]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/nvdimm/pmem.c
block: simplify queue allocation
[thirdparty/linux.git] / drivers / nvdimm / pmem.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
9e853f23
RZ
2/*
3 * Persistent Memory Driver
4 *
9f53f9fa 5 * Copyright (c) 2014-2015, Intel Corporation.
9e853f23
RZ
6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
9e853f23
RZ
8 */
9
10#include <asm/cacheflush.h>
11#include <linux/blkdev.h>
12#include <linux/hdreg.h>
13#include <linux/init.h>
14#include <linux/platform_device.h>
c953cc98 15#include <linux/set_memory.h>
9e853f23
RZ
16#include <linux/module.h>
17#include <linux/moduleparam.h>
b95f5f43 18#include <linux/badblocks.h>
9476df7d 19#include <linux/memremap.h>
32ab0a3f 20#include <linux/vmalloc.h>
71389703 21#include <linux/blk-mq.h>
34c0fd54 22#include <linux/pfn_t.h>
9e853f23 23#include <linux/slab.h>
0aed55af 24#include <linux/uio.h>
c1d6e828 25#include <linux/dax.h>
9f53f9fa 26#include <linux/nd.h>
23c47d2a 27#include <linux/backing-dev.h>
f295e53b 28#include "pmem.h"
32ab0a3f 29#include "pfn.h"
9f53f9fa 30#include "nd.h"
9e853f23 31
f284a4f2
DW
32static struct device *to_dev(struct pmem_device *pmem)
33{
34 /*
35 * nvdimm bus services need a 'dev' parameter, and we record the device
36 * at init in bb.dev.
37 */
38 return pmem->bb.dev;
39}
40
41static struct nd_region *to_region(struct pmem_device *pmem)
42{
43 return to_nd_region(to_dev(pmem)->parent);
44}
9e853f23 45
c953cc98
DW
46static void hwpoison_clear(struct pmem_device *pmem,
47 phys_addr_t phys, unsigned int len)
48{
49 unsigned long pfn_start, pfn_end, pfn;
50
51 /* only pmem in the linear map supports HWPoison */
52 if (is_vmalloc_addr(pmem->virt_addr))
53 return;
54
55 pfn_start = PHYS_PFN(phys);
56 pfn_end = pfn_start + PHYS_PFN(len);
57 for (pfn = pfn_start; pfn < pfn_end; pfn++) {
58 struct page *page = pfn_to_page(pfn);
59
60 /*
61 * Note, no need to hold a get_dev_pagemap() reference
62 * here since we're in the driver I/O path and
63 * outstanding I/O requests pin the dev_pagemap.
64 */
65 if (test_and_clear_pmem_poison(page))
66 clear_mce_nospec(pfn);
67 }
68}
69
4e4cbee9
CH
70static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
71 phys_addr_t offset, unsigned int len)
59e64739 72{
f284a4f2 73 struct device *dev = to_dev(pmem);
59e64739
DW
74 sector_t sector;
75 long cleared;
4e4cbee9 76 blk_status_t rc = BLK_STS_OK;
59e64739
DW
77
78 sector = (offset - pmem->data_offset) / 512;
59e64739 79
868f036f
DW
80 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
81 if (cleared < len)
4e4cbee9 82 rc = BLK_STS_IOERR;
59e64739 83 if (cleared > 0 && cleared / 512) {
c953cc98 84 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
868f036f 85 cleared /= 512;
426824d6 86 dev_dbg(dev, "%#llx clear %ld sector%s\n",
868f036f
DW
87 (unsigned long long) sector, cleared,
88 cleared > 1 ? "s" : "");
0a3f27b9 89 badblocks_clear(&pmem->bb, sector, cleared);
975750a9
TK
90 if (pmem->bb_state)
91 sysfs_notify_dirent(pmem->bb_state);
59e64739 92 }
3115bb02 93
f2b61257 94 arch_invalidate_pmem(pmem->virt_addr + offset, len);
868f036f
DW
95
96 return rc;
59e64739
DW
97}
98
bd697a80
VV
99static void write_pmem(void *pmem_addr, struct page *page,
100 unsigned int off, unsigned int len)
101{
98cc093c
HY
102 unsigned int chunk;
103 void *mem;
104
105 while (len) {
106 mem = kmap_atomic(page);
9dc6488e 107 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
98cc093c
HY
108 memcpy_flushcache(pmem_addr, mem + off, chunk);
109 kunmap_atomic(mem);
110 len -= chunk;
111 off = 0;
112 page++;
9dc6488e 113 pmem_addr += chunk;
98cc093c 114 }
bd697a80
VV
115}
116
4e4cbee9 117static blk_status_t read_pmem(struct page *page, unsigned int off,
bd697a80
VV
118 void *pmem_addr, unsigned int len)
119{
98cc093c 120 unsigned int chunk;
60622d68 121 unsigned long rem;
98cc093c
