]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/net/ethernet/xilinx/xilinx_axienet_main.c
Merge branch 'xen-netback-rx-refactor'
[thirdparty/linux.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
CommitLineData
8a3b7a25
DB
1/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
59a54f30
MS
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
8a3b7a25
DB
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
8a3b7a25
DB
25#include <linux/module.h>
26#include <linux/netdevice.h>
27#include <linux/of_mdio.h>
28#include <linux/of_platform.h>
9d5e8ec6 29#include <linux/of_irq.h>
8a3b7a25
DB
30#include <linux/of_address.h>
31#include <linux/skbuff.h>
32#include <linux/spinlock.h>
33#include <linux/phy.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36
37#include "xilinx_axienet.h"
38
39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40#define TX_BD_NUM 64
41#define RX_BD_NUM 128
42
43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44#define DRIVER_NAME "xaxienet"
45#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
46#define DRIVER_VERSION "1.00a"
47
48#define AXIENET_REGS_N 32
49
50/* Match table for of_platform binding */
74847f23 51static const struct of_device_id axienet_of_match[] = {
8a3b7a25
DB
52 { .compatible = "xlnx,axi-ethernet-1.00.a", },
53 { .compatible = "xlnx,axi-ethernet-1.01.a", },
54 { .compatible = "xlnx,axi-ethernet-2.01.a", },
55 {},
56};
57
58MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60/* Option table for setting up Axi Ethernet hardware options */
61static struct axienet_option axienet_options[] = {
62 /* Turn on jumbo packet support for both Rx and Tx */
63 {
64 .opt = XAE_OPTION_JUMBO,
65 .reg = XAE_TC_OFFSET,
66 .m_or = XAE_TC_JUM_MASK,
67 }, {
68 .opt = XAE_OPTION_JUMBO,
69 .reg = XAE_RCW1_OFFSET,
70 .m_or = XAE_RCW1_JUM_MASK,
71 }, { /* Turn on VLAN packet support for both Rx and Tx */
72 .opt = XAE_OPTION_VLAN,
73 .reg = XAE_TC_OFFSET,
74 .m_or = XAE_TC_VLAN_MASK,
75 }, {
76 .opt = XAE_OPTION_VLAN,
77 .reg = XAE_RCW1_OFFSET,
78 .m_or = XAE_RCW1_VLAN_MASK,
79 }, { /* Turn on FCS stripping on receive packets */
80 .opt = XAE_OPTION_FCS_STRIP,
81 .reg = XAE_RCW1_OFFSET,
82 .m_or = XAE_RCW1_FCS_MASK,
83 }, { /* Turn on FCS insertion on transmit packets */
84 .opt = XAE_OPTION_FCS_INSERT,
85 .reg = XAE_TC_OFFSET,
86 .m_or = XAE_TC_FCS_MASK,
87 }, { /* Turn off length/type field checking on receive packets */
88 .opt = XAE_OPTION_LENTYPE_ERR,
89 .reg = XAE_RCW1_OFFSET,
90 .m_or = XAE_RCW1_LT_DIS_MASK,
91 }, { /* Turn on Rx flow control */
92 .opt = XAE_OPTION_FLOW_CONTROL,
93 .reg = XAE_FCC_OFFSET,
94 .m_or = XAE_FCC_FCRX_MASK,
95 }, { /* Turn on Tx flow control */
96 .opt = XAE_OPTION_FLOW_CONTROL,
97 .reg = XAE_FCC_OFFSET,
98 .m_or = XAE_FCC_FCTX_MASK,
99 }, { /* Turn on promiscuous frame filtering */
100 .opt = XAE_OPTION_PROMISC,
101 .reg = XAE_FMI_OFFSET,
102 .m_or = XAE_FMI_PM_MASK,
103 }, { /* Enable transmitter */
104 .opt = XAE_OPTION_TXEN,
105 .reg = XAE_TC_OFFSET,
106 .m_or = XAE_TC_TX_MASK,
107 }, { /* Enable receiver */
108 .opt = XAE_OPTION_RXEN,
109 .reg = XAE_RCW1_OFFSET,
110 .m_or = XAE_RCW1_RX_MASK,
111 },
112 {}
113};
114
115/**
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp: Pointer to axienet local structure
118 * @reg: Address offset from the base address of the Axi DMA core
119 *
b0d081c5 120 * Return: The contents of the Axi DMA register
8a3b7a25
DB
121 *
122 * This function returns the contents of the corresponding Axi DMA register.
123 */
124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125{
126 return in_be32(lp->dma_regs + reg);
127}
128
129/**
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp: Pointer to axienet local structure
132 * @reg: Address offset from the base address of the Axi DMA core
133 * @value: Value to be written into the Axi DMA register
134 *
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
137 */
138static inline void axienet_dma_out32(struct axienet_local *lp,
139 off_t reg, u32 value)
140{
141 out_be32((lp->dma_regs + reg), value);
142}
143
144/**
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev: Pointer to the net_device structure
147 *
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
151 */
152static void axienet_dma_bd_release(struct net_device *ndev)
153{
154 int i;
155 struct axienet_local *lp = netdev_priv(ndev);
156
157 for (i = 0; i < RX_BD_NUM; i++) {
158 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 lp->max_frm_size, DMA_FROM_DEVICE);
160 dev_kfree_skb((struct sk_buff *)
161 (lp->rx_bd_v[i].sw_id_offset));
162 }
163
164 if (lp->rx_bd_v) {
165 dma_free_coherent(ndev->dev.parent,
166 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 lp->rx_bd_v,
168 lp->rx_bd_p);
169 }
170 if (lp->tx_bd_v) {
171 dma_free_coherent(ndev->dev.parent,
172 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 lp->tx_bd_v,
174 lp->tx_bd_p);
175 }
176}
177
178/**
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev: Pointer to the net_device structure
181 *
b0d081c5 182 * Return: 0, on success -ENOMEM, on failure
8a3b7a25
DB
183 *
184 * This function is called to initialize the Rx and Tx DMA descriptor
185 * rings. This initializes the descriptors with required default values
186 * and is called when Axi Ethernet driver reset is called.
