]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge branch 'mlx5-next'
[thirdparty/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
CommitLineData
b8ff05a9
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
b8ff05a9
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/bitmap.h>
38#include <linux/crc32.h>
39#include <linux/ctype.h>
40#include <linux/debugfs.h>
41#include <linux/err.h>
42#include <linux/etherdevice.h>
43#include <linux/firmware.h>
01789349 44#include <linux/if.h>
b8ff05a9
DM
45#include <linux/if_vlan.h>
46#include <linux/init.h>
47#include <linux/log2.h>
48#include <linux/mdio.h>
49#include <linux/module.h>
50#include <linux/moduleparam.h>
51#include <linux/mutex.h>
52#include <linux/netdevice.h>
53#include <linux/pci.h>
54#include <linux/aer.h>
55#include <linux/rtnetlink.h>
56#include <linux/sched.h>
57#include <linux/seq_file.h>
58#include <linux/sockios.h>
59#include <linux/vmalloc.h>
60#include <linux/workqueue.h>
61#include <net/neighbour.h>
62#include <net/netevent.h>
01bcca68 63#include <net/addrconf.h>
1ef8019b 64#include <net/bonding.h>
b5a02f50 65#include <net/addrconf.h>
b8ff05a9
DM
66#include <asm/uaccess.h>
67
68#include "cxgb4.h"
69#include "t4_regs.h"
f612b815 70#include "t4_values.h"
b8ff05a9
DM
71#include "t4_msg.h"
72#include "t4fw_api.h"
cd6c2f12 73#include "t4fw_version.h"
688848b1 74#include "cxgb4_dcb.h"
fd88b31a 75#include "cxgb4_debugfs.h"
b5a02f50 76#include "clip_tbl.h"
b8ff05a9
DM
77#include "l2t.h"
78
812034f1
HS
79char cxgb4_driver_name[] = KBUILD_MODNAME;
80
01bcca68
VP
81#ifdef DRV_VERSION
82#undef DRV_VERSION
83#endif
3a7f8554 84#define DRV_VERSION "2.0.0-ko"
812034f1 85const char cxgb4_driver_version[] = DRV_VERSION;
3a7f8554 86#define DRV_DESC "Chelsio T4/T5 Network Driver"
b8ff05a9 87
f2b7e78d
VP
88/* Host shadow copy of ingress filter entry. This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command. The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94struct filter_entry {
95 /* Administrative fields for filter.
96 */
97 u32 valid:1; /* filter allocated and valid */
98 u32 locked:1; /* filter is administratively locked */
99
100 u32 pending:1; /* filter action is pending firmware reply */
101 u32 smtidx:8; /* Source MAC Table index for smac */
102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
103
104 /* The filter itself. Most of this is a straight copy of information
105 * provided by the extended ioctl(). Some fields are translated to
106 * internal forms -- for instance the Ingress Queue ID passed in from
107 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 */
109 struct ch_filter_specification fs;
110};
111
b8ff05a9
DM
112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
3fedeab1
HS
116/* Macros needed to support the PCI Device ID Table ...
117 */
118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
768ffc66 119 static const struct pci_device_id cxgb4_pci_tbl[] = {
3fedeab1 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
b8ff05a9 121
3fedeab1
HS
122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127#define CH_PCI_ID_TABLE_ENTRY(devid) \
128 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 { 0, } \
132 }
133
134#include "t4_pci_id_tbl.h"
b8ff05a9 135
16e47624 136#define FW4_FNAME "cxgb4/t4fw.bin"
0a57a536 137#define FW5_FNAME "cxgb4/t5fw.bin"
3ccc6cf7 138#define FW6_FNAME "cxgb4/t6fw.bin"
16e47624 139#define FW4_CFNAME "cxgb4/t4-config.txt"
0a57a536 140#define FW5_CFNAME "cxgb4/t5-config.txt"
3ccc6cf7 141#define FW6_CFNAME "cxgb4/t6-config.txt"
01b69614
HS
142#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144#define PHY_AQ1202_DEVICEID 0x4409
145#define PHY_BCM84834_DEVICEID 0x4486
b8ff05a9
DM
146
147MODULE_DESCRIPTION(DRV_DESC);
148MODULE_AUTHOR("Chelsio Communications");
149MODULE_LICENSE("Dual BSD/GPL");
150MODULE_VERSION(DRV_VERSION);
151MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
16e47624 152MODULE_FIRMWARE(FW4_FNAME);
0a57a536 153MODULE_FIRMWARE(FW5_FNAME);
b8ff05a9 154
636f9d37
VP
155/*
156 * Normally we're willing to become the firmware's Master PF but will be happy
157 * if another PF has already become the Master and initialized the adapter.
158 * Setting "force_init" will cause this driver to forcibly establish itself as
159 * the Master PF and initialize the adapter.
160 */
161static uint force_init;
162
163module_param(force_init, uint, 0644);
164MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
165
13ee15d3
VP
166/*
167 * Normally if the firmware we connect to has Configuration File support, we
168 * use that and only fall back to the old Driver-based initialization if the
169 * Configuration File fails for some reason. If force_old_init is set, then
170 * we'll always use the old Driver-based initialization sequence.
171 */
172static uint force_old_init;
173
174module_param(force_old_init, uint, 0644);
06640310
HS
175MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
176 " parameter");
13ee15d3 177
b8ff05a9
DM
178static int dflt_msg_enable = DFLT_MSG_ENABLE;
179
180module_param(dflt_msg_enable, int, 0644);
181MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
182
183/*
184 * The driver uses the best interrupt scheme available on a platform in the
185 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
186 * of these schemes the driver may consider as follows:
187 *
188 * msi = 2: choose from among all three options
189 * msi = 1: only consider MSI and INTx interrupts
190 * msi = 0: force INTx interrupts
191 */
192static int msi = 2;
193
194module_param(msi, int, 0644);
195MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
196
197/*
198 * Queue interrupt hold-off timer values. Queues default to the first of these
199 * upon creation.
200 */
201static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
202
203module_param_array(intr_holdoff, uint, NULL, 0644);
204MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
06640310 205 "0..4 in microseconds, deprecated parameter");
b8ff05a9
DM
206
207static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
208
209module_param_array(intr_cnt, uint, NULL, 0644);
210MODULE_PARM_DESC(intr_cnt,
06640310
HS
211 "thresholds 1..3 for queue interrupt packet counters, "
212 "deprecated parameter");
b8ff05a9 213
636f9d37
VP
214/*
215 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
216 * offset by 2 bytes in order to have the IP headers line up on 4-byte
217 * boundaries. This is a requirement for many architectures which will throw
218 * a machine check fault if an attempt is made to access one of the 4-byte IP
219 * header fields on a non-4-byte boundary. And it's a major performance issue
220 * even on some architectures which allow it like some implementations of the
221 * x86 ISA. However, some architectures don't mind this and for some very
222 * edge-case performance sensitive applications (like forwarding large volumes
223 * of small packets), setting this DMA offset to 0 will decrease the number of
224 * PCI-E Bus transfers enough to measurably affect performance.
225 */
226static int rx_dma_offset = 2;
227
eb939922 228static bool vf_acls;
b8ff05a9
DM
229
230#ifdef CONFIG_PCI_IOV
231module_param(vf_acls, bool, 0644);
06640310
HS
232MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
233 "deprecated parameter");
b8ff05a9 234
7d6727cf
SR
235/* Configure the number of PCI-E Virtual Function which are to be instantiated
236 * on SR-IOV Capable Physical Functions.
0a57a536 237 */
7d6727cf 238static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
b8ff05a9
DM
239
240module_param_array(num_vf, uint, NULL, 0644);
7d6727cf 241MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
b8ff05a9
DM
242#endif
243
688848b1
AB
244/* TX Queue select used to determine what algorithm to use for selecting TX
245 * queue. Select between the kernel provided function (select_queue=0) or user
246 * cxgb_select_queue function (select_queue=1)
247 *
248 * Default: select_queue=0
249 */
250static int select_queue;
251module_param(select_queue, int, 0644);
252MODULE_PARM_DESC(select_queue,
253 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
254
06640310 255static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
13ee15d3 256
f2b7e78d 257module_param(tp_vlan_pri_map, uint, 0644);
06640310
HS
258MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
259 "deprecated parameter");
f2b7e78d 260
b8ff05a9
DM
261static struct dentry *cxgb4_debugfs_root;
262
263static LIST_HEAD(adapter_list);
264static DEFINE_MUTEX(uld_mutex);
01bcca68
VP
265/* Adapter list to be accessed from atomic context */
266static LIST_HEAD(adap_rcu_list);
267static DEFINE_SPINLOCK(adap_rcu_lock);
b8ff05a9
DM
268static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
269static const char *uld_str[] = { "RDMA", "iSCSI" };
270
271static void link_report(struct net_device *dev)
272{
273 if (!netif_carrier_ok(dev))
274 netdev_info(dev, "link down\n");
275 else {
276 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
277
278 const char *s = "10Mbps";
279 const struct port_info *p = netdev_priv(dev);
280
281 switch (p->link_cfg.speed) {
e8b39015 282 case 10000:
b8ff05a9
DM
283 s = "10Gbps";
284 break;
e8b39015 285 case 1000:
b8ff05a9
DM
286 s = "1000Mbps";
287 break;
e8b39015 288 case 100:
b8ff05a9
DM
289 s = "100Mbps";
290 break;
e8b39015 291 case 40000:
72aca4bf
KS
292 s = "40Gbps";
293 break;
b8ff05a9
DM
294 }
295
296 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
297 fc[p->link_cfg.fc]);
298 }
299}
300
688848b1
AB
301#ifdef CONFIG_CHELSIO_T4_DCB
302/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
303static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
304{
305 struct port_info *pi = netdev_priv(dev);
306 struct adapter *adap = pi->adapter;
307 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
308 int i;
309
310 /* We use a simple mapping of Port TX Queue Index to DCB
311 * Priority when we're enabling DCB.
312 */
313 for (i = 0; i < pi->nqsets; i++, txq++) {
314 u32 name, value;
315 int err;
316
5167865a
HS
317 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
318 FW_PARAMS_PARAM_X_V(
319 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
320 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
688848b1
AB
321 value = enable ? i : 0xffffffff;
322
323 /* Since we can be called while atomic (from "interrupt
324 * level") we need to issue the Set Parameters Commannd
325 * without sleeping (timeout < 0).
326 */
b2612722 327 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
328 &name, &value,
329 -FW_CMD_MAX_TIMEOUT);
688848b1
AB
330
331 if (err)
332 dev_err(adap->pdev_dev,
333 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
334 enable ? "set" : "unset", pi->port_id, i, -err);
10b00466
AB
335 else
336 txq->dcb_prio = value;
688848b1
AB
337 }
338}
339#endif /* CONFIG_CHELSIO_T4_DCB */
340
b8ff05a9
DM
341void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
342{
343 struct net_device *dev = adapter->port[port_id];
344
345 /* Skip changes from disabled ports. */
346 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
347 if (link_stat)
348 netif_carrier_on(dev);
688848b1
AB
349 else {
350#ifdef CONFIG_CHELSIO_T4_DCB
351 cxgb4_dcb_state_init(dev);
352 dcb_tx_queue_prio_enable(dev, false);
353#endif /* CONFIG_CHELSIO_T4_DCB */
b8ff05a9 354 netif_carrier_off(dev);
688848b1 355 }
b8ff05a9
DM
356
357 link_report(dev);
358 }
359}
360
361void t4_os_portmod_changed(const struct adapter *adap, int port_id)
362{
363 static const char *mod_str[] = {
a0881cab 364 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
b8ff05a9
DM
365 };
366
367 const struct net_device *dev = adap->port[port_id];
368 const struct port_info *pi = netdev_priv(dev);
369
370 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
371 netdev_info(dev, "port module unplugged\n");
a0881cab 372 else if (pi->mod_type < ARRAY_SIZE(mod_str))
b8ff05a9
DM
373 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
374}
375
376/*
377 * Configure the exact and hash address filters to handle a port's multicast
378 * and secondary unicast MAC addresses.
379 */
380static int set_addr_filters(const struct net_device *dev, bool sleep)
381{
382 u64 mhash = 0;
383 u64 uhash = 0;
384 bool free = true;
385 u16 filt_idx[7];
386 const u8 *addr[7];
387 int ret, naddr = 0;
b8ff05a9
DM
388 const struct netdev_hw_addr *ha;
389 int uc_cnt = netdev_uc_count(dev);
4a35ecf8 390 int mc_cnt = netdev_mc_count(dev);
b8ff05a9 391 const struct port_info *pi = netdev_priv(dev);
b2612722 392 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
393
394 /* first do the secondary unicast addresses */
395 netdev_for_each_uc_addr(ha, dev) {
396 addr[naddr++] = ha->addr;
397 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 398 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
399 naddr, addr, filt_idx, &uhash, sleep);
400 if (ret < 0)
401 return ret;
402
403 free = false;
404 naddr = 0;
405 }
406 }
407
408 /* next set up the multicast addresses */
4a35ecf8
DM
409 netdev_for_each_mc_addr(ha, dev) {
410 addr[naddr++] = ha->addr;
411 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
060e0c75 412 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
b8ff05a9
DM
413 naddr, addr, filt_idx, &mhash, sleep);
414 if (ret < 0)
415 return ret;
416
417 free = false;
418 naddr = 0;
419 }
420 }
421
060e0c75 422 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
b8ff05a9
DM
423 uhash | mhash, sleep);
424}
425
3069ee9b
VP
426int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
427module_param(dbfifo_int_thresh, int, 0644);
428MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
429
404d9e3f
VP
430/*
431 * usecs to sleep while draining the dbfifo
432 */
433static int dbfifo_drain_delay = 1000;
3069ee9b
VP
434module_param(dbfifo_drain_delay, int, 0644);
435MODULE_PARM_DESC(dbfifo_drain_delay,
436 "usecs to sleep while draining the dbfifo");
437
b8ff05a9
DM
438/*
439 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
440 * If @mtu is -1 it is left unchanged.
441 */
442static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
443{
444 int ret;
445 struct port_info *pi = netdev_priv(dev);
446
447 ret = set_addr_filters(dev, sleep_ok);
448 if (ret == 0)
b2612722 449 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
b8ff05a9 450 (dev->flags & IFF_PROMISC) ? 1 : 0,
f8f5aafa 451 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
b8ff05a9
DM
452 sleep_ok);
453 return ret;
454}
455
456/**
457 * link_start - enable a port
458 * @dev: the port to enable
459 *
460 * Performs the MAC and PHY actions needed to enable a port.
461 */
462static int link_start(struct net_device *dev)
463{
464 int ret;
465 struct port_info *pi = netdev_priv(dev);
b2612722 466 unsigned int mb = pi->adapter->pf;
b8ff05a9
DM
467
468 /*
469 * We do not set address filters and promiscuity here, the stack does
470 * that step explicitly.
471 */
060e0c75 472 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
f646968f 473 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
b8ff05a9 474 if (ret == 0) {
060e0c75 475 ret = t4_change_mac(pi->adapter, mb, pi->viid,
b8ff05a9 476 pi->xact_addr_filt, dev->dev_addr, true,
b6bd29e7 477 true);
b8ff05a9
DM
478 if (ret >= 0) {
479 pi->xact_addr_filt = ret;
480 ret = 0;
481 }
482 }
483 if (ret == 0)
060e0c75
DM
484 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
485 &pi->link_cfg);
30f00847
AB
486 if (ret == 0) {
487 local_bh_disable();
688848b1
AB
488 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
489 true, CXGB4_DCB_ENABLED);
30f00847
AB
490 local_bh_enable();
491 }
688848b1 492
b8ff05a9
DM
493 return ret;
494}
495
688848b1
AB
496int cxgb4_dcb_enabled(const struct net_device *dev)
497{
498#ifdef CONFIG_CHELSIO_T4_DCB
499 struct port_info *pi = netdev_priv(dev);
500
3bb06261
AB
501 if (!pi->dcb.enabled)
502 return 0;
503
504 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
505 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
688848b1
AB
506#else
507 return 0;
508#endif
509}
510EXPORT_SYMBOL(cxgb4_dcb_enabled);
511
512#ifdef CONFIG_CHELSIO_T4_DCB
513/* Handle a Data Center Bridging update message from the firmware. */
514static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
515{
2b5fb1f2 516 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
688848b1
AB
517 struct net_device *dev = adap->port[port];
518 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
519 int new_dcb_enabled;
520
521 cxgb4_dcb_handle_fw_update(adap, pcmd);
522 new_dcb_enabled = cxgb4_dcb_enabled(dev);
523
524 /* If the DCB has become enabled or disabled on the port then we're
525 * going to need to set up/tear down DCB Priority parameters for the
526 * TX Queues associated with the port.
527 */
528 if (new_dcb_enabled != old_dcb_enabled)
529 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
530}
531#endif /* CONFIG_CHELSIO_T4_DCB */
532
f2b7e78d
VP
533/* Clear a filter and release any of its resources that we own. This also
534 * clears the filter's "pending" status.
535 */
536static void clear_filter(struct adapter *adap, struct filter_entry *f)
537{
538 /* If the new or old filter have loopback rewriteing rules then we'll
539 * need to free any existing Layer Two Table (L2T) entries of the old
540 * filter rule. The firmware will handle freeing up any Source MAC
541 * Table (SMT) entries used for rewriting Source MAC Addresses in
542 * loopback rules.
543 */
544 if (f->l2t)
545 cxgb4_l2t_release(f->l2t);
546
547 /* The zeroing of the filter rule below clears the filter valid,
548 * pending, locked flags, l2t pointer, etc. so it's all we need for
549 * this operation.
550 */
551 memset(f, 0, sizeof(*f));
552}
553
554/* Handle a filter write/deletion reply.
555 */
556static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
557{
558 unsigned int idx = GET_TID(rpl);
559 unsigned int nidx = idx - adap->tids.ftid_base;
560 unsigned int ret;
561 struct filter_entry *f;
562
563 if (idx >= adap->tids.ftid_base && nidx <
564 (adap->tids.nftids + adap->tids.nsftids)) {
565 idx = nidx;
bdc590b9 566 ret = TCB_COOKIE_G(rpl->cookie);
f2b7e78d
VP
567 f = &adap->tids.ftid_tab[idx];
568
569 if (ret == FW_FILTER_WR_FLT_DELETED) {
570 /* Clear the filter when we get confirmation from the
571 * hardware that the filter has been deleted.
572 */
573 clear_filter(adap, f);
574 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
575 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
576 idx);
577 clear_filter(adap, f);
578 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
579 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
580 f->pending = 0; /* asynchronous setup completed */
581 f->valid = 1;
582 } else {
583 /* Something went wrong. Issue a warning about the
584 * problem and clear everything out.
585 */
586 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
587 idx, ret);
588 clear_filter(adap, f);
589 }
590 }
591}
592
593/* Response queue handler for the FW event queue.
b8ff05a9
DM
594 */
595static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
596 const struct pkt_gl *gl)
597{
598 u8 opcode = ((const struct rss_header *)rsp)->opcode;
599
600 rsp++; /* skip RSS header */
b407a4a9
VP
601
602 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
603 */
604 if (unlikely(opcode == CPL_FW4_MSG &&
605 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
606 rsp++;
607 opcode = ((const struct rss_header *)rsp)->opcode;
608 rsp++;
609 if (opcode != CPL_SGE_EGR_UPDATE) {
610 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
611 , opcode);
612 goto out;
613 }
614 }
615
b8ff05a9
DM
616 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
617 const struct cpl_sge_egr_update *p = (void *)rsp;
bdc590b9 618 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
e46dab4d 619 struct sge_txq *txq;
b8ff05a9 620
e46dab4d 621 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
b8ff05a9 622 txq->restarts++;
e46dab4d 623 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
b8ff05a9
DM
624 struct sge_eth_txq *eq;
625
626 eq = container_of(txq, struct sge_eth_txq, q);
627 netif_tx_wake_queue(eq->txq);
628 } else {
629 struct sge_ofld_txq *oq;
630
631 oq = container_of(txq, struct sge_ofld_txq, q);
632 tasklet_schedule(&oq->qresume_tsk);
633 }
634 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
635 const struct cpl_fw6_msg *p = (void *)rsp;
636
688848b1
AB
637#ifdef CONFIG_CHELSIO_T4_DCB
638 const struct fw_port_cmd *pcmd = (const void *)p->data;
e2ac9628 639 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
688848b1 640 unsigned int action =
2b5fb1f2 641 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
688848b1
AB
642
643 if (cmd == FW_PORT_CMD &&
644 action == FW_PORT_ACTION_GET_PORT_INFO) {
2b5fb1f2 645 int port = FW_PORT_CMD_PORTID_G(
688848b1
AB
646 be32_to_cpu(pcmd->op_to_portid));
647 struct net_device *dev = q->adap->port[port];
648 int state_input = ((pcmd->u.info.dcbxdis_pkd &
2b5fb1f2 649 FW_PORT_CMD_DCBXDIS_F)
688848b1
AB
650 ? CXGB4_DCB_INPUT_FW_DISABLED
651 : CXGB4_DCB_INPUT_FW_ENABLED);
652
653 cxgb4_dcb_state_fsm(dev, state_input);
654 }
655
656 if (cmd == FW_PORT_CMD &&
657 action == FW_PORT_ACTION_L2_DCB_CFG)
658 dcb_rpl(q->adap, pcmd);
659 else
660#endif
661 if (p->type == 0)
662 t4_handle_fw_rpl(q->adap, p->data);
b8ff05a9
DM
663 } else if (opcode == CPL_L2T_WRITE_RPL) {
664 const struct cpl_l2t_write_rpl *p = (void *)rsp;
665
666 do_l2t_write_rpl(q->adap, p);
f2b7e78d
VP
667 } else if (opcode == CPL_SET_TCB_RPL) {
668 const struct cpl_set_tcb_rpl *p = (void *)rsp;
669
670 filter_rpl(q->adap, p);
b8ff05a9
DM
671 } else
672 dev_err(q->adap->pdev_dev,
673 "unexpected CPL %#x on FW event queue\n", opcode);
b407a4a9 674out:
b8ff05a9
DM
675 return 0;
676}
677
678/**
679 * uldrx_handler - response queue handler for ULD queues
680 * @q: the response queue that received the packet
681 * @rsp: the response queue descriptor holding the offload message
682 * @gl: the gather list of packet fragments
683 *
684 * Deliver an ingress offload packet to a ULD. All processing is done by
685 * the ULD, we just maintain statistics.
