]> git.ipfire.org Git - people/ms/linux.git/blame - drivers/net/ethernet/via/via-rhine.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[people/ms/linux.git] / drivers / net / ethernet / via / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
df4511fe
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#define DRV_NAME "via-rhine"
207070f5 35#define DRV_VERSION "1.5.1"
38f49e88 36#define DRV_RELDATE "2010-10-09"
1da177e4 37
eb939922 38#include <linux/types.h>
1da177e4
LT
39
40/* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
fc3e0f8a
FR
42static int debug = 0;
43#define RHINE_MSG_DEFAULT \
44 (0x0000)
1da177e4
LT
45
46/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
8e95a202
JP
48#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
b47157f0
DM
51static int rx_copybreak = 1518;
52#else
1da177e4 53static int rx_copybreak;
b47157f0 54#endif
1da177e4 55
b933b4d9
RL
56/* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
eb939922 58static bool avoid_D3;
b933b4d9 59
1da177e4
LT
60/*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67static const int multicast_filter_limit = 32;
68
69
70/* Operational parameters that are set at compile time. */
71
72/* Keep the ring sizes a power of two for compile efficiency.
92bf2008
TR
73 * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 * Making the Tx ring too large decreases the effectiveness of channel
75 * bonding and packet priority.
76 * With BQL support, we can increase TX ring safely.
77 * There are no ill effects from too-large receive rings.
78 */
79#define TX_RING_SIZE 64
80#define TX_QUEUE_LEN (TX_RING_SIZE - 6) /* Limit ring entries actually used. */
633949a1 81#define RX_RING_SIZE 64
1da177e4
LT
82
83/* Operational parameters that usually are not changed. */
84
85/* Time in jiffies before concluding the transmitter is hung. */
86#define TX_TIMEOUT (2*HZ)
87
88#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
89
90#include <linux/module.h>
91#include <linux/moduleparam.h>
92#include <linux/kernel.h>
93#include <linux/string.h>
94#include <linux/timer.h>
95#include <linux/errno.h>
96#include <linux/ioport.h>
1da177e4
LT
97#include <linux/interrupt.h>
98#include <linux/pci.h>
2d283862
AC
99#include <linux/of_device.h>
100#include <linux/of_irq.h>
101#include <linux/platform_device.h>
1e7f0bd8 102#include <linux/dma-mapping.h>
1da177e4
LT
103#include <linux/netdevice.h>
104#include <linux/etherdevice.h>
105#include <linux/skbuff.h>
106#include <linux/init.h>
107#include <linux/delay.h>
108#include <linux/mii.h>
109#include <linux/ethtool.h>
110#include <linux/crc32.h>
38f49e88 111#include <linux/if_vlan.h>
1da177e4 112#include <linux/bitops.h>
c0d7a021 113#include <linux/workqueue.h>
1da177e4
LT
114#include <asm/processor.h> /* Processor type for cache alignment. */
115#include <asm/io.h>
116#include <asm/irq.h>
7c0f6ba6 117#include <linux/uaccess.h>
e84df485 118#include <linux/dmi.h>
1da177e4
LT
119
120/* These identify the driver base version and may not be removed. */
76e239e1 121static const char version[] =
df4511fe 122 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
1da177e4 123
1da177e4
LT
124MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
125MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
126MODULE_LICENSE("GPL");
127
1da177e4
LT
128module_param(debug, int, 0);
129module_param(rx_copybreak, int, 0);
b933b4d9 130module_param(avoid_D3, bool, 0);
fc3e0f8a 131MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
1da177e4 132MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 133MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4 134
38f49e88
RL
135#define MCAM_SIZE 32
136#define VCAM_SIZE 32
137
1da177e4
LT
138/*
139 Theory of Operation
140
141I. Board Compatibility
142
143This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
144controller.
145
146II. Board-specific settings
147
148Boards with this chip are functional only in a bus-master PCI slot.
149
150Many operational settings are loaded from the EEPROM to the Config word at
151offset 0x78. For most of these settings, this driver assumes that they are
152correct.
153If this driver is compiled to use PCI memory space operations the EEPROM
154must be configured to enable memory ops.
155
156III. Driver operation
157
158IIIa. Ring buffers
159
160This driver uses two statically allocated fixed-size descriptor lists
161formed into rings by a branch from the final descriptor to the beginning of
162the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
163
164IIIb/c. Transmit/Receive Structure
165
166This driver attempts to use a zero-copy receive and transmit scheme.
167
168Alas, all data buffers are required to start on a 32 bit boundary, so
169the driver must often copy transmit packets into bounce buffers.
170
171The driver allocates full frame size skbuffs for the Rx ring buffers at
172open() time and passes the skb->data field to the chip as receive data
173buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
174a fresh skbuff is allocated and the frame is copied to the new skbuff.
175When the incoming frame is larger, the skbuff is passed directly up the
176protocol stack. Buffers consumed this way are replaced by newly allocated
177skbuffs in the last phase of rhine_rx().
178
179The RX_COPYBREAK value is chosen to trade-off the memory wasted by
180using a full-sized skbuff for small frames vs. the copying costs of larger
181frames. New boards are typically used in generously configured machines
182and the underfilled buffers have negligible impact compared to the benefit of
183a single allocation size, so the default value of zero results in never
184copying packets. When copying is done, the cost is usually mitigated by using
185a combined copy/checksum routine. Copying also preloads the cache, which is
186most useful with small frames.
187
188Since the VIA chips are only able to transfer data to buffers on 32 bit
189boundaries, the IP header at offset 14 in an ethernet frame isn't
190longword aligned for further processing. Copying these unaligned buffers
191has the beneficial effect of 16-byte aligning the IP header.
192
193IIId. Synchronization
194
195The driver runs as two independent, single-threaded flows of control. One
196is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
197netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
198which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
199
200The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
201netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
202the ring is not available it stops the transmit queue by
203calling netif_stop_queue.
1da177e4
LT
204
205The interrupt handler has exclusive control over the Rx ring and records stats
206from the Tx ring. After reaping the stats, it marks the Tx queue entry as
207empty by incrementing the dirty_tx mark. If at least half of the entries in
208the Rx ring are available the transmit queue is woken up if it was stopped.
209
210IV. Notes
211
212IVb. References
213
214Preliminary VT86C100A manual from http://www.via.com.tw/
215http://www.scyld.com/expert/100mbps.html
216http://www.scyld.com/expert/NWay.html
217ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
218ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
219
220
221IVc. Errata
222
223The VT86C100A manual is not reliable information.
224The 3043 chip does not handle unaligned transmit or receive buffers, resulting
225in significant performance degradation for bounce buffer copies on transmit
226and unaligned IP headers on receive.
227The chip does not pad to minimum transmit length.
228
229*/
230
231
232/* This table drives the PCI probe routines. It's mostly boilerplate in all
233 of the drivers, and will likely be provided by some future kernel.
234 Note the matching code -- the first table entry matchs all 56** cards but
235 second only the 1234 card.
236*/
237
238enum rhine_revs {
239 VT86C100A = 0x00,
240 VTunknown0 = 0x20,
241 VT6102 = 0x40,
242 VT8231 = 0x50, /* Integrated MAC */
243 VT8233 = 0x60, /* Integrated MAC */
244 VT8235 = 0x74, /* Integrated MAC */
245 VT8237 = 0x78, /* Integrated MAC */
246 VTunknown1 = 0x7C,
247 VT6105 = 0x80,
248 VT6105_B0 = 0x83,
249 VT6105L = 0x8A,
250 VT6107 = 0x8C,
251 VTunknown2 = 0x8E,
252 VT6105M = 0x90, /* Management adapter */
253};
254
255enum rhine_quirks {
256 rqWOL = 0x0001, /* Wake-On-LAN support */
257 rqForceReset = 0x0002,
258 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
259 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
260 rqRhineI = 0x0100, /* See comment below */
ca8b6e04
AC
261 rqIntPHY = 0x0200, /* Integrated PHY */
262 rqMgmt = 0x0400, /* Management adapter */
5b579e21
AC
263 rqNeedEnMMIO = 0x0800, /* Whether the core needs to be
264 * switched from PIO mode to MMIO
265 * (only applies to PCI)
266 */
1da177e4
LT
267};
268/*
269 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
270 * MMIO as well as for the collision counter and the Tx FIFO underflow
271 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
272 */
273
274/* Beware of PCI posted writes */
275#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
276
9baa3c34 277static const struct pci_device_id rhine_pci_tbl[] = {
46009c8b
JG
278 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
279 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
280 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
281 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
282 { } /* terminate list */
283};
284MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
285
2d283862 286/* OpenFirmware identifiers for platform-bus devices
ca8b6e04 287 * The .data field is currently only used to store quirks
2d283862 288 */
ca8b6e04 289static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
d2b75a3f 290static const struct of_device_id rhine_of_tbl[] = {
ca8b6e04 291 { .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
2d283862
AC
292 { } /* terminate list */
293};
294MODULE_DEVICE_TABLE(of, rhine_of_tbl);
1da177e4
LT
295
296/* Offsets to the device registers. */
297enum register_offsets {
298 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
38f49e88 299 ChipCmd1=0x09, TQWake=0x0A,
1da177e4
LT
300 IntrStatus=0x0C, IntrEnable=0x0E,
301 MulticastFilter0=0x10, MulticastFilter1=0x14,
302 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
38f49e88 303 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
1da177e4
LT
304 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
305 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
306 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
307 StickyHW=0x83, IntrStatus2=0x84,
38f49e88 308 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
1da177e4
LT
309 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
310 WOLcrClr1=0xA6, WOLcgClr=0xA7,
311 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
312};
313
314/* Bits in ConfigD */
315enum backoff_bits {
316 BackOptional=0x01, BackModify=0x02,
317 BackCaptureEffect=0x04, BackRandom=0x08
318};
319
38f49e88
RL
320/* Bits in the TxConfig (TCR) register */
321enum tcr_bits {
322 TCR_PQEN=0x01,
323 TCR_LB0=0x02, /* loopback[0] */
324 TCR_LB1=0x04, /* loopback[1] */
325 TCR_OFSET=0x08,
326 TCR_RTGOPT=0x10,
327 TCR_RTFT0=0x20,
328 TCR_RTFT1=0x40,
329 TCR_RTSF=0x80,
330};
331
332/* Bits in the CamCon (CAMC) register */
333enum camcon_bits {
334 CAMC_CAMEN=0x01,
335 CAMC_VCAMSL=0x02,
336 CAMC_CAMWR=0x04,
337 CAMC_CAMRD=0x08,
338};
339
340/* Bits in the PCIBusConfig1 (BCR1) register */
341enum bcr1_bits {
342 BCR1_POT0=0x01,
343 BCR1_POT1=0x02,
344 BCR1_POT2=0x04,
345 BCR1_CTFT0=0x08,
346 BCR1_CTFT1=0x10,
347 BCR1_CTSF=0x20,
348 BCR1_TXQNOBK=0x40, /* for VT6105 */
349 BCR1_VIDFR=0x80, /* for VT6105 */
350 BCR1_MED0=0x40, /* for VT6102 */
