]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge branch 'netns-opt'
[thirdparty/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
b72a32da 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9 66#include <asm/uaccess.h>
c5a8c0f3 67#include <linux/crash_dump.h>
b8ff05a9
DM
68
69#include "cxgb4.h"
70#include "t4_regs.h"
f612b815 71#include "t4_values.h"
b8ff05a9
DM
72#include "t4_msg.h"
73#include "t4fw_api.h"
cd6c2f12 74#include "t4fw_version.h"
688848b1 75#include "cxgb4_dcb.h"
fd88b31a 76#include "cxgb4_debugfs.h"
b5a02f50 77#include "clip_tbl.h"
b8ff05a9 78#include "l2t.h"
b72a32da 79#include "sched.h"
b8ff05a9 80
812034f1
HS
81char cxgb4_driver_name[] = KBUILD_MODNAME;
82
01bcca68
VP
83#ifdef DRV_VERSION
84#undef DRV_VERSION
85#endif
3a7f8554 86#define DRV_VERSION "2.0.0-ko"
812034f1 87const char cxgb4_driver_version[] = DRV_VERSION;
52a5f846 88#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
b8ff05a9 89
f2b7e78d
VP
90/* Host shadow copy of ingress filter entry. This is in host native format
91 * and doesn't match the ordering or bit order, etc. of the hardware of the
92 * firmware command. The use of bit-field structure elements is purely to
93 * remind ourselves of the field size limitations and save memory in the case
94 * where the filter table is large.
95 */
96struct filter_entry {
97 /* Administrative fields for filter.
98 */
99 u32 valid:1; /* filter allocated and valid */
100 u32 locked:1; /* filter is administratively locked */
101
102 u32 pending:1; /* filter action is pending firmware reply */
103 u32 smtidx:8; /* Source MAC Table index for smac */
104 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
105
106 /* The filter itself. Most of this is a straight copy of information
107 * provided by the extended ioctl(). Some fields are translated to
108 * internal forms -- for instance the Ingress Queue ID passed in from
109 * the ioctl() is translated into the Absolute Ingress Queue ID.
110 */
111 struct ch_filter_specification fs;
112};
113
b8ff05a9
DM
114#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
115 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
116 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
117
3fedeab1
HS
118/* Macros needed to support the PCI Device ID Table ...
119 */
120#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 121 static const struct pci_device_id cxgb4_pci_tbl[] = {
3fedeab1 122#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 123
3fedeab1
HS
124/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
125 * called for both.
126 */
127#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
128
129#define CH_PCI_ID_TABLE_ENTRY(devid) \
130 {PCI_VDEVICE(CHELSIO, (devid)), 4}
131
132#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
133 { 0, } \
134 }
135
136#include "t4_pci_id_tbl.h"
b8ff05a9 137
16e47624 138#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 139#define FW5_FNAME "cxgb4/t5fw.bin"
3ccc6cf7 140#define FW6_FNAME "cxgb4/t6fw.bin"
16e47624 141#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 142#define FW5_CFNAME "cxgb4/t5-config.txt"
3ccc6cf7 143#define FW6_CFNAME "cxgb4/t6-config.txt"
01b69614
HS
144#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
145#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
146#define PHY_AQ1202_DEVICEID 0x4409
147#define PHY_BCM84834_DEVICEID 0x4486
b8ff05a9
DM
148
149MODULE_DESCRIPTION(DRV_DESC);
150MODULE_AUTHOR("Chelsio Communications");
151MODULE_LICENSE("Dual BSD/GPL");
152MODULE_VERSION(DRV_VERSION);
153MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 154MODULE_FIRMWARE(FW4_FNAME);
0a57a536 155MODULE_FIRMWARE(FW5_FNAME);
52a5f846 156MODULE_FIRMWARE(FW6_FNAME);
b8ff05a9 157
636f9d37
VP
158/*
159 * Normally we're willing to become the firmware's Master PF but will be happy
160 * if another PF has already become the Master and initialized the adapter.
161 * Setting "force_init" will cause this driver to forcibly establish itself as
162 * the Master PF and initialize the adapter.
163 */
164static uint force_init;
165
166module_param(force_init, uint, 0644);
d7d3e25f
HS
167MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
168 "deprecated parameter");
13ee15d3 169
b8ff05a9
DM
170static int dflt_msg_enable = DFLT_MSG_ENABLE;
171
172module_param(dflt_msg_enable, int, 0644);
8a21ec4e
HS
173MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
174 "deprecated parameter");
b8ff05a9
DM
175
176/*
177 * The driver uses the best interrupt scheme available on a platform in the
178 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
179 * of these schemes the driver may consider as follows:
180 *
181 * msi = 2: choose from among all three options
182 * msi = 1: only consider MSI and INTx interrupts
183 * msi = 0: force INTx interrupts
184 */
185static int msi = 2;
186
187module_param(msi, int, 0644);
188MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
189
636f9d37
VP
190/*
191 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
192 * offset by 2 bytes in order to have the IP headers line up on 4-byte
193 * boundaries. This is a requirement for many architectures which will throw
194 * a machine check fault if an attempt is made to access one of the 4-byte IP
195 * header fields on a non-4-byte boundary. And it's a major performance issue
196 * even on some architectures which allow it like some implementations of the
197 * x86 ISA. However, some architectures don't mind this and for some very
198 * edge-case performance sensitive applications (like forwarding large volumes
199 * of small packets), setting this DMA offset to 0 will decrease the number of
200 * PCI-E Bus transfers enough to measurably affect performance.
201 */
202static int rx_dma_offset = 2;
203
b8ff05a9 204#ifdef CONFIG_PCI_IOV
7d6727cf
SR
205/* Configure the number of PCI-E Virtual Function which are to be instantiated
206 * on SR-IOV Capable Physical Functions.
0a57a536 207 */
7d6727cf 208static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
209
210module_param_array(num_vf, uint, NULL, 0644);
b6244201 211MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
b8ff05a9
DM
212#endif
213
688848b1
AB
214/* TX Queue select used to determine what algorithm to use for selecting TX
215 * queue. Select between the kernel provided function (select_queue=0) or user
216 * cxgb_select_queue function (select_queue=1)
217 *
218 * Default: select_queue=0
219 */
220static int select_queue;
221module_param(select_queue, int, 0644);
222MODULE_PARM_DESC(select_queue,
223 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
224
b8ff05a9
DM
225static struct dentry *cxgb4_debugfs_root;
226
94cdb8bb
HS
227LIST_HEAD(adapter_list);
228DEFINE_MUTEX(uld_mutex);
01bcca68
VP
229/* Adapter list to be accessed from atomic context */
230static LIST_HEAD(adap_rcu_list);
231static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9 232static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
f2692d16 233static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
b8ff05a9
DM
234
235static void link_report(struct net_device *dev)
236{
237 if (!netif_carrier_ok(dev))
238 netdev_info(dev, "link down\n");
239 else {
240 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
241
85412255 242 const char *s;
b8ff05a9
DM
243 const struct port_info *p = netdev_priv(dev);
244
245 switch (p->link_cfg.speed) {
e8b39015 246 case 10000:
b8ff05a9
DM
247 s = "10Gbps";
248 break;
e8b39015 249 case 1000:
b8ff05a9
DM
250 s = "1000Mbps";
251 break;
e8b39015 252 case 100:
b8ff05a9
DM
253 s = "100Mbps";
254 break;
e8b39015 255 case 40000:
72aca4bf
KS
256 s = "40Gbps";
257 break;
85412255
HS
258 default:
259 pr_info("%s: unsupported speed: %d\n",
260 dev->name, p->link_cfg.speed);
261 return;
b8ff05a9
DM
262 }
263
264 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
265 fc[p->link_cfg.fc]);
266 }
267}
268
688848b1
AB
269#ifdef CONFIG_CHELSIO_T4_DCB
270/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
271static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
272{
273 struct port_info *pi = netdev_priv(dev);
274 struct adapter *adap = pi->adapter;
275 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
276 int i;
277
278 /* We use a simple mapping of Port TX Queue Index to DCB
279 * Priority when we're enabling DCB.
280 */
281 for (i = 0; i < pi->nqsets; i++, txq++) {
282 u32 name, value;
283 int err;
284
5167865a
HS
285 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
286 FW_PARAMS_PARAM_X_V(
287 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
288 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
289 value = enable ? i : 0xffffffff;
290
291 /* Since we can be called while atomic (from "interrupt
292 * level") we need to issue the Set Parameters Commannd
293 * without sleeping (timeout < 0).
294 */
b2612722 295 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
296 &name, &value,
297 -FW_CMD_MAX_TIMEOUT);
688848b1
AB
298
299 if (err)
300 dev_err(adap->pdev_dev,
301 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
302 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
303 else
304 txq->dcb_prio = value;
688848b1
AB
305 }
306}
307#endif /* CONFIG_CHELSIO_T4_DCB */
308
218d48e7
HS
309int cxgb4_dcb_enabled(const struct net_device *dev)
310{
311#ifdef CONFIG_CHELSIO_T4_DCB
312 struct port_info *pi = netdev_priv(dev);
313
314 if (!pi->dcb.enabled)
315 return 0;
316
317 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
318 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
319#else
320 return 0;
321#endif
322}
323EXPORT_SYMBOL(cxgb4_dcb_enabled);
324
b8ff05a9
DM
325void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
326{
327 struct net_device *dev = adapter->port[port_id];
328
329 /* Skip changes from disabled ports. */
330 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
331 if (link_stat)
332 netif_carrier_on(dev);
688848b1
AB
333 else {
334#ifdef CONFIG_CHELSIO_T4_DCB
218d48e7
HS
335 if (cxgb4_dcb_enabled(dev)) {
336 cxgb4_dcb_state_init(dev);
337 dcb_tx_queue_prio_enable(dev, false);
338 }
688848b1 339#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 340 netif_carrier_off(dev);
688848b1 341 }
b8ff05a9
DM
342
343 link_report(dev);
344 }
345}
346
347void t4_os_portmod_changed(const struct adapter *adap, int port_id)
348{
349 static const char *mod_str[] = {
a0881cab 350 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
351 };
352
353 const struct net_device *dev = adap->port[port_id];
354 const struct port_info *pi = netdev_priv(dev);
355
356 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
357 netdev_info(dev, "port module unplugged\n");
a0881cab 358 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9 359 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
be81a2de
HS
360 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
361 netdev_info(dev, "%s: unsupported port module inserted\n",
362 dev->name);
363 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
364 netdev_info(dev, "%s: unknown port module inserted\n",
365 dev->name);
366 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
367 netdev_info(dev, "%s: transceiver module error\n", dev->name);
368 else
369 netdev_info(dev, "%s: unknown module type %d inserted\n",
370 dev->name, pi->mod_type);
b8ff05a9
DM
371}
372
fc08a01a
HS
373int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
374module_param(dbfifo_int_thresh, int, 0644);
375MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
376
b8ff05a9 377/*
fc08a01a 378 * usecs to sleep while draining the dbfifo
b8ff05a9 379 */
fc08a01a
HS
380static int dbfifo_drain_delay = 1000;
381module_param(dbfifo_drain_delay, int, 0644);
382MODULE_PARM_DESC(dbfifo_drain_delay,
383 "usecs to sleep while draining the dbfifo");
384
385static inline int cxgb4_set_addr_hash(struct port_info *pi)
b8ff05a9 386{
fc08a01a
HS
387 struct adapter *adap = pi->adapter;
388 u64 vec = 0;
389 bool ucast = false;
390 struct hash_mac_addr *entry;
391
392 /* Calculate the hash vector for the updated list and program it */
393 list_for_each_entry(entry, &adap->mac_hlist, list) {
394 ucast |= is_unicast_ether_addr(entry->addr);
395 vec |= (1ULL << hash_mac_addr(entry->addr));
396 }
397 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
398 vec, false);
399}
400
401static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
402{
403 struct port_info *pi = netdev_priv(netdev);
404 struct adapter *adap = pi->adapter;
405 int ret;
b8ff05a9
DM
406 u64 mhash = 0;
407 u64 uhash = 0;
fc08a01a
HS
408 bool free = false;
409 bool ucast = is_unicast_ether_addr(mac_addr);
410 const u8 *maclist[1] = {mac_addr};
411 struct hash_mac_addr *new_entry;
412
413 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
414 NULL, ucast ? &uhash : &mhash, false);
415 if (ret < 0)
416 goto out;
417 /* if hash != 0, then add the addr to hash addr list
418 * so on the end we will calculate the hash for the
419 * list and program it
420 */
421 if (uhash || mhash) {
422 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
423 if (!new_entry)
424 return -ENOMEM;
425 ether_addr_copy(new_entry->addr, mac_addr);
426 list_add_tail(&new_entry->list, &adap->mac_hlist);
427 ret = cxgb4_set_addr_hash(pi);
b8ff05a9 428 }
fc08a01a
HS
429out:
430 return ret < 0 ? ret : 0;
431}
b8ff05a9 432
fc08a01a
HS
433static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
434{
435 struct port_info *pi = netdev_priv(netdev);
436 struct adapter *adap = pi->adapter;
437 int ret;
438 const u8 *maclist[1] = {mac_addr};
439 struct hash_mac_addr *entry, *tmp;
b8ff05a9 440
fc08a01a
HS
441 /* If the MAC address to be removed is in the hash addr
442 * list, delete it from the list and update hash vector
443 */
444 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
445 if (ether_addr_equal(entry->addr, mac_addr)) {
446 list_del(&entry->list);
447 kfree(entry);
448 return cxgb4_set_addr_hash(pi);
b8ff05a9
DM
449 }
450 }
451
fc08a01a
HS
452 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
453 return ret < 0 ? -EINVAL : 0;
b8ff05a9
DM
454}
455
456/*
457 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
458 * If @mtu is -1 it is left unchanged.
459 */
460static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
461{
b8ff05a9 462 struct port_info *pi = netdev_priv(dev);
fc08a01a 463 struct adapter *adapter = pi->adapter;
b8ff05a9 464
d01f7abc
HS
465 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
466 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
fc08a01a
HS
467
468 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
469 (dev->flags & IFF_PROMISC) ? 1 : 0,
470 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
471 sleep_ok);
b8ff05a9
DM
472}
473
474/**
475 * link_start - enable a port
476 * @dev: the port to enable
477 *
478 * Performs the MAC and PHY actions needed to enable a port.
479 */
480static int link_start(struct net_device *dev)
481{
482 int ret;
483 struct port_info *pi = netdev_priv(dev);
b2612722 484 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
485
486 /*
487 * We do not set address filters and promiscuity here, the stack does
488 * that step explicitly.
489 */
060e0c75 490 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 491 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 492 if (ret == 0) {
060e0c75 493 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 494 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 495 true);
b8ff05a9
DM
496 if (ret >= 0) {
497 pi->xact_addr_filt = ret;
498 ret = 0;
499 }
500 }
501 if (ret == 0)
4036da90 502 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
060e0c75 503 &pi->link_cfg);
30f00847
AB
504 if (ret == 0) {
505 local_bh_disable();
688848b1
AB
506 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
507 true, CXGB4_DCB_ENABLED);
30f00847
AB
508 local_bh_enable();
509 }
688848b1 510
b8ff05a9
DM
511 return ret;
512}
513
688848b1
AB
514#ifdef CONFIG_CHELSIO_T4_DCB
515/* Handle a Data Center Bridging update message from the firmware. */
516static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
517{
2b5fb1f2 518 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
134491fd 519 struct net_device *dev = adap->port[adap->chan_map[port]];
688848b1
AB
520 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
521 int new_dcb_enabled;
522
523 cxgb4_dcb_handle_fw_update(adap, pcmd);
524 new_dcb_enabled = cxgb4_dcb_enabled(dev);
525
526 /* If the DCB has become enabled or disabled on the port then we're
527 * going to need to set up/tear down DCB Priority parameters for the
528 * TX Queues associated with the port.
529 */
530 if (new_dcb_enabled != old_dcb_enabled)
531 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
532}
533#endif /* CONFIG_CHELSIO_T4_DCB */
534
f2b7e78d
VP
535/* Clear a filter and release any of its resources that we own. This also
536 * clears the filter's "pending" status.
537 */
538static void clear_filter(struct adapter *adap, struct filter_entry *f)
539{
540 /* If the new or old filter have loopback rewriteing rules then we'll
541 * need to free any existing Layer Two Table (L2T) entries of the old
542 * filter rule. The firmware will handle freeing up any Source MAC
543 * Table (SMT) entries used for rewriting Source MAC Addresses in
544 * loopback rules.
545 */
546 if (f->l2t)
547 cxgb4_l2t_release(f->l2t);
548
549 /* The zeroing of the filter rule below clears the filter valid,
550 * pending, locked flags, l2t pointer, etc. so it's all we need for
551 * this operation.
552 */
553 memset(f, 0, sizeof(*f));
554}
555
556/* Handle a filter write/deletion reply.
557 */
558static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
559{
560 unsigned int idx = GET_TID(rpl);
561 unsigned int nidx = idx - adap->tids.ftid_base;
562 unsigned int ret;
563 struct filter_entry *f;
564
565 if (idx >= adap->tids.ftid_base && nidx <
566 (adap->tids.nftids + adap->tids.nsftids)) {
567 idx = nidx;
bdc590b9 568 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
569 f = &adap->tids.ftid_tab[idx];
570
571 if (ret == FW_FILTER_WR_FLT_DELETED) {
572 /* Clear the filter when we get confirmation from the
573 * hardware that the filter has been deleted.
574 */
575 clear_filter(adap, f);
576 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
577 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
578 idx);
579 clear_filter(adap, f);
580 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
581 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
582 f->pending = 0; /* asynchronous setup completed */
583 f->valid = 1;
584 } else {
585 /* Something went wrong. Issue a warning about the
586 * problem and clear everything out.
587 */
588 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
589 idx, ret);
590 clear_filter(adap, f);
591 }
592 }
593}
594
595/* Response queue handler for the FW event queue.
b8ff05a9
DM
596 */
597static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
598 const struct pkt_gl *gl)
599{
600 u8 opcode = ((const struct rss_header *)rsp)->opcode;
601
602 rsp++; /* skip RSS header */
b407a4a9
VP
603
604 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
605 */
606 if (unlikely(opcode == CPL_FW4_MSG &&
607 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
608 rsp++;
609 opcode = ((const struct rss_header *)rsp)->opcode;
610 rsp++;
611 if (opcode != CPL_SGE_EGR_UPDATE) {
612 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
613 , opcode);
614 goto out;
615 }
616 }
617
b8ff05a9
DM
618 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
619 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 620 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 621 struct sge_txq *txq;
b8ff05a9 622
e46dab4d 623 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 624 txq->restarts++;
e46dab4d 625 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
626 struct sge_eth_txq *eq;
627
628 eq = container_of(txq, struct sge_eth_txq, q);
629 netif_tx_wake_queue(eq->txq);
630 } else {
631 struct sge_ofld_txq *oq;
632
633 oq = container_of(txq, struct sge_ofld_txq, q);
634 tasklet_schedule(&oq->qresume_tsk);
635 }
636 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
637 const struct cpl_fw6_msg *p = (void *)rsp;
638
688848b1
AB
639#ifdef CONFIG_CHELSIO_T4_DCB
640 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 641 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 642 unsigned int action =
2b5fb1f2 643 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
644
645 if (cmd == FW_PORT_CMD &&
646 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 647 int port = FW_PORT_CMD_PORTID_G(
688848b1 648 be32_to_cpu(pcmd->op_to_portid));
134491fd
HS
649 struct net_device *dev =
650 q->adap->port[q->adap->chan_map[port]];
688848b1 651 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 652 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
653 ? CXGB4_DCB_INPUT_FW_DISABLED
654 : CXGB4_DCB_INPUT_FW_ENABLED);
655
656 cxgb4_dcb_state_fsm(dev, state_input);
657 }
658
659 if (cmd == FW_PORT_CMD &&
660 action == FW_PORT_ACTION_L2_DCB_CFG)
661 dcb_rpl(q->adap, pcmd);
662 else
663#endif
664 if (p->type == 0)
665 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
666 } else if (opcode == CPL_L2T_WRITE_RPL) {
667 const struct cpl_l2t_write_rpl *p = (void *)rsp;
668
669 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
670 } else if (opcode == CPL_SET_TCB_RPL) {
671 const struct cpl_set_tcb_rpl *p = (void *)rsp;
672
673 filter_rpl(q->adap, p);
b8ff05a9
DM
674 } else
675 dev_err(q->adap->pdev_dev,
676 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 677out:
b8ff05a9
DM
678 return 0;
679}
680
2337ba42
VP
681/* Flush the aggregated lro sessions */
682static void uldrx_flush_handler(struct sge_rspq *q)
683{
684 if (ulds[q->uld].lro_flush)
685 ulds[q->uld].lro_flush(&q->lro_mgr);
686}
687
b8ff05a9
DM
688/**
689 * uldrx_handler - response queue handler for ULD queues
690 * @q: the response queue that received the packet
691 * @rsp: the response queue descriptor holding the offload message
692 * @gl: the gather list of packet fragments
693 *
694 * Deliver an ingress offload packet to a ULD. All processing is done by
695 * the ULD, we just maintain statistics.
696 */
697static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
698 const struct pkt_gl *gl)
699{
700 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
2337ba42 701 int ret;
b8ff05a9 702
b407a4a9
VP
703 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
704 */
705 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
706 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
707 rsp += 2;
708
2337ba42
VP
709 if (q->flush_handler)
710 ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
711 rsp, gl, &q->lro_mgr,
712 &q->napi);
713 else
714 ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
715 rsp, gl);
716
717 if (ret) {
b8ff05a9
DM
718 rxq->stats.nomem++;
719 return -1;
720 }
2337ba42 721
b8ff05a9
DM
722 if (gl == NULL)
723 rxq->stats.imm++;
724 else if (gl == CXGB4_MSG_AN)
725 rxq->stats.an++;
726 else
727 rxq->stats.pkts++;
728 return 0;
729}
730
731static void disable_msi(struct adapter *adapter)
732{
733 if (adapter->flags & USING_MSIX) {
734 pci_disable_msix(adapter->pdev);
735 adapter->flags &= ~USING_MSIX;
736 } else if (adapter->flags & USING_MSI) {
737 pci_disable_msi(adapter->pdev);
738 adapter->flags &= ~USING_MSI;
739 }
740}
741
742/*
743 * Interrupt handler for non-data events used with MSI-X.
744 */
745static irqreturn_t t4_nondata_intr(int irq, void *cookie)
746{
747 struct adapter *adap = cookie;
0d804338 748 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 749
0d804338 750 if (v & PFSW_F) {
b8ff05a9 751 adap->swintr = 1;
0d804338 752 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9 753 }
c3c7b121
HS
754 if (adap->flags & MASTER_PF)
755 t4_slow_intr_handler(adap);
b8ff05a9
DM
756 return IRQ_HANDLED;
757}
758
759/*
760 * Name the MSI-X interrupts.