686 */
687static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
688 const struct pkt_gl *gl)
689{
690 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
691
b407a4a9
VP
692 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
693 */
694 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
695 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
696 rsp += 2;
697
b8ff05a9
DM
698 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
699 rxq->stats.nomem++;
700 return -1;
701 }
702 if (gl == NULL)
703 rxq->stats.imm++;
704 else if (gl == CXGB4_MSG_AN)
705 rxq->stats.an++;
706 else
707 rxq->stats.pkts++;
708 return 0;
709}
710
711static void disable_msi(struct adapter *adapter)
712{
713 if (adapter->flags & USING_MSIX) {
714 pci_disable_msix(adapter->pdev);
715 adapter->flags &= ~USING_MSIX;
716 } else if (adapter->flags & USING_MSI) {
717 pci_disable_msi(adapter->pdev);
718 adapter->flags &= ~USING_MSI;
719 }
720}
721
722/*
723 * Interrupt handler for non-data events used with MSI-X.
724 */
725static irqreturn_t t4_nondata_intr(int irq, void *cookie)
726{
727 struct adapter *adap = cookie;
0d804338 728 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
b8ff05a9 729
0d804338 730 if (v & PFSW_F) {
b8ff05a9 731 adap->swintr = 1;
0d804338 732 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
b8ff05a9 733 }
c3c7b121
HS
734 if (adap->flags & MASTER_PF)
735 t4_slow_intr_handler(adap);
b8ff05a9
DM
736 return IRQ_HANDLED;
737}
738
739/*
740 * Name the MSI-X interrupts.
741 */
742static void name_msix_vecs(struct adapter *adap)
743{
ba27816c 744 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
b8ff05a9
DM
745
746 /* non-data interrupts */
b1a3c2b6 747 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
b8ff05a9
DM
748
749 /* FW events */
b1a3c2b6
DM
750 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
751 adap->port[0]->name);
b8ff05a9
DM
752
753 /* Ethernet queues */
754 for_each_port(adap, j) {
755 struct net_device *d = adap->port[j];
756 const struct port_info *pi = netdev_priv(d);
757
ba27816c 758 for (i = 0; i < pi->nqsets; i++, msi_idx++)
b8ff05a9
DM
759 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
760 d->name, i);
b8ff05a9
DM
761 }
762
763 /* offload queues */
ba27816c
DM
764 for_each_ofldrxq(&adap->sge, i)
765 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
b1a3c2b6 766 adap->port[0]->name, i);
ba27816c
DM
767
768 for_each_rdmarxq(&adap->sge, i)
769 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
b1a3c2b6 770 adap->port[0]->name, i);
cf38be6d
HS
771
772 for_each_rdmaciq(&adap->sge, i)
773 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
774 adap->port[0]->name, i);
b8ff05a9
DM
775}
776
777static int request_msix_queue_irqs(struct adapter *adap)
778{
779 struct sge *s = &adap->sge;
cf38be6d
HS
780 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
781 int msi_index = 2;
b8ff05a9
DM
782
783 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
784 adap->msix_info[1].desc, &s->fw_evtq);
785 if (err)
786 return err;
787
788 for_each_ethrxq(s, ethqidx) {
404d9e3f
VP
789 err = request_irq(adap->msix_info[msi_index].vec,
790 t4_sge_intr_msix, 0,
791 adap->msix_info[msi_index].desc,
b8ff05a9
DM
792 &s->ethrxq[ethqidx].rspq);
793 if (err)
794 goto unwind;
404d9e3f 795 msi_index++;
b8ff05a9
DM
796 }
797 for_each_ofldrxq(s, ofldqidx) {
404d9e3f
VP
798 err = request_irq(adap->msix_info[msi_index].vec,
799 t4_sge_intr_msix, 0,
800 adap->msix_info[msi_index].desc,
b8ff05a9
DM
801 &s->ofldrxq[ofldqidx].rspq);
802 if (err)
803 goto unwind;
404d9e3f 804 msi_index++;
b8ff05a9
DM
805 }
806 for_each_rdmarxq(s, rdmaqidx) {
404d9e3f
VP
807 err = request_irq(adap->msix_info[msi_index].vec,
808 t4_sge_intr_msix, 0,
809 adap->msix_info[msi_index].desc,
b8ff05a9
DM
810 &s->rdmarxq[rdmaqidx].rspq);
811 if (err)
812 goto unwind;
404d9e3f 813 msi_index++;
b8ff05a9 814 }
cf38be6d
HS
815 for_each_rdmaciq(s, rdmaciqqidx) {
816 err = request_irq(adap->msix_info[msi_index].vec,
817 t4_sge_intr_msix, 0,
818 adap->msix_info[msi_index].desc,
819 &s->rdmaciq[rdmaciqqidx].rspq);
820 if (err)
821 goto unwind;
822 msi_index++;
823 }
b8ff05a9
DM
824 return 0;
825
826unwind:
cf38be6d
HS
827 while (--rdmaciqqidx >= 0)
828 free_irq(adap->msix_info[--msi_index].vec,
829 &s->rdmaciq[rdmaciqqidx].rspq);
b8ff05a9 830 while (--rdmaqidx >= 0)
404d9e3f 831 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
832 &s->rdmarxq[rdmaqidx].rspq);
833 while (--ofldqidx >= 0)
404d9e3f 834 free_irq(adap->msix_info[--msi_index].vec,
b8ff05a9
DM
835 &s->ofldrxq[ofldqidx].rspq);
836 while (--ethqidx >= 0)
404d9e3f
VP
837 free_irq(adap->msix_info[--msi_index].vec,
838 &s->ethrxq[ethqidx].rspq);
b8ff05a9
DM
839 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
840 return err;
841}
842
843static void free_msix_queue_irqs(struct adapter *adap)
844{
404d9e3f 845 int i, msi_index = 2;
b8ff05a9
DM
846 struct sge *s = &adap->sge;
847
848 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
849 for_each_ethrxq(s, i)
404d9e3f 850 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
b8ff05a9 851 for_each_ofldrxq(s, i)
404d9e3f 852 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
b8ff05a9 853 for_each_rdmarxq(s, i)
404d9e3f 854 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
cf38be6d
HS
855 for_each_rdmaciq(s, i)
856 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
b8ff05a9
DM
857}
858
671b0060 859/**
812034f1 860 * cxgb4_write_rss - write the RSS table for a given port
671b0060
DM
861 * @pi: the port
862 * @queues: array of queue indices for RSS
863 *
864 * Sets up the portion of the HW RSS table for the port's VI to distribute
865 * packets to the Rx queues in @queues.
c035e183 866 * Should never be called before setting up sge eth rx queues
671b0060 867 */
812034f1 868int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671b0060
DM
869{
870 u16 *rss;
871 int i, err;
c035e183
HS
872 struct adapter *adapter = pi->adapter;
873 const struct sge_eth_rxq *rxq;
671b0060 874
c035e183 875 rxq = &adapter->sge.ethrxq[pi->first_qset];
671b0060
DM
876 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
877 if (!rss)
878 return -ENOMEM;
879
880 /* map the queue indices to queue ids */
881 for (i = 0; i < pi->rss_size; i++, queues++)
c035e183 882 rss[i] = rxq[*queues].rspq.abs_id;
671b0060 883
b2612722 884 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
060e0c75 885 pi->rss_size, rss, pi->rss_size);
c035e183
HS
886 /* If Tunnel All Lookup isn't specified in the global RSS
887 * Configuration, then we need to specify a default Ingress
888 * Queue for any ingress packets which aren't hashed. We'll
889 * use our first ingress queue ...
890 */
891 if (!err)
892 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
893 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
894 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
895 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
896 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
897 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
898 rss[0]);
671b0060
DM
899 kfree(rss);
900 return err;
901}
902
b8ff05a9
DM
903/**
904 * setup_rss - configure RSS
905 * @adap: the adapter
906 *
671b0060 907 * Sets up RSS for each port.
b8ff05a9
DM
908 */
909static int setup_rss(struct adapter *adap)
910{
c035e183 911 int i, j, err;
b8ff05a9
DM
912
913 for_each_port(adap, i) {
914 const struct port_info *pi = adap2pinfo(adap, i);
b8ff05a9 915
c035e183
HS
916 /* Fill default values with equal distribution */
917 for (j = 0; j < pi->rss_size; j++)
918 pi->rss[j] = j % pi->nqsets;
919
812034f1 920 err = cxgb4_write_rss(pi, pi->rss);
b8ff05a9
DM
921 if (err)
922 return err;
923 }
924 return 0;
925}
926
e46dab4d
DM
927/*
928 * Return the channel of the ingress queue with the given qid.
929 */
930static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
931{
932 qid -= p->ingr_start;
933 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
934}
935
b8ff05a9
DM
936/*
937 * Wait until all NAPI handlers are descheduled.
938 */
939static void quiesce_rx(struct adapter *adap)
940{
941 int i;
942
4b8e27a8 943 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
944 struct sge_rspq *q = adap->sge.ingr_map[i];
945
3a336cb1 946 if (q && q->handler) {
b8ff05a9 947 napi_disable(&q->napi);
3a336cb1
HS
948 local_bh_disable();
949 while (!cxgb_poll_lock_napi(q))
950 mdelay(1);
951 local_bh_enable();
952 }
953
b8ff05a9
DM
954 }
955}
956
b37987e8
HS
957/* Disable interrupt and napi handler */
958static void disable_interrupts(struct adapter *adap)
959{
960 if (adap->flags & FULL_INIT_DONE) {
961 t4_intr_disable(adap);
962 if (adap->flags & USING_MSIX) {
963 free_msix_queue_irqs(adap);
964 free_irq(adap->msix_info[0].vec, adap);
965 } else {
966 free_irq(adap->pdev->irq, adap);
967 }
968 quiesce_rx(adap);
969 }
970}
971
b8ff05a9
DM
972/*
973 * Enable NAPI scheduling and interrupt generation for all Rx queues.
974 */
975static void enable_rx(struct adapter *adap)
976{
977 int i;
978
4b8e27a8 979 for (i = 0; i < adap->sge.ingr_sz; i++) {
b8ff05a9
DM
980 struct sge_rspq *q = adap->sge.ingr_map[i];
981
982 if (!q)
983 continue;
3a336cb1
HS
984 if (q->handler) {
985 cxgb_busy_poll_init_lock(q);
b8ff05a9 986 napi_enable(&q->napi);
3a336cb1 987 }
b8ff05a9 988 /* 0-increment GTS to start the timer and enable interrupts */
f612b815
HS
989 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
990 SEINTARM_V(q->intr_params) |
991 INGRESSQID_V(q->cntxt_id));
b8ff05a9
DM
992 }
993}
994
1c6a5b0e
HS
995static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
996 unsigned int nq, unsigned int per_chan, int msi_idx,
997 u16 *ids)
998{
999 int i, err;
1000
1001 for (i = 0; i < nq; i++, q++) {
1002 if (msi_idx > 0)
1003 msi_idx++;
1004 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1005 adap->port[i / per_chan],
1006 msi_idx, q->fl.size ? &q->fl : NULL,
145ef8a5 1007 uldrx_handler, 0);
1c6a5b0e
HS
1008 if (err)
1009 return err;
1010 memset(&q->stats, 0, sizeof(q->stats));
1011 if (ids)
1012 ids[i] = q->rspq.abs_id;
1013 }
1014 return 0;
1015}
1016
b8ff05a9
DM
1017/**
1018 * setup_sge_queues - configure SGE Tx/Rx/response queues
1019 * @adap: the adapter
1020 *
1021 * Determines how many sets of SGE queues to use and initializes them.
1022 * We support multiple queue sets per port if we have MSI-X, otherwise
1023 * just one queue set per port.
1024 */
1025static int setup_sge_queues(struct adapter *adap)
1026{
1027 int err, msi_idx, i, j;
1028 struct sge *s = &adap->sge;
1029
4b8e27a8
HS
1030 bitmap_zero(s->starving_fl, s->egr_sz);
1031 bitmap_zero(s->txq_maperr, s->egr_sz);
b8ff05a9
DM
1032
1033 if (adap->flags & USING_MSIX)
1034 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1035 else {
1036 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
145ef8a5 1037 NULL, NULL, -1);
b8ff05a9
DM
1038 if (err)
1039 return err;
1040 msi_idx = -((int)s->intrq.abs_id + 1);
1041 }
1042
4b8e27a8
HS
1043 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1044 * don't forget to update the following which need to be
1045 * synchronized to and changes here.
1046 *
1047 * 1. The calculations of MAX_INGQ in cxgb4.h.
1048 *
1049 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1050 * to accommodate any new/deleted Ingress Queues
1051 * which need MSI-X Vectors.
1052 *
1053 * 3. Update sge_qinfo_show() to include information on the
1054 * new/deleted queues.
1055 */
b8ff05a9 1056 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
145ef8a5 1057 msi_idx, NULL, fwevtq_handler, -1);
b8ff05a9
DM
1058 if (err) {
1059freeout: t4_free_sge_resources(adap);
1060 return err;
1061 }
1062
1063 for_each_port(adap, i) {
1064 struct net_device *dev = adap->port[i];
1065 struct port_info *pi = netdev_priv(dev);
1066 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1067 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1068
1069 for (j = 0; j < pi->nqsets; j++, q++) {
1070 if (msi_idx > 0)
1071 msi_idx++;
1072 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1073 msi_idx, &q->fl,
145ef8a5
HS
1074 t4_ethrx_handler,
1075 t4_get_mps_bg_map(adap,
1076 pi->tx_chan));
b8ff05a9
DM
1077 if (err)
1078 goto freeout;
1079 q->rspq.idx = j;
1080 memset(&q->stats, 0, sizeof(q->stats));
1081 }
1082 for (j = 0; j < pi->nqsets; j++, t++) {
1083 err = t4_sge_alloc_eth_txq(adap, t, dev,
1084 netdev_get_tx_queue(dev, j),
1085 s->fw_evtq.cntxt_id);
1086 if (err)
1087 goto freeout;
1088 }
1089 }
1090
1091 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1092 for_each_ofldrxq(s, i) {
1c6a5b0e
HS
1093 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1094 adap->port[i / j],
b8ff05a9
DM
1095 s->fw_evtq.cntxt_id);
1096 if (err)
1097 goto freeout;
1098 }
1099
1c6a5b0e
HS
1100#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1101 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1102 if (err) \
1103 goto freeout; \
1104 if (msi_idx > 0) \
1105 msi_idx += nq; \
1106} while (0)
b8ff05a9 1107
1c6a5b0e
HS
1108 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1109 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
f36e58e5
HS
1110 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1111 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
b8ff05a9 1112
1c6a5b0e 1113#undef ALLOC_OFLD_RXQS
cf38be6d 1114
b8ff05a9
DM
1115 for_each_port(adap, i) {
1116 /*
1117 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1118 * have RDMA queues, and that's the right value.
1119 */
1120 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1121 s->fw_evtq.cntxt_id,
1122 s->rdmarxq[i].rspq.cntxt_id);
1123 if (err)
1124 goto freeout;
1125 }
1126
9bb59b96 1127 t4_write_reg(adap, is_t4(adap->params.chip) ?
837e4a42
HS
1128 MPS_TRC_RSS_CONTROL_A :
1129 MPS_T5_TRC_RSS_CONTROL_A,
1130 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1131 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
b8ff05a9
DM
1132 return 0;
1133}
1134
b8ff05a9
DM
1135/*
1136 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1137 * The allocated memory is cleared.
1138 */
1139void *t4_alloc_mem(size_t size)
1140{
8be04b93 1141 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
b8ff05a9
DM
1142
1143 if (!p)
89bf67f1 1144 p = vzalloc(size);
b8ff05a9
DM
1145 return p;
1146}
1147
1148/*
1149 * Free memory allocated through alloc_mem().
1150 */
fd88b31a 1151void t4_free_mem(void *addr)
b8ff05a9
DM
1152{
1153 if (is_vmalloc_addr(addr))
1154 vfree(addr);
1155 else
1156 kfree(addr);
1157}
1158
f2b7e78d
VP
1159/* Send a Work Request to write the filter at a specified index. We construct
1160 * a Firmware Filter Work Request to have the work done and put the indicated
1161 * filter into "pending" mode which will prevent any further actions against
1162 * it till we get a reply from the firmware on the completion status of the
1163 * request.
1164 */
1165static int set_filter_wr(struct adapter *adapter, int fidx)
1166{
1167 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1168 struct sk_buff *skb;
1169 struct fw_filter_wr *fwr;
1170 unsigned int ftid;
1171
f72f116a
MH
1172 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1173 if (!skb)
1174 return -ENOMEM;
1175
f2b7e78d
VP
1176 /* If the new filter requires loopback Destination MAC and/or VLAN
1177 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1178 * the filter.
1179 */
1180 if (f->fs.newdmac || f->fs.newvlan) {
1181 /* allocate L2T entry for new filter */
1182 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
f72f116a
MH
1183 if (f->l2t == NULL) {
1184 kfree_skb(skb);
f2b7e78d 1185 return -EAGAIN;
f72f116a 1186 }
f2b7e78d
VP
1187 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1188 f->fs.eport, f->fs.dmac)) {
1189 cxgb4_l2t_release(f->l2t);
1190 f->l2t = NULL;
f72f116a 1191 kfree_skb(skb);
f2b7e78d
VP
1192 return -ENOMEM;
1193 }
1194 }
1195
1196 ftid = adapter->tids.ftid_base + fidx;
1197
f2b7e78d
VP
1198 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1199 memset(fwr, 0, sizeof(*fwr));
1200
1201 /* It would be nice to put most of the following in t4_hw.c but most
1202 * of the work is translating the cxgbtool ch_filter_specification
1203 * into the Work Request and the definition of that structure is
1204 * currently in cxgbtool.h which isn't appropriate to pull into the
1205 * common code. We may eventually try to come up with a more neutral
1206 * filter specification structure but for now it's easiest to simply
1207 * put this fairly direct code in line ...
1208 */
e2ac9628
HS
1209 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1210 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
f2b7e78d 1211 fwr->tid_to_iq =
77a80e23
HS
1212 htonl(FW_FILTER_WR_TID_V(ftid) |
1213 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1214 FW_FILTER_WR_NOREPLY_V(0) |
1215 FW_FILTER_WR_IQ_V(f->fs.iq));
f2b7e78d 1216 fwr->del_filter_to_l2tix =
77a80e23
HS
1217 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1218 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1219 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1220 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1221 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1222 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1223 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1224 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1225 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
f2b7e78d 1226 f->fs.newvlan == VLAN_REWRITE) |
77a80e23 1227 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
f2b7e78d 1228 f->fs.newvlan == VLAN_REWRITE) |
77a80e23
HS
1229 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1230 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1231 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1232 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
f2b7e78d
VP
1233 fwr->ethtype = htons(f->fs.val.ethtype);
1234 fwr->ethtypem = htons(f->fs.mask.ethtype);
1235 fwr->frag_to_ovlan_vldm =
77a80e23
HS
1236 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1237 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1238 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1239 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1240 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1241 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
f2b7e78d
VP
1242 fwr->smac_sel = 0;
1243 fwr->rx_chan_rx_rpl_iq =
77a80e23
HS
1244 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1245 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
f2b7e78d 1246 fwr->maci_to_matchtypem =
77a80e23
HS
1247 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1248 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1249 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1250 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1251 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1252 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1253 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1254 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
f2b7e78d
VP
1255 fwr->ptcl = f->fs.val.proto;
1256 fwr->ptclm = f->fs.mask.proto;
1257 fwr->ttyp = f->fs.val.tos;
1258 fwr->ttypm = f->fs.mask.tos;
1259 fwr->ivlan = htons(f->fs.val.ivlan);
1260 fwr->ivlanm = htons(f->fs.mask.ivlan);
1261 fwr->ovlan = htons(f->fs.val.ovlan);
1262 fwr->ovlanm = htons(f->fs.mask.ovlan);
1263 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1264 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1265 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1266 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1267 fwr->lp = htons(f->fs.val.lport);
1268 fwr->lpm = htons(f->fs.mask.lport);
1269 fwr->fp = htons(f->fs.val.fport);
1270 fwr->fpm = htons(f->fs.mask.fport);
1271 if (f->fs.newsmac)
1272 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1273
1274 /* Mark the filter as "pending" and ship off the Filter Work Request.
1275 * When we get the Work Request Reply we'll clear the pending status.
1276 */
1277 f->pending = 1;
1278 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1279 t4_ofld_send(adapter, skb);
1280 return 0;
1281}
1282
1283/* Delete the filter at a specified index.