351 BCR1_MED1=0x80, /* for VT6102 */
352};
353
1da177e4
LT
354/* Registers we check that mmio and reg are the same. */
355static const int mmio_verify_registers[] = {
356 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
357 0
358};
1da177e4
LT
359
360/* Bits in the interrupt status/mask registers. */
361enum intr_status_bits {
7ab87ff4
FR
362 IntrRxDone = 0x0001,
363 IntrTxDone = 0x0002,
364 IntrRxErr = 0x0004,
365 IntrTxError = 0x0008,
366 IntrRxEmpty = 0x0020,
367 IntrPCIErr = 0x0040,
368 IntrStatsMax = 0x0080,
369 IntrRxEarly = 0x0100,
370 IntrTxUnderrun = 0x0210,
371 IntrRxOverflow = 0x0400,
372 IntrRxDropped = 0x0800,
373 IntrRxNoBuf = 0x1000,
374 IntrTxAborted = 0x2000,
375 IntrLinkChange = 0x4000,
376 IntrRxWakeUp = 0x8000,
377 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
378 IntrNormalSummary = IntrRxDone | IntrTxDone,
379 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
380 IntrTxUnderrun,
1da177e4
LT
381};
382
383/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
384enum wol_bits {
385 WOLucast = 0x10,
386 WOLmagic = 0x20,
387 WOLbmcast = 0x30,
388 WOLlnkon = 0x40,
389 WOLlnkoff = 0x80,
390};
391
392/* The Rx and Tx buffer descriptors. */
393struct rx_desc {
53c03f5c
AV
394 __le32 rx_status;
395 __le32 desc_length; /* Chain flag, Buffer/frame length */
396 __le32 addr;
397 __le32 next_desc;
1da177e4
LT
398};
399struct tx_desc {
53c03f5c
AV
400 __le32 tx_status;
401 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
402 __le32 addr;
403 __le32 next_desc;
1da177e4
LT
404};
405
406/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
407#define TXDESC 0x00e08000
408
409enum rx_status_bits {
410 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
411};
412
413/* Bits in *_desc.*_status */
414enum desc_status_bits {
415 DescOwn=0x80000000
416};
417
38f49e88
RL
418/* Bits in *_desc.*_length */
419enum desc_length_bits {
420 DescTag=0x00010000
421};
422
1da177e4
LT
423/* Bits in ChipCmd. */
424enum chip_cmd_bits {
425 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
426 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
427 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
428 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
429};
430
f7b5d1b9
JG
431struct rhine_stats {
432 u64 packets;
433 u64 bytes;
434 struct u64_stats_sync syncp;
435};
436
1da177e4 437struct rhine_private {
38f49e88
RL
438 /* Bit mask for configured VLAN ids */
439 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
440
1da177e4
LT
441 /* Descriptor rings */
442 struct rx_desc *rx_ring;
443 struct tx_desc *tx_ring;
444 dma_addr_t rx_ring_dma;
445 dma_addr_t tx_ring_dma;
446
447 /* The addresses of receive-in-place skbuffs. */
448 struct sk_buff *rx_skbuff[RX_RING_SIZE];
449 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
450
451 /* The saved address of a sent-in-place packet/buffer, for later free(). */
452 struct sk_buff *tx_skbuff[TX_RING_SIZE];
453 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
454
4be5de25 455 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
456 unsigned char *tx_buf[TX_RING_SIZE];
457 unsigned char *tx_bufs;
458 dma_addr_t tx_bufs_dma;
459
f7630d18 460 int irq;
1da177e4 461 long pioaddr;
bea3348e
SH
462 struct net_device *dev;
463 struct napi_struct napi;
1da177e4 464 spinlock_t lock;
7ab87ff4
FR
465 struct mutex task_lock;
466 bool task_enable;
467 struct work_struct slow_event_task;
c0d7a021 468 struct work_struct reset_task;
1da177e4 469
fc3e0f8a
FR
470 u32 msg_enable;
471
1da177e4
LT
472 /* Frequently used values: keep some adjacent for cache effect. */
473 u32 quirks;
8709bb2c 474 unsigned int cur_rx;
1da177e4
LT
475 unsigned int cur_tx, dirty_tx;
476 unsigned int rx_buf_sz; /* Based on MTU+slack. */
f7b5d1b9
JG
477 struct rhine_stats rx_stats;
478 struct rhine_stats tx_stats;
1da177e4
LT
479 u8 wolopts;
480
481 u8 tx_thresh, rx_thresh;
482
483 struct mii_if_info mii_if;
484 void __iomem *base;
485};
486
38f49e88
RL
487#define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
488#define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
489#define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
490
491#define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
492#define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
493#define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
494
495#define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
496#define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
497#define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
498
499#define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
500#define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
501#define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
502
503
1da177e4
LT
504static int mdio_read(struct net_device *dev, int phy_id, int location);
505static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
506static int rhine_open(struct net_device *dev);
c0d7a021 507static void rhine_reset_task(struct work_struct *work);
7ab87ff4 508static void rhine_slow_event_task(struct work_struct *work);
1da177e4 509static void rhine_tx_timeout(struct net_device *dev);
61357325
SH
510static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
511 struct net_device *dev);
7d12e780 512static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 513static void rhine_tx(struct net_device *dev);
633949a1 514static int rhine_rx(struct net_device *dev, int limit);
1da177e4 515static void rhine_set_rx_mode(struct net_device *dev);
f7b5d1b9
JG
516static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
517 struct rtnl_link_stats64 *stats);
1da177e4 518static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 519static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 520static int rhine_close(struct net_device *dev);
80d5c368
PM
521static int rhine_vlan_rx_add_vid(struct net_device *dev,
522 __be16 proto, u16 vid);
523static int rhine_vlan_rx_kill_vid(struct net_device *dev,
524 __be16 proto, u16 vid);
7ab87ff4 525static void rhine_restart_tx(struct net_device *dev);
1da177e4 526
3f8c91a7 527static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
a384a33b
FR
528{
529 void __iomem *ioaddr = rp->base;
530 int i;
531
532 for (i = 0; i < 1024; i++) {
3f8c91a7
AM
533 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
534
535 if (low ^ has_mask_bits)
a384a33b
FR
536 break;
537 udelay(10);
538 }
539 if (i > 64) {
fc3e0f8a 540 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
3f8c91a7 541 "count: %04d\n", low ? "low" : "high", reg, mask, i);
a384a33b
FR
542 }
543}
544
545static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
546{
3f8c91a7 547 rhine_wait_bit(rp, reg, mask, false);
a384a33b
FR
548}
549
550static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
551{
3f8c91a7 552 rhine_wait_bit(rp, reg, mask, true);
a384a33b 553}
1da177e4 554
a20a28bc 555static u32 rhine_get_events(struct rhine_private *rp)
1da177e4 556{
1da177e4
LT
557 void __iomem *ioaddr = rp->base;
558 u32 intr_status;
559
560 intr_status = ioread16(ioaddr + IntrStatus);
561 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
562 if (rp->quirks & rqStatusWBRace)
563 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
564 return intr_status;
565}
566
a20a28bc
FR
567static void rhine_ack_events(struct rhine_private *rp, u32 mask)
568{
569 void __iomem *ioaddr = rp->base;
570
571 if (rp->quirks & rqStatusWBRace)
572 iowrite8(mask >> 16, ioaddr + IntrStatus2);
573 iowrite16(mask, ioaddr + IntrStatus);
7ab87ff4 574 mmiowb();
a20a28bc
FR
575}
576
1da177e4
LT
577/*
578 * Get power related registers into sane state.
579 * Notify user about past WOL event.
580 */
581static void rhine_power_init(struct net_device *dev)
582{
583 struct rhine_private *rp = netdev_priv(dev);
584 void __iomem *ioaddr = rp->base;
585 u16 wolstat;
586
587 if (rp->quirks & rqWOL) {
588 /* Make sure chip is in power state D0 */
589 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
590
591 /* Disable "force PME-enable" */
592 iowrite8(0x80, ioaddr + WOLcgClr);
593
594 /* Clear power-event config bits (WOL) */
595 iowrite8(0xFF, ioaddr + WOLcrClr);
596 /* More recent cards can manage two additional patterns */
597 if (rp->quirks & rq6patterns)
598 iowrite8(0x03, ioaddr + WOLcrClr1);
599
600 /* Save power-event status bits */
601 wolstat = ioread8(ioaddr + PwrcsrSet);
602 if (rp->quirks & rq6patterns)
603 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
604
605 /* Clear power-event status bits */
606 iowrite8(0xFF, ioaddr + PwrcsrClr);
607 if (rp->quirks & rq6patterns)
608 iowrite8(0x03, ioaddr + PwrcsrClr1);
609
610 if (wolstat) {
611 char *reason;
612 switch (wolstat) {
613 case WOLmagic:
614 reason = "Magic packet";
615 break;
616 case WOLlnkon:
617 reason = "Link went up";
618 break;
619 case WOLlnkoff:
620 reason = "Link went down";
621 break;
622 case WOLucast:
623 reason = "Unicast packet";
624 break;
625 case WOLbmcast:
626 reason = "Multicast/broadcast packet";
627 break;
628 default:
629 reason = "Unknown";
630 }
df4511fe
JP
631 netdev_info(dev, "Woke system up. Reason: %s\n",
632 reason);
1da177e4
LT
633 }
634 }
635}
636
637static void rhine_chip_reset(struct net_device *dev)
638{
639 struct rhine_private *rp = netdev_priv(dev);
640 void __iomem *ioaddr = rp->base;
fc3e0f8a 641 u8 cmd1;
1da177e4
LT
642
643 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
644 IOSYNC;
645
646 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
df4511fe 647 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
1da177e4
LT
648
649 /* Force reset */
650 if (rp->quirks & rqForceReset)
651 iowrite8(0x40, ioaddr + MiscCmd);
652
653 /* Reset can take somewhat longer (rare) */
a384a33b 654 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
1da177e4
LT
655 }
656
fc3e0f8a
FR
657 cmd1 = ioread8(ioaddr + ChipCmd1);
658 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
659 "failed" : "succeeded");
1da177e4
LT
660}
661
1da177e4
LT
662static void enable_mmio(long pioaddr, u32 quirks)
663{
664 int n;
5b579e21
AC
665
666 if (quirks & rqNeedEnMMIO) {
667 if (quirks & rqRhineI) {
668 /* More recent docs say that this bit is reserved */
669 n = inb(pioaddr + ConfigA) | 0x20;
670 outb(n, pioaddr + ConfigA);
671 } else {
672 n = inb(pioaddr + ConfigD) | 0x80;
673 outb(n, pioaddr + ConfigD);
674 }
1da177e4
LT
675 }
676}
5b579e21
AC
677
678static inline int verify_mmio(struct device *hwdev,
679 long pioaddr,
680 void __iomem *ioaddr,
681 u32 quirks)
682{
683 if (quirks & rqNeedEnMMIO) {
684 int i = 0;
685
686 /* Check that selected MMIO registers match the PIO ones */
687 while (mmio_verify_registers[i]) {
688 int reg = mmio_verify_registers[i++];
689 unsigned char a = inb(pioaddr+reg);
690 unsigned char b = readb(ioaddr+reg);
691
692 if (a != b) {
693 dev_err(hwdev,
694 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
695 reg, a, b);
696 return -EIO;
697 }
698 }
699 }
700 return 0;
701}
1da177e4
LT
702
703/*
704 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
705 * (plus 0x6C for Rhine-I/II)
706 */
76e239e1 707static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
1da177e4
LT
708{
709 struct rhine_private *rp = netdev_priv(dev);
710 void __iomem *ioaddr = rp->base;
a384a33b 711 int i;
1da177e4
LT
712
713 outb(0x20, pioaddr + MACRegEEcsr);
a384a33b
FR
714 for (i = 0; i < 1024; i++) {
715 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
716 break;
717 }
718 if (i > 512)
719 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
1da177e4 720
1da177e4
LT
721 /*
722 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
723 * MMIO. If reloading EEPROM was done first this could be avoided, but
724 * it is not known if that still works with the "win98-reboot" problem.
