
3363 return -E1000_ERR_PHY;
3364 }
3365 if (phy_data & M88E1000_PSSR_DPLX)
3366 ctrl |= E1000_CTRL_FD;
3367 else
3368 ctrl &= ~E1000_CTRL_FD;
3369
3370 e1000_config_collision_dist(hw);
3371
3372 /* Set up speed in the Device Control register depending on
3373 * negotiated values.
3374 */
3375 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3376 ctrl |= E1000_CTRL_SPD_1000;
3377 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3378 ctrl |= E1000_CTRL_SPD_100;
3379 /* Write the configured values back to the Device Control Reg. */
3380 E1000_WRITE_REG(hw, CTRL, ctrl);
3381 return 0;
3382}
3383
3384/******************************************************************************
3385 * Forces the MAC's flow control settings.
8bde7f77 3386 *
682011ff
WD
3387 * hw - Struct containing variables accessed by shared code
3388 *
3389 * Sets the TFCE and RFCE bits in the device control register to reflect
3390 * the adapter settings. TFCE and RFCE need to be explicitly set by
3391 * software when a Copper PHY is used because autonegotiation is managed
3392 * by the PHY rather than the MAC. Software must also configure these
3393 * bits when link is forced on a fiber connection.
3394 *****************************************************************************/
3395static int
3396e1000_force_mac_fc(struct e1000_hw *hw)
3397{
3398 uint32_t ctrl;
3399
3400 DEBUGFUNC();
3401
3402 /* Get the current configuration of the Device Control Register */
3403 ctrl = E1000_READ_REG(hw, CTRL);
3404
3405 /* Because we didn't get link via the internal auto-negotiation
3406 * mechanism (we either forced link or we got link via PHY
3407 * auto-neg), we have to manually enable/disable transmit an
3408 * receive flow control.
3409 *
3410 * The "Case" statement below enables/disable flow control
3411 * according to the "hw->fc" parameter.
3412 *
3413 * The possible values of the "fc" parameter are:
1aeed8d7
WD
3414 * 0: Flow control is completely disabled
3415 * 1: Rx flow control is enabled (we can receive pause
3416 * frames but not send pause frames).
3417 * 2: Tx flow control is enabled (we can send pause frames
3418 * frames but we do not receive pause frames).
3419 * 3: Both Rx and TX flow control (symmetric) is enabled.
682011ff
WD
3420 * other: No other values should be possible at this point.
3421 */
3422
3423 switch (hw->fc) {
3424 case e1000_fc_none:
3425 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3426 break;
3427 case e1000_fc_rx_pause:
3428 ctrl &= (~E1000_CTRL_TFCE);
3429 ctrl |= E1000_CTRL_RFCE;
3430 break;
3431 case e1000_fc_tx_pause:
3432 ctrl &= (~E1000_CTRL_RFCE);
3433 ctrl |= E1000_CTRL_TFCE;
3434 break;
3435 case e1000_fc_full:
3436 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3437 break;
3438 default:
3439 DEBUGOUT("Flow control param set incorrectly\n");
3440 return -E1000_ERR_CONFIG;
3441 }
3442
3443 /* Disable TX Flow Control for 82542 (rev 2.0) */
3444 if (hw->mac_type == e1000_82542_rev2_0)
3445 ctrl &= (~E1000_CTRL_TFCE);
3446
3447 E1000_WRITE_REG(hw, CTRL, ctrl);
3448 return 0;
3449}
3450
3451/******************************************************************************
3452 * Configures flow control settings after link is established
8bde7f77 3453 *
682011ff
WD
3454 * hw - Struct containing variables accessed by shared code
3455 *
3456 * Should be called immediately after a valid link has been established.
3457 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3458 * and autonegotiation is enabled, the MAC flow control settings will be set
3459 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3460 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3461 *****************************************************************************/
aa070789 3462static int32_t
682011ff
WD
3463e1000_config_fc_after_link_up(struct e1000_hw *hw)
3464{
3465 int32_t ret_val;
3466 uint16_t mii_status_reg;
3467 uint16_t mii_nway_adv_reg;
3468 uint16_t mii_nway_lp_ability_reg;
3469 uint16_t speed;
3470 uint16_t duplex;
3471
3472 DEBUGFUNC();
3473
3474 /* Check for the case where we have fiber media and auto-neg failed
3475 * so we had to force link. In this case, we need to force the
3476 * configuration of the MAC to match the "fc" parameter.
3477 */
aa070789
RZ
3478 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3479 || ((hw->media_type == e1000_media_type_internal_serdes)
3480 && (hw->autoneg_failed))
3481 || ((hw->media_type == e1000_media_type_copper)
3482 && (!hw->autoneg))) {
682011ff
WD
3483 ret_val = e1000_force_mac_fc(hw);
3484 if (ret_val < 0) {
3485 DEBUGOUT("Error forcing flow control settings\n");
3486 return ret_val;
3487 }
3488 }
3489
3490 /* Check for the case where we have copper media and auto-neg is
3491 * enabled. In this case, we need to check and see if Auto-Neg
3492 * has completed, and if so, how the PHY and link partner has
3493 * flow control configured.
3494 */
3495 if (hw->media_type == e1000_media_type_copper) {
3496 /* Read the MII Status Register and check to see if AutoNeg
3497 * has completed. We read this twice because this reg has
3498 * some "sticky" (latched) bits.
3499 */
3500 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
5abf13e4 3501 DEBUGOUT("PHY Read Error\n");
682011ff
WD
3502 return -E1000_ERR_PHY;
3503 }
3504 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
5abf13e4 3505 DEBUGOUT("PHY Read Error\n");
682011ff
WD
3506 return -E1000_ERR_PHY;
3507 }
3508
3509 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3510 /* The AutoNeg process has completed, so we now need to
3511 * read both the Auto Negotiation Advertisement Register
3512 * (Address 4) and the Auto_Negotiation Base Page Ability
3513 * Register (Address 5) to determine how flow control was
3514 * negotiated.
3515 */
3516 if (e1000_read_phy_reg
3517 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3518 DEBUGOUT("PHY Read Error\n");
3519 return -E1000_ERR_PHY;
3520 }
3521 if (e1000_read_phy_reg
3522 (hw, PHY_LP_ABILITY,
3523 &mii_nway_lp_ability_reg) < 0) {
3524 DEBUGOUT("PHY Read Error\n");
3525 return -E1000_ERR_PHY;
3526 }
3527
3528 /* Two bits in the Auto Negotiation Advertisement Register
3529 * (Address 4) and two bits in the Auto Negotiation Base
3530 * Page Ability Register (Address 5) determine flow control
3531 * for both the PHY and the link partner. The following
3532 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3533 * 1999, describes these PAUSE resolution bits and how flow
3534 * control is determined based upon these settings.
3535 * NOTE: DC = Don't Care
3536 *
3537 * LOCAL DEVICE | LINK PARTNER
3538 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3539 *-------|---------|-------|---------|--------------------
1aeed8d7
WD
3540 * 0 | 0 | DC | DC | e1000_fc_none
3541 * 0 | 1 | 0 | DC | e1000_fc_none
3542 * 0 | 1 | 1 | 0 | e1000_fc_none
3543 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3544 * 1 | 0 | 0 | DC | e1000_fc_none
3545 * 1 | DC | 1 | DC | e1000_fc_full
3546 * 1 | 1 | 0 | 0 | e1000_fc_none
3547 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
682011ff
WD
3548 *
3549 */
3550 /* Are both PAUSE bits set to 1? If so, this implies
3551 * Symmetric Flow Control is enabled at both ends. The
3552 * ASM_DIR bits are irrelevant per the spec.
3553 *
3554 * For Symmetric Flow Control:
3555 *
3556 * LOCAL DEVICE | LINK PARTNER
3557 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3558 *-------|---------|-------|---------|--------------------
1aeed8d7 3559 * 1 | DC | 1 | DC | e1000_fc_full
682011ff
WD
3560 *
3561 */
3562 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3563 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3564 /* Now we need to check if the user selected RX ONLY
3565 * of pause frames. In this case, we had to advertise
3566 * FULL flow control because we could not advertise RX
3567 * ONLY. Hence, we must now check to see if we need to
3568 * turn OFF the TRANSMISSION of PAUSE frames.
3569 */
3570 if (hw->original_fc == e1000_fc_full) {
3571 hw->fc = e1000_fc_full;
3572 DEBUGOUT("Flow Control = FULL.\r\n");
3573 } else {
3574 hw->fc = e1000_fc_rx_pause;
3575 DEBUGOUT
3576 ("Flow Control = RX PAUSE frames only.\r\n");
3577 }
3578 }
3579 /* For receiving PAUSE frames ONLY.
3580 *
3581 * LOCAL DEVICE | LINK PARTNER
3582 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3583 *-------|---------|-------|---------|--------------------
1aeed8d7 3584 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
682011ff
WD
3585 *
3586 */
3587 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3588 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3589 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3590 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3591 {
3592 hw->fc = e1000_fc_tx_pause;
3593 DEBUGOUT
3594 ("Flow Control = TX PAUSE frames only.\r\n");
3595 }
3596 /* For transmitting PAUSE frames ONLY.
