]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - drivers/remoteproc/remoteproc_core.c
null_blk: remove duplicate check for report zone
[thirdparty/kernel/stable.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
1802d0be 1// SPDX-License-Identifier: GPL-2.0-only
400e64df
OBC
2/*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
400e64df
OBC
15 */
16
17#define pr_fmt(fmt) "%s: " fmt, __func__
18
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/mutex.h>
24#include <linux/dma-mapping.h>
25#include <linux/firmware.h>
26#include <linux/string.h>
27#include <linux/debugfs.h>
2666ca91 28#include <linux/devcoredump.h>
400e64df
OBC
29#include <linux/remoteproc.h>
30#include <linux/iommu.h>
b5ab5e24 31#include <linux/idr.h>
400e64df 32#include <linux/elf.h>
a2b950ac 33#include <linux/crc32.h>
086d0872 34#include <linux/of_reserved_mem.h>
400e64df
OBC
35#include <linux/virtio_ids.h>
36#include <linux/virtio_ring.h>
cf59d3e9 37#include <asm/byteorder.h>
086d0872 38#include <linux/platform_device.h>
400e64df
OBC
39
40#include "remoteproc_internal.h"
41
b36de8cf
LP
42#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
43
fec47d86
DG
44static DEFINE_MUTEX(rproc_list_mutex);
45static LIST_HEAD(rproc_list);
46
400e64df 47typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 48 struct resource_table *table, int len);
a2b950ac
OBC
49typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 void *, int offset, int avail);
400e64df 51
c6aed238
LP
52static int rproc_alloc_carveout(struct rproc *rproc,
53 struct rproc_mem_entry *mem);
54static int rproc_release_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56
b5ab5e24
OBC
57/* Unique indices for remoteproc devices */
58static DEFINE_IDA(rproc_dev_index);
59
8afd519c
FGL
60static const char * const rproc_crash_names[] = {
61 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
62 [RPROC_WATCHDOG] = "watchdog",
63 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
64};
65
66/* translate rproc_crash_type to string */
67static const char *rproc_crash_to_string(enum rproc_crash_type type)
68{
69 if (type < ARRAY_SIZE(rproc_crash_names))
70 return rproc_crash_names[type];
b23f7a09 71 return "unknown";
8afd519c
FGL
72}
73
400e64df
OBC
74/*
75 * This is the IOMMU fault handler we register with the IOMMU API
76 * (when relevant; not all remote processors access memory through
77 * an IOMMU).
78 *
79 * IOMMU core will invoke this handler whenever the remote processor
80 * will try to access an unmapped device address.
400e64df
OBC
81 */
82static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 83 unsigned long iova, int flags, void *token)
400e64df 84{
8afd519c
FGL
85 struct rproc *rproc = token;
86
400e64df
OBC
87 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
88
8afd519c
FGL
89 rproc_report_crash(rproc, RPROC_MMUFAULT);
90
400e64df
OBC
91 /*
92 * Let the iommu core know we're not really handling this fault;
8afd519c 93 * we just used it as a recovery trigger.
400e64df
OBC
94 */
95 return -ENOSYS;
96}
97
98static int rproc_enable_iommu(struct rproc *rproc)
99{
100 struct iommu_domain *domain;
b5ab5e24 101 struct device *dev = rproc->dev.parent;
400e64df
OBC
102 int ret;
103
315491e5
SA
104 if (!rproc->has_iommu) {
105 dev_dbg(dev, "iommu not present\n");
0798e1da 106 return 0;
400e64df
OBC
107 }
108
109 domain = iommu_domain_alloc(dev->bus);
110 if (!domain) {
111 dev_err(dev, "can't alloc iommu domain\n");
112 return -ENOMEM;
113 }
114
77ca2332 115 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
116
117 ret = iommu_attach_device(domain, dev);
118 if (ret) {
119 dev_err(dev, "can't attach iommu device: %d\n", ret);
120 goto free_domain;
121 }
122
123 rproc->domain = domain;
124
125 return 0;
126
127free_domain:
128 iommu_domain_free(domain);
129 return ret;
130}
131
132static void rproc_disable_iommu(struct rproc *rproc)
133{
134 struct iommu_domain *domain = rproc->domain;
b5ab5e24 135 struct device *dev = rproc->dev.parent;
400e64df
OBC
136
137 if (!domain)
138 return;
139
140 iommu_detach_device(domain, dev);
141 iommu_domain_free(domain);
400e64df
OBC
142}
143
086d0872 144phys_addr_t rproc_va_to_pa(void *cpu_addr)
eb30596e
LP
145{
146 /*
147 * Return physical address according to virtual address location
148 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
149 * - in kernel: if region allocated in generic dma memory pool
150 */
151 if (is_vmalloc_addr(cpu_addr)) {
152 return page_to_phys(vmalloc_to_page(cpu_addr)) +
153 offset_in_page(cpu_addr);
154 }
155
156 WARN_ON(!virt_addr_valid(cpu_addr));
157 return virt_to_phys(cpu_addr);
158}
086d0872 159EXPORT_SYMBOL(rproc_va_to_pa);
eb30596e 160
a01f7cd6
SA
161/**
162 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
163 * @rproc: handle of a remote processor
164 * @da: remoteproc device address to translate
165 * @len: length of the memory region @da is pointing to
166 *
400e64df
OBC
167 * Some remote processors will ask us to allocate them physically contiguous
168 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
169 * device addresses (which are hardcoded in the firmware). They may also have
170 * dedicated memory regions internal to the processors, and use them either
171 * exclusively or alongside carveouts.
400e64df
OBC
172 *
173 * They may then ask us to copy objects into specific device addresses (e.g.
174 * code/data sections) or expose us certain symbols in other device address
175 * (e.g. their trace buffer).
176 *
a01f7cd6
SA
177 * This function is a helper function with which we can go over the allocated
178 * carveouts and translate specific device addresses to kernel virtual addresses
179 * so we can access the referenced memory. This function also allows to perform
180 * translations on the internal remoteproc memory regions through a platform
181 * implementation specific da_to_va ops, if present.
182 *
183 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
184 *
185 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
186 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
187 * here the output of the DMA API for the carveouts, which should be more
188 * correct.