187 */
188static int axienet_dma_bd_init(struct net_device *ndev)
189{
190 u32 cr;
191 int i;
192 struct sk_buff *skb;
193 struct axienet_local *lp = netdev_priv(ndev);
194
195 /* Reset the indexes which are used for accessing the BDs */
196 lp->tx_bd_ci = 0;
197 lp->tx_bd_tail = 0;
198 lp->rx_bd_ci = 0;
199
850a7503 200 /* Allocate the Tx and Rx buffer descriptors. */
ede23fa8
JP
201 lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
202 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
203 &lp->tx_bd_p, GFP_KERNEL);
d0320f75 204 if (!lp->tx_bd_v)
8a3b7a25 205 goto out;
8a3b7a25 206
ede23fa8
JP
207 lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
208 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
209 &lp->rx_bd_p, GFP_KERNEL);
d0320f75 210 if (!lp->rx_bd_v)
8a3b7a25 211 goto out;
8a3b7a25 212
8a3b7a25
DB
213 for (i = 0; i < TX_BD_NUM; i++) {
214 lp->tx_bd_v[i].next = lp->tx_bd_p +
215 sizeof(*lp->tx_bd_v) *
216 ((i + 1) % TX_BD_NUM);
217 }
218
8a3b7a25
DB
219 for (i = 0; i < RX_BD_NUM; i++) {
220 lp->rx_bd_v[i].next = lp->rx_bd_p +
221 sizeof(*lp->rx_bd_v) *
222 ((i + 1) % RX_BD_NUM);
223
224 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
720a43ef 225 if (!skb)
8a3b7a25 226 goto out;
8a3b7a25
DB
227
228 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
229 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
230 skb->data,
231 lp->max_frm_size,
232 DMA_FROM_DEVICE);
233 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
234 }
235
236 /* Start updating the Rx channel control register */
237 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
238 /* Update the interrupt coalesce count */
239 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
240 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
241 /* Update the delay timer count */
242 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
243 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
244 /* Enable coalesce, delay timer and error interrupts */
245 cr |= XAXIDMA_IRQ_ALL_MASK;
246 /* Write to the Rx channel control register */
247 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
248
249 /* Start updating the Tx channel control register */
250 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
251 /* Update the interrupt coalesce count */
252 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
253 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
254 /* Update the delay timer count */
255 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
256 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
257 /* Enable coalesce, delay timer and error interrupts */
258 cr |= XAXIDMA_IRQ_ALL_MASK;
259 /* Write to the Tx channel control register */
260 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
261
262 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
850a7503
MS
263 * halted state. This will make the Rx side ready for reception.
264 */
8a3b7a25
DB
265 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
266 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
267 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
268 cr | XAXIDMA_CR_RUNSTOP_MASK);
269 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
270 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
271
272 /* Write to the RS (Run-stop) bit in the Tx channel control register.
273 * Tx channel is now ready to run. But only after we write to the
850a7503
MS
274 * tail pointer register that the Tx channel will start transmitting.
275 */
8a3b7a25
DB
276 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
277 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
278 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
279 cr | XAXIDMA_CR_RUNSTOP_MASK);
280
281 return 0;
282out:
283 axienet_dma_bd_release(ndev);
284 return -ENOMEM;
285}
286
287/**
288 * axienet_set_mac_address - Write the MAC address
289 * @ndev: Pointer to the net_device structure
290 * @address: 6 byte Address to be written as MAC address
291 *
292 * This function is called to initialize the MAC address of the Axi Ethernet
293 * core. It writes to the UAW0 and UAW1 registers of the core.
294 */
295static void axienet_set_mac_address(struct net_device *ndev, void *address)
296{
297 struct axienet_local *lp = netdev_priv(ndev);
298
299 if (address)
300 memcpy(ndev->dev_addr, address, ETH_ALEN);
301 if (!is_valid_ether_addr(ndev->dev_addr))
7efd26d0 302 eth_random_addr(ndev->dev_addr);
8a3b7a25
DB
303
304 /* Set up unicast MAC address filter set its mac address */
305 axienet_iow(lp, XAE_UAW0_OFFSET,
306 (ndev->dev_addr[0]) |
307 (ndev->dev_addr[1] << 8) |
308 (ndev->dev_addr[2] << 16) |
309 (ndev->dev_addr[3] << 24));
310 axienet_iow(lp, XAE_UAW1_OFFSET,
311 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
312 ~XAE_UAW1_UNICASTADDR_MASK) |
313 (ndev->dev_addr[4] |
314 (ndev->dev_addr[5] << 8))));
315}
316
317/**
318 * netdev_set_mac_address - Write the MAC address (from outside the driver)
319 * @ndev: Pointer to the net_device structure
320 * @p: 6 byte Address to be written as MAC address
321 *
b0d081c5 322 * Return: 0 for all conditions. Presently, there is no failure case.
8a3b7a25
DB
323 *
324 * This function is called to initialize the MAC address of the Axi Ethernet
325 * core. It calls the core specific axienet_set_mac_address. This is the
326 * function that goes into net_device_ops structure entry ndo_set_mac_address.
327 */
328static int netdev_set_mac_address(struct net_device *ndev, void *p)
329{
330 struct sockaddr *addr = p;
331 axienet_set_mac_address(ndev, addr->sa_data);
332 return 0;
333}
334
335/**
336 * axienet_set_multicast_list - Prepare the multicast table
337 * @ndev: Pointer to the net_device structure
338 *
339 * This function is called to initialize the multicast table during
340 * initialization. The Axi Ethernet basic multicast support has a four-entry
341 * multicast table which is initialized here. Additionally this function
342 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
343 * means whenever the multicast table entries need to be updated this
344 * function gets called.
345 */
346static void axienet_set_multicast_list(struct net_device *ndev)
347{
348 int i;
349 u32 reg, af0reg, af1reg;
350 struct axienet_local *lp = netdev_priv(ndev);
351
352 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
353 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
354 /* We must make the kernel realize we had to move into
355 * promiscuous mode. If it was a promiscuous mode request
850a7503
MS
356 * the flag is already set. If not we set it.
357 */
8a3b7a25
DB
358 ndev->flags |= IFF_PROMISC;
359 reg = axienet_ior(lp, XAE_FMI_OFFSET);
360 reg |= XAE_FMI_PM_MASK;
361 axienet_iow(lp, XAE_FMI_OFFSET, reg);
362 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
363 } else if (!netdev_mc_empty(ndev)) {
364 struct netdev_hw_addr *ha;
365
366 i = 0;
367 netdev_for_each_mc_addr(ha, ndev) {
368 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
369 break;
370
371 af0reg = (ha->addr[0]);
372 af0reg |= (ha->addr[1] << 8);
373 af0reg |= (ha->addr[2] << 16);
374 af0reg |= (ha->addr[3] << 24);
375
376 af1reg = (ha->addr[4]);
377 af1reg |= (ha->addr[5] << 8);
378
379 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
380 reg |= i;
381
382 axienet_iow(lp, XAE_FMI_OFFSET, reg);
383 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
384 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
385 i++;
386 }
387 } else {
388 reg = axienet_ior(lp, XAE_FMI_OFFSET);
389 reg &= ~XAE_FMI_PM_MASK;
390
391 axienet_iow(lp, XAE_FMI_OFFSET, reg);
392
393 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
394 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
395 reg |= i;
396
397 axienet_iow(lp, XAE_FMI_OFFSET, reg);
398 axienet_iow(lp, XAE_AF0_OFFSET, 0);
399 axienet_iow(lp, XAE_AF1_OFFSET, 0);
400 }
401
402 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
403 }
404}
405
406/**
407 * axienet_setoptions - Set an Axi Ethernet option
408 * @ndev: Pointer to the net_device structure
409 * @options: Option to be enabled/disabled
410 *
411 * The Axi Ethernet core has multiple features which can be selectively turned
412 * on or off. The typical options could be jumbo frame option, basic VLAN
413 * option, promiscuous mode option etc. This function is used to set or clear
414 * these options in the Axi Ethernet hardware. This is done through
415 * axienet_option structure .