3597 *
3598 * LOCAL DEVICE | LINK PARTNER
3599 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3600 *-------|---------|-------|---------|--------------------
1aeed8d7 3601 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
682011ff
WD
3602 *
3603 */
3604 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3605 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3606 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3607 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3608 {
3609 hw->fc = e1000_fc_rx_pause;
3610 DEBUGOUT
3611 ("Flow Control = RX PAUSE frames only.\r\n");
3612 }
3613 /* Per the IEEE spec, at this point flow control should be
3614 * disabled. However, we want to consider that we could
3615 * be connected to a legacy switch that doesn't advertise
3616 * desired flow control, but can be forced on the link
3617 * partner. So if we advertised no flow control, that is
3618 * what we will resolve to. If we advertised some kind of
3619 * receive capability (Rx Pause Only or Full Flow Control)
3620 * and the link partner advertised none, we will configure
3621 * ourselves to enable Rx Flow Control only. We can do
3622 * this safely for two reasons: If the link partner really
3623 * didn't want flow control enabled, and we enable Rx, no
3624 * harm done since we won't be receiving any PAUSE frames
3625 * anyway. If the intent on the link partner was to have
3626 * flow control enabled, then by us enabling RX only, we
3627 * can at least receive pause frames and process them.
3628 * This is a good idea because in most cases, since we are
3629 * predominantly a server NIC, more times than not we will
3630 * be asked to delay transmission of packets than asking
3631 * our link partner to pause transmission of frames.
3632 */
3633 else if (hw->original_fc == e1000_fc_none ||
3634 hw->original_fc == e1000_fc_tx_pause) {
3635 hw->fc = e1000_fc_none;
3636 DEBUGOUT("Flow Control = NONE.\r\n");
3637 } else {
3638 hw->fc = e1000_fc_rx_pause;
3639 DEBUGOUT
3640 ("Flow Control = RX PAUSE frames only.\r\n");
3641 }
3642
1aeed8d7 3643 /* Now we need to do one last check... If we auto-
682011ff
WD
3644 * negotiated to HALF DUPLEX, flow control should not be
3645 * enabled per IEEE 802.3 spec.
3646 */
3647 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3648
3649 if (duplex == HALF_DUPLEX)
3650 hw->fc = e1000_fc_none;
3651
3652 /* Now we call a subroutine to actually force the MAC
3653 * controller to use the correct flow control settings.
3654 */
3655 ret_val = e1000_force_mac_fc(hw);
3656 if (ret_val < 0) {
3657 DEBUGOUT
3658 ("Error forcing flow control settings\n");
3659 return ret_val;
3660 }
3661 } else {
3662 DEBUGOUT
3663 ("Copper PHY and Auto Neg has not completed.\r\n");
3664 }
3665 }
aa070789 3666 return E1000_SUCCESS;
682011ff
WD
3667}
3668
3669/******************************************************************************
3670 * Checks to see if the link status of the hardware has changed.
3671 *
3672 * hw - Struct containing variables accessed by shared code
3673 *
3674 * Called by any function that needs to check the link status of the adapter.
3675 *****************************************************************************/
3676static int
3677e1000_check_for_link(struct eth_device *nic)
3678{
3679 struct e1000_hw *hw = nic->priv;
3680 uint32_t rxcw;
3681 uint32_t ctrl;
3682 uint32_t status;
3683 uint32_t rctl;
3684 uint32_t signal;
3685 int32_t ret_val;
3686 uint16_t phy_data;
3687 uint16_t lp_capability;
3688
3689 DEBUGFUNC();
3690
8bde7f77
WD
3691 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3692 * set when the optics detect a signal. On older adapters, it will be
682011ff
WD
3693 * cleared when there is a signal
3694 */
3695 ctrl = E1000_READ_REG(hw, CTRL);
3696 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3697 signal = E1000_CTRL_SWDPIN1;
3698 else
3699 signal = 0;
3700
3701 status = E1000_READ_REG(hw, STATUS);
3702 rxcw = E1000_READ_REG(hw, RXCW);
3703 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3704
3705 /* If we have a copper PHY then we only want to go out to the PHY
3706 * registers to see if Auto-Neg has completed and/or if our link
1aeed8d7 3707 * status has changed. The get_link_status flag will be set if we
682011ff
WD
3708 * receive a Link Status Change interrupt or we have Rx Sequence
3709 * Errors.
3710 */
3711 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3712 /* First we want to see if the MII Status Register reports
3713 * link. If so, then we want to get the current speed/duplex
3714 * of the PHY.
3715 * Read the register twice since the link bit is sticky.
3716 */
3717 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3718 DEBUGOUT("PHY Read Error\n");
3719 return -E1000_ERR_PHY;
3720 }
3721 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3722 DEBUGOUT("PHY Read Error\n");
3723 return -E1000_ERR_PHY;
3724 }
3725
3726 if (phy_data & MII_SR_LINK_STATUS) {
472d5460 3727 hw->get_link_status = false;
682011ff
WD
3728 } else {
3729 /* No link detected */
3730 return -E1000_ERR_NOLINK;
3731 }
3732
3733 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3734 * have Si on board that is 82544 or newer, Auto
3735 * Speed Detection takes care of MAC speed/duplex
3736 * configuration. So we only need to configure Collision
3737 * Distance in the MAC. Otherwise, we need to force
3738 * speed/duplex on the MAC to the current PHY speed/duplex
3739 * settings.
3740 */
3741 if (hw->mac_type >= e1000_82544)
3742 e1000_config_collision_dist(hw);
3743 else {
3744 ret_val = e1000_config_mac_to_phy(hw);
3745 if (ret_val < 0) {
3746 DEBUGOUT
3747 ("Error configuring MAC to PHY settings\n");
3748 return ret_val;
3749 }
3750 }
3751
8bde7f77 3752 /* Configure Flow Control now that Auto-Neg has completed. First, we
682011ff
WD
3753 * need to restore the desired flow control settings because we may
3754 * have had to re-autoneg with a different link partner.
3755 */
3756 ret_val = e1000_config_fc_after_link_up(hw);
3757 if (ret_val < 0) {
3758 DEBUGOUT("Error configuring flow control\n");
3759 return ret_val;
3760 }
3761
3762 /* At this point we know that we are on copper and we have
3763 * auto-negotiated link. These are conditions for checking the link
1aeed8d7 3764 * parter capability register. We use the link partner capability to
682011ff
WD
3765 * determine if TBI Compatibility needs to be turned on or off. If
3766 * the link partner advertises any speed in addition to Gigabit, then
3767 * we assume that they are GMII-based, and TBI compatibility is not
3768 * needed. If no other speeds are advertised, we assume the link
3769 * partner is TBI-based, and we turn on TBI Compatibility.
3770 */
3771 if (hw->tbi_compatibility_en) {
3772 if (e1000_read_phy_reg
3773 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3774 DEBUGOUT("PHY Read Error\n");
3775 return -E1000_ERR_PHY;
3776 }
3777 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3778 NWAY_LPAR_10T_FD_CAPS |
3779 NWAY_LPAR_100TX_HD_CAPS |
3780 NWAY_LPAR_100TX_FD_CAPS |
3781 NWAY_LPAR_100T4_CAPS)) {
8bde7f77 3782 /* If our link partner advertises anything in addition to
682011ff
WD
3783 * gigabit, we do not need to enable TBI compatibility.
3784 */
3785 if (hw->tbi_compatibility_on) {
3786 /* If we previously were in the mode, turn it off. */
3787 rctl = E1000_READ_REG(hw, RCTL);
3788 rctl &= ~E1000_RCTL_SBP;
3789 E1000_WRITE_REG(hw, RCTL, rctl);
472d5460 3790 hw->tbi_compatibility_on = false;
682011ff
WD
3791 }
3792 } else {
3793 /* If TBI compatibility is was previously off, turn it on. For
3794 * compatibility with a TBI link partner, we will store bad
3795 * packets. Some frames have an additional byte on the end and
3796 * will look like CRC errors to to the hardware.
3797 */
3798 if (!hw->tbi_compatibility_on) {
472d5460 3799 hw->tbi_compatibility_on = true;
682011ff
WD
3800 rctl = E1000_READ_REG(hw, RCTL);
3801 rctl |= E1000_RCTL_SBP;
3802 E1000_WRITE_REG(hw, RCTL, rctl);
3803 }
3804 }
3805 }
3806 }
3807 /* If we don't have link (auto-negotiation failed or link partner cannot
3808 * auto-negotiate), the cable is plugged in (we have signal), and our
3809 * link partner is not trying to auto-negotiate with us (we are receiving
3810 * idles or data), we need to force link up. We also need to give
3811 * auto-negotiation time to complete, in case the cable was just plugged
3812 * in. The autoneg_failed flag does this.
3813 */
3814 else if ((hw->media_type == e1000_media_type_fiber) &&
3815 (!(status & E1000_STATUS_LU)) &&
3816 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3817 (!(rxcw & E1000_RXCW_C))) {
3818 if (hw->autoneg_failed == 0) {
3819 hw->autoneg_failed = 1;
3820 return 0;
3821 }
3822 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3823
3824 /* Disable auto-negotiation in the TXCW register */
3825 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3826
3827 /* Force link-up and also force full-duplex. */
3828 ctrl = E1000_READ_REG(hw, CTRL);
3829 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3830 E1000_WRITE_REG(hw, CTRL, ctrl);
3831
3832 /* Configure Flow Control after forcing link up. */
3833 ret_val = e1000_config_fc_after_link_up(hw);
3834 if (ret_val < 0) {
3835 DEBUGOUT("Error configuring flow control\n");
3836 return ret_val;
3837 }
3838 }
3839 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3840 * auto-negotiation in the TXCW register and disable forced link in the
3841 * Device Control register in an attempt to auto-negotiate with our link
3842 * partner.
