]> git.ipfire.org Git - thirdparty/u-boot.git/blame - drivers/net/phy/mv88e61xx.c
SPDX: Convert all of our single license tags to Linux Kernel style
[thirdparty/u-boot.git] / drivers / net / phy / mv88e61xx.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
24ae3961
KS
2/*
3 * (C) Copyright 2015
4 * Elecsys Corporation <www.elecsyscorp.com>
5 * Kevin Smith <kevin.smith@elecsyscorp.com>
6 *
7 * Original driver:
8 * (C) Copyright 2009
9 * Marvell Semiconductor <www.marvell.com>
10 * Prafulla Wadaskar <prafulla@marvell.com>
24ae3961
KS
11 */
12
13/*
14 * PHY driver for mv88e61xx ethernet switches.
15 *
16 * This driver configures the mv88e61xx for basic use as a PHY. The switch
17 * supports a VLAN configuration that determines how traffic will be routed
18 * between the ports. This driver uses a simple configuration that routes
19 * traffic from each PHY port only to the CPU port, and from the CPU port to
20 * any PHY port.
21 *
22 * The configuration determines which PHY ports to activate using the
23 * CONFIG_MV88E61XX_PHY_PORTS bitmask. Setting bit 0 will activate port 0, bit
24 * 1 activates port 1, etc. Do not set the bit for the port the CPU is
25 * connected to unless it is connected over a PHY interface (not MII).
26 *
27 * This driver was written for and tested on the mv88e6176 with an SGMII
28 * connection. Other configurations should be supported, but some additions or
29 * changes may be required.
30 */
31
32#include <common.h>
33
34#include <bitfield.h>
35#include <errno.h>
36#include <malloc.h>
37#include <miiphy.h>
38#include <netdev.h>
39
40#define PHY_AUTONEGOTIATE_TIMEOUT 5000
41
65d4d00a 42#define PORT_COUNT 11
24ae3961
KS
43#define PORT_MASK ((1 << PORT_COUNT) - 1)
44
45/* Device addresses */
46#define DEVADDR_PHY(p) (p)
47#define DEVADDR_PORT(p) (0x10 + (p))
48#define DEVADDR_SERDES 0x0F
49#define DEVADDR_GLOBAL_1 0x1B
50#define DEVADDR_GLOBAL_2 0x1C
51
52/* SMI indirection registers for multichip addressing mode */
53#define SMI_CMD_REG 0x00
54#define SMI_DATA_REG 0x01
55
56/* Global registers */
57#define GLOBAL1_STATUS 0x00
58#define GLOBAL1_CTRL 0x04
59#define GLOBAL1_MON_CTRL 0x1A
60
61/* Global 2 registers */
62#define GLOBAL2_REG_PHY_CMD 0x18
63#define GLOBAL2_REG_PHY_DATA 0x19
64
65/* Port registers */
66#define PORT_REG_STATUS 0x00
67#define PORT_REG_PHYS_CTRL 0x01
68#define PORT_REG_SWITCH_ID 0x03
69#define PORT_REG_CTRL 0x04
70#define PORT_REG_VLAN_MAP 0x06
71#define PORT_REG_VLAN_ID 0x07
72
73/* Phy registers */
74#define PHY_REG_CTRL1 0x10
75#define PHY_REG_STATUS1 0x11
76#define PHY_REG_PAGE 0x16
77
78/* Serdes registers */
79#define SERDES_REG_CTRL_1 0x10
80
81/* Phy page numbers */
82#define PHY_PAGE_COPPER 0
83#define PHY_PAGE_SERDES 1
84
85/* Register fields */
86#define GLOBAL1_CTRL_SWRESET BIT(15)
87
88#define GLOBAL1_MON_CTRL_CPUDEST_SHIFT 4
89#define GLOBAL1_MON_CTRL_CPUDEST_WIDTH 4
90
91#define PORT_REG_STATUS_LINK BIT(11)
92#define PORT_REG_STATUS_DUPLEX BIT(10)
93
94#define PORT_REG_STATUS_SPEED_SHIFT 8
95#define PORT_REG_STATUS_SPEED_WIDTH 2
96#define PORT_REG_STATUS_SPEED_10 0
97#define PORT_REG_STATUS_SPEED_100 1
98#define PORT_REG_STATUS_SPEED_1000 2
99
100#define PORT_REG_STATUS_CMODE_MASK 0xF
101#define PORT_REG_STATUS_CMODE_100BASE_X 0x8
102#define PORT_REG_STATUS_CMODE_1000BASE_X 0x9
103#define PORT_REG_STATUS_CMODE_SGMII 0xa
104
b755abec
CP
105#define PORT_REG_PHYS_CTRL_PCS_AN_EN BIT(10)
106#define PORT_REG_PHYS_CTRL_PCS_AN_RST BIT(9)
107#define PORT_REG_PHYS_CTRL_FC_VALUE BIT(7)
108#define PORT_REG_PHYS_CTRL_FC_FORCE BIT(6)
24ae3961
KS