400e64df 189 */
72854fb0 190void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
191{
192 struct rproc_mem_entry *carveout;
193 void *ptr = NULL;
194
a01f7cd6
SA
195 if (rproc->ops->da_to_va) {
196 ptr = rproc->ops->da_to_va(rproc, da, len);
197 if (ptr)
198 goto out;
199 }
200
400e64df
OBC
201 list_for_each_entry(carveout, &rproc->carveouts, node) {
202 int offset = da - carveout->da;
203
74457c40
LP
204 /* Verify that carveout is allocated */
205 if (!carveout->va)
206 continue;
207
400e64df
OBC
208 /* try next carveout if da is too small */
209 if (offset < 0)
210 continue;
211
212 /* try next carveout if da is too large */
213 if (offset + len > carveout->len)
214 continue;
215
216 ptr = carveout->va + offset;
217
218 break;
219 }
220
a01f7cd6 221out:
400e64df
OBC
222 return ptr;
223}
4afc89d6 224EXPORT_SYMBOL(rproc_da_to_va);
400e64df 225
b0019ccd
LP
226/**
227 * rproc_find_carveout_by_name() - lookup the carveout region by a name
228 * @rproc: handle of a remote processor
229 * @name,..: carveout name to find (standard printf format)
230 *
231 * Platform driver has the capability to register some pre-allacoted carveout
232 * (physically contiguous memory regions) before rproc firmware loading and
233 * associated resource table analysis. These regions may be dedicated memory
234 * regions internal to the coprocessor or specified DDR region with specific
235 * attributes
236 *
237 * This function is a helper function with which we can go over the
238 * allocated carveouts and return associated region characteristics like
239 * coprocessor address, length or processor virtual address.
240 *
241 * Return: a valid pointer on carveout entry on success or NULL on failure.
242 */
243struct rproc_mem_entry *
244rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
245{
246 va_list args;
247 char _name[32];
248 struct rproc_mem_entry *carveout, *mem = NULL;
249
250 if (!name)
251 return NULL;
252
253 va_start(args, name);
254 vsnprintf(_name, sizeof(_name), name, args);
255 va_end(args);
256
257 list_for_each_entry(carveout, &rproc->carveouts, node) {
258 /* Compare carveout and requested names */
259 if (!strcmp(carveout->name, _name)) {
260 mem = carveout;
261 break;
262 }
263 }
264
265 return mem;
266}
267
c874bf59
LP
268/**
269 * rproc_check_carveout_da() - Check specified carveout da configuration
270 * @rproc: handle of a remote processor
271 * @mem: pointer on carveout to check
272 * @da: area device address
273 * @len: associated area size
274 *
275 * This function is a helper function to verify requested device area (couple
28d7d5c6
LP
276 * da, len) is part of specified carveout.
277 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
278 * checked.
c874bf59 279 *
28d7d5c6 280 * Return: 0 if carveout matches request else error
c874bf59 281 */
28d7d5c6
LP
282static int rproc_check_carveout_da(struct rproc *rproc,
283 struct rproc_mem_entry *mem, u32 da, u32 len)
c874bf59
LP
284{
285 struct device *dev = &rproc->dev;
28d7d5c6 286 int delta;
c874bf59
LP
287
288 /* Check requested resource length */
289 if (len > mem->len) {
290 dev_err(dev, "Registered carveout doesn't fit len request\n");
28d7d5c6 291 return -EINVAL;
c874bf59
LP
292 }
293
294 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
28d7d5c6
LP
295 /* Address doesn't match registered carveout configuration */
296 return -EINVAL;
c874bf59
LP
297 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
298 delta = da - mem->da;
299
300 /* Check requested resource belongs to registered carveout */
301 if (delta < 0) {
302 dev_err(dev,
303 "Registered carveout doesn't fit da request\n");
28d7d5c6 304 return -EINVAL;
c874bf59
LP
305 }
306
307 if (delta + len > mem->len) {
308 dev_err(dev,
309 "Registered carveout doesn't fit len request\n");
28d7d5c6 310 return -EINVAL;
c874bf59
LP
311 }
312 }
313
314 return 0;
315}
316
6db20ea8 317int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 318{
7a186941 319 struct rproc *rproc = rvdev->rproc;
b5ab5e24 320 struct device *dev = &rproc->dev;
6db20ea8 321 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 322 struct fw_rsc_vdev *rsc;
7a186941 323 int ret, size, notifyid;
c6aed238 324 struct rproc_mem_entry *mem;
400e64df 325
7a186941 326 /* actual size of vring (in bytes) */
6db20ea8 327 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 328
c6aed238
LP
329 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
330
331 /* Search for pre-registered carveout */
332 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
333 i);
334 if (mem) {
335 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
336 return -ENOMEM;
337 } else {
338 /* Register carveout in in list */
339 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
340 rproc_alloc_carveout,
341 rproc_release_carveout,
342 "vdev%dvring%d",
343 rvdev->index, i);
344 if (!mem) {
345 dev_err(dev, "Can't allocate memory entry structure\n");
346 return -ENOMEM;
347 }
348
349 rproc_add_carveout(rproc, mem);
400e64df
OBC
350 }
351
6db20ea8
OBC
352 /*
353 * Assign an rproc-wide unique index for this vring
354 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
355 * TODO: support predefined notifyids (via resource table)
356 */
15fc6110 357 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 358 if (ret < 0) {
15fc6110 359 dev_err(dev, "idr_alloc failed: %d\n", ret);
7a186941
OBC
360 return ret;
361 }
15fc6110 362 notifyid = ret;
400e64df 363
48f18f89
BA
364 /* Potentially bump max_notifyid */
365 if (notifyid > rproc->max_notifyid)
366 rproc->max_notifyid = notifyid;
367
6db20ea8 368 rvring->notifyid = notifyid;
400e64df 369
c6aed238 370 /* Let the rproc know the notifyid of this vring.*/
c0d63157 371 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
372 return 0;
373}
374
6db20ea8
OBC
375static int
376rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
377{
378 struct rproc *rproc = rvdev->rproc;
b5ab5e24 379 struct device *dev = &rproc->dev;
6db20ea8
OBC
380 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
381 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 382
9d7814a9 383 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 384 i, vring->da, vring->num, vring->align);
7a186941 385
6db20ea8
OBC
386 /* verify queue size and vring alignment are sane */
387 if (!vring->num || !vring->align) {
388 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 389 vring->num, vring->align);
6db20ea8 390 return -EINVAL;
7a186941 391 }
6db20ea8
OBC
392
393 rvring->len = vring->num;
394 rvring->align = vring->align;
395 rvring->rvdev = rvdev;
396
397 return 0;
398}
399
400void rproc_free_vring(struct rproc_vring *rvring)
401{
6db20ea8 402 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
403 int idx = rvring->rvdev->vring - rvring;
404 struct fw_rsc_vdev *rsc;
6db20ea8 405
6db20ea8 406 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 407
c0d63157
SB
408 /* reset resource entry info */
409 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
410 rsc->vring[idx].da = 0;
411 rsc->vring[idx].notifyid = -1;
7a186941
OBC
412}
413
6f8b0373 414static int rproc_vdev_do_start(struct rproc_subdev *subdev)
f5bcb353
BA
415{
416 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
417
418 return rproc_add_virtio_dev(rvdev, rvdev->id);
419}
420
6f8b0373 421static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
f5bcb353
BA
422{
423 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
d4c036fe 424 int ret;
f5bcb353 425
d4c036fe
LP
426 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
427 if (ret)
428 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
f5bcb353
BA
429}
430
086d0872
LP
431/**
432 * rproc_rvdev_release() - release the existence of a rvdev
433 *
434 * @dev: the subdevice's dev
435 */
436static void rproc_rvdev_release(struct device *dev)
437{
438 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
439
440 of_reserved_mem_device_release(dev);
441
442 kfree(rvdev);
443}
444
400e64df 445/**
fd2c15ec 446 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
447 * @rproc: the remote processor
448 * @rsc: the vring resource descriptor
fd2c15ec 449 * @avail: size of available data (for sanity checking the image)
400e64df 450 *
7a186941
OBC
451 * This resource entry requests the host to statically register a virtio
452 * device (vdev), and setup everything needed to support it. It contains
453 * everything needed to make it possible: the virtio device id, virtio
454 * device features, vrings information, virtio config space, etc...
