]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/nvme/nvme.c
serial: Make full device search optional
[people/ms/u-boot.git] / drivers / nvme / nvme.c
CommitLineData
982388ea
ZZ
1/*
2 * Copyright (C) 2017 NXP Semiconductors
3 * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8#include <common.h>
9#include <dm.h>
10#include <errno.h>
11#include <memalign.h>
12#include <pci.h>
13#include <dm/device-internal.h>
14#include "nvme.h"
15
982388ea
ZZ
16#define NVME_Q_DEPTH 2
17#define NVME_AQ_DEPTH 2
18#define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
19#define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
20#define ADMIN_TIMEOUT 60
21#define IO_TIMEOUT 30
22#define MAX_PRP_POOL 512
23
722e668d
BM
24enum nvme_queue_id {
25 NVME_ADMIN_Q,
26 NVME_IO_Q,
27 NVME_Q_NUM,
28};
29
982388ea
ZZ
30/*
31 * An NVM Express queue. Each device has at least two (one for admin
32 * commands and one for I/O commands).
33 */
34struct nvme_queue {
35 struct nvme_dev *dev;
36 struct nvme_command *sq_cmds;
37 struct nvme_completion *cqes;
38 wait_queue_head_t sq_full;
39 u32 __iomem *q_db;
40 u16 q_depth;
41 s16 cq_vector;
42 u16 sq_head;
43 u16 sq_tail;
44 u16 cq_head;
45 u16 qid;
46 u8 cq_phase;
47 u8 cqe_seen;
48 unsigned long cmdid_data[];
49};
50
51static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
52{
53 u32 bit = enabled ? NVME_CSTS_RDY : 0;
04d2a384
BM
54 int timeout;
55 ulong start;
982388ea 56
04d2a384
BM
57 /* Timeout field in the CAP register is in 500 millisecond units */
58 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
982388ea 59
04d2a384
BM
60 start = get_timer(0);
61 while (get_timer(start) < timeout) {
62 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
63 return 0;
64 }
65
66 return -ETIME;
982388ea
ZZ
67}
68
69static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
70 int total_len, u64 dma_addr)
71{
72 u32 page_size = dev->page_size;
73 int offset = dma_addr & (page_size - 1);
74 u64 *prp_pool;
75 int length = total_len;
76 int i, nprps;
77 length -= (page_size - offset);
78
79 if (length <= 0) {
80 *prp2 = 0;
81 return 0;
82 }
83
84 if (length)
85 dma_addr += (page_size - offset);
86
87 if (length <= page_size) {
88 *prp2 = dma_addr;
89 return 0;
90 }
91
92 nprps = DIV_ROUND_UP(length, page_size);
93
94 if (nprps > dev->prp_entry_num) {
95 free(dev->prp_pool);
96 dev->prp_pool = malloc(nprps << 3);
97 if (!dev->prp_pool) {
98 printf("Error: malloc prp_pool fail\n");
99 return -ENOMEM;
100 }
101 dev->prp_entry_num = nprps;
102 }
103
104 prp_pool = dev->prp_pool;
105 i = 0;
106 while (nprps) {
107 if (i == ((page_size >> 3) - 1)) {
108 *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
109 page_size);
110 i = 0;
111 prp_pool += page_size;
112 }
113 *(prp_pool + i++) = cpu_to_le64(dma_addr);
114 dma_addr += page_size;
115 nprps--;
116 }
117 *prp2 = (ulong)dev->prp_pool;
118
119 return 0;
120}
121
122static __le16 nvme_get_cmd_id(void)
123{
124 static unsigned short cmdid;
125
126 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
127}
128
129static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
130{
131 u64 start = (ulong)&nvmeq->cqes[index];
132 u64 stop = start + sizeof(struct nvme_completion);
133
134 invalidate_dcache_range(start, stop);
135
136 return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
137}
138
139/**
140 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
141 *
142 * @nvmeq: The queue to use
143 * @cmd: The command to send
144 */
145static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
146{
147 u16 tail = nvmeq->sq_tail;
148
149 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
150 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
151 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
152
153 if (++tail == nvmeq->q_depth)
154 tail = 0;
155 writel(tail, nvmeq->q_db);
156 nvmeq->sq_tail = tail;
157}
158
159static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
160 struct nvme_command *cmd,