109#define PORT_REG_PHYS_CTRL_LINK_VALUE BIT(5)
110#define PORT_REG_PHYS_CTRL_LINK_FORCE BIT(4)
b755abec
CP
111#define PORT_REG_PHYS_CTRL_DUPLEX_VALUE BIT(3)
112#define PORT_REG_PHYS_CTRL_DUPLEX_FORCE BIT(2)
113#define PORT_REG_PHYS_CTRL_SPD1000 BIT(1)
114#define PORT_REG_PHYS_CTRL_SPD_MASK (BIT(1) | BIT(0))
24ae3961
KS
115
116#define PORT_REG_CTRL_PSTATE_SHIFT 0
117#define PORT_REG_CTRL_PSTATE_WIDTH 2
118
119#define PORT_REG_VLAN_ID_DEF_VID_SHIFT 0
120#define PORT_REG_VLAN_ID_DEF_VID_WIDTH 12
121
122#define PORT_REG_VLAN_MAP_TABLE_SHIFT 0
123#define PORT_REG_VLAN_MAP_TABLE_WIDTH 11
124
125#define SERDES_REG_CTRL_1_FORCE_LINK BIT(10)
126
127#define PHY_REG_CTRL1_ENERGY_DET_SHIFT 8
128#define PHY_REG_CTRL1_ENERGY_DET_WIDTH 2
129
130/* Field values */
131#define PORT_REG_CTRL_PSTATE_DISABLED 0
132#define PORT_REG_CTRL_PSTATE_FORWARD 3
133
134#define PHY_REG_CTRL1_ENERGY_DET_OFF 0
135#define PHY_REG_CTRL1_ENERGY_DET_SENSE_ONLY 2
136#define PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT 3
137
138/* PHY Status Register */
139#define PHY_REG_STATUS1_SPEED 0xc000
140#define PHY_REG_STATUS1_GBIT 0x8000
141#define PHY_REG_STATUS1_100 0x4000
142#define PHY_REG_STATUS1_DUPLEX 0x2000
143#define PHY_REG_STATUS1_SPDDONE 0x0800
144#define PHY_REG_STATUS1_LINK 0x0400
145#define PHY_REG_STATUS1_ENERGY 0x0010
146
147/*
148 * Macros for building commands for indirect addressing modes. These are valid
149 * for both the indirect multichip addressing mode and the PHY indirection
150 * required for the writes to any PHY register.
151 */
152#define SMI_BUSY BIT(15)
153#define SMI_CMD_CLAUSE_22 BIT(12)
154#define SMI_CMD_CLAUSE_22_OP_READ (2 << 10)
155#define SMI_CMD_CLAUSE_22_OP_WRITE (1 << 10)
156
157#define SMI_CMD_READ (SMI_BUSY | SMI_CMD_CLAUSE_22 | \
158 SMI_CMD_CLAUSE_22_OP_READ)
159#define SMI_CMD_WRITE (SMI_BUSY | SMI_CMD_CLAUSE_22 | \
160 SMI_CMD_CLAUSE_22_OP_WRITE)
161
162#define SMI_CMD_ADDR_SHIFT 5
163#define SMI_CMD_ADDR_WIDTH 5
164#define SMI_CMD_REG_SHIFT 0
165#define SMI_CMD_REG_WIDTH 5
166
167/* Check for required macros */
168#ifndef CONFIG_MV88E61XX_PHY_PORTS
169#error Define CONFIG_MV88E61XX_PHY_PORTS to indicate which physical ports \
170 to activate
171#endif
172#ifndef CONFIG_MV88E61XX_CPU_PORT
173#error Define CONFIG_MV88E61XX_CPU_PORT to the port the CPU is attached to
174#endif
175
b755abec
CP
176/*
177 * These are ports without PHYs that may be wired directly
178 * to other serdes interfaces
179 */
180#ifndef CONFIG_MV88E61XX_FIXED_PORTS
181#define CONFIG_MV88E61XX_FIXED_PORTS 0
182#endif
183
24ae3961 184/* ID register values for different switch models */
65d4d00a
CP
185#define PORT_SWITCH_ID_6096 0x0980
186#define PORT_SWITCH_ID_6097 0x0990
24ae3961
KS
187#define PORT_SWITCH_ID_6172 0x1720
188#define PORT_SWITCH_ID_6176 0x1760
189#define PORT_SWITCH_ID_6240 0x2400
190#define PORT_SWITCH_ID_6352 0x3520
191
192struct mv88e61xx_phy_priv {
193 struct mii_dev *mdio_bus;
194 int smi_addr;
195 int id;
196};
197
198static inline int smi_cmd(int cmd, int addr, int reg)
199{
200 cmd = bitfield_replace(cmd, SMI_CMD_ADDR_SHIFT, SMI_CMD_ADDR_WIDTH,
201 addr);
202 cmd = bitfield_replace(cmd, SMI_CMD_REG_SHIFT, SMI_CMD_REG_WIDTH, reg);
203 return cmd;
204}
205
206static inline int smi_cmd_read(int addr, int reg)
207{
208 return smi_cmd(SMI_CMD_READ, addr, reg);
209}
210
211static inline int smi_cmd_write(int addr, int reg)
212{
213 return smi_cmd(SMI_CMD_WRITE, addr, reg);
214}
215
216__weak int mv88e61xx_hw_reset(struct phy_device *phydev)
217{
218 return 0;
219}
220
221/* Wait for the current SMI indirect command to complete */