455 *
456 * Before registering the vdev, the vrings are allocated from non-cacheable
457 * physically contiguous memory. Currently we only support two vrings per
458 * remote processor (temporary limitation). We might also want to consider
459 * doing the vring allocation only later when ->find_vqs() is invoked, and
460 * then release them upon ->del_vqs().
461 *
462 * Note: @da is currently not really handled correctly: we dynamically
463 * allocate it using the DMA API, ignoring requested hard coded addresses,
464 * and we don't take care of any required IOMMU programming. This is all
465 * going to be taken care of when the generic iommu-based DMA API will be
466 * merged. Meanwhile, statically-addressed iommu-based firmware images should
467 * use RSC_DEVMEM resource entries to map their required @da to the physical
468 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
469 *
470 * Returns 0 on success, or an appropriate error code otherwise
471 */
fd2c15ec 472static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 473 int offset, int avail)
400e64df 474{
b5ab5e24 475 struct device *dev = &rproc->dev;
7a186941
OBC
476 struct rproc_vdev *rvdev;
477 int i, ret;
086d0872 478 char name[16];
400e64df 479
fd2c15ec
OBC
480 /* make sure resource isn't truncated */
481 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
482 + rsc->config_len > avail) {
b5ab5e24 483 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
484 return -EINVAL;
485 }
486
fd2c15ec
OBC
487 /* make sure reserved bytes are zeroes */
488 if (rsc->reserved[0] || rsc->reserved[1]) {
489 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
490 return -EINVAL;
491 }
492
9d7814a9 493 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
494 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
495
7a186941
OBC
496 /* we currently support only two vrings per rvdev */
497 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 498 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
499 return -EINVAL;
500 }
501
899585ad 502 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
503 if (!rvdev)
504 return -ENOMEM;
400e64df 505
aab8d802
BA
506 kref_init(&rvdev->refcount);
507
f5bcb353 508 rvdev->id = rsc->id;
7a186941 509 rvdev->rproc = rproc;
c6aed238 510 rvdev->index = rproc->nb_vdev++;
400e64df 511
086d0872
LP
512 /* Initialise vdev subdevice */
513 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
514 rvdev->dev.parent = rproc->dev.parent;
515 rvdev->dev.release = rproc_rvdev_release;
516 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
517 dev_set_drvdata(&rvdev->dev, rvdev);
518
519 ret = device_register(&rvdev->dev);
520 if (ret) {
521 put_device(&rvdev->dev);
522 return ret;
523 }
524 /* Make device dma capable by inheriting from parent's capabilities */
525 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
526
527 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
528 dma_get_mask(rproc->dev.parent));
529 if (ret) {
530 dev_warn(dev,
531 "Failed to set DMA mask %llx. Trying to continue... %x\n",
532 dma_get_mask(rproc->dev.parent), ret);
533 }
534
6db20ea8 535 /* parse the vrings */
7a186941 536 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 537 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 538 if (ret)
6db20ea8 539 goto free_rvdev;
7a186941 540 }
400e64df 541
a2b950ac
OBC
542 /* remember the resource offset*/
543 rvdev->rsc_offset = offset;
fd2c15ec 544
a863af5d
BA
545 /* allocate the vring resources */
546 for (i = 0; i < rsc->num_of_vrings; i++) {
547 ret = rproc_alloc_vring(rvdev, i);
548 if (ret)
549 goto unwind_vring_allocations;
550 }
551
7a186941 552 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 553
6f8b0373
AE
554 rvdev->subdev.start = rproc_vdev_do_start;
555 rvdev->subdev.stop = rproc_vdev_do_stop;
4902676f
BA
556
557 rproc_add_subdev(rproc, &rvdev->subdev);
400e64df
OBC
558
559 return 0;
7a186941 560
a863af5d
BA
561unwind_vring_allocations:
562 for (i--; i >= 0; i--)
563 rproc_free_vring(&rvdev->vring[i]);
6db20ea8 564free_rvdev:
086d0872 565 device_unregister(&rvdev->dev);
7a186941 566 return ret;
400e64df
OBC
567}
568
aab8d802
BA
569void rproc_vdev_release(struct kref *ref)
570{
571 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
a863af5d 572 struct rproc_vring *rvring;
f5bcb353 573 struct rproc *rproc = rvdev->rproc;
a863af5d
BA
574 int id;
575
576 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
577 rvring = &rvdev->vring[id];
a863af5d
BA
578 rproc_free_vring(rvring);
579 }
aab8d802 580
f5bcb353 581 rproc_remove_subdev(rproc, &rvdev->subdev);
aab8d802 582 list_del(&rvdev->node);
086d0872 583 device_unregister(&rvdev->dev);
aab8d802
BA
584}
585
400e64df
OBC
586/**
587 * rproc_handle_trace() - handle a shared trace buffer resource
588 * @rproc: the remote processor
589 * @rsc: the trace resource descriptor
fd2c15ec 590 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
591 *
592 * In case the remote processor dumps trace logs into memory,
593 * export it via debugfs.
594 *
595 * Currently, the 'da' member of @rsc should contain the device address
596 * where the remote processor is dumping the traces. Later we could also
597 * support dynamically allocating this address using the generic
598 * DMA API (but currently there isn't a use case for that).