416 */
417static void axienet_setoptions(struct net_device *ndev, u32 options)
418{
419 int reg;
420 struct axienet_local *lp = netdev_priv(ndev);
421 struct axienet_option *tp = &axienet_options[0];
422
423 while (tp->opt) {
424 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
425 if (options & tp->opt)
426 reg |= tp->m_or;
427 axienet_iow(lp, tp->reg, reg);
428 tp++;
429 }
430
431 lp->options |= options;
432}
433
434static void __axienet_device_reset(struct axienet_local *lp,
435 struct device *dev, off_t offset)
436{
437 u32 timeout;
438 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
439 * process of Axi DMA takes a while to complete as all pending
440 * commands/transfers will be flushed or completed during this
850a7503
MS
441 * reset process.
442 */
8a3b7a25
DB
443 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
444 timeout = DELAY_OF_ONE_MILLISEC;
445 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
446 udelay(1);
447 if (--timeout == 0) {
c81a97b5
ST
448 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
449 __func__);
8a3b7a25
DB
450 break;
451 }
452 }
453}
454
455/**
456 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
457 * @ndev: Pointer to the net_device structure
458 *
459 * This function is called to reset and initialize the Axi Ethernet core. This
460 * is typically called during initialization. It does a reset of the Axi DMA
461 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
462 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
463 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
464 * core.
465 */
466static void axienet_device_reset(struct net_device *ndev)
467{
468 u32 axienet_status;
469 struct axienet_local *lp = netdev_priv(ndev);
470
471 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
472 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
473
474 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
f080a8c3 475 lp->options |= XAE_OPTION_VLAN;
8a3b7a25
DB
476 lp->options &= (~XAE_OPTION_JUMBO);
477
478 if ((ndev->mtu > XAE_MTU) &&
f080a8c3
ST
479 (ndev->mtu <= XAE_JUMBO_MTU)) {
480 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
481 XAE_TRL_SIZE;
482
483 if (lp->max_frm_size <= lp->rxmem)
484 lp->options |= XAE_OPTION_JUMBO;
8a3b7a25
DB
485 }
486
487 if (axienet_dma_bd_init(ndev)) {
c81a97b5
ST
488 netdev_err(ndev, "%s: descriptor allocation failed\n",
489 __func__);
8a3b7a25
DB
490 }
491
492 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
493 axienet_status &= ~XAE_RCW1_RX_MASK;
494 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
495
496 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
497 if (axienet_status & XAE_INT_RXRJECT_MASK)
498 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
499
500 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
501
502 /* Sync default options with HW but leave receiver and
850a7503
MS
503 * transmitter disabled.
504 */
8a3b7a25
DB
505 axienet_setoptions(ndev, lp->options &
506 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
507 axienet_set_mac_address(ndev, NULL);
508 axienet_set_multicast_list(ndev);
509 axienet_setoptions(ndev, lp->options);
510
860e9538 511 netif_trans_update(ndev);
8a3b7a25
DB
512}
513
514/**
515 * axienet_adjust_link - Adjust the PHY link speed/duplex.
516 * @ndev: Pointer to the net_device structure
517 *
518 * This function is called to change the speed and duplex setting after
519 * auto negotiation is done by the PHY. This is the function that gets
520 * registered with the PHY interface through the "of_phy_connect" call.
521 */
522static void axienet_adjust_link(struct net_device *ndev)
523{
524 u32 emmc_reg;
525 u32 link_state;
526 u32 setspeed = 1;
527 struct axienet_local *lp = netdev_priv(ndev);
b1b7dcff 528 struct phy_device *phy = ndev->phydev;
8a3b7a25
DB
529
530 link_state = phy->speed | (phy->duplex << 1) | phy->link;
531 if (lp->last_link != link_state) {
532 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
533 if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
534 setspeed = 0;
535 } else {
536 if ((phy->speed == SPEED_1000) &&
537 (lp->phy_type == XAE_PHY_TYPE_MII))
538 setspeed = 0;
539 }
540
541 if (setspeed == 1) {
542 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
543 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
544
545 switch (phy->speed) {
546 case SPEED_1000:
547 emmc_reg |= XAE_EMMC_LINKSPD_1000;
548 break;
549 case SPEED_100:
550 emmc_reg |= XAE_EMMC_LINKSPD_100;
551 break;
552 case SPEED_10:
553 emmc_reg |= XAE_EMMC_LINKSPD_10;
554 break;
555 default:
556 dev_err(&ndev->dev, "Speed other than 10, 100 "
557 "or 1Gbps is not supported\n");
558 break;
559 }
560
561 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
562 lp->last_link = link_state;
563 phy_print_status(phy);
564 } else {
c81a97b5
ST
565 netdev_err(ndev,
566 "Error setting Axi Ethernet mac speed\n");
8a3b7a25
DB
567 }
568 }
569}
570
571/**
572 * axienet_start_xmit_done - Invoked once a transmit is completed by the
573 * Axi DMA Tx channel.
574 * @ndev: Pointer to the net_device structure
575 *
576 * This function is invoked from the Axi DMA Tx isr to notify the completion
577 * of transmit operation. It clears fields in the corresponding Tx BDs and
578 * unmaps the corresponding buffer so that CPU can regain ownership of the
579 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
580 * required.
581 */
582static void axienet_start_xmit_done(struct net_device *ndev)
583{
584 u32 size = 0;
585 u32 packets = 0;
586 struct axienet_local *lp = netdev_priv(ndev);
587 struct axidma_bd *cur_p;
588 unsigned int status = 0;
589
590 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
591 status = cur_p->status;
592 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
593 dma_unmap_single(ndev->dev.parent, cur_p->phys,
594 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
595 DMA_TO_DEVICE);
596 if (cur_p->app4)
597 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
598 /*cur_p->phys = 0;*/
599 cur_p->app0 = 0;
600 cur_p->app1 = 0;
601 cur_p->app2 = 0;
602 cur_p->app4 = 0;
603 cur_p->status = 0;
604
605 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
606 packets++;
607
91ff37ff
MS
608 ++lp->tx_bd_ci;
609 lp->tx_bd_ci %= TX_BD_NUM;
8a3b7a25
DB
610 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
611 status = cur_p->status;
612 }
613
614 ndev->stats.tx_packets += packets;
615 ndev->stats.tx_bytes += size;
616 netif_wake_queue(ndev);
617}
618
619/**
620 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
621 * @lp: Pointer to the axienet_local structure
622 * @num_frag: The number of BDs to check for
623 *
b0d081c5 624 * Return: 0, on success
8a3b7a25
DB
625 * NETDEV_TX_BUSY, if any of the descriptors are not free
626 *
627 * This function is invoked before BDs are allocated and transmission starts.
628 * This function returns 0 if a BD or group of BDs can be allocated for
629 * transmission. If the BD or any of the BDs are not free the function
630 * returns a busy status. This is invoked from axienet_start_xmit.