725 */
726 enable_mmio(pioaddr, rp->quirks);
1da177e4
LT
727
728 /* Turn off EEPROM-controlled wake-up (magic packet) */
729 if (rp->quirks & rqWOL)
730 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
731
732}
733
734#ifdef CONFIG_NET_POLL_CONTROLLER
735static void rhine_poll(struct net_device *dev)
736{
05d334ec 737 struct rhine_private *rp = netdev_priv(dev);
f7630d18 738 const int irq = rp->irq;
05d334ec
FR
739
740 disable_irq(irq);
741 rhine_interrupt(irq, dev);
742 enable_irq(irq);
1da177e4
LT
743}
744#endif
745
269f3114
FR
746static void rhine_kick_tx_threshold(struct rhine_private *rp)
747{
748 if (rp->tx_thresh < 0xe0) {
749 void __iomem *ioaddr = rp->base;
750
751 rp->tx_thresh += 0x20;
752 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
753 }
754}
755
7ab87ff4
FR
756static void rhine_tx_err(struct rhine_private *rp, u32 status)
757{
758 struct net_device *dev = rp->dev;
759
760 if (status & IntrTxAborted) {
fc3e0f8a
FR
761 netif_info(rp, tx_err, dev,
762 "Abort %08x, frame dropped\n", status);
7ab87ff4
FR
763 }
764
765 if (status & IntrTxUnderrun) {
766 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
767 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
768 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
769 }
770
fc3e0f8a
FR
771 if (status & IntrTxDescRace)
772 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
7ab87ff4
FR
773
774 if ((status & IntrTxError) &&
775 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
776 rhine_kick_tx_threshold(rp);
fc3e0f8a
FR
777 netif_info(rp, tx_err, dev, "Unspecified error. "
778 "Tx threshold now %02x\n", rp->tx_thresh);
7ab87ff4
FR
779 }
780
781 rhine_restart_tx(dev);
782}
783
784static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
785{
786 void __iomem *ioaddr = rp->base;
787 struct net_device_stats *stats = &rp->dev->stats;
788
789 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
790 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
791
792 /*
793 * Clears the "tally counters" for CRC errors and missed frames(?).
794 * It has been reported that some chips need a write of 0 to clear
795 * these, for others the counters are set to 1 when written to and
796 * instead cleared when read. So we clear them both ways ...
797 */
798 iowrite32(0, ioaddr + RxMissed);
799 ioread16(ioaddr + RxCRCErrs);
800 ioread16(ioaddr + RxMissed);
801}
802
803#define RHINE_EVENT_NAPI_RX (IntrRxDone | \
804 IntrRxErr | \
805 IntrRxEmpty | \
806 IntrRxOverflow | \
807 IntrRxDropped | \
808 IntrRxNoBuf | \
809 IntrRxWakeUp)
810
811#define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
812 IntrTxAborted | \
813 IntrTxUnderrun | \
814 IntrTxDescRace)
815#define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
816
817#define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
818 RHINE_EVENT_NAPI_TX | \
819 IntrStatsMax)
820#define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
821#define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
822
bea3348e 823static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 824{
bea3348e
SH
825 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
826 struct net_device *dev = rp->dev;
633949a1 827 void __iomem *ioaddr = rp->base;
7ab87ff4
FR
828 u16 enable_mask = RHINE_EVENT & 0xffff;
829 int work_done = 0;
830 u32 status;
831
832 status = rhine_get_events(rp);
833 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
834
835 if (status & RHINE_EVENT_NAPI_RX)
836 work_done += rhine_rx(dev, budget);
837
838 if (status & RHINE_EVENT_NAPI_TX) {
839 if (status & RHINE_EVENT_NAPI_TX_ERR) {
7ab87ff4 840 /* Avoid scavenging before Tx engine turned off */
a384a33b 841 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
fc3e0f8a
FR
842 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
843 netif_warn(rp, tx_err, dev, "Tx still on\n");
7ab87ff4 844 }
fc3e0f8a 845
7ab87ff4
FR
846 rhine_tx(dev);
847
848 if (status & RHINE_EVENT_NAPI_TX_ERR)
849 rhine_tx_err(rp, status);
850 }
851
852 if (status & IntrStatsMax) {
853 spin_lock(&rp->lock);
854 rhine_update_rx_crc_and_missed_errord(rp);
855 spin_unlock(&rp->lock);
856 }
633949a1 857
7ab87ff4
FR
858 if (status & RHINE_EVENT_SLOW) {
859 enable_mask &= ~RHINE_EVENT_SLOW;
860 schedule_work(&rp->slow_event_task);
861 }
633949a1 862
bea3348e 863 if (work_done < budget) {
288379f0 864 napi_complete(napi);
7ab87ff4
FR
865 iowrite16(enable_mask, ioaddr + IntrEnable);
866 mmiowb();
633949a1 867 }
bea3348e 868 return work_done;
633949a1 869}
633949a1 870
76e239e1 871static void rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
872{
873 struct rhine_private *rp = netdev_priv(dev);
874
875 /* Reset the chip to erase previous misconfiguration. */
876 rhine_chip_reset(dev);
877
878 /* Rhine-I needs extra time to recuperate before EEPROM reload */
879 if (rp->quirks & rqRhineI)
880 msleep(5);
881
882 /* Reload EEPROM controlled bytes cleared by soft reset */
2d283862
AC
883 if (dev_is_pci(dev->dev.parent))
884 rhine_reload_eeprom(pioaddr, dev);
1da177e4
LT
885}
886
5d1d07d8
SH
887static const struct net_device_ops rhine_netdev_ops = {
888 .ndo_open = rhine_open,
889 .ndo_stop = rhine_close,
890 .ndo_start_xmit = rhine_start_tx,
f7b5d1b9 891 .ndo_get_stats64 = rhine_get_stats64,
afc4b13d 892 .ndo_set_rx_mode = rhine_set_rx_mode,
5d1d07d8 893 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 894 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
895 .ndo_do_ioctl = netdev_ioctl,
896 .ndo_tx_timeout = rhine_tx_timeout,
38f49e88
RL
897 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
898 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
5d1d07d8
SH
899#ifdef CONFIG_NET_POLL_CONTROLLER
900 .ndo_poll_controller = rhine_poll,
901#endif
902};
903
ca8b6e04 904static int rhine_init_one_common(struct device *hwdev, u32 quirks,
2d283862 905 long pioaddr, void __iomem *ioaddr, int irq)
1da177e4
LT
906{
907 struct net_device *dev;
908 struct rhine_private *rp;
2d283862 909 int i, rc, phy_id;
1da177e4 910 const char *name;
1da177e4
LT
911
912 /* this should always be supported */
f7630d18 913 rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
1da177e4 914 if (rc) {
f7630d18 915 dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
2d283862 916 goto err_out;
1da177e4
LT
917 }
918
1da177e4
LT
919 dev = alloc_etherdev(sizeof(struct rhine_private));
920 if (!dev) {
921 rc = -ENOMEM;
2d283862 922 goto err_out;
1da177e4 923 }
f7630d18 924 SET_NETDEV_DEV(dev, hwdev);
1da177e4
LT
925
926 rp = netdev_priv(dev);
bea3348e 927 rp->dev = dev;
ca8b6e04 928 rp->quirks = quirks;
1da177e4 929 rp->pioaddr = pioaddr;
2d283862
AC
930 rp->base = ioaddr;
931 rp->irq = irq;
fc3e0f8a 932 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
1da177e4 933
ca8b6e04 934 phy_id = rp->quirks & rqIntPHY ? 1 : 0;
1da177e4 935
827da44c
JS
936 u64_stats_init(&rp->tx_stats.syncp);
937 u64_stats_init(&rp->rx_stats.syncp);
938
1da177e4
LT
939 /* Get chip registers into a sane state */
940 rhine_power_init(dev);
941 rhine_hw_init(dev, pioaddr);
942
943 for (i = 0; i < 6; i++)
944 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
945
482e3feb
JP
946 if (!is_valid_ether_addr(dev->dev_addr)) {
947 /* Report it and use a random ethernet address instead */
948 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
f2cedb63 949 eth_hw_addr_random(dev);
482e3feb
JP
950 netdev_info(dev, "Using random MAC address: %pM\n",
951 dev->dev_addr);
1da177e4
LT
952 }
953
954 /* For Rhine-I/II, phy_id is loaded from EEPROM */
955 if (!phy_id)
956 phy_id = ioread8(ioaddr + 0x6C);
957
1da177e4 958 spin_lock_init(&rp->lock);
7ab87ff4 959 mutex_init(&rp->task_lock);
c0d7a021 960 INIT_WORK(&rp->reset_task, rhine_reset_task);
7ab87ff4 961 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
c0d7a021 962
1da177e4
LT
963 rp->mii_if.dev = dev;
964 rp->mii_if.mdio_read = mdio_read;
965 rp->mii_if.mdio_write = mdio_write;
966 rp->mii_if.phy_id_mask = 0x1f;
967 rp->mii_if.reg_num_mask = 0x1f;
968
969 /* The chip-specific entries in the device structure. */
5d1d07d8 970 dev->netdev_ops = &rhine_netdev_ops;
e76070f2 971 dev->ethtool_ops = &netdev_ethtool_ops;
1da177e4 972 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 973
bea3348e 974 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 975
1da177e4
LT
976 if (rp->quirks & rqRhineI)
977 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
978
ca8b6e04 979 if (rp->quirks & rqMgmt)
f646968f
PM
980 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
981 NETIF_F_HW_VLAN_CTAG_RX |
982 NETIF_F_HW_VLAN_CTAG_FILTER;
38f49e88 983
1da177e4
LT
984 /* dev->name not defined before register_netdev()! */
985 rc = register_netdev(dev);
986 if (rc)
2d283862 987 goto err_out_free_netdev;
1da177e4 988
ca8b6e04
AC
989 if (rp->quirks & rqRhineI)
990 name = "Rhine";
991 else if (rp->quirks & rqStatusWBRace)
992 name = "Rhine II";
993 else if (rp->quirks & rqMgmt)
994 name = "Rhine III (Management Adapter)";
995 else
996 name = "Rhine III";
997
df4511fe 998 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
2d283862 999 name, (long)ioaddr, dev->dev_addr, rp->irq);
1da177e4 1000
f7630d18 1001 dev_set_drvdata(hwdev, dev);
1da177e4
LT
1002
1003 {
1004 u16 mii_cmd;
1005 int mii_status = mdio_read(dev, phy_id, 1);
1006 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1007 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1008 if (mii_status != 0xffff && mii_status != 0x0000) {
1009 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
df4511fe
JP
1010 netdev_info(dev,
1011 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1012 phy_id,
1013 mii_status, rp->mii_if.advertising,
1014 mdio_read(dev, phy_id, 5));
1da177e4
LT
1015
1016 /* set IFF_RUNNING */
1017 if (mii_status & BMSR_LSTATUS)
1018 netif_carrier_on(dev);
1019 else
1020 netif_carrier_off(dev);
1021
1022 }
1023 }
1024 rp->mii_if.phy_id = phy_id;
fc3e0f8a
FR
1025 if (avoid_D3)
1026 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1da177e4
LT
1027
1028 return 0;
1029
2d283862
AC
1030err_out_free_netdev:
1031 free_netdev(dev);
1032err_out:
1033 return rc;
1034}
1035
1036static int rhine_init_one_pci(struct pci_dev *pdev,
1037 const struct pci_device_id *ent)
1038{
1039 struct device *hwdev = &pdev->dev;
5b579e21 1040 int rc;
2d283862
AC
1041 long pioaddr, memaddr;
1042 void __iomem *ioaddr;
1043 int io_size = pdev->revision < VTunknown0 ? 128 : 256;
5b579e21
AC
1044
1045/* This driver was written to use PCI memory space. Some early versions
1046 * of the Rhine may only work correctly with I/O space accesses.
