]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/net/ethernet/xilinx/xilinx_axienet_main.c
net: axienet: Fix comments blocks
[thirdparty/linux.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
CommitLineData
8a3b7a25
DB
1/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
59a54f30
MS
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
8a3b7a25
DB
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
8a3b7a25
DB
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/of_mdio.h>
28#include <linux/of_platform.h>
9d5e8ec6 29#include <linux/of_irq.h>
8a3b7a25
DB
30#include <linux/of_address.h>
31#include <linux/skbuff.h>
32#include <linux/spinlock.h>
33#include <linux/phy.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36
37#include "xilinx_axienet.h"
38
39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40#define TX_BD_NUM 64
41#define RX_BD_NUM 128
42
43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44#define DRIVER_NAME "xaxienet"
45#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
46#define DRIVER_VERSION "1.00a"
47
48#define AXIENET_REGS_N 32
49
50/* Match table for of_platform binding */
74847f23 51static const struct of_device_id axienet_of_match[] = {
8a3b7a25
DB
52 { .compatible = "xlnx,axi-ethernet-1.00.a", },
53 { .compatible = "xlnx,axi-ethernet-1.01.a", },
54 { .compatible = "xlnx,axi-ethernet-2.01.a", },
55 {},
56};
57
58MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60/* Option table for setting up Axi Ethernet hardware options */
61static struct axienet_option axienet_options[] = {
62 /* Turn on jumbo packet support for both Rx and Tx */
63 {
64 .opt = XAE_OPTION_JUMBO,
65 .reg = XAE_TC_OFFSET,
66 .m_or = XAE_TC_JUM_MASK,
67 }, {
68 .opt = XAE_OPTION_JUMBO,
69 .reg = XAE_RCW1_OFFSET,
70 .m_or = XAE_RCW1_JUM_MASK,
71 }, { /* Turn on VLAN packet support for both Rx and Tx */
72 .opt = XAE_OPTION_VLAN,
73 .reg = XAE_TC_OFFSET,
74 .m_or = XAE_TC_VLAN_MASK,
75 }, {
76 .opt = XAE_OPTION_VLAN,
77 .reg = XAE_RCW1_OFFSET,
78 .m_or = XAE_RCW1_VLAN_MASK,
79 }, { /* Turn on FCS stripping on receive packets */
80 .opt = XAE_OPTION_FCS_STRIP,
81 .reg = XAE_RCW1_OFFSET,
82 .m_or = XAE_RCW1_FCS_MASK,
83 }, { /* Turn on FCS insertion on transmit packets */
84 .opt = XAE_OPTION_FCS_INSERT,
85 .reg = XAE_TC_OFFSET,
86 .m_or = XAE_TC_FCS_MASK,
87 }, { /* Turn off length/type field checking on receive packets */
88 .opt = XAE_OPTION_LENTYPE_ERR,
89 .reg = XAE_RCW1_OFFSET,
90 .m_or = XAE_RCW1_LT_DIS_MASK,
91 }, { /* Turn on Rx flow control */
92 .opt = XAE_OPTION_FLOW_CONTROL,
93 .reg = XAE_FCC_OFFSET,
94 .m_or = XAE_FCC_FCRX_MASK,
95 }, { /* Turn on Tx flow control */
96 .opt = XAE_OPTION_FLOW_CONTROL,
97 .reg = XAE_FCC_OFFSET,
98 .m_or = XAE_FCC_FCTX_MASK,
99 }, { /* Turn on promiscuous frame filtering */
100 .opt = XAE_OPTION_PROMISC,
101 .reg = XAE_FMI_OFFSET,
102 .m_or = XAE_FMI_PM_MASK,
103 }, { /* Enable transmitter */
104 .opt = XAE_OPTION_TXEN,
105 .reg = XAE_TC_OFFSET,
106 .m_or = XAE_TC_TX_MASK,
107 }, { /* Enable receiver */
108 .opt = XAE_OPTION_RXEN,
109 .reg = XAE_RCW1_OFFSET,
110 .m_or = XAE_RCW1_RX_MASK,
111 },
112 {}
113};
114
115/**
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp: Pointer to axienet local structure
118 * @reg: Address offset from the base address of the Axi DMA core
119 *
120 * returns: The contents of the Axi DMA register
121 *
122 * This function returns the contents of the corresponding Axi DMA register.
123 */
124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125{
126 return in_be32(lp->dma_regs + reg);
127}
128
129/**
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp: Pointer to axienet local structure
132 * @reg: Address offset from the base address of the Axi DMA core
133 * @value: Value to be written into the Axi DMA register
134 *
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
137 */
138static inline void axienet_dma_out32(struct axienet_local *lp,
139 off_t reg, u32 value)
140{
141 out_be32((lp->dma_regs + reg), value);
142}
143
144/**
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev: Pointer to the net_device structure
147 *
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
151 */
152static void axienet_dma_bd_release(struct net_device *ndev)
153{
154 int i;
155 struct axienet_local *lp = netdev_priv(ndev);
156
157 for (i = 0; i < RX_BD_NUM; i++) {
158 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 lp->max_frm_size, DMA_FROM_DEVICE);
160 dev_kfree_skb((struct sk_buff *)
161 (lp->rx_bd_v[i].sw_id_offset));
162 }
163
164 if (lp->rx_bd_v) {
165 dma_free_coherent(ndev->dev.parent,
166 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 lp->rx_bd_v,
168 lp->rx_bd_p);
169 }
170 if (lp->tx_bd_v) {
171 dma_free_coherent(ndev->dev.parent,
172 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 lp->tx_bd_v,
174 lp->tx_bd_p);
175 }
176}
177
178/**
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev: Pointer to the net_device structure
181 *
182 * returns: 0, on success
183 * -ENOMEM, on failure
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189static int axienet_dma_bd_init(struct net_device *ndev)
190{
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
195
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
200
850a7503 201 /* Allocate the Tx and Rx buffer descriptors. */
ede23fa8
JP
202 lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
203 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
204 &lp->tx_bd_p, GFP_KERNEL);
d0320f75 205 if (!lp->tx_bd_v)
8a3b7a25 206 goto out;
8a3b7a25 207
ede23fa8
JP
208 lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
209 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
210 &lp->rx_bd_p, GFP_KERNEL);
d0320f75 211 if (!lp->rx_bd_v)
8a3b7a25 212 goto out;
8a3b7a25 213
8a3b7a25
DB
214 for (i = 0; i < TX_BD_NUM; i++) {
215 lp->tx_bd_v[i].next = lp->tx_bd_p +
216 sizeof(*lp->tx_bd_v) *
217 ((i + 1) % TX_BD_NUM);
218 }
219
8a3b7a25
DB
220 for (i = 0; i < RX_BD_NUM; i++) {
221 lp->rx_bd_v[i].next = lp->rx_bd_p +
222 sizeof(*lp->rx_bd_v) *
223 ((i + 1) % RX_BD_NUM);
224
225 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
720a43ef 226 if (!skb)
8a3b7a25 227 goto out;
8a3b7a25
DB
228
229 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
230 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
231 skb->data,
232 lp->max_frm_size,
233 DMA_FROM_DEVICE);
234 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
235 }
236
237 /* Start updating the Rx channel control register */
238 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
239 /* Update the interrupt coalesce count */
240 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
241 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
242 /* Update the delay timer count */
243 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
244 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
245 /* Enable coalesce, delay timer and error interrupts */
246 cr |= XAXIDMA_IRQ_ALL_MASK;
247 /* Write to the Rx channel control register */
248 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
249
250 /* Start updating the Tx channel control register */
251 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
252 /* Update the interrupt coalesce count */
253 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
254 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
255 /* Update the delay timer count */
256 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
257 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
258 /* Enable coalesce, delay timer and error interrupts */
259 cr |= XAXIDMA_IRQ_ALL_MASK;
260 /* Write to the Tx channel control register */
261 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
262
263 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
850a7503
MS
264 * halted state. This will make the Rx side ready for reception.