3843 */
3844 else if ((hw->media_type == e1000_media_type_fiber) &&
3845 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3846 DEBUGOUT
3847 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3848 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3849 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3850 }
3851 return 0;
3852}
3853
aa070789
RZ
3854/******************************************************************************
3855* Configure the MAC-to-PHY interface for 10/100Mbps
3856*
3857* hw - Struct containing variables accessed by shared code
3858******************************************************************************/
3859static int32_t
3860e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3861{
3862 int32_t ret_val = E1000_SUCCESS;
3863 uint32_t tipg;
3864 uint16_t reg_data;
3865
3866 DEBUGFUNC();
3867
3868 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3869 ret_val = e1000_write_kmrn_reg(hw,
3870 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3871 if (ret_val)
3872 return ret_val;
3873
3874 /* Configure Transmit Inter-Packet Gap */
3875 tipg = E1000_READ_REG(hw, TIPG);
3876 tipg &= ~E1000_TIPG_IPGT_MASK;
3877 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3878 E1000_WRITE_REG(hw, TIPG, tipg);
3879
3880 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3881
3882 if (ret_val)
3883 return ret_val;
3884
3885 if (duplex == HALF_DUPLEX)
3886 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3887 else
3888 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3889
3890 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3891
3892 return ret_val;
3893}
3894
3895static int32_t
3896e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3897{
3898 int32_t ret_val = E1000_SUCCESS;
3899 uint16_t reg_data;
3900 uint32_t tipg;
3901
3902 DEBUGFUNC();
3903
3904 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3905 ret_val = e1000_write_kmrn_reg(hw,
3906 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3907 if (ret_val)
3908 return ret_val;
3909
3910 /* Configure Transmit Inter-Packet Gap */
3911 tipg = E1000_READ_REG(hw, TIPG);
3912 tipg &= ~E1000_TIPG_IPGT_MASK;
3913 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3914 E1000_WRITE_REG(hw, TIPG, tipg);
3915
3916 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3917
3918 if (ret_val)
3919 return ret_val;
3920
3921 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3922 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3923
3924 return ret_val;
3925}
3926
682011ff
WD
3927/******************************************************************************
3928 * Detects the current speed and duplex settings of the hardware.
3929 *
3930 * hw - Struct containing variables accessed by shared code
3931 * speed - Speed of the connection
3932 * duplex - Duplex setting of the connection
3933 *****************************************************************************/
aa070789
RZ
3934static int
3935e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3936 uint16_t *duplex)
682011ff
WD
3937{
3938 uint32_t status;
aa070789
RZ
3939 int32_t ret_val;
3940 uint16_t phy_data;
682011ff
WD
3941
3942 DEBUGFUNC();
3943
3944 if (hw->mac_type >= e1000_82543) {
3945 status = E1000_READ_REG(hw, STATUS);
3946 if (status & E1000_STATUS_SPEED_1000) {
3947 *speed = SPEED_1000;
3948 DEBUGOUT("1000 Mbs, ");
3949 } else if (status & E1000_STATUS_SPEED_100) {
3950 *speed = SPEED_100;
3951 DEBUGOUT("100 Mbs, ");
3952 } else {
3953 *speed = SPEED_10;
3954 DEBUGOUT("10 Mbs, ");
3955 }
3956
3957 if (status & E1000_STATUS_FD) {
3958 *duplex = FULL_DUPLEX;
3959 DEBUGOUT("Full Duplex\r\n");
3960 } else {
3961 *duplex = HALF_DUPLEX;
3962 DEBUGOUT(" Half Duplex\r\n");
3963 }
3964 } else {
3965 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3966 *speed = SPEED_1000;
3967 *duplex = FULL_DUPLEX;
3968 }
aa070789
RZ
3969
3970 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3971 * even if it is operating at half duplex. Here we set the duplex
3972 * settings to match the duplex in the link partner's capabilities.
3973 */
3974 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3975 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3976 if (ret_val)
3977 return ret_val;
3978
3979 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3980 *duplex = HALF_DUPLEX;
3981 else {
3982 ret_val = e1000_read_phy_reg(hw,
3983 PHY_LP_ABILITY, &phy_data);
3984 if (ret_val)
3985 return ret_val;
3986 if ((*speed == SPEED_100 &&
3987 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3988 || (*speed == SPEED_10
3989 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3990 *duplex = HALF_DUPLEX;
3991 }
3992 }
3993
3994 if ((hw->mac_type == e1000_80003es2lan) &&
3995 (hw->media_type == e1000_media_type_copper)) {
3996 if (*speed == SPEED_1000)
3997 ret_val = e1000_configure_kmrn_for_1000(hw);
3998 else
3999 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4000 if (ret_val)
4001 return ret_val;
4002 }
4003 return E1000_SUCCESS;
682011ff
WD
4004}
4005
4006/******************************************************************************
4007* Blocks until autoneg completes or times out (~4.5 seconds)
4008*
4009* hw - Struct containing variables accessed by shared code
4010******************************************************************************/
4011static int
4012e1000_wait_autoneg(struct e1000_hw *hw)
4013{
4014 uint16_t i;
4015 uint16_t phy_data;
4016
4017 DEBUGFUNC();
4018 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4019
4020 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
4021 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4022 /* Read the MII Status Register and wait for Auto-Neg
4023 * Complete bit to be set.
4024 */
4025 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4026 DEBUGOUT("PHY Read Error\n");
4027 return -E1000_ERR_PHY;
4028 }
4029 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4030 DEBUGOUT("PHY Read Error\n");
4031 return -E1000_ERR_PHY;
4032 }
4033 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4034 DEBUGOUT("Auto-Neg complete.\n");
4035 return 0;
4036 }
4037 mdelay(100);
4038 }
4039 DEBUGOUT("Auto-Neg timedout.\n");
4040 return -E1000_ERR_TIMEOUT;
4041}
4042
4043/******************************************************************************
4044* Raises the Management Data Clock
4045*
4046* hw - Struct containing variables accessed by shared code
4047* ctrl - Device control register's current value
4048******************************************************************************/
4049static void
4050e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4051{
4052 /* Raise the clock input to the Management Data Clock (by setting the MDC
4053 * bit), and then delay 2 microseconds.
4054 */
4055 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4056 E1000_WRITE_FLUSH(hw);
4057 udelay(2);
4058}
4059
4060/******************************************************************************
4061* Lowers the Management Data Clock
4062*
4063* hw - Struct containing variables accessed by shared code
4064* ctrl - Device control register's current value
4065******************************************************************************/
4066static void
4067e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4068{
4069 /* Lower the clock input to the Management Data Clock (by clearing the MDC
4070 * bit), and then delay 2 microseconds.
4071 */
4072 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4073 E1000_WRITE_FLUSH(hw);
4074 udelay(2);
4075}
4076
4077/******************************************************************************
4078* Shifts data bits out to the PHY
4079*
4080* hw - Struct containing variables accessed by shared code
4081* data - Data to send out to the PHY
4082* count - Number of bits to shift out
4083*
4084* Bits are shifted out in MSB to LSB order.
4085******************************************************************************/
4086static void
4087e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4088{
4089 uint32_t ctrl;
4090 uint32_t mask;
4091
4092 /* We need to shift "count" number of bits out to the PHY. So, the value
8bde7f77 4093 * in the "data" parameter will be shifted out to the PHY one bit at a
682011ff
WD
4094 * time. In order to do this, "data" must be broken down into bits.
4095 */
4096 mask = 0x01;
4097 mask <<= (count - 1);
4098
4099 ctrl = E1000_READ_REG(hw, CTRL);
4100
4101 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4102 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4103
4104 while (mask) {
4105 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4106 * then raising and lowering the Management Data Clock. A "0" is
4107 * shifted out to the PHY by setting the MDIO bit to "0" and then
4108 * raising and lowering the clock.
4109 */
4110 if (data & mask)
4111 ctrl |= E1000_CTRL_MDIO;
4112 else
4113 ctrl &= ~E1000_CTRL_MDIO;
4114
4115 E1000_WRITE_REG(hw, CTRL, ctrl);
4116 E1000_WRITE_FLUSH(hw);
4117
4118 udelay(2);
4119
4120 e1000_raise_mdi_clk(hw, &ctrl);
4121 e1000_lower_mdi_clk(hw, &ctrl);
4122
4123 mask = mask >> 1;
4124 }
4125}
4126
4127/******************************************************************************
4128* Shifts data bits in from the PHY
4129*
4130* hw - Struct containing variables accessed by shared code
4131*
8bde7f77 4132* Bits are shifted in in MSB to LSB order.
682011ff
WD
4133******************************************************************************/
4134static uint16_t
4135e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4136{
4137 uint32_t ctrl;
4138 uint16_t data = 0;
4139 uint8_t i;
4140
4141 /* In order to read a register from the PHY, we need to shift in a total
4142 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4143 * to avoid contention on the MDIO pin when a read operation is performed.
4144 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4145 * by raising the input to the Management Data Clock (setting the MDC bit),
4146 * and then reading the value of the MDIO bit.
4147 */
4148 ctrl = E1000_READ_REG(hw, CTRL);
4149
4150 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4151 ctrl &= ~E1000_CTRL_MDIO_DIR;
4152 ctrl &= ~E1000_CTRL_MDIO;
4153
4154 E1000_WRITE_REG(hw, CTRL, ctrl);
4155 E1000_WRITE_FLUSH(hw);
4156
4157 /* Raise and Lower the clock before reading in the data. This accounts for
4158 * the turnaround bits. The first clock occurred when we clocked out the
4159 * last bit of the Register Address.