HY
122 void *mem;
123
124 while (len) {
125 mem = kmap_atomic(page);
9dc6488e 126 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
60622d68 127 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
98cc093c 128 kunmap_atomic(mem);
60622d68 129 if (rem)
98cc093c
HY
130 return BLK_STS_IOERR;
131 len -= chunk;
132 off = 0;
133 page++;
9dc6488e 134 pmem_addr += chunk;
98cc093c 135 }
4e4cbee9 136 return BLK_STS_OK;
bd697a80
VV
137}
138
4e4cbee9 139static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
3f289dcb 140 unsigned int len, unsigned int off, unsigned int op,
9e853f23
RZ
141 sector_t sector)
142{
4e4cbee9 143 blk_status_t rc = BLK_STS_OK;
59e64739 144 bool bad_pmem = false;
32ab0a3f 145 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
7a9eb206 146 void *pmem_addr = pmem->virt_addr + pmem_off;
9e853f23 147
59e64739
DW
148 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
149 bad_pmem = true;
150
3f289dcb 151 if (!op_is_write(op)) {
59e64739 152 if (unlikely(bad_pmem))
4e4cbee9 153 rc = BLK_STS_IOERR;
b5ebc8ec 154 else {
bd697a80 155 rc = read_pmem(page, off, pmem_addr, len);
b5ebc8ec
DW
156 flush_dcache_page(page);
157 }
9e853f23 158 } else {
0a370d26
DW
159 /*
160 * Note that we write the data both before and after
161 * clearing poison. The write before clear poison
162 * handles situations where the latest written data is
163 * preserved and the clear poison operation simply marks
164 * the address range as valid without changing the data.
165 * In this case application software can assume that an
166 * interrupted write will either return the new good
167 * data or an error.
168 *
169 * However, if pmem_clear_poison() leaves the data in an
170 * indeterminate state we need to perform the write
171 * after clear poison.
172 */
9e853f23 173 flush_dcache_page(page);
bd697a80 174 write_pmem(pmem_addr, page, off, len);
59e64739 175 if (unlikely(bad_pmem)) {
3115bb02 176 rc = pmem_clear_poison(pmem, pmem_off, len);
bd697a80 177 write_pmem(pmem_addr, page, off, len);
59e64739 178 }
9e853f23
RZ
179 }
180
b5ebc8ec 181 return rc;
9e853f23
RZ
182}
183
dece1635 184static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
9e853f23 185{
c5d4355d 186 int ret = 0;
4e4cbee9 187 blk_status_t rc = 0;
f0dc089c
DW
188 bool do_acct;
189 unsigned long start;
9e853f23 190 struct bio_vec bvec;
9e853f23 191 struct bvec_iter iter;
bd842b8c 192 struct pmem_device *pmem = q->queuedata;
7e267a8c
DW
193 struct nd_region *nd_region = to_region(pmem);
194
d2d6364d 195 if (bio->bi_opf & REQ_PREFLUSH)
c5d4355d 196 ret = nvdimm_flush(nd_region, bio);
9e853f23 197
f0dc089c 198 do_acct = nd_iostat_start(bio, &start);
e10624f8
DW
199 bio_for_each_segment(bvec, bio, iter) {
200 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
3f289dcb 201 bvec.bv_offset, bio_op(bio), iter.bi_sector);
e10624f8 202 if (rc) {
4e4cbee9 203 bio->bi_status = rc;
e10624f8
DW
204 break;
205 }
206 }
f0dc089c
DW
207 if (do_acct)
208 nd_iostat_end(bio, start);
61031952 209
1eff9d32 210 if (bio->bi_opf & REQ_FUA)
c5d4355d
PG
211 ret = nvdimm_flush(nd_region, bio);
212
213 if (ret)
214 bio->bi_status = errno_to_blk_status(ret);
61031952 215
4246a0b6 216 bio_endio(bio);
dece1635 217 return BLK_QC_T_NONE;
9e853f23
RZ
218}
219
220static int pmem_rw_page(struct block_device *bdev, sector_t sector,
3f289dcb 221 struct page *page, unsigned int op)
9e853f23 222{
bd842b8c 223 struct pmem_device *pmem = bdev->bd_queue->queuedata;
4e4cbee9 224 blk_status_t rc;
9e853f23 225
98cc093c 226 rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
3f289dcb 227 0, op, sector);
9e853f23 228
e10624f8
DW
229 /*
230 * The ->rw_page interface is subtle and tricky. The core
231 * retries on any error, so we can only invoke page_endio() in
232 * the successful completion case. Otherwise, we'll see crashes
233 * caused by double completion.