265 */
8a3b7a25
DB
266 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
267 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
268 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
269 cr | XAXIDMA_CR_RUNSTOP_MASK);
270 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
271 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
272
273 /* Write to the RS (Run-stop) bit in the Tx channel control register.
274 * Tx channel is now ready to run. But only after we write to the
850a7503
MS
275 * tail pointer register that the Tx channel will start transmitting.
276 */
8a3b7a25
DB
277 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280 cr | XAXIDMA_CR_RUNSTOP_MASK);
281
282 return 0;
283out:
284 axienet_dma_bd_release(ndev);
285 return -ENOMEM;
286}
287
288/**
289 * axienet_set_mac_address - Write the MAC address
290 * @ndev: Pointer to the net_device structure
291 * @address: 6 byte Address to be written as MAC address
292 *
293 * This function is called to initialize the MAC address of the Axi Ethernet
294 * core. It writes to the UAW0 and UAW1 registers of the core.
295 */
296static void axienet_set_mac_address(struct net_device *ndev, void *address)
297{
298 struct axienet_local *lp = netdev_priv(ndev);
299
300 if (address)
301 memcpy(ndev->dev_addr, address, ETH_ALEN);
302 if (!is_valid_ether_addr(ndev->dev_addr))
7efd26d0 303 eth_random_addr(ndev->dev_addr);
8a3b7a25
DB
304
305 /* Set up unicast MAC address filter set its mac address */
306 axienet_iow(lp, XAE_UAW0_OFFSET,
307 (ndev->dev_addr[0]) |
308 (ndev->dev_addr[1] << 8) |
309 (ndev->dev_addr[2] << 16) |
310 (ndev->dev_addr[3] << 24));
311 axienet_iow(lp, XAE_UAW1_OFFSET,
312 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
313 ~XAE_UAW1_UNICASTADDR_MASK) |
314 (ndev->dev_addr[4] |
315 (ndev->dev_addr[5] << 8))));
316}
317
318/**
319 * netdev_set_mac_address - Write the MAC address (from outside the driver)
320 * @ndev: Pointer to the net_device structure
321 * @p: 6 byte Address to be written as MAC address
322 *
323 * returns: 0 for all conditions. Presently, there is no failure case.
324 *
325 * This function is called to initialize the MAC address of the Axi Ethernet
326 * core. It calls the core specific axienet_set_mac_address. This is the
327 * function that goes into net_device_ops structure entry ndo_set_mac_address.
328 */
329static int netdev_set_mac_address(struct net_device *ndev, void *p)
330{
331 struct sockaddr *addr = p;
332 axienet_set_mac_address(ndev, addr->sa_data);
333 return 0;
334}
335
336/**
337 * axienet_set_multicast_list - Prepare the multicast table
338 * @ndev: Pointer to the net_device structure
339 *
340 * This function is called to initialize the multicast table during
341 * initialization. The Axi Ethernet basic multicast support has a four-entry
342 * multicast table which is initialized here. Additionally this function
343 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
344 * means whenever the multicast table entries need to be updated this
345 * function gets called.
346 */
347static void axienet_set_multicast_list(struct net_device *ndev)
348{
349 int i;
350 u32 reg, af0reg, af1reg;
351 struct axienet_local *lp = netdev_priv(ndev);
352
353 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
354 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
355 /* We must make the kernel realize we had to move into
356 * promiscuous mode. If it was a promiscuous mode request
850a7503
MS
357 * the flag is already set. If not we set it.
358 */
8a3b7a25
DB
359 ndev->flags |= IFF_PROMISC;
360 reg = axienet_ior(lp, XAE_FMI_OFFSET);
361 reg |= XAE_FMI_PM_MASK;
362 axienet_iow(lp, XAE_FMI_OFFSET, reg);
363 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
364 } else if (!netdev_mc_empty(ndev)) {
365 struct netdev_hw_addr *ha;
366
367 i = 0;
368 netdev_for_each_mc_addr(ha, ndev) {
369 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
370 break;
371
372 af0reg = (ha->addr[0]);
373 af0reg |= (ha->addr[1] << 8);
374 af0reg |= (ha->addr[2] << 16);
375 af0reg |= (ha->addr[3] << 24);
376
377 af1reg = (ha->addr[4]);
378 af1reg |= (ha->addr[5] << 8);
379
380 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
381 reg |= i;
382
383 axienet_iow(lp, XAE_FMI_OFFSET, reg);
384 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
385 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
386 i++;
387 }
388 } else {
389 reg = axienet_ior(lp, XAE_FMI_OFFSET);
390 reg &= ~XAE_FMI_PM_MASK;
391
392 axienet_iow(lp, XAE_FMI_OFFSET, reg);
393
394 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
395 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
396 reg |= i;
397
398 axienet_iow(lp, XAE_FMI_OFFSET, reg);
399 axienet_iow(lp, XAE_AF0_OFFSET, 0);
400 axienet_iow(lp, XAE_AF1_OFFSET, 0);
401 }
402
403 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
404 }
405}
406
407/**
408 * axienet_setoptions - Set an Axi Ethernet option
409 * @ndev: Pointer to the net_device structure
410 * @options: Option to be enabled/disabled
411 *
412 * The Axi Ethernet core has multiple features which can be selectively turned
413 * on or off. The typical options could be jumbo frame option, basic VLAN
414 * option, promiscuous mode option etc. This function is used to set or clear
415 * these options in the Axi Ethernet hardware. This is done through
416 * axienet_option structure .
417 */
418static void axienet_setoptions(struct net_device *ndev, u32 options)
419{
420 int reg;
421 struct axienet_local *lp = netdev_priv(ndev);
422 struct axienet_option *tp = &axienet_options[0];
423
424 while (tp->opt) {
425 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
426 if (options & tp->opt)
427 reg |= tp->m_or;
428 axienet_iow(lp, tp->reg, reg);
429 tp++;
430 }
431
432 lp->options |= options;
433}
434
435static void __axienet_device_reset(struct axienet_local *lp,
436 struct device *dev, off_t offset)
437{
438 u32 timeout;
439 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
440 * process of Axi DMA takes a while to complete as all pending
441 * commands/transfers will be flushed or completed during this
850a7503
MS
442 * reset process.