4160 */
4161 e1000_raise_mdi_clk(hw, &ctrl);
4162 e1000_lower_mdi_clk(hw, &ctrl);
4163
4164 for (data = 0, i = 0; i < 16; i++) {
4165 data = data << 1;
4166 e1000_raise_mdi_clk(hw, &ctrl);
4167 ctrl = E1000_READ_REG(hw, CTRL);
4168 /* Check to see if we shifted in a "1". */
4169 if (ctrl & E1000_CTRL_MDIO)
4170 data |= 1;
4171 e1000_lower_mdi_clk(hw, &ctrl);
4172 }
4173
4174 e1000_raise_mdi_clk(hw, &ctrl);
4175 e1000_lower_mdi_clk(hw, &ctrl);
4176
4177 return data;
4178}
4179
4180/*****************************************************************************
4181* Reads the value from a PHY register
4182*
4183* hw - Struct containing variables accessed by shared code
4184* reg_addr - address of the PHY register to read
4185******************************************************************************/
4186static int
4187e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4188{
4189 uint32_t i;
4190 uint32_t mdic = 0;
4191 const uint32_t phy_addr = 1;
4192
4193 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4194 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4195 return -E1000_ERR_PARAM;
4196 }
4197
4198 if (hw->mac_type > e1000_82543) {
4199 /* Set up Op-code, Phy Address, and register address in the MDI
4200 * Control register. The MAC will take care of interfacing with the
4201 * PHY to retrieve the desired data.
4202 */
4203 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4204 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4205 (E1000_MDIC_OP_READ));
4206
4207 E1000_WRITE_REG(hw, MDIC, mdic);
4208
4209 /* Poll the ready bit to see if the MDI read completed */
4210 for (i = 0; i < 64; i++) {
4211 udelay(10);
4212 mdic = E1000_READ_REG(hw, MDIC);
4213 if (mdic & E1000_MDIC_READY)
4214 break;
4215 }
4216 if (!(mdic & E1000_MDIC_READY)) {
4217 DEBUGOUT("MDI Read did not complete\n");
4218 return -E1000_ERR_PHY;
4219 }
4220 if (mdic & E1000_MDIC_ERROR) {
4221 DEBUGOUT("MDI Error\n");
4222 return -E1000_ERR_PHY;
4223 }
4224 *phy_data = (uint16_t) mdic;
4225 } else {
4226 /* We must first send a preamble through the MDIO pin to signal the
4227 * beginning of an MII instruction. This is done by sending 32
4228 * consecutive "1" bits.
4229 */
4230 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4231
4232 /* Now combine the next few fields that are required for a read
4233 * operation. We use this method instead of calling the
4234 * e1000_shift_out_mdi_bits routine five different times. The format of
4235 * a MII read instruction consists of a shift out of 14 bits and is
4236 * defined as follows:
4237 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4238 * followed by a shift in of 18 bits. This first two bits shifted in
4239 * are TurnAround bits used to avoid contention on the MDIO pin when a
4240 * READ operation is performed. These two bits are thrown away
4241 * followed by a shift in of 16 bits which contains the desired data.
4242 */
4243 mdic = ((reg_addr) | (phy_addr << 5) |
4244 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4245
4246 e1000_shift_out_mdi_bits(hw, mdic, 14);
4247
4248 /* Now that we've shifted out the read command to the MII, we need to
4249 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4250 * register address.
4251 */
4252 *phy_data = e1000_shift_in_mdi_bits(hw);
4253 }
4254 return 0;
4255}
4256
4257/******************************************************************************
4258* Writes a value to a PHY register
4259*
4260* hw - Struct containing variables accessed by shared code
4261* reg_addr - address of the PHY register to write
4262* data - data to write to the PHY
4263******************************************************************************/
4264static int
4265e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4266{
4267 uint32_t i;
4268 uint32_t mdic = 0;
4269 const uint32_t phy_addr = 1;
4270
4271 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4272 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4273 return -E1000_ERR_PARAM;
4274 }
4275
4276 if (hw->mac_type > e1000_82543) {
4277 /* Set up Op-code, Phy Address, register address, and data intended
4278 * for the PHY register in the MDI Control register. The MAC will take
4279 * care of interfacing with the PHY to send the desired data.
4280 */
4281 mdic = (((uint32_t) phy_data) |
4282 (reg_addr << E1000_MDIC_REG_SHIFT) |
4283 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4284 (E1000_MDIC_OP_WRITE));
4285
4286 E1000_WRITE_REG(hw, MDIC, mdic);
4287
4288 /* Poll the ready bit to see if the MDI read completed */
4289 for (i = 0; i < 64; i++) {
4290 udelay(10);
4291 mdic = E1000_READ_REG(hw, MDIC);
4292 if (mdic & E1000_MDIC_READY)
4293 break;
4294 }
4295 if (!(mdic & E1000_MDIC_READY)) {
4296 DEBUGOUT("MDI Write did not complete\n");
4297 return -E1000_ERR_PHY;
4298 }
4299 } else {
4300 /* We'll need to use the SW defined pins to shift the write command
4301 * out to the PHY. We first send a preamble to the PHY to signal the
8bde7f77 4302 * beginning of the MII instruction. This is done by sending 32
682011ff
WD
4303 * consecutive "1" bits.
4304 */
4305 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4306
8bde7f77 4307 /* Now combine the remaining required fields that will indicate a
682011ff
WD
4308 * write operation. We use this method instead of calling the
4309 * e1000_shift_out_mdi_bits routine for each field in the command. The
4310 * format of a MII write instruction is as follows:
4311 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4312 */
4313 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4314 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4315 mdic <<= 16;
4316 mdic |= (uint32_t) phy_data;
4317
4318 e1000_shift_out_mdi_bits(hw, mdic, 32);
4319 }
4320 return 0;
4321}
4322
aa070789
RZ
4323/******************************************************************************
4324 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4325 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4326 * the caller to figure out how to deal with it.
4327 *
4328 * hw - Struct containing variables accessed by shared code
4329 *
4330 * returns: - E1000_BLK_PHY_RESET
4331 * E1000_SUCCESS
4332 *
4333 *****************************************************************************/
4334int32_t
4335e1000_check_phy_reset_block(struct e1000_hw *hw)
4336{
4337 uint32_t manc = 0;
4338 uint32_t fwsm = 0;
4339
4340 if (hw->mac_type == e1000_ich8lan) {
4341 fwsm = E1000_READ_REG(hw, FWSM);
4342 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4343 : E1000_BLK_PHY_RESET;
4344 }
4345
4346 if (hw->mac_type > e1000_82547_rev_2)
4347 manc = E1000_READ_REG(hw, MANC);
4348 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4349 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4350}
4351
4352/***************************************************************************
4353 * Checks if the PHY configuration is done
4354 *
4355 * hw: Struct containing variables accessed by shared code
4356 *
4357 * returns: - E1000_ERR_RESET if fail to reset MAC
4358 * E1000_SUCCESS at any other case.
4359 *
4360 ***************************************************************************/
4361static int32_t
4362e1000_get_phy_cfg_done(struct e1000_hw *hw)
4363{
4364 int32_t timeout = PHY_CFG_TIMEOUT;
4365 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4366
4367 DEBUGFUNC();
4368
4369 switch (hw->mac_type) {
4370 default:
4371 mdelay(10);
4372 break;
987b43a1 4373
aa070789
RZ
4374 case e1000_80003es2lan:
4375 /* Separate *_CFG_DONE_* bit for each port */
987b43a1 4376 if (e1000_is_second_port(hw))
aa070789 4377 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
987b43a1
KM
4378 /* Fall Through */
4379
aa070789
RZ
4380 case e1000_82571:
4381 case e1000_82572:
95186063 4382 case e1000_igb:
aa070789 4383 while (timeout) {
95186063
MV
4384 if (hw->mac_type == e1000_igb) {
4385 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4386 break;
4387 } else {
4388 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4389 break;
4390 }
4391 mdelay(1);
aa070789
RZ
4392 timeout--;
4393 }
4394 if (!timeout) {
4395 DEBUGOUT("MNG configuration cycle has not "
4396 "completed.\n");
4397 return -E1000_ERR_RESET;
4398 }
4399 break;
4400 }
4401
4402 return E1000_SUCCESS;
4403}
4404
682011ff
WD
4405/******************************************************************************
4406* Returns the PHY to the power-on reset state
4407*
4408* hw - Struct containing variables accessed by shared code
4409******************************************************************************/
aa070789 4410int32_t
682011ff
WD
4411e1000_phy_hw_reset(struct e1000_hw *hw)
4412{
987b43a1 4413 uint16_t swfw = E1000_SWFW_PHY0_SM;
aa070789
RZ
4414 uint32_t ctrl, ctrl_ext;
4415 uint32_t led_ctrl;
4416 int32_t ret_val;
682011ff
WD
4417
4418 DEBUGFUNC();
4419
aa070789
RZ
4420 /* In the case of the phy reset being blocked, it's not an error, we
4421 * simply return success without performing the reset. */
4422 ret_val = e1000_check_phy_reset_block(hw);
4423 if (ret_val)
4424 return E1000_SUCCESS;
4425
682011ff
WD
4426 DEBUGOUT("Resetting Phy...\n");
4427
4428 if (hw->mac_type > e1000_82543) {
987b43a1 4429 if (e1000_is_second_port(hw))
aa070789 4430 swfw = E1000_SWFW_PHY1_SM;
987b43a1 4431
aa070789
RZ
4432 if (e1000_swfw_sync_acquire(hw, swfw)) {
4433 DEBUGOUT("Unable to acquire swfw sync\n");
4434 return -E1000_ERR_SWFW_SYNC;
4435 }
987b43a1 4436
682011ff
WD
4437 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4438 * bit. Then, take it out of reset.