1047 * TODO: determine for which revisions this is true and assign the flag
1048 * in code as opposed to this Kconfig option (???)
1049 */
1050#ifdef CONFIG_VIA_RHINE_MMIO
1051 u32 quirks = rqNeedEnMMIO;
2d283862 1052#else
5b579e21 1053 u32 quirks = 0;
2d283862
AC
1054#endif
1055
1056/* when built into the kernel, we only print version if device is found */
1057#ifndef MODULE
1058 pr_info_once("%s\n", version);
1059#endif
1060
1061 rc = pci_enable_device(pdev);
1062 if (rc)
1063 goto err_out;
1064
ca8b6e04 1065 if (pdev->revision < VTunknown0) {
5b579e21 1066 quirks |= rqRhineI;
ca8b6e04 1067 } else if (pdev->revision >= VT6102) {
5b579e21 1068 quirks |= rqWOL | rqForceReset;
ca8b6e04
AC
1069 if (pdev->revision < VT6105) {
1070 quirks |= rqStatusWBRace;
1071 } else {
1072 quirks |= rqIntPHY;
1073 if (pdev->revision >= VT6105_B0)
1074 quirks |= rq6patterns;
1075 if (pdev->revision >= VT6105M)
1076 quirks |= rqMgmt;
1077 }
1078 }
1079
2d283862
AC
1080 /* sanity check */
1081 if ((pci_resource_len(pdev, 0) < io_size) ||
1082 (pci_resource_len(pdev, 1) < io_size)) {
1083 rc = -EIO;
1084 dev_err(hwdev, "Insufficient PCI resources, aborting\n");
1085 goto err_out_pci_disable;
1086 }
1087
1088 pioaddr = pci_resource_start(pdev, 0);
1089 memaddr = pci_resource_start(pdev, 1);
1090
1091 pci_set_master(pdev);
1092
1093 rc = pci_request_regions(pdev, DRV_NAME);
1094 if (rc)
1095 goto err_out_pci_disable;
1096
5b579e21 1097 ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
2d283862
AC
1098 if (!ioaddr) {
1099 rc = -EIO;
1100 dev_err(hwdev,
1101 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
1102 dev_name(hwdev), io_size, memaddr);
1103 goto err_out_free_res;
1104 }
1105
2d283862
AC
1106 enable_mmio(pioaddr, quirks);
1107
5b579e21
AC
1108 rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
1109 if (rc)
1110 goto err_out_unmap;
2d283862 1111
ca8b6e04 1112 rc = rhine_init_one_common(&pdev->dev, quirks,
2d283862
AC
1113 pioaddr, ioaddr, pdev->irq);
1114 if (!rc)
1115 return 0;
1116
1da177e4
LT
1117err_out_unmap:
1118 pci_iounmap(pdev, ioaddr);
1119err_out_free_res:
1120 pci_release_regions(pdev);
ae996154
RL
1121err_out_pci_disable:
1122 pci_disable_device(pdev);
1da177e4
LT
1123err_out:
1124 return rc;
1125}
1126
2d283862
AC
1127static int rhine_init_one_platform(struct platform_device *pdev)
1128{
1129 const struct of_device_id *match;
ca8b6e04 1130 const u32 *quirks;
2d283862
AC
1131 int irq;
1132 struct resource *res;
1133 void __iomem *ioaddr;
1134
1135 match = of_match_device(rhine_of_tbl, &pdev->dev);
1136 if (!match)
1137 return -EINVAL;
1138
1139 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1140 ioaddr = devm_ioremap_resource(&pdev->dev, res);
1141 if (IS_ERR(ioaddr))
1142 return PTR_ERR(ioaddr);
1143
1144 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1145 if (!irq)
1146 return -EINVAL;
1147
ca8b6e04
AC
1148 quirks = match->data;
1149 if (!quirks)
2d283862
AC
1150 return -EINVAL;
1151
ca8b6e04 1152 return rhine_init_one_common(&pdev->dev, *quirks,
2d283862
AC
1153 (long)ioaddr, ioaddr, irq);
1154}
1155
1da177e4
LT
1156static int alloc_ring(struct net_device* dev)
1157{
1158 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1159 struct device *hwdev = dev->dev.parent;
1da177e4
LT
1160 void *ring;
1161 dma_addr_t ring_dma;
1162
f7630d18 1163 ring = dma_alloc_coherent(hwdev,
4087c4dc
AC
1164 RX_RING_SIZE * sizeof(struct rx_desc) +
1165 TX_RING_SIZE * sizeof(struct tx_desc),
1166 &ring_dma,
1167 GFP_ATOMIC);
1da177e4 1168 if (!ring) {
df4511fe 1169 netdev_err(dev, "Could not allocate DMA memory\n");
1da177e4
LT
1170 return -ENOMEM;
1171 }
1172 if (rp->quirks & rqRhineI) {
f7630d18 1173 rp->tx_bufs = dma_alloc_coherent(hwdev,
4087c4dc
AC
1174 PKT_BUF_SZ * TX_RING_SIZE,
1175 &rp->tx_bufs_dma,
1176 GFP_ATOMIC);
1da177e4 1177 if (rp->tx_bufs == NULL) {
f7630d18 1178 dma_free_coherent(hwdev,
4087c4dc
AC
1179 RX_RING_SIZE * sizeof(struct rx_desc) +
1180 TX_RING_SIZE * sizeof(struct tx_desc),
1181 ring, ring_dma);
1da177e4
LT
1182 return -ENOMEM;
1183 }
1184 }
1185
1186 rp->rx_ring = ring;
1187 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1188 rp->rx_ring_dma = ring_dma;
1189 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1190
1191 return 0;
1192}
1193
1194static void free_ring(struct net_device* dev)
1195{
1196 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1197 struct device *hwdev = dev->dev.parent;
1da177e4 1198
f7630d18 1199 dma_free_coherent(hwdev,
4087c4dc
AC
1200 RX_RING_SIZE * sizeof(struct rx_desc) +
1201 TX_RING_SIZE * sizeof(struct tx_desc),
1202 rp->rx_ring, rp->rx_ring_dma);
1da177e4
LT
1203 rp->tx_ring = NULL;
1204
1205 if (rp->tx_bufs)
f7630d18 1206 dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
4087c4dc 1207 rp->tx_bufs, rp->tx_bufs_dma);
1da177e4
LT
1208
1209 rp->tx_bufs = NULL;
1210
1211}
1212
a21bb8ba 1213struct rhine_skb_dma {
1214 struct sk_buff *skb;
1215 dma_addr_t dma;
1216};
1217
1218static inline int rhine_skb_dma_init(struct net_device *dev,
1219 struct rhine_skb_dma *sd)
1da177e4
LT
1220{
1221 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1222 struct device *hwdev = dev->dev.parent;
a21bb8ba 1223 const int size = rp->rx_buf_sz;
1224
1225 sd->skb = netdev_alloc_skb(dev, size);
1226 if (!sd->skb)
1227 return -ENOMEM;
1228
1229 sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
1230 if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
1231 netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
1232 dev_kfree_skb_any(sd->skb);
1233 return -EIO;
1234 }
1235
1236 return 0;
1237}
1238
8709bb2c 1239static void rhine_reset_rbufs(struct rhine_private *rp)
1240{
1241 int i;
1242
1243 rp->cur_rx = 0;
8709bb2c 1244
1245 for (i = 0; i < RX_RING_SIZE; i++)
1246 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1247}
1248
a21bb8ba 1249static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
1250 struct rhine_skb_dma *sd, int entry)
1251{
1252 rp->rx_skbuff_dma[entry] = sd->dma;
1253 rp->rx_skbuff[entry] = sd->skb;
1254
1255 rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
1256 dma_wmb();
1257}
1258
8709bb2c 1259static void free_rbufs(struct net_device* dev);
1260
1261static int alloc_rbufs(struct net_device *dev)
a21bb8ba 1262{
1263 struct rhine_private *rp = netdev_priv(dev);
1da177e4 1264 dma_addr_t next;
a21bb8ba 1265 int rc, i;
1da177e4 1266
1da177e4 1267 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1da177e4
LT
1268 next = rp->rx_ring_dma;
1269
1270 /* Init the ring entries */
1271 for (i = 0; i < RX_RING_SIZE; i++) {
1272 rp->rx_ring[i].rx_status = 0;
1273 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1274 next += sizeof(struct rx_desc);
1275 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1276 rp->rx_skbuff[i] = NULL;
1277 }
1278 /* Mark the last entry as wrapping the ring. */
1279 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1280
1281 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1282 for (i = 0; i < RX_RING_SIZE; i++) {
a21bb8ba 1283 struct rhine_skb_dma sd;
1da177e4 1284
a21bb8ba 1285 rc = rhine_skb_dma_init(dev, &sd);
8709bb2c 1286 if (rc < 0) {
1287 free_rbufs(dev);
1288 goto out;
1289 }
a21bb8ba 1290
1291 rhine_skb_dma_nic_store(rp, &sd, i);
1da177e4 1292 }
8709bb2c 1293
1294 rhine_reset_rbufs(rp);
1295out:
1296 return rc;
1da177e4
LT
1297}
1298
1299static void free_rbufs(struct net_device* dev)
1300{
1301 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1302 struct device *hwdev = dev->dev.parent;
1da177e4
LT
1303 int i;
1304
1305 /* Free all the skbuffs in the Rx queue. */
1306 for (i = 0; i < RX_RING_SIZE; i++) {
1307 rp->rx_ring[i].rx_status = 0;
1308 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1309 if (rp->rx_skbuff[i]) {
f7630d18 1310 dma_unmap_single(hwdev,
1da177e4 1311 rp->rx_skbuff_dma[i],
4087c4dc 1312 rp->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1313 dev_kfree_skb(rp->rx_skbuff[i]);
1314 }
1315 rp->rx_skbuff[i] = NULL;
1316 }
1317}
1318
1319static void alloc_tbufs(struct net_device* dev)
1320{
1321 struct rhine_private *rp = netdev_priv(dev);
1322 dma_addr_t next;
1323 int i;
1324
1325 rp->dirty_tx = rp->cur_tx = 0;
1326 next = rp->tx_ring_dma;
1327 for (i = 0; i < TX_RING_SIZE; i++) {
1328 rp->tx_skbuff[i] = NULL;
1329 rp->tx_ring[i].tx_status = 0;
1330 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1331 next += sizeof(struct tx_desc);
1332 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
1333 if (rp->quirks & rqRhineI)
1334 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
1335 }
1336 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1337
92bf2008 1338 netdev_reset_queue(dev);
1da177e4
LT
1339}
1340
1341static void free_tbufs(struct net_device* dev)
1342{
1343 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1344 struct device *hwdev = dev->dev.parent;
1da177e4
LT
1345 int i;
1346
1347 for (i = 0; i < TX_RING_SIZE; i++) {
1348 rp->tx_ring[i].tx_status = 0;
1349 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1350 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1351 if (rp->tx_skbuff[i]) {
1352 if (rp->tx_skbuff_dma[i]) {
f7630d18 1353 dma_unmap_single(hwdev,
1da177e4
LT
1354 rp->tx_skbuff_dma[i],
1355 rp->tx_skbuff[i]->len,
4087c4dc 1356 DMA_TO_DEVICE);
1da177e4
LT
1357 }
1358 dev_kfree_skb(rp->tx_skbuff[i]);
1359 }
1360 rp->tx_skbuff[i] = NULL;
1361 rp->tx_buf[i] = NULL;
1362 }
1363}
1364
1365static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1366{
1367 struct rhine_private *rp = netdev_priv(dev);
1368 void __iomem *ioaddr = rp->base;
1369
5bdc7380
BH
1370 if (!rp->mii_if.force_media)
1371 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1da177e4
LT
1372
1373 if (rp->mii_if.full_duplex)
1374 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1375 ioaddr + ChipCmd1);
1376 else
1377 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1378 ioaddr + ChipCmd1);
fc3e0f8a
FR
1379
1380 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1381 rp->mii_if.force_media, netif_carrier_ok(dev));
00b428c2
RL
1382}
1383
1384/* Called after status of force_media possibly changed */
0761be4f 1385static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2 1386{
fc3e0f8a
FR
1387 struct net_device *dev = mii->dev;
1388 struct rhine_private *rp = netdev_priv(dev);
1389
00b428c2
RL
1390 if (mii->force_media) {
1391 /* autoneg is off: Link is always assumed to be up */
fc3e0f8a
FR
1392 if (!netif_carrier_ok(dev))
1393 netif_carrier_on(dev);
17958438
FC
1394 }
1395
1396 rhine_check_media(dev, 0);
fc3e0f8a
FR
1397
1398 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1399 mii->force_media, netif_carrier_ok(dev));
1da177e4
LT
1400}
1401
38f49e88
RL
1402/**
1403 * rhine_set_cam - set CAM multicast filters
1404 * @ioaddr: register block of this Rhine
1405 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1406 * @addr: multicast address (6 bytes)
1407 *
1408 * Load addresses into multicast filters.