599 *
600 * Returns 0 on success, or an appropriate error code otherwise
601 */
fd2c15ec 602static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 603 int offset, int avail)
400e64df 604{
a987e6b9 605 struct rproc_debug_trace *trace;
b5ab5e24 606 struct device *dev = &rproc->dev;
400e64df
OBC
607 char name[15];
608
fd2c15ec 609 if (sizeof(*rsc) > avail) {
b5ab5e24 610 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
611 return -EINVAL;
612 }
613
614 /* make sure reserved bytes are zeroes */
615 if (rsc->reserved) {
616 dev_err(dev, "trace rsc has non zero reserved bytes\n");
617 return -EINVAL;
618 }
619
400e64df 620 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 621 if (!trace)
400e64df 622 return -ENOMEM;
400e64df
OBC
623
624 /* set the trace buffer dma properties */
a987e6b9
LP
625 trace->trace_mem.len = rsc->len;
626 trace->trace_mem.da = rsc->da;
627
628 /* set pointer on rproc device */
629 trace->rproc = rproc;
400e64df
OBC
630
631 /* make sure snprintf always null terminates, even if truncating */
632 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
633
634 /* create the debugfs entry */
a987e6b9
LP
635 trace->tfile = rproc_create_trace_file(name, rproc, trace);
636 if (!trace->tfile) {
400e64df
OBC
637 kfree(trace);
638 return -EINVAL;
639 }
640
641 list_add_tail(&trace->node, &rproc->traces);
642
643 rproc->num_traces++;
644
a987e6b9
LP
645 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
646 name, rsc->da, rsc->len);
400e64df
OBC
647
648 return 0;
649}
650
651/**
652 * rproc_handle_devmem() - handle devmem resource entry
653 * @rproc: remote processor handle
654 * @rsc: the devmem resource entry
fd2c15ec 655 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
656 *
657 * Remote processors commonly need to access certain on-chip peripherals.
658 *
659 * Some of these remote processors access memory via an iommu device,
660 * and might require us to configure their iommu before they can access
661 * the on-chip peripherals they need.
662 *
663 * This resource entry is a request to map such a peripheral device.
664 *
665 * These devmem entries will contain the physical address of the device in
666 * the 'pa' member. If a specific device address is expected, then 'da' will
667 * contain it (currently this is the only use case supported). 'len' will
668 * contain the size of the physical region we need to map.
669 *
670 * Currently we just "trust" those devmem entries to contain valid physical
671 * addresses, but this is going to change: we want the implementations to
672 * tell us ranges of physical addresses the firmware is allowed to request,
673 * and not allow firmwares to request access to physical addresses that
674 * are outside those ranges.
675 */
fd2c15ec 676static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 677 int offset, int avail)
400e64df
OBC
678{
679 struct rproc_mem_entry *mapping;
b5ab5e24 680 struct device *dev = &rproc->dev;
400e64df
OBC
681 int ret;
682
683 /* no point in handling this resource without a valid iommu domain */
684 if (!rproc->domain)
685 return -EINVAL;
686
fd2c15ec 687 if (sizeof(*rsc) > avail) {
b5ab5e24 688 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
689 return -EINVAL;
690 }
691
692 /* make sure reserved bytes are zeroes */
693 if (rsc->reserved) {
b5ab5e24 694 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
695 return -EINVAL;
696 }
697
400e64df 698 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 699 if (!mapping)
400e64df 700 return -ENOMEM;
400e64df
OBC
701
702 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
703 if (ret) {
b5ab5e24 704 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
705 goto out;
706 }
707
708 /*
709 * We'll need this info later when we'll want to unmap everything
710 * (e.g. on shutdown).
711 *
712 * We can't trust the remote processor not to change the resource
713 * table, so we must maintain this info independently.
714 */
715 mapping->da = rsc->da;
716 mapping->len = rsc->len;
717 list_add_tail(&mapping->node, &rproc->mappings);
718
b5ab5e24 719 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 720 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
721
722 return 0;
723
724out:
725 kfree(mapping);
726 return ret;
727}
728
f2e74abf 729/**
d7c51706 730 * rproc_alloc_carveout() - allocated specified carveout
f2e74abf 731 * @rproc: rproc handle
d7c51706 732 * @mem: the memory entry to allocate
400e64df 733 *
d7c51706
LP
734 * This function allocate specified memory entry @mem using
735 * dma_alloc_coherent() as default allocator
400e64df 736 */
d7c51706
LP
737static int rproc_alloc_carveout(struct rproc *rproc,
738 struct rproc_mem_entry *mem)
400e64df 739{
d7c51706 740 struct rproc_mem_entry *mapping = NULL;
b5ab5e24 741 struct device *dev = &rproc->dev;
400e64df
OBC
742 dma_addr_t dma;
743 void *va;
744 int ret;
745
d7c51706 746 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
400e64df 747 if (!va) {
9c219b23 748 dev_err(dev->parent,
d7c51706 749 "failed to allocate dma memory: len 0x%x\n", mem->len);
72029c90 750 return -ENOMEM;
400e64df
OBC
751 }
752
276ec993 753 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
d7c51706 754 va, &dma, mem->len);
400e64df 755
60f849a5
LP
756 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
757 /*
758 * Check requested da is equal to dma address
759 * and print a warn message in case of missalignment.
760 * Don't stop rproc_start sequence as coprocessor may
761 * build pa to da translation on its side.
762 */
763 if (mem->da != (u32)dma)
764 dev_warn(dev->parent,
765 "Allocated carveout doesn't fit device address request\n");
766 }
767
400e64df
OBC
768 /*
769 * Ok, this is non-standard.
770 *
771 * Sometimes we can't rely on the generic iommu-based DMA API
772 * to dynamically allocate the device address and then set the IOMMU
773 * tables accordingly, because some remote processors might
774 * _require_ us to use hard coded device addresses that their
775 * firmware was compiled with.
776 *
777 * In this case, we must use the IOMMU API directly and map
778 * the memory to the device address as expected by the remote
779 * processor.
780 *
781 * Obviously such remote processor devices should not be configured
782 * to use the iommu-based DMA API: we expect 'dma' to contain the
783 * physical address in this case.
784 */
60f849a5 785 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
7168d914
DC
786 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
787 if (!mapping) {
7168d914
DC
788 ret = -ENOMEM;
789 goto dma_free;
790 }
791
d7c51706
LP
792 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
793 mem->flags);
400e64df
OBC
794 if (ret) {
795 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 796 goto free_mapping;
400e64df
OBC
797 }
798
799 /*
800 * We'll need this info later when we'll want to unmap
801 * everything (e.g. on shutdown).
802 *
803 * We can't trust the remote processor not to change the
804 * resource table, so we must maintain this info independently.