443 */
8a3b7a25
DB
444 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
445 timeout = DELAY_OF_ONE_MILLISEC;
446 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
447 udelay(1);
448 if (--timeout == 0) {
c81a97b5
ST
449 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
450 __func__);
8a3b7a25
DB
451 break;
452 }
453 }
454}
455
456/**
457 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
458 * @ndev: Pointer to the net_device structure
459 *
460 * This function is called to reset and initialize the Axi Ethernet core. This
461 * is typically called during initialization. It does a reset of the Axi DMA
462 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
463 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
464 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
465 * core.
466 */
467static void axienet_device_reset(struct net_device *ndev)
468{
469 u32 axienet_status;
470 struct axienet_local *lp = netdev_priv(ndev);
471
472 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
473 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
474
475 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
f080a8c3 476 lp->options |= XAE_OPTION_VLAN;
8a3b7a25
DB
477 lp->options &= (~XAE_OPTION_JUMBO);
478
479 if ((ndev->mtu > XAE_MTU) &&
f080a8c3
ST
480 (ndev->mtu <= XAE_JUMBO_MTU)) {
481 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
482 XAE_TRL_SIZE;
483
484 if (lp->max_frm_size <= lp->rxmem)
485 lp->options |= XAE_OPTION_JUMBO;
8a3b7a25
DB
486 }
487
488 if (axienet_dma_bd_init(ndev)) {
c81a97b5
ST
489 netdev_err(ndev, "%s: descriptor allocation failed\n",
490 __func__);
8a3b7a25
DB
491 }
492
493 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
494 axienet_status &= ~XAE_RCW1_RX_MASK;
495 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
496
497 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
498 if (axienet_status & XAE_INT_RXRJECT_MASK)
499 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
500
501 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
502
503 /* Sync default options with HW but leave receiver and
850a7503
MS
504 * transmitter disabled.
505 */
8a3b7a25
DB
506 axienet_setoptions(ndev, lp->options &
507 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
508 axienet_set_mac_address(ndev, NULL);
509 axienet_set_multicast_list(ndev);
510 axienet_setoptions(ndev, lp->options);
511
512 ndev->trans_start = jiffies;
513}
514
515/**
516 * axienet_adjust_link - Adjust the PHY link speed/duplex.
517 * @ndev: Pointer to the net_device structure
518 *
519 * This function is called to change the speed and duplex setting after
520 * auto negotiation is done by the PHY. This is the function that gets
521 * registered with the PHY interface through the "of_phy_connect" call.
522 */
523static void axienet_adjust_link(struct net_device *ndev)
524{
525 u32 emmc_reg;
526 u32 link_state;
527 u32 setspeed = 1;
528 struct axienet_local *lp = netdev_priv(ndev);
529 struct phy_device *phy = lp->phy_dev;
530
531 link_state = phy->speed | (phy->duplex << 1) | phy->link;
532 if (lp->last_link != link_state) {
533 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
534 if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
535 setspeed = 0;
536 } else {
537 if ((phy->speed == SPEED_1000) &&
538 (lp->phy_type == XAE_PHY_TYPE_MII))
539 setspeed = 0;
540 }
541
542 if (setspeed == 1) {
543 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
544 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
545
546 switch (phy->speed) {
547 case SPEED_1000:
548 emmc_reg |= XAE_EMMC_LINKSPD_1000;
549 break;
550 case SPEED_100:
551 emmc_reg |= XAE_EMMC_LINKSPD_100;
552 break;
553 case SPEED_10:
554 emmc_reg |= XAE_EMMC_LINKSPD_10;
555 break;
556 default:
557 dev_err(&ndev->dev, "Speed other than 10, 100 "
558 "or 1Gbps is not supported\n");
559 break;
560 }
561
562 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
563 lp->last_link = link_state;
564 phy_print_status(phy);
565 } else {
c81a97b5
ST
566 netdev_err(ndev,
567 "Error setting Axi Ethernet mac speed\n");
8a3b7a25
DB
568 }
569 }
570}
571
572/**
573 * axienet_start_xmit_done - Invoked once a transmit is completed by the
574 * Axi DMA Tx channel.
575 * @ndev: Pointer to the net_device structure
576 *
577 * This function is invoked from the Axi DMA Tx isr to notify the completion
578 * of transmit operation. It clears fields in the corresponding Tx BDs and
579 * unmaps the corresponding buffer so that CPU can regain ownership of the
580 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
581 * required.
582 */
583static void axienet_start_xmit_done(struct net_device *ndev)
584{
585 u32 size = 0;
586 u32 packets = 0;
587 struct axienet_local *lp = netdev_priv(ndev);
588 struct axidma_bd *cur_p;
589 unsigned int status = 0;
590
591 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
592 status = cur_p->status;
593 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
594 dma_unmap_single(ndev->dev.parent, cur_p->phys,
595 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
596 DMA_TO_DEVICE);
597 if (cur_p->app4)
598 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
599 /*cur_p->phys = 0;*/
600 cur_p->app0 = 0;
601 cur_p->app1 = 0;
602 cur_p->app2 = 0;
603 cur_p->app4 = 0;
604 cur_p->status = 0;
605
606 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
607 packets++;
608
91ff37ff
MS
609 ++lp->tx_bd_ci;
610 lp->tx_bd_ci %= TX_BD_NUM;
8a3b7a25
DB
611 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
612 status = cur_p->status;
613 }
614
615 ndev->stats.tx_packets += packets;
616 ndev->stats.tx_bytes += size;
617 netif_wake_queue(ndev);
618}
619
620/**
621 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
622 * @lp: Pointer to the axienet_local structure
623 * @num_frag: The number of BDs to check for
624 *
625 * returns: 0, on success
626 * NETDEV_TX_BUSY, if any of the descriptors are not free
627 *
628 * This function is invoked before BDs are allocated and transmission starts.
629 * This function returns 0 if a BD or group of BDs can be allocated for
630 * transmission. If the BD or any of the BDs are not free the function
631 * returns a busy status. This is invoked from axienet_start_xmit.
632 */
633static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
634 int num_frag)
635{
636 struct axidma_bd *cur_p;
637 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
638 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
639 return NETDEV_TX_BUSY;
640 return 0;
641}
642
643/**
644 * axienet_start_xmit - Starts the transmission.
645 * @skb: sk_buff pointer that contains data to be Txed.
646 * @ndev: Pointer to net_device structure.