222static int mv88e61xx_smi_wait(struct mii_dev *bus, int smi_addr)
223{
224 int val;
225 u32 timeout = 100;
226
227 do {
228 val = bus->read(bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG);
229 if (val >= 0 && (val & SMI_BUSY) == 0)
230 return 0;
231
232 mdelay(1);
233 } while (--timeout);
234
235 puts("SMI busy timeout\n");
236 return -ETIMEDOUT;
237}
238
239/*
240 * The mv88e61xx has three types of addresses: the smi bus address, the device
241 * address, and the register address. The smi bus address distinguishes it on
242 * the smi bus from other PHYs or switches. The device address determines
243 * which on-chip register set you are reading/writing (the various PHYs, their
244 * associated ports, or global configuration registers). The register address
245 * is the offset of the register you are reading/writing.
246 *
247 * When the mv88e61xx is hardware configured to have address zero, it behaves in
248 * single-chip addressing mode, where it responds to all SMI addresses, using
249 * the smi address as its device address. This obviously only works when this
250 * is the only chip on the SMI bus. This allows the driver to access device
251 * registers without using indirection. When the chip is configured to a
252 * non-zero address, it only responds to that SMI address and requires indirect
253 * writes to access the different device addresses.
254 */
255static int mv88e61xx_reg_read(struct phy_device *phydev, int dev, int reg)
256{
257 struct mv88e61xx_phy_priv *priv = phydev->priv;
258 struct mii_dev *mdio_bus = priv->mdio_bus;
259 int smi_addr = priv->smi_addr;
260 int res;
261
262 /* In single-chip mode, the device can be addressed directly */
263 if (smi_addr == 0)
264 return mdio_bus->read(mdio_bus, dev, MDIO_DEVAD_NONE, reg);
265
266 /* Wait for the bus to become free */
267 res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
268 if (res < 0)
269 return res;
270
271 /* Issue the read command */
272 res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
273 smi_cmd_read(dev, reg));
274 if (res < 0)
275 return res;
276
277 /* Wait for the read command to complete */
278 res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
279 if (res < 0)
280 return res;
281
282 /* Read the data */
283 res = mdio_bus->read(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_DATA_REG);
284 if (res < 0)
285 return res;
286
287 return bitfield_extract(res, 0, 16);
288}
289
290/* See the comment above mv88e61xx_reg_read */
291static int mv88e61xx_reg_write(struct phy_device *phydev, int dev, int reg,
292 u16 val)
293{
294 struct mv88e61xx_phy_priv *priv = phydev->priv;
295 struct mii_dev *mdio_bus = priv->mdio_bus;
296 int smi_addr = priv->smi_addr;
297 int res;
298
299 /* In single-chip mode, the device can be addressed directly */
300 if (smi_addr == 0) {
301 return mdio_bus->write(mdio_bus, dev, MDIO_DEVAD_NONE, reg,
302 val);
303 }
304
305 /* Wait for the bus to become free */
306 res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
307 if (res < 0)
308 return res;
309
310 /* Set the data to write */
311 res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE,
312 SMI_DATA_REG, val);
313 if (res < 0)
314 return res;
315
316 /* Issue the write command */
317 res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
318 smi_cmd_write(dev, reg));
319 if (res < 0)
320 return res;
321
322 /* Wait for the write command to complete */
323 res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
324 if (res < 0)
325 return res;
326
327 return 0;
328}
329