761 */
762static void name_msix_vecs(struct adapter *adap)
763{
ba27816c 764 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
765
766 /* non-data interrupts */
b1a3c2b6 767 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
768
769 /* FW events */
b1a3c2b6
DM
770 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
771 adap->port[0]->name);
b8ff05a9
DM
772
773 /* Ethernet queues */
774 for_each_port(adap, j) {
775 struct net_device *d = adap->port[j];
776 const struct port_info *pi = netdev_priv(d);
777
ba27816c 778 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
779 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
780 d->name, i);
b8ff05a9
DM
781 }
782
783 /* offload queues */
f90ce561
HS
784 for_each_iscsirxq(&adap->sge, i)
785 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
b1a3c2b6 786 adap->port[0]->name, i);
ba27816c 787
f2692d16
VP
788 for_each_iscsitrxq(&adap->sge, i)
789 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
790 adap->port[0]->name, i);
791
ba27816c
DM
792 for_each_rdmarxq(&adap->sge, i)
793 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 794 adap->port[0]->name, i);
cf38be6d
HS
795
796 for_each_rdmaciq(&adap->sge, i)
797 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
798 adap->port[0]->name, i);
b8ff05a9
DM
799}
800
801static int request_msix_queue_irqs(struct adapter *adap)
802{
803 struct sge *s = &adap->sge;
f90ce561 804 int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
f2692d16 805 int iscsitqidx = 0;
cf38be6d 806 int msi_index = 2;
b8ff05a9
DM
807
808 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
809 adap->msix_info[1].desc, &s->fw_evtq);
810 if (err)
811 return err;
812
813 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
814 err = request_irq(adap->msix_info[msi_index].vec,
815 t4_sge_intr_msix, 0,
816 adap->msix_info[msi_index].desc,
b8ff05a9
DM
817 &s->ethrxq[ethqidx].rspq);
818 if (err)
819 goto unwind;
404d9e3f 820 msi_index++;
b8ff05a9 821 }
f90ce561 822 for_each_iscsirxq(s, iscsiqidx) {
404d9e3f
VP
823 err = request_irq(adap->msix_info[msi_index].vec,
824 t4_sge_intr_msix, 0,
825 adap->msix_info[msi_index].desc,
f90ce561 826 &s->iscsirxq[iscsiqidx].rspq);
b8ff05a9
DM
827 if (err)
828 goto unwind;
404d9e3f 829 msi_index++;
b8ff05a9 830 }
f2692d16
VP
831 for_each_iscsitrxq(s, iscsitqidx) {
832 err = request_irq(adap->msix_info[msi_index].vec,
833 t4_sge_intr_msix, 0,
834 adap->msix_info[msi_index].desc,
835 &s->iscsitrxq[iscsitqidx].rspq);
836 if (err)
837 goto unwind;
838 msi_index++;
839 }
b8ff05a9 840 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
841 err = request_irq(adap->msix_info[msi_index].vec,
842 t4_sge_intr_msix, 0,
843 adap->msix_info[msi_index].desc,
b8ff05a9
DM
844 &s->rdmarxq[rdmaqidx].rspq);
845 if (err)
846 goto unwind;
404d9e3f 847 msi_index++;
b8ff05a9 848 }
cf38be6d
HS
849 for_each_rdmaciq(s, rdmaciqqidx) {
850 err = request_irq(adap->msix_info[msi_index].vec,
851 t4_sge_intr_msix, 0,
852 adap->msix_info[msi_index].desc,
853 &s->rdmaciq[rdmaciqqidx].rspq);
854 if (err)
855 goto unwind;
856 msi_index++;
857 }
b8ff05a9
DM
858 return 0;
859
860unwind:
cf38be6d
HS
861 while (--rdmaciqqidx >= 0)
862 free_irq(adap->msix_info[--msi_index].vec,
863 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 864 while (--rdmaqidx >= 0)
404d9e3f 865 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9 866 &s->rdmarxq[rdmaqidx].rspq);
f2692d16
VP
867 while (--iscsitqidx >= 0)
868 free_irq(adap->msix_info[--msi_index].vec,
869 &s->iscsitrxq[iscsitqidx].rspq);
f90ce561 870 while (--iscsiqidx >= 0)
404d9e3f 871 free_irq(adap->msix_info[--msi_index].vec,
f90ce561 872 &s->iscsirxq[iscsiqidx].rspq);
b8ff05a9 873 while (--ethqidx >= 0)
404d9e3f
VP
874 free_irq(adap->msix_info[--msi_index].vec,
875 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
876 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
877 return err;
878}
879
880static void free_msix_queue_irqs(struct adapter *adap)
881{
404d9e3f 882 int i, msi_index = 2;
b8ff05a9
DM
883 struct sge *s = &adap->sge;
884
885 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
886 for_each_ethrxq(s, i)
404d9e3f 887 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
f90ce561
HS
888 for_each_iscsirxq(s, i)
889 free_irq(adap->msix_info[msi_index++].vec,
890 &s->iscsirxq[i].rspq);
f2692d16
VP
891 for_each_iscsitrxq(s, i)
892 free_irq(adap->msix_info[msi_index++].vec,
893 &s->iscsitrxq[i].rspq);
b8ff05a9 894 for_each_rdmarxq(s, i)
404d9e3f 895 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
896 for_each_rdmaciq(s, i)
897 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
898}
899
671b0060 900/**
812034f1 901 * cxgb4_write_rss - write the RSS table for a given port
671b0060
DM
902 * @pi: the port
903 * @queues: array of queue indices for RSS
904 *
905 * Sets up the portion of the HW RSS table for the port's VI to distribute
906 * packets to the Rx queues in @queues.
c035e183 907 * Should never be called before setting up sge eth rx queues
671b0060 908 */
812034f1 909int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671b0060
DM
910{
911 u16 *rss;
912 int i, err;
c035e183
HS
913 struct adapter *adapter = pi->adapter;
914 const struct sge_eth_rxq *rxq;
671b0060 915
c035e183 916 rxq = &adapter->sge.ethrxq[pi->first_qset];
671b0060
DM
917 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
918 if (!rss)
919 return -ENOMEM;
920
921 /* map the queue indices to queue ids */
922 for (i = 0; i < pi->rss_size; i++, queues++)
c035e183 923 rss[i] = rxq[*queues].rspq.abs_id;
671b0060 924
b2612722 925 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
060e0c75 926 pi->rss_size, rss, pi->rss_size);
c035e183
HS
927 /* If Tunnel All Lookup isn't specified in the global RSS
928 * Configuration, then we need to specify a default Ingress
929 * Queue for any ingress packets which aren't hashed. We'll
930 * use our first ingress queue ...
931 */
932 if (!err)
933 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
934 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
935 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
936 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
937 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
938 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
939 rss[0]);
671b0060
DM
940 kfree(rss);
941 return err;
942}
943
b8ff05a9
DM
944/**
945 * setup_rss - configure RSS
946 * @adap: the adapter
947 *
671b0060 948 * Sets up RSS for each port.
b8ff05a9
DM
949 */
950static int setup_rss(struct adapter *adap)
951{
c035e183 952 int i, j, err;
b8ff05a9
DM
953
954 for_each_port(adap, i) {
955 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 956
c035e183
HS
957 /* Fill default values with equal distribution */
958 for (j = 0; j < pi->rss_size; j++)
959 pi->rss[j] = j % pi->nqsets;
960
812034f1 961 err = cxgb4_write_rss(pi, pi->rss);
b8ff05a9
DM
962 if (err)
963 return err;
964 }
965 return 0;
966}
967
e46dab4d
DM
968/*
969 * Return the channel of the ingress queue with the given qid.
970 */
971static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
972{
973 qid -= p->ingr_start;
974 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
975}
976
b8ff05a9
DM
977/*
978 * Wait until all NAPI handlers are descheduled.
979 */
980static void quiesce_rx(struct adapter *adap)
981{
982 int i;
983
4b8e27a8 984 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
985 struct sge_rspq *q = adap->sge.ingr_map[i];
986
3a336cb1 987 if (q && q->handler) {
b8ff05a9 988 napi_disable(&q->napi);
3a336cb1
HS
989 local_bh_disable();
990 while (!cxgb_poll_lock_napi(q))
991 mdelay(1);
992 local_bh_enable();
993 }
994
b8ff05a9
DM
995 }
996}
997
b37987e8
HS
998/* Disable interrupt and napi handler */
999static void disable_interrupts(struct adapter *adap)
1000{
1001 if (adap->flags & FULL_INIT_DONE) {
1002 t4_intr_disable(adap);
1003 if (adap->flags & USING_MSIX) {
1004 free_msix_queue_irqs(adap);
1005 free_irq(adap->msix_info[0].vec, adap);
1006 } else {
1007 free_irq(adap->pdev->irq, adap);
1008 }
1009 quiesce_rx(adap);
1010 }
1011}
1012
b8ff05a9
DM
1013/*
1014 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1015 */
1016static void enable_rx(struct adapter *adap)
1017{
1018 int i;
1019
4b8e27a8 1020 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
1021 struct sge_rspq *q = adap->sge.ingr_map[i];
1022
1023 if (!q)
1024 continue;
3a336cb1
HS
1025 if (q->handler) {
1026 cxgb_busy_poll_init_lock(q);
b8ff05a9 1027 napi_enable(&q->napi);
3a336cb1 1028 }
b8ff05a9 1029 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
1030 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1031 SEINTARM_V(q->intr_params) |
1032 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
1033 }
1034}
1035
1c6a5b0e
HS
1036static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1037 unsigned int nq, unsigned int per_chan, int msi_idx,
2337ba42 1038 u16 *ids, bool lro)
1c6a5b0e
HS
1039{
1040 int i, err;
1041
1042 for (i = 0; i < nq; i++, q++) {
1043 if (msi_idx > 0)
1044 msi_idx++;
1045 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1046 adap->port[i / per_chan],
1047 msi_idx, q->fl.size ? &q->fl : NULL,
2337ba42
VP
1048 uldrx_handler,
1049 lro ? uldrx_flush_handler : NULL,
1050 0);
1c6a5b0e
HS
1051 if (err)
1052 return err;
1053 memset(&q->stats, 0, sizeof(q->stats));
1054 if (ids)
1055 ids[i] = q->rspq.abs_id;
1056 }
1057 return 0;
1058}
1059
b8ff05a9
DM
1060/**
1061 * setup_sge_queues - configure SGE Tx/Rx/response queues
1062 * @adap: the adapter
1063 *
1064 * Determines how many sets of SGE queues to use and initializes them.
1065 * We support multiple queue sets per port if we have MSI-X, otherwise
1066 * just one queue set per port.
1067 */
1068static int setup_sge_queues(struct adapter *adap)
1069{
94cdb8bb 1070 int err, i, j;
b8ff05a9
DM
1071 struct sge *s = &adap->sge;
1072
4b8e27a8
HS
1073 bitmap_zero(s->starving_fl, s->egr_sz);
1074 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
1075
1076 if (adap->flags & USING_MSIX)
94cdb8bb 1077 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
b8ff05a9
DM
1078 else {
1079 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
2337ba42 1080 NULL, NULL, NULL, -1);
b8ff05a9
DM
1081 if (err)
1082 return err;
94cdb8bb 1083 adap->msi_idx = -((int)s->intrq.abs_id + 1);
b8ff05a9
DM
1084 }
1085
4b8e27a8
HS
1086 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1087 * don't forget to update the following which need to be
1088 * synchronized to and changes here.
1089 *
1090 * 1. The calculations of MAX_INGQ in cxgb4.h.
1091 *
1092 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1093 * to accommodate any new/deleted Ingress Queues
1094 * which need MSI-X Vectors.
1095 *
1096 * 3. Update sge_qinfo_show() to include information on the
1097 * new/deleted queues.
1098 */
b8ff05a9 1099 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
94cdb8bb 1100 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
b8ff05a9
DM
1101 if (err) {
1102freeout: t4_free_sge_resources(adap);
1103 return err;
1104 }
1105
1106 for_each_port(adap, i) {
1107 struct net_device *dev = adap->port[i];
1108 struct port_info *pi = netdev_priv(dev);
1109 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1110 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1111
1112 for (j = 0; j < pi->nqsets; j++, q++) {
94cdb8bb
HS
1113 if (adap->msi_idx > 0)
1114 adap->msi_idx++;
b8ff05a9 1115 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
94cdb8bb 1116 adap->msi_idx, &q->fl,
145ef8a5 1117 t4_ethrx_handler,
2337ba42 1118 NULL,
145ef8a5
HS
1119 t4_get_mps_bg_map(adap,
1120 pi->tx_chan));
b8ff05a9
DM
1121 if (err)
1122 goto freeout;
1123 q->rspq.idx = j;
1124 memset(&q->stats, 0, sizeof(q->stats));
1125 }
1126 for (j = 0; j < pi->nqsets; j++, t++) {
1127 err = t4_sge_alloc_eth_txq(adap, t, dev,
1128 netdev_get_tx_queue(dev, j),
1129 s->fw_evtq.cntxt_id);
1130 if (err)
1131 goto freeout;
1132 }
1133 }
1134
f90ce561
HS
1135 j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1136 for_each_iscsirxq(s, i) {
1c6a5b0e
HS
1137 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1138 adap->port[i / j],
b8ff05a9
DM
1139 s->fw_evtq.cntxt_id);
1140 if (err)
1141 goto freeout;
1142 }
1143
2337ba42 1144#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
94cdb8bb 1145 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, adap->msi_idx, ids, lro); \
1c6a5b0e
HS
1146 if (err) \
1147 goto freeout; \
94cdb8bb
HS
1148 if (adap->msi_idx > 0) \
1149 adap->msi_idx += nq; \
1c6a5b0e 1150} while (0)
b8ff05a9 1151
2337ba42
VP
1152 ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1153 ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1154 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
f36e58e5 1155 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
2337ba42 1156 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
b8ff05a9 1157
1c6a5b0e 1158#undef ALLOC_OFLD_RXQS
cf38be6d 1159
b8ff05a9
DM
1160 for_each_port(adap, i) {
1161 /*
1162 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1163 * have RDMA queues, and that's the right value.
1164 */
1165 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1166 s->fw_evtq.cntxt_id,
1167 s->rdmarxq[i].rspq.cntxt_id);
1168 if (err)
1169 goto freeout;
1170 }
1171
9bb59b96 1172 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1173 MPS_TRC_RSS_CONTROL_A :
1174 MPS_T5_TRC_RSS_CONTROL_A,
1175 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1176 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1177 return 0;
1178}
1179
b8ff05a9
DM
1180/*
1181 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1182 * The allocated memory is cleared.
1183 */
1184void *t4_alloc_mem(size_t size)
1185{
8be04b93 1186 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1187
1188 if (!p)
89bf67f1 1189 p = vzalloc(size);
b8ff05a9
DM
1190 return p;
1191}
1192
1193/*
1194 * Free memory allocated through alloc_mem().
1195 */
fd88b31a 1196void t4_free_mem(void *addr)
b8ff05a9 1197{
d2fcb548 1198 kvfree(addr);
b8ff05a9
DM
1199}
1200
f2b7e78d
VP
1201/* Send a Work Request to write the filter at a specified index. We construct
1202 * a Firmware Filter Work Request to have the work done and put the indicated
1203 * filter into "pending" mode which will prevent any further actions against
1204 * it till we get a reply from the firmware on the completion status of the
1205 * request.
1206 */
1207static int set_filter_wr(struct adapter *adapter, int fidx)
1208{
1209 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1210 struct sk_buff *skb;
1211 struct fw_filter_wr *fwr;
1212 unsigned int ftid;
1213
f72f116a
MH
1214 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1215 if (!skb)
1216 return -ENOMEM;
1217
f2b7e78d
VP
1218 /* If the new filter requires loopback Destination MAC and/or VLAN
1219 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1220 * the filter.
1221 */
1222 if (f->fs.newdmac || f->fs.newvlan) {
1223 /* allocate L2T entry for new filter */
f7502659
HS
1224 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1225 f->fs.eport, f->fs.dmac);
f72f116a 1226 if (f->l2t == NULL) {
f72f116a 1227 kfree_skb(skb);
f2b7e78d
VP
1228 return -ENOMEM;
1229 }
1230 }
1231
1232 ftid = adapter->tids.ftid_base + fidx;
1233
f2b7e78d
VP
1234 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1235 memset(fwr, 0, sizeof(*fwr));
1236
1237 /* It would be nice to put most of the following in t4_hw.c but most
1238 * of the work is translating the cxgbtool ch_filter_specification
1239 * into the Work Request and the definition of that structure is
1240 * currently in cxgbtool.h which isn't appropriate to pull into the
1241 * common code. We may eventually try to come up with a more neutral
1242 * filter specification structure but for now it's easiest to simply
1243 * put this fairly direct code in line ...
1244 */
e2ac9628
HS
1245 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1246 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1247 fwr->tid_to_iq =
77a80e23
HS
1248 htonl(FW_FILTER_WR_TID_V(ftid) |
1249 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1250 FW_FILTER_WR_NOREPLY_V(0) |
1251 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1252 fwr->del_filter_to_l2tix =
77a80e23
HS
1253 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1254 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1255 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1256 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1257 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1258 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1259 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1260 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1261 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1262 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1263 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1264 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1265 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1266 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1267 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1268 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1269 fwr->ethtype = htons(f->fs.val.ethtype);
1270 fwr->ethtypem = htons(f->fs.mask.ethtype);
1271 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1272 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1273 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1274 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1275 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1276 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1277 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1278 fwr->smac_sel = 0;
1279 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1280 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1281 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1282 fwr->maci_to_matchtypem =
77a80e23
HS
1283 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1284 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1285 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1286 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1287 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1288 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1289 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1290 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1291 fwr->ptcl = f->fs.val.proto;
1292 fwr->ptclm = f->fs.mask.proto;
1293 fwr->ttyp = f->fs.val.tos;
1294 fwr->ttypm = f->fs.mask.tos;
1295 fwr->ivlan = htons(f->fs.val.ivlan);
1296 fwr->ivlanm = htons(f->fs.mask.ivlan);
1297 fwr->ovlan = htons(f->fs.val.ovlan);
1298 fwr->ovlanm = htons(f->fs.mask.ovlan);
1299 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1300 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1301 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1302 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1303 fwr->lp = htons(f->fs.val.lport);
1304 fwr->lpm = htons(f->fs.mask.lport);
1305 fwr->fp = htons(f->fs.val.fport);
1306 fwr->fpm = htons(f->fs.mask.fport);
1307 if (f->fs.newsmac)
1308 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1309
1310 /* Mark the filter as "pending" and ship off the Filter Work Request.
1311 * When we get the Work Request Reply we'll clear the pending status.
1312 */
1313 f->pending = 1;
1314 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1315 t4_ofld_send(adapter, skb);
1316 return 0;
1317}
1318
1319/* Delete the filter at a specified index.
1320 */
1321static int del_filter_wr(struct adapter *adapter, int fidx)
1322{
1323 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1324 struct sk_buff *skb;
1325 struct fw_filter_wr *fwr;
1326 unsigned int len, ftid;
1327
1328 len = sizeof(*fwr);
1329 ftid = adapter->tids.ftid_base + fidx;
1330
f72f116a
MH
1331 skb = alloc_skb(len, GFP_KERNEL);
1332 if (!skb)
1333 return -ENOMEM;
1334
f2b7e78d
VP
1335 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1336 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1337
1338 /* Mark the filter as "pending" and ship off the Filter Work Request.
1339 * When we get the Work Request Reply we'll clear the pending status.
1340 */
1341 f->pending = 1;
1342 t4_mgmt_tx(adapter, skb);
1343 return 0;
1344}
1345
688848b1
AB
1346static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1347 void *accel_priv, select_queue_fallback_t fallback)
1348{
1349 int txq;
1350
1351#ifdef CONFIG_CHELSIO_T4_DCB
1352 /* If a Data Center Bridging has been successfully negotiated on this
1353 * link then we'll use the skb's priority to map it to a TX Queue.
1354 * The skb's priority is determined via the VLAN Tag Priority Code
1355 * Point field.
1356 */
1357 if (cxgb4_dcb_enabled(dev)) {
1358 u16 vlan_tci;
1359 int err;
1360
1361 err = vlan_get_tag(skb, &vlan_tci);
1362 if (unlikely(err)) {
1363 if (net_ratelimit())
1364 netdev_warn(dev,
1365 "TX Packet without VLAN Tag on DCB Link\n");
1366 txq = 0;
1367 } else {
1368 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
84a200b3
VP
1369#ifdef CONFIG_CHELSIO_T4_FCOE
1370 if (skb->protocol == htons(ETH_P_FCOE))
1371 txq = skb->priority & 0x7;
1372#endif /* CONFIG_CHELSIO_T4_FCOE */
688848b1
AB
1373 }
1374 return txq;
1375 }
1376#endif /* CONFIG_CHELSIO_T4_DCB */
1377
1378 if (select_queue) {
1379 txq = (skb_rx_queue_recorded(skb)
1380 ? skb_get_rx_queue(skb)
1381 : smp_processor_id());
1382
1383 while (unlikely(txq >= dev->real_num_tx_queues))
1384 txq -= dev->real_num_tx_queues;
1385
1386 return txq;
1387 }
1388
1389 return fallback(dev, skb) % dev->real_num_tx_queues;
1390}
1391
b8ff05a9
DM
1392static int closest_timer(const struct sge *s, int time)
1393{
1394 int i, delta, match = 0, min_delta = INT_MAX;
1395
1396 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1397 delta = time - s->timer_val[i];
1398 if (delta < 0)
1399 delta = -delta;
1400 if (delta < min_delta) {
1401 min_delta = delta;
1402 match = i;
1403 }
1404 }
1405 return match;
1406}
1407
1408static int closest_thres(const struct sge *s, int thres)
1409{
1410 int i, delta, match = 0, min_delta = INT_MAX;
1411
1412 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1413 delta = thres - s->counter_val[i];
1414 if (delta < 0)
1415 delta = -delta;
1416 if (delta < min_delta) {
1417 min_delta = delta;
1418 match = i;
1419 }
1420 }
1421 return match;
1422}
1423
b8ff05a9 1424/**
812034f1 1425 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
1426 * @q: the Rx queue
1427 * @us: the hold-off time in us, or 0 to disable timer
1428 * @cnt: the hold-off packet count, or 0 to disable counter
1429 *
1430 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1431 * one of the two needs to be enabled for the queue to generate interrupts.
1432 */
812034f1
HS
1433int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1434 unsigned int us, unsigned int cnt)
b8ff05a9 1435{
c887ad0e
HS
1436 struct adapter *adap = q->adap;
1437
b8ff05a9
DM
1438 if ((us | cnt) == 0)
1439 cnt = 1;
1440
1441 if (cnt) {
1442 int err;
1443 u32 v, new_idx;
1444
1445 new_idx = closest_thres(&adap->sge, cnt);
1446 if (q->desc && q->pktcnt_idx != new_idx) {
1447 /* the queue has already been created, update it */
5167865a
HS
1448 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1449 FW_PARAMS_PARAM_X_V(
1450 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1451 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
b2612722
HS
1452 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1453 &v, &new_idx);
b8ff05a9
DM
1454 if (err)
1455 return err;
1456 }
1457 q->pktcnt_idx = new_idx;
1458 }
1459
1460 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1ecc7b7a 1461 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
b8ff05a9
DM
1462 return 0;
1463}
1464
c8f44aff 1465static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 1466{
2ed28baa 1467 const struct port_info *pi = netdev_priv(dev);
c8f44aff 1468 netdev_features_t changed = dev->features ^ features;
19ecae2c 1469 int err;
19ecae2c 1470
f646968f 1471 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 1472 return 0;
19ecae2c 1473
b2612722 1474 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
2ed28baa 1475 -1, -1, -1,
f646968f 1476 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 1477 if (unlikely(err))
f646968f 1478 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 1479 return err;
87b6cf51
DM
1480}
1481
91744948 1482static int setup_debugfs(struct adapter *adap)
b8ff05a9 1483{
b8ff05a9
DM
1484 if (IS_ERR_OR_NULL(adap->debugfs_root))
1485 return -1;
1486
fd88b31a
HS
1487#ifdef CONFIG_DEBUG_FS
1488 t4_setup_debugfs(adap);
1489#endif
b8ff05a9
DM
1490 return 0;
1491}
1492
1493/*
1494 * upper-layer driver support
1495 */
1496
1497/*
1498 * Allocate an active-open TID and set it to the supplied value.