1284 */
1285static int del_filter_wr(struct adapter *adapter, int fidx)
1286{
1287 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1288 struct sk_buff *skb;
1289 struct fw_filter_wr *fwr;
1290 unsigned int len, ftid;
1291
1292 len = sizeof(*fwr);
1293 ftid = adapter->tids.ftid_base + fidx;
1294
f72f116a
MH
1295 skb = alloc_skb(len, GFP_KERNEL);
1296 if (!skb)
1297 return -ENOMEM;
1298
f2b7e78d
VP
1299 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1300 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1301
1302 /* Mark the filter as "pending" and ship off the Filter Work Request.
1303 * When we get the Work Request Reply we'll clear the pending status.
1304 */
1305 f->pending = 1;
1306 t4_mgmt_tx(adapter, skb);
1307 return 0;
1308}
1309
688848b1
AB
1310static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1311 void *accel_priv, select_queue_fallback_t fallback)
1312{
1313 int txq;
1314
1315#ifdef CONFIG_CHELSIO_T4_DCB
1316 /* If a Data Center Bridging has been successfully negotiated on this
1317 * link then we'll use the skb's priority to map it to a TX Queue.
1318 * The skb's priority is determined via the VLAN Tag Priority Code
1319 * Point field.
1320 */
1321 if (cxgb4_dcb_enabled(dev)) {
1322 u16 vlan_tci;
1323 int err;
1324
1325 err = vlan_get_tag(skb, &vlan_tci);
1326 if (unlikely(err)) {
1327 if (net_ratelimit())
1328 netdev_warn(dev,
1329 "TX Packet without VLAN Tag on DCB Link\n");
1330 txq = 0;
1331 } else {
1332 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
84a200b3
VP
1333#ifdef CONFIG_CHELSIO_T4_FCOE
1334 if (skb->protocol == htons(ETH_P_FCOE))
1335 txq = skb->priority & 0x7;
1336#endif /* CONFIG_CHELSIO_T4_FCOE */
688848b1
AB
1337 }
1338 return txq;
1339 }
1340#endif /* CONFIG_CHELSIO_T4_DCB */
1341
1342 if (select_queue) {
1343 txq = (skb_rx_queue_recorded(skb)
1344 ? skb_get_rx_queue(skb)
1345 : smp_processor_id());
1346
1347 while (unlikely(txq >= dev->real_num_tx_queues))
1348 txq -= dev->real_num_tx_queues;
1349
1350 return txq;
1351 }
1352
1353 return fallback(dev, skb) % dev->real_num_tx_queues;
1354}
1355
b8ff05a9
DM
1356static int closest_timer(const struct sge *s, int time)
1357{
1358 int i, delta, match = 0, min_delta = INT_MAX;
1359
1360 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1361 delta = time - s->timer_val[i];
1362 if (delta < 0)
1363 delta = -delta;
1364 if (delta < min_delta) {
1365 min_delta = delta;
1366 match = i;
1367 }
1368 }
1369 return match;
1370}
1371
1372static int closest_thres(const struct sge *s, int thres)
1373{
1374 int i, delta, match = 0, min_delta = INT_MAX;
1375
1376 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1377 delta = thres - s->counter_val[i];
1378 if (delta < 0)
1379 delta = -delta;
1380 if (delta < min_delta) {
1381 min_delta = delta;
1382 match = i;
1383 }
1384 }
1385 return match;
1386}
1387
b8ff05a9 1388/**
812034f1 1389 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
b8ff05a9
DM
1390 * @q: the Rx queue
1391 * @us: the hold-off time in us, or 0 to disable timer
1392 * @cnt: the hold-off packet count, or 0 to disable counter
1393 *
1394 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1395 * one of the two needs to be enabled for the queue to generate interrupts.
1396 */
812034f1
HS
1397int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1398 unsigned int us, unsigned int cnt)
b8ff05a9 1399{
c887ad0e
HS
1400 struct adapter *adap = q->adap;
1401
b8ff05a9
DM
1402 if ((us | cnt) == 0)
1403 cnt = 1;
1404
1405 if (cnt) {
1406 int err;
1407 u32 v, new_idx;
1408
1409 new_idx = closest_thres(&adap->sge, cnt);
1410 if (q->desc && q->pktcnt_idx != new_idx) {
1411 /* the queue has already been created, update it */
5167865a
HS
1412 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1413 FW_PARAMS_PARAM_X_V(
1414 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1415 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
b2612722
HS
1416 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1417 &v, &new_idx);
b8ff05a9
DM
1418 if (err)
1419 return err;
1420 }
1421 q->pktcnt_idx = new_idx;
1422 }
1423
1424 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1ecc7b7a 1425 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
b8ff05a9
DM
1426 return 0;
1427}
1428
c8f44aff 1429static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
87b6cf51 1430{
2ed28baa 1431 const struct port_info *pi = netdev_priv(dev);
c8f44aff 1432 netdev_features_t changed = dev->features ^ features;
19ecae2c 1433 int err;
19ecae2c 1434
f646968f 1435 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2ed28baa 1436 return 0;
19ecae2c 1437
b2612722 1438 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
2ed28baa 1439 -1, -1, -1,
f646968f 1440 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2ed28baa 1441 if (unlikely(err))
f646968f 1442 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
19ecae2c 1443 return err;
87b6cf51
DM
1444}
1445
91744948 1446static int setup_debugfs(struct adapter *adap)
b8ff05a9 1447{
b8ff05a9
DM
1448 if (IS_ERR_OR_NULL(adap->debugfs_root))
1449 return -1;
1450
fd88b31a
HS
1451#ifdef CONFIG_DEBUG_FS
1452 t4_setup_debugfs(adap);
1453#endif
b8ff05a9
DM
1454 return 0;
1455}
1456
1457/*
1458 * upper-layer driver support
1459 */
1460
1461/*
1462 * Allocate an active-open TID and set it to the supplied value.
1463 */
1464int cxgb4_alloc_atid(struct tid_info *t, void *data)
1465{
1466 int atid = -1;
1467
1468 spin_lock_bh(&t->atid_lock);
1469 if (t->afree) {
1470 union aopen_entry *p = t->afree;
1471
f2b7e78d 1472 atid = (p - t->atid_tab) + t->atid_base;
b8ff05a9
DM
1473 t->afree = p->next;
1474 p->data = data;
1475 t->atids_in_use++;
1476 }
1477 spin_unlock_bh(&t->atid_lock);
1478 return atid;
1479}
1480EXPORT_SYMBOL(cxgb4_alloc_atid);
1481
1482/*
1483 * Release an active-open TID.
1484 */
1485void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1486{
f2b7e78d 1487 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
b8ff05a9
DM
1488
1489 spin_lock_bh(&t->atid_lock);
1490 p->next = t->afree;
1491 t->afree = p;
1492 t->atids_in_use--;
1493 spin_unlock_bh(&t->atid_lock);
1494}
1495EXPORT_SYMBOL(cxgb4_free_atid);
1496
1497/*
1498 * Allocate a server TID and set it to the supplied value.
1499 */
1500int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1501{
1502 int stid;
1503
1504 spin_lock_bh(&t->stid_lock);
1505 if (family == PF_INET) {
1506 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1507 if (stid < t->nstids)
1508 __set_bit(stid, t->stid_bmap);
1509 else
1510 stid = -1;
1511 } else {
1512 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1513 if (stid < 0)
1514 stid = -1;
1515 }
1516 if (stid >= 0) {
1517 t->stid_tab[stid].data = data;
1518 stid += t->stid_base;
15f63b74
KS
1519 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1520 * This is equivalent to 4 TIDs. With CLIP enabled it
1521 * needs 2 TIDs.
1522 */
1523 if (family == PF_INET)
1524 t->stids_in_use++;
1525 else
1526 t->stids_in_use += 4;
b8ff05a9
DM
1527 }
1528 spin_unlock_bh(&t->stid_lock);
1529 return stid;
1530}
1531EXPORT_SYMBOL(cxgb4_alloc_stid);
1532
dca4faeb
VP
1533/* Allocate a server filter TID and set it to the supplied value.
1534 */
1535int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1536{
1537 int stid;
1538
1539 spin_lock_bh(&t->stid_lock);
1540 if (family == PF_INET) {
1541 stid = find_next_zero_bit(t->stid_bmap,
1542 t->nstids + t->nsftids, t->nstids);
1543 if (stid < (t->nstids + t->nsftids))
1544 __set_bit(stid, t->stid_bmap);
1545 else
1546 stid = -1;
1547 } else {
1548 stid = -1;
1549 }
1550 if (stid >= 0) {
1551 t->stid_tab[stid].data = data;
470c60c4
KS
1552 stid -= t->nstids;
1553 stid += t->sftid_base;
dca4faeb
VP
1554 t->stids_in_use++;
1555 }
1556 spin_unlock_bh(&t->stid_lock);
1557 return stid;
1558}
1559EXPORT_SYMBOL(cxgb4_alloc_sftid);
1560
1561/* Release a server TID.
b8ff05a9
DM
1562 */
1563void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1564{
470c60c4
KS
1565 /* Is it a server filter TID? */
1566 if (t->nsftids && (stid >= t->sftid_base)) {
1567 stid -= t->sftid_base;
1568 stid += t->nstids;
1569 } else {
1570 stid -= t->stid_base;
1571 }
1572
b8ff05a9
DM
1573 spin_lock_bh(&t->stid_lock);
1574 if (family == PF_INET)
1575 __clear_bit(stid, t->stid_bmap);
1576 else
1577 bitmap_release_region(t->stid_bmap, stid, 2);
1578 t->stid_tab[stid].data = NULL;
15f63b74
KS
1579 if (family == PF_INET)
1580 t->stids_in_use--;
1581 else
1582 t->stids_in_use -= 4;
b8ff05a9
DM
1583 spin_unlock_bh(&t->stid_lock);
1584}
1585EXPORT_SYMBOL(cxgb4_free_stid);
1586
1587/*
1588 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1589 */
1590static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1591 unsigned int tid)
1592{
1593 struct cpl_tid_release *req;
1594
1595 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1596 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1597 INIT_TP_WR(req, tid);
1598 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1599}
1600
1601/*
1602 * Queue a TID release request and if necessary schedule a work queue to
1603 * process it.
1604 */
31b9c19b 1605static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1606 unsigned int tid)
b8ff05a9
DM
1607{
1608 void **p = &t->tid_tab[tid];
1609 struct adapter *adap = container_of(t, struct adapter, tids);
1610
1611 spin_lock_bh(&adap->tid_release_lock);
1612 *p = adap->tid_release_head;
1613 /* Low 2 bits encode the Tx channel number */
1614 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1615 if (!adap->tid_release_task_busy) {
1616 adap->tid_release_task_busy = true;
29aaee65 1617 queue_work(adap->workq, &adap->tid_release_task);
b8ff05a9
DM
1618 }
1619 spin_unlock_bh(&adap->tid_release_lock);
1620}
b8ff05a9
DM
1621
1622/*
1623 * Process the list of pending TID release requests.
1624 */
1625static void process_tid_release_list(struct work_struct *work)
1626{
1627 struct sk_buff *skb;
1628 struct adapter *adap;
1629
1630 adap = container_of(work, struct adapter, tid_release_task);
1631
1632 spin_lock_bh(&adap->tid_release_lock);
1633 while (adap->tid_release_head) {
1634 void **p = adap->tid_release_head;
1635 unsigned int chan = (uintptr_t)p & 3;
1636 p = (void *)p - chan;
1637
1638 adap->tid_release_head = *p;
1639 *p = NULL;
1640 spin_unlock_bh(&adap->tid_release_lock);
1641
1642 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1643 GFP_KERNEL)))
1644 schedule_timeout_uninterruptible(1);
1645
1646 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1647 t4_ofld_send(adap, skb);
1648 spin_lock_bh(&adap->tid_release_lock);
1649 }
1650 adap->tid_release_task_busy = false;
1651 spin_unlock_bh(&adap->tid_release_lock);
1652}
1653
1654/*
1655 * Release a TID and inform HW. If we are unable to allocate the release
1656 * message we defer to a work queue.
1657 */
1658void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1659{
1660 void *old;
1661 struct sk_buff *skb;
1662 struct adapter *adap = container_of(t, struct adapter, tids);
1663
1664 old = t->tid_tab[tid];
1665 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1666 if (likely(skb)) {
1667 t->tid_tab[tid] = NULL;
1668 mk_tid_release(skb, chan, tid);
1669 t4_ofld_send(adap, skb);
1670 } else
1671 cxgb4_queue_tid_release(t, chan, tid);
1672 if (old)
1673 atomic_dec(&t->tids_in_use);
1674}
1675EXPORT_SYMBOL(cxgb4_remove_tid);
1676
1677/*
1678 * Allocate and initialize the TID tables. Returns 0 on success.
1679 */
1680static int tid_init(struct tid_info *t)
1681{
1682 size_t size;
f2b7e78d 1683 unsigned int stid_bmap_size;
b8ff05a9 1684 unsigned int natids = t->natids;
b6f8eaec 1685 struct adapter *adap = container_of(t, struct adapter, tids);
b8ff05a9 1686
dca4faeb 1687 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
f2b7e78d
VP
1688 size = t->ntids * sizeof(*t->tid_tab) +
1689 natids * sizeof(*t->atid_tab) +
b8ff05a9 1690 t->nstids * sizeof(*t->stid_tab) +
dca4faeb 1691 t->nsftids * sizeof(*t->stid_tab) +
f2b7e78d 1692 stid_bmap_size * sizeof(long) +
dca4faeb
VP
1693 t->nftids * sizeof(*t->ftid_tab) +
1694 t->nsftids * sizeof(*t->ftid_tab);
f2b7e78d 1695
b8ff05a9
DM
1696 t->tid_tab = t4_alloc_mem(size);
1697 if (!t->tid_tab)
1698 return -ENOMEM;
1699
1700 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1701 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
dca4faeb 1702 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
f2b7e78d 1703 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
b8ff05a9
DM
1704 spin_lock_init(&t->stid_lock);
1705 spin_lock_init(&t->atid_lock);
1706
1707 t->stids_in_use = 0;
1708 t->afree = NULL;
1709 t->atids_in_use = 0;
1710 atomic_set(&t->tids_in_use, 0);
1711
1712 /* Setup the free list for atid_tab and clear the stid bitmap. */
1713 if (natids) {
1714 while (--natids)
1715 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1716 t->afree = t->atid_tab;
1717 }
dca4faeb 1718 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
b6f8eaec
KS
1719 /* Reserve stid 0 for T4/T5 adapters */
1720 if (!t->stid_base &&
3ccc6cf7 1721 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
b6f8eaec
KS
1722 __set_bit(0, t->stid_bmap);
1723
b8ff05a9
DM
1724 return 0;
1725}
1726
1727/**
1728 * cxgb4_create_server - create an IP server
1729 * @dev: the device
1730 * @stid: the server TID
1731 * @sip: local IP address to bind server to
1732 * @sport: the server's TCP port
1733 * @queue: queue to direct messages from this server to
1734 *
1735 * Create an IP server for the given port and address.
1736 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1737 */
1738int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
793dad94
VP
1739 __be32 sip, __be16 sport, __be16 vlan,
1740 unsigned int queue)
b8ff05a9
DM
1741{
1742 unsigned int chan;
1743 struct sk_buff *skb;
1744 struct adapter *adap;
1745 struct cpl_pass_open_req *req;
80f40c1f 1746 int ret;
b8ff05a9
DM
1747
1748 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1749 if (!skb)
1750 return -ENOMEM;
1751
1752 adap = netdev2adap(dev);
1753 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1754 INIT_TP_WR(req, 0);
1755 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1756 req->local_port = sport;
1757 req->peer_port = htons(0);
1758 req->local_ip = sip;
1759 req->peer_ip = htonl(0);
e46dab4d 1760 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1761 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1762 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1763 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1764 ret = t4_mgmt_tx(adap, skb);
1765 return net_xmit_eval(ret);
b8ff05a9
DM
1766}
1767EXPORT_SYMBOL(cxgb4_create_server);
1768
80f40c1f
VP
1769/* cxgb4_create_server6 - create an IPv6 server
1770 * @dev: the device
1771 * @stid: the server TID
1772 * @sip: local IPv6 address to bind server to
1773 * @sport: the server's TCP port
1774 * @queue: queue to direct messages from this server to
1775 *
1776 * Create an IPv6 server for the given port and address.
1777 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1778 */
1779int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1780 const struct in6_addr *sip, __be16 sport,
1781 unsigned int queue)
1782{
1783 unsigned int chan;
1784 struct sk_buff *skb;
1785 struct adapter *adap;
1786 struct cpl_pass_open_req6 *req;
1787 int ret;
1788
1789 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1790 if (!skb)
1791 return -ENOMEM;
1792
1793 adap = netdev2adap(dev);
1794 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1795 INIT_TP_WR(req, 0);
1796 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1797 req->local_port = sport;
1798 req->peer_port = htons(0);
1799 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1800 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1801 req->peer_ip_hi = cpu_to_be64(0);
1802 req->peer_ip_lo = cpu_to_be64(0);
1803 chan = rxq_to_chan(&adap->sge, queue);
d7990b0c 1804 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
6c53e938
HS
1805 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1806 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
80f40c1f
VP
1807 ret = t4_mgmt_tx(adap, skb);
1808 return net_xmit_eval(ret);
1809}
1810EXPORT_SYMBOL(cxgb4_create_server6);
1811
1812int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1813 unsigned int queue, bool ipv6)
1814{
1815 struct sk_buff *skb;
1816 struct adapter *adap;
1817 struct cpl_close_listsvr_req *req;
1818 int ret;
1819
1820 adap = netdev2adap(dev);
1821
1822 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1823 if (!skb)
1824 return -ENOMEM;
1825
1826 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1827 INIT_TP_WR(req, 0);
1828 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
bdc590b9
HS
1829 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1830 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
80f40c1f
VP
1831 ret = t4_mgmt_tx(adap, skb);
1832 return net_xmit_eval(ret);
1833}
1834EXPORT_SYMBOL(cxgb4_remove_server);
1835
b8ff05a9
DM
1836/**
1837 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1838 * @mtus: the HW MTU table
1839 * @mtu: the target MTU
1840 * @idx: index of selected entry in the MTU table
1841 *
1842 * Returns the index and the value in the HW MTU table that is closest to
1843 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1844 * table, in which case that smallest available value is selected.
1845 */
1846unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1847 unsigned int *idx)
1848{
1849 unsigned int i = 0;
1850
1851 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1852 ++i;
1853 if (idx)
1854 *idx = i;
1855 return mtus[i];
1856}
1857EXPORT_SYMBOL(cxgb4_best_mtu);
1858
92e7ae71
HS
1859/**
1860 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1861 * @mtus: the HW MTU table
1862 * @header_size: Header Size
1863 * @data_size_max: maximum Data Segment Size
1864 * @data_size_align: desired Data Segment Size Alignment (2^N)
1865 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1866 *
1867 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1868 * MTU Table based solely on a Maximum MTU parameter, we break that
1869 * parameter up into a Header Size and Maximum Data Segment Size, and
1870 * provide a desired Data Segment Size Alignment. If we find an MTU in
1871 * the Hardware MTU Table which will result in a Data Segment Size with
1872 * the requested alignment _and_ that MTU isn't "too far" from the
1873 * closest MTU, then we'll return that rather than the closest MTU.
1874 */
1875unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1876 unsigned short header_size,
1877 unsigned short data_size_max,
1878 unsigned short data_size_align,
1879 unsigned int *mtu_idxp)
1880{
1881 unsigned short max_mtu = header_size + data_size_max;
1882 unsigned short data_size_align_mask = data_size_align - 1;
1883 int mtu_idx, aligned_mtu_idx;
1884
1885 /* Scan the MTU Table till we find an MTU which is larger than our
1886 * Maximum MTU or we reach the end of the table. Along the way,
1887 * record the last MTU found, if any, which will result in a Data
1888 * Segment Length matching the requested alignment.
1889 */
1890 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1891 unsigned short data_size = mtus[mtu_idx] - header_size;
1892
1893 /* If this MTU minus the Header Size would result in a
1894 * Data Segment Size of the desired alignment, remember it.
1895 */
1896 if ((data_size & data_size_align_mask) == 0)
1897 aligned_mtu_idx = mtu_idx;
1898
1899 /* If we're not at the end of the Hardware MTU Table and the
1900 * next element is larger than our Maximum MTU, drop out of
1901 * the loop.
1902 */
1903 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1904 break;
1905 }
1906
1907 /* If we fell out of the loop because we ran to the end of the table,
1908 * then we just have to use the last [largest] entry.
1909 */
1910 if (mtu_idx == NMTUS)
1911 mtu_idx--;
1912
1913 /* If we found an MTU which resulted in the requested Data Segment
1914 * Length alignment and that's "not far" from the largest MTU which is
1915 * less than or equal to the maximum MTU, then use that.
1916 */
1917 if (aligned_mtu_idx >= 0 &&
1918 mtu_idx - aligned_mtu_idx <= 1)
1919 mtu_idx = aligned_mtu_idx;
1920
1921 /* If the caller has passed in an MTU Index pointer, pass the
1922 * MTU Index back. Return the MTU value.
1923 */
1924 if (mtu_idxp)
1925 *mtu_idxp = mtu_idx;
1926 return mtus[mtu_idx];
1927}
1928EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1929
b8ff05a9
DM
1930/**
1931 * cxgb4_port_chan - get the HW channel of a port
1932 * @dev: the net device for the port
1933 *
1934 * Return the HW Tx channel of the given port.