234 */
235 if (rc == 0)
3f289dcb 236 page_endio(page, op_is_write(op), 0);
e10624f8 237
4e4cbee9 238 return blk_status_to_errno(rc);
9e853f23
RZ
239}
240
f295e53b 241/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
c1d6e828
DW
242__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
243 long nr_pages, void **kaddr, pfn_t *pfn)
9e853f23 244{
c1d6e828 245 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
589e75d1 246
c1d6e828
DW
247 if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
248 PFN_PHYS(nr_pages))))
0a70bd43 249 return -EIO;
46a590cd
HY
250
251 if (kaddr)
252 *kaddr = pmem->virt_addr + offset;
253 if (pfn)
254 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
9e853f23 255
0a70bd43
DW
256 /*
257 * If badblocks are present, limit known good range to the
258 * requested range.
259 */
260 if (unlikely(pmem->bb.count))
c1d6e828
DW
261 return nr_pages;
262 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
9e853f23
RZ
263}
264
265static const struct block_device_operations pmem_fops = {
266 .owner = THIS_MODULE,
267 .rw_page = pmem_rw_page,
58138820 268 .revalidate_disk = nvdimm_revalidate_disk,
9e853f23
RZ
269};
270
c1d6e828
DW
271static long pmem_dax_direct_access(struct dax_device *dax_dev,
272 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
273{
274 struct pmem_device *pmem = dax_get_private(dax_dev);
275
276 return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
277}
278
52f476a3
DW
279/*
280 * Use the 'no check' versions of copy_from_iter_flushcache() and
281 * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
282 * checking, both file offset and device offset, is handled by
283 * dax_iomap_actor()
284 */
0aed55af
DW
285static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
286 void *addr, size_t bytes, struct iov_iter *i)
287{
52f476a3 288 return _copy_from_iter_flushcache(addr, bytes, i);
0aed55af
DW
289}
290
b3a9a0c3
DW
291static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
292 void *addr, size_t bytes, struct iov_iter *i)
293{
52f476a3 294 return _copy_to_iter_mcsafe(addr, bytes, i);
b3a9a0c3
DW
295}
296
c1d6e828
DW
297static const struct dax_operations pmem_dax_ops = {
298 .direct_access = pmem_dax_direct_access,
7bf7eac8 299 .dax_supported = generic_fsdax_supported,
0aed55af 300 .copy_from_iter = pmem_copy_from_iter,
b3a9a0c3 301 .copy_to_iter = pmem_copy_to_iter,
c1d6e828
DW
302};
303
6e0c90d6
DW
304static const struct attribute_group *pmem_attribute_groups[] = {
305 &dax_attribute_group,
306 NULL,
c1d6e828
DW
307};
308
d8668bb0 309static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
030b99e3 310{
d8668bb0
CH
311 struct request_queue *q =
312 container_of(pgmap->ref, struct request_queue, q_usage_counter);
50f44ee7 313
030b99e3
DW
314 blk_cleanup_queue(q);
315}
316
d8668bb0 317static void pmem_release_queue(void *pgmap)
50f44ee7 318{
d8668bb0 319 pmem_pagemap_cleanup(pgmap);
50f44ee7
DW
320}
321
d8668bb0 322static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
71389703 323{
d8668bb0
CH
324 struct request_queue *q =
325 container_of(pgmap->ref, struct request_queue, q_usage_counter);
a95c90f1 326
d3b5d352 327 blk_freeze_queue_start(q);
71389703
DW
328}
329
c1d6e828 330static void pmem_release_disk(void *__pmem)
030b99e3 331{
c1d6e828
DW
332 struct pmem_device *pmem = __pmem;
333
334 kill_dax(pmem->dax_dev);
335 put_dax(pmem->dax_dev);