161 u32 *result, unsigned timeout)
162{
163 u16 head = nvmeq->cq_head;
164 u16 phase = nvmeq->cq_phase;
165 u16 status;
166 ulong start_time;
167 ulong timeout_us = timeout * 100000;
168
169 cmd->common.command_id = nvme_get_cmd_id();
170 nvme_submit_cmd(nvmeq, cmd);
171
172 start_time = timer_get_us();
173
174 for (;;) {
175 status = nvme_read_completion_status(nvmeq, head);
176 if ((status & 0x01) == phase)
177 break;
178 if (timeout_us > 0 && (timer_get_us() - start_time)
179 >= timeout_us)
180 return -ETIMEDOUT;
181 }
182
183 status >>= 1;
184 if (status) {
185 printf("ERROR: status = %x, phase = %d, head = %d\n",
186 status, phase, head);
187 status = 0;
188 if (++head == nvmeq->q_depth) {
189 head = 0;
190 phase = !phase;
191 }
192 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
193 nvmeq->cq_head = head;
194 nvmeq->cq_phase = phase;
195
196 return -EIO;
197 }
198
199 if (result)
200 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
201
202 if (++head == nvmeq->q_depth) {
203 head = 0;
204 phase = !phase;
205 }
206 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
207 nvmeq->cq_head = head;
208 nvmeq->cq_phase = phase;
209
210 return status;
211}
212
213static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
214 u32 *result)
215{
722e668d
BM
216 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
217 result, ADMIN_TIMEOUT);
982388ea
ZZ
218}
219
220static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
221 int qid, int depth)
222{
223 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
224 if (!nvmeq)
225 return NULL;
226 memset(nvmeq, 0, sizeof(*nvmeq));
227
228 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
229 if (!nvmeq->cqes)
230 goto free_nvmeq;
231 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
232
233 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
234 if (!nvmeq->sq_cmds)
235 goto free_queue;
236 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
237
238 nvmeq->dev = dev;
239
240 nvmeq->cq_head = 0;
241 nvmeq->cq_phase = 1;
242 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
243 nvmeq->q_depth = depth;
244 nvmeq->qid = qid;
245 dev->queue_count++;
246 dev->queues[qid] = nvmeq;
247
248 return nvmeq;
249
250 free_queue:
251 free((void *)nvmeq->cqes);
252 free_nvmeq:
253 free(nvmeq);
254
255 return NULL;
256}
257
258static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
259{
260 struct nvme_command c;
261
262 memset(&c, 0, sizeof(c));
263 c.delete_queue.opcode = opcode;
264 c.delete_queue.qid = cpu_to_le16(id);
265
266 return nvme_submit_admin_cmd(dev, &c, NULL);
267}
268
269static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
270{
271 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
272}
273
274static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
275{
276 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
277}
278
279static int nvme_enable_ctrl(struct nvme_dev *dev)
280{
281 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
282 dev->ctrl_config |= NVME_CC_ENABLE;
283 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
284
285 return nvme_wait_ready(dev, true);
286}
287
288static int nvme_disable_ctrl(struct nvme_dev *dev)
289{
290 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
291 dev->ctrl_config &= ~NVME_CC_ENABLE;
292 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
293
294 return nvme_wait_ready(dev, false);
295}
296
297static void nvme_free_queue(struct nvme_queue *nvmeq)
298{
299 free((void *)nvmeq->cqes);
300 free(nvmeq->sq_cmds);
301 free(nvmeq);
302}
303
304static void nvme_free_queues(struct nvme_dev *dev, int lowest)
305{
306 int i;
307
308 for (i = dev->queue_count - 1; i >= lowest; i--) {
309 struct nvme_queue *nvmeq = dev->queues[i];
310 dev->queue_count--;
311 dev->queues[i] = NULL;
312 nvme_free_queue(nvmeq);
313 }
314}
315
316static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
317{
318 struct nvme_dev *dev = nvmeq->dev;
319
320 nvmeq->sq_tail = 0;
321 nvmeq->cq_head = 0;