1935 */
1936unsigned int cxgb4_port_chan(const struct net_device *dev)
1937{
1938 return netdev2pinfo(dev)->tx_chan;
1939}
1940EXPORT_SYMBOL(cxgb4_port_chan);
1941
881806bc
VP
1942unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1943{
1944 struct adapter *adap = netdev2adap(dev);
2cc301d2 1945 u32 v1, v2, lp_count, hp_count;
881806bc 1946
f061de42
HS
1947 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1948 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 1949 if (is_t4(adap->params.chip)) {
f061de42
HS
1950 lp_count = LP_COUNT_G(v1);
1951 hp_count = HP_COUNT_G(v1);
2cc301d2 1952 } else {
f061de42
HS
1953 lp_count = LP_COUNT_T5_G(v1);
1954 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
1955 }
1956 return lpfifo ? lp_count : hp_count;
881806bc
VP
1957}
1958EXPORT_SYMBOL(cxgb4_dbfifo_count);
1959
b8ff05a9
DM
1960/**
1961 * cxgb4_port_viid - get the VI id of a port
1962 * @dev: the net device for the port
1963 *
1964 * Return the VI id of the given port.
1965 */
1966unsigned int cxgb4_port_viid(const struct net_device *dev)
1967{
1968 return netdev2pinfo(dev)->viid;
1969}
1970EXPORT_SYMBOL(cxgb4_port_viid);
1971
1972/**
1973 * cxgb4_port_idx - get the index of a port
1974 * @dev: the net device for the port
1975 *
1976 * Return the index of the given port.
1977 */
1978unsigned int cxgb4_port_idx(const struct net_device *dev)
1979{
1980 return netdev2pinfo(dev)->port_id;
1981}
1982EXPORT_SYMBOL(cxgb4_port_idx);
1983
b8ff05a9
DM
1984void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1985 struct tp_tcp_stats *v6)
1986{
1987 struct adapter *adap = pci_get_drvdata(pdev);
1988
1989 spin_lock(&adap->stats_lock);
1990 t4_tp_get_tcp_stats(adap, v4, v6);
1991 spin_unlock(&adap->stats_lock);
1992}
1993EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1994
1995void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1996 const unsigned int *pgsz_order)
1997{
1998 struct adapter *adap = netdev2adap(dev);
1999
0d804338
HS
2000 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2001 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2002 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2003 HPZ3_V(pgsz_order[3]));
b8ff05a9
DM
2004}
2005EXPORT_SYMBOL(cxgb4_iscsi_init);
2006
3069ee9b
VP
2007int cxgb4_flush_eq_cache(struct net_device *dev)
2008{
2009 struct adapter *adap = netdev2adap(dev);
2010 int ret;
2011
2012 ret = t4_fwaddrspace_write(adap, adap->mbox,
f061de42 2013 0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
3069ee9b
VP
2014 return ret;
2015}
2016EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2017
2018static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2019{
f061de42 2020 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
3069ee9b
VP
2021 __be64 indices;
2022 int ret;
2023
fc5ab020
HS
2024 spin_lock(&adap->win0_lock);
2025 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2026 sizeof(indices), (__be32 *)&indices,
2027 T4_MEMORY_READ);
2028 spin_unlock(&adap->win0_lock);
3069ee9b 2029 if (!ret) {
404d9e3f
VP
2030 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2031 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3069ee9b
VP
2032 }
2033 return ret;
2034}
2035
2036int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2037 u16 size)
2038{
2039 struct adapter *adap = netdev2adap(dev);
2040 u16 hw_pidx, hw_cidx;
2041 int ret;
2042
2043 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2044 if (ret)
2045 goto out;
2046
2047 if (pidx != hw_pidx) {
2048 u16 delta;
f612b815 2049 u32 val;
3069ee9b
VP
2050
2051 if (pidx >= hw_pidx)
2052 delta = pidx - hw_pidx;
2053 else
2054 delta = size - hw_pidx + pidx;
f612b815
HS
2055
2056 if (is_t4(adap->params.chip))
2057 val = PIDX_V(delta);
2058 else
2059 val = PIDX_T5_V(delta);
3069ee9b 2060 wmb();
f612b815
HS
2061 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2062 QID_V(qid) | val);
3069ee9b
VP
2063 }
2064out:
2065 return ret;
2066}
2067EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2068
031cf476
HS
2069int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2070{
2071 struct adapter *adap;
2072 u32 offset, memtype, memaddr;
6559a7e8 2073 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
031cf476
HS
2074 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2075 int ret;
2076
2077 adap = netdev2adap(dev);
2078
2079 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2080
2081 /* Figure out where the offset lands in the Memory Type/Address scheme.
2082 * This code assumes that the memory is laid out starting at offset 0
2083 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2084 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2085 * MC0, and some have both MC0 and MC1.
2086 */
6559a7e8
HS
2087 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2088 edc0_size = EDRAM0_SIZE_G(size) << 20;
2089 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2090 edc1_size = EDRAM1_SIZE_G(size) << 20;
2091 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2092 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
031cf476
HS
2093
2094 edc0_end = edc0_size;
2095 edc1_end = edc0_end + edc1_size;
2096 mc0_end = edc1_end + mc0_size;
2097
2098 if (offset < edc0_end) {
2099 memtype = MEM_EDC0;
2100 memaddr = offset;
2101 } else if (offset < edc1_end) {
2102 memtype = MEM_EDC1;
2103 memaddr = offset - edc0_end;
2104 } else {
2105 if (offset < mc0_end) {
2106 memtype = MEM_MC0;
2107 memaddr = offset - edc1_end;
3ccc6cf7 2108 } else if (is_t5(adap->params.chip)) {
6559a7e8
HS
2109 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2110 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
031cf476
HS
2111 mc1_end = mc0_end + mc1_size;
2112 if (offset < mc1_end) {
2113 memtype = MEM_MC1;
2114 memaddr = offset - mc0_end;
2115 } else {
2116 /* offset beyond the end of any memory */
2117 goto err;
2118 }
3ccc6cf7
HS
2119 } else {
2120 /* T4/T6 only has a single memory channel */
2121 goto err;
031cf476
HS
2122 }
2123 }
2124
2125 spin_lock(&adap->win0_lock);
2126 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2127 spin_unlock(&adap->win0_lock);
2128 return ret;
2129
2130err:
2131 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2132 stag, offset);
2133 return -EINVAL;
2134}
2135EXPORT_SYMBOL(cxgb4_read_tpte);
2136
7730b4c7
HS
2137u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2138{
2139 u32 hi, lo;
2140 struct adapter *adap;
2141
2142 adap = netdev2adap(dev);
f612b815
HS
2143 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2144 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
7730b4c7
HS
2145
2146 return ((u64)hi << 32) | (u64)lo;
2147}
2148EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2149
df64e4d3
HS
2150int cxgb4_bar2_sge_qregs(struct net_device *dev,
2151 unsigned int qid,
2152 enum cxgb4_bar2_qtype qtype,
2153 u64 *pbar2_qoffset,
2154 unsigned int *pbar2_qid)
2155{
b2612722 2156 return t4_bar2_sge_qregs(netdev2adap(dev),
df64e4d3
HS
2157 qid,
2158 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2159 ? T4_BAR2_QTYPE_EGRESS
2160 : T4_BAR2_QTYPE_INGRESS),
2161 pbar2_qoffset,
2162 pbar2_qid);
2163}
2164EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2165
b8ff05a9
DM
2166static struct pci_driver cxgb4_driver;
2167
2168static void check_neigh_update(struct neighbour *neigh)
2169{
2170 const struct device *parent;
2171 const struct net_device *netdev = neigh->dev;
2172
2173 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2174 netdev = vlan_dev_real_dev(netdev);
2175 parent = netdev->dev.parent;
2176 if (parent && parent->driver == &cxgb4_driver.driver)
2177 t4_l2t_update(dev_get_drvdata(parent), neigh);
2178}
2179
2180static int netevent_cb(struct notifier_block *nb, unsigned long event,
2181 void *data)
2182{
2183 switch (event) {
2184 case NETEVENT_NEIGH_UPDATE:
2185 check_neigh_update(data);
2186 break;
b8ff05a9
DM
2187 case NETEVENT_REDIRECT:
2188 default:
2189 break;
2190 }
2191 return 0;
2192}
2193
2194static bool netevent_registered;
2195static struct notifier_block cxgb4_netevent_nb = {
2196 .notifier_call = netevent_cb
2197};
2198
3069ee9b
VP
2199static void drain_db_fifo(struct adapter *adap, int usecs)
2200{
2cc301d2 2201 u32 v1, v2, lp_count, hp_count;
3069ee9b
VP
2202
2203 do {
f061de42
HS
2204 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2205 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
d14807dd 2206 if (is_t4(adap->params.chip)) {
f061de42
HS
2207 lp_count = LP_COUNT_G(v1);
2208 hp_count = HP_COUNT_G(v1);
2cc301d2 2209 } else {
f061de42
HS
2210 lp_count = LP_COUNT_T5_G(v1);
2211 hp_count = HP_COUNT_T5_G(v2);
2cc301d2
SR
2212 }
2213
2214 if (lp_count == 0 && hp_count == 0)
2215 break;
3069ee9b
VP
2216 set_current_state(TASK_UNINTERRUPTIBLE);
2217 schedule_timeout(usecs_to_jiffies(usecs));
3069ee9b
VP
2218 } while (1);
2219}
2220
2221static void disable_txq_db(struct sge_txq *q)
2222{
05eb2389
SW
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&q->db_lock, flags);
3069ee9b 2226 q->db_disabled = 1;
05eb2389 2227 spin_unlock_irqrestore(&q->db_lock, flags);
3069ee9b
VP
2228}
2229
05eb2389 2230static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3069ee9b
VP
2231{
2232 spin_lock_irq(&q->db_lock);
05eb2389
SW
2233 if (q->db_pidx_inc) {
2234 /* Make sure that all writes to the TX descriptors
2235 * are committed before we tell HW about them.
2236 */
2237 wmb();
f612b815
HS
2238 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2239 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
05eb2389
SW
2240 q->db_pidx_inc = 0;
2241 }
3069ee9b
VP
2242 q->db_disabled = 0;
2243 spin_unlock_irq(&q->db_lock);
2244}
2245
2246static void disable_dbs(struct adapter *adap)
2247{
2248 int i;
2249
2250 for_each_ethrxq(&adap->sge, i)
2251 disable_txq_db(&adap->sge.ethtxq[i].q);
2252 for_each_ofldrxq(&adap->sge, i)
2253 disable_txq_db(&adap->sge.ofldtxq[i].q);
2254 for_each_port(adap, i)
2255 disable_txq_db(&adap->sge.ctrlq[i].q);
2256}
2257
2258static void enable_dbs(struct adapter *adap)
2259{
2260 int i;
2261
2262 for_each_ethrxq(&adap->sge, i)
05eb2389 2263 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3069ee9b 2264 for_each_ofldrxq(&adap->sge, i)
05eb2389 2265 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3069ee9b 2266 for_each_port(adap, i)
05eb2389
SW
2267 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2268}
2269
2270static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2271{
2272 if (adap->uld_handle[CXGB4_ULD_RDMA])
2273 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2274 cmd);
2275}
2276
2277static void process_db_full(struct work_struct *work)
2278{
2279 struct adapter *adap;
2280
2281 adap = container_of(work, struct adapter, db_full_task);
2282
2283 drain_db_fifo(adap, dbfifo_drain_delay);
2284 enable_dbs(adap);
2285 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7
HS
2286 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2287 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2288 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2289 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2290 else
2291 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2292 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
3069ee9b
VP
2293}
2294
2295static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2296{
2297 u16 hw_pidx, hw_cidx;
2298 int ret;
2299
05eb2389 2300 spin_lock_irq(&q->db_lock);
3069ee9b
VP
2301 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2302 if (ret)
2303 goto out;
2304 if (q->db_pidx != hw_pidx) {
2305 u16 delta;
f612b815 2306 u32 val;
3069ee9b
VP
2307
2308 if (q->db_pidx >= hw_pidx)
2309 delta = q->db_pidx - hw_pidx;
2310 else
2311 delta = q->size - hw_pidx + q->db_pidx;
f612b815
HS
2312
2313 if (is_t4(adap->params.chip))
2314 val = PIDX_V(delta);
2315 else
2316 val = PIDX_T5_V(delta);
3069ee9b 2317 wmb();
f612b815
HS
2318 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2319 QID_V(q->cntxt_id) | val);
3069ee9b
VP
2320 }
2321out:
2322 q->db_disabled = 0;
05eb2389
SW
2323 q->db_pidx_inc = 0;
2324 spin_unlock_irq(&q->db_lock);
3069ee9b
VP
2325 if (ret)
2326 CH_WARN(adap, "DB drop recovery failed.\n");
2327}
2328static void recover_all_queues(struct adapter *adap)
2329{
2330 int i;
2331
2332 for_each_ethrxq(&adap->sge, i)
2333 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2334 for_each_ofldrxq(&adap->sge, i)
2335 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2336 for_each_port(adap, i)
2337 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2338}
2339
881806bc
VP
2340static void process_db_drop(struct work_struct *work)
2341{
2342 struct adapter *adap;
881806bc 2343
3069ee9b 2344 adap = container_of(work, struct adapter, db_drop_task);
881806bc 2345
d14807dd 2346 if (is_t4(adap->params.chip)) {
05eb2389 2347 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2348 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
05eb2389 2349 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2350 recover_all_queues(adap);
05eb2389 2351 drain_db_fifo(adap, dbfifo_drain_delay);
2cc301d2 2352 enable_dbs(adap);
05eb2389 2353 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3ccc6cf7 2354 } else if (is_t5(adap->params.chip)) {
2cc301d2
SR
2355 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2356 u16 qid = (dropped_db >> 15) & 0x1ffff;
2357 u16 pidx_inc = dropped_db & 0x1fff;
df64e4d3
HS
2358 u64 bar2_qoffset;
2359 unsigned int bar2_qid;
2360 int ret;
2cc301d2 2361
b2612722 2362 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
df64e4d3
HS
2363 &bar2_qoffset, &bar2_qid);
2364 if (ret)
2365 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2366 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2367 else
f612b815 2368 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
df64e4d3 2369 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2cc301d2
SR
2370
2371 /* Re-enable BAR2 WC */
2372 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2373 }
2374
3ccc6cf7
HS
2375 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2376 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
881806bc
VP
2377}
2378
2379void t4_db_full(struct adapter *adap)
2380{
d14807dd 2381 if (is_t4(adap->params.chip)) {
05eb2389
SW
2382 disable_dbs(adap);
2383 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
f612b815
HS
2384 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2385 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
29aaee65 2386 queue_work(adap->workq, &adap->db_full_task);
2cc301d2 2387 }
881806bc
VP
2388}
2389
2390void t4_db_dropped(struct adapter *adap)
2391{
05eb2389
SW
2392 if (is_t4(adap->params.chip)) {
2393 disable_dbs(adap);
2394 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2395 }
29aaee65 2396 queue_work(adap->workq, &adap->db_drop_task);
881806bc
VP
2397}
2398
b8ff05a9
DM
2399static void uld_attach(struct adapter *adap, unsigned int uld)
2400{
2401 void *handle;
2402 struct cxgb4_lld_info lli;
dca4faeb 2403 unsigned short i;
b8ff05a9
DM
2404
2405 lli.pdev = adap->pdev;
b2612722 2406 lli.pf = adap->pf;
b8ff05a9
DM
2407 lli.l2t = adap->l2t;
2408 lli.tids = &adap->tids;
2409 lli.ports = adap->port;
2410 lli.vr = &adap->vres;
2411 lli.mtus = adap->params.mtus;
2412 if (uld == CXGB4_ULD_RDMA) {
2413 lli.rxq_ids = adap->sge.rdma_rxq;
cf38be6d 2414 lli.ciq_ids = adap->sge.rdma_ciq;
b8ff05a9 2415 lli.nrxq = adap->sge.rdmaqs;
cf38be6d 2416 lli.nciq = adap->sge.rdmaciqs;
b8ff05a9
DM
2417 } else if (uld == CXGB4_ULD_ISCSI) {
2418 lli.rxq_ids = adap->sge.ofld_rxq;
2419 lli.nrxq = adap->sge.ofldqsets;
2420 }
2421 lli.ntxq = adap->sge.ofldqsets;
2422 lli.nchan = adap->params.nports;
2423 lli.nports = adap->params.nports;
2424 lli.wr_cred = adap->params.ofldq_wr_cred;
d14807dd 2425 lli.adapter_type = adap->params.chip;
837e4a42 2426 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
7730b4c7 2427 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
df64e4d3
HS
2428 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2429 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
dcf7b6f5 2430 lli.filt_mode = adap->params.tp.vlan_pri_map;
dca4faeb
VP
2431 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2432 for (i = 0; i < NCHAN; i++)
2433 lli.tx_modq[i] = i;
f612b815
HS
2434 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2435 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
b8ff05a9 2436 lli.fw_vers = adap->params.fw_vers;
3069ee9b 2437 lli.dbfifo_int_thresh = dbfifo_int_thresh;
04e10e21
HS
2438 lli.sge_ingpadboundary = adap->sge.fl_align;
2439 lli.sge_egrstatuspagesize = adap->sge.stat_len;
dca4faeb
VP
2440 lli.sge_pktshift = adap->sge.pktshift;
2441 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4c2c5763
HS
2442 lli.max_ordird_qp = adap->params.max_ordird_qp;
2443 lli.max_ird_adapter = adap->params.max_ird_adapter;
1ac0f095 2444 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
982b81eb 2445 lli.nodeid = dev_to_node(adap->pdev_dev);
b8ff05a9
DM
2446
2447 handle = ulds[uld].add(&lli);
2448 if (IS_ERR(handle)) {
2449 dev_warn(adap->pdev_dev,
2450 "could not attach to the %s driver, error %ld\n",
2451 uld_str[uld], PTR_ERR(handle));
2452 return;
2453 }
2454
2455 adap->uld_handle[uld] = handle;
2456
2457 if (!netevent_registered) {
2458 register_netevent_notifier(&cxgb4_netevent_nb);
2459 netevent_registered = true;
2460 }
e29f5dbc
DM
2461
2462 if (adap->flags & FULL_INIT_DONE)
2463 ulds[uld].state_change(handle, CXGB4_STATE_UP);
b8ff05a9
DM
2464}
2465
2466static void attach_ulds(struct adapter *adap)
2467{
2468 unsigned int i;
2469
01bcca68
VP
2470 spin_lock(&adap_rcu_lock);
2471 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2472 spin_unlock(&adap_rcu_lock);
2473
b8ff05a9
DM
2474 mutex_lock(&uld_mutex);
2475 list_add_tail(&adap->list_node, &adapter_list);
2476 for (i = 0; i < CXGB4_ULD_MAX; i++)
2477 if (ulds[i].add)
2478 uld_attach(adap, i);
2479 mutex_unlock(&uld_mutex);
2480}
2481
2482static void detach_ulds(struct adapter *adap)
2483{
2484 unsigned int i;
2485
2486 mutex_lock(&uld_mutex);
2487 list_del(&adap->list_node);
2488 for (i = 0; i < CXGB4_ULD_MAX; i++)
2489 if (adap->uld_handle[i]) {
2490 ulds[i].state_change(adap->uld_handle[i],
2491 CXGB4_STATE_DETACH);
2492 adap->uld_handle[i] = NULL;
2493 }
2494 if (netevent_registered && list_empty(&adapter_list)) {
2495 unregister_netevent_notifier(&cxgb4_netevent_nb);
2496 netevent_registered = false;
2497 }
2498 mutex_unlock(&uld_mutex);
01bcca68
VP
2499
2500 spin_lock(&adap_rcu_lock);
2501 list_del_rcu(&adap->rcu_node);
2502 spin_unlock(&adap_rcu_lock);
b8ff05a9
DM
2503}
2504
2505static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2506{
2507 unsigned int i;
2508
2509 mutex_lock(&uld_mutex);
2510 for (i = 0; i < CXGB4_ULD_MAX; i++)
2511 if (adap->uld_handle[i])
2512 ulds[i].state_change(adap->uld_handle[i], new_state);
2513 mutex_unlock(&uld_mutex);
2514}
2515
2516/**
2517 * cxgb4_register_uld - register an upper-layer driver
2518 * @type: the ULD type
2519 * @p: the ULD methods
2520 *
2521 * Registers an upper-layer driver with this driver and notifies the ULD
2522 * about any presently available devices that support its type. Returns
2523 * %-EBUSY if a ULD of the same type is already registered.
2524 */
2525int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2526{
2527 int ret = 0;
2528 struct adapter *adap;
2529
2530 if (type >= CXGB4_ULD_MAX)
2531 return -EINVAL;
2532 mutex_lock(&uld_mutex);
2533 if (ulds[type].add) {
2534 ret = -EBUSY;
2535 goto out;
2536 }
2537 ulds[type] = *p;
2538 list_for_each_entry(adap, &adapter_list, list_node)
2539 uld_attach(adap, type);
2540out: mutex_unlock(&uld_mutex);
2541 return ret;
2542}
2543EXPORT_SYMBOL(cxgb4_register_uld);
2544
2545/**
2546 * cxgb4_unregister_uld - unregister an upper-layer driver
2547 * @type: the ULD type
2548 *
2549 * Unregisters an existing upper-layer driver.