4439 */
4440 ctrl = E1000_READ_REG(hw, CTRL);
4441 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4442 E1000_WRITE_FLUSH(hw);
aa070789
RZ
4443
4444 if (hw->mac_type < e1000_82571)
4445 udelay(10);
4446 else
4447 udelay(100);
4448
682011ff
WD
4449 E1000_WRITE_REG(hw, CTRL, ctrl);
4450 E1000_WRITE_FLUSH(hw);
aa070789
RZ
4451
4452 if (hw->mac_type >= e1000_82571)
4453 mdelay(10);
3c63dd53 4454
682011ff
WD
4455 } else {
4456 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4457 * bit to put the PHY into reset. Then, take it out of reset.
4458 */
4459 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4460 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4461 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4462 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4463 E1000_WRITE_FLUSH(hw);
4464 mdelay(10);
4465 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4466 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4467 E1000_WRITE_FLUSH(hw);
4468 }
4469 udelay(150);
aa070789
RZ
4470
4471 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4472 /* Configure activity LED after PHY reset */
4473 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4474 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4475 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4476 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4477 }
4478
7e2d991d
TH
4479 e1000_swfw_sync_release(hw, swfw);
4480
aa070789
RZ
4481 /* Wait for FW to finish PHY configuration. */
4482 ret_val = e1000_get_phy_cfg_done(hw);
4483 if (ret_val != E1000_SUCCESS)
4484 return ret_val;
4485
4486 return ret_val;
4487}
4488
4489/******************************************************************************
4490 * IGP phy init script - initializes the GbE PHY
4491 *
4492 * hw - Struct containing variables accessed by shared code
4493 *****************************************************************************/
4494static void
4495e1000_phy_init_script(struct e1000_hw *hw)
4496{
4497 uint32_t ret_val;
4498 uint16_t phy_saved_data;
4499 DEBUGFUNC();
4500
4501 if (hw->phy_init_script) {
4502 mdelay(20);
4503
4504 /* Save off the current value of register 0x2F5B to be
4505 * restored at the end of this routine. */
4506 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4507
4508 /* Disabled the PHY transmitter */
4509 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4510
4511 mdelay(20);
4512
4513 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4514
4515 mdelay(5);
4516
4517 switch (hw->mac_type) {
4518 case e1000_82541:
4519 case e1000_82547:
4520 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4521
4522 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4523
4524 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4525
4526 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4527
4528 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4529
4530 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4531
4532 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4533
4534 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4535
4536 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4537 break;
4538
4539 case e1000_82541_rev_2:
4540 case e1000_82547_rev_2:
4541 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4542 break;
4543 default:
4544 break;
4545 }
4546
4547 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4548
4549 mdelay(20);
4550
4551 /* Now enable the transmitter */
56b13b1e
ZRR
4552 if (!ret_val)
4553 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
aa070789
RZ
4554
4555 if (hw->mac_type == e1000_82547) {
4556 uint16_t fused, fine, coarse;
4557
4558 /* Move to analog registers page */
4559 e1000_read_phy_reg(hw,
4560 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4561
4562 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4563 e1000_read_phy_reg(hw,
4564 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4565
4566 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4567 coarse = fused
4568 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4569
4570 if (coarse >
4571 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4572 coarse -=
4573 IGP01E1000_ANALOG_FUSE_COARSE_10;
4574 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4575 } else if (coarse
4576 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4577 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4578
4579 fused = (fused
4580 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4581 (fine
4582 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4583 (coarse
4584 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4585
4586 e1000_write_phy_reg(hw,
4587 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4588 e1000_write_phy_reg(hw,
4589 IGP01E1000_ANALOG_FUSE_BYPASS,
4590 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4591 }
4592 }
4593 }
682011ff
WD
4594}
4595
4596/******************************************************************************
4597* Resets the PHY
4598*
4599* hw - Struct containing variables accessed by shared code
4600*
aa070789 4601* Sets bit 15 of the MII Control register
682011ff 4602******************************************************************************/
aa070789 4603int32_t
682011ff
WD
4604e1000_phy_reset(struct e1000_hw *hw)
4605{
aa070789 4606 int32_t ret_val;
682011ff
WD
4607 uint16_t phy_data;
4608
4609 DEBUGFUNC();
4610
aa070789
RZ
4611 /* In the case of the phy reset being blocked, it's not an error, we
4612 * simply return success without performing the reset. */
4613 ret_val = e1000_check_phy_reset_block(hw);
4614 if (ret_val)
4615 return E1000_SUCCESS;
4616
4617 switch (hw->phy_type) {
4618 case e1000_phy_igp:
4619 case e1000_phy_igp_2:
4620 case e1000_phy_igp_3:
4621 case e1000_phy_ife:
95186063 4622 case e1000_phy_igb:
aa070789
RZ
4623 ret_val = e1000_phy_hw_reset(hw);
4624 if (ret_val)
4625 return ret_val;
4626 break;
4627 default:
4628 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4629 if (ret_val)
4630 return ret_val;
4631
4632 phy_data |= MII_CR_RESET;
4633 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4634 if (ret_val)
4635 return ret_val;
4636
4637 udelay(1);
4638 break;
682011ff 4639 }
aa070789
RZ
4640
4641 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4642 e1000_phy_init_script(hw);
4643
4644 return E1000_SUCCESS;
682011ff
WD
4645}
4646
1aeed8d7 4647static int e1000_set_phy_type (struct e1000_hw *hw)
ac3315c2 4648{
1aeed8d7
WD
4649 DEBUGFUNC ();
4650
4651 if (hw->mac_type == e1000_undefined)
4652 return -E1000_ERR_PHY_TYPE;
4653
4654 switch (hw->phy_id) {
4655 case M88E1000_E_PHY_ID:
4656 case M88E1000_I_PHY_ID:
4657 case M88E1011_I_PHY_ID:
aa070789 4658 case M88E1111_I_PHY_ID:
1aeed8d7
WD
4659 hw->phy_type = e1000_phy_m88;
4660 break;
4661 case IGP01E1000_I_PHY_ID:
4662 if (hw->mac_type == e1000_82541 ||
aa070789
RZ
4663 hw->mac_type == e1000_82541_rev_2 ||
4664 hw->mac_type == e1000_82547 ||
4665 hw->mac_type == e1000_82547_rev_2) {
1aeed8d7 4666 hw->phy_type = e1000_phy_igp;
aa070789
RZ
4667 break;
4668 }
4669 case IGP03E1000_E_PHY_ID:
4670 hw->phy_type = e1000_phy_igp_3;
4671 break;
4672 case IFE_E_PHY_ID:
4673 case IFE_PLUS_E_PHY_ID:
4674 case IFE_C_E_PHY_ID:
4675 hw->phy_type = e1000_phy_ife;
4676 break;
4677 case GG82563_E_PHY_ID:
4678 if (hw->mac_type == e1000_80003es2lan) {
4679 hw->phy_type = e1000_phy_gg82563;
1aeed8d7
WD
4680 break;
4681 }
2c2668f9
RZ
4682 case BME1000_E_PHY_ID:
4683 hw->phy_type = e1000_phy_bm;
4684 break;
95186063
MV
4685 case I210_I_PHY_ID:
4686 hw->phy_type = e1000_phy_igb;
4687 break;
1aeed8d7
WD
4688 /* Fall Through */
4689 default:
4690 /* Should never have loaded on this device */
4691 hw->phy_type = e1000_phy_undefined;
4692 return -E1000_ERR_PHY_TYPE;
4693 }
4694
4695 return E1000_SUCCESS;
ac3315c2
AS
4696}
4697
682011ff
WD
4698/******************************************************************************
4699* Probes the expected PHY address for known PHY IDs
4700*
4701* hw - Struct containing variables accessed by shared code
4702******************************************************************************/
aa070789 4703static int32_t
682011ff
WD
4704e1000_detect_gig_phy(struct e1000_hw *hw)
4705{
aa070789 4706 int32_t phy_init_status, ret_val;
682011ff 4707 uint16_t phy_id_high, phy_id_low;
472d5460 4708 bool match = false;
682011ff
WD
4709
4710 DEBUGFUNC();
4711
aa070789
RZ
4712 /* The 82571 firmware may still be configuring the PHY. In this
4713 * case, we cannot access the PHY until the configuration is done. So
4714 * we explicitly set the PHY values. */
4715 if (hw->mac_type == e1000_82571 ||
4716 hw->mac_type == e1000_82572) {
4717 hw->phy_id = IGP01E1000_I_PHY_ID;
4718 hw->phy_type = e1000_phy_igp_2;
4719 return E1000_SUCCESS;
682011ff 4720 }
aa070789
RZ
4721
4722 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4723 * work- around that forces PHY page 0 to be set or the reads fail.