1409 */
1410static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1411{
1412 int i;
1413
1414 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1415 wmb();
1416
1417 /* Paranoid -- idx out of range should never happen */
1418 idx &= (MCAM_SIZE - 1);
1419
1420 iowrite8((u8) idx, ioaddr + CamAddr);
1421
1422 for (i = 0; i < 6; i++, addr++)
1423 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1424 udelay(10);
1425 wmb();
1426
1427 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1428 udelay(10);
1429
1430 iowrite8(0, ioaddr + CamCon);
1431}
1432
1433/**
1434 * rhine_set_vlan_cam - set CAM VLAN filters
1435 * @ioaddr: register block of this Rhine
1436 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1437 * @addr: VLAN ID (2 bytes)
1438 *
1439 * Load addresses into VLAN filters.
1440 */
1441static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1442{
1443 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1444 wmb();
1445
1446 /* Paranoid -- idx out of range should never happen */
1447 idx &= (VCAM_SIZE - 1);
1448
1449 iowrite8((u8) idx, ioaddr + CamAddr);
1450
1451 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1452 udelay(10);
1453 wmb();
1454
1455 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1456 udelay(10);
1457
1458 iowrite8(0, ioaddr + CamCon);
1459}
1460
1461/**
1462 * rhine_set_cam_mask - set multicast CAM mask
1463 * @ioaddr: register block of this Rhine
1464 * @mask: multicast CAM mask
1465 *
1466 * Mask sets multicast filters active/inactive.
1467 */
1468static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1469{
1470 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1471 wmb();
1472
1473 /* write mask */
1474 iowrite32(mask, ioaddr + CamMask);
1475
1476 /* disable CAMEN */
1477 iowrite8(0, ioaddr + CamCon);
1478}
1479
1480/**
1481 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1482 * @ioaddr: register block of this Rhine
1483 * @mask: VLAN CAM mask
1484 *
1485 * Mask sets VLAN filters active/inactive.
1486 */
1487static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1488{
1489 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1490 wmb();
1491
1492 /* write mask */
1493 iowrite32(mask, ioaddr + CamMask);
1494
1495 /* disable CAMEN */
1496 iowrite8(0, ioaddr + CamCon);
1497}
1498
1499/**
1500 * rhine_init_cam_filter - initialize CAM filters
1501 * @dev: network device
1502 *
1503 * Initialize (disable) hardware VLAN and multicast support on this
1504 * Rhine.
1505 */
1506static void rhine_init_cam_filter(struct net_device *dev)
1507{
1508 struct rhine_private *rp = netdev_priv(dev);
1509 void __iomem *ioaddr = rp->base;
1510
1511 /* Disable all CAMs */
1512 rhine_set_vlan_cam_mask(ioaddr, 0);
1513 rhine_set_cam_mask(ioaddr, 0);
1514
1515 /* disable hardware VLAN support */
1516 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1517 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1518}
1519
1520/**
1521 * rhine_update_vcam - update VLAN CAM filters
1522 * @rp: rhine_private data of this Rhine
1523 *
1524 * Update VLAN CAM filters to match configuration change.
1525 */
1526static void rhine_update_vcam(struct net_device *dev)
1527{
1528 struct rhine_private *rp = netdev_priv(dev);
1529 void __iomem *ioaddr = rp->base;
1530 u16 vid;
1531 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1532 unsigned int i = 0;
1533
1534 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1535 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1536 vCAMmask |= 1 << i;
1537 if (++i >= VCAM_SIZE)
1538 break;
1539 }
1540 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1541}
1542
80d5c368 1543static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1544{
1545 struct rhine_private *rp = netdev_priv(dev);
1546
7ab87ff4 1547 spin_lock_bh(&rp->lock);
38f49e88
RL
1548 set_bit(vid, rp->active_vlans);
1549 rhine_update_vcam(dev);
7ab87ff4 1550 spin_unlock_bh(&rp->lock);
8e586137 1551 return 0;
38f49e88
RL
1552}
1553
80d5c368 1554static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
38f49e88
RL
1555{
1556 struct rhine_private *rp = netdev_priv(dev);
1557
7ab87ff4 1558 spin_lock_bh(&rp->lock);
38f49e88
RL
1559 clear_bit(vid, rp->active_vlans);
1560 rhine_update_vcam(dev);
7ab87ff4 1561 spin_unlock_bh(&rp->lock);
8e586137 1562 return 0;
38f49e88
RL
1563}
1564
1da177e4
LT
1565static void init_registers(struct net_device *dev)
1566{
1567 struct rhine_private *rp = netdev_priv(dev);
1568 void __iomem *ioaddr = rp->base;
1569 int i;
1570
1571 for (i = 0; i < 6; i++)
1572 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1573
1574 /* Initialize other registers. */
1575 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1576 /* Configure initial FIFO thresholds. */
1577 iowrite8(0x20, ioaddr + TxConfig);
1578 rp->tx_thresh = 0x20;
1579 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1580
1581 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1582 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1583
1584 rhine_set_rx_mode(dev);
1585
ca8b6e04 1586 if (rp->quirks & rqMgmt)
38f49e88
RL
1587 rhine_init_cam_filter(dev);
1588
bea3348e 1589 napi_enable(&rp->napi);
ab197668 1590
7ab87ff4 1591 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1da177e4
LT
1592
1593 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1594 ioaddr + ChipCmd);
1595 rhine_check_media(dev, 1);
1596}
1597
1598/* Enable MII link status auto-polling (required for IntrLinkChange) */
a384a33b 1599static void rhine_enable_linkmon(struct rhine_private *rp)
1da177e4 1600{
a384a33b
FR
1601 void __iomem *ioaddr = rp->base;
1602
1da177e4
LT
1603 iowrite8(0, ioaddr + MIICmd);
1604 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1605 iowrite8(0x80, ioaddr + MIICmd);
1606
a384a33b 1607 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1608
1609 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1610}
1611
1612/* Disable MII link status auto-polling (required for MDIO access) */
a384a33b 1613static void rhine_disable_linkmon(struct rhine_private *rp)
1da177e4 1614{
a384a33b
FR
1615 void __iomem *ioaddr = rp->base;
1616
1da177e4
LT
1617 iowrite8(0, ioaddr + MIICmd);
1618
a384a33b 1619 if (rp->quirks & rqRhineI) {
1da177e4
LT
1620 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1621
38bb6b28
JL
1622 /* Can be called from ISR. Evil. */
1623 mdelay(1);
1da177e4
LT
1624
1625 /* 0x80 must be set immediately before turning it off */
1626 iowrite8(0x80, ioaddr + MIICmd);
1627
a384a33b 1628 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1da177e4
LT
1629
1630 /* Heh. Now clear 0x80 again. */
1631 iowrite8(0, ioaddr + MIICmd);
1632 }
1633 else
a384a33b 1634 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1da177e4
LT
1635}
1636
1637/* Read and write over the MII Management Data I/O (MDIO) interface. */
1638
1639static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1640{
1641 struct rhine_private *rp = netdev_priv(dev);
1642 void __iomem *ioaddr = rp->base;
1643 int result;
1644
a384a33b 1645 rhine_disable_linkmon(rp);
1da177e4
LT
1646
1647 /* rhine_disable_linkmon already cleared MIICmd */
1648 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1649 iowrite8(regnum, ioaddr + MIIRegAddr);
1650 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
a384a33b 1651 rhine_wait_bit_low(rp, MIICmd, 0x40);
1da177e4
LT
1652 result = ioread16(ioaddr + MIIData);
1653
a384a33b 1654 rhine_enable_linkmon(rp);
1da177e4
LT
1655 return result;
1656}
1657
1658static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1659{
1660 struct rhine_private *rp = netdev_priv(dev);
1661 void __iomem *ioaddr = rp->base;
1662
a384a33b 1663 rhine_disable_linkmon(rp);
1da177e4
LT
1664
1665 /* rhine_disable_linkmon already cleared MIICmd */
1666 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1667 iowrite8(regnum, ioaddr + MIIRegAddr);
1668 iowrite16(value, ioaddr + MIIData);
1669 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
a384a33b 1670 rhine_wait_bit_low(rp, MIICmd, 0x20);
1da177e4 1671
a384a33b 1672 rhine_enable_linkmon(rp);
1da177e4
LT
1673}
1674
7ab87ff4
FR
1675static void rhine_task_disable(struct rhine_private *rp)
1676{
1677 mutex_lock(&rp->task_lock);
1678 rp->task_enable = false;
1679 mutex_unlock(&rp->task_lock);
1680
1681 cancel_work_sync(&rp->slow_event_task);
1682 cancel_work_sync(&rp->reset_task);
1683}
1684
1685static void rhine_task_enable(struct rhine_private *rp)
1686{
1687 mutex_lock(&rp->task_lock);
1688 rp->task_enable = true;
1689 mutex_unlock(&rp->task_lock);
1690}
1691
1da177e4
LT
1692static int rhine_open(struct net_device *dev)
1693{
1694 struct rhine_private *rp = netdev_priv(dev);
1695 void __iomem *ioaddr = rp->base;
1696 int rc;
1697
f7630d18 1698 rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
1da177e4 1699 if (rc)
4d1fd9c1 1700 goto out;
1da177e4 1701
f7630d18 1702 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
1da177e4
LT
1703
1704 rc = alloc_ring(dev);
4d1fd9c1 1705 if (rc < 0)
1706 goto out_free_irq;
1707
8709bb2c 1708 rc = alloc_rbufs(dev);
1709 if (rc < 0)
1710 goto out_free_ring;
1711
1da177e4
LT
1712 alloc_tbufs(dev);
1713 rhine_chip_reset(dev);
7ab87ff4 1714 rhine_task_enable(rp);
1da177e4 1715 init_registers(dev);
fc3e0f8a
FR
1716
1717 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1718 __func__, ioread16(ioaddr + ChipCmd),
1719 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1da177e4
LT
1720
1721 netif_start_queue(dev);
1722
4d1fd9c1 1723out:
1724 return rc;
1725
8709bb2c 1726out_free_ring:
1727 free_ring(dev);
4d1fd9c1 1728out_free_irq:
1729 free_irq(rp->irq, dev);
1730 goto out;
1da177e4
LT
1731}
1732
c0d7a021 1733static void rhine_reset_task(struct work_struct *work)
1da177e4 1734{
c0d7a021
JP
1735 struct rhine_private *rp = container_of(work, struct rhine_private,
1736 reset_task);
1737 struct net_device *dev = rp->dev;
1da177e4 1738
7ab87ff4 1739 mutex_lock(&rp->task_lock);