2550 */
2551int cxgb4_unregister_uld(enum cxgb4_uld type)
2552{
2553 struct adapter *adap;
2554
2555 if (type >= CXGB4_ULD_MAX)
2556 return -EINVAL;
2557 mutex_lock(&uld_mutex);
2558 list_for_each_entry(adap, &adapter_list, list_node)
2559 adap->uld_handle[type] = NULL;
2560 ulds[type].add = NULL;
2561 mutex_unlock(&uld_mutex);
2562 return 0;
2563}
2564EXPORT_SYMBOL(cxgb4_unregister_uld);
2565
1bb60376 2566#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
2567static int cxgb4_inet6addr_handler(struct notifier_block *this,
2568 unsigned long event, void *data)
01bcca68 2569{
b5a02f50
AB
2570 struct inet6_ifaddr *ifa = data;
2571 struct net_device *event_dev = ifa->idev->dev;
2572 const struct device *parent = NULL;
2573#if IS_ENABLED(CONFIG_BONDING)
01bcca68 2574 struct adapter *adap;
b5a02f50
AB
2575#endif
2576 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2577 event_dev = vlan_dev_real_dev(event_dev);
2578#if IS_ENABLED(CONFIG_BONDING)
2579 if (event_dev->flags & IFF_MASTER) {
2580 list_for_each_entry(adap, &adapter_list, list_node) {
2581 switch (event) {
2582 case NETDEV_UP:
2583 cxgb4_clip_get(adap->port[0],
2584 (const u32 *)ifa, 1);
2585 break;
2586 case NETDEV_DOWN:
2587 cxgb4_clip_release(adap->port[0],
2588 (const u32 *)ifa, 1);
2589 break;
2590 default:
2591 break;
2592 }
2593 }
2594 return NOTIFY_OK;
2595 }
2596#endif
01bcca68 2597
b5a02f50
AB
2598 if (event_dev)
2599 parent = event_dev->dev.parent;
01bcca68 2600
b5a02f50 2601 if (parent && parent->driver == &cxgb4_driver.driver) {
01bcca68
VP
2602 switch (event) {
2603 case NETDEV_UP:
b5a02f50 2604 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2605 break;
2606 case NETDEV_DOWN:
b5a02f50 2607 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
01bcca68
VP
2608 break;
2609 default:
2610 break;
2611 }
2612 }
b5a02f50 2613 return NOTIFY_OK;
01bcca68
VP
2614}
2615
b5a02f50 2616static bool inet6addr_registered;
01bcca68
VP
2617static struct notifier_block cxgb4_inet6addr_notifier = {
2618 .notifier_call = cxgb4_inet6addr_handler
2619};
2620
01bcca68
VP
2621static void update_clip(const struct adapter *adap)
2622{
2623 int i;
2624 struct net_device *dev;
2625 int ret;
2626
2627 rcu_read_lock();
2628
2629 for (i = 0; i < MAX_NPORTS; i++) {
2630 dev = adap->port[i];
2631 ret = 0;
2632
2633 if (dev)
b5a02f50 2634 ret = cxgb4_update_root_dev_clip(dev);
01bcca68
VP
2635
2636 if (ret < 0)
2637 break;
2638 }
2639 rcu_read_unlock();
2640}
1bb60376 2641#endif /* IS_ENABLED(CONFIG_IPV6) */
01bcca68 2642
b8ff05a9
DM
2643/**
2644 * cxgb_up - enable the adapter
2645 * @adap: adapter being enabled
2646 *
2647 * Called when the first port is enabled, this function performs the
2648 * actions necessary to make an adapter operational, such as completing
2649 * the initialization of HW modules, and enabling interrupts.
2650 *
2651 * Must be called with the rtnl lock held.
2652 */
2653static int cxgb_up(struct adapter *adap)
2654{
aaefae9b 2655 int err;
b8ff05a9 2656
aaefae9b
DM
2657 err = setup_sge_queues(adap);
2658 if (err)
2659 goto out;
2660 err = setup_rss(adap);
2661 if (err)
2662 goto freeq;
b8ff05a9
DM
2663
2664 if (adap->flags & USING_MSIX) {
aaefae9b 2665 name_msix_vecs(adap);
b8ff05a9
DM
2666 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2667 adap->msix_info[0].desc, adap);
2668 if (err)
2669 goto irq_err;
2670
2671 err = request_msix_queue_irqs(adap);
2672 if (err) {
2673 free_irq(adap->msix_info[0].vec, adap);
2674 goto irq_err;
2675 }
2676 } else {
2677 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2678 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
b1a3c2b6 2679 adap->port[0]->name, adap);
b8ff05a9
DM
2680 if (err)
2681 goto irq_err;
2682 }
2683 enable_rx(adap);
2684 t4_sge_start(adap);
2685 t4_intr_enable(adap);
aaefae9b 2686 adap->flags |= FULL_INIT_DONE;
b8ff05a9 2687 notify_ulds(adap, CXGB4_STATE_UP);
1bb60376 2688#if IS_ENABLED(CONFIG_IPV6)
01bcca68 2689 update_clip(adap);
1bb60376 2690#endif
b8ff05a9
DM
2691 out:
2692 return err;
2693 irq_err:
2694 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
aaefae9b
DM
2695 freeq:
2696 t4_free_sge_resources(adap);
b8ff05a9
DM
2697 goto out;
2698}
2699
2700static void cxgb_down(struct adapter *adapter)
2701{
b8ff05a9 2702 cancel_work_sync(&adapter->tid_release_task);
881806bc
VP
2703 cancel_work_sync(&adapter->db_full_task);
2704 cancel_work_sync(&adapter->db_drop_task);
b8ff05a9 2705 adapter->tid_release_task_busy = false;
204dc3c0 2706 adapter->tid_release_head = NULL;
b8ff05a9 2707
aaefae9b
DM
2708 t4_sge_stop(adapter);
2709 t4_free_sge_resources(adapter);
2710 adapter->flags &= ~FULL_INIT_DONE;
b8ff05a9
DM
2711}
2712
2713/*
2714 * net_device operations
2715 */
2716static int cxgb_open(struct net_device *dev)
2717{
2718 int err;
2719 struct port_info *pi = netdev_priv(dev);
2720 struct adapter *adapter = pi->adapter;
2721
6a3c869a
DM
2722 netif_carrier_off(dev);
2723
aaefae9b
DM
2724 if (!(adapter->flags & FULL_INIT_DONE)) {
2725 err = cxgb_up(adapter);
2726 if (err < 0)
2727 return err;
2728 }
b8ff05a9 2729
f68707b8
DM
2730 err = link_start(dev);
2731 if (!err)
2732 netif_tx_start_all_queues(dev);
2733 return err;
b8ff05a9
DM
2734}
2735
2736static int cxgb_close(struct net_device *dev)
2737{
b8ff05a9
DM
2738 struct port_info *pi = netdev_priv(dev);
2739 struct adapter *adapter = pi->adapter;
2740
2741 netif_tx_stop_all_queues(dev);
2742 netif_carrier_off(dev);
b2612722 2743 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
b8ff05a9
DM
2744}
2745
f2b7e78d
VP
2746/* Return an error number if the indicated filter isn't writable ...
2747 */
2748static int writable_filter(struct filter_entry *f)
2749{
2750 if (f->locked)
2751 return -EPERM;
2752 if (f->pending)
2753 return -EBUSY;
2754
2755 return 0;
2756}
2757
2758/* Delete the filter at the specified index (if valid). The checks for all
2759 * the common problems with doing this like the filter being locked, currently
2760 * pending in another operation, etc.
2761 */
2762static int delete_filter(struct adapter *adapter, unsigned int fidx)
2763{
2764 struct filter_entry *f;
2765 int ret;
2766
dca4faeb 2767 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
f2b7e78d
VP
2768 return -EINVAL;
2769
2770 f = &adapter->tids.ftid_tab[fidx];
2771 ret = writable_filter(f);
2772 if (ret)
2773 return ret;
2774 if (f->valid)
2775 return del_filter_wr(adapter, fidx);
2776
2777 return 0;
2778}
2779
dca4faeb 2780int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
793dad94
VP
2781 __be32 sip, __be16 sport, __be16 vlan,
2782 unsigned int queue, unsigned char port, unsigned char mask)
dca4faeb
VP
2783{
2784 int ret;
2785 struct filter_entry *f;
2786 struct adapter *adap;
2787 int i;
2788 u8 *val;
2789
2790 adap = netdev2adap(dev);
2791
1cab775c 2792 /* Adjust stid to correct filter index */
470c60c4 2793 stid -= adap->tids.sftid_base;
1cab775c
VP
2794 stid += adap->tids.nftids;
2795
dca4faeb
VP
2796 /* Check to make sure the filter requested is writable ...
2797 */
2798 f = &adap->tids.ftid_tab[stid];
2799 ret = writable_filter(f);
2800 if (ret)
2801 return ret;
2802
2803 /* Clear out any old resources being used by the filter before
2804 * we start constructing the new filter.
2805 */
2806 if (f->valid)
2807 clear_filter(adap, f);
2808
2809 /* Clear out filter specifications */
2810 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2811 f->fs.val.lport = cpu_to_be16(sport);
2812 f->fs.mask.lport = ~0;
2813 val = (u8 *)&sip;
793dad94 2814 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
dca4faeb
VP
2815 for (i = 0; i < 4; i++) {
2816 f->fs.val.lip[i] = val[i];
2817 f->fs.mask.lip[i] = ~0;
2818 }
0d804338 2819 if (adap->params.tp.vlan_pri_map & PORT_F) {
793dad94
VP
2820 f->fs.val.iport = port;
2821 f->fs.mask.iport = mask;
2822 }
2823 }
dca4faeb 2824
0d804338 2825 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
7c89e555
KS
2826 f->fs.val.proto = IPPROTO_TCP;
2827 f->fs.mask.proto = ~0;
2828 }
2829
dca4faeb
VP
2830 f->fs.dirsteer = 1;
2831 f->fs.iq = queue;
2832 /* Mark filter as locked */
2833 f->locked = 1;
2834 f->fs.rpttid = 1;
2835
2836 ret = set_filter_wr(adap, stid);
2837 if (ret) {
2838 clear_filter(adap, f);
2839 return ret;
2840 }
2841
2842 return 0;
2843}
2844EXPORT_SYMBOL(cxgb4_create_server_filter);
2845
2846int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2847 unsigned int queue, bool ipv6)
2848{
2849 int ret;
2850 struct filter_entry *f;
2851 struct adapter *adap;
2852
2853 adap = netdev2adap(dev);
1cab775c
VP
2854
2855 /* Adjust stid to correct filter index */
470c60c4 2856 stid -= adap->tids.sftid_base;
1cab775c
VP
2857 stid += adap->tids.nftids;
2858
dca4faeb
VP
2859 f = &adap->tids.ftid_tab[stid];
2860 /* Unlock the filter */
2861 f->locked = 0;
2862
2863 ret = delete_filter(adap, stid);
2864 if (ret)
2865 return ret;
2866
2867 return 0;
2868}
2869EXPORT_SYMBOL(cxgb4_remove_server_filter);
2870
f5152c90
DM
2871static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2872 struct rtnl_link_stats64 *ns)
b8ff05a9
DM
2873{
2874 struct port_stats stats;
2875 struct port_info *p = netdev_priv(dev);
2876 struct adapter *adapter = p->adapter;
b8ff05a9 2877
9fe6cb58
GS
2878 /* Block retrieving statistics during EEH error
2879 * recovery. Otherwise, the recovery might fail
2880 * and the PCI device will be removed permanently
2881 */
b8ff05a9 2882 spin_lock(&adapter->stats_lock);
9fe6cb58
GS
2883 if (!netif_device_present(dev)) {
2884 spin_unlock(&adapter->stats_lock);
2885 return ns;
2886 }
a4cfd929
HS
2887 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2888 &p->stats_base);
b8ff05a9
DM
2889 spin_unlock(&adapter->stats_lock);
2890
2891 ns->tx_bytes = stats.tx_octets;
2892 ns->tx_packets = stats.tx_frames;
2893 ns->rx_bytes = stats.rx_octets;
2894 ns->rx_packets = stats.rx_frames;
2895 ns->multicast = stats.rx_mcast_frames;
2896
2897 /* detailed rx_errors */
2898 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2899 stats.rx_runt;
2900 ns->rx_over_errors = 0;
2901 ns->rx_crc_errors = stats.rx_fcs_err;
2902 ns->rx_frame_errors = stats.rx_symbol_err;
2903 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2904 stats.rx_ovflow2 + stats.rx_ovflow3 +
2905 stats.rx_trunc0 + stats.rx_trunc1 +
2906 stats.rx_trunc2 + stats.rx_trunc3;
2907 ns->rx_missed_errors = 0;
2908
2909 /* detailed tx_errors */
2910 ns->tx_aborted_errors = 0;
2911 ns->tx_carrier_errors = 0;
2912 ns->tx_fifo_errors = 0;
2913 ns->tx_heartbeat_errors = 0;
2914 ns->tx_window_errors = 0;
2915
2916 ns->tx_errors = stats.tx_error_frames;
2917 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2918 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2919 return ns;
2920}
2921
2922static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2923{
060e0c75 2924 unsigned int mbox;
b8ff05a9
DM
2925 int ret = 0, prtad, devad;
2926 struct port_info *pi = netdev_priv(dev);
2927 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2928
2929 switch (cmd) {
2930 case SIOCGMIIPHY:
2931 if (pi->mdio_addr < 0)
2932 return -EOPNOTSUPP;
2933 data->phy_id = pi->mdio_addr;
2934 break;
2935 case SIOCGMIIREG:
2936 case SIOCSMIIREG:
2937 if (mdio_phy_id_is_c45(data->phy_id)) {
2938 prtad = mdio_phy_id_prtad(data->phy_id);
2939 devad = mdio_phy_id_devad(data->phy_id);
2940 } else if (data->phy_id < 32) {
2941 prtad = data->phy_id;
2942 devad = 0;
2943 data->reg_num &= 0x1f;
2944 } else
2945 return -EINVAL;
2946
b2612722 2947 mbox = pi->adapter->pf;
b8ff05a9 2948 if (cmd == SIOCGMIIREG)
060e0c75 2949 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2950 data->reg_num, &data->val_out);
2951 else
060e0c75 2952 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
b8ff05a9
DM
2953 data->reg_num, data->val_in);
2954 break;
2955 default:
2956 return -EOPNOTSUPP;
2957 }
2958 return ret;
2959}
2960
2961static void cxgb_set_rxmode(struct net_device *dev)
2962{
2963 /* unfortunately we can't return errors to the stack */
2964 set_rxmode(dev, -1, false);
2965}
2966
2967static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2968{
2969 int ret;
2970 struct port_info *pi = netdev_priv(dev);
2971
2972 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2973 return -EINVAL;
b2612722 2974 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
060e0c75 2975 -1, -1, -1, true);
b8ff05a9
DM
2976 if (!ret)
2977 dev->mtu = new_mtu;
2978 return ret;
2979}
2980
2981static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2982{
2983 int ret;
2984 struct sockaddr *addr = p;
2985 struct port_info *pi = netdev_priv(dev);
2986
2987 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 2988 return -EADDRNOTAVAIL;
b8ff05a9 2989
b2612722 2990 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
060e0c75 2991 pi->xact_addr_filt, addr->sa_data, true, true);
b8ff05a9
DM
2992 if (ret < 0)
2993 return ret;
2994
2995 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2996 pi->xact_addr_filt = ret;
2997 return 0;
2998}
2999
b8ff05a9
DM
3000#ifdef CONFIG_NET_POLL_CONTROLLER
3001static void cxgb_netpoll(struct net_device *dev)
3002{
3003 struct port_info *pi = netdev_priv(dev);
3004 struct adapter *adap = pi->adapter;
3005
3006 if (adap->flags & USING_MSIX) {
3007 int i;
3008 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3009
3010 for (i = pi->nqsets; i; i--, rx++)
3011 t4_sge_intr_msix(0, &rx->rspq);
3012 } else
3013 t4_intr_handler(adap)(0, adap);
3014}
3015#endif
3016
3017static const struct net_device_ops cxgb4_netdev_ops = {
3018 .ndo_open = cxgb_open,
3019 .ndo_stop = cxgb_close,
3020 .ndo_start_xmit = t4_eth_xmit,
688848b1 3021 .ndo_select_queue = cxgb_select_queue,
9be793bf 3022 .ndo_get_stats64 = cxgb_get_stats,
b8ff05a9
DM
3023 .ndo_set_rx_mode = cxgb_set_rxmode,
3024 .ndo_set_mac_address = cxgb_set_mac_addr,
2ed28baa 3025 .ndo_set_features = cxgb_set_features,
b8ff05a9
DM
3026 .ndo_validate_addr = eth_validate_addr,
3027 .ndo_do_ioctl = cxgb_ioctl,
3028 .ndo_change_mtu = cxgb_change_mtu,
b8ff05a9
DM
3029#ifdef CONFIG_NET_POLL_CONTROLLER
3030 .ndo_poll_controller = cxgb_netpoll,
3031#endif
84a200b3
VP
3032#ifdef CONFIG_CHELSIO_T4_FCOE
3033 .ndo_fcoe_enable = cxgb_fcoe_enable,
3034 .ndo_fcoe_disable = cxgb_fcoe_disable,
3035#endif /* CONFIG_CHELSIO_T4_FCOE */
3a336cb1
HS
3036#ifdef CONFIG_NET_RX_BUSY_POLL
3037 .ndo_busy_poll = cxgb_busy_poll,
3038#endif
3039
b8ff05a9
DM
3040};
3041
3042void t4_fatal_err(struct adapter *adap)
3043{
f612b815 3044 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
b8ff05a9
DM
3045 t4_intr_disable(adap);
3046 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3047}
3048
3049static void setup_memwin(struct adapter *adap)
3050{
b562fc37 3051 u32 nic_win_base = t4_get_util_window(adap);
b8ff05a9 3052
b562fc37 3053 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
636f9d37
VP
3054}
3055
3056static void setup_memwin_rdma(struct adapter *adap)
3057{
1ae970e0 3058 if (adap->vres.ocq.size) {
0abfd152
HS
3059 u32 start;
3060 unsigned int sz_kb;
1ae970e0 3061
0abfd152
HS
3062 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3063 start &= PCI_BASE_ADDRESS_MEM_MASK;
3064 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
1ae970e0
DM
3065 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3066 t4_write_reg(adap,
f061de42
HS
3067 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3068 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
1ae970e0 3069 t4_write_reg(adap,
f061de42 3070 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
1ae970e0
DM
3071 adap->vres.ocq.start);
3072 t4_read_reg(adap,
f061de42 3073 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
1ae970e0 3074 }
b8ff05a9
DM
3075}
3076
02b5fb8e
DM
3077static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3078{
3079 u32 v;
3080 int ret;
3081
3082 /* get device capabilities */
3083 memset(c, 0, sizeof(*c));
e2ac9628
HS
3084 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3085 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3086 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
b2612722 3087 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
02b5fb8e
DM
3088 if (ret < 0)
3089 return ret;
3090
3091 /* select capabilities we'll be using */
3092 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3093 if (!vf_acls)
3094 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3095 else
3096 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3097 } else if (vf_acls) {
3098 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3099 return ret;
3100 }
e2ac9628
HS
3101 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3102 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
b2612722 3103 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
02b5fb8e
DM
3104 if (ret < 0)
3105 return ret;
3106
b2612722 3107 ret = t4_config_glbl_rss(adap, adap->pf,
02b5fb8e 3108 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
b2e1a3f0
HS
3109 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3110 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
02b5fb8e
DM
3111 if (ret < 0)
3112 return ret;
3113
b2612722 3114 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4b8e27a8
HS
3115 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3116 FW_CMD_CAP_PF);
02b5fb8e
DM
3117 if (ret < 0)
3118 return ret;
3119
3120 t4_sge_init(adap);
3121
02b5fb8e 3122 /* tweak some settings */
837e4a42 3123 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
0d804338 3124 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
837e4a42
HS
3125 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3126 v = t4_read_reg(adap, TP_PIO_DATA_A);
3127 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
060e0c75 3128
dca4faeb
VP
3129 /* first 4 Tx modulation queues point to consecutive Tx channels */
3130 adap->params.tp.tx_modq_map = 0xE4;
0d804338
HS
3131 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3132 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
dca4faeb
VP
3133
3134 /* associate each Tx modulation queue with consecutive Tx channels */
3135 v = 0x84218421;
837e4a42 3136 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3137 &v, 1, TP_TX_SCHED_HDR_A);
837e4a42 3138 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3139 &v, 1, TP_TX_SCHED_FIFO_A);
837e4a42 3140 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
0d804338 3141 &v, 1, TP_TX_SCHED_PCMD_A);
dca4faeb
VP
3142
3143#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3144 if (is_offload(adap)) {
0d804338
HS
3145 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3146 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3147 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3148 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3149 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3150 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3151 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3152 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3153 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3154 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
dca4faeb
VP
3155 }
3156
060e0c75 3157 /* get basic stuff going */
b2612722 3158 return t4_early_init(adap, adap->pf);
02b5fb8e
DM
3159}
3160
b8ff05a9
DM
3161/*
3162 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3163 */
3164#define MAX_ATIDS 8192U
3165
636f9d37
VP
3166/*
3167 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3168 *
3169 * If the firmware we're dealing with has Configuration File support, then
3170 * we use that to perform all configuration
3171 */
3172
3173/*
3174 * Tweak configuration based on module parameters, etc. Most of these have
3175 * defaults assigned to them by Firmware Configuration Files (if we're using
3176 * them) but need to be explicitly set if we're using hard-coded
3177 * initialization. But even in the case of using Firmware Configuration
3178 * Files, we'd like to expose the ability to change these via module
3179 * parameters so these are essentially common tweaks/settings for
3180 * Configuration Files and hard-coded initialization ...
3181 */
3182static int adap_init0_tweaks(struct adapter *adapter)
3183{
3184 /*
3185 * Fix up various Host-Dependent Parameters like Page Size, Cache
3186 * Line Size, etc. The firmware default is for a 4KB Page Size and
3187 * 64B Cache Line Size ...
3188 */
3189 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3190
3191 /*
3192 * Process module parameters which affect early initialization.