336 del_gendisk(pmem->disk);
337 put_disk(pmem->disk);
030b99e3
DW
338}
339
1e240e8d 340static const struct dev_pagemap_ops fsdax_pagemap_ops = {
1e240e8d
CH
341 .kill = pmem_pagemap_kill,
342 .cleanup = pmem_pagemap_cleanup,
343};
344
200c79da
DW
345static int pmem_attach_disk(struct device *dev,
346 struct nd_namespace_common *ndns)
9e853f23 347{
200c79da 348 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
f284a4f2 349 struct nd_region *nd_region = to_nd_region(dev->parent);
ce7f11a2 350 int nid = dev_to_node(dev), fua;
200c79da 351 struct resource *res = &nsio->res;
e8d51348 352 struct resource bb_res;
200c79da 353 struct nd_pfn *nd_pfn = NULL;
c1d6e828 354 struct dax_device *dax_dev;
200c79da 355 struct nd_pfn_sb *pfn_sb;
9e853f23 356 struct pmem_device *pmem;
468ded03 357 struct request_queue *q;
6e0c90d6 358 struct device *gendev;
200c79da
DW
359 struct gendisk *disk;
360 void *addr;
e8d51348 361 int rc;
fefc1d97 362 unsigned long flags = 0UL;
e8d51348
CH
363
364 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
365 if (!pmem)
366 return -ENOMEM;
200c79da 367
8f4b01fc
AK
368 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
369 if (rc)
370 return rc;
371
200c79da
DW
372 /* while nsio_rw_bytes is active, parse a pfn info block if present */
373 if (is_nd_pfn(dev)) {
374 nd_pfn = to_nd_pfn(dev);
e8d51348
CH
375 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
376 if (rc)
377 return rc;
200c79da
DW
378 }
379
380 /* we're attaching a block device, disable raw namespace access */
8f4b01fc 381 devm_namespace_disable(dev, ndns);
9e853f23 382
200c79da 383 dev_set_drvdata(dev, pmem);
9e853f23
RZ
384 pmem->phys_addr = res->start;
385 pmem->size = resource_size(res);
0b277961
DW
386 fua = nvdimm_has_flush(nd_region);
387 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
61031952 388 dev_warn(dev, "unable to guarantee persistence of writes\n");
0b277961
DW
389 fua = 0;
390 }
9e853f23 391
947df02d 392 if (!devm_request_mem_region(dev, res->start, resource_size(res),
450c6633 393 dev_name(&ndns->dev))) {
947df02d 394 dev_warn(dev, "could not reserve region %pR\n", res);
200c79da 395 return -EBUSY;
9e853f23
RZ
396 }
397
3d745ea5 398 q = blk_alloc_queue(pmem_make_request, dev_to_node(dev));
468ded03 399 if (!q)
200c79da 400 return -ENOMEM;
468ded03 401
34c0fd54 402 pmem->pfn_flags = PFN_DEV;
e8d51348 403 pmem->pgmap.ref = &q->q_usage_counter;
200c79da 404 if (is_nd_pfn(dev)) {
f6a55e1a
CH
405 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
406 pmem->pgmap.ops = &fsdax_pagemap_ops;
e8d51348 407 addr = devm_memremap_pages(dev, &pmem->pgmap);
200c79da
DW
408 pfn_sb = nd_pfn->pfn_sb;
409 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
e8d51348
CH
410 pmem->pfn_pad = resource_size(res) -
411 resource_size(&pmem->pgmap.res);
200c79da 412 pmem->pfn_flags |= PFN_MAP;
e8d51348
CH
413 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
414 bb_res.start += pmem->data_offset;
200c79da 415 } else if (pmem_should_map_pages(dev)) {
e8d51348 416 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
f6a55e1a
CH
417 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
418 pmem->pgmap.ops = &fsdax_pagemap_ops;
e8d51348 419 addr = devm_memremap_pages(dev, &pmem->pgmap);
34c0fd54 420 pmem->pfn_flags |= PFN_MAP;
e8d51348 421 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
91ed7ac4 422 } else {