805 */
d7c51706
LP
806 mapping->da = mem->da;
807 mapping->len = mem->len;
400e64df
OBC
808 list_add_tail(&mapping->node, &rproc->mappings);
809
b605ed8b 810 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
d7c51706 811 mem->da, &dma);
60f849a5
LP
812 }
813
814 if (mem->da == FW_RSC_ADDR_ANY) {
b36de8cf
LP
815 /* Update device address as undefined by requester */
816 if ((u64)dma & HIGH_BITS_MASK)
817 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
818
d7c51706 819 mem->da = (u32)dma;
400e64df
OBC
820 }
821
80137b40 822 mem->dma = dma;
d7c51706 823 mem->va = va;
400e64df
OBC
824
825 return 0;
826
7168d914
DC
827free_mapping:
828 kfree(mapping);
400e64df 829dma_free:
d7c51706 830 dma_free_coherent(dev->parent, mem->len, va, dma);
400e64df
OBC
831 return ret;
832}
833
d7c51706
LP
834/**
835 * rproc_release_carveout() - release acquired carveout
836 * @rproc: rproc handle
837 * @mem: the memory entry to release
838 *
839 * This function releases specified memory entry @mem allocated via
840 * rproc_alloc_carveout() function by @rproc.
841 */
842static int rproc_release_carveout(struct rproc *rproc,
843 struct rproc_mem_entry *mem)
844{
845 struct device *dev = &rproc->dev;
846
847 /* clean up carveout allocations */
848 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
849 return 0;
850}
851
852/**
853 * rproc_handle_carveout() - handle phys contig memory allocation requests
854 * @rproc: rproc handle
855 * @rsc: the resource entry
856 * @avail: size of available data (for image validation)
857 *
858 * This function will handle firmware requests for allocation of physically
859 * contiguous memory regions.
860 *
861 * These request entries should come first in the firmware's resource table,
862 * as other firmware entries might request placing other data objects inside
863 * these memory regions (e.g. data/code segments, trace resource entries, ...).
864 *
865 * Allocating memory this way helps utilizing the reserved physical memory
866 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
867 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
868 * pressure is important; it may have a substantial impact on performance.
869 */
870static int rproc_handle_carveout(struct rproc *rproc,
871 struct fw_rsc_carveout *rsc,
872 int offset, int avail)
873{
874 struct rproc_mem_entry *carveout;
875 struct device *dev = &rproc->dev;
876
877 if (sizeof(*rsc) > avail) {
878 dev_err(dev, "carveout rsc is truncated\n");
879 return -EINVAL;
880 }
881
882 /* make sure reserved bytes are zeroes */
883 if (rsc->reserved) {
884 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
885 return -EINVAL;
886 }
887
888 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
889 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
890
ffa5f9c8
LP
891 /*
892 * Check carveout rsc already part of a registered carveout,
893 * Search by name, then check the da and length
894 */
895 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
896
897 if (carveout) {
898 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
899 dev_err(dev,
900 "Carveout already associated to resource table\n");
901 return -ENOMEM;
902 }
903
904 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
905 return -ENOMEM;
906
907 /* Update memory carveout with resource table info */
908 carveout->rsc_offset = offset;
909 carveout->flags = rsc->flags;
910
911 return 0;
912 }
913
d7c51706
LP
914 /* Register carveout in in list */
915 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
916 rproc_alloc_carveout,
917 rproc_release_carveout, rsc->name);
918 if (!carveout) {
919 dev_err(dev, "Can't allocate memory entry structure\n");
920 return -ENOMEM;
921 }
922
923 carveout->flags = rsc->flags;
924 carveout->rsc_offset = offset;
925 rproc_add_carveout(rproc, carveout);
926
927 return 0;
928}
929
15c0b025
LP
930/**
931 * rproc_add_carveout() - register an allocated carveout region
932 * @rproc: rproc handle
933 * @mem: memory entry to register
934 *
935 * This function registers specified memory entry in @rproc carveouts list.
936 * Specified carveout should have been allocated before registering.
937 */
938void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
939{
940 list_add_tail(&mem->node, &rproc->carveouts);
941}
942EXPORT_SYMBOL(rproc_add_carveout);
943
72029c90
LP
944/**
945 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
946 * @dev: pointer on device struct
947 * @va: virtual address
948 * @dma: dma address
949 * @len: memory carveout length
950 * @da: device address
a9f6fe0d
LP
951 * @alloc: memory carveout allocation function
952 * @release: memory carveout release function
72029c90
LP
953 * @name: carveout name
954 *
955 * This function allocates a rproc_mem_entry struct and fill it with parameters
956 * provided by client.
957 */
958struct rproc_mem_entry *
959rproc_mem_entry_init(struct device *dev,
960 void *va, dma_addr_t dma, int len, u32 da,
d7c51706 961 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
72029c90
LP
962 int (*release)(struct rproc *, struct rproc_mem_entry *),
963 const char *name, ...)
964{
965 struct rproc_mem_entry *mem;
966 va_list args;
967
968 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
969 if (!mem)
970 return mem;
971
972 mem->va = va;
973 mem->dma = dma;
974 mem->da = da;
975 mem->len = len;
d7c51706 976 mem->alloc = alloc;
72029c90 977 mem->release = release;
d7c51706 978 mem->rsc_offset = FW_RSC_ADDR_ANY;
1429cca1 979 mem->of_resm_idx = -1;
72029c90
LP
980
981 va_start(args, name);
982 vsnprintf(mem->name, sizeof(mem->name), name, args);
983 va_end(args);
984
985 return mem;
986}
987EXPORT_SYMBOL(rproc_mem_entry_init);
988
1429cca1
LP
989/**
990 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
991 * from a reserved memory phandle
992 * @dev: pointer on device struct
993 * @of_resm_idx: reserved memory phandle index in "memory-region"
994 * @len: memory carveout length
995 * @da: device address
996 * @name: carveout name
997 *
998 * This function allocates a rproc_mem_entry struct and fill it with parameters
999 * provided by client.
1000 */
1001struct rproc_mem_entry *
1002rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1003 u32 da, const char *name, ...)
1004{
1005 struct rproc_mem_entry *mem;
1006 va_list args;
1007
1008 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1009 if (!mem)
1010 return mem;
1011
1012 mem->da = da;
1013 mem->len = len;
1014 mem->rsc_offset = FW_RSC_ADDR_ANY;
1015 mem->of_resm_idx = of_resm_idx;
1016
1017 va_start(args, name);
1018 vsnprintf(mem->name, sizeof(mem->name), name, args);
1019 va_end(args);
1020
1021 return mem;
1022}
1023EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1024
72029c90 1025/**
e12bc14b
OBC
1026 * A lookup table for resource handlers. The indices are defined in
1027 * enum fw_resource_type.