322 nvmeq->cq_phase = 1;
323 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
324 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
325 flush_dcache_range((ulong)nvmeq->cqes,
326 (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
327 dev->online_queues++;
328}
329
330static int nvme_configure_admin_queue(struct nvme_dev *dev)
331{
332 int result;
333 u32 aqa;
b65c6921 334 u64 cap = dev->cap;
982388ea
ZZ
335 struct nvme_queue *nvmeq;
336 /* most architectures use 4KB as the page size */
337 unsigned page_shift = 12;
338 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
339 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
340
341 if (page_shift < dev_page_min) {
342 debug("Device minimum page size (%u) too large for host (%u)\n",
343 1 << dev_page_min, 1 << page_shift);
344 return -ENODEV;
345 }
346
347 if (page_shift > dev_page_max) {
348 debug("Device maximum page size (%u) smaller than host (%u)\n",
349 1 << dev_page_max, 1 << page_shift);
350 page_shift = dev_page_max;
351 }
352
353 result = nvme_disable_ctrl(dev);
354 if (result < 0)
355 return result;
356
722e668d 357 nvmeq = dev->queues[NVME_ADMIN_Q];
982388ea
ZZ
358 if (!nvmeq) {
359 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
360 if (!nvmeq)
361 return -ENOMEM;
362 }
363
364 aqa = nvmeq->q_depth - 1;
365 aqa |= aqa << 16;
366 aqa |= aqa << 16;
367
368 dev->page_size = 1 << page_shift;
369
370 dev->ctrl_config = NVME_CC_CSS_NVM;
371 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
372 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
373 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
374
375 writel(aqa, &dev->bar->aqa);
376 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
377 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
378
379 result = nvme_enable_ctrl(dev);
380 if (result)
381 goto free_nvmeq;
382
383 nvmeq->cq_vector = 0;
384
722e668d 385 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
982388ea
ZZ
386
387 return result;
388
389 free_nvmeq:
390 nvme_free_queues(dev, 0);
391
392 return result;
393}
394
395static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
396 struct nvme_queue *nvmeq)
397{
398 struct nvme_command c;
399 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
400
401 memset(&c, 0, sizeof(c));
402 c.create_cq.opcode = nvme_admin_create_cq;
403 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
404 c.create_cq.cqid = cpu_to_le16(qid);
405 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
406 c.create_cq.cq_flags = cpu_to_le16(flags);
407 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
408
409 return nvme_submit_admin_cmd(dev, &c, NULL);
410}
411
412static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
413 struct nvme_queue *nvmeq)
414{
415 struct nvme_command c;
416 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
417
418 memset(&c, 0, sizeof(c));
419 c.create_sq.opcode = nvme_admin_create_sq;
420 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
421 c.create_sq.sqid = cpu_to_le16(qid);
422 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
423 c.create_sq.sq_flags = cpu_to_le16(flags);
424 c.create_sq.cqid = cpu_to_le16(qid);
425
426 return nvme_submit_admin_cmd(dev, &c, NULL);
427}
428
429int nvme_identify(struct nvme_dev *dev, unsigned nsid,
430 unsigned cns, dma_addr_t dma_addr)
431{
432 struct nvme_command c;
433 u32 page_size = dev->page_size;
434 int offset = dma_addr & (page_size - 1);
435 int length = sizeof(struct nvme_id_ctrl);
704e040a 436 int ret;
982388ea
ZZ
437
438 memset(&c, 0, sizeof(c));
439 c.identify.opcode = nvme_admin_identify;
440 c.identify.nsid = cpu_to_le32(nsid);
441 c.identify.prp1 = cpu_to_le64(dma_addr);
442
443 length -= (page_size - offset);
444 if (length <= 0) {
445 c.identify.prp2 = 0;
446 } else {
447 dma_addr += (page_size - offset);
3e185629 448 c.identify.prp2 = cpu_to_le64(dma_addr);
982388ea
ZZ
449 }
450
451 c.identify.cns = cpu_to_le32(cns);
452
704e040a
BM