330static int mv88e61xx_phy_wait(struct phy_device *phydev)
331{
332 int val;
333 u32 timeout = 100;
334
335 do {
336 val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
337 GLOBAL2_REG_PHY_CMD);
338 if (val >= 0 && (val & SMI_BUSY) == 0)
339 return 0;
340
341 mdelay(1);
342 } while (--timeout);
343
344 return -ETIMEDOUT;
345}
346
347static int mv88e61xx_phy_read_indirect(struct mii_dev *smi_wrapper, int dev,
348 int devad, int reg)
349{
350 struct phy_device *phydev;
351 int res;
352
353 phydev = (struct phy_device *)smi_wrapper->priv;
354
355 /* Issue command to read */
356 res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
357 GLOBAL2_REG_PHY_CMD,
358 smi_cmd_read(dev, reg));
359
360 /* Wait for data to be read */
361 res = mv88e61xx_phy_wait(phydev);
362 if (res < 0)
363 return res;
364
365 /* Read retrieved data */
366 return mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
367 GLOBAL2_REG_PHY_DATA);
368}
369
370static int mv88e61xx_phy_write_indirect(struct mii_dev *smi_wrapper, int dev,
371 int devad, int reg, u16 data)
372{
373 struct phy_device *phydev;
374 int res;
375
376 phydev = (struct phy_device *)smi_wrapper->priv;
377
378 /* Set the data to write */
379 res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
380 GLOBAL2_REG_PHY_DATA, data);
381 if (res < 0)
382 return res;
383 /* Issue the write command */
384 res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
385 GLOBAL2_REG_PHY_CMD,
386 smi_cmd_write(dev, reg));
387 if (res < 0)
388 return res;
389
390 /* Wait for command to complete */
391 return mv88e61xx_phy_wait(phydev);
392}
393
394/* Wrapper function to make calls to phy_read_indirect simpler */
395static int mv88e61xx_phy_read(struct phy_device *phydev, int phy, int reg)
396{
397 return mv88e61xx_phy_read_indirect(phydev->bus, DEVADDR_PHY(phy),
398 MDIO_DEVAD_NONE, reg);
399}
400
401/* Wrapper function to make calls to phy_read_indirect simpler */
402static int mv88e61xx_phy_write(struct phy_device *phydev, int phy,
403 int reg, u16 val)
404{
405 return mv88e61xx_phy_write_indirect(phydev->bus, DEVADDR_PHY(phy),
406 MDIO_DEVAD_NONE, reg, val);
407}
408
409static int mv88e61xx_port_read(struct phy_device *phydev, u8 port, u8 reg)
410{
411 return mv88e61xx_reg_read(phydev, DEVADDR_PORT(port), reg);
412}
413
414static int mv88e61xx_port_write(struct phy_device *phydev, u8 port, u8 reg,
415 u16 val)
416{
417 return mv88e61xx_reg_write(phydev, DEVADDR_PORT(port), reg, val);
418}
419
420static int mv88e61xx_set_page(struct phy_device *phydev, u8 phy, u8 page)
421{
422 return mv88e61xx_phy_write(phydev, phy, PHY_REG_PAGE, page);
423}
424
425static int mv88e61xx_get_switch_id(struct phy_device *phydev)
426{
427 int res;
428
429 res = mv88e61xx_port_read(phydev, 0, PORT_REG_SWITCH_ID);
430 if (res < 0)
431 return res;
432 return res & 0xfff0;
433}
434
435static bool mv88e61xx_6352_family(struct phy_device *phydev)
436{
437 struct mv88e61xx_phy_priv *priv = phydev->priv;
438
439 switch (priv->id) {
440 case PORT_SWITCH_ID_6172:
441 case PORT_SWITCH_ID_6176:
442 case PORT_SWITCH_ID_6240:
443 case PORT_SWITCH_ID_6352:
444 return true;
445 }
446 return false;
447}
448
449static int mv88e61xx_get_cmode(struct phy_device *phydev, u8 port)
450{
451 int res;
452
453 res = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
454 if (res < 0)
455 return res;
456 return res & PORT_REG_STATUS_CMODE_MASK;
457}
458
459static int mv88e61xx_parse_status(struct phy_device *phydev)
460{
461 unsigned int speed;
462 unsigned int mii_reg;
463
464 mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, PHY_REG_STATUS1);