647 *
648 * returns: NETDEV_TX_OK, on success
649 * NETDEV_TX_BUSY, if any of the descriptors are not free
650 *
651 * This function is invoked from upper layers to initiate transmission. The
652 * function uses the next available free BDs and populates their fields to
653 * start the transmission. Additionally if checksum offloading is supported,
654 * it populates AXI Stream Control fields with appropriate values.
655 */
656static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
657{
658 u32 ii;
659 u32 num_frag;
660 u32 csum_start_off;
661 u32 csum_index_off;
662 skb_frag_t *frag;
663 dma_addr_t tail_p;
664 struct axienet_local *lp = netdev_priv(ndev);
665 struct axidma_bd *cur_p;
666
667 num_frag = skb_shinfo(skb)->nr_frags;
668 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
669
670 if (axienet_check_tx_bd_space(lp, num_frag)) {
671 if (!netif_queue_stopped(ndev))
672 netif_stop_queue(ndev);
673 return NETDEV_TX_BUSY;
674 }
675
676 if (skb->ip_summed == CHECKSUM_PARTIAL) {
677 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
678 /* Tx Full Checksum Offload Enabled */
679 cur_p->app0 |= 2;
680 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
681 csum_start_off = skb_transport_offset(skb);
682 csum_index_off = csum_start_off + skb->csum_offset;
683 /* Tx Partial Checksum Offload Enabled */
684 cur_p->app0 |= 1;
685 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
686 }
687 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
688 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
689 }
690
691 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
692 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
693 skb_headlen(skb), DMA_TO_DEVICE);
694
695 for (ii = 0; ii < num_frag; ii++) {
91ff37ff
MS
696 ++lp->tx_bd_tail;
697 lp->tx_bd_tail %= TX_BD_NUM;
8a3b7a25
DB
698 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
699 frag = &skb_shinfo(skb)->frags[ii];
700 cur_p->phys = dma_map_single(ndev->dev.parent,
701 skb_frag_address(frag),
702 skb_frag_size(frag),
703 DMA_TO_DEVICE);
704 cur_p->cntrl = skb_frag_size(frag);
705 }
706
707 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
708 cur_p->app4 = (unsigned long)skb;
709
710 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
711 /* Start the transfer */
712 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
91ff37ff
MS
713 ++lp->tx_bd_tail;
714 lp->tx_bd_tail %= TX_BD_NUM;
8a3b7a25
DB
715
716 return NETDEV_TX_OK;
717}
718
719/**
720 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
721 * BD processing.
722 * @ndev: Pointer to net_device structure.
723 *
724 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
725 * does minimal processing and invokes "netif_rx" to complete further
726 * processing.
727 */
728static void axienet_recv(struct net_device *ndev)
729{
730 u32 length;
731 u32 csumstatus;
732 u32 size = 0;
733 u32 packets = 0;
38e96b35 734 dma_addr_t tail_p = 0;
8a3b7a25
DB
735 struct axienet_local *lp = netdev_priv(ndev);
736 struct sk_buff *skb, *new_skb;
737 struct axidma_bd *cur_p;
738
8a3b7a25
DB
739 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
740
741 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
38e96b35 742 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
8a3b7a25
DB
743 skb = (struct sk_buff *) (cur_p->sw_id_offset);
744 length = cur_p->app4 & 0x0000FFFF;
745
746 dma_unmap_single(ndev->dev.parent, cur_p->phys,
747 lp->max_frm_size,
748 DMA_FROM_DEVICE);
749
750 skb_put(skb, length);
751 skb->protocol = eth_type_trans(skb, ndev);
752 /*skb_checksum_none_assert(skb);*/
753 skb->ip_summed = CHECKSUM_NONE;
754
755 /* if we're doing Rx csum offload, set it up */
756 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
757 csumstatus = (cur_p->app2 &
758 XAE_FULL_CSUM_STATUS_MASK) >> 3;
759 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
760 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
761 skb->ip_summed = CHECKSUM_UNNECESSARY;
762 }
763 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
ceffc4ac 764 skb->protocol == htons(ETH_P_IP) &&
8a3b7a25
DB
765 skb->len > 64) {
766 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
767 skb->ip_summed = CHECKSUM_COMPLETE;
768 }
769
770 netif_rx(skb);
771
772 size += length;
773 packets++;
774
775 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
720a43ef 776 if (!new_skb)
8a3b7a25 777 return;
720a43ef 778
8a3b7a25
DB
779 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
780 lp->max_frm_size,
781 DMA_FROM_DEVICE);
782 cur_p->cntrl = lp->max_frm_size;
783 cur_p->status = 0;
784 cur_p->sw_id_offset = (u32) new_skb;
785
91ff37ff
MS
786 ++lp->rx_bd_ci;
787 lp->rx_bd_ci %= RX_BD_NUM;
8a3b7a25
DB
788 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
789 }
790
791 ndev->stats.rx_packets += packets;
792 ndev->stats.rx_bytes += size;
793
38e96b35
PC
794 if (tail_p)
795 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
8a3b7a25
DB
796}
797
798/**
799 * axienet_tx_irq - Tx Done Isr.
800 * @irq: irq number
801 * @_ndev: net_device pointer
802 *
803 * returns: IRQ_HANDLED for all cases.
804 *
805 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
806 * to complete the BD processing.
807 */
808static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
809{
810 u32 cr;
811 unsigned int status;
812 struct net_device *ndev = _ndev;
813 struct axienet_local *lp = netdev_priv(ndev);
814
815 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
816 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
80c775ac 817 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
8a3b7a25
DB
818 axienet_start_xmit_done(lp->ndev);
819 goto out;
820 }
821 if (!(status & XAXIDMA_IRQ_ALL_MASK))
822 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
823 if (status & XAXIDMA_IRQ_ERROR_MASK) {
824 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
825 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
826 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
827
828 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
829 /* Disable coalesce, delay timer and error interrupts */
830 cr &= (~XAXIDMA_IRQ_ALL_MASK);
831 /* Write to the Tx channel control register */
832 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
833
834 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
835 /* Disable coalesce, delay timer and error interrupts */
836 cr &= (~XAXIDMA_IRQ_ALL_MASK);
837 /* Write to the Rx channel control register */
838 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
839
840 tasklet_schedule(&lp->dma_err_tasklet);
80c775ac 841 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
8a3b7a25
DB
842 }
843out:
8a3b7a25
DB
844 return IRQ_HANDLED;
845}
846
847/**
848 * axienet_rx_irq - Rx Isr.
849 * @irq: irq number
850 * @_ndev: net_device pointer
851 *
852 * returns: IRQ_HANDLED for all cases.
853 *
854 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
855 * processing.