453 ret = nvme_submit_admin_cmd(dev, &c, NULL);
454 if (!ret)
455 invalidate_dcache_range(dma_addr,
456 dma_addr + sizeof(struct nvme_id_ctrl));
457
458 return ret;
982388ea
ZZ
459}
460
461int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
462 dma_addr_t dma_addr, u32 *result)
463{
464 struct nvme_command c;
465
466 memset(&c, 0, sizeof(c));
467 c.features.opcode = nvme_admin_get_features;
468 c.features.nsid = cpu_to_le32(nsid);
469 c.features.prp1 = cpu_to_le64(dma_addr);
470 c.features.fid = cpu_to_le32(fid);
471
704e040a
BM
472 /*
473 * TODO: add cache invalidate operation when the size of
474 * the DMA buffer is known
475 */
476
982388ea
ZZ
477 return nvme_submit_admin_cmd(dev, &c, result);
478}
479
480int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
481 dma_addr_t dma_addr, u32 *result)
482{
483 struct nvme_command c;
484
485 memset(&c, 0, sizeof(c));
486 c.features.opcode = nvme_admin_set_features;
487 c.features.prp1 = cpu_to_le64(dma_addr);
488 c.features.fid = cpu_to_le32(fid);
489 c.features.dword11 = cpu_to_le32(dword11);
490
704e040a
BM
491 /*
492 * TODO: add cache flush operation when the size of
493 * the DMA buffer is known
494 */
495
982388ea
ZZ
496 return nvme_submit_admin_cmd(dev, &c, result);
497}
498
499static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
500{
501 struct nvme_dev *dev = nvmeq->dev;
502 int result;
503
504 nvmeq->cq_vector = qid - 1;
505 result = nvme_alloc_cq(dev, qid, nvmeq);
506 if (result < 0)
507 goto release_cq;
508
509 result = nvme_alloc_sq(dev, qid, nvmeq);
510 if (result < 0)
511 goto release_sq;
512
513 nvme_init_queue(nvmeq, qid);
514
515 return result;
516
517 release_sq:
518 nvme_delete_sq(dev, qid);
519 release_cq:
520 nvme_delete_cq(dev, qid);
521
522 return result;
523}
524
525static int nvme_set_queue_count(struct nvme_dev *dev, int count)
526{
527 int status;
528 u32 result;
529 u32 q_count = (count - 1) | ((count - 1) << 16);
530
531 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
532 q_count, 0, &result);
533
534 if (status < 0)
535 return status;
536 if (status > 1)
537 return 0;
538
539 return min(result & 0xffff, result >> 16) + 1;
540}
541
542static void nvme_create_io_queues(struct nvme_dev *dev)
543{
544 unsigned int i;
545
546 for (i = dev->queue_count; i <= dev->max_qid; i++)
547 if (!nvme_alloc_queue(dev, i, dev->q_depth))
548 break;
549
550 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
551 if (nvme_create_queue(dev->queues[i], i))
552 break;
553}
554
555static int nvme_setup_io_queues(struct nvme_dev *dev)
556{
557 int nr_io_queues;
558 int result;
559
560 nr_io_queues = 1;
561 result = nvme_set_queue_count(dev, nr_io_queues);
562 if (result <= 0)
563 return result;
564
982388ea
ZZ
565 dev->max_qid = nr_io_queues;
566
567 /* Free previously allocated queues */
568 nvme_free_queues(dev, nr_io_queues + 1);
569 nvme_create_io_queues(dev);
570
571 return 0;
572}
573
574static int nvme_get_info_from_identify(struct nvme_dev *dev)
575{
704e040a
BM
576 ALLOC_CACHE_ALIGN_BUFFER(char, buf, sizeof(struct nvme_id_ctrl));
577 struct nvme_id_ctrl *ctrl = (struct nvme_id_ctrl *)buf;
982388ea 578 int ret;
b65c6921 579 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
982388ea
ZZ
580
581 ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl);
582 if (ret)
583 return -EIO;
584
585 dev->nn = le32_to_cpu(ctrl->nn);
586 dev->vwc = ctrl->vwc;
587 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
588 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
589 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
590 if (ctrl->mdts)
591 dev->max_transfer_shift = (ctrl->mdts + shift);
beb5f521
BM
592 else {
593 /*
594 * Maximum Data Transfer Size (MDTS) field indicates the maximum
595 * data transfer size between the host and the controller. The
596 * host should not submit a command that exceeds this transfer
597 * size. The value is in units of the minimum memory page size
598 * and is reported as a power of two (2^n).