4724 * The rest of the code in this routine uses e1000_read_phy_reg to
4725 * read the PHY ID. So for ESB-2 we need to have this set so our
4726 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4727 * the routines below will figure this out as well. */
4728 if (hw->mac_type == e1000_80003es2lan)
4729 hw->phy_type = e1000_phy_gg82563;
4730
4731 /* Read the PHY ID Registers to identify which PHY is onboard. */
4732 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4733 if (ret_val)
4734 return ret_val;
4735
682011ff 4736 hw->phy_id = (uint32_t) (phy_id_high << 16);
aa070789
RZ
4737 udelay(20);
4738 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4739 if (ret_val)
4740 return ret_val;
4741
682011ff 4742 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
aa070789 4743 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
682011ff
WD
4744
4745 switch (hw->mac_type) {
4746 case e1000_82543:
4747 if (hw->phy_id == M88E1000_E_PHY_ID)
472d5460 4748 match = true;
682011ff
WD
4749 break;
4750 case e1000_82544:
4751 if (hw->phy_id == M88E1000_I_PHY_ID)
472d5460 4752 match = true;
682011ff
WD
4753 break;
4754 case e1000_82540:
4755 case e1000_82545:
aa070789 4756 case e1000_82545_rev_3:
682011ff 4757 case e1000_82546:
aa070789 4758 case e1000_82546_rev_3:
682011ff 4759 if (hw->phy_id == M88E1011_I_PHY_ID)
472d5460 4760 match = true;
682011ff 4761 break;
aa070789 4762 case e1000_82541:
ac3315c2 4763 case e1000_82541_rev_2:
aa070789
RZ
4764 case e1000_82547:
4765 case e1000_82547_rev_2:
ac3315c2 4766 if(hw->phy_id == IGP01E1000_I_PHY_ID)
472d5460 4767 match = true;
ac3315c2
AS
4768
4769 break;
aa070789
RZ
4770 case e1000_82573:
4771 if (hw->phy_id == M88E1111_I_PHY_ID)
472d5460 4772 match = true;
aa070789 4773 break;
2c2668f9
RZ
4774 case e1000_82574:
4775 if (hw->phy_id == BME1000_E_PHY_ID)
472d5460 4776 match = true;
2c2668f9 4777 break;
aa070789
RZ
4778 case e1000_80003es2lan:
4779 if (hw->phy_id == GG82563_E_PHY_ID)
472d5460 4780 match = true;
aa070789
RZ
4781 break;
4782 case e1000_ich8lan:
4783 if (hw->phy_id == IGP03E1000_E_PHY_ID)
472d5460 4784 match = true;
aa070789 4785 if (hw->phy_id == IFE_E_PHY_ID)
472d5460 4786 match = true;
aa070789 4787 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
472d5460 4788 match = true;
aa070789 4789 if (hw->phy_id == IFE_C_E_PHY_ID)
472d5460 4790 match = true;
aa070789 4791 break;
95186063
MV
4792 case e1000_igb:
4793 if (hw->phy_id == I210_I_PHY_ID)
4794 match = true;
4795 break;
682011ff
WD
4796 default:
4797 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4798 return -E1000_ERR_CONFIG;
4799 }
ac3315c2
AS
4800
4801 phy_init_status = e1000_set_phy_type(hw);
4802
4803 if ((match) && (phy_init_status == E1000_SUCCESS)) {
682011ff
WD
4804 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4805 return 0;
4806 }
4807 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4808 return -E1000_ERR_PHY;
4809}
4810
aa070789
RZ
4811/*****************************************************************************
4812 * Set media type and TBI compatibility.
4813 *
4814 * hw - Struct containing variables accessed by shared code
4815 * **************************************************************************/
4816void
4817e1000_set_media_type(struct e1000_hw *hw)
4818{
4819 uint32_t status;
4820
4821 DEBUGFUNC();
4822
4823 if (hw->mac_type != e1000_82543) {
4824 /* tbi_compatibility is only valid on 82543 */
472d5460 4825 hw->tbi_compatibility_en = false;
aa070789
RZ
4826 }
4827
4828 switch (hw->device_id) {
4829 case E1000_DEV_ID_82545GM_SERDES:
4830 case E1000_DEV_ID_82546GB_SERDES:
4831 case E1000_DEV_ID_82571EB_SERDES:
4832 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4833 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4834 case E1000_DEV_ID_82572EI_SERDES:
4835 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4836 hw->media_type = e1000_media_type_internal_serdes;
4837 break;
4838 default:
4839 switch (hw->mac_type) {
4840 case e1000_82542_rev2_0:
4841 case e1000_82542_rev2_1:
4842 hw->media_type = e1000_media_type_fiber;
4843 break;
4844 case e1000_ich8lan:
4845 case e1000_82573:
2c2668f9 4846 case e1000_82574:
95186063 4847 case e1000_igb:
aa070789
RZ
4848 /* The STATUS_TBIMODE bit is reserved or reused
4849 * for the this device.
4850 */
4851 hw->media_type = e1000_media_type_copper;
4852 break;
4853 default:
4854 status = E1000_READ_REG(hw, STATUS);
4855 if (status & E1000_STATUS_TBIMODE) {
4856 hw->media_type = e1000_media_type_fiber;
4857 /* tbi_compatibility not valid on fiber */
472d5460 4858 hw->tbi_compatibility_en = false;
aa070789
RZ
4859 } else {
4860 hw->media_type = e1000_media_type_copper;
4861 }
4862 break;
4863 }
4864 }
4865}
4866
682011ff
WD
4867/**
4868 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4869 *
4870 * e1000_sw_init initializes the Adapter private data structure.
4871 * Fields are initialized based on PCI device information and
4872 * OS network device settings (MTU size).
4873 **/
4874
4875static int
d60626f8 4876e1000_sw_init(struct eth_device *nic)
682011ff
WD
4877{
4878 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4879 int result;
4880
4881 /* PCI config space info */
4882 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4883 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4884 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4885 &hw->subsystem_vendor_id);
4886 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4887
4888 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4889 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4890
4891 /* identify the MAC */
4892 result = e1000_set_mac_type(hw);
4893 if (result) {
d60626f8 4894 E1000_ERR(hw->nic, "Unknown MAC Type\n");
682011ff
WD
4895 return result;
4896 }
4897
aa070789
RZ
4898 switch (hw->mac_type) {
4899 default:
4900 break;
4901 case e1000_82541:
4902 case e1000_82547:
4903 case e1000_82541_rev_2:
4904 case e1000_82547_rev_2:
4905 hw->phy_init_script = 1;
4906 break;
4907 }
4908
682011ff
WD
4909 /* flow control settings */
4910 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4911 hw->fc_low_water = E1000_FC_LOW_THRESH;
4912 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4913 hw->fc_send_xon = 1;
4914
4915 /* Media type - copper or fiber */
95186063 4916 hw->tbi_compatibility_en = true;
aa070789 4917 e1000_set_media_type(hw);
682011ff
WD
4918
4919 if (hw->mac_type >= e1000_82543) {
4920 uint32_t status = E1000_READ_REG(hw, STATUS);
4921
4922 if (status & E1000_STATUS_TBIMODE) {
4923 DEBUGOUT("fiber interface\n");
4924 hw->media_type = e1000_media_type_fiber;
4925 } else {
4926 DEBUGOUT("copper interface\n");
4927 hw->media_type = e1000_media_type_copper;
4928 }
4929 } else {
4930 hw->media_type = e1000_media_type_fiber;
4931 }
4932
472d5460 4933 hw->wait_autoneg_complete = true;
682011ff
WD
4934 if (hw->mac_type < e1000_82543)
4935 hw->report_tx_early = 0;
4936 else
4937 hw->report_tx_early = 1;
4938
682011ff
WD
4939 return E1000_SUCCESS;
4940}
4941
4942void
4943fill_rx(struct e1000_hw *hw)
4944{
4945 struct e1000_rx_desc *rd;
06e07f65 4946 unsigned long flush_start, flush_end;
682011ff
WD
4947
4948 rx_last = rx_tail;
4949 rd = rx_base + rx_tail;
4950 rx_tail = (rx_tail + 1) % 8;
4951 memset(rd, 0, 16);
06e07f65 4952 rd->buffer_addr = cpu_to_le64((unsigned long)packet);
873e8e01
MV
4953
4954 /*
4955 * Make sure there are no stale data in WB over this area, which
4956 * might get written into the memory while the e1000 also writes
4957 * into the same memory area.
4958 */
06e07f65
ML
4959 invalidate_dcache_range((unsigned long)packet,
4960 (unsigned long)packet + 4096);
873e8e01 4961 /* Dump the DMA descriptor into RAM. */
06e07f65 4962 flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
873e8e01
MV
4963 flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4964 flush_dcache_range(flush_start, flush_end);
4965
682011ff
WD
4966 E1000_WRITE_REG(hw, RDT, rx_tail);
4967}
4968
4969/**
4970 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4971 * @adapter: board private structure
4972 *
4973 * Configure the Tx unit of the MAC after a reset.