50f44ee7 423 if (devm_add_action_or_reset(dev, pmem_release_queue,
d8668bb0 424 &pmem->pgmap))
50f44ee7 425 return -ENOMEM;
200c79da
DW
426 addr = devm_memremap(dev, pmem->phys_addr,
427 pmem->size, ARCH_MEMREMAP_PMEM);
91ed7ac4
DW
428 memcpy(&bb_res, &nsio->res, sizeof(bb_res));
429 }
b36f4761 430
200c79da
DW
431 if (IS_ERR(addr))
432 return PTR_ERR(addr);
7a9eb206 433 pmem->virt_addr = addr;
9e853f23 434
ce7f11a2 435 blk_queue_write_cache(q, true, fua);
5a92289f 436 blk_queue_physical_block_size(q, PAGE_SIZE);
f979b13c 437 blk_queue_logical_block_size(q, pmem_sector_size(ndns));
5a92289f 438 blk_queue_max_hw_sectors(q, UINT_MAX);
8b904b5b 439 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4557641b
RZ
440 if (pmem->pfn_flags & PFN_MAP)
441 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
5a92289f 442 q->queuedata = pmem;
9e853f23 443
538ea4aa 444 disk = alloc_disk_node(0, nid);
030b99e3
DW
445 if (!disk)
446 return -ENOMEM;
c1d6e828 447 pmem->disk = disk;
9e853f23 448
9e853f23 449 disk->fops = &pmem_fops;
5a92289f 450 disk->queue = q;
9e853f23 451 disk->flags = GENHD_FL_EXT_DEVT;
23c47d2a 452 disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
5212e11f 453 nvdimm_namespace_disk_name(ndns, disk->disk_name);
cfe30b87
DW
454 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
455 / 512);
b95f5f43
DW
456 if (devm_init_badblocks(dev, &pmem->bb))
457 return -ENOMEM;
e8d51348 458 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
57f7f317 459 disk->bb = &pmem->bb;
f02716db 460
fefc1d97
PG
461 if (is_nvdimm_sync(nd_region))
462 flags = DAXDEV_F_SYNC;
463 dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
c1d6e828
DW
464 if (!dax_dev) {
465 put_disk(disk);
466 return -ENOMEM;
467 }
ce7f11a2 468 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
c1d6e828 469 pmem->dax_dev = dax_dev;
6e0c90d6
DW
470 gendev = disk_to_dev(disk);
471 gendev->groups = pmem_attribute_groups;
472
fef912bf 473 device_add_disk(dev, disk, NULL);
c1d6e828 474 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
f02716db
DW
475 return -ENOMEM;
476
58138820 477 revalidate_disk(disk);
9e853f23 478
975750a9
TK
479 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
480 "badblocks");
6aa734a2
DW
481 if (!pmem->bb_state)
482 dev_warn(dev, "'badblocks' notification disabled\n");
975750a9 483
8c2f7e86
DW
484 return 0;
485}
9e853f23 486
9f53f9fa 487static int nd_pmem_probe(struct device *dev)
9e853f23 488{
1c97afa7 489 int ret;
8c2f7e86 490 struct nd_namespace_common *ndns;
9e853f23 491
8c2f7e86
DW
492 ndns = nvdimm_namespace_common_probe(dev);
493 if (IS_ERR(ndns))
494 return PTR_ERR(ndns);
bf9bccc1 495
200c79da 496 if (is_nd_btt(dev))
708ab62b
CH
497 return nvdimm_namespace_attach_btt(ndns);
498
32ab0a3f 499 if (is_nd_pfn(dev))
200c79da 500 return pmem_attach_disk(dev, ndns);
32ab0a3f 501
8f4b01fc
AK
502 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
503 if (ret)
504 return ret;
505
1c97afa7
AK
506 ret = nd_btt_probe(dev, ndns);
507 if (ret == 0)
32ab0a3f 508 return -ENXIO;
32ab0a3f 509
1c97afa7
AK
510 /*
511 * We have two failure conditions here, there is no
512 * info reserver block or we found a valid info reserve block
513 * but failed to initialize the pfn superblock.
514 *
515 * For the first case consider namespace as a raw pmem namespace
516 * and attach a disk.
517 *
518 * For the latter, consider this a success and advance the namespace
519 * seed.