631 */
632static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
633 int num_frag)
634{
635 struct axidma_bd *cur_p;
636 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
637 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
638 return NETDEV_TX_BUSY;
639 return 0;
640}
641
642/**
643 * axienet_start_xmit - Starts the transmission.
644 * @skb: sk_buff pointer that contains data to be Txed.
645 * @ndev: Pointer to net_device structure.
646 *
b0d081c5 647 * Return: NETDEV_TX_OK, on success
8a3b7a25
DB
648 * NETDEV_TX_BUSY, if any of the descriptors are not free
649 *
650 * This function is invoked from upper layers to initiate transmission. The
651 * function uses the next available free BDs and populates their fields to
652 * start the transmission. Additionally if checksum offloading is supported,
653 * it populates AXI Stream Control fields with appropriate values.
654 */
655static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
656{
657 u32 ii;
658 u32 num_frag;
659 u32 csum_start_off;
660 u32 csum_index_off;
661 skb_frag_t *frag;
662 dma_addr_t tail_p;
663 struct axienet_local *lp = netdev_priv(ndev);
664 struct axidma_bd *cur_p;
665
666 num_frag = skb_shinfo(skb)->nr_frags;
667 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
668
669 if (axienet_check_tx_bd_space(lp, num_frag)) {
670 if (!netif_queue_stopped(ndev))
671 netif_stop_queue(ndev);
672 return NETDEV_TX_BUSY;
673 }
674
675 if (skb->ip_summed == CHECKSUM_PARTIAL) {
676 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
677 /* Tx Full Checksum Offload Enabled */
678 cur_p->app0 |= 2;
679 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
680 csum_start_off = skb_transport_offset(skb);
681 csum_index_off = csum_start_off + skb->csum_offset;
682 /* Tx Partial Checksum Offload Enabled */
683 cur_p->app0 |= 1;
684 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
685 }
686 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
687 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
688 }
689
690 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
691 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
692 skb_headlen(skb), DMA_TO_DEVICE);
693
694 for (ii = 0; ii < num_frag; ii++) {
91ff37ff
MS
695 ++lp->tx_bd_tail;
696 lp->tx_bd_tail %= TX_BD_NUM;
8a3b7a25
DB
697 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
698 frag = &skb_shinfo(skb)->frags[ii];
699 cur_p->phys = dma_map_single(ndev->dev.parent,
700 skb_frag_address(frag),
701 skb_frag_size(frag),
702 DMA_TO_DEVICE);
703 cur_p->cntrl = skb_frag_size(frag);
704 }
705
706 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
707 cur_p->app4 = (unsigned long)skb;
708
709 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
710 /* Start the transfer */
711 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
91ff37ff
MS
712 ++lp->tx_bd_tail;
713 lp->tx_bd_tail %= TX_BD_NUM;
8a3b7a25
DB
714
715 return NETDEV_TX_OK;
716}
717
718/**
719 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
720 * BD processing.
721 * @ndev: Pointer to net_device structure.
722 *
723 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
724 * does minimal processing and invokes "netif_rx" to complete further
725 * processing.
726 */
727static void axienet_recv(struct net_device *ndev)
728{
729 u32 length;
730 u32 csumstatus;
731 u32 size = 0;
732 u32 packets = 0;
38e96b35 733 dma_addr_t tail_p = 0;
8a3b7a25
DB
734 struct axienet_local *lp = netdev_priv(ndev);
735 struct sk_buff *skb, *new_skb;
736 struct axidma_bd *cur_p;
737
8a3b7a25
DB
738 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
739
740 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
38e96b35 741 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
8a3b7a25
DB
742 skb = (struct sk_buff *) (cur_p->sw_id_offset);
743 length = cur_p->app4 & 0x0000FFFF;
744
745 dma_unmap_single(ndev->dev.parent, cur_p->phys,
746 lp->max_frm_size,
747 DMA_FROM_DEVICE);
748
749 skb_put(skb, length);
750 skb->protocol = eth_type_trans(skb, ndev);
751 /*skb_checksum_none_assert(skb);*/
752 skb->ip_summed = CHECKSUM_NONE;
753
754 /* if we're doing Rx csum offload, set it up */
755 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
756 csumstatus = (cur_p->app2 &
757 XAE_FULL_CSUM_STATUS_MASK) >> 3;
758 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
759 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
760 skb->ip_summed = CHECKSUM_UNNECESSARY;
761 }
762 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
ceffc4ac 763 skb->protocol == htons(ETH_P_IP) &&
8a3b7a25
DB
764 skb->len > 64) {
765 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
766 skb->ip_summed = CHECKSUM_COMPLETE;
767 }
768
769 netif_rx(skb);
770
771 size += length;
772 packets++;
773
774 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
720a43ef 775 if (!new_skb)
8a3b7a25 776 return;
720a43ef 777
8a3b7a25
DB
778 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
779 lp->max_frm_size,
780 DMA_FROM_DEVICE);
781 cur_p->cntrl = lp->max_frm_size;
782 cur_p->status = 0;
783 cur_p->sw_id_offset = (u32) new_skb;
784
91ff37ff
MS
785 ++lp->rx_bd_ci;
786 lp->rx_bd_ci %= RX_BD_NUM;
8a3b7a25
DB
787 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
788 }
789
790 ndev->stats.rx_packets += packets;
791 ndev->stats.rx_bytes += size;
792
38e96b35
PC
793 if (tail_p)
794 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
8a3b7a25
DB
795}
796
797/**
798 * axienet_tx_irq - Tx Done Isr.
799 * @irq: irq number
800 * @_ndev: net_device pointer
801 *
b0d081c5 802 * Return: IRQ_HANDLED for all cases.
8a3b7a25
DB
803 *
804 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
805 * to complete the BD processing.
806 */
807static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
808{
809 u32 cr;
810 unsigned int status;
811 struct net_device *ndev = _ndev;
812 struct axienet_local *lp = netdev_priv(ndev);
813
814 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
815 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
80c775ac 816 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
8a3b7a25
DB
817 axienet_start_xmit_done(lp->ndev);
818 goto out;
819 }
820 if (!(status & XAXIDMA_IRQ_ALL_MASK))
821 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
822 if (status & XAXIDMA_IRQ_ERROR_MASK) {
823 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
824 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
825 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
826
827 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
828 /* Disable coalesce, delay timer and error interrupts */
829 cr &= (~XAXIDMA_IRQ_ALL_MASK);
830 /* Write to the Tx channel control register */
831 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
832
833 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
834 /* Disable coalesce, delay timer and error interrupts */
835 cr &= (~XAXIDMA_IRQ_ALL_MASK);
836 /* Write to the Rx channel control register */
837 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
838
839 tasklet_schedule(&lp->dma_err_tasklet);
80c775ac 840 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
8a3b7a25
DB
841 }
842out:
8a3b7a25
DB
843 return IRQ_HANDLED;
844}
845
846/**
847 * axienet_rx_irq - Rx Isr.
848 * @irq: irq number
849 * @_ndev: net_device pointer
850 *
b0d081c5 851 * Return: IRQ_HANDLED for all cases.