4974 **/
4975
4976static void
4977e1000_configure_tx(struct e1000_hw *hw)
4978{
682011ff 4979 unsigned long tctl;
aa070789
RZ
4980 unsigned long tipg, tarc;
4981 uint32_t ipgr1, ipgr2;
682011ff 4982
06e07f65 4983 E1000_WRITE_REG(hw, TDBAL, (unsigned long)tx_base);
682011ff
WD
4984 E1000_WRITE_REG(hw, TDBAH, 0);
4985
4986 E1000_WRITE_REG(hw, TDLEN, 128);
4987
4988 /* Setup the HW Tx Head and Tail descriptor pointers */
4989 E1000_WRITE_REG(hw, TDH, 0);
4990 E1000_WRITE_REG(hw, TDT, 0);
4991 tx_tail = 0;
4992
aa070789
RZ
4993 /* Set the default values for the Tx Inter Packet Gap timer */
4994 if (hw->mac_type <= e1000_82547_rev_2 &&
4995 (hw->media_type == e1000_media_type_fiber ||
4996 hw->media_type == e1000_media_type_internal_serdes))
4997 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4998 else
4999 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5000
682011ff
WD
5001 /* Set the default values for the Tx Inter Packet Gap timer */
5002 switch (hw->mac_type) {
5003 case e1000_82542_rev2_0:
5004 case e1000_82542_rev2_1:
5005 tipg = DEFAULT_82542_TIPG_IPGT;
aa070789
RZ
5006 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5007 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5008 break;
5009 case e1000_80003es2lan:
5010 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5011 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
682011ff
WD
5012 break;
5013 default:
aa070789
RZ
5014 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5015 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5016 break;
682011ff 5017 }
aa070789
RZ
5018 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5019 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
682011ff 5020 E1000_WRITE_REG(hw, TIPG, tipg);
682011ff
WD
5021 /* Program the Transmit Control Register */
5022 tctl = E1000_READ_REG(hw, TCTL);
5023 tctl &= ~E1000_TCTL_CT;
5024 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5025 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
aa070789
RZ
5026
5027 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5028 tarc = E1000_READ_REG(hw, TARC0);
5029 /* set the speed mode bit, we'll clear it if we're not at
5030 * gigabit link later */
5031 /* git bit can be set to 1*/
5032 } else if (hw->mac_type == e1000_80003es2lan) {
5033 tarc = E1000_READ_REG(hw, TARC0);
5034 tarc |= 1;
5035 E1000_WRITE_REG(hw, TARC0, tarc);
5036 tarc = E1000_READ_REG(hw, TARC1);
5037 tarc |= 1;
5038 E1000_WRITE_REG(hw, TARC1, tarc);
5039 }
5040
682011ff
WD
5041
5042 e1000_config_collision_dist(hw);
aa070789
RZ
5043 /* Setup Transmit Descriptor Settings for eop descriptor */
5044 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
682011ff 5045
aa070789
RZ
5046 /* Need to set up RS bit */
5047 if (hw->mac_type < e1000_82543)
5048 hw->txd_cmd |= E1000_TXD_CMD_RPS;
682011ff 5049 else
aa070789 5050 hw->txd_cmd |= E1000_TXD_CMD_RS;
95186063
MV
5051
5052
5053 if (hw->mac_type == e1000_igb) {
5054 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5055
5056 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5057 reg_txdctl |= 1 << 25;
5058 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5059 mdelay(20);
5060 }
5061
5062
5063
aa070789 5064 E1000_WRITE_REG(hw, TCTL, tctl);
95186063
MV
5065
5066
682011ff
WD
5067}
5068
5069/**
5070 * e1000_setup_rctl - configure the receive control register
5071 * @adapter: Board private structure
5072 **/
5073static void
5074e1000_setup_rctl(struct e1000_hw *hw)
5075{
5076 uint32_t rctl;
5077
5078 rctl = E1000_READ_REG(hw, RCTL);
5079
5080 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5081
aa070789
RZ
5082 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5083 | E1000_RCTL_RDMTS_HALF; /* |
5084 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
682011ff
WD
5085
5086 if (hw->tbi_compatibility_on == 1)
5087 rctl |= E1000_RCTL_SBP;
5088 else
5089 rctl &= ~E1000_RCTL_SBP;
5090
5091 rctl &= ~(E1000_RCTL_SZ_4096);
682011ff
WD
5092 rctl |= E1000_RCTL_SZ_2048;
5093 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
682011ff
WD
5094 E1000_WRITE_REG(hw, RCTL, rctl);
5095}
5096
5097/**
5098 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5099 * @adapter: board private structure
5100 *
5101 * Configure the Rx unit of the MAC after a reset.
5102 **/
5103static void
5104e1000_configure_rx(struct e1000_hw *hw)
5105{
aa070789 5106 unsigned long rctl, ctrl_ext;
682011ff
WD
5107 rx_tail = 0;
5108 /* make sure receives are disabled while setting up the descriptors */
5109 rctl = E1000_READ_REG(hw, RCTL);
5110 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
682011ff 5111 if (hw->mac_type >= e1000_82540) {
682011ff
WD
5112 /* Set the interrupt throttling rate. Value is calculated
5113 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
1aeed8d7
WD
5114#define MAX_INTS_PER_SEC 8000
5115#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
682011ff
WD
5116 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5117 }
5118
aa070789
RZ
5119 if (hw->mac_type >= e1000_82571) {
5120 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5121 /* Reset delay timers after every interrupt */
5122 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5123 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5124 E1000_WRITE_FLUSH(hw);
5125 }
682011ff 5126 /* Setup the Base and Length of the Rx Descriptor Ring */
06e07f65 5127 E1000_WRITE_REG(hw, RDBAL, (unsigned long)rx_base);
682011ff
WD
5128 E1000_WRITE_REG(hw, RDBAH, 0);
5129
5130 E1000_WRITE_REG(hw, RDLEN, 128);
5131
5132 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5133 E1000_WRITE_REG(hw, RDH, 0);
5134 E1000_WRITE_REG(hw, RDT, 0);
682011ff
WD
5135 /* Enable Receives */
5136
95186063
MV
5137 if (hw->mac_type == e1000_igb) {
5138
5139 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5140 reg_rxdctl |= 1 << 25;
5141 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5142 mdelay(20);
5143 }
5144
682011ff 5145 E1000_WRITE_REG(hw, RCTL, rctl);
95186063 5146
682011ff
WD
5147 fill_rx(hw);
5148}
5149
5150/**************************************************************************
5151POLL - Wait for a frame
5152***************************************************************************/
5153static int
5154e1000_poll(struct eth_device *nic)
5155{
5156 struct e1000_hw *hw = nic->priv;
5157 struct e1000_rx_desc *rd;
06e07f65 5158 unsigned long inval_start, inval_end;
873e8e01
MV
5159 uint32_t len;
5160
682011ff
WD
5161 /* return true if there's an ethernet packet ready to read */
5162 rd = rx_base + rx_last;
873e8e01
MV
5163
5164 /* Re-load the descriptor from RAM. */
06e07f65 5165 inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
873e8e01
MV
5166 inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5167 invalidate_dcache_range(inval_start, inval_end);
5168
682011ff
WD
5169 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5170 return 0;
5abf13e4 5171 /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
873e8e01
MV
5172 /* Packet received, make sure the data are re-loaded from RAM. */
5173 len = le32_to_cpu(rd->length);
06e07f65
ML
5174 invalidate_dcache_range((unsigned long)packet,
5175 (unsigned long)packet +
5176 roundup(len, ARCH_DMA_MINALIGN));
1fd92db8 5177 net_process_received_packet((uchar *)packet, len);
682011ff
WD
5178 fill_rx(hw);
5179 return 1;
5180}
5181
5182/**************************************************************************
5183TRANSMIT - Transmit a frame
5184***************************************************************************/
873e8e01 5185static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
682011ff 5186{
873e8e01 5187 void *nv_packet = (void *)txpacket;
682011ff
WD
5188 struct e1000_hw *hw = nic->priv;
5189 struct e1000_tx_desc *txp;
5190 int i = 0;
06e07f65 5191 unsigned long flush_start, flush_end;
682011ff
WD
5192
5193 txp = tx_base + tx_tail;
5194 tx_tail = (tx_tail + 1) % 8;
5195
8aa858cb 5196 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
aa070789 5197 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
682011ff 5198 txp->upper.data = 0;
873e8e01
MV
5199
5200 /* Dump the packet into RAM so e1000 can pick them. */
06e07f65
ML
5201 flush_dcache_range((unsigned long)nv_packet,
5202 (unsigned long)nv_packet +
5203 roundup(length, ARCH_DMA_MINALIGN));
873e8e01 5204 /* Dump the descriptor into RAM as well. */
06e07f65 5205 flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
873e8e01
MV
5206 flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5207 flush_dcache_range(flush_start, flush_end);
5208
682011ff
WD
5209 E1000_WRITE_REG(hw, TDT, tx_tail);
5210
aa070789 5211 E1000_WRITE_FLUSH(hw);
873e8e01
MV
5212 while (1) {
5213 invalidate_dcache_range(flush_start, flush_end);
5214 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5215 break;
682011ff
WD
5216 if (i++ > TOUT_LOOP) {
5217 DEBUGOUT("e1000: tx timeout\n");
5218 return 0;
5219 }
5220 udelay(10); /* give the nic a chance to write to the register */
5221 }
5222 return 1;
5223}