1499 */
1500int cxgb4_alloc_atid(struct tid_info *t, void *data)
1501{
1502 int atid = -1;
1503
1504 spin_lock_bh(&t->atid_lock);
1505 if (t->afree) {
1506 union aopen_entry *p = t->afree;
1507
f2b7e78d 1508 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
1509 t->afree = p->next;
1510 p->data = data;
1511 t->atids_in_use++;
1512 }
1513 spin_unlock_bh(&t->atid_lock);
1514 return atid;
1515}
1516EXPORT_SYMBOL(cxgb4_alloc_atid);
1517
1518/*
1519 * Release an active-open TID.
1520 */
1521void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1522{
f2b7e78d 1523 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
1524
1525 spin_lock_bh(&t->atid_lock);
1526 p->next = t->afree;
1527 t->afree = p;
1528 t->atids_in_use--;
1529 spin_unlock_bh(&t->atid_lock);
1530}
1531EXPORT_SYMBOL(cxgb4_free_atid);
1532
1533/*
1534 * Allocate a server TID and set it to the supplied value.
1535 */
1536int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1537{
1538 int stid;
1539
1540 spin_lock_bh(&t->stid_lock);
1541 if (family == PF_INET) {
1542 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1543 if (stid < t->nstids)
1544 __set_bit(stid, t->stid_bmap);
1545 else
1546 stid = -1;
1547 } else {
a99c683e 1548 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
b8ff05a9
DM
1549 if (stid < 0)
1550 stid = -1;
1551 }
1552 if (stid >= 0) {
1553 t->stid_tab[stid].data = data;
1554 stid += t->stid_base;
15f63b74
KS
1555 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1556 * This is equivalent to 4 TIDs. With CLIP enabled it
1557 * needs 2 TIDs.
1558 */
1559 if (family == PF_INET)
1560 t->stids_in_use++;
1561 else
a99c683e 1562 t->stids_in_use += 2;
b8ff05a9
DM
1563 }
1564 spin_unlock_bh(&t->stid_lock);
1565 return stid;
1566}
1567EXPORT_SYMBOL(cxgb4_alloc_stid);
1568
dca4faeb
VP
1569/* Allocate a server filter TID and set it to the supplied value.
1570 */
1571int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1572{
1573 int stid;
1574
1575 spin_lock_bh(&t->stid_lock);
1576 if (family == PF_INET) {
1577 stid = find_next_zero_bit(t->stid_bmap,
1578 t->nstids + t->nsftids, t->nstids);
1579 if (stid < (t->nstids + t->nsftids))
1580 __set_bit(stid, t->stid_bmap);
1581 else
1582 stid = -1;
1583 } else {
1584 stid = -1;
1585 }
1586 if (stid >= 0) {
1587 t->stid_tab[stid].data = data;
470c60c4
KS
1588 stid -= t->nstids;
1589 stid += t->sftid_base;
2248b293 1590 t->sftids_in_use++;
dca4faeb
VP
1591 }
1592 spin_unlock_bh(&t->stid_lock);
1593 return stid;
1594}
1595EXPORT_SYMBOL(cxgb4_alloc_sftid);
1596
1597/* Release a server TID.
b8ff05a9
DM
1598 */
1599void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1600{
470c60c4
KS
1601 /* Is it a server filter TID? */
1602 if (t->nsftids && (stid >= t->sftid_base)) {
1603 stid -= t->sftid_base;
1604 stid += t->nstids;
1605 } else {
1606 stid -= t->stid_base;
1607 }
1608
b8ff05a9
DM
1609 spin_lock_bh(&t->stid_lock);
1610 if (family == PF_INET)
1611 __clear_bit(stid, t->stid_bmap);
1612 else
a99c683e 1613 bitmap_release_region(t->stid_bmap, stid, 1);
b8ff05a9 1614 t->stid_tab[stid].data = NULL;
2248b293
HS
1615 if (stid < t->nstids) {
1616 if (family == PF_INET)
1617 t->stids_in_use--;
1618 else
a99c683e 1619 t->stids_in_use -= 2;
2248b293
HS
1620 } else {
1621 t->sftids_in_use--;
1622 }
b8ff05a9
DM
1623 spin_unlock_bh(&t->stid_lock);
1624}
1625EXPORT_SYMBOL(cxgb4_free_stid);
1626
1627/*
1628 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1629 */
1630static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1631 unsigned int tid)
1632{
1633 struct cpl_tid_release *req;
1634
1635 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1636 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1637 INIT_TP_WR(req, tid);
1638 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1639}
1640
1641/*
1642 * Queue a TID release request and if necessary schedule a work queue to
1643 * process it.
1644 */
31b9c19b 1645static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1646 unsigned int tid)
b8ff05a9
DM
1647{
1648 void **p = &t->tid_tab[tid];
1649 struct adapter *adap = container_of(t, struct adapter, tids);
1650
1651 spin_lock_bh(&adap->tid_release_lock);
1652 *p = adap->tid_release_head;
1653 /* Low 2 bits encode the Tx channel number */
1654 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1655 if (!adap->tid_release_task_busy) {
1656 adap->tid_release_task_busy = true;
29aaee65 1657 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
1658 }
1659 spin_unlock_bh(&adap->tid_release_lock);
1660}
b8ff05a9
DM
1661
1662/*
1663 * Process the list of pending TID release requests.
1664 */
1665static void process_tid_release_list(struct work_struct *work)
1666{
1667 struct sk_buff *skb;
1668 struct adapter *adap;
1669
1670 adap = container_of(work, struct adapter, tid_release_task);
1671
1672 spin_lock_bh(&adap->tid_release_lock);
1673 while (adap->tid_release_head) {
1674 void **p = adap->tid_release_head;
1675 unsigned int chan = (uintptr_t)p & 3;
1676 p = (void *)p - chan;
1677
1678 adap->tid_release_head = *p;
1679 *p = NULL;
1680 spin_unlock_bh(&adap->tid_release_lock);
1681
1682 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1683 GFP_KERNEL)))
1684 schedule_timeout_uninterruptible(1);
1685
1686 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1687 t4_ofld_send(adap, skb);
1688 spin_lock_bh(&adap->tid_release_lock);
1689 }
1690 adap->tid_release_task_busy = false;
1691 spin_unlock_bh(&adap->tid_release_lock);
1692}
1693
1694/*
1695 * Release a TID and inform HW. If we are unable to allocate the release
1696 * message we defer to a work queue.
1697 */
1698void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1699{
b8ff05a9
DM
1700 struct sk_buff *skb;
1701 struct adapter *adap = container_of(t, struct adapter, tids);
1702
9a1bb9f6
HS
1703 WARN_ON(tid >= t->ntids);
1704
1705 if (t->tid_tab[tid]) {
1706 t->tid_tab[tid] = NULL;
1707 if (t->hash_base && (tid >= t->hash_base))
1708 atomic_dec(&t->hash_tids_in_use);
1709 else
1710 atomic_dec(&t->tids_in_use);
1711 }
1712
b8ff05a9
DM
1713 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1714 if (likely(skb)) {
b8ff05a9
DM
1715 mk_tid_release(skb, chan, tid);
1716 t4_ofld_send(adap, skb);
1717 } else
1718 cxgb4_queue_tid_release(t, chan, tid);
b8ff05a9
DM
1719}
1720EXPORT_SYMBOL(cxgb4_remove_tid);
1721
1722/*
1723 * Allocate and initialize the TID tables. Returns 0 on success.
1724 */
1725static int tid_init(struct tid_info *t)
1726{
1727 size_t size;
f2b7e78d 1728 unsigned int stid_bmap_size;
b8ff05a9 1729 unsigned int natids = t->natids;
b6f8eaec 1730 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 1731
dca4faeb 1732 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
1733 size = t->ntids * sizeof(*t->tid_tab) +
1734 natids * sizeof(*t->atid_tab) +
b8ff05a9 1735 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 1736 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 1737 stid_bmap_size * sizeof(long) +
dca4faeb
VP
1738 t->nftids * sizeof(*t->ftid_tab) +
1739 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 1740
b8ff05a9
DM
1741 t->tid_tab = t4_alloc_mem(size);
1742 if (!t->tid_tab)
1743 return -ENOMEM;
1744
1745 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1746 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 1747 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 1748 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
1749 spin_lock_init(&t->stid_lock);
1750 spin_lock_init(&t->atid_lock);
1751
1752 t->stids_in_use = 0;
2248b293 1753 t->sftids_in_use = 0;
b8ff05a9
DM
1754 t->afree = NULL;
1755 t->atids_in_use = 0;
1756 atomic_set(&t->tids_in_use, 0);
9a1bb9f6 1757 atomic_set(&t->hash_tids_in_use, 0);
b8ff05a9
DM
1758
1759 /* Setup the free list for atid_tab and clear the stid bitmap. */
1760 if (natids) {
1761 while (--natids)
1762 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1763 t->afree = t->atid_tab;
1764 }
dca4faeb 1765 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
1766 /* Reserve stid 0 for T4/T5 adapters */
1767 if (!t->stid_base &&
3ccc6cf7 1768 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
b6f8eaec
KS
1769 __set_bit(0, t->stid_bmap);
1770
b8ff05a9
DM
1771 return 0;
1772}
1773
1774/**
1775 * cxgb4_create_server - create an IP server
1776 * @dev: the device
1777 * @stid: the server TID
1778 * @sip: local IP address to bind server to
1779 * @sport: the server's TCP port
1780 * @queue: queue to direct messages from this server to
1781 *
1782 * Create an IP server for the given port and address.
1783 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1784 */
1785int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
1786 __be32 sip, __be16 sport, __be16 vlan,
1787 unsigned int queue)
b8ff05a9
DM
1788{
1789 unsigned int chan;
1790 struct sk_buff *skb;
1791 struct adapter *adap;
1792 struct cpl_pass_open_req *req;
80f40c1f 1793 int ret;
b8ff05a9
DM
1794
1795 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1796 if (!skb)
1797 return -ENOMEM;
1798
1799 adap = netdev2adap(dev);
1800 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1801 INIT_TP_WR(req, 0);
1802 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1803 req->local_port = sport;
1804 req->peer_port = htons(0);
1805 req->local_ip = sip;
1806 req->peer_ip = htonl(0);
e46dab4d 1807 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1808 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1809 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1810 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1811 ret = t4_mgmt_tx(adap, skb);
1812 return net_xmit_eval(ret);
b8ff05a9
DM
1813}
1814EXPORT_SYMBOL(cxgb4_create_server);
1815
80f40c1f
VP
1816/* cxgb4_create_server6 - create an IPv6 server
1817 * @dev: the device
1818 * @stid: the server TID
1819 * @sip: local IPv6 address to bind server to
1820 * @sport: the server's TCP port
1821 * @queue: queue to direct messages from this server to
1822 *
1823 * Create an IPv6 server for the given port and address.
1824 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1825 */
1826int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1827 const struct in6_addr *sip, __be16 sport,
1828 unsigned int queue)
1829{
1830 unsigned int chan;
1831 struct sk_buff *skb;
1832 struct adapter *adap;
1833 struct cpl_pass_open_req6 *req;
1834 int ret;
1835
1836 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1837 if (!skb)
1838 return -ENOMEM;
1839
1840 adap = netdev2adap(dev);
1841 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1842 INIT_TP_WR(req, 0);
1843 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1844 req->local_port = sport;
1845 req->peer_port = htons(0);
1846 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1847 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1848 req->peer_ip_hi = cpu_to_be64(0);
1849 req->peer_ip_lo = cpu_to_be64(0);
1850 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1851 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1852 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1853 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1854 ret = t4_mgmt_tx(adap, skb);
1855 return net_xmit_eval(ret);
1856}
1857EXPORT_SYMBOL(cxgb4_create_server6);
1858
1859int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1860 unsigned int queue, bool ipv6)
1861{
1862 struct sk_buff *skb;
1863 struct adapter *adap;
1864 struct cpl_close_listsvr_req *req;
1865 int ret;
1866
1867 adap = netdev2adap(dev);
1868
1869 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1870 if (!skb)
1871 return -ENOMEM;
1872
1873 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1874 INIT_TP_WR(req, 0);
1875 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
1876 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1877 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
1878 ret = t4_mgmt_tx(adap, skb);
1879 return net_xmit_eval(ret);
1880}
1881EXPORT_SYMBOL(cxgb4_remove_server);
1882
b8ff05a9
DM
1883/**
1884 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1885 * @mtus: the HW MTU table
1886 * @mtu: the target MTU
1887 * @idx: index of selected entry in the MTU table
1888 *
1889 * Returns the index and the value in the HW MTU table that is closest to
1890 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1891 * table, in which case that smallest available value is selected.
1892 */
1893unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1894 unsigned int *idx)
1895{
1896 unsigned int i = 0;
1897
1898 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1899 ++i;
1900 if (idx)
1901 *idx = i;
1902 return mtus[i];
1903}
1904EXPORT_SYMBOL(cxgb4_best_mtu);
1905
92e7ae71
HS
1906/**
1907 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1908 * @mtus: the HW MTU table
1909 * @header_size: Header Size
1910 * @data_size_max: maximum Data Segment Size
1911 * @data_size_align: desired Data Segment Size Alignment (2^N)
1912 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1913 *
1914 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1915 * MTU Table based solely on a Maximum MTU parameter, we break that
1916 * parameter up into a Header Size and Maximum Data Segment Size, and
1917 * provide a desired Data Segment Size Alignment. If we find an MTU in
1918 * the Hardware MTU Table which will result in a Data Segment Size with
1919 * the requested alignment _and_ that MTU isn't "too far" from the
1920 * closest MTU, then we'll return that rather than the closest MTU.
1921 */
1922unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1923 unsigned short header_size,
1924 unsigned short data_size_max,
1925 unsigned short data_size_align,
1926 unsigned int *mtu_idxp)
1927{
1928 unsigned short max_mtu = header_size + data_size_max;
1929 unsigned short data_size_align_mask = data_size_align - 1;
1930 int mtu_idx, aligned_mtu_idx;
1931
1932 /* Scan the MTU Table till we find an MTU which is larger than our
1933 * Maximum MTU or we reach the end of the table. Along the way,
1934 * record the last MTU found, if any, which will result in a Data
1935 * Segment Length matching the requested alignment.
1936 */
1937 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1938 unsigned short data_size = mtus[mtu_idx] - header_size;
1939
1940 /* If this MTU minus the Header Size would result in a
1941 * Data Segment Size of the desired alignment, remember it.
1942 */
1943 if ((data_size & data_size_align_mask) == 0)
1944 aligned_mtu_idx = mtu_idx;
1945
1946 /* If we're not at the end of the Hardware MTU Table and the
1947 * next element is larger than our Maximum MTU, drop out of
1948 * the loop.
1949 */
1950 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1951 break;
1952 }
1953
1954 /* If we fell out of the loop because we ran to the end of the table,
1955 * then we just have to use the last [largest] entry.
1956 */
1957 if (mtu_idx == NMTUS)
1958 mtu_idx--;
1959
1960 /* If we found an MTU which resulted in the requested Data Segment
1961 * Length alignment and that's "not far" from the largest MTU which is
1962 * less than or equal to the maximum MTU, then use that.
1963 */
1964 if (aligned_mtu_idx >= 0 &&
1965 mtu_idx - aligned_mtu_idx <= 1)
1966 mtu_idx = aligned_mtu_idx;
1967
1968 /* If the caller has passed in an MTU Index pointer, pass the
1969 * MTU Index back. Return the MTU value.
1970 */
1971 if (mtu_idxp)
1972 *mtu_idxp = mtu_idx;
1973 return mtus[mtu_idx];
1974}
1975EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1976
27999805
H
1977/**
1978 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1979 * @chip: chip type
1980 * @viid: VI id of the given port
1981 *
1982 * Return the SMT index for this VI.
1983 */
1984unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1985{
1986 /* In T4/T5, SMT contains 256 SMAC entries organized in
1987 * 128 rows of 2 entries each.
1988 * In T6, SMT contains 256 SMAC entries in 256 rows.
1989 * TODO: The below code needs to be updated when we add support
1990 * for 256 VFs.
1991 */
1992 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1993 return ((viid & 0x7f) << 1);
1994 else
1995 return (viid & 0x7f);
1996}
1997EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1998
b8ff05a9
DM
1999/**
2000 * cxgb4_port_chan - get the HW channel of a port
2001 * @dev: the net device for the port
2002 *
2003 * Return the HW Tx channel of the given port.
2004 */
2005unsigned int cxgb4_port_chan(const struct net_device *dev)
2006{
2007 return netdev2pinfo(dev)->tx_chan;
2008}
2009EXPORT_SYMBOL(cxgb4_port_chan);
2010
881806bc
VP
2011unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2012{
2013 struct adapter *adap = netdev2adap(dev);
2cc301d2 2014 u32 v1, v2, lp_count, hp_count;
881806bc 2015
f061de42
HS
2016 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2017 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2018 if (is_t4(adap->params.chip)) {
f061de42
HS
2019 lp_count = LP_COUNT_G(v1);
2020 hp_count = HP_COUNT_G(v1);
2cc301d2 2021 } else {
f061de42
HS
2022 lp_count = LP_COUNT_T5_G(v1);
2023 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2024 }
2025 return lpfifo ? lp_count : hp_count;
881806bc
VP
2026}
2027EXPORT_SYMBOL(cxgb4_dbfifo_count);
2028
b8ff05a9
DM
2029/**
2030 * cxgb4_port_viid - get the VI id of a port
2031 * @dev: the net device for the port
2032 *
2033 * Return the VI id of the given port.
2034 */
2035unsigned int cxgb4_port_viid(const struct net_device *dev)
2036{
2037 return netdev2pinfo(dev)->viid;
2038}
2039EXPORT_SYMBOL(cxgb4_port_viid);
2040
2041/**
2042 * cxgb4_port_idx - get the index of a port
2043 * @dev: the net device for the port
2044 *
2045 * Return the index of the given port.
2046 */
2047unsigned int cxgb4_port_idx(const struct net_device *dev)
2048{
2049 return netdev2pinfo(dev)->port_id;
2050}
2051EXPORT_SYMBOL(cxgb4_port_idx);
2052
b8ff05a9
DM
2053void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2054 struct tp_tcp_stats *v6)
2055{
2056 struct adapter *adap = pci_get_drvdata(pdev);
2057
2058 spin_lock(&adap->stats_lock);
2059 t4_tp_get_tcp_stats(adap, v4, v6);
2060 spin_unlock(&adap->stats_lock);
2061}
2062EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2063
2064void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2065 const unsigned int *pgsz_order)
2066{
2067 struct adapter *adap = netdev2adap(dev);
2068
0d804338
HS
2069 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2070 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2071 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2072 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
2073}
2074EXPORT_SYMBOL(cxgb4_iscsi_init);
2075
3069ee9b
VP
2076int cxgb4_flush_eq_cache(struct net_device *dev)
2077{
2078 struct adapter *adap = netdev2adap(dev);
3069ee9b 2079
5d700ecb 2080 return t4_sge_ctxt_flush(adap, adap->mbox);
3069ee9b
VP
2081}
2082EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2083
2084static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2085{
f061de42 2086 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
2087 __be64 indices;
2088 int ret;
2089
fc5ab020
HS
2090 spin_lock(&adap->win0_lock);
2091 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2092 sizeof(indices), (__be32 *)&indices,
2093 T4_MEMORY_READ);
2094 spin_unlock(&adap->win0_lock);
3069ee9b 2095 if (!ret) {
404d9e3f
VP
2096 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2097 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
2098 }
2099 return ret;
2100}
2101
2102int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2103 u16 size)
2104{
2105 struct adapter *adap = netdev2adap(dev);
2106 u16 hw_pidx, hw_cidx;
2107 int ret;
2108
2109 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2110 if (ret)
2111 goto out;
2112
2113 if (pidx != hw_pidx) {
2114 u16 delta;
f612b815 2115 u32 val;
3069ee9b
VP
2116
2117 if (pidx >= hw_pidx)
2118 delta = pidx - hw_pidx;
2119 else
2120 delta = size - hw_pidx + pidx;
f612b815
HS
2121
2122 if (is_t4(adap->params.chip))
2123 val = PIDX_V(delta);
2124 else
2125 val = PIDX_T5_V(delta);
3069ee9b 2126 wmb();
f612b815
HS
2127 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2128 QID_V(qid) | val);
3069ee9b
VP
2129 }
2130out:
2131 return ret;
2132}
2133EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2134
031cf476
HS
2135int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2136{
2137 struct adapter *adap;
2138 u32 offset, memtype, memaddr;
6559a7e8 2139 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
2140 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2141 int ret;
2142
2143 adap = netdev2adap(dev);
2144
2145 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2146
2147 /* Figure out where the offset lands in the Memory Type/Address scheme.
2148 * This code assumes that the memory is laid out starting at offset 0
2149 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2150 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2151 * MC0, and some have both MC0 and MC1.