465
466 if ((mii_reg & PHY_REG_STATUS1_LINK) &&
467 !(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
468 int i = 0;
469
470 puts("Waiting for PHY realtime link");
471 while (!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
472 /* Timeout reached ? */
473 if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
474 puts(" TIMEOUT !\n");
475 phydev->link = 0;
476 break;
477 }
478
479 if ((i++ % 1000) == 0)
480 putc('.');
481 udelay(1000);
482 mii_reg = phy_read(phydev, MDIO_DEVAD_NONE,
483 PHY_REG_STATUS1);
484 }
485 puts(" done\n");
486 udelay(500000); /* another 500 ms (results in faster booting) */
487 } else {
488 if (mii_reg & PHY_REG_STATUS1_LINK)
489 phydev->link = 1;
490 else
491 phydev->link = 0;
492 }
493
494 if (mii_reg & PHY_REG_STATUS1_DUPLEX)
495 phydev->duplex = DUPLEX_FULL;
496 else
497 phydev->duplex = DUPLEX_HALF;
498
499 speed = mii_reg & PHY_REG_STATUS1_SPEED;
500
501 switch (speed) {
502 case PHY_REG_STATUS1_GBIT:
503 phydev->speed = SPEED_1000;
504 break;
505 case PHY_REG_STATUS1_100:
506 phydev->speed = SPEED_100;
507 break;
508 default:
509 phydev->speed = SPEED_10;
510 break;
511 }
512
513 return 0;
514}
515
516static int mv88e61xx_switch_reset(struct phy_device *phydev)
517{
518 int time;
519 int val;
520 u8 port;
521
522 /* Disable all ports */
523 for (port = 0; port < PORT_COUNT; port++) {
524 val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
525 if (val < 0)
526 return val;
527 val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
528 PORT_REG_CTRL_PSTATE_WIDTH,
529 PORT_REG_CTRL_PSTATE_DISABLED);
530 val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
531 if (val < 0)
532 return val;
533 }
534
535 /* Wait 2 ms for queues to drain */
536 udelay(2000);
537
538 /* Reset switch */
539 val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_CTRL);
540 if (val < 0)
541 return val;
542 val |= GLOBAL1_CTRL_SWRESET;
543 val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
544 GLOBAL1_CTRL, val);
545 if (val < 0)
546 return val;
547
548 /* Wait up to 1 second for switch reset complete */
549 for (time = 1000; time; time--) {
550 val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1,
551 GLOBAL1_CTRL);
552 if (val >= 0 && ((val & GLOBAL1_CTRL_SWRESET) == 0))
553 break;
554 udelay(1000);
555 }
556 if (!time)
557 return -ETIMEDOUT;
558
559 return 0;
560}
561
562static int mv88e61xx_serdes_init(struct phy_device *phydev)
563{
564 int val;
565
566 val = mv88e61xx_set_page(phydev, DEVADDR_SERDES, PHY_PAGE_SERDES);
567 if (val < 0)
568 return val;
569
570 /* Power up serdes module */
571 val = mv88e61xx_phy_read(phydev, DEVADDR_SERDES, MII_BMCR);
572 if (val < 0)
573 return val;
574 val &= ~(BMCR_PDOWN);
575 val = mv88e61xx_phy_write(phydev, DEVADDR_SERDES, MII_BMCR, val);
576 if (val < 0)
577 return val;
578
579 return 0;
580}
581
582static int mv88e61xx_port_enable(struct phy_device *phydev, u8 port)
583{
584 int val;
585
586 val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
587 if (val < 0)
588 return val;
589 val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
590 PORT_REG_CTRL_PSTATE_WIDTH,
591 PORT_REG_CTRL_PSTATE_FORWARD);
592 val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
593 if (val < 0)
594 return val;
595
596 return 0;
597}
598
599static int mv88e61xx_port_set_vlan(struct phy_device *phydev, u8 port,
65d4d00a 600 u16 mask)
24ae3961
KS
601{
602 int val;
603
604 /* Set VID to port number plus one */
605 val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_ID);
606 if (val < 0)
607 return val;