599 *
600 * The spec also says: a value of 0h indicates no restrictions
601 * on transfer size. But in nvme_blk_read/write() below we have
602 * the following algorithm for maximum number of logic blocks
603 * per transfer:
604 *
605 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
606 *
607 * In order for lbas not to overflow, the maximum number is 15
608 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
609 * Let's use 20 which provides 1MB size.
610 */
611 dev->max_transfer_shift = 20;
612 }
982388ea 613
982388ea
ZZ
614 return 0;
615}
616
617int nvme_scan_namespace(void)
618{
619 struct uclass *uc;
620 struct udevice *dev;
621 int ret;
622
623 ret = uclass_get(UCLASS_NVME, &uc);
624 if (ret)
625 return ret;
626
627 uclass_foreach_dev(dev, uc) {
628 ret = device_probe(dev);
629 if (ret)
630 return ret;
631 }
632
633 return 0;
634}
635
636static int nvme_blk_probe(struct udevice *udev)
637{
638 struct nvme_dev *ndev = dev_get_priv(udev->parent);
639 struct blk_desc *desc = dev_get_uclass_platdata(udev);
640 struct nvme_ns *ns = dev_get_priv(udev);
641 u8 flbas;
704e040a
BM
642 ALLOC_CACHE_ALIGN_BUFFER(char, buf, sizeof(struct nvme_id_ns));
643 struct nvme_id_ns *id = (struct nvme_id_ns *)buf;
e5dc2d26 644 struct pci_child_platdata *pplat;
982388ea
ZZ
645
646 memset(ns, 0, sizeof(*ns));
647 ns->dev = ndev;
18aa5a41
BM
648 /* extract the namespace id from the block device name */
649 ns->ns_id = trailing_strtol(udev->name) + 1;
982388ea
ZZ
650 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id))
651 return -EIO;
652
653 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
654 ns->flbas = flbas;
655 ns->lba_shift = id->lbaf[flbas].ds;
f81d83d5 656 ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
982388ea
ZZ
657 ns->mode_select_block_len = 1 << ns->lba_shift;
658 list_add(&ns->list, &ndev->namespaces);
659
660 desc->lba = ns->mode_select_num_blocks;
661 desc->log2blksz = ns->lba_shift;
662 desc->blksz = 1 << ns->lba_shift;
663 desc->bdev = udev;
e5dc2d26
BM
664 pplat = dev_get_parent_platdata(udev->parent);
665 sprintf(desc->vendor, "0x%.4x", pplat->vendor);
982388ea
ZZ
666 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
667 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
668 part_init(desc);
669
670 return 0;
671}
672
625a483c
BM
673static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
674 lbaint_t blkcnt, void *buffer, bool read)
982388ea
ZZ
675{
676 struct nvme_ns *ns = dev_get_priv(udev);
677 struct nvme_dev *dev = ns->dev;
678 struct nvme_command c;
679 struct blk_desc *desc = dev_get_uclass_platdata(udev);
680 int status;
681 u64 prp2;
682 u64 total_len = blkcnt << desc->log2blksz;
683 u64 temp_len = total_len;
684
685 u64 slba = blknr;
686 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
687 u64 total_lbas = blkcnt;
688
704e040a
BM
689 if (!read)
690 flush_dcache_range((unsigned long)buffer,
691 (unsigned long)buffer + total_len);
692
625a483c 693 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
982388ea
ZZ
694 c.rw.flags = 0;
695 c.rw.nsid = cpu_to_le32(ns->ns_id);
696 c.rw.control = 0;
697 c.rw.dsmgmt = 0;
698 c.rw.reftag = 0;
699 c.rw.apptag = 0;
700 c.rw.appmask = 0;
701 c.rw.metadata = 0;
702
703 while (total_lbas) {
704 if (total_lbas < lbas) {
705 lbas = (u16)total_lbas;
706 total_lbas = 0;
707 } else {
708 total_lbas -= lbas;
709 }
710
625a483c
BM
711 if (nvme_setup_prps(dev, &prp2,
712 lbas << ns->lba_shift, (ulong)buffer))
982388ea
ZZ