3193 */
3194 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3195 dev_err(&adapter->pdev->dev,
3196 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3197 rx_dma_offset);
3198 rx_dma_offset = 2;
3199 }
f612b815
HS
3200 t4_set_reg_field(adapter, SGE_CONTROL_A,
3201 PKTSHIFT_V(PKTSHIFT_M),
3202 PKTSHIFT_V(rx_dma_offset));
636f9d37
VP
3203
3204 /*
3205 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3206 * adds the pseudo header itself.
3207 */
837e4a42
HS
3208 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3209 CSUM_HAS_PSEUDO_HDR_F, 0);
636f9d37
VP
3210
3211 return 0;
3212}
3213
01b69614
HS
3214/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3215 * unto themselves and they contain their own firmware to perform their
3216 * tasks ...
3217 */
3218static int phy_aq1202_version(const u8 *phy_fw_data,
3219 size_t phy_fw_size)
3220{
3221 int offset;
3222
3223 /* At offset 0x8 you're looking for the primary image's
3224 * starting offset which is 3 Bytes wide
3225 *
3226 * At offset 0xa of the primary image, you look for the offset
3227 * of the DRAM segment which is 3 Bytes wide.
3228 *
3229 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3230 * wide
3231 */
3232 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3233 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3234 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3235
3236 offset = le24(phy_fw_data + 0x8) << 12;
3237 offset = le24(phy_fw_data + offset + 0xa);
3238 return be16(phy_fw_data + offset + 0x27e);
3239
3240 #undef be16
3241 #undef le16
3242 #undef le24
3243}
3244
3245static struct info_10gbt_phy_fw {
3246 unsigned int phy_fw_id; /* PCI Device ID */
3247 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3248 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3249 int phy_flash; /* Has FLASH for PHY Firmware */
3250} phy_info_array[] = {
3251 {
3252 PHY_AQ1202_DEVICEID,
3253 PHY_AQ1202_FIRMWARE,
3254 phy_aq1202_version,
3255 1,
3256 },
3257 {
3258 PHY_BCM84834_DEVICEID,
3259 PHY_BCM84834_FIRMWARE,
3260 NULL,
3261 0,
3262 },
3263 { 0, NULL, NULL },
3264};
3265
3266static struct info_10gbt_phy_fw *find_phy_info(int devid)
3267{
3268 int i;
3269
3270 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3271 if (phy_info_array[i].phy_fw_id == devid)
3272 return &phy_info_array[i];
3273 }
3274 return NULL;
3275}
3276
3277/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3278 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3279 * we return a negative error number. If we transfer new firmware we return 1
3280 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3281 */
3282static int adap_init0_phy(struct adapter *adap)
3283{
3284 const struct firmware *phyf;
3285 int ret;
3286 struct info_10gbt_phy_fw *phy_info;
3287
3288 /* Use the device ID to determine which PHY file to flash.
3289 */
3290 phy_info = find_phy_info(adap->pdev->device);
3291 if (!phy_info) {
3292 dev_warn(adap->pdev_dev,
3293 "No PHY Firmware file found for this PHY\n");
3294 return -EOPNOTSUPP;
3295 }
3296
3297 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3298 * use that. The adapter firmware provides us with a memory buffer
3299 * where we can load a PHY firmware file from the host if we want to
3300 * override the PHY firmware File in flash.
3301 */
3302 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3303 adap->pdev_dev);
3304 if (ret < 0) {
3305 /* For adapters without FLASH attached to PHY for their
3306 * firmware, it's obviously a fatal error if we can't get the
3307 * firmware to the adapter. For adapters with PHY firmware
3308 * FLASH storage, it's worth a warning if we can't find the
3309 * PHY Firmware but we'll neuter the error ...
3310 */
3311 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3312 "/lib/firmware/%s, error %d\n",
3313 phy_info->phy_fw_file, -ret);
3314 if (phy_info->phy_flash) {
3315 int cur_phy_fw_ver = 0;
3316
3317 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3318 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3319 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3320 ret = 0;
3321 }
3322
3323 return ret;
3324 }
3325
3326 /* Load PHY Firmware onto adapter.
3327 */
3328 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3329 phy_info->phy_fw_version,
3330 (u8 *)phyf->data, phyf->size);
3331 if (ret < 0)
3332 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3333 -ret);
3334 else if (ret > 0) {
3335 int new_phy_fw_ver = 0;
3336
3337 if (phy_info->phy_fw_version)
3338 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3339 phyf->size);
3340 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3341 "Firmware /lib/firmware/%s, version %#x\n",
3342 phy_info->phy_fw_file, new_phy_fw_ver);
3343 }
3344
3345 release_firmware(phyf);
3346
3347 return ret;
3348}
3349
636f9d37
VP
3350/*
3351 * Attempt to initialize the adapter via a Firmware Configuration File.
3352 */
3353static int adap_init0_config(struct adapter *adapter, int reset)
3354{
3355 struct fw_caps_config_cmd caps_cmd;
3356 const struct firmware *cf;
3357 unsigned long mtype = 0, maddr = 0;
3358 u32 finiver, finicsum, cfcsum;
16e47624
HS
3359 int ret;
3360 int config_issued = 0;
0a57a536 3361 char *fw_config_file, fw_config_file_path[256];
16e47624 3362 char *config_name = NULL;
636f9d37
VP
3363
3364 /*
3365 * Reset device if necessary.
3366 */
3367 if (reset) {
3368 ret = t4_fw_reset(adapter, adapter->mbox,
0d804338 3369 PIORSTMODE_F | PIORST_F);
636f9d37
VP
3370 if (ret < 0)
3371 goto bye;
3372 }
3373
01b69614
HS
3374 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3375 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3376 * to be performed after any global adapter RESET above since some
3377 * PHYs only have local RAM copies of the PHY firmware.
3378 */
3379 if (is_10gbt_device(adapter->pdev->device)) {
3380 ret = adap_init0_phy(adapter);
3381 if (ret < 0)
3382 goto bye;
3383 }
636f9d37
VP
3384 /*
3385 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3386 * then use that. Otherwise, use the configuration file stored
3387 * in the adapter flash ...
3388 */
d14807dd 3389 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
0a57a536 3390 case CHELSIO_T4:
16e47624 3391 fw_config_file = FW4_CFNAME;
0a57a536
SR
3392 break;
3393 case CHELSIO_T5:
3394 fw_config_file = FW5_CFNAME;
3395 break;
3ccc6cf7
HS
3396 case CHELSIO_T6:
3397 fw_config_file = FW6_CFNAME;
3398 break;
0a57a536
SR
3399 default:
3400 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3401 adapter->pdev->device);
3402 ret = -EINVAL;
3403 goto bye;
3404 }
3405
3406 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
636f9d37 3407 if (ret < 0) {
16e47624 3408 config_name = "On FLASH";
636f9d37
VP
3409 mtype = FW_MEMTYPE_CF_FLASH;
3410 maddr = t4_flash_cfg_addr(adapter);
3411 } else {
3412 u32 params[7], val[7];
3413
16e47624
HS
3414 sprintf(fw_config_file_path,
3415 "/lib/firmware/%s", fw_config_file);
3416 config_name = fw_config_file_path;
3417
636f9d37
VP
3418 if (cf->size >= FLASH_CFG_MAX_SIZE)
3419 ret = -ENOMEM;
3420 else {
5167865a
HS
3421 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3422 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
636f9d37 3423 ret = t4_query_params(adapter, adapter->mbox,
b2612722 3424 adapter->pf, 0, 1, params, val);
636f9d37
VP
3425 if (ret == 0) {
3426 /*
fc5ab020 3427 * For t4_memory_rw() below addresses and
636f9d37
VP
3428 * sizes have to be in terms of multiples of 4
3429 * bytes. So, if the Configuration File isn't
3430 * a multiple of 4 bytes in length we'll have
3431 * to write that out separately since we can't
3432 * guarantee that the bytes following the
3433 * residual byte in the buffer returned by
3434 * request_firmware() are zeroed out ...
3435 */
3436 size_t resid = cf->size & 0x3;
3437 size_t size = cf->size & ~0x3;
3438 __be32 *data = (__be32 *)cf->data;
3439
5167865a
HS
3440 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3441 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
636f9d37 3442
fc5ab020
HS
3443 spin_lock(&adapter->win0_lock);
3444 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3445 size, data, T4_MEMORY_WRITE);
636f9d37
VP
3446 if (ret == 0 && resid != 0) {
3447 union {
3448 __be32 word;
3449 char buf[4];
3450 } last;
3451 int i;
3452
3453 last.word = data[size >> 2];
3454 for (i = resid; i < 4; i++)
3455 last.buf[i] = 0;
fc5ab020
HS
3456 ret = t4_memory_rw(adapter, 0, mtype,
3457 maddr + size,
3458 4, &last.word,
3459 T4_MEMORY_WRITE);
636f9d37 3460 }
fc5ab020 3461 spin_unlock(&adapter->win0_lock);
636f9d37
VP
3462 }
3463 }
3464
3465 release_firmware(cf);
3466 if (ret)
3467 goto bye;
3468 }
3469
3470 /*
3471 * Issue a Capability Configuration command to the firmware to get it
3472 * to parse the Configuration File. We don't use t4_fw_config_file()
3473 * because we want the ability to modify various features after we've
3474 * processed the configuration file ...
3475 */
3476 memset(&caps_cmd, 0, sizeof(caps_cmd));
3477 caps_cmd.op_to_write =
e2ac9628
HS
3478 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3479 FW_CMD_REQUEST_F |
3480 FW_CMD_READ_F);
ce91a923 3481 caps_cmd.cfvalid_to_len16 =
5167865a
HS
3482 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3483 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3484 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
636f9d37
VP
3485 FW_LEN16(caps_cmd));
3486 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3487 &caps_cmd);
16e47624
HS
3488
3489 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3490 * Configuration File in FLASH), our last gasp effort is to use the
3491 * Firmware Configuration File which is embedded in the firmware. A
3492 * very few early versions of the firmware didn't have one embedded
3493 * but we can ignore those.
3494 */
3495 if (ret == -ENOENT) {
3496 memset(&caps_cmd, 0, sizeof(caps_cmd));
3497 caps_cmd.op_to_write =
e2ac9628
HS
3498 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3499 FW_CMD_REQUEST_F |
3500 FW_CMD_READ_F);
16e47624
HS
3501 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3502 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3503 sizeof(caps_cmd), &caps_cmd);
3504 config_name = "Firmware Default";
3505 }
3506
3507 config_issued = 1;
636f9d37
VP
3508 if (ret < 0)
3509 goto bye;
3510
3511 finiver = ntohl(caps_cmd.finiver);
3512 finicsum = ntohl(caps_cmd.finicsum);
3513 cfcsum = ntohl(caps_cmd.cfcsum);
3514 if (finicsum != cfcsum)
3515 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3516 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3517 finicsum, cfcsum);
3518
636f9d37
VP
3519 /*
3520 * And now tell the firmware to use the configuration we just loaded.
3521 */
3522 caps_cmd.op_to_write =
e2ac9628
HS
3523 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3524 FW_CMD_REQUEST_F |
3525 FW_CMD_WRITE_F);
ce91a923 3526 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3527 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3528 NULL);
3529 if (ret < 0)
3530 goto bye;
3531
3532 /*
3533 * Tweak configuration based on system architecture, module
3534 * parameters, etc.
3535 */
3536 ret = adap_init0_tweaks(adapter);
3537 if (ret < 0)
3538 goto bye;
3539
3540 /*
3541 * And finally tell the firmware to initialize itself using the
3542 * parameters from the Configuration File.
3543 */
3544 ret = t4_fw_initialize(adapter, adapter->mbox);
3545 if (ret < 0)
3546 goto bye;
3547
06640310
HS
3548 /* Emit Firmware Configuration File information and return
3549 * successfully.
636f9d37 3550 */
636f9d37 3551 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
16e47624
HS
3552 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3553 config_name, finiver, cfcsum);
636f9d37
VP
3554 return 0;
3555
3556 /*
3557 * Something bad happened. Return the error ... (If the "error"
3558 * is that there's no Configuration File on the adapter we don't
3559 * want to issue a warning since this is fairly common.)
3560 */
3561bye:
16e47624
HS
3562 if (config_issued && ret != -ENOENT)
3563 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3564 config_name, -ret);
636f9d37
VP
3565 return ret;
3566}
3567
16e47624
HS
3568static struct fw_info fw_info_array[] = {
3569 {
3570 .chip = CHELSIO_T4,
3571 .fs_name = FW4_CFNAME,
3572 .fw_mod_name = FW4_FNAME,
3573 .fw_hdr = {
3574 .chip = FW_HDR_CHIP_T4,
3575 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3576 .intfver_nic = FW_INTFVER(T4, NIC),
3577 .intfver_vnic = FW_INTFVER(T4, VNIC),
3578 .intfver_ri = FW_INTFVER(T4, RI),
3579 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3580 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3581 },
3582 }, {
3583 .chip = CHELSIO_T5,
3584 .fs_name = FW5_CFNAME,
3585 .fw_mod_name = FW5_FNAME,
3586 .fw_hdr = {
3587 .chip = FW_HDR_CHIP_T5,
3588 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3589 .intfver_nic = FW_INTFVER(T5, NIC),
3590 .intfver_vnic = FW_INTFVER(T5, VNIC),
3591 .intfver_ri = FW_INTFVER(T5, RI),
3592 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3593 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3594 },
3ccc6cf7
HS
3595 }, {
3596 .chip = CHELSIO_T6,
3597 .fs_name = FW6_CFNAME,
3598 .fw_mod_name = FW6_FNAME,
3599 .fw_hdr = {
3600 .chip = FW_HDR_CHIP_T6,
3601 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3602 .intfver_nic = FW_INTFVER(T6, NIC),
3603 .intfver_vnic = FW_INTFVER(T6, VNIC),
3604 .intfver_ofld = FW_INTFVER(T6, OFLD),
3605 .intfver_ri = FW_INTFVER(T6, RI),
3606 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3607 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3608 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3609 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3610 },
16e47624 3611 }
3ccc6cf7 3612
16e47624
HS
3613};
3614
3615static struct fw_info *find_fw_info(int chip)
3616{
3617 int i;
3618
3619 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3620 if (fw_info_array[i].chip == chip)
3621 return &fw_info_array[i];
3622 }
3623 return NULL;
3624}
3625
b8ff05a9
DM
3626/*
3627 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3628 */
3629static int adap_init0(struct adapter *adap)
3630{
3631 int ret;
3632 u32 v, port_vec;
3633 enum dev_state state;
3634 u32 params[7], val[7];
9a4da2cd 3635 struct fw_caps_config_cmd caps_cmd;
dcf7b6f5 3636 int reset = 1;
b8ff05a9 3637
ae469b68
HS
3638 /* Grab Firmware Device Log parameters as early as possible so we have
3639 * access to it for debugging, etc.
3640 */
3641 ret = t4_init_devlog_params(adap);
3642 if (ret < 0)
3643 return ret;
3644
666224d4
HS
3645 /* Contact FW, advertising Master capability */
3646 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
b8ff05a9
DM
3647 if (ret < 0) {
3648 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3649 ret);
3650 return ret;
3651 }
636f9d37
VP
3652 if (ret == adap->mbox)
3653 adap->flags |= MASTER_PF;
b8ff05a9 3654
636f9d37
VP
3655 /*
3656 * If we're the Master PF Driver and the device is uninitialized,
3657 * then let's consider upgrading the firmware ... (We always want
3658 * to check the firmware version number in order to A. get it for
3659 * later reporting and B. to warn if the currently loaded firmware
3660 * is excessively mismatched relative to the driver.)
3661 */
16e47624
HS
3662 t4_get_fw_version(adap, &adap->params.fw_vers);
3663 t4_get_tp_version(adap, &adap->params.tp_vers);
636f9d37 3664 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
16e47624
HS
3665 struct fw_info *fw_info;
3666 struct fw_hdr *card_fw;
3667 const struct firmware *fw;
3668 const u8 *fw_data = NULL;
3669 unsigned int fw_size = 0;
3670
3671 /* This is the firmware whose headers the driver was compiled
3672 * against
3673 */
3674 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3675 if (fw_info == NULL) {
3676 dev_err(adap->pdev_dev,
3677 "unable to get firmware info for chip %d.\n",
3678 CHELSIO_CHIP_VERSION(adap->params.chip));
3679 return -EINVAL;
636f9d37 3680 }
16e47624
HS
3681
3682 /* allocate memory to read the header of the firmware on the
3683 * card
3684 */
3685 card_fw = t4_alloc_mem(sizeof(*card_fw));
3686
3687 /* Get FW from from /lib/firmware/ */
3688 ret = request_firmware(&fw, fw_info->fw_mod_name,
3689 adap->pdev_dev);
3690 if (ret < 0) {
3691 dev_err(adap->pdev_dev,
3692 "unable to load firmware image %s, error %d\n",
3693 fw_info->fw_mod_name, ret);
3694 } else {
3695 fw_data = fw->data;
3696 fw_size = fw->size;
3697 }
3698
3699 /* upgrade FW logic */
3700 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3701 state, &reset);
3702
3703 /* Cleaning up */
0b5b6bee 3704 release_firmware(fw);
16e47624
HS
3705 t4_free_mem(card_fw);
3706
636f9d37 3707 if (ret < 0)
16e47624 3708 goto bye;
636f9d37 3709 }
b8ff05a9 3710
636f9d37
VP
3711 /*
3712 * Grab VPD parameters. This should be done after we establish a
3713 * connection to the firmware since some of the VPD parameters
3714 * (notably the Core Clock frequency) are retrieved via requests to
3715 * the firmware. On the other hand, we need these fairly early on
3716 * so we do this right after getting ahold of the firmware.
3717 */
3718 ret = get_vpd_params(adap, &adap->params.vpd);
a0881cab
DM
3719 if (ret < 0)
3720 goto bye;
a0881cab 3721
636f9d37 3722 /*
13ee15d3
VP
3723 * Find out what ports are available to us. Note that we need to do
3724 * this before calling adap_init0_no_config() since it needs nports
3725 * and portvec ...
636f9d37
VP
3726 */
3727 v =
5167865a
HS
3728 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3729 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
b2612722 3730 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
a0881cab
DM
3731 if (ret < 0)
3732 goto bye;
3733
636f9d37
VP
3734 adap->params.nports = hweight32(port_vec);
3735 adap->params.portvec = port_vec;
3736
06640310
HS
3737 /* If the firmware is initialized already, emit a simply note to that
3738 * effect. Otherwise, it's time to try initializing the adapter.
636f9d37
VP
3739 */
3740 if (state == DEV_STATE_INIT) {
3741 dev_info(adap->pdev_dev, "Coming up as %s: "\
3742 "Adapter already initialized\n",
3743 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
636f9d37
VP
3744 } else {
3745 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3746 "Initializing adapter\n");
06640310
HS
3747
3748 /* Find out whether we're dealing with a version of the
3749 * firmware which has configuration file support.
636f9d37 3750 */
06640310
HS
3751 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3752 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
b2612722 3753 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
06640310 3754 params, val);
13ee15d3 3755
06640310
HS
3756 /* If the firmware doesn't support Configuration Files,
3757 * return an error.
3758 */
3759 if (ret < 0) {
3760 dev_err(adap->pdev_dev, "firmware doesn't support "
3761 "Firmware Configuration Files\n");
3762 goto bye;
3763 }
3764
3765 /* The firmware provides us with a memory buffer where we can
3766 * load a Configuration File from the host if we want to
3767 * override the Configuration File in flash.
3768 */
3769 ret = adap_init0_config(adap, reset);
3770 if (ret == -ENOENT) {
3771 dev_err(adap->pdev_dev, "no Configuration File "
3772 "present on adapter.\n");
3773 goto bye;
636f9d37
VP
3774 }
3775 if (ret < 0) {
06640310
HS
3776 dev_err(adap->pdev_dev, "could not initialize "
3777 "adapter, error %d\n", -ret);
636f9d37
VP
3778 goto bye;
3779 }
3780 }
3781
06640310
HS
3782 /* Give the SGE code a chance to pull in anything that it needs ...
3783 * Note that this must be called after we retrieve our VPD parameters
3784 * in order to know how to convert core ticks to seconds, etc.
636f9d37 3785 */
06640310
HS
3786 ret = t4_sge_init(adap);
3787 if (ret < 0)
3788 goto bye;
636f9d37 3789
9a4da2cd
VP
3790 if (is_bypass_device(adap->pdev->device))
3791 adap->params.bypass = 1;
3792
636f9d37
VP
3793 /*
3794 * Grab some of our basic fundamental operating parameters.
3795 */
3796#define FW_PARAM_DEV(param) \
5167865a
HS
3797 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3798 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
636f9d37 3799
b8ff05a9 3800#define FW_PARAM_PFVF(param) \
5167865a
HS
3801 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3802 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3803 FW_PARAMS_PARAM_Y_V(0) | \
3804 FW_PARAMS_PARAM_Z_V(0)
b8ff05a9 3805
636f9d37 3806 params[0] = FW_PARAM_PFVF(EQ_START);
b8ff05a9
DM
3807 params[1] = FW_PARAM_PFVF(L2T_START);
3808 params[2] = FW_PARAM_PFVF(L2T_END);
3809 params[3] = FW_PARAM_PFVF(FILTER_START);
3810 params[4] = FW_PARAM_PFVF(FILTER_END);
e46dab4d 3811 params[5] = FW_PARAM_PFVF(IQFLINT_START);
b2612722 3812 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
b8ff05a9
DM
3813 if (ret < 0)
3814 goto bye;
636f9d37
VP
3815 adap->sge.egr_start = val[0];
3816 adap->l2t_start = val[1];
3817 adap->l2t_end = val[2];
b8ff05a9
DM
3818 adap->tids.ftid_base = val[3];
3819 adap->tids.nftids = val[4] - val[3] + 1;
e46dab4d 3820 adap->sge.ingr_start = val[5];
b8ff05a9 3821
4b8e27a8
HS
3822 /* qids (ingress/egress) returned from firmware can be anywhere
3823 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3824 * Hence driver needs to allocate memory for this range to
3825 * store the queue info. Get the highest IQFLINT/EQ index returned
3826 * in FW_EQ_*_CMD.alloc command.