8a3b7a25
DB
852 *
853 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
854 * processing.
855 */
856static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
857{
858 u32 cr;
859 unsigned int status;
860 struct net_device *ndev = _ndev;
861 struct axienet_local *lp = netdev_priv(ndev);
862
863 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
864 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
80c775ac 865 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
8a3b7a25
DB
866 axienet_recv(lp->ndev);
867 goto out;
868 }
869 if (!(status & XAXIDMA_IRQ_ALL_MASK))
870 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
871 if (status & XAXIDMA_IRQ_ERROR_MASK) {
872 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
873 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
874 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
875
876 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
877 /* Disable coalesce, delay timer and error interrupts */
878 cr &= (~XAXIDMA_IRQ_ALL_MASK);
879 /* Finally write to the Tx channel control register */
880 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
881
882 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
883 /* Disable coalesce, delay timer and error interrupts */
884 cr &= (~XAXIDMA_IRQ_ALL_MASK);
885 /* write to the Rx channel control register */
886 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
887
888 tasklet_schedule(&lp->dma_err_tasklet);
80c775ac 889 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
8a3b7a25
DB
890 }
891out:
8a3b7a25
DB
892 return IRQ_HANDLED;
893}
894
aecb55be
JM
895static void axienet_dma_err_handler(unsigned long data);
896
8a3b7a25
DB
897/**
898 * axienet_open - Driver open routine.
899 * @ndev: Pointer to net_device structure
900 *
b0d081c5 901 * Return: 0, on success.
8a3b7a25
DB
902 * -ENODEV, if PHY cannot be connected to
903 * non-zero error value on failure
904 *
905 * This is the driver open routine. It calls phy_start to start the PHY device.
906 * It also allocates interrupt service routines, enables the interrupt lines
907 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
908 * descriptors are initialized.
909 */
910static int axienet_open(struct net_device *ndev)
911{
912 int ret, mdio_mcreg;
913 struct axienet_local *lp = netdev_priv(ndev);
b1b7dcff 914 struct phy_device *phydev = NULL;
8a3b7a25
DB
915
916 dev_dbg(&ndev->dev, "axienet_open()\n");
917
918 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
919 ret = axienet_mdio_wait_until_ready(lp);
920 if (ret < 0)
921 return ret;
922 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
923 * When we do an Axi Ethernet reset, it resets the complete core
924 * including the MDIO. If MDIO is not disabled when the reset
850a7503
MS
925 * process is started, MDIO will be broken afterwards.
926 */
8a3b7a25
DB
927 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
928 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
929 axienet_device_reset(ndev);
930 /* Enable the MDIO */
931 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
932 ret = axienet_mdio_wait_until_ready(lp);
933 if (ret < 0)
934 return ret;
935
936 if (lp->phy_node) {
d1d372e8 937 if (lp->phy_type == XAE_PHY_TYPE_GMII) {
b1b7dcff
PR
938 phydev = of_phy_connect(lp->ndev, lp->phy_node,
939 axienet_adjust_link, 0,
940 PHY_INTERFACE_MODE_GMII);
d1d372e8 941 } else if (lp->phy_type == XAE_PHY_TYPE_RGMII_2_0) {
b1b7dcff
PR
942 phydev = of_phy_connect(lp->ndev, lp->phy_node,
943 axienet_adjust_link, 0,
944 PHY_INTERFACE_MODE_RGMII_ID);
d1d372e8
ST
945 }
946
b1b7dcff 947 if (!phydev)
8a3b7a25 948 dev_err(lp->dev, "of_phy_connect() failed\n");
d7cc3163 949 else
b1b7dcff 950 phy_start(phydev);
8a3b7a25
DB
951 }
952
71c6c837
XF
953 /* Enable tasklets for Axi DMA error handling */
954 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
955 (unsigned long) lp);
956
8a3b7a25
DB
957 /* Enable interrupts for Axi DMA Tx */
958 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
959 if (ret)
960 goto err_tx_irq;
961 /* Enable interrupts for Axi DMA Rx */
962 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
963 if (ret)
964 goto err_rx_irq;
71c6c837 965
8a3b7a25
DB
966 return 0;
967
968err_rx_irq:
969 free_irq(lp->tx_irq, ndev);
970err_tx_irq:
b1b7dcff
PR
971 if (phydev)
972 phy_disconnect(phydev);
71c6c837 973 tasklet_kill(&lp->dma_err_tasklet);
8a3b7a25
DB
974 dev_err(lp->dev, "request_irq() failed\n");
975 return ret;
976}
977
978/**
979 * axienet_stop - Driver stop routine.
980 * @ndev: Pointer to net_device structure
981 *
b0d081c5 982 * Return: 0, on success.
8a3b7a25
DB
983 *
984 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
985 * device. It also removes the interrupt handlers and disables the interrupts.
986 * The Axi DMA Tx/Rx BDs are released.
987 */
988static int axienet_stop(struct net_device *ndev)
989{
990 u32 cr;
991 struct axienet_local *lp = netdev_priv(ndev);
992
993 dev_dbg(&ndev->dev, "axienet_close()\n");
994
995 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
996 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
997 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
998 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
999 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1000 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
1001 axienet_setoptions(ndev, lp->options &
1002 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1003
175c0dff 1004 tasklet_kill(&lp->dma_err_tasklet);
8a3b7a25
DB
1005
1006 free_irq(lp->tx_irq, ndev);
1007 free_irq(lp->rx_irq, ndev);
1008
b1b7dcff
PR
1009 if (ndev->phydev)
1010 phy_disconnect(ndev->phydev);
8a3b7a25
DB
1011
1012 axienet_dma_bd_release(ndev);
1013 return 0;
1014}
1015
1016/**
1017 * axienet_change_mtu - Driver change mtu routine.
1018 * @ndev: Pointer to net_device structure
1019 * @new_mtu: New mtu value to be applied
1020 *
b0d081c5 1021 * Return: Always returns 0 (success).
8a3b7a25
DB
1022 *
1023 * This is the change mtu driver routine. It checks if the Axi Ethernet
1024 * hardware supports jumbo frames before changing the mtu. This can be
1025 * called only when the device is not up.
1026 */
1027static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1028{
1029 struct axienet_local *lp = netdev_priv(ndev);
1030
1031 if (netif_running(ndev))
1032 return -EBUSY;
f080a8c3
ST
1033
1034 if ((new_mtu + VLAN_ETH_HLEN +
1035 XAE_TRL_SIZE) > lp->rxmem)
1036 return -EINVAL;
1037
1038 if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1039 return -EINVAL;
1040
1041 ndev->mtu = new_mtu;
8a3b7a25
DB
1042
1043 return 0;
1044}
1045
1046#ifdef CONFIG_NET_POLL_CONTROLLER
1047/**
1048 * axienet_poll_controller - Axi Ethernet poll mechanism.
1049 * @ndev: Pointer to net_device structure
1050 *
1051 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1052 * to polling the ISRs and are enabled back after the polling is done.