2152 */
6559a7e8
HS
2153 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2154 edc0_size = EDRAM0_SIZE_G(size) << 20;
2155 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2156 edc1_size = EDRAM1_SIZE_G(size) << 20;
2157 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2158 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
2159
2160 edc0_end = edc0_size;
2161 edc1_end = edc0_end + edc1_size;
2162 mc0_end = edc1_end + mc0_size;
2163
2164 if (offset < edc0_end) {
2165 memtype = MEM_EDC0;
2166 memaddr = offset;
2167 } else if (offset < edc1_end) {
2168 memtype = MEM_EDC1;
2169 memaddr = offset - edc0_end;
2170 } else {
2171 if (offset < mc0_end) {
2172 memtype = MEM_MC0;
2173 memaddr = offset - edc1_end;
3ccc6cf7 2174 } else if (is_t5(adap->params.chip)) {
6559a7e8
HS
2175 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2176 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
2177 mc1_end = mc0_end + mc1_size;
2178 if (offset < mc1_end) {
2179 memtype = MEM_MC1;
2180 memaddr = offset - mc0_end;
2181 } else {
2182 /* offset beyond the end of any memory */
2183 goto err;
2184 }
3ccc6cf7
HS
2185 } else {
2186 /* T4/T6 only has a single memory channel */
2187 goto err;
031cf476
HS
2188 }
2189 }
2190
2191 spin_lock(&adap->win0_lock);
2192 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2193 spin_unlock(&adap->win0_lock);
2194 return ret;
2195
2196err:
2197 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2198 stag, offset);
2199 return -EINVAL;
2200}
2201EXPORT_SYMBOL(cxgb4_read_tpte);
2202
7730b4c7
HS
2203u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2204{
2205 u32 hi, lo;
2206 struct adapter *adap;
2207
2208 adap = netdev2adap(dev);
f612b815
HS
2209 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2210 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
2211
2212 return ((u64)hi << 32) | (u64)lo;
2213}
2214EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2215
df64e4d3
HS
2216int cxgb4_bar2_sge_qregs(struct net_device *dev,
2217 unsigned int qid,
2218 enum cxgb4_bar2_qtype qtype,
66cf188e 2219 int user,
df64e4d3
HS
2220 u64 *pbar2_qoffset,
2221 unsigned int *pbar2_qid)
2222{
b2612722 2223 return t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
2224 qid,
2225 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2226 ? T4_BAR2_QTYPE_EGRESS
2227 : T4_BAR2_QTYPE_INGRESS),
66cf188e 2228 user,
df64e4d3
HS
2229 pbar2_qoffset,
2230 pbar2_qid);
2231}
2232EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2233
b8ff05a9
DM
2234static struct pci_driver cxgb4_driver;
2235
2236static void check_neigh_update(struct neighbour *neigh)
2237{
2238 const struct device *parent;
2239 const struct net_device *netdev = neigh->dev;
2240
2241 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2242 netdev = vlan_dev_real_dev(netdev);
2243 parent = netdev->dev.parent;
2244 if (parent && parent->driver == &cxgb4_driver.driver)
2245 t4_l2t_update(dev_get_drvdata(parent), neigh);
2246}
2247
2248static int netevent_cb(struct notifier_block *nb, unsigned long event,
2249 void *data)
2250{
2251 switch (event) {
2252 case NETEVENT_NEIGH_UPDATE:
2253 check_neigh_update(data);
2254 break;
b8ff05a9
DM
2255 case NETEVENT_REDIRECT:
2256 default:
2257 break;
2258 }
2259 return 0;
2260}
2261
2262static bool netevent_registered;
2263static struct notifier_block cxgb4_netevent_nb = {
2264 .notifier_call = netevent_cb
2265};
2266
3069ee9b
VP
2267static void drain_db_fifo(struct adapter *adap, int usecs)
2268{
2cc301d2 2269 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
2270
2271 do {
f061de42
HS
2272 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2273 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2274 if (is_t4(adap->params.chip)) {
f061de42
HS
2275 lp_count = LP_COUNT_G(v1);
2276 hp_count = HP_COUNT_G(v1);
2cc301d2 2277 } else {
f061de42
HS
2278 lp_count = LP_COUNT_T5_G(v1);
2279 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2280 }
2281
2282 if (lp_count == 0 && hp_count == 0)
2283 break;
3069ee9b
VP
2284 set_current_state(TASK_UNINTERRUPTIBLE);
2285 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
2286 } while (1);
2287}
2288
2289static void disable_txq_db(struct sge_txq *q)
2290{
05eb2389
SW
2291 unsigned long flags;
2292
2293 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 2294 q->db_disabled = 1;
05eb2389 2295 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
2296}
2297
05eb2389 2298static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
2299{
2300 spin_lock_irq(&q->db_lock);
05eb2389
SW
2301 if (q->db_pidx_inc) {
2302 /* Make sure that all writes to the TX descriptors
2303 * are committed before we tell HW about them.
2304 */
2305 wmb();
f612b815
HS
2306 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2307 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
2308 q->db_pidx_inc = 0;
2309 }
3069ee9b
VP
2310 q->db_disabled = 0;
2311 spin_unlock_irq(&q->db_lock);
2312}
2313
2314static void disable_dbs(struct adapter *adap)
2315{
2316 int i;
2317
2318 for_each_ethrxq(&adap->sge, i)
2319 disable_txq_db(&adap->sge.ethtxq[i].q);
f90ce561 2320 for_each_iscsirxq(&adap->sge, i)
3069ee9b
VP
2321 disable_txq_db(&adap->sge.ofldtxq[i].q);
2322 for_each_port(adap, i)
2323 disable_txq_db(&adap->sge.ctrlq[i].q);
2324}
2325
2326static void enable_dbs(struct adapter *adap)
2327{
2328 int i;
2329
2330 for_each_ethrxq(&adap->sge, i)
05eb2389 2331 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
f90ce561 2332 for_each_iscsirxq(&adap->sge, i)
05eb2389 2333 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 2334 for_each_port(adap, i)
05eb2389
SW
2335 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2336}
2337
2338static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2339{
2340 if (adap->uld_handle[CXGB4_ULD_RDMA])
2341 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2342 cmd);
2343}
2344
2345static void process_db_full(struct work_struct *work)
2346{
2347 struct adapter *adap;
2348
2349 adap = container_of(work, struct adapter, db_full_task);
2350
2351 drain_db_fifo(adap, dbfifo_drain_delay);
2352 enable_dbs(adap);
2353 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7
HS
2354 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2355 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2356 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2357 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2358 else
2359 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2360 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
3069ee9b
VP
2361}
2362
2363static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2364{
2365 u16 hw_pidx, hw_cidx;
2366 int ret;
2367
05eb2389 2368 spin_lock_irq(&q->db_lock);
3069ee9b
VP
2369 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2370 if (ret)
2371 goto out;
2372 if (q->db_pidx != hw_pidx) {
2373 u16 delta;
f612b815 2374 u32 val;
3069ee9b
VP
2375
2376 if (q->db_pidx >= hw_pidx)
2377 delta = q->db_pidx - hw_pidx;
2378 else
2379 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
2380
2381 if (is_t4(adap->params.chip))
2382 val = PIDX_V(delta);
2383 else
2384 val = PIDX_T5_V(delta);
3069ee9b 2385 wmb();
f612b815
HS
2386 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2387 QID_V(q->cntxt_id) | val);
3069ee9b
VP
2388 }
2389out:
2390 q->db_disabled = 0;
05eb2389
SW
2391 q->db_pidx_inc = 0;
2392 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
2393 if (ret)
2394 CH_WARN(adap, "DB drop recovery failed.\n");
2395}
2396static void recover_all_queues(struct adapter *adap)
2397{
2398 int i;
2399
2400 for_each_ethrxq(&adap->sge, i)
2401 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
f90ce561 2402 for_each_iscsirxq(&adap->sge, i)
3069ee9b
VP
2403 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2404 for_each_port(adap, i)
2405 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2406}
2407
881806bc
VP
2408static void process_db_drop(struct work_struct *work)
2409{
2410 struct adapter *adap;
881806bc 2411
3069ee9b 2412 adap = container_of(work, struct adapter, db_drop_task);
881806bc 2413
d14807dd 2414 if (is_t4(adap->params.chip)) {
05eb2389 2415 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2416 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 2417 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2418 recover_all_queues(adap);
05eb2389 2419 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2420 enable_dbs(adap);
05eb2389 2421 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7 2422 } else if (is_t5(adap->params.chip)) {
2cc301d2
SR
2423 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2424 u16 qid = (dropped_db >> 15) & 0x1ffff;
2425 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
2426 u64 bar2_qoffset;
2427 unsigned int bar2_qid;
2428 int ret;
2cc301d2 2429
b2612722 2430 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
e0456717 2431 0, &bar2_qoffset, &bar2_qid);
df64e4d3
HS
2432 if (ret)
2433 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2434 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2435 else
f612b815 2436 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 2437 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
2438
2439 /* Re-enable BAR2 WC */
2440 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2441 }
2442
3ccc6cf7
HS
2443 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2444 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
2445}
2446
2447void t4_db_full(struct adapter *adap)
2448{
d14807dd 2449 if (is_t4(adap->params.chip)) {
05eb2389
SW
2450 disable_dbs(adap);
2451 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
2452 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2453 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 2454 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 2455 }
881806bc
VP
2456}
2457
2458void t4_db_dropped(struct adapter *adap)
2459{
05eb2389
SW
2460 if (is_t4(adap->params.chip)) {
2461 disable_dbs(adap);
2462 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2463 }
29aaee65 2464 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
2465}
2466
b8ff05a9
DM
2467static void uld_attach(struct adapter *adap, unsigned int uld)
2468{
2469 void *handle;
2470 struct cxgb4_lld_info lli;
dca4faeb 2471 unsigned short i;
b8ff05a9
DM
2472
2473 lli.pdev = adap->pdev;
b2612722 2474 lli.pf = adap->pf;
b8ff05a9
DM
2475 lli.l2t = adap->l2t;
2476 lli.tids = &adap->tids;
2477 lli.ports = adap->port;
2478 lli.vr = &adap->vres;
2479 lli.mtus = adap->params.mtus;
2480 if (uld == CXGB4_ULD_RDMA) {
2481 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 2482 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 2483 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 2484 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9 2485 } else if (uld == CXGB4_ULD_ISCSI) {
f90ce561
HS
2486 lli.rxq_ids = adap->sge.iscsi_rxq;
2487 lli.nrxq = adap->sge.iscsiqsets;
f2692d16
VP
2488 } else if (uld == CXGB4_ULD_ISCSIT) {
2489 lli.rxq_ids = adap->sge.iscsit_rxq;
2490 lli.nrxq = adap->sge.niscsitq;
b8ff05a9 2491 }
f90ce561 2492 lli.ntxq = adap->sge.iscsiqsets;
b8ff05a9
DM
2493 lli.nchan = adap->params.nports;
2494 lli.nports = adap->params.nports;
2495 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 2496 lli.adapter_type = adap->params.chip;
837e4a42 2497 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7714cb9e
VP
2498 lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2499 lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2500 lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2501 lli.iscsi_ppm = &adap->iscsi_ppm;
7730b4c7 2502 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
2503 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2504 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 2505 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
2506 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2507 for (i = 0; i < NCHAN; i++)
2508 lli.tx_modq[i] = i;
f612b815
HS
2509 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2510 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 2511 lli.fw_vers = adap->params.fw_vers;
3069ee9b 2512 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
2513 lli.sge_ingpadboundary = adap->sge.fl_align;
2514 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
2515 lli.sge_pktshift = adap->sge.pktshift;
2516 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
2517 lli.max_ordird_qp = adap->params.max_ordird_qp;
2518 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 2519 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
982b81eb 2520 lli.nodeid = dev_to_node(adap->pdev_dev);
b8ff05a9
DM
2521
2522 handle = ulds[uld].add(&lli);
2523 if (IS_ERR(handle)) {
2524 dev_warn(adap->pdev_dev,
2525 "could not attach to the %s driver, error %ld\n",
2526 uld_str[uld], PTR_ERR(handle));
2527 return;
2528 }
2529
2530 adap->uld_handle[uld] = handle;
2531
2532 if (!netevent_registered) {
2533 register_netevent_notifier(&cxgb4_netevent_nb);
2534 netevent_registered = true;
2535 }
e29f5dbc
DM
2536
2537 if (adap->flags & FULL_INIT_DONE)
2538 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
2539}
2540
2541static void attach_ulds(struct adapter *adap)
2542{
2543 unsigned int i;
2544
01bcca68
VP
2545 spin_lock(&adap_rcu_lock);
2546 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2547 spin_unlock(&adap_rcu_lock);
2548
b8ff05a9
DM
2549 mutex_lock(&uld_mutex);
2550 list_add_tail(&adap->list_node, &adapter_list);
2551 for (i = 0; i < CXGB4_ULD_MAX; i++)
2552 if (ulds[i].add)
2553 uld_attach(adap, i);
2554 mutex_unlock(&uld_mutex);
2555}
2556
2557static void detach_ulds(struct adapter *adap)
2558{
2559 unsigned int i;
2560
2561 mutex_lock(&uld_mutex);
2562 list_del(&adap->list_node);
2563 for (i = 0; i < CXGB4_ULD_MAX; i++)
2564 if (adap->uld_handle[i]) {
2565 ulds[i].state_change(adap->uld_handle[i],
2566 CXGB4_STATE_DETACH);
2567 adap->uld_handle[i] = NULL;
2568 }
94cdb8bb
HS
2569 for (i = 0; i < CXGB4_PCI_ULD_MAX; i++)
2570 if (adap->uld && adap->uld[i].handle) {
2571 adap->uld[i].state_change(adap->uld[i].handle,
2572 CXGB4_STATE_DETACH);
2573 adap->uld[i].handle = NULL;
2574 }
b8ff05a9
DM
2575 if (netevent_registered && list_empty(&adapter_list)) {
2576 unregister_netevent_notifier(&cxgb4_netevent_nb);
2577 netevent_registered = false;
2578 }
2579 mutex_unlock(&uld_mutex);
01bcca68
VP
2580
2581 spin_lock(&adap_rcu_lock);
2582 list_del_rcu(&adap->rcu_node);
2583 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
2584}
2585
2586static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2587{
2588 unsigned int i;
2589
2590 mutex_lock(&uld_mutex);
2591 for (i = 0; i < CXGB4_ULD_MAX; i++)
2592 if (adap->uld_handle[i])
2593 ulds[i].state_change(adap->uld_handle[i], new_state);
94cdb8bb
HS
2594 for (i = 0; i < CXGB4_PCI_ULD_MAX; i++)
2595 if (adap->uld && adap->uld[i].handle)
2596 adap->uld[i].state_change(adap->uld[i].handle,
2597 new_state);
b8ff05a9
DM
2598 mutex_unlock(&uld_mutex);
2599}
2600
2601/**
2602 * cxgb4_register_uld - register an upper-layer driver
2603 * @type: the ULD type
2604 * @p: the ULD methods
2605 *
2606 * Registers an upper-layer driver with this driver and notifies the ULD
2607 * about any presently available devices that support its type. Returns
2608 * %-EBUSY if a ULD of the same type is already registered.
2609 */
2610int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2611{
2612 int ret = 0;
2613 struct adapter *adap;
2614
2615 if (type >= CXGB4_ULD_MAX)
2616 return -EINVAL;
2617 mutex_lock(&uld_mutex);
2618 if (ulds[type].add) {
2619 ret = -EBUSY;
2620 goto out;
2621 }
2622 ulds[type] = *p;
2623 list_for_each_entry(adap, &adapter_list, list_node)
2624 uld_attach(adap, type);
2625out: mutex_unlock(&uld_mutex);
2626 return ret;
2627}
2628EXPORT_SYMBOL(cxgb4_register_uld);
2629
2630/**
2631 * cxgb4_unregister_uld - unregister an upper-layer driver
2632 * @type: the ULD type
2633 *
2634 * Unregisters an existing upper-layer driver.
2635 */
2636int cxgb4_unregister_uld(enum cxgb4_uld type)
2637{
2638 struct adapter *adap;
2639
2640 if (type >= CXGB4_ULD_MAX)
2641 return -EINVAL;
2642 mutex_lock(&uld_mutex);
2643 list_for_each_entry(adap, &adapter_list, list_node)
2644 adap->uld_handle[type] = NULL;
2645 ulds[type].add = NULL;
2646 mutex_unlock(&uld_mutex);
2647 return 0;
2648}
2649EXPORT_SYMBOL(cxgb4_unregister_uld);
2650
1bb60376 2651#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
2652static int cxgb4_inet6addr_handler(struct notifier_block *this,
2653 unsigned long event, void *data)
01bcca68 2654{
b5a02f50
AB
2655 struct inet6_ifaddr *ifa = data;
2656 struct net_device *event_dev = ifa->idev->dev;
2657 const struct device *parent = NULL;
2658#if IS_ENABLED(CONFIG_BONDING)
01bcca68 2659 struct adapter *adap;
b5a02f50
AB
2660#endif
2661 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2662 event_dev = vlan_dev_real_dev(event_dev);
2663#if IS_ENABLED(CONFIG_BONDING)
2664 if (event_dev->flags & IFF_MASTER) {
2665 list_for_each_entry(adap, &adapter_list, list_node) {
2666 switch (event) {
2667 case NETDEV_UP:
2668 cxgb4_clip_get(adap->port[0],
2669 (const u32 *)ifa, 1);
2670 break;
2671 case NETDEV_DOWN:
2672 cxgb4_clip_release(adap->port[0],
2673 (const u32 *)ifa, 1);
2674 break;
2675 default:
2676 break;
2677 }
2678 }
2679 return NOTIFY_OK;
2680 }
2681#endif
01bcca68 2682
b5a02f50
AB
2683 if (event_dev)
2684 parent = event_dev->dev.parent;
01bcca68 2685
b5a02f50 2686 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
2687 switch (event) {
2688 case NETDEV_UP:
b5a02f50 2689 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2690 break;
2691 case NETDEV_DOWN:
b5a02f50 2692 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2693 break;
2694 default:
2695 break;
2696 }
2697 }
b5a02f50 2698 return NOTIFY_OK;
01bcca68
VP
2699}
2700
b5a02f50 2701static bool inet6addr_registered;
01bcca68
VP
2702static struct notifier_block cxgb4_inet6addr_notifier = {
2703 .notifier_call = cxgb4_inet6addr_handler
2704};
2705
01bcca68
VP
2706static void update_clip(const struct adapter *adap)
2707{
2708 int i;
2709 struct net_device *dev;
2710 int ret;
2711
2712 rcu_read_lock();
2713
2714 for (i = 0; i < MAX_NPORTS; i++) {
2715 dev = adap->port[i];
2716 ret = 0;
2717
2718 if (dev)
b5a02f50 2719 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
2720
2721 if (ret < 0)
2722 break;
2723 }
2724 rcu_read_unlock();
2725}
1bb60376 2726#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 2727
b8ff05a9
DM
2728/**
2729 * cxgb_up - enable the adapter
2730 * @adap: adapter being enabled
2731 *
2732 * Called when the first port is enabled, this function performs the
2733 * actions necessary to make an adapter operational, such as completing
2734 * the initialization of HW modules, and enabling interrupts.
2735 *
2736 * Must be called with the rtnl lock held.
2737 */
2738static int cxgb_up(struct adapter *adap)
2739{
aaefae9b 2740 int err;
b8ff05a9 2741
aaefae9b
DM
2742 err = setup_sge_queues(adap);
2743 if (err)
2744 goto out;
2745 err = setup_rss(adap);
2746 if (err)
2747 goto freeq;
b8ff05a9
DM
2748
2749 if (adap->flags & USING_MSIX) {
aaefae9b 2750 name_msix_vecs(adap);
b8ff05a9
DM
2751 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2752 adap->msix_info[0].desc, adap);
2753 if (err)
2754 goto irq_err;
2755
2756 err = request_msix_queue_irqs(adap);
2757 if (err) {
2758 free_irq(adap->msix_info[0].vec, adap);
2759 goto irq_err;
2760 }
2761 } else {
2762 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2763 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 2764 adap->port[0]->name, adap);
b8ff05a9
DM
2765 if (err)
2766 goto irq_err;
2767 }
2768 enable_rx(adap);
2769 t4_sge_start(adap);
2770 t4_intr_enable(adap);
aaefae9b 2771 adap->flags |= FULL_INIT_DONE;
b8ff05a9 2772 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 2773#if IS_ENABLED(CONFIG_IPV6)
01bcca68 2774 update_clip(adap);
1bb60376 2775#endif
fc08a01a
HS
2776 /* Initialize hash mac addr list*/
2777 INIT_LIST_HEAD(&adap->mac_hlist);
b8ff05a9
DM
2778 out:
2779 return err;
2780 irq_err:
2781 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
2782 freeq:
2783 t4_free_sge_resources(adap);
b8ff05a9
DM
2784 goto out;
2785}
2786
2787static void cxgb_down(struct adapter *adapter)
2788{
b8ff05a9 2789 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
2790 cancel_work_sync(&adapter->db_full_task);
2791 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 2792 adapter->tid_release_task_busy = false;
204dc3c0 2793 adapter->tid_release_head = NULL;
b8ff05a9 2794
aaefae9b
DM
2795 t4_sge_stop(adapter);
2796 t4_free_sge_resources(adapter);
2797 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
2798}
2799
2800/*
2801 * net_device operations
2802 */
2803static int cxgb_open(struct net_device *dev)
2804{
2805 int err;
2806 struct port_info *pi = netdev_priv(dev);
2807 struct adapter *adapter = pi->adapter;
2808
6a3c869a
DM
2809 netif_carrier_off(dev);
2810
aaefae9b
DM
2811 if (!(adapter->flags & FULL_INIT_DONE)) {
2812 err = cxgb_up(adapter);
2813 if (err < 0)
2814 return err;
2815 }
b8ff05a9 2816
f68707b8
DM
2817 err = link_start(dev);
2818 if (!err)
2819 netif_tx_start_all_queues(dev);
2820 return err;
b8ff05a9
DM
2821}
2822
2823static int cxgb_close(struct net_device *dev)
2824{
b8ff05a9
DM
2825 struct port_info *pi = netdev_priv(dev);
2826 struct adapter *adapter = pi->adapter;
2827
2828 netif_tx_stop_all_queues(dev);
2829 netif_carrier_off(dev);
b2612722 2830 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
b8ff05a9
DM
2831}
2832
f2b7e78d
VP
2833/* Return an error number if the indicated filter isn't writable ...
2834 */
2835static int writable_filter(struct filter_entry *f)
2836{
2837 if (f->locked)
2838 return -EPERM;
2839 if (f->pending)
2840 return -EBUSY;
2841
2842 return 0;
2843}
2844
2845/* Delete the filter at the specified index (if valid). The checks for all
2846 * the common problems with doing this like the filter being locked, currently
2847 * pending in another operation, etc.
2848 */
2849static int delete_filter(struct adapter *adapter, unsigned int fidx)
2850{
2851 struct filter_entry *f;
2852 int ret;
2853
dca4faeb 2854 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
2855 return -EINVAL;
2856
2857 f = &adapter->tids.ftid_tab[fidx];
2858 ret = writable_filter(f);
2859 if (ret)
2860 return ret;
2861 if (f->valid)
2862 return del_filter_wr(adapter, fidx);
2863
2864 return 0;
2865}
2866
dca4faeb 2867int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
2868 __be32 sip, __be16 sport, __be16 vlan,
2869 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
2870{
2871 int ret;
2872 struct filter_entry *f;
2873 struct adapter *adap;
2874 int i;
2875 u8 *val;
2876
2877 adap = netdev2adap(dev);
2878
1cab775c 2879 /* Adjust stid to correct filter index */
470c60c4 2880 stid -= adap->tids.sftid_base;
1cab775c
VP
2881 stid += adap->tids.nftids;
2882
dca4faeb
VP
2883 /* Check to make sure the filter requested is writable ...
2884 */
2885 f = &adap->tids.ftid_tab[stid];
2886 ret = writable_filter(f);
2887 if (ret)
2888 return ret;
2889
2890 /* Clear out any old resources being used by the filter before
2891 * we start constructing the new filter.