1028 */
232fcdbb 1029static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
1030 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1031 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1032 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
232fcdbb
SB
1033 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1034};
1035
400e64df 1036/* handle firmware resource entries before booting the remote processor */
a4b24c75 1037static int rproc_handle_resources(struct rproc *rproc,
232fcdbb 1038 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 1039{
b5ab5e24 1040 struct device *dev = &rproc->dev;
e12bc14b 1041 rproc_handle_resource_t handler;
fd2c15ec
OBC
1042 int ret = 0, i;
1043
d4bb86f2
BA
1044 if (!rproc->table_ptr)
1045 return 0;
1046
a2b950ac
OBC
1047 for (i = 0; i < rproc->table_ptr->num; i++) {
1048 int offset = rproc->table_ptr->offset[i];
1049 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
a4b24c75 1050 int avail = rproc->table_sz - offset - sizeof(*hdr);
fd2c15ec
OBC
1051 void *rsc = (void *)hdr + sizeof(*hdr);
1052
1053 /* make sure table isn't truncated */
1054 if (avail < 0) {
1055 dev_err(dev, "rsc table is truncated\n");
1056 return -EINVAL;
1057 }
400e64df 1058
fd2c15ec 1059 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 1060
fd2c15ec
OBC
1061 if (hdr->type >= RSC_LAST) {
1062 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 1063 continue;
400e64df
OBC
1064 }
1065
232fcdbb 1066 handler = handlers[hdr->type];
e12bc14b
OBC
1067 if (!handler)
1068 continue;
1069
a2b950ac 1070 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 1071 if (ret)
400e64df 1072 break;
fd2c15ec 1073 }
400e64df
OBC
1074
1075 return ret;
1076}
1077
c455daa4
BA
1078static int rproc_prepare_subdevices(struct rproc *rproc)
1079{
1080 struct rproc_subdev *subdev;
1081 int ret;
1082
1083 list_for_each_entry(subdev, &rproc->subdevs, node) {
1084 if (subdev->prepare) {
1085 ret = subdev->prepare(subdev);
1086 if (ret)
1087 goto unroll_preparation;
1088 }
1089 }
1090
1091 return 0;
1092
1093unroll_preparation:
1094 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1095 if (subdev->unprepare)
1096 subdev->unprepare(subdev);
1097 }
1098
1099 return ret;
1100}
1101
618fcff3 1102static int rproc_start_subdevices(struct rproc *rproc)
7bdc9650
BA
1103{
1104 struct rproc_subdev *subdev;
1105 int ret;
1106
1107 list_for_each_entry(subdev, &rproc->subdevs, node) {
be37b1e0
BA
1108 if (subdev->start) {
1109 ret = subdev->start(subdev);
1110 if (ret)
1111 goto unroll_registration;
1112 }
7bdc9650
BA
1113 }
1114
1115 return 0;
1116
1117unroll_registration:
be37b1e0
BA
1118 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1119 if (subdev->stop)
1120 subdev->stop(subdev, true);
1121 }
7bdc9650
BA
1122
1123 return ret;
1124}
1125
618fcff3 1126static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
7bdc9650
BA
1127{
1128 struct rproc_subdev *subdev;
1129
be37b1e0
BA
1130 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1131 if (subdev->stop)
1132 subdev->stop(subdev, crashed);
1133 }
7bdc9650
BA
1134}
1135
c455daa4
BA
1136static void rproc_unprepare_subdevices(struct rproc *rproc)
1137{
1138 struct rproc_subdev *subdev;
1139
1140 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1141 if (subdev->unprepare)
1142 subdev->unprepare(subdev);
1143 }
1144}
1145
d7c51706
LP
1146/**
1147 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1148 * in the list
1149 * @rproc: the remote processor handle
1150 *
1151 * This function parses registered carveout list, performs allocation
1152 * if alloc() ops registered and updates resource table information
1153 * if rsc_offset set.
1154 *
1155 * Return: 0 on success
1156 */
1157static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1158{
1159 struct rproc_mem_entry *entry, *tmp;
1160 struct fw_rsc_carveout *rsc;
1161 struct device *dev = &rproc->dev;
b36de8cf 1162 u64 pa;
d7c51706
LP
1163 int ret;
1164
1165 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1166 if (entry->alloc) {
1167 ret = entry->alloc(rproc, entry);
1168 if (ret) {
1169 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1170 entry->name, ret);
1171 return -ENOMEM;
1172 }
1173 }
1174
1175 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1176 /* update resource table */
1177 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1178
1179 /*
1180 * Some remote processors might need to know the pa
1181 * even though they are behind an IOMMU. E.g., OMAP4's
1182 * remote M3 processor needs this so it can control
1183 * on-chip hardware accelerators that are not behind
1184 * the IOMMU, and therefor must know the pa.
1185 *
1186 * Generally we don't want to expose physical addresses
1187 * if we don't have to (remote processors are generally
1188 * _not_ trusted), so we might want to do this only for
1189 * remote processor that _must_ have this (e.g. OMAP4's
1190 * dual M3 subsystem).
1191 *
1192 * Non-IOMMU processors might also want to have this info.
1193 * In this case, the device address and the physical address
1194 * are the same.