1053 */
1054static void axienet_poll_controller(struct net_device *ndev)
1055{
1056 struct axienet_local *lp = netdev_priv(ndev);
1057 disable_irq(lp->tx_irq);
1058 disable_irq(lp->rx_irq);
1059 axienet_rx_irq(lp->tx_irq, ndev);
1060 axienet_tx_irq(lp->rx_irq, ndev);
1061 enable_irq(lp->tx_irq);
1062 enable_irq(lp->rx_irq);
1063}
1064#endif
1065
1066static const struct net_device_ops axienet_netdev_ops = {
1067 .ndo_open = axienet_open,
1068 .ndo_stop = axienet_stop,
1069 .ndo_start_xmit = axienet_start_xmit,
1070 .ndo_change_mtu = axienet_change_mtu,
1071 .ndo_set_mac_address = netdev_set_mac_address,
1072 .ndo_validate_addr = eth_validate_addr,
1073 .ndo_set_rx_mode = axienet_set_multicast_list,
1074#ifdef CONFIG_NET_POLL_CONTROLLER
1075 .ndo_poll_controller = axienet_poll_controller,
1076#endif
1077};
1078
8a3b7a25
DB
1079/**
1080 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1081 * @ndev: Pointer to net_device structure
1082 * @ed: Pointer to ethtool_drvinfo structure
1083 *
1084 * This implements ethtool command for getting the driver information.
1085 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1086 */
1087static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1088 struct ethtool_drvinfo *ed)
1089{
7826d43f
JP
1090 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1091 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
8a3b7a25
DB
1092}
1093
1094/**
1095 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1096 * AxiEthernet core.
1097 * @ndev: Pointer to net_device structure
1098 *
1099 * This implements ethtool command for getting the total register length
1100 * information.
b0d081c5
MS
1101 *
1102 * Return: the total regs length
8a3b7a25
DB
1103 */
1104static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1105{
1106 return sizeof(u32) * AXIENET_REGS_N;
1107}
1108
1109/**
1110 * axienet_ethtools_get_regs - Dump the contents of all registers present
1111 * in AxiEthernet core.
1112 * @ndev: Pointer to net_device structure
1113 * @regs: Pointer to ethtool_regs structure
1114 * @ret: Void pointer used to return the contents of the registers.
1115 *
1116 * This implements ethtool command for getting the Axi Ethernet register dump.
1117 * Issue "ethtool -d ethX" to execute this function.
1118 */
1119static void axienet_ethtools_get_regs(struct net_device *ndev,
1120 struct ethtool_regs *regs, void *ret)
1121{
1122 u32 *data = (u32 *) ret;
1123 size_t len = sizeof(u32) * AXIENET_REGS_N;
1124 struct axienet_local *lp = netdev_priv(ndev);
1125
1126 regs->version = 0;
1127 regs->len = len;
1128
1129 memset(data, 0, len);
1130 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1131 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1132 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1133 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1134 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1135 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1136 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1137 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1138 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1139 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1140 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1141 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1142 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1143 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1144 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1145 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1146 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1147 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1148 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1149 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1150 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1151 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1152 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1153 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1154 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1155 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1156 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1157 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1158 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1159 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1160 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1161 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1162}
1163
1164/**
1165 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1166 * Tx and Rx paths.
1167 * @ndev: Pointer to net_device structure
1168 * @epauseparm: Pointer to ethtool_pauseparam structure.
1169 *
1170 * This implements ethtool command for getting axi ethernet pause frame
1171 * setting. Issue "ethtool -a ethX" to execute this function.
1172 */
1173static void
1174axienet_ethtools_get_pauseparam(struct net_device *ndev,
1175 struct ethtool_pauseparam *epauseparm)
1176{
1177 u32 regval;
1178 struct axienet_local *lp = netdev_priv(ndev);
1179 epauseparm->autoneg = 0;
1180 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1181 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1182 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1183}
1184
1185/**
1186 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1187 * settings.
1188 * @ndev: Pointer to net_device structure
b0d081c5 1189 * @epauseparm:Pointer to ethtool_pauseparam structure
8a3b7a25
DB
1190 *
1191 * This implements ethtool command for enabling flow control on Rx and Tx
1192 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1193 * function.
b0d081c5
MS
1194 *
1195 * Return: 0 on success, -EFAULT if device is running
8a3b7a25
DB
1196 */
1197static int
1198axienet_ethtools_set_pauseparam(struct net_device *ndev,
1199 struct ethtool_pauseparam *epauseparm)
1200{
1201 u32 regval = 0;
1202 struct axienet_local *lp = netdev_priv(ndev);
1203
1204 if (netif_running(ndev)) {
c81a97b5
ST
1205 netdev_err(ndev,
1206 "Please stop netif before applying configuration\n");
8a3b7a25
DB
1207 return -EFAULT;
1208 }
1209
1210 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1211 if (epauseparm->tx_pause)
1212 regval |= XAE_FCC_FCTX_MASK;
1213 else
1214 regval &= ~XAE_FCC_FCTX_MASK;
1215 if (epauseparm->rx_pause)
1216 regval |= XAE_FCC_FCRX_MASK;
1217 else
1218 regval &= ~XAE_FCC_FCRX_MASK;
1219 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1220
1221 return 0;
1222}
1223
1224/**
1225 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1226 * @ndev: Pointer to net_device structure
1227 * @ecoalesce: Pointer to ethtool_coalesce structure
1228 *
1229 * This implements ethtool command for getting the DMA interrupt coalescing
1230 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1231 * execute this function.
b0d081c5
MS
1232 *
1233 * Return: 0 always
8a3b7a25
DB
1234 */
1235static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1236 struct ethtool_coalesce *ecoalesce)
1237{
1238 u32 regval = 0;
1239 struct axienet_local *lp = netdev_priv(ndev);
1240 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1241 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1242 >> XAXIDMA_COALESCE_SHIFT;
1243 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1244 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1245 >> XAXIDMA_COALESCE_SHIFT;
1246 return 0;
1247}
1248
1249/**
1250 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1251 * @ndev: Pointer to net_device structure
1252 * @ecoalesce: Pointer to ethtool_coalesce structure
1253 *
1254 * This implements ethtool command for setting the DMA interrupt coalescing
1255 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1256 * prompt to execute this function.
b0d081c5
MS
1257 *
1258 * Return: 0, on success, Non-zero error value on failure.