856 */
857static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
858{
859 u32 cr;
860 unsigned int status;
861 struct net_device *ndev = _ndev;
862 struct axienet_local *lp = netdev_priv(ndev);
863
864 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
865 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
80c775ac 866 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
8a3b7a25
DB
867 axienet_recv(lp->ndev);
868 goto out;
869 }
870 if (!(status & XAXIDMA_IRQ_ALL_MASK))
871 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
872 if (status & XAXIDMA_IRQ_ERROR_MASK) {
873 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
874 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
875 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
876
877 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
878 /* Disable coalesce, delay timer and error interrupts */
879 cr &= (~XAXIDMA_IRQ_ALL_MASK);
880 /* Finally write to the Tx channel control register */
881 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
882
883 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
884 /* Disable coalesce, delay timer and error interrupts */
885 cr &= (~XAXIDMA_IRQ_ALL_MASK);
886 /* write to the Rx channel control register */
887 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
888
889 tasklet_schedule(&lp->dma_err_tasklet);
80c775ac 890 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
8a3b7a25
DB
891 }
892out:
8a3b7a25
DB
893 return IRQ_HANDLED;
894}
895
aecb55be
JM
896static void axienet_dma_err_handler(unsigned long data);
897
8a3b7a25
DB
898/**
899 * axienet_open - Driver open routine.
900 * @ndev: Pointer to net_device structure
901 *
902 * returns: 0, on success.
903 * -ENODEV, if PHY cannot be connected to
904 * non-zero error value on failure
905 *
906 * This is the driver open routine. It calls phy_start to start the PHY device.
907 * It also allocates interrupt service routines, enables the interrupt lines
908 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
909 * descriptors are initialized.
910 */
911static int axienet_open(struct net_device *ndev)
912{
913 int ret, mdio_mcreg;
914 struct axienet_local *lp = netdev_priv(ndev);
915
916 dev_dbg(&ndev->dev, "axienet_open()\n");
917
918 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
919 ret = axienet_mdio_wait_until_ready(lp);
920 if (ret < 0)
921 return ret;
922 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
923 * When we do an Axi Ethernet reset, it resets the complete core
924 * including the MDIO. If MDIO is not disabled when the reset
850a7503
MS
925 * process is started, MDIO will be broken afterwards.
926 */
8a3b7a25
DB
927 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
928 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
929 axienet_device_reset(ndev);
930 /* Enable the MDIO */
931 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
932 ret = axienet_mdio_wait_until_ready(lp);
933 if (ret < 0)
934 return ret;
935
936 if (lp->phy_node) {
d1d372e8
ST
937 if (lp->phy_type == XAE_PHY_TYPE_GMII) {
938 lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
8a3b7a25
DB
939 axienet_adjust_link, 0,
940 PHY_INTERFACE_MODE_GMII);
d1d372e8
ST
941 } else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
942 lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
943 axienet_adjust_link, 0,
944 PHY_INTERFACE_MODE_RGMII_ID);
945 }
946
d7cc3163 947 if (!lp->phy_dev)
8a3b7a25 948 dev_err(lp->dev, "of_phy_connect() failed\n");
d7cc3163
ST
949 else
950 phy_start(lp->phy_dev);
8a3b7a25
DB
951 }
952
71c6c837
XF
953 /* Enable tasklets for Axi DMA error handling */
954 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
955 (unsigned long) lp);
956
8a3b7a25
DB
957 /* Enable interrupts for Axi DMA Tx */
958 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
959 if (ret)
960 goto err_tx_irq;
961 /* Enable interrupts for Axi DMA Rx */
962 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
963 if (ret)
964 goto err_rx_irq;
71c6c837 965
8a3b7a25
DB
966 return 0;
967
968err_rx_irq:
969 free_irq(lp->tx_irq, ndev);
970err_tx_irq:
971 if (lp->phy_dev)
972 phy_disconnect(lp->phy_dev);
973 lp->phy_dev = NULL;
71c6c837 974 tasklet_kill(&lp->dma_err_tasklet);
8a3b7a25
DB
975 dev_err(lp->dev, "request_irq() failed\n");
976 return ret;
977}
978
979/**
980 * axienet_stop - Driver stop routine.
981 * @ndev: Pointer to net_device structure
982 *
983 * returns: 0, on success.
984 *
985 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
986 * device. It also removes the interrupt handlers and disables the interrupts.
987 * The Axi DMA Tx/Rx BDs are released.
988 */
989static int axienet_stop(struct net_device *ndev)
990{
991 u32 cr;
992 struct axienet_local *lp = netdev_priv(ndev);
993
994 dev_dbg(&ndev->dev, "axienet_close()\n");
995
996 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
997 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
998 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
999 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1000 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1001 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1002 axienet_setoptions(ndev, lp->options &
1003 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1004
175c0dff 1005 tasklet_kill(&lp->dma_err_tasklet);
8a3b7a25
DB
1006
1007 free_irq(lp->tx_irq, ndev);
1008 free_irq(lp->rx_irq, ndev);
1009
1010 if (lp->phy_dev)
1011 phy_disconnect(lp->phy_dev);
1012 lp->phy_dev = NULL;
1013
1014 axienet_dma_bd_release(ndev);
1015 return 0;
1016}
1017
1018/**
1019 * axienet_change_mtu - Driver change mtu routine.
1020 * @ndev: Pointer to net_device structure
1021 * @new_mtu: New mtu value to be applied
1022 *
1023 * returns: Always returns 0 (success).
1024 *
1025 * This is the change mtu driver routine. It checks if the Axi Ethernet
1026 * hardware supports jumbo frames before changing the mtu. This can be
1027 * called only when the device is not up.
1028 */
1029static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1030{
1031 struct axienet_local *lp = netdev_priv(ndev);
1032
1033 if (netif_running(ndev))
1034 return -EBUSY;
f080a8c3
ST
1035
1036 if ((new_mtu + VLAN_ETH_HLEN +
1037 XAE_TRL_SIZE) > lp->rxmem)
1038 return -EINVAL;
1039
1040 if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1041 return -EINVAL;
1042
1043 ndev->mtu = new_mtu;
8a3b7a25
DB
1044
1045 return 0;
1046}
1047
1048#ifdef CONFIG_NET_POLL_CONTROLLER
1049/**
1050 * axienet_poll_controller - Axi Ethernet poll mechanism.
1051 * @ndev: Pointer to net_device structure
1052 *
1053 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1054 * to polling the ISRs and are enabled back after the polling is done.
1055 */
1056static void axienet_poll_controller(struct net_device *ndev)
1057{
1058 struct axienet_local *lp = netdev_priv(ndev);
1059 disable_irq(lp->tx_irq);
1060 disable_irq(lp->rx_irq);
1061 axienet_rx_irq(lp->tx_irq, ndev);
1062 axienet_tx_irq(lp->rx_irq, ndev);
1063 enable_irq(lp->tx_irq);
1064 enable_irq(lp->rx_irq);
1065}
1066#endif
1067
1068static const struct net_device_ops axienet_netdev_ops = {
1069 .ndo_open = axienet_open,
1070 .ndo_stop = axienet_stop,
1071 .ndo_start_xmit = axienet_start_xmit,
1072 .ndo_change_mtu = axienet_change_mtu,
1073 .ndo_set_mac_address = netdev_set_mac_address,
1074 .ndo_validate_addr = eth_validate_addr,
1075 .ndo_set_rx_mode = axienet_set_multicast_list,
1076#ifdef CONFIG_NET_POLL_CONTROLLER
1077 .ndo_poll_controller = axienet_poll_controller,
1078#endif
1079};
1080
1081/**
1082 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1083 * @ndev: Pointer to net_device structure
1084 * @ecmd: Pointer to ethtool_cmd structure
1085 *
1086 * This implements ethtool command for getting PHY settings. If PHY could
1087 * not be found, the function returns -ENODEV. This function calls the
1088 * relevant PHY ethtool API to get the PHY settings.