1195 */
ffa5f9c8
LP
1196
1197 /* Use va if defined else dma to generate pa */
d7c51706 1198 if (entry->va)
b36de8cf 1199 pa = (u64)rproc_va_to_pa(entry->va);
ffa5f9c8 1200 else
b36de8cf
LP
1201 pa = (u64)entry->dma;
1202
1203 if (((u64)pa) & HIGH_BITS_MASK)
1204 dev_warn(dev,
1205 "Physical address cast in 32bit to fit resource table format\n");
ffa5f9c8 1206
b36de8cf 1207 rsc->pa = (u32)pa;
ffa5f9c8
LP
1208 rsc->da = entry->da;
1209 rsc->len = entry->len;
d7c51706
LP
1210 }
1211 }
1212
1213 return 0;
1214}
1215
2666ca91
SJ
1216/**
1217 * rproc_coredump_cleanup() - clean up dump_segments list
1218 * @rproc: the remote processor handle
1219 */
1220static void rproc_coredump_cleanup(struct rproc *rproc)
1221{
1222 struct rproc_dump_segment *entry, *tmp;
1223
1224 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1225 list_del(&entry->node);
1226 kfree(entry);
1227 }
1228}
1229
400e64df
OBC
1230/**
1231 * rproc_resource_cleanup() - clean up and free all acquired resources
1232 * @rproc: rproc handle
1233 *
1234 * This function will free all resources acquired for @rproc, and it
7a186941 1235 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
1236 */
1237static void rproc_resource_cleanup(struct rproc *rproc)
1238{
1239 struct rproc_mem_entry *entry, *tmp;
a987e6b9 1240 struct rproc_debug_trace *trace, *ttmp;
d81fb32f 1241 struct rproc_vdev *rvdev, *rvtmp;
b5ab5e24 1242 struct device *dev = &rproc->dev;
400e64df
OBC
1243
1244 /* clean up debugfs trace entries */
a987e6b9
LP
1245 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1246 rproc_remove_trace_file(trace->tfile);
400e64df 1247 rproc->num_traces--;
a987e6b9
LP
1248 list_del(&trace->node);
1249 kfree(trace);
400e64df
OBC
1250 }
1251
400e64df
OBC
1252 /* clean up iommu mapping entries */
1253 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1254 size_t unmapped;
1255
1256 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1257 if (unmapped != entry->len) {
1258 /* nothing much to do besides complaining */
e981f6d4 1259 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
730f84ce 1260 unmapped);
400e64df
OBC
1261 }
1262
1263 list_del(&entry->node);
1264 kfree(entry);
1265 }
b6356a01
SA
1266
1267 /* clean up carveout allocations */
1268 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
f2e74abf
LP
1269 if (entry->release)
1270 entry->release(rproc, entry);
b6356a01
SA
1271 list_del(&entry->node);
1272 kfree(entry);
1273 }
d81fb32f
BA
1274
1275 /* clean up remote vdev entries */
f5bcb353 1276 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
2b45cef5 1277 kref_put(&rvdev->refcount, rproc_vdev_release);
2666ca91
SJ
1278
1279 rproc_coredump_cleanup(rproc);
400e64df
OBC
1280}
1281
1efa30d0
SJ
1282static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1283{
a4b24c75 1284 struct resource_table *loaded_table;
1efa30d0 1285 struct device *dev = &rproc->dev;
a4b24c75 1286 int ret;
1efa30d0
SJ
1287
1288 /* load the ELF segments to memory */
1289 ret = rproc_load_segments(rproc, fw);
1290 if (ret) {
1291 dev_err(dev, "Failed to load program segments: %d\n", ret);
1292 return ret;
1293 }
1294
1295 /*
1296 * The starting device has been given the rproc->cached_table as the
1297 * resource table. The address of the vring along with the other
1298 * allocated resources (carveouts etc) is stored in cached_table.
1299 * In order to pass this information to the remote device we must copy
1300 * this information to device memory. We also update the table_ptr so
1301 * that any subsequent changes will be applied to the loaded version.
1302 */
1303 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1304 if (loaded_table) {
a4b24c75 1305 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1efa30d0
SJ
1306 rproc->table_ptr = loaded_table;
1307 }
1308
c455daa4
BA
1309 ret = rproc_prepare_subdevices(rproc);
1310 if (ret) {
1311 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1312 rproc->name, ret);
f68d51bd 1313 goto reset_table_ptr;
c455daa4
BA
1314 }
1315
1efa30d0
SJ
1316 /* power up the remote processor */
1317 ret = rproc->ops->start(rproc);
1318 if (ret) {
1319 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
c455daa4 1320 goto unprepare_subdevices;
1efa30d0
SJ
1321 }
1322
618fcff3
BA
1323 /* Start any subdevices for the remote processor */
1324 ret = rproc_start_subdevices(rproc);
1efa30d0
SJ
1325 if (ret) {
1326 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1327 rproc->name, ret);
c455daa4 1328 goto stop_rproc;
1efa30d0
SJ
1329 }
1330
1331 rproc->state = RPROC_RUNNING;
1332
1333 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1334
1335 return 0;
c455daa4
BA
1336
1337stop_rproc:
1338 rproc->ops->stop(rproc);
c455daa4
BA
1339unprepare_subdevices:
1340 rproc_unprepare_subdevices(rproc);
f68d51bd
SA
1341reset_table_ptr:
1342 rproc->table_ptr = rproc->cached_table;
c455daa4
BA
1343
1344 return ret;
1efa30d0
SJ
1345}
1346
400e64df
OBC
1347/*
1348 * take a firmware and boot a remote processor with it.
1349 */
1350static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1351{
b5ab5e24 1352 struct device *dev = &rproc->dev;
400e64df 1353 const char *name = rproc->firmware;
58b64090 1354 int ret;
400e64df
OBC
1355
1356 ret = rproc_fw_sanity_check(rproc, fw);
1357 if (ret)
1358 return ret;
1359
e981f6d4 1360 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
1361
1362 /*
1363 * if enabling an IOMMU isn't relevant for this rproc, this is
1364 * just a nop
1365 */
1366 ret = rproc_enable_iommu(rproc);
1367 if (ret) {
1368 dev_err(dev, "can't enable iommu: %d\n", ret);
1369 return ret;
1370 }
1371
3e5f9eb5 1372 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
988d204c 1373
c1d35c1a
BA
1374 /* Load resource table, core dump segment list etc from the firmware */
1375 ret = rproc_parse_fw(rproc, fw);
58b64090
BA
1376 if (ret)
1377 goto disable_iommu;
a0c10687 1378
b35d7afc
BA
1379 /* reset max_notifyid */
1380 rproc->max_notifyid = -1;
1381
c6aed238
LP
1382 /* reset handled vdev */
1383 rproc->nb_vdev = 0;
1384
400e64df 1385 /* handle fw resources which are required to boot rproc */
a4b24c75 1386 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
400e64df
OBC
1387 if (ret) {
1388 dev_err(dev, "Failed to process resources: %d\n", ret);
229b85a6 1389 goto clean_up_resources;
400e64df
OBC
1390 }
1391
d7c51706
LP
1392 /* Allocate carveout resources associated to rproc */
1393 ret = rproc_alloc_registered_carveouts(rproc);
1394 if (ret) {
1395 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1396 ret);
1397 goto clean_up_resources;
1398 }
1399
1efa30d0
SJ
1400 ret = rproc_start(rproc, fw);
1401 if (ret)
229b85a6 1402 goto clean_up_resources;
400e64df
OBC
1403
1404 return 0;
1405
229b85a6
BA
1406clean_up_resources:
1407 rproc_resource_cleanup(rproc);
a0c10687
BA
1408 kfree(rproc->cached_table);
1409 rproc->cached_table = NULL;
988d204c 1410 rproc->table_ptr = NULL;
58b64090 1411disable_iommu:
400e64df
OBC
1412 rproc_disable_iommu(rproc);
1413 return ret;
1414}
1415
1416/*
5e6533f7 1417 * take a firmware and boot it up.
400e64df
OBC
1418 *
1419 * Note: this function is called asynchronously upon registration of the
1420 * remote processor (so we must wait until it completes before we try
1421 * to unregister the device. one other option is just to use kref here,
1422 * that might be cleaner).