8a3b7a25
DB
1259 */
1260static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1261 struct ethtool_coalesce *ecoalesce)
1262{
1263 struct axienet_local *lp = netdev_priv(ndev);
1264
1265 if (netif_running(ndev)) {
c81a97b5
ST
1266 netdev_err(ndev,
1267 "Please stop netif before applying configuration\n");
8a3b7a25
DB
1268 return -EFAULT;
1269 }
1270
1271 if ((ecoalesce->rx_coalesce_usecs) ||
1272 (ecoalesce->rx_coalesce_usecs_irq) ||
1273 (ecoalesce->rx_max_coalesced_frames_irq) ||
1274 (ecoalesce->tx_coalesce_usecs) ||
1275 (ecoalesce->tx_coalesce_usecs_irq) ||
1276 (ecoalesce->tx_max_coalesced_frames_irq) ||
1277 (ecoalesce->stats_block_coalesce_usecs) ||
1278 (ecoalesce->use_adaptive_rx_coalesce) ||
1279 (ecoalesce->use_adaptive_tx_coalesce) ||
1280 (ecoalesce->pkt_rate_low) ||
1281 (ecoalesce->rx_coalesce_usecs_low) ||
1282 (ecoalesce->rx_max_coalesced_frames_low) ||
1283 (ecoalesce->tx_coalesce_usecs_low) ||
1284 (ecoalesce->tx_max_coalesced_frames_low) ||
1285 (ecoalesce->pkt_rate_high) ||
1286 (ecoalesce->rx_coalesce_usecs_high) ||
1287 (ecoalesce->rx_max_coalesced_frames_high) ||
1288 (ecoalesce->tx_coalesce_usecs_high) ||
1289 (ecoalesce->tx_max_coalesced_frames_high) ||
1290 (ecoalesce->rate_sample_interval))
1291 return -EOPNOTSUPP;
1292 if (ecoalesce->rx_max_coalesced_frames)
1293 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1294 if (ecoalesce->tx_max_coalesced_frames)
1295 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1296
1297 return 0;
1298}
1299
c7735f1b 1300static const struct ethtool_ops axienet_ethtool_ops = {
8a3b7a25
DB
1301 .get_drvinfo = axienet_ethtools_get_drvinfo,
1302 .get_regs_len = axienet_ethtools_get_regs_len,
1303 .get_regs = axienet_ethtools_get_regs,
1304 .get_link = ethtool_op_get_link,
1305 .get_pauseparam = axienet_ethtools_get_pauseparam,
1306 .set_pauseparam = axienet_ethtools_set_pauseparam,
1307 .get_coalesce = axienet_ethtools_get_coalesce,
1308 .set_coalesce = axienet_ethtools_set_coalesce,
6e384840
PR
1309 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1310 .set_link_ksettings = phy_ethtool_set_link_ksettings,
8a3b7a25
DB
1311};
1312
1313/**
1314 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1315 * @data: Data passed
1316 *
1317 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1318 * Tx/Rx BDs.
1319 */
1320static void axienet_dma_err_handler(unsigned long data)
1321{
1322 u32 axienet_status;
1323 u32 cr, i;
1324 int mdio_mcreg;
1325 struct axienet_local *lp = (struct axienet_local *) data;
1326 struct net_device *ndev = lp->ndev;
1327 struct axidma_bd *cur_p;
1328
1329 axienet_setoptions(ndev, lp->options &
1330 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1331 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1332 axienet_mdio_wait_until_ready(lp);
1333 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1334 * When we do an Axi Ethernet reset, it resets the complete core
1335 * including the MDIO. So if MDIO is not disabled when the reset
850a7503
MS
1336 * process is started, MDIO will be broken afterwards.
1337 */
8a3b7a25
DB
1338 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1339 ~XAE_MDIO_MC_MDIOEN_MASK));
1340
1341 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1342 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1343
1344 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1345 axienet_mdio_wait_until_ready(lp);
1346
1347 for (i = 0; i < TX_BD_NUM; i++) {
1348 cur_p = &lp->tx_bd_v[i];
1349 if (cur_p->phys)
1350 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1351 (cur_p->cntrl &
1352 XAXIDMA_BD_CTRL_LENGTH_MASK),
1353 DMA_TO_DEVICE);
1354 if (cur_p->app4)
1355 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1356 cur_p->phys = 0;
1357 cur_p->cntrl = 0;
1358 cur_p->status = 0;
1359 cur_p->app0 = 0;
1360 cur_p->app1 = 0;
1361 cur_p->app2 = 0;
1362 cur_p->app3 = 0;
1363 cur_p->app4 = 0;
1364 cur_p->sw_id_offset = 0;
1365 }
1366
1367 for (i = 0; i < RX_BD_NUM; i++) {
1368 cur_p = &lp->rx_bd_v[i];
1369 cur_p->status = 0;
1370 cur_p->app0 = 0;
1371 cur_p->app1 = 0;
1372 cur_p->app2 = 0;
1373 cur_p->app3 = 0;
1374 cur_p->app4 = 0;
1375 }
1376
1377 lp->tx_bd_ci = 0;
1378 lp->tx_bd_tail = 0;
1379 lp->rx_bd_ci = 0;
1380
1381 /* Start updating the Rx channel control register */
1382 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1383 /* Update the interrupt coalesce count */
1384 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1385 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1386 /* Update the delay timer count */
1387 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1388 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1389 /* Enable coalesce, delay timer and error interrupts */
1390 cr |= XAXIDMA_IRQ_ALL_MASK;
1391 /* Finally write to the Rx channel control register */
1392 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1393
1394 /* Start updating the Tx channel control register */
1395 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1396 /* Update the interrupt coalesce count */
1397 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1398 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1399 /* Update the delay timer count */
1400 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1401 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1402 /* Enable coalesce, delay timer and error interrupts */
1403 cr |= XAXIDMA_IRQ_ALL_MASK;
1404 /* Finally write to the Tx channel control register */
1405 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1406
1407 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
850a7503
MS
1408 * halted state. This will make the Rx side ready for reception.
1409 */
8a3b7a25
DB
1410 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1411 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1412 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1413 cr | XAXIDMA_CR_RUNSTOP_MASK);
1414 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1415 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1416
1417 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1418 * Tx channel is now ready to run. But only after we write to the
850a7503
MS
1419 * tail pointer register that the Tx channel will start transmitting
1420 */
8a3b7a25
DB
1421 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1422 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1423 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1424 cr | XAXIDMA_CR_RUNSTOP_MASK);
1425
1426 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1427 axienet_status &= ~XAE_RCW1_RX_MASK;
1428 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1429
1430 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1431 if (axienet_status & XAE_INT_RXRJECT_MASK)
1432 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1433 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1434
1435 /* Sync default options with HW but leave receiver and
850a7503
MS
1436 * transmitter disabled.
1437 */
8a3b7a25
DB
1438 axienet_setoptions(ndev, lp->options &
1439 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1440 axienet_set_mac_address(ndev, NULL);
1441 axienet_set_multicast_list(ndev);
1442 axienet_setoptions(ndev, lp->options);
1443}
1444
1445/**
2be58620 1446 * axienet_probe - Axi Ethernet probe function.
95219aa5 1447 * @pdev: Pointer to platform device structure.
8a3b7a25 1448 *
b0d081c5 1449 * Return: 0, on success
8a3b7a25
DB
1450 * Non-zero error value on failure.
1451 *
1452 * This is the probe routine for Axi Ethernet driver. This is called before
1453 * any other driver routines are invoked. It allocates and sets up the Ethernet
1454 * device. Parses through device tree and populates fields of
1455 * axienet_local. It registers the Ethernet device.