5224
5225/*reset function*/
5226static inline int
5227e1000_reset(struct eth_device *nic)
5228{
5229 struct e1000_hw *hw = nic->priv;
5230
5231 e1000_reset_hw(hw);
5232 if (hw->mac_type >= e1000_82544) {
5233 E1000_WRITE_REG(hw, WUC, 0);
5234 }
5235 return e1000_init_hw(nic);
5236}
5237
5238/**************************************************************************
5239DISABLE - Turn off ethernet interface
5240***************************************************************************/
5241static void
5242e1000_disable(struct eth_device *nic)
5243{
5244 struct e1000_hw *hw = nic->priv;
5245
5246 /* Turn off the ethernet interface */
5247 E1000_WRITE_REG(hw, RCTL, 0);
5248 E1000_WRITE_REG(hw, TCTL, 0);
5249
5250 /* Clear the transmit ring */
5251 E1000_WRITE_REG(hw, TDH, 0);
5252 E1000_WRITE_REG(hw, TDT, 0);
5253
5254 /* Clear the receive ring */
5255 E1000_WRITE_REG(hw, RDH, 0);
5256 E1000_WRITE_REG(hw, RDT, 0);
5257
5258 /* put the card in its initial state */
5259#if 0
5260 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5261#endif
5262 mdelay(10);
5263
5264}
5265
5266/**************************************************************************
5267INIT - set up ethernet interface(s)
5268***************************************************************************/
5269static int
5270e1000_init(struct eth_device *nic, bd_t * bis)
5271{
5272 struct e1000_hw *hw = nic->priv;
5273 int ret_val = 0;
5274
5275 ret_val = e1000_reset(nic);
5276 if (ret_val < 0) {
5277 if ((ret_val == -E1000_ERR_NOLINK) ||
5278 (ret_val == -E1000_ERR_TIMEOUT)) {
d60626f8 5279 E1000_ERR(hw->nic, "Valid Link not detected\n");
682011ff 5280 } else {
d60626f8 5281 E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
682011ff
WD
5282 }
5283 return 0;
5284 }
5285 e1000_configure_tx(hw);
5286 e1000_setup_rctl(hw);
5287 e1000_configure_rx(hw);
5288 return 1;
5289}
5290
aa070789
RZ
5291/******************************************************************************
5292 * Gets the current PCI bus type of hardware
5293 *
5294 * hw - Struct containing variables accessed by shared code
5295 *****************************************************************************/
5296void e1000_get_bus_type(struct e1000_hw *hw)
5297{
5298 uint32_t status;
5299
5300 switch (hw->mac_type) {
5301 case e1000_82542_rev2_0:
5302 case e1000_82542_rev2_1:
5303 hw->bus_type = e1000_bus_type_pci;
5304 break;
5305 case e1000_82571:
5306 case e1000_82572:
5307 case e1000_82573:
2c2668f9 5308 case e1000_82574:
aa070789 5309 case e1000_80003es2lan:
aa070789 5310 case e1000_ich8lan:
95186063 5311 case e1000_igb:
aa070789
RZ
5312 hw->bus_type = e1000_bus_type_pci_express;
5313 break;
5314 default:
5315 status = E1000_READ_REG(hw, STATUS);
5316 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5317 e1000_bus_type_pcix : e1000_bus_type_pci;
5318 break;
5319 }
5320}
5321
ce5207e1
KM
5322/* A list of all registered e1000 devices */
5323static LIST_HEAD(e1000_hw_list);
5324
682011ff
WD
5325/**************************************************************************
5326PROBE - Look for an adapter, this routine's visible to the outside
5327You should omit the last argument struct pci_device * for a non-PCI NIC
5328***************************************************************************/
5329int
5330e1000_initialize(bd_t * bis)
5331{
d60626f8 5332 unsigned int i;
682011ff 5333 pci_dev_t devno;
682011ff 5334
f81ecb5d
TT
5335 DEBUGFUNC();
5336
d60626f8
KM
5337 /* Find and probe all the matching PCI devices */
5338 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5339 u32 val;
4b29bdb0 5340
d60626f8
KM
5341 /*
5342 * These will never get freed due to errors, this allows us to
5343 * perform SPI EEPROM programming from U-boot, for example.
5344 */
5345 struct eth_device *nic = malloc(sizeof(*nic));
5346 struct e1000_hw *hw = malloc(sizeof(*hw));
5347 if (!nic || !hw) {
5348 printf("e1000#%u: Out of Memory!\n", i);
4b29bdb0 5349 free(nic);
d60626f8
KM
5350 free(hw);
5351 continue;
4b29bdb0
KG
5352 }
5353
d60626f8 5354 /* Make sure all of the fields are initially zeroed */
f7ac99fd 5355 memset(nic, 0, sizeof(*nic));
4b29bdb0
KG
5356 memset(hw, 0, sizeof(*hw));
5357
d60626f8
KM
5358 /* Assign the passed-in values */
5359 hw->cardnum = i;
682011ff 5360 hw->pdev = devno;
d60626f8 5361 hw->nic = nic;
682011ff 5362 nic->priv = hw;
682011ff 5363
d60626f8
KM
5364 /* Generate a card name */
5365 sprintf(nic->name, "e1000#%u", hw->cardnum);
5366
5367 /* Print a debug message with the IO base address */
5368 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5369 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5370
5371 /* Try to enable I/O accesses and bus-mastering */
5372 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5373 pci_write_config_dword(devno, PCI_COMMAND, val);
5374
5375 /* Make sure it worked */
5376 pci_read_config_dword(devno, PCI_COMMAND, &val);
5377 if (!(val & PCI_COMMAND_MEMORY)) {
5378 E1000_ERR(nic, "Can't enable I/O memory\n");
5379 continue;
5380 }
5381 if (!(val & PCI_COMMAND_MASTER)) {
5382 E1000_ERR(nic, "Can't enable bus-mastering\n");
5383 continue;
5384 }
682011ff
WD
5385
5386 /* Are these variables needed? */
682011ff
WD
5387 hw->fc = e1000_fc_default;
5388 hw->original_fc = e1000_fc_default;
682011ff 5389 hw->autoneg_failed = 0;
aa070789 5390 hw->autoneg = 1;
472d5460 5391 hw->get_link_status = true;
a4277200 5392#ifndef CONFIG_E1000_NO_NVM
95186063 5393 hw->eeprom_semaphore_present = true;
a4277200 5394#endif
d60626f8
KM
5395 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5396 PCI_REGION_MEM);
682011ff
WD
5397 hw->mac_type = e1000_undefined;
5398
5399 /* MAC and Phy settings */
d60626f8
KM
5400 if (e1000_sw_init(nic) < 0) {
5401 E1000_ERR(nic, "Software init failed\n");
5402 continue;
682011ff 5403 }
aa070789 5404 if (e1000_check_phy_reset_block(hw))
d60626f8
KM
5405 E1000_ERR(nic, "PHY Reset is blocked!\n");
5406
ce5207e1 5407 /* Basic init was OK, reset the hardware and allow SPI access */
aa070789 5408 e1000_reset_hw(hw);
ce5207e1 5409 list_add_tail(&hw->list_node, &e1000_hw_list);
d60626f8 5410
8712adfd 5411#ifndef CONFIG_E1000_NO_NVM
d60626f8 5412 /* Validate the EEPROM and get chipset information */
a821d08d 5413#if !defined(CONFIG_MVBC_1G)
aa070789 5414 if (e1000_init_eeprom_params(hw)) {
d60626f8
KM
5415 E1000_ERR(nic, "EEPROM is invalid!\n");
5416 continue;
aa070789 5417 }
95186063
MV
5418 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5419 e1000_validate_eeprom_checksum(hw))
d60626f8 5420 continue;
7521af1c 5421#endif
682011ff 5422 e1000_read_mac_addr(nic);
8712adfd 5423#endif
aa070789 5424 e1000_get_bus_type(hw);
682011ff 5425
8712adfd 5426#ifndef CONFIG_E1000_NO_NVM
d60626f8 5427 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
682011ff
WD
5428 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5429 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
8712adfd
RI
5430#else
5431 memset(nic->enetaddr, 0, 6);
5432 printf("e1000: no NVM\n");
5433#endif
682011ff 5434
d60626f8 5435 /* Set up the function pointers and register the device */
682011ff
WD
5436 nic->init = e1000_init;
5437 nic->recv = e1000_poll;
5438 nic->send = e1000_transmit;
5439 nic->halt = e1000_disable;
682011ff 5440 eth_register(nic);
682011ff 5441 }
d60626f8
KM
5442
5443 return i;
682011ff 5444}
ce5207e1
KM
5445
5446struct e1000_hw *e1000_find_card(unsigned int cardnum)
5447{
5448 struct e1000_hw *hw;
5449
5450 list_for_each_entry(hw, &e1000_hw_list, list_node)
5451 if (hw->cardnum == cardnum)
5452 return hw;
5453
5454 return NULL;
5455}
5456
5457#ifdef CONFIG_CMD_E1000
5458static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5459 int argc, char * const argv[])
5460{
5461 struct e1000_hw *hw;
5462
5463 if (argc < 3) {
5464 cmd_usage(cmdtp);
5465 return 1;
5466 }
5467
5468 /* Make sure we can find the requested e1000 card */
5469 hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5470 if (!hw) {
5471 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5472 return 1;
5473 }
5474
5475 if (!strcmp(argv[2], "print-mac-address")) {
5476 unsigned char *mac = hw->nic->enetaddr;
5477 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5478 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5479 return 0;
5480 }
5481
5482#ifdef CONFIG_E1000_SPI
5483 /* Handle the "SPI" subcommand */
5484 if (!strcmp(argv[2], "spi"))
5485 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5486#endif
5487
5488 cmd_usage(cmdtp);
5489 return 1;
5490}
5491
5492U_BOOT_CMD(
5493 e1000, 7, 0, do_e1000,
5494 "Intel e1000 controller management",
5495 /* */"<card#> print-mac-address\n"
5496#ifdef CONFIG_E1000_SPI
5497 "e1000 <card#> spi show [<offset> [<length>]]\n"
5498 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5499 "e1000 <card#> spi program <addr> <offset> <length>\n"
5500 "e1000 <card#> spi checksum [update]\n"
5501#endif
5502 " - Manage the Intel E1000 PCI device"
5503);
5504#endif /* not CONFIG_CMD_E1000 */