520 */
521 ret = nd_pfn_probe(dev, ndns);
522 if (ret == 0)
523 return -ENXIO;
524 else if (ret == -EOPNOTSUPP)
525 return ret;
526
527 ret = nd_dax_probe(dev, ndns);
528 if (ret == 0)
529 return -ENXIO;
530 else if (ret == -EOPNOTSUPP)
531 return ret;
8f4b01fc
AK
532
533 /* probe complete, attach handles namespace enabling */
534 devm_namespace_disable(dev, ndns);
535
200c79da 536 return pmem_attach_disk(dev, ndns);
9e853f23
RZ
537}
538
9f53f9fa 539static int nd_pmem_remove(struct device *dev)
9e853f23 540{
6aa734a2
DW
541 struct pmem_device *pmem = dev_get_drvdata(dev);
542
8c2f7e86 543 if (is_nd_btt(dev))
298f2bc5 544 nvdimm_namespace_detach_btt(to_nd_btt(dev));
6aa734a2
DW
545 else {
546 /*
87a30e1f
DW
547 * Note, this assumes nd_device_lock() context to not
548 * race nd_pmem_notify()
6aa734a2
DW
549 */
550 sysfs_put(pmem->bb_state);
551 pmem->bb_state = NULL;
552 }
c5d4355d 553 nvdimm_flush(to_nd_region(dev->parent), NULL);
476f848a 554
9e853f23
RZ
555 return 0;
556}
557
476f848a
DW
558static void nd_pmem_shutdown(struct device *dev)
559{
c5d4355d 560 nvdimm_flush(to_nd_region(dev->parent), NULL);
476f848a
DW
561}
562
71999466
DW
563static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
564{
b2518c78 565 struct nd_region *nd_region;
298f2bc5
DW
566 resource_size_t offset = 0, end_trunc = 0;
567 struct nd_namespace_common *ndns;
568 struct nd_namespace_io *nsio;
569 struct resource res;
b2518c78 570 struct badblocks *bb;
975750a9 571 struct kernfs_node *bb_state;
71999466
DW
572
573 if (event != NVDIMM_REVALIDATE_POISON)
574 return;
575
298f2bc5
DW
576 if (is_nd_btt(dev)) {
577 struct nd_btt *nd_btt = to_nd_btt(dev);
578
579 ndns = nd_btt->ndns;
b2518c78
TK
580 nd_region = to_nd_region(ndns->dev.parent);
581 nsio = to_nd_namespace_io(&ndns->dev);
582 bb = &nsio->bb;
975750a9 583 bb_state = NULL;
b2518c78
TK
584 } else {
585 struct pmem_device *pmem = dev_get_drvdata(dev);
a3901802 586
b2518c78
TK
587 nd_region = to_region(pmem);
588 bb = &pmem->bb;
975750a9 589 bb_state = pmem->bb_state;
b2518c78
TK
590
591 if (is_nd_pfn(dev)) {
592 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
593 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
594
595 ndns = nd_pfn->ndns;
596 offset = pmem->data_offset +
597 __le32_to_cpu(pfn_sb->start_pad);
598 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
599 } else {
600 ndns = to_ndns(dev);
601 }
602
603 nsio = to_nd_namespace_io(&ndns->dev);
604 }
a3901802 605
298f2bc5
DW
606 res.start = nsio->res.start + offset;
607 res.end = nsio->res.end - end_trunc;
b2518c78 608 nvdimm_badblocks_populate(nd_region, bb, &res);
975750a9
TK
609 if (bb_state)
610 sysfs_notify_dirent(bb_state);
71999466
DW
611}
612
9f53f9fa
DW
613MODULE_ALIAS("pmem");
614MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
bf9bccc1 615MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
9f53f9fa
DW
616static struct nd_device_driver nd_pmem_driver = {
617 .probe = nd_pmem_probe,
618 .remove = nd_pmem_remove,
71999466 619 .notify = nd_pmem_notify,
476f848a 620 .shutdown = nd_pmem_shutdown,
9f53f9fa
DW
621 .drv = {
622 .name = "nd_pmem",
9e853f23 623 },
bf9bccc1 624 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
9e853f23
RZ
625};
626
03e90843 627module_nd_driver(nd_pmem_driver);
9e853f23
RZ
628
629MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
630MODULE_LICENSE("GPL v2");