1456 */
2be58620 1457static int axienet_probe(struct platform_device *pdev)
8a3b7a25 1458{
8495659b 1459 int ret;
8a3b7a25
DB
1460 struct device_node *np;
1461 struct axienet_local *lp;
1462 struct net_device *ndev;
8495659b 1463 u8 mac_addr[6];
46aa27df 1464 struct resource *ethres, dmares;
8495659b 1465 u32 value;
8a3b7a25
DB
1466
1467 ndev = alloc_etherdev(sizeof(*lp));
41de8d4c 1468 if (!ndev)
8a3b7a25 1469 return -ENOMEM;
8a3b7a25 1470
95219aa5 1471 platform_set_drvdata(pdev, ndev);
8a3b7a25 1472
95219aa5 1473 SET_NETDEV_DEV(ndev, &pdev->dev);
8a3b7a25 1474 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
28e24c62 1475 ndev->features = NETIF_F_SG;
8a3b7a25
DB
1476 ndev->netdev_ops = &axienet_netdev_ops;
1477 ndev->ethtool_ops = &axienet_ethtool_ops;
1478
1479 lp = netdev_priv(ndev);
1480 lp->ndev = ndev;
95219aa5 1481 lp->dev = &pdev->dev;
8a3b7a25
DB
1482 lp->options = XAE_OPTION_DEFAULTS;
1483 /* Map device registers */
46aa27df
ST
1484 ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485 lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
fcc028c1 1486 if (IS_ERR(lp->regs)) {
95219aa5 1487 dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
fcc028c1 1488 ret = PTR_ERR(lp->regs);
46aa27df 1489 goto free_netdev;
8a3b7a25 1490 }
46aa27df 1491
8a3b7a25
DB
1492 /* Setup checksum offload, but default to off if not specified */
1493 lp->features = 0;
1494
8495659b
ST
1495 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1496 if (!ret) {
1497 switch (value) {
8a3b7a25
DB
1498 case 1:
1499 lp->csum_offload_on_tx_path =
1500 XAE_FEATURE_PARTIAL_TX_CSUM;
1501 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1502 /* Can checksum TCP/UDP over IPv4. */
1503 ndev->features |= NETIF_F_IP_CSUM;
1504 break;
1505 case 2:
1506 lp->csum_offload_on_tx_path =
1507 XAE_FEATURE_FULL_TX_CSUM;
1508 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1509 /* Can checksum TCP/UDP over IPv4. */
1510 ndev->features |= NETIF_F_IP_CSUM;
1511 break;
1512 default:
1513 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1514 }
1515 }
8495659b
ST
1516 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1517 if (!ret) {
1518 switch (value) {
8a3b7a25
DB
1519 case 1:
1520 lp->csum_offload_on_rx_path =
1521 XAE_FEATURE_PARTIAL_RX_CSUM;
1522 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1523 break;
1524 case 2:
1525 lp->csum_offload_on_rx_path =
1526 XAE_FEATURE_FULL_RX_CSUM;
1527 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1528 break;
1529 default:
1530 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1531 }
1532 }
1533 /* For supporting jumbo frames, the Axi Ethernet hardware must have
f080a8c3
ST
1534 * a larger Rx/Tx Memory. Typically, the size must be large so that
1535 * we can enable jumbo option and start supporting jumbo frames.
1536 * Here we check for memory allocated for Rx/Tx in the hardware from
1537 * the device-tree and accordingly set flags.
1538 */
8495659b
ST
1539 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1540 of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &lp->phy_type);
8a3b7a25
DB
1541
1542 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
95219aa5 1543 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
3ad7b147 1544 if (!np) {
95219aa5 1545 dev_err(&pdev->dev, "could not find DMA node\n");
3ad7b147 1546 ret = -ENODEV;
46aa27df 1547 goto free_netdev;
8a3b7a25 1548 }
46aa27df
ST
1549 ret = of_address_to_resource(np, 0, &dmares);
1550 if (ret) {
1551 dev_err(&pdev->dev, "unable to get DMA resource\n");
1552 goto free_netdev;
1553 }
1554 lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares);
fcc028c1 1555 if (IS_ERR(lp->dma_regs)) {
46aa27df 1556 dev_err(&pdev->dev, "could not map DMA regs\n");
fcc028c1 1557 ret = PTR_ERR(lp->dma_regs);
46aa27df 1558 goto free_netdev;
8a3b7a25
DB
1559 }
1560 lp->rx_irq = irq_of_parse_and_map(np, 1);
1561 lp->tx_irq = irq_of_parse_and_map(np, 0);
1562 of_node_put(np);
cb59c87d 1563 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
95219aa5 1564 dev_err(&pdev->dev, "could not determine irqs\n");
8a3b7a25 1565 ret = -ENOMEM;
46aa27df 1566 goto free_netdev;
8a3b7a25
DB
1567 }
1568
1569 /* Retrieve the MAC address */
8495659b
ST
1570 ret = of_property_read_u8_array(pdev->dev.of_node,
1571 "local-mac-address", mac_addr, 6);
1572 if (ret) {
95219aa5 1573 dev_err(&pdev->dev, "could not find MAC address\n");
46aa27df 1574 goto free_netdev;
8a3b7a25 1575 }
8495659b 1576 axienet_set_mac_address(ndev, (void *)mac_addr);
8a3b7a25
DB
1577
1578 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1579 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1580
95219aa5 1581 lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
46aa27df 1582 if (lp->phy_node) {
95219aa5 1583 ret = axienet_mdio_setup(lp, pdev->dev.of_node);
46aa27df
ST
1584 if (ret)
1585 dev_warn(&pdev->dev, "error registering MDIO bus\n");
1586 }
8a3b7a25
DB
1587
1588 ret = register_netdev(lp->ndev);
1589 if (ret) {
1590 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
46aa27df 1591 goto free_netdev;
8a3b7a25
DB
1592 }
1593
8a3b7a25
DB
1594 return 0;
1595
46aa27df 1596free_netdev:
8a3b7a25 1597 free_netdev(ndev);
46aa27df 1598
8a3b7a25
DB
1599 return ret;
1600}
1601
2be58620 1602static int axienet_remove(struct platform_device *pdev)
8a3b7a25 1603{
95219aa5 1604 struct net_device *ndev = platform_get_drvdata(pdev);
8a3b7a25
DB
1605 struct axienet_local *lp = netdev_priv(ndev);
1606
1607 axienet_mdio_teardown(lp);
1608 unregister_netdev(ndev);
1609
6f3a59ac 1610 of_node_put(lp->phy_node);
8a3b7a25
DB
1611 lp->phy_node = NULL;
1612
8a3b7a25
DB
1613 free_netdev(ndev);
1614
1615 return 0;
1616}
1617
2be58620
ST
1618static struct platform_driver axienet_driver = {
1619 .probe = axienet_probe,
1620 .remove = axienet_remove,
8a3b7a25 1621 .driver = {
8a3b7a25
DB
1622 .name = "xilinx_axienet",
1623 .of_match_table = axienet_of_match,
1624 },
1625};
1626
2be58620 1627module_platform_driver(axienet_driver);
8a3b7a25
DB
1628
1629MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1630MODULE_AUTHOR("Xilinx");
1631MODULE_LICENSE("GPL");