2892 */
2893 if (f->valid)
2894 clear_filter(adap, f);
2895
2896 /* Clear out filter specifications */
2897 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2898 f->fs.val.lport = cpu_to_be16(sport);
2899 f->fs.mask.lport = ~0;
2900 val = (u8 *)&sip;
793dad94 2901 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
2902 for (i = 0; i < 4; i++) {
2903 f->fs.val.lip[i] = val[i];
2904 f->fs.mask.lip[i] = ~0;
2905 }
0d804338 2906 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
2907 f->fs.val.iport = port;
2908 f->fs.mask.iport = mask;
2909 }
2910 }
dca4faeb 2911
0d804338 2912 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
2913 f->fs.val.proto = IPPROTO_TCP;
2914 f->fs.mask.proto = ~0;
2915 }
2916
dca4faeb
VP
2917 f->fs.dirsteer = 1;
2918 f->fs.iq = queue;
2919 /* Mark filter as locked */
2920 f->locked = 1;
2921 f->fs.rpttid = 1;
2922
2923 ret = set_filter_wr(adap, stid);
2924 if (ret) {
2925 clear_filter(adap, f);
2926 return ret;
2927 }
2928
2929 return 0;
2930}
2931EXPORT_SYMBOL(cxgb4_create_server_filter);
2932
2933int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2934 unsigned int queue, bool ipv6)
2935{
dca4faeb
VP
2936 struct filter_entry *f;
2937 struct adapter *adap;
2938
2939 adap = netdev2adap(dev);
1cab775c
VP
2940
2941 /* Adjust stid to correct filter index */
470c60c4 2942 stid -= adap->tids.sftid_base;
1cab775c
VP
2943 stid += adap->tids.nftids;
2944
dca4faeb
VP
2945 f = &adap->tids.ftid_tab[stid];
2946 /* Unlock the filter */
2947 f->locked = 0;
2948
8c14846d 2949 return delete_filter(adap, stid);
dca4faeb
VP
2950}
2951EXPORT_SYMBOL(cxgb4_remove_server_filter);
2952
f5152c90
DM
2953static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2954 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
2955{
2956 struct port_stats stats;
2957 struct port_info *p = netdev_priv(dev);
2958 struct adapter *adapter = p->adapter;
b8ff05a9 2959
9fe6cb58
GS
2960 /* Block retrieving statistics during EEH error
2961 * recovery. Otherwise, the recovery might fail
2962 * and the PCI device will be removed permanently
2963 */
b8ff05a9 2964 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
2965 if (!netif_device_present(dev)) {
2966 spin_unlock(&adapter->stats_lock);
2967 return ns;
2968 }
a4cfd929
HS
2969 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2970 &p->stats_base);
b8ff05a9
DM
2971 spin_unlock(&adapter->stats_lock);
2972
2973 ns->tx_bytes = stats.tx_octets;
2974 ns->tx_packets = stats.tx_frames;
2975 ns->rx_bytes = stats.rx_octets;
2976 ns->rx_packets = stats.rx_frames;
2977 ns->multicast = stats.rx_mcast_frames;
2978
2979 /* detailed rx_errors */
2980 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2981 stats.rx_runt;
2982 ns->rx_over_errors = 0;
2983 ns->rx_crc_errors = stats.rx_fcs_err;
2984 ns->rx_frame_errors = stats.rx_symbol_err;
2985 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2986 stats.rx_ovflow2 + stats.rx_ovflow3 +
2987 stats.rx_trunc0 + stats.rx_trunc1 +
2988 stats.rx_trunc2 + stats.rx_trunc3;
2989 ns->rx_missed_errors = 0;
2990
2991 /* detailed tx_errors */
2992 ns->tx_aborted_errors = 0;
2993 ns->tx_carrier_errors = 0;
2994 ns->tx_fifo_errors = 0;
2995 ns->tx_heartbeat_errors = 0;
2996 ns->tx_window_errors = 0;
2997
2998 ns->tx_errors = stats.tx_error_frames;
2999 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3000 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3001 return ns;
3002}
3003
3004static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3005{
060e0c75 3006 unsigned int mbox;
b8ff05a9
DM
3007 int ret = 0, prtad, devad;
3008 struct port_info *pi = netdev_priv(dev);
3009 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3010
3011 switch (cmd) {
3012 case SIOCGMIIPHY:
3013 if (pi->mdio_addr < 0)
3014 return -EOPNOTSUPP;
3015 data->phy_id = pi->mdio_addr;
3016 break;
3017 case SIOCGMIIREG:
3018 case SIOCSMIIREG:
3019 if (mdio_phy_id_is_c45(data->phy_id)) {
3020 prtad = mdio_phy_id_prtad(data->phy_id);
3021 devad = mdio_phy_id_devad(data->phy_id);
3022 } else if (data->phy_id < 32) {
3023 prtad = data->phy_id;
3024 devad = 0;
3025 data->reg_num &= 0x1f;
3026 } else
3027 return -EINVAL;
3028
b2612722 3029 mbox = pi->adapter->pf;
b8ff05a9 3030 if (cmd == SIOCGMIIREG)
060e0c75 3031 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
3032 data->reg_num, &data->val_out);
3033 else
060e0c75 3034 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
3035 data->reg_num, data->val_in);
3036 break;
5e2a5ebc
HS
3037 case SIOCGHWTSTAMP:
3038 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3039 sizeof(pi->tstamp_config)) ?
3040 -EFAULT : 0;
3041 case SIOCSHWTSTAMP:
3042 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3043 sizeof(pi->tstamp_config)))
3044 return -EFAULT;
3045
3046 switch (pi->tstamp_config.rx_filter) {
3047 case HWTSTAMP_FILTER_NONE:
3048 pi->rxtstamp = false;
3049 break;
3050 case HWTSTAMP_FILTER_ALL:
3051 pi->rxtstamp = true;
3052 break;
3053 default:
3054 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3055 return -ERANGE;
3056 }
3057
3058 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3059 sizeof(pi->tstamp_config)) ?
3060 -EFAULT : 0;
b8ff05a9
DM
3061 default:
3062 return -EOPNOTSUPP;
3063 }
3064 return ret;
3065}
3066
3067static void cxgb_set_rxmode(struct net_device *dev)
3068{
3069 /* unfortunately we can't return errors to the stack */
3070 set_rxmode(dev, -1, false);
3071}
3072
3073static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3074{
3075 int ret;
3076 struct port_info *pi = netdev_priv(dev);
3077
3078 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
3079 return -EINVAL;
b2612722 3080 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
060e0c75 3081 -1, -1, -1, true);
b8ff05a9
DM
3082 if (!ret)
3083 dev->mtu = new_mtu;
3084 return ret;
3085}
3086
858aa65c 3087#ifdef CONFIG_PCI_IOV
e7b48a32
HS
3088static int dummy_open(struct net_device *dev)
3089{
3090 /* Turn carrier off since we don't have to transmit anything on this
3091 * interface.
3092 */
3093 netif_carrier_off(dev);
3094 return 0;
3095}
3096
858aa65c
HS
3097static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3098{
3099 struct port_info *pi = netdev_priv(dev);
3100 struct adapter *adap = pi->adapter;
3101
3102 /* verify MAC addr is valid */
3103 if (!is_valid_ether_addr(mac)) {
3104 dev_err(pi->adapter->pdev_dev,
3105 "Invalid Ethernet address %pM for VF %d\n",
3106 mac, vf);
3107 return -EINVAL;
3108 }
3109
3110 dev_info(pi->adapter->pdev_dev,
3111 "Setting MAC %pM on VF %d\n", mac, vf);
3112 return t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3113}
3114#endif
3115
b8ff05a9
DM
3116static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3117{
3118 int ret;
3119 struct sockaddr *addr = p;
3120 struct port_info *pi = netdev_priv(dev);
3121
3122 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 3123 return -EADDRNOTAVAIL;
b8ff05a9 3124
b2612722 3125 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
060e0c75 3126 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
3127 if (ret < 0)
3128 return ret;
3129
3130 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3131 pi->xact_addr_filt = ret;
3132 return 0;
3133}
3134
b8ff05a9
DM
3135#ifdef CONFIG_NET_POLL_CONTROLLER
3136static void cxgb_netpoll(struct net_device *dev)
3137{
3138 struct port_info *pi = netdev_priv(dev);
3139 struct adapter *adap = pi->adapter;
3140
3141 if (adap->flags & USING_MSIX) {
3142 int i;
3143 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3144
3145 for (i = pi->nqsets; i; i--, rx++)
3146 t4_sge_intr_msix(0, &rx->rspq);
3147 } else
3148 t4_intr_handler(adap)(0, adap);
3149}
3150#endif
3151
10a2604e
RL
3152static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3153{
3154 struct port_info *pi = netdev_priv(dev);
3155 struct adapter *adap = pi->adapter;
3156 struct sched_class *e;
3157 struct ch_sched_params p;
3158 struct ch_sched_queue qe;
3159 u32 req_rate;
3160 int err = 0;
3161
3162 if (!can_sched(dev))
3163 return -ENOTSUPP;
3164
3165 if (index < 0 || index > pi->nqsets - 1)
3166 return -EINVAL;
3167
3168 if (!(adap->flags & FULL_INIT_DONE)) {
3169 dev_err(adap->pdev_dev,
3170 "Failed to rate limit on queue %d. Link Down?\n",
3171 index);
3172 return -EINVAL;
3173 }
3174
3175 /* Convert from Mbps to Kbps */
3176 req_rate = rate << 10;
3177
3178 /* Max rate is 10 Gbps */
3179 if (req_rate >= SCHED_MAX_RATE_KBPS) {
3180 dev_err(adap->pdev_dev,
3181 "Invalid rate %u Mbps, Max rate is %u Gbps\n",
3182 rate, SCHED_MAX_RATE_KBPS);
3183 return -ERANGE;
3184 }
3185
3186 /* First unbind the queue from any existing class */
3187 memset(&qe, 0, sizeof(qe));
3188 qe.queue = index;
3189 qe.class = SCHED_CLS_NONE;
3190
3191 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3192 if (err) {
3193 dev_err(adap->pdev_dev,
3194 "Unbinding Queue %d on port %d fail. Err: %d\n",
3195 index, pi->port_id, err);
3196 return err;
3197 }
3198
3199 /* Queue already unbound */
3200 if (!req_rate)
3201 return 0;
3202
3203 /* Fetch any available unused or matching scheduling class */
3204 memset(&p, 0, sizeof(p));
3205 p.type = SCHED_CLASS_TYPE_PACKET;
3206 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
3207 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
3208 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3209 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3210 p.u.params.channel = pi->tx_chan;
3211 p.u.params.class = SCHED_CLS_NONE;
3212 p.u.params.minrate = 0;
3213 p.u.params.maxrate = req_rate;
3214 p.u.params.weight = 0;
3215 p.u.params.pktsize = dev->mtu;
3216
3217 e = cxgb4_sched_class_alloc(dev, &p);
3218 if (!e)
3219 return -ENOMEM;
3220
3221 /* Bind the queue to a scheduling class */
3222 memset(&qe, 0, sizeof(qe));
3223 qe.queue = index;
3224 qe.class = e->idx;
3225
3226 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3227 if (err)
3228 dev_err(adap->pdev_dev,
3229 "Queue rate limiting failed. Err: %d\n", err);
3230 return err;
3231}
3232
b8ff05a9
DM
3233static const struct net_device_ops cxgb4_netdev_ops = {
3234 .ndo_open = cxgb_open,
3235 .ndo_stop = cxgb_close,
3236 .ndo_start_xmit = t4_eth_xmit,
688848b1 3237 .ndo_select_queue = cxgb_select_queue,
9be793bf 3238 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
3239 .ndo_set_rx_mode = cxgb_set_rxmode,
3240 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 3241 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
3242 .ndo_validate_addr = eth_validate_addr,
3243 .ndo_do_ioctl = cxgb_ioctl,
3244 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
3245#ifdef CONFIG_NET_POLL_CONTROLLER
3246 .ndo_poll_controller = cxgb_netpoll,
3247#endif
84a200b3
VP
3248#ifdef CONFIG_CHELSIO_T4_FCOE
3249 .ndo_fcoe_enable = cxgb_fcoe_enable,
3250 .ndo_fcoe_disable = cxgb_fcoe_disable,
3251#endif /* CONFIG_CHELSIO_T4_FCOE */
3a336cb1
HS
3252#ifdef CONFIG_NET_RX_BUSY_POLL
3253 .ndo_busy_poll = cxgb_busy_poll,
3254#endif
10a2604e 3255 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
b8ff05a9
DM
3256};
3257
858aa65c 3258#ifdef CONFIG_PCI_IOV
e7b48a32
HS
3259static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3260 .ndo_open = dummy_open,
858aa65c 3261 .ndo_set_vf_mac = cxgb_set_vf_mac,
7829451c 3262};
e7b48a32 3263#endif
7829451c
HS
3264
3265static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3266{
3267 struct adapter *adapter = netdev2adap(dev);
3268
3269 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3270 strlcpy(info->version, cxgb4_driver_version,
3271 sizeof(info->version));
3272 strlcpy(info->bus_info, pci_name(adapter->pdev),
3273 sizeof(info->bus_info));
3274}
3275
3276static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3277 .get_drvinfo = get_drvinfo,
3278};
3279
b8ff05a9
DM
3280void t4_fatal_err(struct adapter *adap)
3281{
f612b815 3282 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
3283 t4_intr_disable(adap);
3284 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3285}
3286
3287static void setup_memwin(struct adapter *adap)
3288{
b562fc37 3289 u32 nic_win_base = t4_get_util_window(adap);
b8ff05a9 3290
b562fc37 3291 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
636f9d37
VP
3292}
3293
3294static void setup_memwin_rdma(struct adapter *adap)
3295{
1ae970e0 3296 if (adap->vres.ocq.size) {
0abfd152
HS
3297 u32 start;
3298 unsigned int sz_kb;
1ae970e0 3299
0abfd152
HS
3300 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3301 start &= PCI_BASE_ADDRESS_MEM_MASK;
3302 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
3303 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3304 t4_write_reg(adap,
f061de42
HS
3305 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3306 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 3307 t4_write_reg(adap,
f061de42 3308 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
3309 adap->vres.ocq.start);
3310 t4_read_reg(adap,
f061de42 3311 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 3312 }
b8ff05a9
DM
3313}
3314
02b5fb8e
DM
3315static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3316{
3317 u32 v;
3318 int ret;
3319
3320 /* get device capabilities */
3321 memset(c, 0, sizeof(*c));
e2ac9628
HS
3322 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3323 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3324 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
b2612722 3325 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
02b5fb8e
DM
3326 if (ret < 0)
3327 return ret;
3328
e2ac9628
HS
3329 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3330 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
b2612722 3331 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
02b5fb8e
DM
3332 if (ret < 0)
3333 return ret;
3334
b2612722 3335 ret = t4_config_glbl_rss(adap, adap->pf,
02b5fb8e 3336 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
3337 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3338 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
3339 if (ret < 0)
3340 return ret;
3341
b2612722 3342 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4b8e27a8
HS
3343 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3344 FW_CMD_CAP_PF);
02b5fb8e
DM
3345 if (ret < 0)
3346 return ret;
3347
3348 t4_sge_init(adap);
3349
02b5fb8e 3350 /* tweak some settings */
837e4a42 3351 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 3352 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
3353 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3354 v = t4_read_reg(adap, TP_PIO_DATA_A);
3355 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 3356
dca4faeb
VP
3357 /* first 4 Tx modulation queues point to consecutive Tx channels */
3358 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
3359 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3360 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
3361
3362 /* associate each Tx modulation queue with consecutive Tx channels */
3363 v = 0x84218421;
837e4a42 3364 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3365 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 3366 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3367 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 3368 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3369 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
3370
3371#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3372 if (is_offload(adap)) {
0d804338
HS
3373 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3374 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3375 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3376 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3377 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3378 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3379 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3380 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3381 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3382 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
3383 }
3384
060e0c75 3385 /* get basic stuff going */
b2612722 3386 return t4_early_init(adap, adap->pf);
02b5fb8e
DM
3387}
3388
b8ff05a9
DM
3389/*
3390 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3391 */
3392#define MAX_ATIDS 8192U
3393
636f9d37
VP
3394/*
3395 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3396 *
3397 * If the firmware we're dealing with has Configuration File support, then
3398 * we use that to perform all configuration
3399 */
3400
3401/*
3402 * Tweak configuration based on module parameters, etc. Most of these have
3403 * defaults assigned to them by Firmware Configuration Files (if we're using
3404 * them) but need to be explicitly set if we're using hard-coded
3405 * initialization. But even in the case of using Firmware Configuration
3406 * Files, we'd like to expose the ability to change these via module
3407 * parameters so these are essentially common tweaks/settings for
3408 * Configuration Files and hard-coded initialization ...
3409 */
3410static int adap_init0_tweaks(struct adapter *adapter)
3411{
3412 /*
3413 * Fix up various Host-Dependent Parameters like Page Size, Cache
3414 * Line Size, etc. The firmware default is for a 4KB Page Size and
3415 * 64B Cache Line Size ...
3416 */
3417 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3418
3419 /*
3420 * Process module parameters which affect early initialization.
3421 */
3422 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3423 dev_err(&adapter->pdev->dev,
3424 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3425 rx_dma_offset);
3426 rx_dma_offset = 2;
3427 }
f612b815
HS
3428 t4_set_reg_field(adapter, SGE_CONTROL_A,
3429 PKTSHIFT_V(PKTSHIFT_M),
3430 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
3431
3432 /*
3433 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3434 * adds the pseudo header itself.
3435 */
837e4a42
HS
3436 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3437 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
3438
3439 return 0;
3440}
3441
01b69614
HS
3442/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3443 * unto themselves and they contain their own firmware to perform their
3444 * tasks ...
3445 */
3446static int phy_aq1202_version(const u8 *phy_fw_data,
3447 size_t phy_fw_size)
3448{
3449 int offset;
3450
3451 /* At offset 0x8 you're looking for the primary image's
3452 * starting offset which is 3 Bytes wide
3453 *
3454 * At offset 0xa of the primary image, you look for the offset
3455 * of the DRAM segment which is 3 Bytes wide.
3456 *
3457 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3458 * wide
3459 */
3460 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3461 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3462 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3463
3464 offset = le24(phy_fw_data + 0x8) << 12;
3465 offset = le24(phy_fw_data + offset + 0xa);
3466 return be16(phy_fw_data + offset + 0x27e);
3467
3468 #undef be16
3469 #undef le16
3470 #undef le24
3471}
3472
3473static struct info_10gbt_phy_fw {
3474 unsigned int phy_fw_id; /* PCI Device ID */
3475 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3476 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3477 int phy_flash; /* Has FLASH for PHY Firmware */
3478} phy_info_array[] = {
3479 {
3480 PHY_AQ1202_DEVICEID,
3481 PHY_AQ1202_FIRMWARE,
3482 phy_aq1202_version,
3483 1,
3484 },
3485 {
3486 PHY_BCM84834_DEVICEID,
3487 PHY_BCM84834_FIRMWARE,
3488 NULL,
3489 0,
3490 },
3491 { 0, NULL, NULL },
3492};
3493
3494static struct info_10gbt_phy_fw *find_phy_info(int devid)
3495{
3496 int i;
3497
3498 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3499 if (phy_info_array[i].phy_fw_id == devid)
3500 return &phy_info_array[i];
3501 }
3502 return NULL;
3503}
3504
3505/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3506 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3507 * we return a negative error number. If we transfer new firmware we return 1
3508 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3509 */
3510static int adap_init0_phy(struct adapter *adap)
3511{
3512 const struct firmware *phyf;
3513 int ret;
3514 struct info_10gbt_phy_fw *phy_info;
3515
3516 /* Use the device ID to determine which PHY file to flash.
3517 */
3518 phy_info = find_phy_info(adap->pdev->device);
3519 if (!phy_info) {
3520 dev_warn(adap->pdev_dev,
3521 "No PHY Firmware file found for this PHY\n");
3522 return -EOPNOTSUPP;
3523 }
3524
3525 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3526 * use that. The adapter firmware provides us with a memory buffer
3527 * where we can load a PHY firmware file from the host if we want to
3528 * override the PHY firmware File in flash.
3529 */
3530 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3531 adap->pdev_dev);
3532 if (ret < 0) {
3533 /* For adapters without FLASH attached to PHY for their
3534 * firmware, it's obviously a fatal error if we can't get the
3535 * firmware to the adapter. For adapters with PHY firmware
3536 * FLASH storage, it's worth a warning if we can't find the
3537 * PHY Firmware but we'll neuter the error ...
3538 */
3539 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3540 "/lib/firmware/%s, error %d\n",
3541 phy_info->phy_fw_file, -ret);
3542 if (phy_info->phy_flash) {
3543 int cur_phy_fw_ver = 0;
3544
3545 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3546 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3547 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3548 ret = 0;
3549 }
3550
3551 return ret;
3552 }
3553
3554 /* Load PHY Firmware onto adapter.
3555 */
3556 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3557 phy_info->phy_fw_version,
3558 (u8 *)phyf->data, phyf->size);
3559 if (ret < 0)
3560 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3561 -ret);
3562 else if (ret > 0) {
3563 int new_phy_fw_ver = 0;
3564
3565 if (phy_info->phy_fw_version)
3566 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3567 phyf->size);
3568 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3569 "Firmware /lib/firmware/%s, version %#x\n",
3570 phy_info->phy_fw_file, new_phy_fw_ver);
3571 }
3572
3573 release_firmware(phyf);
3574
3575 return ret;
3576}
3577
636f9d37
VP
3578/*
3579 * Attempt to initialize the adapter via a Firmware Configuration File.
3580 */
3581static int adap_init0_config(struct adapter *adapter, int reset)
3582{
3583 struct fw_caps_config_cmd caps_cmd;
3584 const struct firmware *cf;
3585 unsigned long mtype = 0, maddr = 0;
3586 u32 finiver, finicsum, cfcsum;
16e47624
HS
3587 int ret;
3588 int config_issued = 0;
0a57a536 3589 char *fw_config_file, fw_config_file_path[256];
16e47624 3590 char *config_name = NULL;
636f9d37
VP
3591
3592 /*
3593 * Reset device if necessary.
3594 */
3595 if (reset) {
3596 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 3597 PIORSTMODE_F | PIORST_F);
636f9d37
VP
3598 if (ret < 0)
3599 goto bye;
3600 }
3601
01b69614
HS
3602 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3603 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3604 * to be performed after any global adapter RESET above since some
3605 * PHYs only have local RAM copies of the PHY firmware.
3606 */
3607 if (is_10gbt_device(adapter->pdev->device)) {
3608 ret = adap_init0_phy(adapter);
3609 if (ret < 0)
3610 goto bye;
3611 }
636f9d37
VP
3612 /*
3613 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3614 * then use that. Otherwise, use the configuration file stored
3615 * in the adapter flash ...
3616 */
d14807dd 3617 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 3618 case CHELSIO_T4:
16e47624 3619 fw_config_file = FW4_CFNAME;
0a57a536
SR
3620 break;
3621 case CHELSIO_T5:
3622 fw_config_file = FW5_CFNAME;
3623 break;
3ccc6cf7
HS
3624 case CHELSIO_T6:
3625 fw_config_file = FW6_CFNAME;
3626 break;
0a57a536
SR
3627 default:
3628 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3629 adapter->pdev->device);
3630 ret = -EINVAL;
3631 goto bye;
3632 }
3633
3634 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 3635 if (ret < 0) {
16e47624 3636 config_name = "On FLASH";
636f9d37
VP
3637 mtype = FW_MEMTYPE_CF_FLASH;
3638 maddr = t4_flash_cfg_addr(adapter);
3639 } else {
3640 u32 params[7], val[7];
3641
16e47624
HS
3642 sprintf(fw_config_file_path,
3643 "/lib/firmware/%s", fw_config_file);
3644 config_name = fw_config_file_path;
3645
636f9d37
VP
3646 if (cf->size >= FLASH_CFG_MAX_SIZE)
3647 ret = -ENOMEM;
3648 else {
5167865a
HS
3649 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3650 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37 3651 ret = t4_query_params(adapter, adapter->mbox,
b2612722 3652 adapter->pf, 0, 1, params, val);
636f9d37
VP
3653 if (ret == 0) {
3654 /*
fc5ab020 3655 * For t4_memory_rw() below addresses and
636f9d37
VP
3656 * sizes have to be in terms of multiples of 4
3657 * bytes. So, if the Configuration File isn't
3658 * a multiple of 4 bytes in length we'll have
3659 * to write that out separately since we can't
3660 * guarantee that the bytes following the
3661 * residual byte in the buffer returned by
3662 * request_firmware() are zeroed out ...