713 return -EIO;
714 c.rw.slba = cpu_to_le64(slba);
715 slba += lbas;
716 c.rw.length = cpu_to_le16(lbas - 1);
717 c.rw.prp1 = cpu_to_le64((ulong)buffer);
718 c.rw.prp2 = cpu_to_le64(prp2);
722e668d 719 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
982388ea
ZZ
720 &c, NULL, IO_TIMEOUT);
721 if (status)
722 break;
52a5690e 723 temp_len -= (u32)lbas << ns->lba_shift;
982388ea
ZZ
724 buffer += lbas << ns->lba_shift;
725 }
726
704e040a
BM
727 if (read)
728 invalidate_dcache_range((unsigned long)buffer,
729 (unsigned long)buffer + total_len);
730
982388ea
ZZ
731 return (total_len - temp_len) >> desc->log2blksz;
732}
733
625a483c
BM
734static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
735 lbaint_t blkcnt, void *buffer)
736{
737 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
738}
739
982388ea
ZZ
740static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
741 lbaint_t blkcnt, const void *buffer)
742{
625a483c 743 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
982388ea
ZZ
744}
745
746static const struct blk_ops nvme_blk_ops = {
747 .read = nvme_blk_read,
748 .write = nvme_blk_write,
749};
750
751U_BOOT_DRIVER(nvme_blk) = {
752 .name = "nvme-blk",
753 .id = UCLASS_BLK,
754 .probe = nvme_blk_probe,
755 .ops = &nvme_blk_ops,
756 .priv_auto_alloc_size = sizeof(struct nvme_ns),
757};
758
759static int nvme_bind(struct udevice *udev)
760{
18aa5a41 761 static int ndev_num;
982388ea 762 char name[20];
18aa5a41
BM
763
764 sprintf(name, "nvme#%d", ndev_num++);
982388ea
ZZ
765
766 return device_set_name(udev, name);
767}
768
769static int nvme_probe(struct udevice *udev)
770{
771 int ret;
772 struct nvme_dev *ndev = dev_get_priv(udev);
982388ea 773
982388ea
ZZ
774 ndev->instance = trailing_strtol(udev->name);
775
776 INIT_LIST_HEAD(&ndev->namespaces);
777 ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
778 PCI_REGION_MEM);
779 if (readl(&ndev->bar->csts) == -1) {
780 ret = -ENODEV;
781 printf("Error: %s: Out of memory!\n", udev->name);
782 goto free_nvme;
783 }
784
722e668d 785 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
982388ea
ZZ
786 if (!ndev->queues) {
787 ret = -ENOMEM;
788 printf("Error: %s: Out of memory!\n", udev->name);
789 goto free_nvme;
790 }
37d46870 791 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
982388ea
ZZ
792
793 ndev->prp_pool = malloc(MAX_PRP_POOL);
794 if (!ndev->prp_pool) {
795 ret = -ENOMEM;
796 printf("Error: %s: Out of memory!\n", udev->name);
797 goto free_nvme;
798 }
799 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
800
b65c6921
BM
801 ndev->cap = nvme_readq(&ndev->bar->cap);
802 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
803 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
982388ea
ZZ
804 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
805
806 ret = nvme_configure_admin_queue(ndev);
807 if (ret)
808 goto free_queue;
809
810 ret = nvme_setup_io_queues(ndev);
811 if (ret)
812 goto free_queue;
813
814 nvme_get_info_from_identify(ndev);
982388ea
ZZ
815
816 return 0;
817
818free_queue:
819 free((void *)ndev->queues);
820free_nvme:
821 return ret;
822}
823
824U_BOOT_DRIVER(nvme) = {
825 .name = "nvme",
826 .id = UCLASS_NVME,
827 .bind = nvme_bind,
828 .probe = nvme_probe,
829 .priv_auto_alloc_size = sizeof(struct nvme_dev),
830};
831
832struct pci_device_id nvme_supported[] = {
0deb9131 833 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
982388ea
ZZ
834 {}
835};
836
837U_BOOT_PCI_DEVICE(nvme, nvme_supported);