1da177e4 1740
7ab87ff4
FR
1741 if (!rp->task_enable)
1742 goto out_unlock;
bea3348e 1743
7ab87ff4 1744 napi_disable(&rp->napi);
a926592f 1745 netif_tx_disable(dev);
c0d7a021 1746 spin_lock_bh(&rp->lock);
1da177e4
LT
1747
1748 /* clear all descriptors */
1749 free_tbufs(dev);
1da177e4 1750 alloc_tbufs(dev);
8709bb2c 1751
1752 rhine_reset_rbufs(rp);
1da177e4
LT
1753
1754 /* Reinitialize the hardware. */
1755 rhine_chip_reset(dev);
1756 init_registers(dev);
1757
c0d7a021 1758 spin_unlock_bh(&rp->lock);
1da177e4 1759
860e9538 1760 netif_trans_update(dev); /* prevent tx timeout */
553e2335 1761 dev->stats.tx_errors++;
1da177e4 1762 netif_wake_queue(dev);
7ab87ff4
FR
1763
1764out_unlock:
1765 mutex_unlock(&rp->task_lock);
1da177e4
LT
1766}
1767
c0d7a021
JP
1768static void rhine_tx_timeout(struct net_device *dev)
1769{
1770 struct rhine_private *rp = netdev_priv(dev);
1771 void __iomem *ioaddr = rp->base;
1772
df4511fe
JP
1773 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1774 ioread16(ioaddr + IntrStatus),
1775 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
c0d7a021
JP
1776
1777 schedule_work(&rp->reset_task);
1778}
1779
3a5a883a 1780static inline bool rhine_tx_queue_full(struct rhine_private *rp)
1781{
1782 return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
1783}
1784
61357325
SH
1785static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1786 struct net_device *dev)
1da177e4
LT
1787{
1788 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1789 struct device *hwdev = dev->dev.parent;
1da177e4
LT
1790 void __iomem *ioaddr = rp->base;
1791 unsigned entry;
1792
1793 /* Caution: the write order is important here, set the field
1794 with the "ownership" bits last. */
1795
1796 /* Calculate the next Tx descriptor entry. */
1797 entry = rp->cur_tx % TX_RING_SIZE;
1798
5b057c6b 1799 if (skb_padto(skb, ETH_ZLEN))
6ed10654 1800 return NETDEV_TX_OK;
1da177e4
LT
1801
1802 rp->tx_skbuff[entry] = skb;
1803
1804 if ((rp->quirks & rqRhineI) &&
84fa7933 1805 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1806 /* Must use alignment buffer. */
1807 if (skb->len > PKT_BUF_SZ) {
1808 /* packet too long, drop it */
4b3afc6e 1809 dev_kfree_skb_any(skb);
1da177e4 1810 rp->tx_skbuff[entry] = NULL;
553e2335 1811 dev->stats.tx_dropped++;
6ed10654 1812 return NETDEV_TX_OK;
1da177e4 1813 }
3e0d167a
CB
1814
1815 /* Padding is not copied and so must be redone. */
1da177e4 1816 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1817 if (skb->len < ETH_ZLEN)
1818 memset(rp->tx_buf[entry] + skb->len, 0,
1819 ETH_ZLEN - skb->len);
1da177e4
LT
1820 rp->tx_skbuff_dma[entry] = 0;
1821 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1822 (rp->tx_buf[entry] -
1823 rp->tx_bufs));
1824 } else {
1825 rp->tx_skbuff_dma[entry] =
f7630d18 1826 dma_map_single(hwdev, skb->data, skb->len,
4087c4dc 1827 DMA_TO_DEVICE);
f7630d18 1828 if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
4b3afc6e 1829 dev_kfree_skb_any(skb);
9b4fe5fb
NH
1830 rp->tx_skbuff_dma[entry] = 0;
1831 dev->stats.tx_dropped++;
1832 return NETDEV_TX_OK;
1833 }
1da177e4
LT
1834 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1835 }
1836
1837 rp->tx_ring[entry].desc_length =
1838 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1839
df8a39de
JP
1840 if (unlikely(skb_vlan_tag_present(skb))) {
1841 u16 vid_pcp = skb_vlan_tag_get(skb);
207070f5
RL
1842
1843 /* drop CFI/DEI bit, register needs VID and PCP */
1844 vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1845 ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1846 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
38f49e88
RL
1847 /* request tagging */
1848 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1849 }
1850 else
1851 rp->tx_ring[entry].tx_status = 0;
1852
92bf2008 1853 netdev_sent_queue(dev, skb->len);
1da177e4 1854 /* lock eth irq */
e1efa872 1855 dma_wmb();
38f49e88 1856 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1da177e4
LT
1857 wmb();
1858
1859 rp->cur_tx++;
3a5a883a 1860 /*
1861 * Nobody wants cur_tx write to rot for ages after the NIC will have
1862 * seen the transmit request, especially as the transmit completion
1863 * handler could miss it.
1864 */
1865 smp_wmb();
1da177e4
LT
1866
1867 /* Non-x86 Todo: explicitly flush cache lines here. */
1868
df8a39de 1869 if (skb_vlan_tag_present(skb))
38f49e88
RL
1870 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1871 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1872
1da177e4
LT
1873 /* Wake the potentially-idle transmit channel */
1874 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1875 ioaddr + ChipCmd1);
1876 IOSYNC;
1877
3a5a883a 1878 /* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
1879 if (rhine_tx_queue_full(rp)) {
1da177e4 1880 netif_stop_queue(dev);
3a5a883a 1881 smp_rmb();
1882 /* Rejuvenate. */
1883 if (!rhine_tx_queue_full(rp))
1884 netif_wake_queue(dev);
1885 }
1da177e4 1886
fc3e0f8a
FR
1887 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1888 rp->cur_tx - 1, entry);
1889
6ed10654 1890 return NETDEV_TX_OK;
1da177e4
LT
1891}
1892
7ab87ff4
FR
1893static void rhine_irq_disable(struct rhine_private *rp)
1894{
1895 iowrite16(0x0000, rp->base + IntrEnable);
1896 mmiowb();
1897}
1898
1da177e4
LT
1899/* The interrupt handler does all of the Rx thread work and cleans up
1900 after the Tx thread. */
7d12e780 1901static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1902{
1903 struct net_device *dev = dev_instance;
1904 struct rhine_private *rp = netdev_priv(dev);
7ab87ff4 1905 u32 status;
1da177e4
LT
1906 int handled = 0;
1907
7ab87ff4 1908 status = rhine_get_events(rp);
1da177e4 1909
fc3e0f8a 1910 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
633949a1 1911
7ab87ff4
FR
1912 if (status & RHINE_EVENT) {
1913 handled = 1;
1da177e4 1914
7ab87ff4
FR
1915 rhine_irq_disable(rp);
1916 napi_schedule(&rp->napi);
1917 }
1da177e4 1918
7ab87ff4 1919 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
fc3e0f8a
FR
1920 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1921 status);
1da177e4
LT
1922 }
1923
1da177e4
LT
1924 return IRQ_RETVAL(handled);
1925}
1926
1927/* This routine is logically part of the interrupt handler, but isolated
1928 for clarity. */
1929static void rhine_tx(struct net_device *dev)
1930{
1931 struct rhine_private *rp = netdev_priv(dev);
f7630d18 1932 struct device *hwdev = dev->dev.parent;
92bf2008 1933 unsigned int pkts_compl = 0, bytes_compl = 0;
3a5a883a 1934 unsigned int dirty_tx = rp->dirty_tx;
1935 unsigned int cur_tx;
92bf2008 1936 struct sk_buff *skb;
1da177e4 1937
3a5a883a 1938 /*
1939 * The race with rhine_start_tx does not matter here as long as the
1940 * driver enforces a value of cur_tx that was relevant when the
1941 * packet was scheduled to the network chipset.
1942 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
1943 */
1944 smp_rmb();
1945 cur_tx = rp->cur_tx;
1da177e4 1946 /* find and cleanup dirty tx descriptors */
3a5a883a 1947 while (dirty_tx != cur_tx) {
1948 unsigned int entry = dirty_tx % TX_RING_SIZE;
1949 u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1950
fc3e0f8a
FR
1951 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1952 entry, txstatus);
1da177e4
LT
1953 if (txstatus & DescOwn)
1954 break;
92bf2008 1955 skb = rp->tx_skbuff[entry];
1da177e4 1956 if (txstatus & 0x8000) {
fc3e0f8a
FR
1957 netif_dbg(rp, tx_done, dev,
1958 "Transmit error, Tx status %08x\n", txstatus);
553e2335
ED
1959 dev->stats.tx_errors++;
1960 if (txstatus & 0x0400)
1961 dev->stats.tx_carrier_errors++;
1962 if (txstatus & 0x0200)
1963 dev->stats.tx_window_errors++;
1964 if (txstatus & 0x0100)
1965 dev->stats.tx_aborted_errors++;
1966 if (txstatus & 0x0080)
1967 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1968 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1969 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1970 dev->stats.tx_fifo_errors++;
1da177e4
LT
1971 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1972 break; /* Keep the skb - we try again */
1973 }
1974 /* Transmitter restarted in 'abnormal' handler. */
1975 } else {
1976 if (rp->quirks & rqRhineI)
553e2335 1977 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1978 else
553e2335 1979 dev->stats.collisions += txstatus & 0x0F;
fc3e0f8a
FR
1980 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1981 (txstatus >> 3) & 0xF, txstatus & 0xF);
f7b5d1b9
JG
1982
1983 u64_stats_update_begin(&rp->tx_stats.syncp);
92bf2008 1984 rp->tx_stats.bytes += skb->len;
f7b5d1b9
JG
1985 rp->tx_stats.packets++;
1986 u64_stats_update_end(&rp->tx_stats.syncp);
1da177e4
LT
1987 }
1988 /* Free the original skb. */
1989 if (rp->tx_skbuff_dma[entry]) {
f7630d18 1990 dma_unmap_single(hwdev,
1da177e4 1991 rp->tx_skbuff_dma[entry],
92bf2008 1992 skb->len,
4087c4dc 1993 DMA_TO_DEVICE);
1da177e4 1994 }
92bf2008
TR
1995 bytes_compl += skb->len;
1996 pkts_compl++;
1997 dev_consume_skb_any(skb);
1da177e4 1998 rp->tx_skbuff[entry] = NULL;
3a5a883a 1999 dirty_tx++;
1da177e4 2000 }
92bf2008 2001
3a5a883a 2002 rp->dirty_tx = dirty_tx;
2003 /* Pity we can't rely on the nearby BQL completion implicit barrier. */
2004 smp_wmb();
2005
92bf2008 2006 netdev_completed_queue(dev, pkts_compl, bytes_compl);
3a5a883a 2007
2008 /* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
2009 if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
1da177e4 2010 netif_wake_queue(dev);
3a5a883a 2011 smp_rmb();
2012 /* Rejuvenate. */
2013 if (rhine_tx_queue_full(rp))
2014 netif_stop_queue(dev);
2015 }
1da177e4
LT
2016}
2017
38f49e88
RL
2018/**
2019 * rhine_get_vlan_tci - extract TCI from Rx data buffer
2020 * @skb: pointer to sk_buff
2021 * @data_size: used data area of the buffer including CRC
2022 *
2023 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
2024 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
2025 * aligned following the CRC.