3663 */
3664 size_t resid = cf->size & 0x3;
3665 size_t size = cf->size & ~0x3;
3666 __be32 *data = (__be32 *)cf->data;
3667
5167865a
HS
3668 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3669 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 3670
fc5ab020
HS
3671 spin_lock(&adapter->win0_lock);
3672 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3673 size, data, T4_MEMORY_WRITE);
636f9d37
VP
3674 if (ret == 0 && resid != 0) {
3675 union {
3676 __be32 word;
3677 char buf[4];
3678 } last;
3679 int i;
3680
3681 last.word = data[size >> 2];
3682 for (i = resid; i < 4; i++)
3683 last.buf[i] = 0;
fc5ab020
HS
3684 ret = t4_memory_rw(adapter, 0, mtype,
3685 maddr + size,
3686 4, &last.word,
3687 T4_MEMORY_WRITE);
636f9d37 3688 }
fc5ab020 3689 spin_unlock(&adapter->win0_lock);
636f9d37
VP
3690 }
3691 }
3692
3693 release_firmware(cf);
3694 if (ret)
3695 goto bye;
3696 }
3697
3698 /*
3699 * Issue a Capability Configuration command to the firmware to get it
3700 * to parse the Configuration File. We don't use t4_fw_config_file()
3701 * because we want the ability to modify various features after we've
3702 * processed the configuration file ...
3703 */
3704 memset(&caps_cmd, 0, sizeof(caps_cmd));
3705 caps_cmd.op_to_write =
e2ac9628
HS
3706 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3707 FW_CMD_REQUEST_F |
3708 FW_CMD_READ_F);
ce91a923 3709 caps_cmd.cfvalid_to_len16 =
5167865a
HS
3710 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3711 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3712 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
3713 FW_LEN16(caps_cmd));
3714 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3715 &caps_cmd);
16e47624
HS
3716
3717 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3718 * Configuration File in FLASH), our last gasp effort is to use the
3719 * Firmware Configuration File which is embedded in the firmware. A
3720 * very few early versions of the firmware didn't have one embedded
3721 * but we can ignore those.
3722 */
3723 if (ret == -ENOENT) {
3724 memset(&caps_cmd, 0, sizeof(caps_cmd));
3725 caps_cmd.op_to_write =
e2ac9628
HS
3726 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3727 FW_CMD_REQUEST_F |
3728 FW_CMD_READ_F);
16e47624
HS
3729 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3730 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3731 sizeof(caps_cmd), &caps_cmd);
3732 config_name = "Firmware Default";
3733 }
3734
3735 config_issued = 1;
636f9d37
VP
3736 if (ret < 0)
3737 goto bye;
3738
3739 finiver = ntohl(caps_cmd.finiver);
3740 finicsum = ntohl(caps_cmd.finicsum);
3741 cfcsum = ntohl(caps_cmd.cfcsum);
3742 if (finicsum != cfcsum)
3743 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3744 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3745 finicsum, cfcsum);
3746
636f9d37
VP
3747 /*
3748 * And now tell the firmware to use the configuration we just loaded.
3749 */
3750 caps_cmd.op_to_write =
e2ac9628
HS
3751 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3752 FW_CMD_REQUEST_F |
3753 FW_CMD_WRITE_F);
ce91a923 3754 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3755 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3756 NULL);
3757 if (ret < 0)
3758 goto bye;
3759
3760 /*
3761 * Tweak configuration based on system architecture, module
3762 * parameters, etc.
3763 */
3764 ret = adap_init0_tweaks(adapter);
3765 if (ret < 0)
3766 goto bye;
3767
3768 /*
3769 * And finally tell the firmware to initialize itself using the
3770 * parameters from the Configuration File.
3771 */
3772 ret = t4_fw_initialize(adapter, adapter->mbox);
3773 if (ret < 0)
3774 goto bye;
3775
06640310
HS
3776 /* Emit Firmware Configuration File information and return
3777 * successfully.
636f9d37 3778 */
636f9d37 3779 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
3780 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3781 config_name, finiver, cfcsum);
636f9d37
VP
3782 return 0;
3783
3784 /*
3785 * Something bad happened. Return the error ... (If the "error"
3786 * is that there's no Configuration File on the adapter we don't
3787 * want to issue a warning since this is fairly common.)
3788 */
3789bye:
16e47624
HS
3790 if (config_issued && ret != -ENOENT)
3791 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3792 config_name, -ret);
636f9d37
VP
3793 return ret;
3794}
3795
16e47624
HS
3796static struct fw_info fw_info_array[] = {
3797 {
3798 .chip = CHELSIO_T4,
3799 .fs_name = FW4_CFNAME,
3800 .fw_mod_name = FW4_FNAME,
3801 .fw_hdr = {
3802 .chip = FW_HDR_CHIP_T4,
3803 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3804 .intfver_nic = FW_INTFVER(T4, NIC),
3805 .intfver_vnic = FW_INTFVER(T4, VNIC),
3806 .intfver_ri = FW_INTFVER(T4, RI),
3807 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3808 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3809 },
3810 }, {
3811 .chip = CHELSIO_T5,
3812 .fs_name = FW5_CFNAME,
3813 .fw_mod_name = FW5_FNAME,
3814 .fw_hdr = {
3815 .chip = FW_HDR_CHIP_T5,
3816 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3817 .intfver_nic = FW_INTFVER(T5, NIC),
3818 .intfver_vnic = FW_INTFVER(T5, VNIC),
3819 .intfver_ri = FW_INTFVER(T5, RI),
3820 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3821 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3822 },
3ccc6cf7
HS
3823 }, {
3824 .chip = CHELSIO_T6,
3825 .fs_name = FW6_CFNAME,
3826 .fw_mod_name = FW6_FNAME,
3827 .fw_hdr = {
3828 .chip = FW_HDR_CHIP_T6,
3829 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3830 .intfver_nic = FW_INTFVER(T6, NIC),
3831 .intfver_vnic = FW_INTFVER(T6, VNIC),
3832 .intfver_ofld = FW_INTFVER(T6, OFLD),
3833 .intfver_ri = FW_INTFVER(T6, RI),
3834 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3835 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3836 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3837 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3838 },
16e47624 3839 }
3ccc6cf7 3840
16e47624
HS
3841};
3842
3843static struct fw_info *find_fw_info(int chip)
3844{
3845 int i;
3846
3847 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3848 if (fw_info_array[i].chip == chip)
3849 return &fw_info_array[i];
3850 }
3851 return NULL;
3852}
3853
b8ff05a9
DM
3854/*
3855 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3856 */
3857static int adap_init0(struct adapter *adap)
3858{
3859 int ret;
3860 u32 v, port_vec;
3861 enum dev_state state;
3862 u32 params[7], val[7];
9a4da2cd 3863 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 3864 int reset = 1;
b8ff05a9 3865
ae469b68
HS
3866 /* Grab Firmware Device Log parameters as early as possible so we have
3867 * access to it for debugging, etc.
3868 */
3869 ret = t4_init_devlog_params(adap);
3870 if (ret < 0)
3871 return ret;
3872
666224d4 3873 /* Contact FW, advertising Master capability */
c5a8c0f3
HS
3874 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3875 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
b8ff05a9
DM
3876 if (ret < 0) {
3877 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3878 ret);
3879 return ret;
3880 }
636f9d37
VP
3881 if (ret == adap->mbox)
3882 adap->flags |= MASTER_PF;
b8ff05a9 3883
636f9d37
VP
3884 /*
3885 * If we're the Master PF Driver and the device is uninitialized,
3886 * then let's consider upgrading the firmware ... (We always want
3887 * to check the firmware version number in order to A. get it for
3888 * later reporting and B. to warn if the currently loaded firmware
3889 * is excessively mismatched relative to the driver.)
3890 */
16e47624 3891 t4_get_fw_version(adap, &adap->params.fw_vers);
0de72738 3892 t4_get_bs_version(adap, &adap->params.bs_vers);
16e47624 3893 t4_get_tp_version(adap, &adap->params.tp_vers);
0de72738
HS
3894 t4_get_exprom_version(adap, &adap->params.er_vers);
3895
a69265e9
HS
3896 ret = t4_check_fw_version(adap);
3897 /* If firmware is too old (not supported by driver) force an update. */
21d11bd6 3898 if (ret)
a69265e9 3899 state = DEV_STATE_UNINIT;
636f9d37 3900 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
3901 struct fw_info *fw_info;
3902 struct fw_hdr *card_fw;
3903 const struct firmware *fw;
3904 const u8 *fw_data = NULL;
3905 unsigned int fw_size = 0;
3906
3907 /* This is the firmware whose headers the driver was compiled
3908 * against
3909 */
3910 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3911 if (fw_info == NULL) {
3912 dev_err(adap->pdev_dev,
3913 "unable to get firmware info for chip %d.\n",
3914 CHELSIO_CHIP_VERSION(adap->params.chip));
3915 return -EINVAL;
636f9d37 3916 }
16e47624
HS
3917
3918 /* allocate memory to read the header of the firmware on the
3919 * card
3920 */
3921 card_fw = t4_alloc_mem(sizeof(*card_fw));
3922
3923 /* Get FW from from /lib/firmware/ */
3924 ret = request_firmware(&fw, fw_info->fw_mod_name,
3925 adap->pdev_dev);
3926 if (ret < 0) {
3927 dev_err(adap->pdev_dev,
3928 "unable to load firmware image %s, error %d\n",
3929 fw_info->fw_mod_name, ret);
3930 } else {
3931 fw_data = fw->data;
3932 fw_size = fw->size;
3933 }
3934
3935 /* upgrade FW logic */
3936 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3937 state, &reset);
3938
3939 /* Cleaning up */
0b5b6bee 3940 release_firmware(fw);
16e47624
HS
3941 t4_free_mem(card_fw);
3942
636f9d37 3943 if (ret < 0)
16e47624 3944 goto bye;
636f9d37 3945 }
b8ff05a9 3946
636f9d37
VP
3947 /*
3948 * Grab VPD parameters. This should be done after we establish a
3949 * connection to the firmware since some of the VPD parameters
3950 * (notably the Core Clock frequency) are retrieved via requests to
3951 * the firmware. On the other hand, we need these fairly early on
3952 * so we do this right after getting ahold of the firmware.
3953 */
098ef6c2 3954 ret = t4_get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
3955 if (ret < 0)
3956 goto bye;
a0881cab 3957
636f9d37 3958 /*
13ee15d3
VP
3959 * Find out what ports are available to us. Note that we need to do
3960 * this before calling adap_init0_no_config() since it needs nports
3961 * and portvec ...
636f9d37
VP
3962 */
3963 v =
5167865a
HS
3964 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3965 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
b2612722 3966 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
a0881cab
DM
3967 if (ret < 0)
3968 goto bye;
3969
636f9d37
VP
3970 adap->params.nports = hweight32(port_vec);
3971 adap->params.portvec = port_vec;
3972
06640310
HS
3973 /* If the firmware is initialized already, emit a simply note to that
3974 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
3975 */
3976 if (state == DEV_STATE_INIT) {
3977 dev_info(adap->pdev_dev, "Coming up as %s: "\
3978 "Adapter already initialized\n",
3979 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
3980 } else {
3981 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3982 "Initializing adapter\n");
06640310
HS
3983
3984 /* Find out whether we're dealing with a version of the
3985 * firmware which has configuration file support.
636f9d37 3986 */
06640310
HS
3987 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3988 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
b2612722 3989 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
06640310 3990 params, val);
13ee15d3 3991
06640310
HS
3992 /* If the firmware doesn't support Configuration Files,
3993 * return an error.
3994 */
3995 if (ret < 0) {
3996 dev_err(adap->pdev_dev, "firmware doesn't support "
3997 "Firmware Configuration Files\n");
3998 goto bye;
3999 }
4000
4001 /* The firmware provides us with a memory buffer where we can
4002 * load a Configuration File from the host if we want to
4003 * override the Configuration File in flash.
4004 */
4005 ret = adap_init0_config(adap, reset);
4006 if (ret == -ENOENT) {
4007 dev_err(adap->pdev_dev, "no Configuration File "
4008 "present on adapter.\n");
4009 goto bye;
636f9d37
VP
4010 }
4011 if (ret < 0) {
06640310
HS
4012 dev_err(adap->pdev_dev, "could not initialize "
4013 "adapter, error %d\n", -ret);
636f9d37
VP
4014 goto bye;
4015 }
4016 }
4017
06640310
HS
4018 /* Give the SGE code a chance to pull in anything that it needs ...
4019 * Note that this must be called after we retrieve our VPD parameters
4020 * in order to know how to convert core ticks to seconds, etc.
636f9d37 4021 */
06640310
HS
4022 ret = t4_sge_init(adap);
4023 if (ret < 0)
4024 goto bye;
636f9d37 4025
9a4da2cd
VP
4026 if (is_bypass_device(adap->pdev->device))
4027 adap->params.bypass = 1;
4028
636f9d37
VP
4029 /*
4030 * Grab some of our basic fundamental operating parameters.
4031 */
4032#define FW_PARAM_DEV(param) \
5167865a
HS
4033 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4034 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 4035
b8ff05a9 4036#define FW_PARAM_PFVF(param) \
5167865a
HS
4037 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4038 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
4039 FW_PARAMS_PARAM_Y_V(0) | \
4040 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 4041
636f9d37 4042 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
4043 params[1] = FW_PARAM_PFVF(L2T_START);
4044 params[2] = FW_PARAM_PFVF(L2T_END);
4045 params[3] = FW_PARAM_PFVF(FILTER_START);
4046 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 4047 params[5] = FW_PARAM_PFVF(IQFLINT_START);
b2612722 4048 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
b8ff05a9
DM
4049 if (ret < 0)
4050 goto bye;
636f9d37
VP
4051 adap->sge.egr_start = val[0];
4052 adap->l2t_start = val[1];
4053 adap->l2t_end = val[2];
b8ff05a9
DM
4054 adap->tids.ftid_base = val[3];
4055 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 4056 adap->sge.ingr_start = val[5];
b8ff05a9 4057
4b8e27a8
HS
4058 /* qids (ingress/egress) returned from firmware can be anywhere
4059 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4060 * Hence driver needs to allocate memory for this range to
4061 * store the queue info. Get the highest IQFLINT/EQ index returned
4062 * in FW_EQ_*_CMD.alloc command.
4063 */
4064 params[0] = FW_PARAM_PFVF(EQ_END);
4065 params[1] = FW_PARAM_PFVF(IQFLINT_END);
b2612722 4066 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4b8e27a8
HS
4067 if (ret < 0)
4068 goto bye;
4069 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4070 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4071
4072 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4073 sizeof(*adap->sge.egr_map), GFP_KERNEL);
4074 if (!adap->sge.egr_map) {
4075 ret = -ENOMEM;
4076 goto bye;
4077 }
4078
4079 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4080 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4081 if (!adap->sge.ingr_map) {
4082 ret = -ENOMEM;
4083 goto bye;
4084 }
4085
4086 /* Allocate the memory for the vaious egress queue bitmaps
5b377d11 4087 * ie starving_fl, txq_maperr and blocked_fl.
4b8e27a8
HS
4088 */
4089 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4090 sizeof(long), GFP_KERNEL);
4091 if (!adap->sge.starving_fl) {
4092 ret = -ENOMEM;
4093 goto bye;
4094 }
4095
4096 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4097 sizeof(long), GFP_KERNEL);
4098 if (!adap->sge.txq_maperr) {
4099 ret = -ENOMEM;
4100 goto bye;
4101 }
4102
5b377d11
HS
4103#ifdef CONFIG_DEBUG_FS
4104 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4105 sizeof(long), GFP_KERNEL);
4106 if (!adap->sge.blocked_fl) {
4107 ret = -ENOMEM;
4108 goto bye;
4109 }
4110#endif
4111
b5a02f50
AB
4112 params[0] = FW_PARAM_PFVF(CLIP_START);
4113 params[1] = FW_PARAM_PFVF(CLIP_END);
b2612722 4114 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
b5a02f50
AB
4115 if (ret < 0)
4116 goto bye;
4117 adap->clipt_start = val[0];
4118 adap->clipt_end = val[1];
4119
b72a32da
RL
4120 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4121 * Classes supported by the hardware/firmware so we hard code it here
4122 * for now.
4123 */
4124 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4125
636f9d37
VP
4126 /* query params related to active filter region */
4127 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4128 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
b2612722 4129 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
636f9d37
VP
4130 /* If Active filter size is set we enable establishing
4131 * offload connection through firmware work request
4132 */
4133 if ((val[0] != val[1]) && (ret >= 0)) {
4134 adap->flags |= FW_OFLD_CONN;
4135 adap->tids.aftid_base = val[0];
4136 adap->tids.aftid_end = val[1];
4137 }
4138
b407a4a9
VP
4139 /* If we're running on newer firmware, let it know that we're
4140 * prepared to deal with encapsulated CPL messages. Older
4141 * firmware won't understand this and we'll just get
4142 * unencapsulated messages ...
4143 */
4144 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4145 val[0] = 1;
b2612722 4146 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
b407a4a9 4147
1ac0f095
KS
4148 /*
4149 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4150 * capability. Earlier versions of the firmware didn't have the
4151 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4152 * permission to use ULPTX MEMWRITE DSGL.
4153 */
4154 if (is_t4(adap->params.chip)) {
4155 adap->params.ulptx_memwrite_dsgl = false;
4156 } else {
4157 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
b2612722 4158 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1ac0f095
KS
4159 1, params, val);
4160 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4161 }
4162
636f9d37
VP
4163 /*
4164 * Get device capabilities so we can determine what resources we need
4165 * to manage.
4166 */
4167 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
4168 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4169 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 4170 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
4171 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4172 &caps_cmd);
4173 if (ret < 0)
4174 goto bye;
4175
13ee15d3 4176 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
4177 /* query offload-related parameters */
4178 params[0] = FW_PARAM_DEV(NTID);
4179 params[1] = FW_PARAM_PFVF(SERVER_START);
4180 params[2] = FW_PARAM_PFVF(SERVER_END);
4181 params[3] = FW_PARAM_PFVF(TDDP_START);
4182 params[4] = FW_PARAM_PFVF(TDDP_END);
4183 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
b2612722 4184 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 4185 params, val);
b8ff05a9
DM
4186 if (ret < 0)
4187 goto bye;
4188 adap->tids.ntids = val[0];
4189 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4190 adap->tids.stid_base = val[1];
4191 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37 4192 /*
dbedd44e 4193 * Setup server filter region. Divide the available filter
636f9d37
VP
4194 * region into two parts. Regular filters get 1/3rd and server
4195 * filters get 2/3rd part. This is only enabled if workarond
4196 * path is enabled.
4197 * 1. For regular filters.
4198 * 2. Server filter: This are special filters which are used
4199 * to redirect SYN packets to offload queue.
4200 */
4201 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4202 adap->tids.sftid_base = adap->tids.ftid_base +
4203 DIV_ROUND_UP(adap->tids.nftids, 3);
4204 adap->tids.nsftids = adap->tids.nftids -
4205 DIV_ROUND_UP(adap->tids.nftids, 3);
4206 adap->tids.nftids = adap->tids.sftid_base -
4207 adap->tids.ftid_base;
4208 }
b8ff05a9
DM
4209 adap->vres.ddp.start = val[3];
4210 adap->vres.ddp.size = val[4] - val[3] + 1;
4211 adap->params.ofldq_wr_cred = val[5];
636f9d37 4212
b8ff05a9
DM
4213 adap->params.offload = 1;
4214 }
636f9d37 4215 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
4216 params[0] = FW_PARAM_PFVF(STAG_START);
4217 params[1] = FW_PARAM_PFVF(STAG_END);
4218 params[2] = FW_PARAM_PFVF(RQ_START);
4219 params[3] = FW_PARAM_PFVF(RQ_END);
4220 params[4] = FW_PARAM_PFVF(PBL_START);
4221 params[5] = FW_PARAM_PFVF(PBL_END);
b2612722 4222 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 4223 params, val);
b8ff05a9
DM
4224 if (ret < 0)
4225 goto bye;
4226 adap->vres.stag.start = val[0];
4227 adap->vres.stag.size = val[1] - val[0] + 1;
4228 adap->vres.rq.start = val[2];
4229 adap->vres.rq.size = val[3] - val[2] + 1;
4230 adap->vres.pbl.start = val[4];
4231 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
4232
4233 params[0] = FW_PARAM_PFVF(SQRQ_START);
4234 params[1] = FW_PARAM_PFVF(SQRQ_END);
4235 params[2] = FW_PARAM_PFVF(CQ_START);
4236 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
4237 params[4] = FW_PARAM_PFVF(OCQ_START);
4238 params[5] = FW_PARAM_PFVF(OCQ_END);
b2612722 4239 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5c937dd3 4240 val);
a0881cab
DM
4241 if (ret < 0)
4242 goto bye;
4243 adap->vres.qp.start = val[0];
4244 adap->vres.qp.size = val[1] - val[0] + 1;
4245 adap->vres.cq.start = val[2];
4246 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
4247 adap->vres.ocq.start = val[4];
4248 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
4249
4250 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4251 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
b2612722 4252 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5c937dd3 4253 val);
4c2c5763
HS
4254 if (ret < 0) {
4255 adap->params.max_ordird_qp = 8;
4256 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4257 ret = 0;
4258 } else {
4259 adap->params.max_ordird_qp = val[0];
4260 adap->params.max_ird_adapter = val[1];
4261 }
4262 dev_info(adap->pdev_dev,
4263 "max_ordird_qp %d max_ird_adapter %d\n",
4264 adap->params.max_ordird_qp,
4265 adap->params.max_ird_adapter);
b8ff05a9 4266 }
636f9d37 4267 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
4268 params[0] = FW_PARAM_PFVF(ISCSI_START);
4269 params[1] = FW_PARAM_PFVF(ISCSI_END);
b2612722 4270 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
636f9d37 4271 params, val);
b8ff05a9
DM
4272 if (ret < 0)
4273 goto bye;
4274 adap->vres.iscsi.start = val[0];
4275 adap->vres.iscsi.size = val[1] - val[0] + 1;
4276 }
94cdb8bb
HS
4277 if (caps_cmd.cryptocaps) {
4278 /* Should query params here...TODO */
4279 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4280 adap->num_uld += 1;
4281 }
b8ff05a9
DM
4282#undef FW_PARAM_PFVF
4283#undef FW_PARAM_DEV
4284
92e7ae71
HS
4285 /* The MTU/MSS Table is initialized by now, so load their values. If
4286 * we're initializing the adapter, then we'll make any modifications
4287 * we want to the MTU/MSS Table and also initialize the congestion
4288 * parameters.
636f9d37 4289 */
b8ff05a9 4290 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
4291 if (state != DEV_STATE_INIT) {
4292 int i;
4293
4294 /* The default MTU Table contains values 1492 and 1500.
4295 * However, for TCP, it's better to have two values which are
4296 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4297 * This allows us to have a TCP Data Payload which is a
4298 * multiple of 8 regardless of what combination of TCP Options
4299 * are in use (always a multiple of 4 bytes) which is
4300 * important for performance reasons. For instance, if no
4301 * options are in use, then we have a 20-byte IP header and a
4302 * 20-byte TCP header. In this case, a 1500-byte MSS would
4303 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4304 * which is not a multiple of 8. So using an MSS of 1488 in
4305 * this case results in a TCP Data Payload of 1448 bytes which
4306 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4307 * Stamps have been negotiated, then an MTU of 1500 bytes
4308 * results in a TCP Data Payload of 1448 bytes which, as
4309 * above, is a multiple of 8 bytes ...