608 val = bitfield_replace(val, PORT_REG_VLAN_ID_DEF_VID_SHIFT,
609 PORT_REG_VLAN_ID_DEF_VID_WIDTH,
610 port + 1);
611 val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_ID, val);
612 if (val < 0)
613 return val;
614
615 /* Set VID mask */
616 val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_MAP);
617 if (val < 0)
618 return val;
619 val = bitfield_replace(val, PORT_REG_VLAN_MAP_TABLE_SHIFT,
620 PORT_REG_VLAN_MAP_TABLE_WIDTH,
621 mask);
622 val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_MAP, val);
623 if (val < 0)
624 return val;
625
626 return 0;
627}
628
629static int mv88e61xx_read_port_config(struct phy_device *phydev, u8 port)
630{
631 int res;
632 int val;
633 bool forced = false;
634
635 val = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
636 if (val < 0)
637 return val;
638 if (!(val & PORT_REG_STATUS_LINK)) {
639 /* Temporarily force link to read port configuration */
640 u32 timeout = 100;
641 forced = true;
642
643 val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
644 if (val < 0)
645 return val;
646 val |= (PORT_REG_PHYS_CTRL_LINK_FORCE |
647 PORT_REG_PHYS_CTRL_LINK_VALUE);
648 val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
649 val);
650 if (val < 0)
651 return val;
652
653 /* Wait for status register to reflect forced link */
654 do {
655 val = mv88e61xx_port_read(phydev, port,
656 PORT_REG_STATUS);
4201223d
TR
657 if (val < 0) {
658 res = -EIO;
24ae3961 659 goto unforce;
4201223d 660 }
24ae3961
KS
661 if (val & PORT_REG_STATUS_LINK)
662 break;
663 } while (--timeout);
664
665 if (timeout == 0) {
666 res = -ETIMEDOUT;
667 goto unforce;
668 }
669 }
670
671 if (val & PORT_REG_STATUS_DUPLEX)
672 phydev->duplex = DUPLEX_FULL;
673 else
674 phydev->duplex = DUPLEX_HALF;
675
676 val = bitfield_extract(val, PORT_REG_STATUS_SPEED_SHIFT,
677 PORT_REG_STATUS_SPEED_WIDTH);
678 switch (val) {
679 case PORT_REG_STATUS_SPEED_1000:
680 phydev->speed = SPEED_1000;
681 break;
682 case PORT_REG_STATUS_SPEED_100:
683 phydev->speed = SPEED_100;
684 break;
685 default:
686 phydev->speed = SPEED_10;
687 break;
688 }
689
690 res = 0;
691
692unforce:
693 if (forced) {
694 val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
695 if (val < 0)
696 return val;
697 val &= ~(PORT_REG_PHYS_CTRL_LINK_FORCE |
698 PORT_REG_PHYS_CTRL_LINK_VALUE);
699 val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
700 val);
701 if (val < 0)
702 return val;
703 }
704
705 return res;
706}
707
708static int mv88e61xx_set_cpu_port(struct phy_device *phydev)
709{
710 int val;
711
712 /* Set CPUDest */
713 val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_MON_CTRL);
714 if (val < 0)
715 return val;
716 val = bitfield_replace(val, GLOBAL1_MON_CTRL_CPUDEST_SHIFT,
717 GLOBAL1_MON_CTRL_CPUDEST_WIDTH,
718 CONFIG_MV88E61XX_CPU_PORT);
719 val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
720 GLOBAL1_MON_CTRL, val);
721 if (val < 0)
722 return val;
723
724 /* Allow CPU to route to any port */
725 val = PORT_MASK & ~(1 << CONFIG_MV88E61XX_CPU_PORT);
726 val = mv88e61xx_port_set_vlan(phydev, CONFIG_MV88E61XX_CPU_PORT, val);
727 if (val < 0)
728 return val;
729
730 /* Enable CPU port */
731 val = mv88e61xx_port_enable(phydev, CONFIG_MV88E61XX_CPU_PORT);
732 if (val < 0)
733 return val;
734
735 val = mv88e61xx_read_port_config(phydev, CONFIG_MV88E61XX_CPU_PORT);
736 if (val < 0)
737 return val;
738
739 /* If CPU is connected to serdes, initialize serdes */
740 if (mv88e61xx_6352_family(phydev)) {
741 val = mv88e61xx_get_cmode(phydev, CONFIG_MV88E61XX_CPU_PORT);
742 if (val < 0)
743 return val;