1089 * Issue "ethtool ethX" under linux prompt to execute this function.
1090 */
1091static int axienet_ethtools_get_settings(struct net_device *ndev,
1092 struct ethtool_cmd *ecmd)
1093{
1094 struct axienet_local *lp = netdev_priv(ndev);
1095 struct phy_device *phydev = lp->phy_dev;
1096 if (!phydev)
1097 return -ENODEV;
1098 return phy_ethtool_gset(phydev, ecmd);
1099}
1100
1101/**
1102 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1103 * @ndev: Pointer to net_device structure
1104 * @ecmd: Pointer to ethtool_cmd structure
1105 *
1106 * This implements ethtool command for setting various PHY settings. If PHY
1107 * could not be found, the function returns -ENODEV. This function calls the
1108 * relevant PHY ethtool API to set the PHY.
1109 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1110 * function.
1111 */
1112static int axienet_ethtools_set_settings(struct net_device *ndev,
1113 struct ethtool_cmd *ecmd)
1114{
1115 struct axienet_local *lp = netdev_priv(ndev);
1116 struct phy_device *phydev = lp->phy_dev;
1117 if (!phydev)
1118 return -ENODEV;
1119 return phy_ethtool_sset(phydev, ecmd);
1120}
1121
1122/**
1123 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1124 * @ndev: Pointer to net_device structure
1125 * @ed: Pointer to ethtool_drvinfo structure
1126 *
1127 * This implements ethtool command for getting the driver information.
1128 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1129 */
1130static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1131 struct ethtool_drvinfo *ed)
1132{
7826d43f
JP
1133 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1134 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
8a3b7a25
DB
1135 ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1136}
1137
1138/**
1139 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1140 * AxiEthernet core.
1141 * @ndev: Pointer to net_device structure
1142 *
1143 * This implements ethtool command for getting the total register length
1144 * information.
1145 */
1146static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1147{
1148 return sizeof(u32) * AXIENET_REGS_N;
1149}
1150
1151/**
1152 * axienet_ethtools_get_regs - Dump the contents of all registers present
1153 * in AxiEthernet core.
1154 * @ndev: Pointer to net_device structure
1155 * @regs: Pointer to ethtool_regs structure
1156 * @ret: Void pointer used to return the contents of the registers.
1157 *
1158 * This implements ethtool command for getting the Axi Ethernet register dump.
1159 * Issue "ethtool -d ethX" to execute this function.
1160 */
1161static void axienet_ethtools_get_regs(struct net_device *ndev,
1162 struct ethtool_regs *regs, void *ret)
1163{
1164 u32 *data = (u32 *) ret;
1165 size_t len = sizeof(u32) * AXIENET_REGS_N;
1166 struct axienet_local *lp = netdev_priv(ndev);
1167
1168 regs->version = 0;
1169 regs->len = len;
1170
1171 memset(data, 0, len);
1172 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1173 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1174 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1175 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1176 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1177 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1178 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1179 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1180 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1181 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1182 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1183 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1184 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1185 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1186 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1187 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1188 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1189 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1190 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1191 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1192 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1193 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1194 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1195 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1196 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1197 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1198 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1199 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1200 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1201 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1202 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1203 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1204}
1205
1206/**
1207 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1208 * Tx and Rx paths.
1209 * @ndev: Pointer to net_device structure
1210 * @epauseparm: Pointer to ethtool_pauseparam structure.
1211 *
1212 * This implements ethtool command for getting axi ethernet pause frame
1213 * setting. Issue "ethtool -a ethX" to execute this function.
1214 */
1215static void
1216axienet_ethtools_get_pauseparam(struct net_device *ndev,
1217 struct ethtool_pauseparam *epauseparm)
1218{
1219 u32 regval;
1220 struct axienet_local *lp = netdev_priv(ndev);
1221 epauseparm->autoneg = 0;
1222 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1223 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1224 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1225}
1226
1227/**
1228 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1229 * settings.
1230 * @ndev: Pointer to net_device structure
1231 * @epauseparam:Pointer to ethtool_pauseparam structure
1232 *
1233 * This implements ethtool command for enabling flow control on Rx and Tx
1234 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1235 * function.
1236 */
1237static int
1238axienet_ethtools_set_pauseparam(struct net_device *ndev,
1239 struct ethtool_pauseparam *epauseparm)
1240{
1241 u32 regval = 0;
1242 struct axienet_local *lp = netdev_priv(ndev);
1243
1244 if (netif_running(ndev)) {
c81a97b5
ST
1245 netdev_err(ndev,
1246 "Please stop netif before applying configuration\n");
8a3b7a25
DB
1247 return -EFAULT;
1248 }
1249
1250 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1251 if (epauseparm->tx_pause)
1252 regval |= XAE_FCC_FCTX_MASK;
1253 else
1254 regval &= ~XAE_FCC_FCTX_MASK;
1255 if (epauseparm->rx_pause)
1256 regval |= XAE_FCC_FCRX_MASK;
1257 else
1258 regval &= ~XAE_FCC_FCRX_MASK;
1259 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1260
1261 return 0;
1262}
1263
1264/**
1265 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1266 * @ndev: Pointer to net_device structure
1267 * @ecoalesce: Pointer to ethtool_coalesce structure
1268 *
1269 * This implements ethtool command for getting the DMA interrupt coalescing
1270 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1271 * execute this function.
1272 */
1273static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1274 struct ethtool_coalesce *ecoalesce)
1275{
1276 u32 regval = 0;
1277 struct axienet_local *lp = netdev_priv(ndev);
1278 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1279 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1280 >> XAXIDMA_COALESCE_SHIFT;
1281 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1282 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1283 >> XAXIDMA_COALESCE_SHIFT;
1284 return 0;
1285}
1286
1287/**
1288 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1289 * @ndev: Pointer to net_device structure
1290 * @ecoalesce: Pointer to ethtool_coalesce structure
1291 *
1292 * This implements ethtool command for setting the DMA interrupt coalescing
1293 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1294 * prompt to execute this function.