2026 */
2027static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
2028{
2029 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
4562b2fe 2030 return be16_to_cpup((__be16 *)trailer);
38f49e88
RL
2031}
2032
810f19bc 2033static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
2034 int data_size)
2035{
2036 dma_rmb();
2037 if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
2038 u16 vlan_tci;
2039
2040 vlan_tci = rhine_get_vlan_tci(skb, data_size);
2041 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
2042 }
2043}
2044
633949a1
RL
2045/* Process up to limit frames from receive ring */
2046static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
2047{
2048 struct rhine_private *rp = netdev_priv(dev);
f7630d18 2049 struct device *hwdev = dev->dev.parent;
1da177e4 2050 int entry = rp->cur_rx % RX_RING_SIZE;
62ca1ba0 2051 int count;
1da177e4 2052
fc3e0f8a 2053 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
62ca1ba0 2054 entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
1da177e4
LT
2055
2056 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 2057 for (count = 0; count < limit; ++count) {
62ca1ba0 2058 struct rx_desc *desc = rp->rx_ring + entry;
1da177e4
LT
2059 u32 desc_status = le32_to_cpu(desc->rx_status);
2060 int data_size = desc_status >> 16;
2061
633949a1
RL
2062 if (desc_status & DescOwn)
2063 break;
2064
fc3e0f8a
FR
2065 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
2066 desc_status);
633949a1 2067
1da177e4
LT
2068 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
2069 if ((desc_status & RxWholePkt) != RxWholePkt) {
df4511fe
JP
2070 netdev_warn(dev,
2071 "Oversized Ethernet frame spanned multiple buffers, "
2072 "entry %#x length %d status %08x!\n",
2073 entry, data_size,
2074 desc_status);
553e2335 2075 dev->stats.rx_length_errors++;
1da177e4
LT
2076 } else if (desc_status & RxErr) {
2077 /* There was a error. */
fc3e0f8a
FR
2078 netif_dbg(rp, rx_err, dev,
2079 "%s() Rx error %08x\n", __func__,
2080 desc_status);
553e2335
ED
2081 dev->stats.rx_errors++;
2082 if (desc_status & 0x0030)
2083 dev->stats.rx_length_errors++;
2084 if (desc_status & 0x0048)
2085 dev->stats.rx_fifo_errors++;
2086 if (desc_status & 0x0004)
2087 dev->stats.rx_frame_errors++;
1da177e4
LT
2088 if (desc_status & 0x0002) {
2089 /* this can also be updated outside the interrupt handler */
2090 spin_lock(&rp->lock);
553e2335 2091 dev->stats.rx_crc_errors++;
1da177e4
LT
2092 spin_unlock(&rp->lock);
2093 }
2094 }
2095 } else {
1da177e4
LT
2096 /* Length should omit the CRC */
2097 int pkt_len = data_size - 4;
8709bb2c 2098 struct sk_buff *skb;
1da177e4
LT
2099
2100 /* Check if the packet is long enough to accept without
2101 copying to a minimally-sized skbuff. */
8709bb2c 2102 if (pkt_len < rx_copybreak) {
89d71a66 2103 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
8709bb2c 2104 if (unlikely(!skb))
2105 goto drop;
2106
f7630d18 2107 dma_sync_single_for_cpu(hwdev,
4087c4dc
AC
2108 rp->rx_skbuff_dma[entry],
2109 rp->rx_buf_sz,
2110 DMA_FROM_DEVICE);
1da177e4 2111
8c7b7faa 2112 skb_copy_to_linear_data(skb,
689be439 2113 rp->rx_skbuff[entry]->data,
8c7b7faa 2114 pkt_len);
8709bb2c 2115
f7630d18 2116 dma_sync_single_for_device(hwdev,
4087c4dc
AC
2117 rp->rx_skbuff_dma[entry],
2118 rp->rx_buf_sz,
2119 DMA_FROM_DEVICE);
1da177e4 2120 } else {
8709bb2c 2121 struct rhine_skb_dma sd;
2122
2123 if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
2124 goto drop;
2125
1da177e4 2126 skb = rp->rx_skbuff[entry];
8709bb2c 2127
f7630d18 2128 dma_unmap_single(hwdev,
1da177e4
LT
2129 rp->rx_skbuff_dma[entry],
2130 rp->rx_buf_sz,
4087c4dc 2131 DMA_FROM_DEVICE);
8709bb2c 2132 rhine_skb_dma_nic_store(rp, &sd, entry);
1da177e4 2133 }
38f49e88 2134
8709bb2c 2135 skb_put(skb, pkt_len);
38f49e88 2136
810f19bc 2137 rhine_rx_vlan_tag(skb, desc, data_size);
2138
5f715c09
AO
2139 skb->protocol = eth_type_trans(skb, dev);
2140
633949a1 2141 netif_receive_skb(skb);
f7b5d1b9
JG
2142
2143 u64_stats_update_begin(&rp->rx_stats.syncp);
2144 rp->rx_stats.bytes += pkt_len;
2145 rp->rx_stats.packets++;
2146 u64_stats_update_end(&rp->rx_stats.syncp);
1da177e4 2147 }
8709bb2c 2148give_descriptor_to_nic:
2149 desc->rx_status = cpu_to_le32(DescOwn);
1da177e4 2150 entry = (++rp->cur_rx) % RX_RING_SIZE;
1da177e4
LT
2151 }
2152
633949a1 2153 return count;
8709bb2c 2154
2155drop:
2156 dev->stats.rx_dropped++;
2157 goto give_descriptor_to_nic;
1da177e4
LT
2158}
2159
1da177e4
LT
2160static void rhine_restart_tx(struct net_device *dev) {
2161 struct rhine_private *rp = netdev_priv(dev);
2162 void __iomem *ioaddr = rp->base;
2163 int entry = rp->dirty_tx % TX_RING_SIZE;
2164 u32 intr_status;
2165
2166 /*
25985edc 2167 * If new errors occurred, we need to sort them out before doing Tx.
1da177e4
LT
2168 * In that case the ISR will be back here RSN anyway.
2169 */
a20a28bc 2170 intr_status = rhine_get_events(rp);
1da177e4
LT
2171
2172 if ((intr_status & IntrTxErrSummary) == 0) {
2173
2174 /* We know better than the chip where it should continue. */
2175 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2176 ioaddr + TxRingPtr);
2177
2178 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2179 ioaddr + ChipCmd);
38f49e88
RL
2180
2181 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2182 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2183 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2184
1da177e4
LT
2185 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2186 ioaddr + ChipCmd1);
2187 IOSYNC;
2188 }
2189 else {
2190 /* This should never happen */
fc3e0f8a
FR
2191 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2192 intr_status);
1da177e4
LT
2193 }
2194
2195}
2196
7ab87ff4 2197static void rhine_slow_event_task(struct work_struct *work)
1da177e4 2198{
7ab87ff4
FR
2199 struct rhine_private *rp =
2200 container_of(work, struct rhine_private, slow_event_task);
2201 struct net_device *dev = rp->dev;
2202 u32 intr_status;
1da177e4 2203
7ab87ff4
FR
2204 mutex_lock(&rp->task_lock);
2205
2206 if (!rp->task_enable)
2207 goto out_unlock;
2208
2209 intr_status = rhine_get_events(rp);
2210 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
1da177e4
LT
2211
2212 if (intr_status & IntrLinkChange)
38bb6b28 2213 rhine_check_media(dev, 0);
1da177e4 2214
fc3e0f8a
FR
2215 if (intr_status & IntrPCIErr)
2216 netif_warn(rp, hw, dev, "PCI error\n");
2217
559bcac3 2218 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
1da177e4 2219
7ab87ff4
FR
2220out_unlock:
2221 mutex_unlock(&rp->task_lock);
1da177e4
LT
2222}
2223
f7b5d1b9
JG
2224static struct rtnl_link_stats64 *
2225rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1da177e4
LT
2226{
2227 struct rhine_private *rp = netdev_priv(dev);
f7b5d1b9 2228 unsigned int start;
1da177e4 2229
7ab87ff4
FR
2230 spin_lock_bh(&rp->lock);
2231 rhine_update_rx_crc_and_missed_errord(rp);
2232 spin_unlock_bh(&rp->lock);
1da177e4 2233
f7b5d1b9
JG
2234 netdev_stats_to_stats64(stats, &dev->stats);
2235
2236 do {
57a7744e 2237 start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
f7b5d1b9
JG
2238 stats->rx_packets = rp->rx_stats.packets;
2239 stats->rx_bytes = rp->rx_stats.bytes;
57a7744e 2240 } while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
f7b5d1b9
JG
2241
2242 do {
57a7744e 2243 start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
f7b5d1b9
JG
2244 stats->tx_packets = rp->tx_stats.packets;
2245 stats->tx_bytes = rp->tx_stats.bytes;
57a7744e 2246 } while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
f7b5d1b9
JG
2247
2248 return stats;
1da177e4
LT
2249}
2250
2251static void rhine_set_rx_mode(struct net_device *dev)
2252{
2253 struct rhine_private *rp = netdev_priv(dev);
2254 void __iomem *ioaddr = rp->base;
2255 u32 mc_filter[2]; /* Multicast hash filter */
38f49e88
RL
2256 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2257 struct netdev_hw_addr *ha;
1da177e4
LT
2258
2259 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
2260 rx_mode = 0x1C;
2261 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2262 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
4cd24eaf 2263 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 2264 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
2265 /* Too many to match, or accept all multicasts. */
2266 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2267 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
ca8b6e04 2268 } else if (rp->quirks & rqMgmt) {
38f49e88
RL
2269 int i = 0;
2270 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2271 netdev_for_each_mc_addr(ha, dev) {
2272 if (i == MCAM_SIZE)
2273 break;
2274 rhine_set_cam(ioaddr, i, ha->addr);
2275 mCAMmask |= 1 << i;
2276 i++;
2277 }
2278 rhine_set_cam_mask(ioaddr, mCAMmask);
1da177e4 2279 } else {
1da177e4 2280 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
2281 netdev_for_each_mc_addr(ha, dev) {
2282 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1da177e4
LT
2283
2284 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2285 }
2286 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2287 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1da177e4 2288 }
38f49e88 2289 /* enable/disable VLAN receive filtering */
ca8b6e04 2290 if (rp->quirks & rqMgmt) {
38f49e88
RL
2291 if (dev->flags & IFF_PROMISC)
2292 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2293 else
2294 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2295 }
2296 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
1da177e4
LT
2297}
2298
2299static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2300{
f7630d18 2301 struct device *hwdev = dev->dev.parent;
1da177e4 2302
23020ab3
RJ
2303 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2304 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
f7630d18 2305 strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
1da177e4
LT
2306}
2307
2308static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2309{