744 if (val == PORT_REG_STATUS_CMODE_100BASE_X ||
745 val == PORT_REG_STATUS_CMODE_1000BASE_X ||
746 val == PORT_REG_STATUS_CMODE_SGMII) {
747 val = mv88e61xx_serdes_init(phydev);
748 if (val < 0)
749 return val;
750 }
751 }
752
753 return 0;
754}
755
756static int mv88e61xx_switch_init(struct phy_device *phydev)
757{
758 static int init;
759 int res;
760
761 if (init)
762 return 0;
763
764 res = mv88e61xx_switch_reset(phydev);
765 if (res < 0)
766 return res;
767
768 res = mv88e61xx_set_cpu_port(phydev);
769 if (res < 0)
770 return res;
771
772 init = 1;
773
774 return 0;
775}
776
777static int mv88e61xx_phy_enable(struct phy_device *phydev, u8 phy)
778{
779 int val;
780
781 val = mv88e61xx_phy_read(phydev, phy, MII_BMCR);
782 if (val < 0)
783 return val;
784 val &= ~(BMCR_PDOWN);
785 val = mv88e61xx_phy_write(phydev, phy, MII_BMCR, val);
786 if (val < 0)
787 return val;
788
789 return 0;
790}
791
792static int mv88e61xx_phy_setup(struct phy_device *phydev, u8 phy)
793{
794 int val;
795
796 /*
797 * Enable energy-detect sensing on PHY, used to determine when a PHY
798 * port is physically connected
799 */
800 val = mv88e61xx_phy_read(phydev, phy, PHY_REG_CTRL1);
801 if (val < 0)
802 return val;
803 val = bitfield_replace(val, PHY_REG_CTRL1_ENERGY_DET_SHIFT,
804 PHY_REG_CTRL1_ENERGY_DET_WIDTH,
805 PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT);
806 val = mv88e61xx_phy_write(phydev, phy, PHY_REG_CTRL1, val);
807 if (val < 0)
808 return val;
809
810 return 0;
811}
812
b755abec
CP
813static int mv88e61xx_fixed_port_setup(struct phy_device *phydev, u8 port)
814{
815 int val;
816
817 val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
818 if (val < 0)
819 return val;
820
821 val &= ~(PORT_REG_PHYS_CTRL_SPD_MASK |
822 PORT_REG_PHYS_CTRL_FC_VALUE);
823 val |= PORT_REG_PHYS_CTRL_PCS_AN_EN |
824 PORT_REG_PHYS_CTRL_PCS_AN_RST |
825 PORT_REG_PHYS_CTRL_FC_FORCE |
826 PORT_REG_PHYS_CTRL_DUPLEX_VALUE |
827 PORT_REG_PHYS_CTRL_DUPLEX_FORCE |
828 PORT_REG_PHYS_CTRL_SPD1000;
829
830 return mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
831 val);
832}
833
24ae3961
KS
834static int mv88e61xx_phy_config_port(struct phy_device *phydev, u8 phy)
835{
836 int val;
837
838 val = mv88e61xx_port_enable(phydev, phy);
839 if (val < 0)
840 return val;
841
842 val = mv88e61xx_port_set_vlan(phydev, phy,
843 1 << CONFIG_MV88E61XX_CPU_PORT);
844 if (val < 0)
845 return val;
846
847 return 0;
848}
849
850static int mv88e61xx_probe(struct phy_device *phydev)
851{
852 struct mii_dev *smi_wrapper;
853 struct mv88e61xx_phy_priv *priv;
854 int res;
855
856 res = mv88e61xx_hw_reset(phydev);
857 if (res < 0)
858 return res;
859
860 priv = malloc(sizeof(*priv));
861 if (!priv)
862 return -ENOMEM;
863
864 memset(priv, 0, sizeof(*priv));
865
866 /*
867 * This device requires indirect reads/writes to the PHY registers
868 * which the generic PHY code can't handle. Make a wrapper MII device
869 * to handle reads/writes
870 */
871 smi_wrapper = mdio_alloc();
872 if (!smi_wrapper) {
873 free(priv);
874 return -ENOMEM;
875 }
876
877 /*
878 * Store the mdio bus in the private data, as we are going to replace
879 * the bus with the wrapper bus
880 */
881 priv->mdio_bus = phydev->bus;
882
883 /*
884 * Store the smi bus address in private data. This lets us use the
885 * phydev addr field for device address instead, as the genphy code
886 * expects.
887 */
888 priv->smi_addr = phydev->addr;
889
890 /*
891 * Store the phy_device in the wrapper mii device. This lets us get it
892 * back when genphy functions call phy_read/phy_write.