1295 */
1296static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1297 struct ethtool_coalesce *ecoalesce)
1298{
1299 struct axienet_local *lp = netdev_priv(ndev);
1300
1301 if (netif_running(ndev)) {
c81a97b5
ST
1302 netdev_err(ndev,
1303 "Please stop netif before applying configuration\n");
8a3b7a25
DB
1304 return -EFAULT;
1305 }
1306
1307 if ((ecoalesce->rx_coalesce_usecs) ||
1308 (ecoalesce->rx_coalesce_usecs_irq) ||
1309 (ecoalesce->rx_max_coalesced_frames_irq) ||
1310 (ecoalesce->tx_coalesce_usecs) ||
1311 (ecoalesce->tx_coalesce_usecs_irq) ||
1312 (ecoalesce->tx_max_coalesced_frames_irq) ||
1313 (ecoalesce->stats_block_coalesce_usecs) ||
1314 (ecoalesce->use_adaptive_rx_coalesce) ||
1315 (ecoalesce->use_adaptive_tx_coalesce) ||
1316 (ecoalesce->pkt_rate_low) ||
1317 (ecoalesce->rx_coalesce_usecs_low) ||
1318 (ecoalesce->rx_max_coalesced_frames_low) ||
1319 (ecoalesce->tx_coalesce_usecs_low) ||
1320 (ecoalesce->tx_max_coalesced_frames_low) ||
1321 (ecoalesce->pkt_rate_high) ||
1322 (ecoalesce->rx_coalesce_usecs_high) ||
1323 (ecoalesce->rx_max_coalesced_frames_high) ||
1324 (ecoalesce->tx_coalesce_usecs_high) ||
1325 (ecoalesce->tx_max_coalesced_frames_high) ||
1326 (ecoalesce->rate_sample_interval))
1327 return -EOPNOTSUPP;
1328 if (ecoalesce->rx_max_coalesced_frames)
1329 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1330 if (ecoalesce->tx_max_coalesced_frames)
1331 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1332
1333 return 0;
1334}
1335
1336static struct ethtool_ops axienet_ethtool_ops = {
1337 .get_settings = axienet_ethtools_get_settings,
1338 .set_settings = axienet_ethtools_set_settings,
1339 .get_drvinfo = axienet_ethtools_get_drvinfo,
1340 .get_regs_len = axienet_ethtools_get_regs_len,
1341 .get_regs = axienet_ethtools_get_regs,
1342 .get_link = ethtool_op_get_link,
1343 .get_pauseparam = axienet_ethtools_get_pauseparam,
1344 .set_pauseparam = axienet_ethtools_set_pauseparam,
1345 .get_coalesce = axienet_ethtools_get_coalesce,
1346 .set_coalesce = axienet_ethtools_set_coalesce,
1347};
1348
1349/**
1350 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1351 * @data: Data passed
1352 *
1353 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1354 * Tx/Rx BDs.
1355 */
1356static void axienet_dma_err_handler(unsigned long data)
1357{
1358 u32 axienet_status;
1359 u32 cr, i;
1360 int mdio_mcreg;
1361 struct axienet_local *lp = (struct axienet_local *) data;
1362 struct net_device *ndev = lp->ndev;
1363 struct axidma_bd *cur_p;
1364
1365 axienet_setoptions(ndev, lp->options &
1366 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1367 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1368 axienet_mdio_wait_until_ready(lp);
1369 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1370 * When we do an Axi Ethernet reset, it resets the complete core
1371 * including the MDIO. So if MDIO is not disabled when the reset
850a7503
MS
1372 * process is started, MDIO will be broken afterwards.
1373 */
8a3b7a25
DB
1374 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1375 ~XAE_MDIO_MC_MDIOEN_MASK));
1376
1377 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1378 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1379
1380 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1381 axienet_mdio_wait_until_ready(lp);
1382
1383 for (i = 0; i < TX_BD_NUM; i++) {
1384 cur_p = &lp->tx_bd_v[i];
1385 if (cur_p->phys)
1386 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1387 (cur_p->cntrl &
1388 XAXIDMA_BD_CTRL_LENGTH_MASK),
1389 DMA_TO_DEVICE);
1390 if (cur_p->app4)
1391 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1392 cur_p->phys = 0;
1393 cur_p->cntrl = 0;
1394 cur_p->status = 0;
1395 cur_p->app0 = 0;
1396 cur_p->app1 = 0;
1397 cur_p->app2 = 0;
1398 cur_p->app3 = 0;
1399 cur_p->app4 = 0;
1400 cur_p->sw_id_offset = 0;
1401 }
1402
1403 for (i = 0; i < RX_BD_NUM; i++) {
1404 cur_p = &lp->rx_bd_v[i];
1405 cur_p->status = 0;
1406 cur_p->app0 = 0;
1407 cur_p->app1 = 0;
1408 cur_p->app2 = 0;
1409 cur_p->app3 = 0;
1410 cur_p->app4 = 0;
1411 }
1412
1413 lp->tx_bd_ci = 0;
1414 lp->tx_bd_tail = 0;
1415 lp->rx_bd_ci = 0;
1416
1417 /* Start updating the Rx channel control register */
1418 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1419 /* Update the interrupt coalesce count */
1420 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1421 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1422 /* Update the delay timer count */
1423 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1424 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1425 /* Enable coalesce, delay timer and error interrupts */
1426 cr |= XAXIDMA_IRQ_ALL_MASK;
1427 /* Finally write to the Rx channel control register */
1428 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1429
1430 /* Start updating the Tx channel control register */
1431 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1432 /* Update the interrupt coalesce count */
1433 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1434 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1435 /* Update the delay timer count */
1436 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1437 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1438 /* Enable coalesce, delay timer and error interrupts */
1439 cr |= XAXIDMA_IRQ_ALL_MASK;
1440 /* Finally write to the Tx channel control register */
1441 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1442
1443 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
850a7503
MS
1444 * halted state. This will make the Rx side ready for reception.
1445 */
8a3b7a25
DB
1446 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1447 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1448 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1449 cr | XAXIDMA_CR_RUNSTOP_MASK);
1450 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1451 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1452
1453 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1454 * Tx channel is now ready to run. But only after we write to the
850a7503
MS
1455 * tail pointer register that the Tx channel will start transmitting
1456 */
8a3b7a25
DB
1457 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1458 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1459 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1460 cr | XAXIDMA_CR_RUNSTOP_MASK);
1461
1462 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1463 axienet_status &= ~XAE_RCW1_RX_MASK;
1464 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1465
1466 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1467 if (axienet_status & XAE_INT_RXRJECT_MASK)
1468 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1469 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1470
1471 /* Sync default options with HW but leave receiver and
850a7503
MS
1472 * transmitter disabled.
1473 */
8a3b7a25
DB
1474 axienet_setoptions(ndev, lp->options &
1475 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1476 axienet_set_mac_address(ndev, NULL);
1477 axienet_set_multicast_list(ndev);
1478 axienet_setoptions(ndev, lp->options);
1479}
1480
1481/**
1482 * axienet_of_probe - Axi Ethernet probe function.
1483 * @op: Pointer to platform device structure.