3827 */
3828 params[0] = FW_PARAM_PFVF(EQ_END);
3829 params[1] = FW_PARAM_PFVF(IQFLINT_END);
b2612722 3830 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4b8e27a8
HS
3831 if (ret < 0)
3832 goto bye;
3833 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3834 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3835
3836 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3837 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3838 if (!adap->sge.egr_map) {
3839 ret = -ENOMEM;
3840 goto bye;
3841 }
3842
3843 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3844 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3845 if (!adap->sge.ingr_map) {
3846 ret = -ENOMEM;
3847 goto bye;
3848 }
3849
3850 /* Allocate the memory for the vaious egress queue bitmaps
5b377d11 3851 * ie starving_fl, txq_maperr and blocked_fl.
4b8e27a8
HS
3852 */
3853 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3854 sizeof(long), GFP_KERNEL);
3855 if (!adap->sge.starving_fl) {
3856 ret = -ENOMEM;
3857 goto bye;
3858 }
3859
3860 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3861 sizeof(long), GFP_KERNEL);
3862 if (!adap->sge.txq_maperr) {
3863 ret = -ENOMEM;
3864 goto bye;
3865 }
3866
5b377d11
HS
3867#ifdef CONFIG_DEBUG_FS
3868 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3869 sizeof(long), GFP_KERNEL);
3870 if (!adap->sge.blocked_fl) {
3871 ret = -ENOMEM;
3872 goto bye;
3873 }
3874#endif
3875
b5a02f50
AB
3876 params[0] = FW_PARAM_PFVF(CLIP_START);
3877 params[1] = FW_PARAM_PFVF(CLIP_END);
b2612722 3878 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
b5a02f50
AB
3879 if (ret < 0)
3880 goto bye;
3881 adap->clipt_start = val[0];
3882 adap->clipt_end = val[1];
3883
636f9d37
VP
3884 /* query params related to active filter region */
3885 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3886 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
b2612722 3887 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
636f9d37
VP
3888 /* If Active filter size is set we enable establishing
3889 * offload connection through firmware work request
3890 */
3891 if ((val[0] != val[1]) && (ret >= 0)) {
3892 adap->flags |= FW_OFLD_CONN;
3893 adap->tids.aftid_base = val[0];
3894 adap->tids.aftid_end = val[1];
3895 }
3896
b407a4a9
VP
3897 /* If we're running on newer firmware, let it know that we're
3898 * prepared to deal with encapsulated CPL messages. Older
3899 * firmware won't understand this and we'll just get
3900 * unencapsulated messages ...
3901 */
3902 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3903 val[0] = 1;
b2612722 3904 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
b407a4a9 3905
1ac0f095
KS
3906 /*
3907 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3908 * capability. Earlier versions of the firmware didn't have the
3909 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3910 * permission to use ULPTX MEMWRITE DSGL.
3911 */
3912 if (is_t4(adap->params.chip)) {
3913 adap->params.ulptx_memwrite_dsgl = false;
3914 } else {
3915 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
b2612722 3916 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1ac0f095
KS
3917 1, params, val);
3918 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3919 }
3920
636f9d37
VP
3921 /*
3922 * Get device capabilities so we can determine what resources we need
3923 * to manage.
3924 */
3925 memset(&caps_cmd, 0, sizeof(caps_cmd));
e2ac9628
HS
3926 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3927 FW_CMD_REQUEST_F | FW_CMD_READ_F);
ce91a923 3928 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
636f9d37
VP
3929 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3930 &caps_cmd);
3931 if (ret < 0)
3932 goto bye;
3933
13ee15d3 3934 if (caps_cmd.ofldcaps) {
b8ff05a9
DM
3935 /* query offload-related parameters */
3936 params[0] = FW_PARAM_DEV(NTID);
3937 params[1] = FW_PARAM_PFVF(SERVER_START);
3938 params[2] = FW_PARAM_PFVF(SERVER_END);
3939 params[3] = FW_PARAM_PFVF(TDDP_START);
3940 params[4] = FW_PARAM_PFVF(TDDP_END);
3941 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
b2612722 3942 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 3943 params, val);
b8ff05a9
DM
3944 if (ret < 0)
3945 goto bye;
3946 adap->tids.ntids = val[0];
3947 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3948 adap->tids.stid_base = val[1];
3949 adap->tids.nstids = val[2] - val[1] + 1;
636f9d37 3950 /*
dbedd44e 3951 * Setup server filter region. Divide the available filter
636f9d37
VP
3952 * region into two parts. Regular filters get 1/3rd and server
3953 * filters get 2/3rd part. This is only enabled if workarond
3954 * path is enabled.
3955 * 1. For regular filters.
3956 * 2. Server filter: This are special filters which are used
3957 * to redirect SYN packets to offload queue.
3958 */
3959 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3960 adap->tids.sftid_base = adap->tids.ftid_base +
3961 DIV_ROUND_UP(adap->tids.nftids, 3);
3962 adap->tids.nsftids = adap->tids.nftids -
3963 DIV_ROUND_UP(adap->tids.nftids, 3);
3964 adap->tids.nftids = adap->tids.sftid_base -
3965 adap->tids.ftid_base;
3966 }
b8ff05a9
DM
3967 adap->vres.ddp.start = val[3];
3968 adap->vres.ddp.size = val[4] - val[3] + 1;
3969 adap->params.ofldq_wr_cred = val[5];
636f9d37 3970
b8ff05a9
DM
3971 adap->params.offload = 1;
3972 }
636f9d37 3973 if (caps_cmd.rdmacaps) {
b8ff05a9
DM
3974 params[0] = FW_PARAM_PFVF(STAG_START);
3975 params[1] = FW_PARAM_PFVF(STAG_END);
3976 params[2] = FW_PARAM_PFVF(RQ_START);
3977 params[3] = FW_PARAM_PFVF(RQ_END);
3978 params[4] = FW_PARAM_PFVF(PBL_START);
3979 params[5] = FW_PARAM_PFVF(PBL_END);
b2612722 3980 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
636f9d37 3981 params, val);
b8ff05a9
DM
3982 if (ret < 0)
3983 goto bye;
3984 adap->vres.stag.start = val[0];
3985 adap->vres.stag.size = val[1] - val[0] + 1;
3986 adap->vres.rq.start = val[2];
3987 adap->vres.rq.size = val[3] - val[2] + 1;
3988 adap->vres.pbl.start = val[4];
3989 adap->vres.pbl.size = val[5] - val[4] + 1;
a0881cab
DM
3990
3991 params[0] = FW_PARAM_PFVF(SQRQ_START);
3992 params[1] = FW_PARAM_PFVF(SQRQ_END);
3993 params[2] = FW_PARAM_PFVF(CQ_START);
3994 params[3] = FW_PARAM_PFVF(CQ_END);
1ae970e0
DM
3995 params[4] = FW_PARAM_PFVF(OCQ_START);
3996 params[5] = FW_PARAM_PFVF(OCQ_END);
b2612722 3997 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5c937dd3 3998 val);
a0881cab
DM
3999 if (ret < 0)
4000 goto bye;
4001 adap->vres.qp.start = val[0];
4002 adap->vres.qp.size = val[1] - val[0] + 1;
4003 adap->vres.cq.start = val[2];
4004 adap->vres.cq.size = val[3] - val[2] + 1;
1ae970e0
DM
4005 adap->vres.ocq.start = val[4];
4006 adap->vres.ocq.size = val[5] - val[4] + 1;
4c2c5763
HS
4007
4008 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4009 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
b2612722 4010 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5c937dd3 4011 val);
4c2c5763
HS
4012 if (ret < 0) {
4013 adap->params.max_ordird_qp = 8;
4014 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4015 ret = 0;
4016 } else {
4017 adap->params.max_ordird_qp = val[0];
4018 adap->params.max_ird_adapter = val[1];
4019 }
4020 dev_info(adap->pdev_dev,
4021 "max_ordird_qp %d max_ird_adapter %d\n",
4022 adap->params.max_ordird_qp,
4023 adap->params.max_ird_adapter);
b8ff05a9 4024 }
636f9d37 4025 if (caps_cmd.iscsicaps) {
b8ff05a9
DM
4026 params[0] = FW_PARAM_PFVF(ISCSI_START);
4027 params[1] = FW_PARAM_PFVF(ISCSI_END);
b2612722 4028 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
636f9d37 4029 params, val);
b8ff05a9
DM
4030 if (ret < 0)
4031 goto bye;
4032 adap->vres.iscsi.start = val[0];
4033 adap->vres.iscsi.size = val[1] - val[0] + 1;
4034 }
4035#undef FW_PARAM_PFVF
4036#undef FW_PARAM_DEV
4037
92e7ae71
HS
4038 /* The MTU/MSS Table is initialized by now, so load their values. If
4039 * we're initializing the adapter, then we'll make any modifications
4040 * we want to the MTU/MSS Table and also initialize the congestion
4041 * parameters.
636f9d37 4042 */
b8ff05a9 4043 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
92e7ae71
HS
4044 if (state != DEV_STATE_INIT) {
4045 int i;
4046
4047 /* The default MTU Table contains values 1492 and 1500.
4048 * However, for TCP, it's better to have two values which are
4049 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4050 * This allows us to have a TCP Data Payload which is a
4051 * multiple of 8 regardless of what combination of TCP Options
4052 * are in use (always a multiple of 4 bytes) which is
4053 * important for performance reasons. For instance, if no
4054 * options are in use, then we have a 20-byte IP header and a
4055 * 20-byte TCP header. In this case, a 1500-byte MSS would
4056 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4057 * which is not a multiple of 8. So using an MSS of 1488 in
4058 * this case results in a TCP Data Payload of 1448 bytes which
4059 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4060 * Stamps have been negotiated, then an MTU of 1500 bytes
4061 * results in a TCP Data Payload of 1448 bytes which, as
4062 * above, is a multiple of 8 bytes ...
4063 */
4064 for (i = 0; i < NMTUS; i++)
4065 if (adap->params.mtus[i] == 1492) {
4066 adap->params.mtus[i] = 1488;
4067 break;
4068 }
7ee9ff94 4069
92e7ae71
HS
4070 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4071 adap->params.b_wnd);
4072 }
df64e4d3 4073 t4_init_sge_params(adap);
dcf7b6f5 4074 t4_init_tp_params(adap);
636f9d37 4075 adap->flags |= FW_OK;
b8ff05a9
DM
4076 return 0;
4077
4078 /*
636f9d37
VP
4079 * Something bad happened. If a command timed out or failed with EIO
4080 * FW does not operate within its spec or something catastrophic
4081 * happened to HW/FW, stop issuing commands.
b8ff05a9 4082 */
636f9d37 4083bye:
4b8e27a8
HS
4084 kfree(adap->sge.egr_map);
4085 kfree(adap->sge.ingr_map);
4086 kfree(adap->sge.starving_fl);
4087 kfree(adap->sge.txq_maperr);
5b377d11
HS
4088#ifdef CONFIG_DEBUG_FS
4089 kfree(adap->sge.blocked_fl);
4090#endif
636f9d37
VP
4091 if (ret != -ETIMEDOUT && ret != -EIO)
4092 t4_fw_bye(adap, adap->mbox);
b8ff05a9
DM
4093 return ret;
4094}
4095
204dc3c0
DM
4096/* EEH callbacks */
4097
4098static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4099 pci_channel_state_t state)
4100{
4101 int i;
4102 struct adapter *adap = pci_get_drvdata(pdev);
4103
4104 if (!adap)
4105 goto out;
4106
4107 rtnl_lock();
4108 adap->flags &= ~FW_OK;
4109 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
9fe6cb58 4110 spin_lock(&adap->stats_lock);
204dc3c0
DM
4111 for_each_port(adap, i) {
4112 struct net_device *dev = adap->port[i];
4113
4114 netif_device_detach(dev);
4115 netif_carrier_off(dev);
4116 }
9fe6cb58 4117 spin_unlock(&adap->stats_lock);
b37987e8 4118 disable_interrupts(adap);
204dc3c0
DM
4119 if (adap->flags & FULL_INIT_DONE)
4120 cxgb_down(adap);
4121 rtnl_unlock();
144be3d9
GS
4122 if ((adap->flags & DEV_ENABLED)) {
4123 pci_disable_device(pdev);
4124 adap->flags &= ~DEV_ENABLED;
4125 }
204dc3c0
DM
4126out: return state == pci_channel_io_perm_failure ?
4127 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4128}
4129
4130static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4131{
4132 int i, ret;
4133 struct fw_caps_config_cmd c;
4134 struct adapter *adap = pci_get_drvdata(pdev);
4135
4136 if (!adap) {
4137 pci_restore_state(pdev);
4138 pci_save_state(pdev);
4139 return PCI_ERS_RESULT_RECOVERED;
4140 }
4141
144be3d9
GS
4142 if (!(adap->flags & DEV_ENABLED)) {
4143 if (pci_enable_device(pdev)) {
4144 dev_err(&pdev->dev, "Cannot reenable PCI "
4145 "device after reset\n");
4146 return PCI_ERS_RESULT_DISCONNECT;
4147 }
4148 adap->flags |= DEV_ENABLED;
204dc3c0
DM
4149 }
4150
4151 pci_set_master(pdev);
4152 pci_restore_state(pdev);
4153 pci_save_state(pdev);
4154 pci_cleanup_aer_uncorrect_error_status(pdev);
4155
8203b509 4156 if (t4_wait_dev_ready(adap->regs) < 0)
204dc3c0 4157 return PCI_ERS_RESULT_DISCONNECT;
b2612722 4158 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
204dc3c0
DM
4159 return PCI_ERS_RESULT_DISCONNECT;
4160 adap->flags |= FW_OK;
4161 if (adap_init1(adap, &c))
4162 return PCI_ERS_RESULT_DISCONNECT;
4163
4164 for_each_port(adap, i) {
4165 struct port_info *p = adap2pinfo(adap, i);
4166
b2612722 4167 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
060e0c75 4168 NULL, NULL);
204dc3c0
DM
4169 if (ret < 0)
4170 return PCI_ERS_RESULT_DISCONNECT;
4171 p->viid = ret;
4172 p->xact_addr_filt = -1;
4173 }
4174
4175 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4176 adap->params.b_wnd);
1ae970e0 4177 setup_memwin(adap);
204dc3c0
DM
4178 if (cxgb_up(adap))
4179 return PCI_ERS_RESULT_DISCONNECT;
4180 return PCI_ERS_RESULT_RECOVERED;
4181}
4182
4183static void eeh_resume(struct pci_dev *pdev)
4184{
4185 int i;
4186 struct adapter *adap = pci_get_drvdata(pdev);
4187
4188 if (!adap)
4189 return;
4190
4191 rtnl_lock();
4192 for_each_port(adap, i) {
4193 struct net_device *dev = adap->port[i];
4194
4195 if (netif_running(dev)) {
4196 link_start(dev);
4197 cxgb_set_rxmode(dev);
4198 }
4199 netif_device_attach(dev);
4200 }
4201 rtnl_unlock();
4202}
4203
3646f0e5 4204static const struct pci_error_handlers cxgb4_eeh = {
204dc3c0
DM
4205 .error_detected = eeh_err_detected,
4206 .slot_reset = eeh_slot_reset,
4207 .resume = eeh_resume,
4208};
4209
57d8b764 4210static inline bool is_x_10g_port(const struct link_config *lc)
b8ff05a9 4211{
57d8b764
KS
4212 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4213 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
b8ff05a9
DM
4214}
4215
c887ad0e
HS
4216static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4217 unsigned int us, unsigned int cnt,
b8ff05a9
DM
4218 unsigned int size, unsigned int iqe_size)
4219{
c887ad0e 4220 q->adap = adap;
812034f1 4221 cxgb4_set_rspq_intr_params(q, us, cnt);
b8ff05a9
DM
4222 q->iqe_len = iqe_size;
4223 q->size = size;
4224}
4225
4226/*
4227 * Perform default configuration of DMA queues depending on the number and type
4228 * of ports we found and the number of available CPUs. Most settings can be
4229 * modified by the admin prior to actual use.
4230 */
91744948 4231static void cfg_queues(struct adapter *adap)
b8ff05a9
DM
4232{
4233 struct sge *s = &adap->sge;
688848b1
AB
4234 int i, n10g = 0, qidx = 0;
4235#ifndef CONFIG_CHELSIO_T4_DCB
4236 int q10g = 0;
4237#endif
cf38be6d 4238 int ciq_size;
b8ff05a9
DM
4239
4240 for_each_port(adap, i)
57d8b764 4241 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
688848b1
AB
4242#ifdef CONFIG_CHELSIO_T4_DCB
4243 /* For Data Center Bridging support we need to be able to support up
4244 * to 8 Traffic Priorities; each of which will be assigned to its
4245 * own TX Queue in order to prevent Head-Of-Line Blocking.
4246 */
4247 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4248 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4249 MAX_ETH_QSETS, adap->params.nports * 8);
4250 BUG_ON(1);
4251 }
b8ff05a9 4252
688848b1
AB
4253 for_each_port(adap, i) {
4254 struct port_info *pi = adap2pinfo(adap, i);
4255
4256 pi->first_qset = qidx;
4257 pi->nqsets = 8;
4258 qidx += pi->nqsets;
4259 }
4260#else /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4261 /*
4262 * We default to 1 queue per non-10G port and up to # of cores queues
4263 * per 10G port.
4264 */
4265 if (n10g)
4266 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5952dde7
YM
4267 if (q10g > netif_get_num_default_rss_queues())
4268 q10g = netif_get_num_default_rss_queues();
b8ff05a9
DM
4269
4270 for_each_port(adap, i) {
4271 struct port_info *pi = adap2pinfo(adap, i);
4272
4273 pi->first_qset = qidx;
57d8b764 4274 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
b8ff05a9
DM
4275 qidx += pi->nqsets;
4276 }
688848b1 4277#endif /* !CONFIG_CHELSIO_T4_DCB */
b8ff05a9
DM
4278
4279 s->ethqsets = qidx;
4280 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4281
4282 if (is_offload(adap)) {
4283 /*
4284 * For offload we use 1 queue/channel if all ports are up to 1G,
4285 * otherwise we divide all available queues amongst the channels
4286 * capped by the number of available cores.
4287 */
4288 if (n10g) {
4289 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4290 num_online_cpus());
4291 s->ofldqsets = roundup(i, adap->params.nports);
4292 } else
4293 s->ofldqsets = adap->params.nports;
4294 /* For RDMA one Rx queue per channel suffices */
4295 s->rdmaqs = adap->params.nports;
f36e58e5
HS
4296 /* Try and allow at least 1 CIQ per cpu rounding down
4297 * to the number of ports, with a minimum of 1 per port.
4298 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4299 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4300 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4301 */
4302 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4303 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4304 adap->params.nports;
4305 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
b8ff05a9
DM
4306 }
4307
4308 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4309 struct sge_eth_rxq *r = &s->ethrxq[i];
4310
c887ad0e 4311 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
b8ff05a9
DM
4312 r->fl.size = 72;
4313 }
4314
4315 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4316 s->ethtxq[i].q.size = 1024;
4317
4318 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4319 s->ctrlq[i].q.size = 512;
4320
4321 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4322 s->ofldtxq[i].q.size = 1024;
4323
4324 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4325 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4326
c887ad0e 4327 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
b8ff05a9
DM
4328 r->rspq.uld = CXGB4_ULD_ISCSI;
4329 r->fl.size = 72;
4330 }
4331
4332 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4333 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4334
c887ad0e 4335 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
b8ff05a9
DM
4336 r->rspq.uld = CXGB4_ULD_RDMA;
4337 r->fl.size = 72;
4338 }
4339
cf38be6d
HS
4340 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4341 if (ciq_size > SGE_MAX_IQ_SIZE) {
4342 CH_WARN(adap, "CIQ size too small for available IQs\n");
4343 ciq_size = SGE_MAX_IQ_SIZE;
4344 }
4345
4346 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4347 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4348
c887ad0e 4349 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
cf38be6d
HS
4350 r->rspq.uld = CXGB4_ULD_RDMA;
4351 }
4352
c887ad0e
HS
4353 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4354 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
b8ff05a9
DM
4355}
4356
4357/*
4358 * Reduce the number of Ethernet queues across all ports to at most n.
4359 * n provides at least one queue per port.