4310 */
4311 for (i = 0; i < NMTUS; i++)
4312 if (adap->params.mtus[i] == 1492) {
4313 adap->params.mtus[i] = 1488;
4314 break;
4315 }
7ee9ff94 4316
92e7ae71
HS
4317 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4318 adap->params.b_wnd);
4319 }
df64e4d3 4320 t4_init_sge_params(adap);
636f9d37 4321 adap->flags |= FW_OK;
c1e9af0c 4322 t4_init_tp_params(adap);
b8ff05a9
DM
4323 return 0;
4324
4325 /*
636f9d37
VP
4326 * Something bad happened. If a command timed out or failed with EIO
4327 * FW does not operate within its spec or something catastrophic
4328 * happened to HW/FW, stop issuing commands.
b8ff05a9 4329 */
636f9d37 4330bye:
4b8e27a8
HS
4331 kfree(adap->sge.egr_map);
4332 kfree(adap->sge.ingr_map);
4333 kfree(adap->sge.starving_fl);
4334 kfree(adap->sge.txq_maperr);
5b377d11
HS
4335#ifdef CONFIG_DEBUG_FS
4336 kfree(adap->sge.blocked_fl);
4337#endif
636f9d37
VP
4338 if (ret != -ETIMEDOUT && ret != -EIO)
4339 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
4340 return ret;
4341}
4342
204dc3c0
DM
4343/* EEH callbacks */
4344
4345static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4346 pci_channel_state_t state)
4347{
4348 int i;
4349 struct adapter *adap = pci_get_drvdata(pdev);
4350
4351 if (!adap)
4352 goto out;
4353
4354 rtnl_lock();
4355 adap->flags &= ~FW_OK;
4356 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 4357 spin_lock(&adap->stats_lock);
204dc3c0
DM
4358 for_each_port(adap, i) {
4359 struct net_device *dev = adap->port[i];
4360
4361 netif_device_detach(dev);
4362 netif_carrier_off(dev);
4363 }
9fe6cb58 4364 spin_unlock(&adap->stats_lock);
b37987e8 4365 disable_interrupts(adap);
204dc3c0
DM
4366 if (adap->flags & FULL_INIT_DONE)
4367 cxgb_down(adap);
4368 rtnl_unlock();
144be3d9
GS
4369 if ((adap->flags & DEV_ENABLED)) {
4370 pci_disable_device(pdev);
4371 adap->flags &= ~DEV_ENABLED;
4372 }
204dc3c0
DM
4373out: return state == pci_channel_io_perm_failure ?
4374 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4375}
4376
4377static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4378{
4379 int i, ret;
4380 struct fw_caps_config_cmd c;
4381 struct adapter *adap = pci_get_drvdata(pdev);
4382
4383 if (!adap) {
4384 pci_restore_state(pdev);
4385 pci_save_state(pdev);
4386 return PCI_ERS_RESULT_RECOVERED;
4387 }
4388
144be3d9
GS
4389 if (!(adap->flags & DEV_ENABLED)) {
4390 if (pci_enable_device(pdev)) {
4391 dev_err(&pdev->dev, "Cannot reenable PCI "
4392 "device after reset\n");
4393 return PCI_ERS_RESULT_DISCONNECT;
4394 }
4395 adap->flags |= DEV_ENABLED;
204dc3c0
DM
4396 }
4397
4398 pci_set_master(pdev);
4399 pci_restore_state(pdev);
4400 pci_save_state(pdev);
4401 pci_cleanup_aer_uncorrect_error_status(pdev);
4402
8203b509 4403 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 4404 return PCI_ERS_RESULT_DISCONNECT;
b2612722 4405 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
204dc3c0
DM
4406 return PCI_ERS_RESULT_DISCONNECT;
4407 adap->flags |= FW_OK;
4408 if (adap_init1(adap, &c))
4409 return PCI_ERS_RESULT_DISCONNECT;
4410
4411 for_each_port(adap, i) {
4412 struct port_info *p = adap2pinfo(adap, i);
4413
b2612722 4414 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
060e0c75 4415 NULL, NULL);
204dc3c0
DM
4416 if (ret < 0)
4417 return PCI_ERS_RESULT_DISCONNECT;
4418 p->viid = ret;
4419 p->xact_addr_filt = -1;
4420 }
4421
4422 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4423 adap->params.b_wnd);
1ae970e0 4424 setup_memwin(adap);
204dc3c0
DM
4425 if (cxgb_up(adap))
4426 return PCI_ERS_RESULT_DISCONNECT;
4427 return PCI_ERS_RESULT_RECOVERED;
4428}
4429
4430static void eeh_resume(struct pci_dev *pdev)
4431{
4432 int i;
4433 struct adapter *adap = pci_get_drvdata(pdev);
4434
4435 if (!adap)
4436 return;
4437
4438 rtnl_lock();
4439 for_each_port(adap, i) {
4440 struct net_device *dev = adap->port[i];
4441
4442 if (netif_running(dev)) {
4443 link_start(dev);
4444 cxgb_set_rxmode(dev);
4445 }
4446 netif_device_attach(dev);
4447 }
4448 rtnl_unlock();
4449}
4450
3646f0e5 4451static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
4452 .error_detected = eeh_err_detected,
4453 .slot_reset = eeh_slot_reset,
4454 .resume = eeh_resume,
4455};
4456
57d8b764 4457static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 4458{
57d8b764
KS
4459 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4460 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
4461}
4462
b8ff05a9
DM
4463/*
4464 * Perform default configuration of DMA queues depending on the number and type
4465 * of ports we found and the number of available CPUs. Most settings can be
4466 * modified by the admin prior to actual use.
4467 */
91744948 4468static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
4469{
4470 struct sge *s = &adap->sge;
688848b1
AB
4471 int i, n10g = 0, qidx = 0;
4472#ifndef CONFIG_CHELSIO_T4_DCB
4473 int q10g = 0;
4474#endif
cf38be6d 4475 int ciq_size;
b8ff05a9 4476
94cdb8bb
HS
4477 /* Reduce memory usage in kdump environment, disable all offload.
4478 */
4479 if (is_kdump_kernel()) {
4480 adap->params.offload = 0;
4481 adap->params.crypto = 0;
4482 } else if (adap->num_uld && uld_mem_alloc(adap)) {
4483 adap->params.crypto = 0;
4484 }
4485
b8ff05a9 4486 for_each_port(adap, i)
57d8b764 4487 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
4488#ifdef CONFIG_CHELSIO_T4_DCB
4489 /* For Data Center Bridging support we need to be able to support up
4490 * to 8 Traffic Priorities; each of which will be assigned to its
4491 * own TX Queue in order to prevent Head-Of-Line Blocking.
4492 */
4493 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4494 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4495 MAX_ETH_QSETS, adap->params.nports * 8);
4496 BUG_ON(1);
4497 }
b8ff05a9 4498
688848b1
AB
4499 for_each_port(adap, i) {
4500 struct port_info *pi = adap2pinfo(adap, i);
4501
4502 pi->first_qset = qidx;
4503 pi->nqsets = 8;
4504 qidx += pi->nqsets;
4505 }
4506#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4507 /*
4508 * We default to 1 queue per non-10G port and up to # of cores queues
4509 * per 10G port.
4510 */
4511 if (n10g)
4512 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
4513 if (q10g > netif_get_num_default_rss_queues())
4514 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
4515
4516 for_each_port(adap, i) {
4517 struct port_info *pi = adap2pinfo(adap, i);
4518
4519 pi->first_qset = qidx;
57d8b764 4520 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
4521 qidx += pi->nqsets;
4522 }
688848b1 4523#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4524
4525 s->ethqsets = qidx;
4526 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4527
4528 if (is_offload(adap)) {
4529 /*
4530 * For offload we use 1 queue/channel if all ports are up to 1G,
4531 * otherwise we divide all available queues amongst the channels
4532 * capped by the number of available cores.
4533 */
4534 if (n10g) {
f90ce561 4535 i = min_t(int, ARRAY_SIZE(s->iscsirxq),
b8ff05a9 4536 num_online_cpus());
f90ce561 4537 s->iscsiqsets = roundup(i, adap->params.nports);
b8ff05a9 4538 } else
f90ce561 4539 s->iscsiqsets = adap->params.nports;
b8ff05a9
DM
4540 /* For RDMA one Rx queue per channel suffices */
4541 s->rdmaqs = adap->params.nports;
f36e58e5
HS
4542 /* Try and allow at least 1 CIQ per cpu rounding down
4543 * to the number of ports, with a minimum of 1 per port.
4544 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4545 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4546 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4547 */
4548 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4549 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4550 adap->params.nports;
4551 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
f2692d16
VP
4552
4553 if (!is_t4(adap->params.chip))
4554 s->niscsitq = s->iscsiqsets;
b8ff05a9
DM
4555 }
4556
4557 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4558 struct sge_eth_rxq *r = &s->ethrxq[i];
4559
c887ad0e 4560 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
4561 r->fl.size = 72;
4562 }
4563
4564 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4565 s->ethtxq[i].q.size = 1024;
4566
4567 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4568 s->ctrlq[i].q.size = 512;
4569
4570 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4571 s->ofldtxq[i].q.size = 1024;
4572
f90ce561
HS
4573 for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4574 struct sge_ofld_rxq *r = &s->iscsirxq[i];
b8ff05a9 4575
c887ad0e 4576 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
4577 r->rspq.uld = CXGB4_ULD_ISCSI;
4578 r->fl.size = 72;
4579 }
4580
f2692d16
VP
4581 if (!is_t4(adap->params.chip)) {
4582 for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4583 struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4584
4585 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4586 r->rspq.uld = CXGB4_ULD_ISCSIT;
4587 r->fl.size = 72;
4588 }
4589 }
4590
b8ff05a9
DM
4591 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4592 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4593
c887ad0e 4594 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
4595 r->rspq.uld = CXGB4_ULD_RDMA;
4596 r->fl.size = 72;
4597 }
4598
cf38be6d
HS
4599 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4600 if (ciq_size > SGE_MAX_IQ_SIZE) {
4601 CH_WARN(adap, "CIQ size too small for available IQs\n");
4602 ciq_size = SGE_MAX_IQ_SIZE;
4603 }
4604
4605 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4606 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4607
c887ad0e 4608 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
4609 r->rspq.uld = CXGB4_ULD_RDMA;
4610 }
4611
c887ad0e
HS
4612 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4613 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
4614}
4615
4616/*
4617 * Reduce the number of Ethernet queues across all ports to at most n.
4618 * n provides at least one queue per port.
4619 */
91744948 4620static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
4621{
4622 int i;
4623 struct port_info *pi;
4624
4625 while (n < adap->sge.ethqsets)
4626 for_each_port(adap, i) {
4627 pi = adap2pinfo(adap, i);
4628 if (pi->nqsets > 1) {
4629 pi->nqsets--;
4630 adap->sge.ethqsets--;
4631 if (adap->sge.ethqsets <= n)
4632 break;
4633 }
4634 }
4635
4636 n = 0;
4637 for_each_port(adap, i) {
4638 pi = adap2pinfo(adap, i);
4639 pi->first_qset = n;
4640 n += pi->nqsets;
4641 }
4642}
4643
94cdb8bb
HS
4644static int get_msix_info(struct adapter *adap)
4645{
4646 struct uld_msix_info *msix_info;
4647 int max_ingq = (MAX_OFLD_QSETS * adap->num_uld);
4648
4649 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4650 if (!msix_info)
4651 return -ENOMEM;
4652
4653 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4654 sizeof(long), GFP_KERNEL);
4655 if (!adap->msix_bmap_ulds.msix_bmap) {
4656 kfree(msix_info);
4657 return -ENOMEM;
4658 }
4659 spin_lock_init(&adap->msix_bmap_ulds.lock);
4660 adap->msix_info_ulds = msix_info;
4661 return 0;
4662}
4663
4664static void free_msix_info(struct adapter *adap)
4665{
4666 if (!adap->num_uld)
4667 return;
4668
4669 kfree(adap->msix_info_ulds);
4670 kfree(adap->msix_bmap_ulds.msix_bmap);
4671}
4672
b8ff05a9
DM
4673/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4674#define EXTRA_VECS 2
4675
91744948 4676static int enable_msix(struct adapter *adap)
b8ff05a9 4677{
94cdb8bb
HS
4678 int ofld_need = 0, uld_need = 0;
4679 int i, j, want, need, allocated;
b8ff05a9
DM
4680 struct sge *s = &adap->sge;
4681 unsigned int nchan = adap->params.nports;
f36e58e5 4682 struct msix_entry *entries;
94cdb8bb 4683 int max_ingq = MAX_INGQ;
f36e58e5 4684
94cdb8bb
HS
4685 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4686 entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
f36e58e5
HS
4687 GFP_KERNEL);
4688 if (!entries)
4689 return -ENOMEM;
b8ff05a9 4690
94cdb8bb
HS
4691 /* map for msix */
4692 if (is_pci_uld(adap) && get_msix_info(adap))
4693 adap->params.crypto = 0;
4694
4695 for (i = 0; i < max_ingq + 1; ++i)
b8ff05a9
DM
4696 entries[i].entry = i;
4697
4698 want = s->max_ethqsets + EXTRA_VECS;
4699 if (is_offload(adap)) {
f2692d16
VP
4700 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4701 s->niscsitq;
b8ff05a9 4702 /* need nchan for each possible ULD */
f2692d16
VP
4703 if (is_t4(adap->params.chip))
4704 ofld_need = 3 * nchan;
4705 else
4706 ofld_need = 4 * nchan;
b8ff05a9 4707 }
94cdb8bb
HS
4708 if (is_pci_uld(adap)) {
4709 want += netif_get_num_default_rss_queues() * nchan;
4710 uld_need = nchan;
4711 }
688848b1
AB
4712#ifdef CONFIG_CHELSIO_T4_DCB
4713 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4714 * each port.
4715 */
94cdb8bb 4716 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
688848b1 4717#else
94cdb8bb 4718 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
688848b1 4719#endif
f36e58e5
HS
4720 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4721 if (allocated < 0) {
4722 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4723 " not using MSI-X\n");
4724 kfree(entries);
4725 return allocated;
4726 }
b8ff05a9 4727
f36e58e5 4728 /* Distribute available vectors to the various queue groups.
c32ad224
AG
4729 * Every group gets its minimum requirement and NIC gets top
4730 * priority for leftovers.
4731 */
94cdb8bb 4732 i = allocated - EXTRA_VECS - ofld_need - uld_need;
c32ad224
AG
4733 if (i < s->max_ethqsets) {
4734 s->max_ethqsets = i;
4735 if (i < s->ethqsets)
4736 reduce_ethqs(adap, i);
4737 }
94cdb8bb
HS
4738 if (is_pci_uld(adap)) {
4739 if (allocated < want)
4740 s->nqs_per_uld = nchan;
4741 else
4742 s->nqs_per_uld = netif_get_num_default_rss_queues() *
4743 nchan;
4744 }
4745
c32ad224 4746 if (is_offload(adap)) {
f36e58e5
HS
4747 if (allocated < want) {
4748 s->rdmaqs = nchan;
4749 s->rdmaciqs = nchan;
f2692d16
VP
4750
4751 if (!is_t4(adap->params.chip))
4752 s->niscsitq = nchan;
f36e58e5
HS
4753 }
4754
4755 /* leftovers go to OFLD */
4756 i = allocated - EXTRA_VECS - s->max_ethqsets -
94cdb8bb
HS
4757 s->rdmaqs - s->rdmaciqs - s->niscsitq;
4758 if (is_pci_uld(adap))
4759 i -= s->nqs_per_uld * adap->num_uld;
f90ce561 4760 s->iscsiqsets = (i / nchan) * nchan; /* round down */
f2692d16 4761
c32ad224 4762 }
94cdb8bb
HS
4763
4764 for (i = 0; i < (allocated - (s->nqs_per_uld * adap->num_uld)); ++i)
c32ad224 4765 adap->msix_info[i].vec = entries[i].vector;
94cdb8bb
HS
4766 if (is_pci_uld(adap)) {
4767 for (j = 0 ; i < allocated; ++i, j++)
4768 adap->msix_info_ulds[j].vec = entries[i].vector;
4769 adap->msix_bmap_ulds.mapsize = j;
4770 }
43eb4e82 4771 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
94cdb8bb 4772 "nic %d iscsi %d rdma cpl %d rdma ciq %d uld %d\n",
f90ce561 4773 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
94cdb8bb 4774 s->rdmaciqs, s->nqs_per_uld);
c32ad224 4775
f36e58e5 4776 kfree(entries);
c32ad224 4777 return 0;
b8ff05a9
DM
4778}
4779
4780#undef EXTRA_VECS
4781
91744948 4782static int init_rss(struct adapter *adap)
671b0060 4783{
c035e183
HS
4784 unsigned int i;
4785 int err;
4786
4787 err = t4_init_rss_mode(adap, adap->mbox);
4788 if (err)
4789 return err;
671b0060
DM
4790
4791 for_each_port(adap, i) {
4792 struct port_info *pi = adap2pinfo(adap, i);
4793
4794 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4795 if (!pi->rss)
4796 return -ENOMEM;
671b0060
DM
4797 }
4798 return 0;
4799}
4800
547fd272
HS
4801static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4802 enum pci_bus_speed *speed,
4803 enum pcie_link_width *width)
4804{
4805 u32 lnkcap1, lnkcap2;
4806 int err1, err2;
4807
4808#define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4809
4810 *speed = PCI_SPEED_UNKNOWN;
4811 *width = PCIE_LNK_WIDTH_UNKNOWN;
4812
4813 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4814 &lnkcap1);
4815 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4816 &lnkcap2);
4817 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4818 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4819 *speed = PCIE_SPEED_8_0GT;
4820 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4821 *speed = PCIE_SPEED_5_0GT;
4822 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4823 *speed = PCIE_SPEED_2_5GT;
4824 }
4825 if (!err1) {
4826 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4827 if (!lnkcap2) { /* pre-r3.0 */
4828 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4829 *speed = PCIE_SPEED_5_0GT;
4830 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4831 *speed = PCIE_SPEED_2_5GT;
4832 }
4833 }
4834
4835 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4836 return err1 ? err1 : err2 ? err2 : -EINVAL;
4837 return 0;
4838}
4839
4840static void cxgb4_check_pcie_caps(struct adapter *adap)
4841{
4842 enum pcie_link_width width, width_cap;
4843 enum pci_bus_speed speed, speed_cap;
4844
4845#define PCIE_SPEED_STR(speed) \
4846 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4847 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4848 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4849 "Unknown")
4850
4851 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4852 dev_warn(adap->pdev_dev,
4853 "Unable to determine PCIe device BW capabilities\n");
4854 return;
4855 }
4856
4857 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4858 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4859 dev_warn(adap->pdev_dev,
4860 "Unable to determine PCI Express bandwidth.\n");
4861 return;
4862 }
4863
4864 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4865 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4866 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4867 width, width_cap);
4868 if (speed < speed_cap || width < width_cap)
4869 dev_info(adap->pdev_dev,
4870 "A slot with more lanes and/or higher speed is "
4871 "suggested for optimal performance.\n");
4872}
4873
0de72738
HS
4874/* Dump basic information about the adapter */
4875static void print_adapter_info(struct adapter *adapter)
4876{
4877 /* Device information */
4878 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4879 adapter->params.vpd.id,
4880 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4881 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4882 adapter->params.vpd.sn, adapter->params.vpd.pn);
4883
4884 /* Firmware Version */
4885 if (!adapter->params.fw_vers)
4886 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4887 else
4888 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4889 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4890 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4891 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4892 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4893
4894 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4895 * Firmware, so dev_info() is more appropriate here.)
4896 */
4897 if (!adapter->params.bs_vers)
4898 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4899 else
4900 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4901 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4902 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4903 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4904 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4905
4906 /* TP Microcode Version */
4907 if (!adapter->params.tp_vers)
4908 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4909 else
4910 dev_info(adapter->pdev_dev,
4911 "TP Microcode version: %u.%u.%u.%u\n",
4912 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4913 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4914 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4915 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4916
4917 /* Expansion ROM version */
4918 if (!adapter->params.er_vers)
4919 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4920 else
4921 dev_info(adapter->pdev_dev,
4922 "Expansion ROM version: %u.%u.%u.%u\n",
4923 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4924 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4925 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4926 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4927
4928 /* Software/Hardware configuration */
4929 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4930 is_offload(adapter) ? "R" : "",
4931 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4932 (adapter->flags & USING_MSI) ? "MSI" : ""),
4933 is_offload(adapter) ? "Offload" : "non-Offload");
4934}
4935
91744948 4936static void print_port_info(const struct net_device *dev)
b8ff05a9 4937{
b8ff05a9 4938 char buf[80];
118969ed 4939 char *bufp = buf;
f1a051b9 4940 const char *spd = "";
118969ed
DM
4941 const struct port_info *pi = netdev_priv(dev);
4942 const struct adapter *adap = pi->adapter;
f1a051b9
DM
4943
4944 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4945 spd = " 2.5 GT/s";
4946 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4947 spd = " 5 GT/s";
d2e752db
RD
4948 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4949 spd = " 8 GT/s";
b8ff05a9 4950
118969ed
DM
4951 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4952 bufp += sprintf(bufp, "100/");
4953 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4954 bufp += sprintf(bufp, "1000/");
4955 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4956 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
4957 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4958 bufp += sprintf(bufp, "40G/");
118969ed
DM
4959 if (bufp != buf)
4960 --bufp;
72aca4bf 4961 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed 4962
0de72738
HS
4963 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4964 dev->name, adap->params.vpd.id, adap->name, buf);
b8ff05a9
DM
4965}
4966
91744948 4967static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 4968{
e5c8ae5f 4969 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
4970}
4971
06546391
DM
4972/*
4973 * Free the following resources:
4974 * - memory used for tables
4975 * - MSI/MSI-X
4976 * - net devices
4977 * - resources FW is holding for us
4978 */
4979static void free_some_resources(struct adapter *adapter)
4980{
4981 unsigned int i;
4982
4983 t4_free_mem(adapter->l2t);
b72a32da 4984 t4_cleanup_sched(adapter);
06546391 4985 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
4986 kfree(adapter->sge.egr_map);
4987 kfree(adapter->sge.ingr_map);
4988 kfree(adapter->sge.starving_fl);
4989 kfree(adapter->sge.txq_maperr);
5b377d11
HS
4990#ifdef CONFIG_DEBUG_FS
4991 kfree(adapter->sge.blocked_fl);
4992#endif
06546391
DM
4993 disable_msi(adapter);
4994
4995 for_each_port(adapter, i)
671b0060 4996 if (adapter->port[i]) {
4f3a0fcf
HS
4997 struct port_info *pi = adap2pinfo(adapter, i);
4998
4999 if (pi->viid != 0)
5000 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5001 0, pi->viid);
671b0060 5002 kfree(adap2pinfo(adapter, i)->rss);
06546391 5003 free_netdev(adapter->port[i]);
671b0060 5004 }
06546391 5005 if (adapter->flags & FW_OK)
b2612722 5006 t4_fw_bye(adapter, adapter->pf);
06546391
DM
5007}
5008
2ed28baa 5009#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 5010#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 5011 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 5012#define SEGMENT_SIZE 128
b8ff05a9 5013
d86bd29e
HS
5014static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
5015{
d86bd29e
HS
5016 u16 device_id;
5017
5018 /* Retrieve adapter's device ID */
5019 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
46cdc9be 5020
5021 switch (device_id >> 12) {
d86bd29e 5022 case CHELSIO_T4:
46cdc9be 5023 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
d86bd29e 5024 case CHELSIO_T5:
46cdc9be 5025 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
d86bd29e 5026 case CHELSIO_T6:
46cdc9be 5027 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
d86bd29e
HS
5028 default:
5029 dev_err(&pdev->dev, "Device %d is not supported\n",
5030 device_id);
d86bd29e 5031 }
46cdc9be 5032 return -EINVAL;
d86bd29e
HS
5033}
5034
b6244201 5035#ifdef CONFIG_PCI_IOV
e7b48a32
HS
5036static void dummy_setup(struct net_device *dev)
5037{
5038 dev->type = ARPHRD_NONE;
5039 dev->mtu = 0;
5040 dev->hard_header_len = 0;
5041 dev->addr_len = 0;
5042 dev->tx_queue_len = 0;
5043 dev->flags |= IFF_NOARP;
5044 dev->priv_flags |= IFF_NO_QUEUE;
5045
5046 /* Initialize the device structure. */
5047 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5048 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5049 dev->destructor = free_netdev;
5050}
5051
5052static int config_mgmt_dev(struct pci_dev *pdev)
5053{
5054 struct adapter *adap = pci_get_drvdata(pdev);
5055 struct net_device *netdev;
5056 struct port_info *pi;
5057 char name[IFNAMSIZ];
5058 int err;
5059
5060 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
5061 netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
5062 if (!netdev)
5063 return -ENOMEM;
5064
5065 pi = netdev_priv(netdev);
5066 pi->adapter = adap;
5067 SET_NETDEV_DEV(netdev, &pdev->dev);
5068
5069 adap->port[0] = netdev;
5070
5071 err = register_netdev(adap->port[0]);
5072 if (err) {
5073 pr_info("Unable to register VF mgmt netdev %s\n", name);
5074 free_netdev(adap->port[0]);
5075 adap->port[0] = NULL;
5076 return err;
5077 }
5078 return 0;
5079}
5080
b6244201
HS
5081static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5082{
7829451c 5083 struct adapter *adap = pci_get_drvdata(pdev);
b6244201
HS
5084 int err = 0;
5085 int current_vfs = pci_num_vf(pdev);
5086 u32 pcie_fw;
b6244201 5087
7829451c 5088 pcie_fw = readl(adap->regs + PCIE_FW_A);
b6244201
HS
5089 /* Check if cxgb4 is the MASTER and fw is initialized */
5090 if (!(pcie_fw & PCIE_FW_INIT_F) ||
5091 !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
5092 PCIE_FW_MASTER_G(pcie_fw) != 4) {
5093 dev_warn(&pdev->dev,
5094 "cxgb4 driver needs to be MASTER to support SRIOV\n");
5095 return -EOPNOTSUPP;
5096 }
5097
5098 /* If any of the VF's is already assigned to Guest OS, then
5099 * SRIOV for the same cannot be modified
5100 */
5101 if (current_vfs && pci_vfs_assigned(pdev)) {
5102 dev_err(&pdev->dev,
5103 "Cannot modify SR-IOV while VFs are assigned\n");
5104 num_vfs = current_vfs;
5105 return num_vfs;
5106 }
5107
5108 /* Disable SRIOV when zero is passed.