893 */
894 smi_wrapper->priv = phydev;
895 strncpy(smi_wrapper->name, "indirect mii", sizeof(smi_wrapper->name));
896 smi_wrapper->read = mv88e61xx_phy_read_indirect;
897 smi_wrapper->write = mv88e61xx_phy_write_indirect;
898
899 /* Replace the bus with the wrapper device */
900 phydev->bus = smi_wrapper;
901
902 phydev->priv = priv;
903
904 priv->id = mv88e61xx_get_switch_id(phydev);
905
906 return 0;
907}
908
909static int mv88e61xx_phy_config(struct phy_device *phydev)
910{
911 int res;
912 int i;
913 int ret = -1;
914
915 res = mv88e61xx_switch_init(phydev);
916 if (res < 0)
917 return res;
918
919 for (i = 0; i < PORT_COUNT; i++) {
920 if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
921 phydev->addr = i;
922
923 res = mv88e61xx_phy_enable(phydev, i);
924 if (res < 0) {
925 printf("Error enabling PHY %i\n", i);
926 continue;
927 }
928 res = mv88e61xx_phy_setup(phydev, i);
929 if (res < 0) {
930 printf("Error setting up PHY %i\n", i);
931 continue;
932 }
933 res = mv88e61xx_phy_config_port(phydev, i);
934 if (res < 0) {
935 printf("Error configuring PHY %i\n", i);
936 continue;
937 }
938
939 res = genphy_config_aneg(phydev);
940 if (res < 0) {
941 printf("Error setting PHY %i autoneg\n", i);
942 continue;
943 }
944 res = phy_reset(phydev);
945 if (res < 0) {
946 printf("Error resetting PHY %i\n", i);
947 continue;
948 }
949
950 /* Return success if any PHY succeeds */
951 ret = 0;
b755abec
CP
952 } else if ((1 << i) & CONFIG_MV88E61XX_FIXED_PORTS) {
953 res = mv88e61xx_fixed_port_setup(phydev, i);
954 if (res < 0) {
955 printf("Error configuring port %i\n", i);
956 continue;
957 }
24ae3961
KS
958 }
959 }
960
961 return ret;
962}
963
964static int mv88e61xx_phy_is_connected(struct phy_device *phydev)
965{
966 int val;
967
968 val = mv88e61xx_phy_read(phydev, phydev->addr, PHY_REG_STATUS1);
969 if (val < 0)
970 return 0;
971
972 /*
973 * After reset, the energy detect signal remains high for a few seconds
974 * regardless of whether a cable is connected. This function will
975 * return false positives during this time.
976 */
977 return (val & PHY_REG_STATUS1_ENERGY) == 0;
978}
979
980static int mv88e61xx_phy_startup(struct phy_device *phydev)
981{
982 int i;
983 int link = 0;
984 int res;
985 int speed = phydev->speed;
986 int duplex = phydev->duplex;
987
988 for (i = 0; i < PORT_COUNT; i++) {
989 if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
990 phydev->addr = i;
991 if (!mv88e61xx_phy_is_connected(phydev))
992 continue;
993 res = genphy_update_link(phydev);
994 if (res < 0)
995 continue;
996 res = mv88e61xx_parse_status(phydev);
997 if (res < 0)
998 continue;
999 link = (link || phydev->link);
1000 }
1001 }
1002 phydev->link = link;
1003
1004 /* Restore CPU interface speed and duplex after it was changed for
1005 * other ports */
1006 phydev->speed = speed;
1007 phydev->duplex = duplex;
1008
1009 return 0;
1010}
1011
1012static struct phy_driver mv88e61xx_driver = {
1013 .name = "Marvell MV88E61xx",
1014 .uid = 0x01410eb1,
1015 .mask = 0xfffffff0,
1016 .features = PHY_GBIT_FEATURES,
1017 .probe = mv88e61xx_probe,
1018 .config = mv88e61xx_phy_config,
1019 .startup = mv88e61xx_phy_startup,
1020 .shutdown = &genphy_shutdown,
1021};
1022
65d4d00a
CP
1023static struct phy_driver mv88e609x_driver = {
1024 .name = "Marvell MV88E609x",
1025 .uid = 0x1410c89,
1026 .mask = 0xfffffff0,
1027 .features = PHY_GBIT_FEATURES,
1028 .probe = mv88e61xx_probe,
1029 .config = mv88e61xx_phy_config,
1030 .startup = mv88e61xx_phy_startup,
1031 .shutdown = &genphy_shutdown,
1032};
1033
24ae3961
KS
1034int phy_mv88e61xx_init(void)
1035{
1036 phy_register(&mv88e61xx_driver);
65d4d00a 1037 phy_register(&mv88e609x_driver);
24ae3961
KS
1038
1039 return 0;
1040}
1041
1042/*
1043 * Overload weak get_phy_id definition since we need non-standard functions
1044 * to read PHY registers
1045 */
1046int get_phy_id(struct mii_dev *bus, int smi_addr, int devad, u32 *phy_id)
1047{
1048 struct phy_device temp_phy;
1049 struct mv88e61xx_phy_priv temp_priv;
1050 struct mii_dev temp_mii;
1051 int val;
1052
1053 /*
1054 * Buid temporary data structures that the chip reading code needs to
1055 * read the ID
1056 */
1057 temp_priv.mdio_bus = bus;
1058 temp_priv.smi_addr = smi_addr;
1059 temp_phy.priv = &temp_priv;
1060 temp_mii.priv = &temp_phy;
1061
1062 val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID1);
1063 if (val < 0)
1064 return -EIO;
1065
1066 *phy_id = val << 16;
1067
1068 val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID2);
1069 if (val < 0)
1070 return -EIO;
1071
1072 *phy_id |= (val & 0xffff);
1073
1074 return 0;
1075}