1484 * @match: Pointer to device id structure
1485 *
1486 * returns: 0, on success
1487 * Non-zero error value on failure.
1488 *
1489 * This is the probe routine for Axi Ethernet driver. This is called before
1490 * any other driver routines are invoked. It allocates and sets up the Ethernet
1491 * device. Parses through device tree and populates fields of
1492 * axienet_local. It registers the Ethernet device.
1493 */
48d16cb1 1494static int axienet_of_probe(struct platform_device *op)
8a3b7a25
DB
1495{
1496 __be32 *p;
1497 int size, ret = 0;
1498 struct device_node *np;
1499 struct axienet_local *lp;
1500 struct net_device *ndev;
1501 const void *addr;
1502
1503 ndev = alloc_etherdev(sizeof(*lp));
41de8d4c 1504 if (!ndev)
8a3b7a25 1505 return -ENOMEM;
8a3b7a25 1506
8513fbd8 1507 platform_set_drvdata(op, ndev);
8a3b7a25
DB
1508
1509 SET_NETDEV_DEV(ndev, &op->dev);
1510 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
28e24c62 1511 ndev->features = NETIF_F_SG;
8a3b7a25
DB
1512 ndev->netdev_ops = &axienet_netdev_ops;
1513 ndev->ethtool_ops = &axienet_ethtool_ops;
1514
1515 lp = netdev_priv(ndev);
1516 lp->ndev = ndev;
1517 lp->dev = &op->dev;
1518 lp->options = XAE_OPTION_DEFAULTS;
1519 /* Map device registers */
1520 lp->regs = of_iomap(op->dev.of_node, 0);
1521 if (!lp->regs) {
1522 dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
0f113b81 1523 ret = -ENOMEM;
8a3b7a25
DB
1524 goto nodev;
1525 }
1526 /* Setup checksum offload, but default to off if not specified */
1527 lp->features = 0;
1528
1529 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1530 if (p) {
1531 switch (be32_to_cpup(p)) {
1532 case 1:
1533 lp->csum_offload_on_tx_path =
1534 XAE_FEATURE_PARTIAL_TX_CSUM;
1535 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1536 /* Can checksum TCP/UDP over IPv4. */
1537 ndev->features |= NETIF_F_IP_CSUM;
1538 break;
1539 case 2:
1540 lp->csum_offload_on_tx_path =
1541 XAE_FEATURE_FULL_TX_CSUM;
1542 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1543 /* Can checksum TCP/UDP over IPv4. */
1544 ndev->features |= NETIF_F_IP_CSUM;
1545 break;
1546 default:
1547 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1548 }
1549 }
1550 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1551 if (p) {
1552 switch (be32_to_cpup(p)) {
1553 case 1:
1554 lp->csum_offload_on_rx_path =
1555 XAE_FEATURE_PARTIAL_RX_CSUM;
1556 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1557 break;
1558 case 2:
1559 lp->csum_offload_on_rx_path =
1560 XAE_FEATURE_FULL_RX_CSUM;
1561 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1562 break;
1563 default:
1564 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1565 }
1566 }
1567 /* For supporting jumbo frames, the Axi Ethernet hardware must have
f080a8c3
ST
1568 * a larger Rx/Tx Memory. Typically, the size must be large so that
1569 * we can enable jumbo option and start supporting jumbo frames.
1570 * Here we check for memory allocated for Rx/Tx in the hardware from
1571 * the device-tree and accordingly set flags.
1572 */
8a3b7a25 1573 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
f080a8c3
ST
1574 if (p)
1575 lp->rxmem = be32_to_cpup(p);
8a3b7a25
DB
1576 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1577 if (p)
1578 lp->phy_type = be32_to_cpup(p);
1579
1580 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1581 np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1582 if (!np) {
1583 dev_err(&op->dev, "could not find DMA node\n");
0f113b81 1584 ret = -ENODEV;
8a3b7a25
DB
1585 goto err_iounmap;
1586 }
1587 lp->dma_regs = of_iomap(np, 0);
1588 if (lp->dma_regs) {
1589 dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1590 } else {
1591 dev_err(&op->dev, "unable to map DMA registers\n");
1592 of_node_put(np);
1593 }
1594 lp->rx_irq = irq_of_parse_and_map(np, 1);
1595 lp->tx_irq = irq_of_parse_and_map(np, 0);
1596 of_node_put(np);
cb59c87d 1597 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
8a3b7a25
DB
1598 dev_err(&op->dev, "could not determine irqs\n");
1599 ret = -ENOMEM;
1600 goto err_iounmap_2;
1601 }
1602
1603 /* Retrieve the MAC address */
1604 addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1605 if ((!addr) || (size != 6)) {
1606 dev_err(&op->dev, "could not find MAC address\n");
1607 ret = -ENODEV;
1608 goto err_iounmap_2;
1609 }
1610 axienet_set_mac_address(ndev, (void *) addr);
1611
1612 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1613 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1614
1615 lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
d7cc3163
ST
1616 if (lp->phy_node)
1617 ret = axienet_mdio_setup(lp, op->dev.of_node);
8a3b7a25
DB
1618 if (ret)
1619 dev_warn(&op->dev, "error registering MDIO bus\n");
1620
1621 ret = register_netdev(lp->ndev);
1622 if (ret) {
1623 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1624 goto err_iounmap_2;
1625 }
1626
8a3b7a25
DB
1627 return 0;
1628
1629err_iounmap_2:
1630 if (lp->dma_regs)
1631 iounmap(lp->dma_regs);
1632err_iounmap:
1633 iounmap(lp->regs);
1634nodev:
1635 free_netdev(ndev);
1636 ndev = NULL;
1637 return ret;
1638}
1639
48d16cb1 1640static int axienet_of_remove(struct platform_device *op)
8a3b7a25 1641{
8513fbd8 1642 struct net_device *ndev = platform_get_drvdata(op);
8a3b7a25
DB
1643 struct axienet_local *lp = netdev_priv(ndev);
1644
1645 axienet_mdio_teardown(lp);
1646 unregister_netdev(ndev);
1647
6f3a59ac 1648 of_node_put(lp->phy_node);
8a3b7a25
DB
1649 lp->phy_node = NULL;
1650
8a3b7a25
DB
1651 iounmap(lp->regs);
1652 if (lp->dma_regs)
1653 iounmap(lp->dma_regs);
1654 free_netdev(ndev);
1655
1656 return 0;
1657}
1658
1659static struct platform_driver axienet_of_driver = {
1660 .probe = axienet_of_probe,
48d16cb1 1661 .remove = axienet_of_remove,
8a3b7a25 1662 .driver = {
8a3b7a25
DB
1663 .name = "xilinx_axienet",
1664 .of_match_table = axienet_of_match,
1665 },
1666};
1667
b4a46676 1668module_platform_driver(axienet_of_driver);
8a3b7a25
DB
1669
1670MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1671MODULE_AUTHOR("Xilinx");
1672MODULE_LICENSE("GPL");