4360 */
91744948 4361static void reduce_ethqs(struct adapter *adap, int n)
b8ff05a9
DM
4362{
4363 int i;
4364 struct port_info *pi;
4365
4366 while (n < adap->sge.ethqsets)
4367 for_each_port(adap, i) {
4368 pi = adap2pinfo(adap, i);
4369 if (pi->nqsets > 1) {
4370 pi->nqsets--;
4371 adap->sge.ethqsets--;
4372 if (adap->sge.ethqsets <= n)
4373 break;
4374 }
4375 }
4376
4377 n = 0;
4378 for_each_port(adap, i) {
4379 pi = adap2pinfo(adap, i);
4380 pi->first_qset = n;
4381 n += pi->nqsets;
4382 }
4383}
4384
4385/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4386#define EXTRA_VECS 2
4387
91744948 4388static int enable_msix(struct adapter *adap)
b8ff05a9
DM
4389{
4390 int ofld_need = 0;
f36e58e5 4391 int i, want, need, allocated;
b8ff05a9
DM
4392 struct sge *s = &adap->sge;
4393 unsigned int nchan = adap->params.nports;
f36e58e5
HS
4394 struct msix_entry *entries;
4395
4396 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4397 GFP_KERNEL);
4398 if (!entries)
4399 return -ENOMEM;
b8ff05a9 4400
f36e58e5 4401 for (i = 0; i < MAX_INGQ + 1; ++i)
b8ff05a9
DM
4402 entries[i].entry = i;
4403
4404 want = s->max_ethqsets + EXTRA_VECS;
4405 if (is_offload(adap)) {
cf38be6d 4406 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
b8ff05a9 4407 /* need nchan for each possible ULD */
cf38be6d 4408 ofld_need = 3 * nchan;
b8ff05a9 4409 }
688848b1
AB
4410#ifdef CONFIG_CHELSIO_T4_DCB
4411 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4412 * each port.
4413 */
4414 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4415#else
b8ff05a9 4416 need = adap->params.nports + EXTRA_VECS + ofld_need;
688848b1 4417#endif
f36e58e5
HS
4418 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4419 if (allocated < 0) {
4420 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4421 " not using MSI-X\n");
4422 kfree(entries);
4423 return allocated;
4424 }
b8ff05a9 4425
f36e58e5 4426 /* Distribute available vectors to the various queue groups.
c32ad224
AG
4427 * Every group gets its minimum requirement and NIC gets top
4428 * priority for leftovers.
4429 */
f36e58e5 4430 i = allocated - EXTRA_VECS - ofld_need;
c32ad224
AG
4431 if (i < s->max_ethqsets) {
4432 s->max_ethqsets = i;
4433 if (i < s->ethqsets)
4434 reduce_ethqs(adap, i);
4435 }
4436 if (is_offload(adap)) {
f36e58e5
HS
4437 if (allocated < want) {
4438 s->rdmaqs = nchan;
4439 s->rdmaciqs = nchan;
4440 }
4441
4442 /* leftovers go to OFLD */
4443 i = allocated - EXTRA_VECS - s->max_ethqsets -
4444 s->rdmaqs - s->rdmaciqs;
c32ad224
AG
4445 s->ofldqsets = (i / nchan) * nchan; /* round down */
4446 }
f36e58e5 4447 for (i = 0; i < allocated; ++i)
c32ad224
AG
4448 adap->msix_info[i].vec = entries[i].vector;
4449
f36e58e5 4450 kfree(entries);
c32ad224 4451 return 0;
b8ff05a9
DM
4452}
4453
4454#undef EXTRA_VECS
4455
91744948 4456static int init_rss(struct adapter *adap)
671b0060 4457{
c035e183
HS
4458 unsigned int i;
4459 int err;
4460
4461 err = t4_init_rss_mode(adap, adap->mbox);
4462 if (err)
4463 return err;
671b0060
DM
4464
4465 for_each_port(adap, i) {
4466 struct port_info *pi = adap2pinfo(adap, i);
4467
4468 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4469 if (!pi->rss)
4470 return -ENOMEM;
671b0060
DM
4471 }
4472 return 0;
4473}
4474
91744948 4475static void print_port_info(const struct net_device *dev)
b8ff05a9 4476{
b8ff05a9 4477 char buf[80];
118969ed 4478 char *bufp = buf;
f1a051b9 4479 const char *spd = "";
118969ed
DM
4480 const struct port_info *pi = netdev_priv(dev);
4481 const struct adapter *adap = pi->adapter;
f1a051b9
DM
4482
4483 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4484 spd = " 2.5 GT/s";
4485 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4486 spd = " 5 GT/s";
d2e752db
RD
4487 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4488 spd = " 8 GT/s";
b8ff05a9 4489
118969ed
DM
4490 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4491 bufp += sprintf(bufp, "100/");
4492 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4493 bufp += sprintf(bufp, "1000/");
4494 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4495 bufp += sprintf(bufp, "10G/");
72aca4bf
KS
4496 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4497 bufp += sprintf(bufp, "40G/");
118969ed
DM
4498 if (bufp != buf)
4499 --bufp;
72aca4bf 4500 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
118969ed
DM
4501
4502 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
0a57a536 4503 adap->params.vpd.id,
d14807dd 4504 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
118969ed
DM
4505 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4506 (adap->flags & USING_MSIX) ? " MSI-X" :
4507 (adap->flags & USING_MSI) ? " MSI" : "");
a94cd705
KS
4508 netdev_info(dev, "S/N: %s, P/N: %s\n",
4509 adap->params.vpd.sn, adap->params.vpd.pn);
b8ff05a9
DM
4510}
4511
91744948 4512static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
ef306b50 4513{
e5c8ae5f 4514 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
ef306b50
DM
4515}
4516
06546391
DM
4517/*
4518 * Free the following resources:
4519 * - memory used for tables
4520 * - MSI/MSI-X
4521 * - net devices
4522 * - resources FW is holding for us
4523 */
4524static void free_some_resources(struct adapter *adapter)
4525{
4526 unsigned int i;
4527
4528 t4_free_mem(adapter->l2t);
4529 t4_free_mem(adapter->tids.tid_tab);
4b8e27a8
HS
4530 kfree(adapter->sge.egr_map);
4531 kfree(adapter->sge.ingr_map);
4532 kfree(adapter->sge.starving_fl);
4533 kfree(adapter->sge.txq_maperr);
5b377d11
HS
4534#ifdef CONFIG_DEBUG_FS
4535 kfree(adapter->sge.blocked_fl);
4536#endif
06546391
DM
4537 disable_msi(adapter);
4538
4539 for_each_port(adapter, i)
671b0060
DM
4540 if (adapter->port[i]) {
4541 kfree(adap2pinfo(adapter, i)->rss);
06546391 4542 free_netdev(adapter->port[i]);
671b0060 4543 }
06546391 4544 if (adapter->flags & FW_OK)
b2612722 4545 t4_fw_bye(adapter, adapter->pf);
06546391
DM
4546}
4547
2ed28baa 4548#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
35d35682 4549#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
b8ff05a9 4550 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
22adfe0a 4551#define SEGMENT_SIZE 128
b8ff05a9 4552
1dd06ae8 4553static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
b8ff05a9 4554{
22adfe0a 4555 int func, i, err, s_qpp, qpp, num_seg;
b8ff05a9 4556 struct port_info *pi;
c8f44aff 4557 bool highdma = false;
b8ff05a9 4558 struct adapter *adapter = NULL;
d6ce2628 4559 void __iomem *regs;
b8ff05a9
DM
4560
4561 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4562
4563 err = pci_request_regions(pdev, KBUILD_MODNAME);
4564 if (err) {
4565 /* Just info, some other driver may have claimed the device. */
4566 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4567 return err;
4568 }
4569
b8ff05a9
DM
4570 err = pci_enable_device(pdev);
4571 if (err) {
4572 dev_err(&pdev->dev, "cannot enable PCI device\n");
4573 goto out_release_regions;
4574 }
4575
d6ce2628
HS
4576 regs = pci_ioremap_bar(pdev, 0);
4577 if (!regs) {
4578 dev_err(&pdev->dev, "cannot map device registers\n");
4579 err = -ENOMEM;
4580 goto out_disable_device;
4581 }
4582
8203b509
HS
4583 err = t4_wait_dev_ready(regs);
4584 if (err < 0)
4585 goto out_unmap_bar0;
4586
d6ce2628 4587 /* We control everything through one PF */
0d804338 4588 func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
d6ce2628
HS
4589 if (func != ent->driver_data) {
4590 iounmap(regs);
4591 pci_disable_device(pdev);
4592 pci_save_state(pdev); /* to restore SR-IOV later */
4593 goto sriov;
4594 }
4595
b8ff05a9 4596 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c8f44aff 4597 highdma = true;
b8ff05a9
DM
4598 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4599 if (err) {
4600 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4601 "coherent allocations\n");
d6ce2628 4602 goto out_unmap_bar0;
b8ff05a9
DM
4603 }
4604 } else {
4605 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4606 if (err) {
4607 dev_err(&pdev->dev, "no usable DMA configuration\n");
d6ce2628 4608 goto out_unmap_bar0;
b8ff05a9
DM
4609 }
4610 }
4611
4612 pci_enable_pcie_error_reporting(pdev);
ef306b50 4613 enable_pcie_relaxed_ordering(pdev);
b8ff05a9
DM
4614 pci_set_master(pdev);
4615 pci_save_state(pdev);
4616
4617 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4618 if (!adapter) {
4619 err = -ENOMEM;
d6ce2628 4620 goto out_unmap_bar0;
b8ff05a9
DM
4621 }
4622
29aaee65
AB
4623 adapter->workq = create_singlethread_workqueue("cxgb4");
4624 if (!adapter->workq) {
4625 err = -ENOMEM;
4626 goto out_free_adapter;
4627 }
4628
144be3d9
GS
4629 /* PCI device has been enabled */
4630 adapter->flags |= DEV_ENABLED;
4631
d6ce2628 4632 adapter->regs = regs;
b8ff05a9
DM
4633 adapter->pdev = pdev;
4634 adapter->pdev_dev = &pdev->dev;
3069ee9b 4635 adapter->mbox = func;
b2612722 4636 adapter->pf = func;
b8ff05a9
DM
4637 adapter->msg_enable = dflt_msg_enable;
4638 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4639
4640 spin_lock_init(&adapter->stats_lock);
4641 spin_lock_init(&adapter->tid_release_lock);
e327c225 4642 spin_lock_init(&adapter->win0_lock);
b8ff05a9
DM
4643
4644 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
881806bc
VP
4645 INIT_WORK(&adapter->db_full_task, process_db_full);
4646 INIT_WORK(&adapter->db_drop_task, process_db_drop);
b8ff05a9
DM
4647
4648 err = t4_prep_adapter(adapter);
4649 if (err)
d6ce2628
HS
4650 goto out_free_adapter;
4651
22adfe0a 4652
d14807dd 4653 if (!is_t4(adapter->params.chip)) {
f612b815
HS
4654 s_qpp = (QUEUESPERPAGEPF0_S +
4655 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
b2612722 4656 adapter->pf);
f612b815
HS
4657 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4658 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
22adfe0a
SR
4659 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4660
4661 /* Each segment size is 128B. Write coalescing is enabled only
4662 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4663 * queue is less no of segments that can be accommodated in
4664 * a page size.
4665 */
4666 if (qpp > num_seg) {
4667 dev_err(&pdev->dev,
4668 "Incorrect number of egress queues per page\n");
4669 err = -EINVAL;
d6ce2628 4670 goto out_free_adapter;
22adfe0a
SR
4671 }
4672 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4673 pci_resource_len(pdev, 2));
4674 if (!adapter->bar2) {
4675 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4676 err = -ENOMEM;
d6ce2628 4677 goto out_free_adapter;
22adfe0a 4678 }
a4cfd929
HS
4679 t4_write_reg(adapter, SGE_STAT_CFG_A,
4680 STATSOURCE_T5_V(7) | STATMODE_V(0));
22adfe0a
SR
4681 }
4682
636f9d37 4683 setup_memwin(adapter);
b8ff05a9 4684 err = adap_init0(adapter);
5b377d11
HS
4685#ifdef CONFIG_DEBUG_FS
4686 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4687#endif
636f9d37 4688 setup_memwin_rdma(adapter);
b8ff05a9
DM
4689 if (err)
4690 goto out_unmap_bar;
4691
4692 for_each_port(adapter, i) {
4693 struct net_device *netdev;
4694
4695 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4696 MAX_ETH_QSETS);
4697 if (!netdev) {
4698 err = -ENOMEM;
4699 goto out_free_dev;
4700 }
4701
4702 SET_NETDEV_DEV(netdev, &pdev->dev);
4703
4704 adapter->port[i] = netdev;
4705 pi = netdev_priv(netdev);
4706 pi->adapter = adapter;
4707 pi->xact_addr_filt = -1;
b8ff05a9 4708 pi->port_id = i;
b8ff05a9
DM
4709 netdev->irq = pdev->irq;
4710
2ed28baa
MM
4711 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4712 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4713 NETIF_F_RXCSUM | NETIF_F_RXHASH |
f646968f 4714 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
c8f44aff
MM
4715 if (highdma)
4716 netdev->hw_features |= NETIF_F_HIGHDMA;
4717 netdev->features |= netdev->hw_features;
b8ff05a9
DM
4718 netdev->vlan_features = netdev->features & VLAN_FEAT;
4719
01789349
JP
4720 netdev->priv_flags |= IFF_UNICAST_FLT;
4721
b8ff05a9 4722 netdev->netdev_ops = &cxgb4_netdev_ops;
688848b1
AB
4723#ifdef CONFIG_CHELSIO_T4_DCB
4724 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4725 cxgb4_dcb_state_init(netdev);
4726#endif
812034f1 4727 cxgb4_set_ethtool_ops(netdev);
b8ff05a9
DM
4728 }
4729
4730 pci_set_drvdata(pdev, adapter);
4731
4732 if (adapter->flags & FW_OK) {
060e0c75 4733 err = t4_port_init(adapter, func, func, 0);
b8ff05a9
DM
4734 if (err)
4735 goto out_free_dev;
4736 }
4737
4738 /*
4739 * Configure queues and allocate tables now, they can be needed as
4740 * soon as the first register_netdev completes.
4741 */
4742 cfg_queues(adapter);
4743
4744 adapter->l2t = t4_init_l2t();
4745 if (!adapter->l2t) {
4746 /* We tolerate a lack of L2T, giving up some functionality */
4747 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4748 adapter->params.offload = 0;
4749 }
4750
b5a02f50
AB
4751#if IS_ENABLED(CONFIG_IPV6)
4752 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4753 adapter->clipt_end);
4754 if (!adapter->clipt) {
4755 /* We tolerate a lack of clip_table, giving up
4756 * some functionality
4757 */
4758 dev_warn(&pdev->dev,
4759 "could not allocate Clip table, continuing\n");
4760 adapter->params.offload = 0;
4761 }
4762#endif
b8ff05a9
DM
4763 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4764 dev_warn(&pdev->dev, "could not allocate TID table, "
4765 "continuing\n");
4766 adapter->params.offload = 0;
4767 }
4768
f7cabcdd
DM
4769 /* See what interrupts we'll be using */
4770 if (msi > 1 && enable_msix(adapter) == 0)
4771 adapter->flags |= USING_MSIX;
4772 else if (msi > 0 && pci_enable_msi(pdev) == 0)
4773 adapter->flags |= USING_MSI;
4774
671b0060
DM
4775 err = init_rss(adapter);
4776 if (err)
4777 goto out_free_dev;
4778
b8ff05a9
DM
4779 /*
4780 * The card is now ready to go. If any errors occur during device
4781 * registration we do not fail the whole card but rather proceed only
4782 * with the ports we manage to register successfully. However we must
4783 * register at least one net device.
4784 */
4785 for_each_port(adapter, i) {
a57cabe0
DM
4786 pi = adap2pinfo(adapter, i);
4787 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4788 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4789
b8ff05a9
DM
4790 err = register_netdev(adapter->port[i]);
4791 if (err)
b1a3c2b6 4792 break;
b1a3c2b6
DM
4793 adapter->chan_map[pi->tx_chan] = i;
4794 print_port_info(adapter->port[i]);
b8ff05a9 4795 }
b1a3c2b6 4796 if (i == 0) {
b8ff05a9
DM
4797 dev_err(&pdev->dev, "could not register any net devices\n");
4798 goto out_free_dev;
4799 }
b1a3c2b6
DM
4800 if (err) {
4801 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4802 err = 0;
6403eab1 4803 }
b8ff05a9
DM
4804
4805 if (cxgb4_debugfs_root) {
4806 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4807 cxgb4_debugfs_root);
4808 setup_debugfs(adapter);
4809 }
4810
6482aa7c
DLR
4811 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4812 pdev->needs_freset = 1;
4813
b8ff05a9
DM
4814 if (is_offload(adapter))
4815 attach_ulds(adapter);
4816
8e1e6059 4817sriov:
b8ff05a9 4818#ifdef CONFIG_PCI_IOV
7d6727cf 4819 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
b8ff05a9
DM
4820 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4821 dev_info(&pdev->dev,
4822 "instantiated %u virtual functions\n",
4823 num_vf[func]);
4824#endif
4825 return 0;
4826
4827 out_free_dev:
06546391 4828 free_some_resources(adapter);
b8ff05a9 4829 out_unmap_bar:
d14807dd 4830 if (!is_t4(adapter->params.chip))
22adfe0a 4831 iounmap(adapter->bar2);
b8ff05a9 4832 out_free_adapter:
29aaee65
AB
4833 if (adapter->workq)
4834 destroy_workqueue(adapter->workq);
4835
b8ff05a9 4836 kfree(adapter);
d6ce2628
HS
4837 out_unmap_bar0:
4838 iounmap(regs);
b8ff05a9
DM
4839 out_disable_device:
4840 pci_disable_pcie_error_reporting(pdev);
4841 pci_disable_device(pdev);
4842 out_release_regions:
4843 pci_release_regions(pdev);
b8ff05a9
DM
4844 return err;
4845}
4846
91744948 4847static void remove_one(struct pci_dev *pdev)
b8ff05a9
DM
4848{
4849 struct adapter *adapter = pci_get_drvdata(pdev);
4850
636f9d37 4851#ifdef CONFIG_PCI_IOV
b8ff05a9
DM
4852 pci_disable_sriov(pdev);
4853
636f9d37
VP
4854#endif
4855
b8ff05a9
DM
4856 if (adapter) {
4857 int i;
4858
29aaee65
AB
4859 /* Tear down per-adapter Work Queue first since it can contain
4860 * references to our adapter data structure.
4861 */
4862 destroy_workqueue(adapter->workq);
4863
b8ff05a9
DM
4864 if (is_offload(adapter))
4865 detach_ulds(adapter);
4866
b37987e8
HS
4867 disable_interrupts(adapter);
4868
b8ff05a9 4869 for_each_port(adapter, i)
8f3a7676 4870 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
b8ff05a9
DM
4871 unregister_netdev(adapter->port[i]);
4872
9f16dc2e 4873 debugfs_remove_recursive(adapter->debugfs_root);
b8ff05a9 4874
f2b7e78d
VP
4875 /* If we allocated filters, free up state associated with any
4876 * valid filters ...
4877 */
4878 if (adapter->tids.ftid_tab) {
4879 struct filter_entry *f = &adapter->tids.ftid_tab[0];
dca4faeb
VP
4880 for (i = 0; i < (adapter->tids.nftids +
4881 adapter->tids.nsftids); i++, f++)
f2b7e78d
VP
4882 if (f->valid)
4883 clear_filter(adapter, f);
4884 }
4885
aaefae9b
DM
4886 if (adapter->flags & FULL_INIT_DONE)
4887 cxgb_down(adapter);
b8ff05a9 4888
06546391 4889 free_some_resources(adapter);
b5a02f50
AB
4890#if IS_ENABLED(CONFIG_IPV6)
4891 t4_cleanup_clip_tbl(adapter);
4892#endif
b8ff05a9 4893 iounmap(adapter->regs);
d14807dd 4894 if (!is_t4(adapter->params.chip))
22adfe0a 4895 iounmap(adapter->bar2);
b8ff05a9 4896 pci_disable_pcie_error_reporting(pdev);
144be3d9
GS
4897 if ((adapter->flags & DEV_ENABLED)) {
4898 pci_disable_device(pdev);
4899 adapter->flags &= ~DEV_ENABLED;
4900 }
b8ff05a9 4901 pci_release_regions(pdev);
ee9a33b2 4902 synchronize_rcu();
8b662fe7 4903 kfree(adapter);
a069ec91 4904 } else
b8ff05a9
DM
4905 pci_release_regions(pdev);
4906}
4907
4908static struct pci_driver cxgb4_driver = {
4909 .name = KBUILD_MODNAME,
4910 .id_table = cxgb4_pci_tbl,
4911 .probe = init_one,
91744948 4912 .remove = remove_one,
687d705c 4913 .shutdown = remove_one,
204dc3c0 4914 .err_handler = &cxgb4_eeh,
b8ff05a9
DM
4915};
4916
4917static int __init cxgb4_init_module(void)
4918{
4919 int ret;
4920
4921 /* Debugfs support is optional, just warn if this fails */
4922 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4923 if (!cxgb4_debugfs_root)
428ac43f 4924 pr_warn("could not create debugfs entry, continuing\n");
b8ff05a9
DM
4925
4926 ret = pci_register_driver(&cxgb4_driver);
29aaee65 4927 if (ret < 0)
b8ff05a9 4928 debugfs_remove(cxgb4_debugfs_root);
01bcca68 4929
1bb60376 4930#if IS_ENABLED(CONFIG_IPV6)
b5a02f50
AB
4931 if (!inet6addr_registered) {
4932 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4933 inet6addr_registered = true;
4934 }
1bb60376 4935#endif
01bcca68 4936
b8ff05a9
DM
4937 return ret;
4938}
4939
4940static void __exit cxgb4_cleanup_module(void)
4941{
1bb60376 4942#if IS_ENABLED(CONFIG_IPV6)
1793c798 4943 if (inet6addr_registered) {
b5a02f50
AB
4944 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4945 inet6addr_registered = false;
4946 }
1bb60376 4947#endif
b8ff05a9
DM
4948 pci_unregister_driver(&cxgb4_driver);
4949 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
4950}
4951
4952module_init(cxgb4_init_module);
4953module_exit(cxgb4_cleanup_module);