5109 * One needs to disable SRIOV before modifying it, else
5110 * stack throws the below warning:
5111 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
5112 */
5113 if (!num_vfs) {
5114 pci_disable_sriov(pdev);
e7b48a32 5115 if (adap->port[0]) {
7829451c 5116 unregister_netdev(adap->port[0]);
e7b48a32
HS
5117 adap->port[0] = NULL;
5118 }
b6244201
HS
5119 return num_vfs;
5120 }
5121
5122 if (num_vfs != current_vfs) {
5123 err = pci_enable_sriov(pdev, num_vfs);
5124 if (err)
5125 return err;
7829451c 5126
e7b48a32
HS
5127 err = config_mgmt_dev(pdev);
5128 if (err)
5129 return err;
b6244201
HS
5130 }
5131 return num_vfs;
5132}
5133#endif
5134
1dd06ae8 5135static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 5136{
22adfe0a 5137 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 5138 struct port_info *pi;
c8f44aff 5139 bool highdma = false;
b8ff05a9 5140 struct adapter *adapter = NULL;
7829451c 5141 struct net_device *netdev;
d6ce2628 5142 void __iomem *regs;
d86bd29e
HS
5143 u32 whoami, pl_rev;
5144 enum chip_type chip;
7829451c 5145 static int adap_idx = 1;
b8ff05a9
DM
5146
5147 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5148
5149 err = pci_request_regions(pdev, KBUILD_MODNAME);
5150 if (err) {
5151 /* Just info, some other driver may have claimed the device. */
5152 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5153 return err;
5154 }
5155
b8ff05a9
DM
5156 err = pci_enable_device(pdev);
5157 if (err) {
5158 dev_err(&pdev->dev, "cannot enable PCI device\n");
5159 goto out_release_regions;
5160 }
5161
d6ce2628
HS
5162 regs = pci_ioremap_bar(pdev, 0);
5163 if (!regs) {
5164 dev_err(&pdev->dev, "cannot map device registers\n");
5165 err = -ENOMEM;
5166 goto out_disable_device;
5167 }
5168
8203b509
HS
5169 err = t4_wait_dev_ready(regs);
5170 if (err < 0)
5171 goto out_unmap_bar0;
5172
d6ce2628 5173 /* We control everything through one PF */
d86bd29e
HS
5174 whoami = readl(regs + PL_WHOAMI_A);
5175 pl_rev = REV_G(readl(regs + PL_REV_A));
5176 chip = get_chip_type(pdev, pl_rev);
5177 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
5178 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
d6ce2628 5179 if (func != ent->driver_data) {
7829451c 5180#ifndef CONFIG_PCI_IOV
d6ce2628 5181 iounmap(regs);
7829451c 5182#endif
d6ce2628
HS
5183 pci_disable_device(pdev);
5184 pci_save_state(pdev); /* to restore SR-IOV later */
5185 goto sriov;
5186 }
5187
b8ff05a9 5188 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 5189 highdma = true;
b8ff05a9
DM
5190 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5191 if (err) {
5192 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5193 "coherent allocations\n");
d6ce2628 5194 goto out_unmap_bar0;
b8ff05a9
DM
5195 }
5196 } else {
5197 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5198 if (err) {
5199 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 5200 goto out_unmap_bar0;
b8ff05a9
DM
5201 }
5202 }
5203
5204 pci_enable_pcie_error_reporting(pdev);
ef306b50 5205 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
5206 pci_set_master(pdev);
5207 pci_save_state(pdev);
5208
5209 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5210 if (!adapter) {
5211 err = -ENOMEM;
d6ce2628 5212 goto out_unmap_bar0;
b8ff05a9 5213 }
7829451c 5214 adap_idx++;
b8ff05a9 5215
29aaee65
AB
5216 adapter->workq = create_singlethread_workqueue("cxgb4");
5217 if (!adapter->workq) {
5218 err = -ENOMEM;
5219 goto out_free_adapter;
5220 }
5221
7f080c3f
HS
5222 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5223 (sizeof(struct mbox_cmd) *
5224 T4_OS_LOG_MBOX_CMDS),
5225 GFP_KERNEL);
5226 if (!adapter->mbox_log) {
5227 err = -ENOMEM;
5228 goto out_free_adapter;
5229 }
5230 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5231
144be3d9
GS
5232 /* PCI device has been enabled */
5233 adapter->flags |= DEV_ENABLED;
5234
d6ce2628 5235 adapter->regs = regs;
b8ff05a9
DM
5236 adapter->pdev = pdev;
5237 adapter->pdev_dev = &pdev->dev;
0de72738 5238 adapter->name = pci_name(pdev);
3069ee9b 5239 adapter->mbox = func;
b2612722 5240 adapter->pf = func;
b8ff05a9
DM
5241 adapter->msg_enable = dflt_msg_enable;
5242 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5243
5244 spin_lock_init(&adapter->stats_lock);
5245 spin_lock_init(&adapter->tid_release_lock);
e327c225 5246 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
5247
5248 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
5249 INIT_WORK(&adapter->db_full_task, process_db_full);
5250 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
5251
5252 err = t4_prep_adapter(adapter);
5253 if (err)
d6ce2628
HS
5254 goto out_free_adapter;
5255
22adfe0a 5256
d14807dd 5257 if (!is_t4(adapter->params.chip)) {
f612b815
HS
5258 s_qpp = (QUEUESPERPAGEPF0_S +
5259 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
b2612722 5260 adapter->pf);
f612b815
HS
5261 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5262 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
5263 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5264
5265 /* Each segment size is 128B. Write coalescing is enabled only
5266 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5267 * queue is less no of segments that can be accommodated in
5268 * a page size.
5269 */
5270 if (qpp > num_seg) {
5271 dev_err(&pdev->dev,
5272 "Incorrect number of egress queues per page\n");
5273 err = -EINVAL;
d6ce2628 5274 goto out_free_adapter;
22adfe0a
SR
5275 }
5276 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5277 pci_resource_len(pdev, 2));
5278 if (!adapter->bar2) {
5279 dev_err(&pdev->dev, "cannot map device bar2 region\n");
5280 err = -ENOMEM;
d6ce2628 5281 goto out_free_adapter;
22adfe0a
SR
5282 }
5283 }
5284
636f9d37 5285 setup_memwin(adapter);
b8ff05a9 5286 err = adap_init0(adapter);
5b377d11
HS
5287#ifdef CONFIG_DEBUG_FS
5288 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5289#endif
636f9d37 5290 setup_memwin_rdma(adapter);
b8ff05a9
DM
5291 if (err)
5292 goto out_unmap_bar;
5293
2a485cf7
HS
5294 /* configure SGE_STAT_CFG_A to read WC stats */
5295 if (!is_t4(adapter->params.chip))
676d6a75
HS
5296 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5297 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5298 T6_STATMODE_V(0)));
2a485cf7 5299
b8ff05a9 5300 for_each_port(adapter, i) {
b8ff05a9
DM
5301 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5302 MAX_ETH_QSETS);
5303 if (!netdev) {
5304 err = -ENOMEM;
5305 goto out_free_dev;
5306 }
5307
5308 SET_NETDEV_DEV(netdev, &pdev->dev);
5309
5310 adapter->port[i] = netdev;
5311 pi = netdev_priv(netdev);
5312 pi->adapter = adapter;
5313 pi->xact_addr_filt = -1;
b8ff05a9 5314 pi->port_id = i;
b8ff05a9
DM
5315 netdev->irq = pdev->irq;
5316
2ed28baa
MM
5317 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5318 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5319 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 5320 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
5321 if (highdma)
5322 netdev->hw_features |= NETIF_F_HIGHDMA;
5323 netdev->features |= netdev->hw_features;
b8ff05a9
DM
5324 netdev->vlan_features = netdev->features & VLAN_FEAT;
5325
01789349
JP
5326 netdev->priv_flags |= IFF_UNICAST_FLT;
5327
b8ff05a9 5328 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
5329#ifdef CONFIG_CHELSIO_T4_DCB
5330 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5331 cxgb4_dcb_state_init(netdev);
5332#endif
812034f1 5333 cxgb4_set_ethtool_ops(netdev);
b8ff05a9
DM
5334 }
5335
5336 pci_set_drvdata(pdev, adapter);
5337
5338 if (adapter->flags & FW_OK) {
060e0c75 5339 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
5340 if (err)
5341 goto out_free_dev;
098ef6c2
HS
5342 } else if (adapter->params.nports == 1) {
5343 /* If we don't have a connection to the firmware -- possibly
5344 * because of an error -- grab the raw VPD parameters so we
5345 * can set the proper MAC Address on the debug network
5346 * interface that we've created.
5347 */
5348 u8 hw_addr[ETH_ALEN];
5349 u8 *na = adapter->params.vpd.na;
5350
5351 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5352 if (!err) {
5353 for (i = 0; i < ETH_ALEN; i++)
5354 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5355 hex2val(na[2 * i + 1]));
5356 t4_set_hw_addr(adapter, 0, hw_addr);
5357 }
b8ff05a9
DM
5358 }
5359
098ef6c2 5360 /* Configure queues and allocate tables now, they can be needed as
b8ff05a9
DM
5361 * soon as the first register_netdev completes.
5362 */
5363 cfg_queues(adapter);
5364
5be9ed8d 5365 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
b8ff05a9
DM
5366 if (!adapter->l2t) {
5367 /* We tolerate a lack of L2T, giving up some functionality */
5368 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5369 adapter->params.offload = 0;
5370 }
5371
b5a02f50 5372#if IS_ENABLED(CONFIG_IPV6)
eb72f74f
HS
5373 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5374 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5375 /* CLIP functionality is not present in hardware,
5376 * hence disable all offload features
b5a02f50
AB
5377 */
5378 dev_warn(&pdev->dev,
eb72f74f 5379 "CLIP not enabled in hardware, continuing\n");
b5a02f50 5380 adapter->params.offload = 0;
eb72f74f
HS
5381 } else {
5382 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5383 adapter->clipt_end);
5384 if (!adapter->clipt) {
5385 /* We tolerate a lack of clip_table, giving up
5386 * some functionality
5387 */
5388 dev_warn(&pdev->dev,
5389 "could not allocate Clip table, continuing\n");
5390 adapter->params.offload = 0;
5391 }
b5a02f50
AB
5392 }
5393#endif
b72a32da
RL
5394
5395 for_each_port(adapter, i) {
5396 pi = adap2pinfo(adapter, i);
5397 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5398 if (!pi->sched_tbl)
5399 dev_warn(&pdev->dev,
5400 "could not activate scheduling on port %d\n",
5401 i);
5402 }
5403
b8ff05a9
DM
5404 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5405 dev_warn(&pdev->dev, "could not allocate TID table, "
5406 "continuing\n");
5407 adapter->params.offload = 0;
5408 }
5409
9a1bb9f6
HS
5410 if (is_offload(adapter)) {
5411 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5412 u32 hash_base, hash_reg;
5413
5414 if (chip <= CHELSIO_T5) {
5415 hash_reg = LE_DB_TID_HASHBASE_A;
5416 hash_base = t4_read_reg(adapter, hash_reg);
5417 adapter->tids.hash_base = hash_base / 4;
5418 } else {
5419 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5420 hash_base = t4_read_reg(adapter, hash_reg);
5421 adapter->tids.hash_base = hash_base;
5422 }
5423 }
5424 }
5425
f7cabcdd
DM
5426 /* See what interrupts we'll be using */
5427 if (msi > 1 && enable_msix(adapter) == 0)
5428 adapter->flags |= USING_MSIX;
94cdb8bb 5429 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
f7cabcdd 5430 adapter->flags |= USING_MSI;
94cdb8bb
HS
5431 if (msi > 1)
5432 free_msix_info(adapter);
5433 }
f7cabcdd 5434
547fd272
HS
5435 /* check for PCI Express bandwidth capabiltites */
5436 cxgb4_check_pcie_caps(adapter);
5437
671b0060
DM
5438 err = init_rss(adapter);
5439 if (err)
5440 goto out_free_dev;
5441
b8ff05a9
DM
5442 /*
5443 * The card is now ready to go. If any errors occur during device
5444 * registration we do not fail the whole card but rather proceed only
5445 * with the ports we manage to register successfully. However we must
5446 * register at least one net device.
5447 */
5448 for_each_port(adapter, i) {
a57cabe0
DM
5449 pi = adap2pinfo(adapter, i);
5450 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5451 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5452
b8ff05a9
DM
5453 err = register_netdev(adapter->port[i]);
5454 if (err)
b1a3c2b6 5455 break;
b1a3c2b6
DM
5456 adapter->chan_map[pi->tx_chan] = i;
5457 print_port_info(adapter->port[i]);
b8ff05a9 5458 }
b1a3c2b6 5459 if (i == 0) {
b8ff05a9
DM
5460 dev_err(&pdev->dev, "could not register any net devices\n");
5461 goto out_free_dev;
5462 }
b1a3c2b6
DM
5463 if (err) {
5464 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5465 err = 0;
6403eab1 5466 }
b8ff05a9
DM
5467
5468 if (cxgb4_debugfs_root) {
5469 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5470 cxgb4_debugfs_root);
5471 setup_debugfs(adapter);
5472 }
5473
6482aa7c
DLR
5474 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5475 pdev->needs_freset = 1;
5476
b8ff05a9
DM
5477 if (is_offload(adapter))
5478 attach_ulds(adapter);
5479
0de72738 5480 print_adapter_info(adapter);
7829451c 5481 return 0;
0de72738 5482
8e1e6059 5483sriov:
b8ff05a9 5484#ifdef CONFIG_PCI_IOV
b6244201
HS
5485 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
5486 dev_warn(&pdev->dev,
5487 "Enabling SR-IOV VFs using the num_vf module "
5488 "parameter is deprecated - please use the pci sysfs "
5489 "interface instead.\n");
b8ff05a9
DM
5490 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5491 dev_info(&pdev->dev,
5492 "instantiated %u virtual functions\n",
5493 num_vf[func]);
b6244201 5494 }
7829451c
HS
5495
5496 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5497 if (!adapter) {
5498 err = -ENOMEM;
5499 goto free_pci_region;
5500 }
5501
7829451c
HS
5502 adapter->pdev = pdev;
5503 adapter->pdev_dev = &pdev->dev;
5504 adapter->name = pci_name(pdev);
5505 adapter->mbox = func;
5506 adapter->pf = func;
5507 adapter->regs = regs;
e7b48a32 5508 adapter->adap_idx = adap_idx;
7829451c
HS
5509 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5510 (sizeof(struct mbox_cmd) *
5511 T4_OS_LOG_MBOX_CMDS),
5512 GFP_KERNEL);
5513 if (!adapter->mbox_log) {
5514 err = -ENOMEM;
e7b48a32 5515 goto free_adapter;
7829451c 5516 }
7829451c 5517 pci_set_drvdata(pdev, adapter);
7829451c
HS
5518 return 0;
5519
7829451c
HS
5520 free_adapter:
5521 kfree(adapter);
5522 free_pci_region:
5523 iounmap(regs);
5524 pci_disable_sriov(pdev);
5525 pci_release_regions(pdev);
5526 return err;
5527#else
b8ff05a9 5528 return 0;
7829451c 5529#endif
b8ff05a9
DM
5530
5531 out_free_dev:
06546391 5532 free_some_resources(adapter);
94cdb8bb
HS
5533 if (adapter->flags & USING_MSIX)
5534 free_msix_info(adapter);
5535 if (adapter->num_uld)
5536 uld_mem_free(adapter);
b8ff05a9 5537 out_unmap_bar:
d14807dd 5538 if (!is_t4(adapter->params.chip))
22adfe0a 5539 iounmap(adapter->bar2);
b8ff05a9 5540 out_free_adapter:
29aaee65
AB
5541 if (adapter->workq)
5542 destroy_workqueue(adapter->workq);
5543
7f080c3f 5544 kfree(adapter->mbox_log);
b8ff05a9 5545 kfree(adapter);
d6ce2628
HS
5546 out_unmap_bar0:
5547 iounmap(regs);
b8ff05a9
DM
5548 out_disable_device:
5549 pci_disable_pcie_error_reporting(pdev);
5550 pci_disable_device(pdev);
5551 out_release_regions:
5552 pci_release_regions(pdev);
b8ff05a9
DM
5553 return err;
5554}
5555
91744948 5556static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
5557{
5558 struct adapter *adapter = pci_get_drvdata(pdev);
5559
7829451c
HS
5560 if (!adapter) {
5561 pci_release_regions(pdev);
5562 return;
5563 }
636f9d37 5564
7829451c 5565 if (adapter->pf == 4) {
b8ff05a9
DM
5566 int i;
5567
29aaee65
AB
5568 /* Tear down per-adapter Work Queue first since it can contain
5569 * references to our adapter data structure.
5570 */
5571 destroy_workqueue(adapter->workq);
5572
b8ff05a9
DM
5573 if (is_offload(adapter))
5574 detach_ulds(adapter);
5575
b37987e8
HS
5576 disable_interrupts(adapter);
5577
b8ff05a9 5578 for_each_port(adapter, i)
8f3a7676 5579 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
5580 unregister_netdev(adapter->port[i]);
5581
9f16dc2e 5582 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 5583
f2b7e78d
VP
5584 /* If we allocated filters, free up state associated with any
5585 * valid filters ...
5586 */
5587 if (adapter->tids.ftid_tab) {
5588 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
5589 for (i = 0; i < (adapter->tids.nftids +
5590 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
5591 if (f->valid)
5592 clear_filter(adapter, f);
5593 }
5594
aaefae9b
DM
5595 if (adapter->flags & FULL_INIT_DONE)
5596 cxgb_down(adapter);
b8ff05a9 5597
94cdb8bb
HS
5598 if (adapter->flags & USING_MSIX)
5599 free_msix_info(adapter);
5600 if (adapter->num_uld)
5601 uld_mem_free(adapter);
06546391 5602 free_some_resources(adapter);
b5a02f50
AB
5603#if IS_ENABLED(CONFIG_IPV6)
5604 t4_cleanup_clip_tbl(adapter);
5605#endif
b8ff05a9 5606 iounmap(adapter->regs);
d14807dd 5607 if (!is_t4(adapter->params.chip))
22adfe0a 5608 iounmap(adapter->bar2);
b8ff05a9 5609 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
5610 if ((adapter->flags & DEV_ENABLED)) {
5611 pci_disable_device(pdev);
5612 adapter->flags &= ~DEV_ENABLED;
5613 }
b8ff05a9 5614 pci_release_regions(pdev);
7f080c3f 5615 kfree(adapter->mbox_log);
ee9a33b2 5616 synchronize_rcu();
8b662fe7 5617 kfree(adapter);
7829451c
HS
5618 }
5619#ifdef CONFIG_PCI_IOV
5620 else {
e7b48a32 5621 if (adapter->port[0])
7829451c 5622 unregister_netdev(adapter->port[0]);
7829451c
HS
5623 iounmap(adapter->regs);
5624 kfree(adapter);
5625 pci_disable_sriov(pdev);
b8ff05a9 5626 pci_release_regions(pdev);
7829451c
HS
5627 }
5628#endif
b8ff05a9
DM
5629}
5630
5631static struct pci_driver cxgb4_driver = {
5632 .name = KBUILD_MODNAME,
5633 .id_table = cxgb4_pci_tbl,
5634 .probe = init_one,
91744948 5635 .remove = remove_one,
687d705c 5636 .shutdown = remove_one,
b6244201
HS
5637#ifdef CONFIG_PCI_IOV
5638 .sriov_configure = cxgb4_iov_configure,
5639#endif
204dc3c0 5640 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
5641};
5642
5643static int __init cxgb4_init_module(void)
5644{
5645 int ret;
5646
5647 /* Debugfs support is optional, just warn if this fails */
5648 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5649 if (!cxgb4_debugfs_root)
428ac43f 5650 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
5651
5652 ret = pci_register_driver(&cxgb4_driver);
29aaee65 5653 if (ret < 0)
b8ff05a9 5654 debugfs_remove(cxgb4_debugfs_root);
01bcca68 5655
1bb60376 5656#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
5657 if (!inet6addr_registered) {
5658 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5659 inet6addr_registered = true;
5660 }
1bb60376 5661#endif
01bcca68 5662
b8ff05a9
DM
5663 return ret;
5664}
5665
5666static void __exit cxgb4_cleanup_module(void)
5667{
1bb60376 5668#if IS_ENABLED(CONFIG_IPV6)
1793c798 5669 if (inet6addr_registered) {
b5a02f50
AB
5670 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5671 inet6addr_registered = false;
5672 }
1bb60376 5673#endif
b8ff05a9
DM
5674 pci_unregister_driver(&cxgb4_driver);
5675 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5676}
5677
5678module_init(cxgb4_init_module);
5679module_exit(cxgb4_cleanup_module);