2310 struct rhine_private *rp = netdev_priv(dev);
2311 int rc;
2312
7ab87ff4 2313 mutex_lock(&rp->task_lock);
1da177e4 2314 rc = mii_ethtool_gset(&rp->mii_if, cmd);
7ab87ff4 2315 mutex_unlock(&rp->task_lock);
1da177e4
LT
2316
2317 return rc;
2318}
2319
2320static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2321{
2322 struct rhine_private *rp = netdev_priv(dev);
2323 int rc;
2324
7ab87ff4 2325 mutex_lock(&rp->task_lock);
1da177e4 2326 rc = mii_ethtool_sset(&rp->mii_if, cmd);
00b428c2 2327 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2328 mutex_unlock(&rp->task_lock);
1da177e4
LT
2329
2330 return rc;
2331}
2332
2333static int netdev_nway_reset(struct net_device *dev)
2334{
2335 struct rhine_private *rp = netdev_priv(dev);
2336
2337 return mii_nway_restart(&rp->mii_if);
2338}
2339
2340static u32 netdev_get_link(struct net_device *dev)
2341{
2342 struct rhine_private *rp = netdev_priv(dev);
2343
2344 return mii_link_ok(&rp->mii_if);
2345}
2346
2347static u32 netdev_get_msglevel(struct net_device *dev)
2348{
fc3e0f8a
FR
2349 struct rhine_private *rp = netdev_priv(dev);
2350
2351 return rp->msg_enable;
1da177e4
LT
2352}
2353
2354static void netdev_set_msglevel(struct net_device *dev, u32 value)
2355{
fc3e0f8a
FR
2356 struct rhine_private *rp = netdev_priv(dev);
2357
2358 rp->msg_enable = value;
1da177e4
LT
2359}
2360
2361static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2362{
2363 struct rhine_private *rp = netdev_priv(dev);
2364
2365 if (!(rp->quirks & rqWOL))
2366 return;
2367
2368 spin_lock_irq(&rp->lock);
2369 wol->supported = WAKE_PHY | WAKE_MAGIC |
2370 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2371 wol->wolopts = rp->wolopts;
2372 spin_unlock_irq(&rp->lock);
2373}
2374
2375static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2376{
2377 struct rhine_private *rp = netdev_priv(dev);
2378 u32 support = WAKE_PHY | WAKE_MAGIC |
2379 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2380
2381 if (!(rp->quirks & rqWOL))
2382 return -EINVAL;
2383
2384 if (wol->wolopts & ~support)
2385 return -EINVAL;
2386
2387 spin_lock_irq(&rp->lock);
2388 rp->wolopts = wol->wolopts;
2389 spin_unlock_irq(&rp->lock);
2390
2391 return 0;
2392}
2393
7282d491 2394static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
2395 .get_drvinfo = netdev_get_drvinfo,
2396 .get_settings = netdev_get_settings,
2397 .set_settings = netdev_set_settings,
2398 .nway_reset = netdev_nway_reset,
2399 .get_link = netdev_get_link,
2400 .get_msglevel = netdev_get_msglevel,
2401 .set_msglevel = netdev_set_msglevel,
2402 .get_wol = rhine_get_wol,
2403 .set_wol = rhine_set_wol,
1da177e4
LT
2404};
2405
2406static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2407{
2408 struct rhine_private *rp = netdev_priv(dev);
2409 int rc;
2410
2411 if (!netif_running(dev))
2412 return -EINVAL;
2413
7ab87ff4 2414 mutex_lock(&rp->task_lock);
1da177e4 2415 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
00b428c2 2416 rhine_set_carrier(&rp->mii_if);
7ab87ff4 2417 mutex_unlock(&rp->task_lock);
1da177e4
LT
2418
2419 return rc;
2420}
2421
2422static int rhine_close(struct net_device *dev)
2423{
2424 struct rhine_private *rp = netdev_priv(dev);
2425 void __iomem *ioaddr = rp->base;
2426
7ab87ff4 2427 rhine_task_disable(rp);
bea3348e 2428 napi_disable(&rp->napi);
c0d7a021
JP
2429 netif_stop_queue(dev);
2430
fc3e0f8a
FR
2431 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2432 ioread16(ioaddr + ChipCmd));
1da177e4
LT
2433
2434 /* Switch to loopback mode to avoid hardware races. */
2435 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2436
7ab87ff4 2437 rhine_irq_disable(rp);
1da177e4
LT
2438
2439 /* Stop the chip's Tx and Rx processes. */
2440 iowrite16(CmdStop, ioaddr + ChipCmd);
2441
f7630d18 2442 free_irq(rp->irq, dev);
1da177e4
LT
2443 free_rbufs(dev);
2444 free_tbufs(dev);
2445 free_ring(dev);
2446
2447 return 0;
2448}
2449
2450
2d283862 2451static void rhine_remove_one_pci(struct pci_dev *pdev)
1da177e4
LT
2452{
2453 struct net_device *dev = pci_get_drvdata(pdev);
2454 struct rhine_private *rp = netdev_priv(dev);
2455
2456 unregister_netdev(dev);
2457
2458 pci_iounmap(pdev, rp->base);
2459 pci_release_regions(pdev);
2460
2461 free_netdev(dev);
2462 pci_disable_device(pdev);
1da177e4
LT
2463}
2464
2d283862
AC
2465static int rhine_remove_one_platform(struct platform_device *pdev)
2466{
2467 struct net_device *dev = platform_get_drvdata(pdev);
2468 struct rhine_private *rp = netdev_priv(dev);
2469
2470 unregister_netdev(dev);
2471
2472 iounmap(rp->base);
2473
2474 free_netdev(dev);
2475
2476 return 0;
2477}
2478
2479static void rhine_shutdown_pci(struct pci_dev *pdev)
1da177e4 2480{
1da177e4
LT
2481 struct net_device *dev = pci_get_drvdata(pdev);
2482 struct rhine_private *rp = netdev_priv(dev);
2483 void __iomem *ioaddr = rp->base;
2484
2485 if (!(rp->quirks & rqWOL))
2486 return; /* Nothing to do for non-WOL adapters */
2487
2488 rhine_power_init(dev);
2489
2490 /* Make sure we use pattern 0, 1 and not 4, 5 */
2491 if (rp->quirks & rq6patterns)
f11cf25e 2492 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4 2493
7ab87ff4
FR
2494 spin_lock(&rp->lock);
2495
1da177e4
LT
2496 if (rp->wolopts & WAKE_MAGIC) {
2497 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2498 /*
2499 * Turn EEPROM-controlled wake-up back on -- some hardware may
2500 * not cooperate otherwise.
2501 */
2502 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2503 }
2504
2505 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2506 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2507
2508 if (rp->wolopts & WAKE_PHY)
2509 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2510
2511 if (rp->wolopts & WAKE_UCAST)
2512 iowrite8(WOLucast, ioaddr + WOLcrSet);
2513
2514 if (rp->wolopts) {
2515 /* Enable legacy WOL (for old motherboards) */
2516 iowrite8(0x01, ioaddr + PwcfgSet);
2517 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2518 }
2519
7ab87ff4
FR
2520 spin_unlock(&rp->lock);
2521
e92b9b3b 2522 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
b933b4d9 2523 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4 2524
e92b9b3b
FR
2525 pci_wake_from_d3(pdev, true);
2526 pci_set_power_state(pdev, PCI_D3hot);
2527 }
1da177e4
LT
2528}
2529
e92b9b3b
FR
2530#ifdef CONFIG_PM_SLEEP
2531static int rhine_suspend(struct device *device)
1da177e4 2532{
f7630d18 2533 struct net_device *dev = dev_get_drvdata(device);
1da177e4 2534 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2535
2536 if (!netif_running(dev))
2537 return 0;
2538
7ab87ff4
FR
2539 rhine_task_disable(rp);
2540 rhine_irq_disable(rp);
bea3348e 2541 napi_disable(&rp->napi);
32b0f53e 2542
1da177e4 2543 netif_device_detach(dev);
1da177e4 2544
f7630d18 2545 if (dev_is_pci(device))
2d283862 2546 rhine_shutdown_pci(to_pci_dev(device));
1da177e4 2547
1da177e4
LT
2548 return 0;
2549}
2550
e92b9b3b 2551static int rhine_resume(struct device *device)
1da177e4 2552{
f7630d18 2553 struct net_device *dev = dev_get_drvdata(device);
1da177e4 2554 struct rhine_private *rp = netdev_priv(dev);
1da177e4
LT
2555
2556 if (!netif_running(dev))
2557 return 0;
2558
1da177e4 2559 enable_mmio(rp->pioaddr, rp->quirks);
1da177e4
LT
2560 rhine_power_init(dev);
2561 free_tbufs(dev);
1da177e4 2562 alloc_tbufs(dev);
8709bb2c 2563 rhine_reset_rbufs(rp);
7ab87ff4
FR
2564 rhine_task_enable(rp);
2565 spin_lock_bh(&rp->lock);
1da177e4 2566 init_registers(dev);
7ab87ff4 2567 spin_unlock_bh(&rp->lock);
1da177e4
LT
2568
2569 netif_device_attach(dev);
2570
2571 return 0;
2572}
e92b9b3b
FR
2573
2574static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2575#define RHINE_PM_OPS (&rhine_pm_ops)
2576
2577#else
2578
2579#define RHINE_PM_OPS NULL
2580
2581#endif /* !CONFIG_PM_SLEEP */
1da177e4 2582
2d283862 2583static struct pci_driver rhine_driver_pci = {
1da177e4
LT
2584 .name = DRV_NAME,
2585 .id_table = rhine_pci_tbl,
2d283862
AC
2586 .probe = rhine_init_one_pci,
2587 .remove = rhine_remove_one_pci,
2588 .shutdown = rhine_shutdown_pci,
e92b9b3b 2589 .driver.pm = RHINE_PM_OPS,
1da177e4
LT
2590};
2591
2d283862
AC
2592static struct platform_driver rhine_driver_platform = {
2593 .probe = rhine_init_one_platform,
2594 .remove = rhine_remove_one_platform,
2595 .driver = {
2596 .name = DRV_NAME,
2d283862
AC
2597 .of_match_table = rhine_of_tbl,
2598 .pm = RHINE_PM_OPS,
2599 }
2600};
2601
77273eaa 2602static struct dmi_system_id rhine_dmi_table[] __initdata = {
e84df485
RL
2603 {
2604 .ident = "EPIA-M",
2605 .matches = {
2606 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2607 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2608 },
2609 },
2610 {
2611 .ident = "KV7",
2612 .matches = {
2613 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2614 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2615 },
2616 },
2617 { NULL }
2618};
1da177e4
LT
2619
2620static int __init rhine_init(void)
2621{
2d283862
AC
2622 int ret_pci, ret_platform;
2623
1da177e4
LT
2624/* when a module, this is printed whether or not devices are found in probe */
2625#ifdef MODULE
df4511fe 2626 pr_info("%s\n", version);
1da177e4 2627#endif
e84df485
RL
2628 if (dmi_check_system(rhine_dmi_table)) {
2629 /* these BIOSes fail at PXE boot if chip is in D3 */
eb939922 2630 avoid_D3 = true;
df4511fe 2631 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
e84df485
RL
2632 }
2633 else if (avoid_D3)
df4511fe 2634 pr_info("avoid_D3 set\n");
e84df485 2635
2d283862
AC
2636 ret_pci = pci_register_driver(&rhine_driver_pci);
2637 ret_platform = platform_driver_register(&rhine_driver_platform);
2638 if ((ret_pci < 0) && (ret_platform < 0))
2639 return ret_pci;
2640
2641 return 0;
1da177e4
LT
2642}
2643
2644
2645static void __exit rhine_cleanup(void)
2646{
2d283862
AC
2647 platform_driver_unregister(&rhine_driver_platform);
2648 pci_unregister_driver(&rhine_driver_pci);
1da177e4
LT
2649}
2650
2651
2652module_init(rhine_init);
2653module_exit(rhine_cleanup);