1423 */
5e6533f7 1424static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
400e64df
OBC
1425{
1426 struct rproc *rproc = context;
a2b950ac 1427
7a20c64d 1428 rproc_boot(rproc);
ddf71187 1429
3cc6e787 1430 release_firmware(fw);
400e64df
OBC
1431}
1432
5e6533f7 1433static int rproc_trigger_auto_boot(struct rproc *rproc)
70b85ef8
FGL
1434{
1435 int ret;
1436
70b85ef8 1437 /*
70b85ef8
FGL
1438 * We're initiating an asynchronous firmware loading, so we can
1439 * be built-in kernel code, without hanging the boot process.
1440 */
1441 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1442 rproc->firmware, &rproc->dev, GFP_KERNEL,
5e6533f7 1443 rproc, rproc_auto_boot_callback);
2099c77d 1444 if (ret < 0)
70b85ef8 1445 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
70b85ef8
FGL
1446
1447 return ret;
1448}
1449
880f5b38 1450static int rproc_stop(struct rproc *rproc, bool crashed)
1efa30d0
SJ
1451{
1452 struct device *dev = &rproc->dev;
1453 int ret;
1454
618fcff3
BA
1455 /* Stop any subdevices for the remote processor */
1456 rproc_stop_subdevices(rproc, crashed);
1efa30d0 1457
0a8b81cb
BA
1458 /* the installed resource table is no longer accessible */
1459 rproc->table_ptr = rproc->cached_table;
1460
1efa30d0
SJ
1461 /* power off the remote processor */
1462 ret = rproc->ops->stop(rproc);
1463 if (ret) {
1464 dev_err(dev, "can't stop rproc: %d\n", ret);
1465 return ret;
1466 }
1467
c455daa4
BA
1468 rproc_unprepare_subdevices(rproc);
1469
1efa30d0
SJ
1470 rproc->state = RPROC_OFFLINE;
1471
1472 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1473
1474 return 0;
1475}
1476
2666ca91
SJ
1477/**
1478 * rproc_coredump_add_segment() - add segment of device memory to coredump
1479 * @rproc: handle of a remote processor
1480 * @da: device address
1481 * @size: size of segment
1482 *
1483 * Add device memory to the list of segments to be included in a coredump for
1484 * the remoteproc.
1485 *
1486 * Return: 0 on success, negative errno on error.
1487 */
1488int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1489{
1490 struct rproc_dump_segment *segment;
1491
1492 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1493 if (!segment)
1494 return -ENOMEM;
1495
1496 segment->da = da;
1497 segment->size = size;
1498
1499 list_add_tail(&segment->node, &rproc->dump_segments);
1500
1501 return 0;
1502}
1503EXPORT_SYMBOL(rproc_coredump_add_segment);
1504
ab8f873b
SS
1505/**
1506 * rproc_coredump_add_custom_segment() - add custom coredump segment
1507 * @rproc: handle of a remote processor
1508 * @da: device address
1509 * @size: size of segment
1510 * @dumpfn: custom dump function called for each segment during coredump
1511 * @priv: private data
1512 *
1513 * Add device memory to the list of segments to be included in the coredump
1514 * and associate the segment with the given custom dump function and private
1515 * data.
1516 *
1517 * Return: 0 on success, negative errno on error.
1518 */
1519int rproc_coredump_add_custom_segment(struct rproc *rproc,
1520 dma_addr_t da, size_t size,
1521 void (*dumpfn)(struct rproc *rproc,
1522 struct rproc_dump_segment *segment,
1523 void *dest),
1524 void *priv)
1525{
1526 struct rproc_dump_segment *segment;
1527
1528 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1529 if (!segment)
1530 return -ENOMEM;
1531
1532 segment->da = da;
1533 segment->size = size;
1534 segment->priv = priv;
1535 segment->dump = dumpfn;
1536
1537 list_add_tail(&segment->node, &rproc->dump_segments);
1538
1539 return 0;
1540}
1541EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1542
2666ca91
SJ
1543/**
1544 * rproc_coredump() - perform coredump
1545 * @rproc: rproc handle
1546 *
1547 * This function will generate an ELF header for the registered segments
1548 * and create a devcoredump device associated with rproc.
1549 */
1550static void rproc_coredump(struct rproc *rproc)
1551{
1552 struct rproc_dump_segment *segment;
1553 struct elf32_phdr *phdr;
1554 struct elf32_hdr *ehdr;
1555 size_t data_size;
1556 size_t offset;
1557 void *data;
1558 void *ptr;
1559 int phnum = 0;
1560
1561 if (list_empty(&rproc->dump_segments))
1562 return;
1563
1564 data_size = sizeof(*ehdr);
1565 list_for_each_entry(segment, &rproc->dump_segments, node) {
1566 data_size += sizeof(*phdr) + segment->size;
1567
1568 phnum++;
1569 }
1570
1571 data = vmalloc(data_size);
1572 if (!data)
1573 return;
1574
1575 ehdr = data;
1576
1577 memset(ehdr, 0, sizeof(*ehdr));
1578 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1579 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1580 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1581 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1582 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1583 ehdr->e_type = ET_CORE;
1584 ehdr->e_machine = EM_NONE;
1585 ehdr->e_version = EV_CURRENT;
1586 ehdr->e_entry = rproc->bootaddr;
1587 ehdr->e_phoff = sizeof(*ehdr);
1588 ehdr->e_ehsize = sizeof(*ehdr);
1589 ehdr->e_phentsize = sizeof(*phdr);
1590 ehdr->e_phnum = phnum;
1591
1592 phdr = data + ehdr->e_phoff;
1593 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1594 list_for_each_entry(segment, &rproc->dump_segments, node) {
1595 memset(phdr, 0, sizeof(*phdr));
1596 phdr->p_type = PT_LOAD;
1597 phdr->p_offset = offset;
1598 phdr->p_vaddr = segment->da;
1599 phdr->p_paddr = segment->da;
1600 phdr->p_filesz = segment->size;
1601 phdr->p_memsz = segment->size;
1602 phdr->p_flags = PF_R | PF_W | PF_X;
1603 phdr->p_align = 0;
1604
3952105d
SS
1605 if (segment->dump) {
1606 segment->dump(rproc, segment, data + offset);
2666ca91 1607 } else {
3952105d
SS
1608 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1609 if (!ptr) {
1610 dev_err(&rproc->dev,
1611 "invalid coredump segment (%pad, %zu)\n",
1612 &segment->da, segment->size);
1613 memset(data + offset, 0xff, segment->size);
1614 } else {
1615 memcpy(data + offset, ptr, segment->size);
1616 }
2666ca91
SJ
1617 }
1618
1619 offset += phdr->p_filesz;
1620 phdr++;
1621 }
1622
1623 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1624}
1625
70b85ef8
FGL
1626/**
1627 * rproc_trigger_recovery() - recover a remoteproc
1628 * @rproc: the remote processor
1629 *
56324d7a 1630 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
1631 * rpmsg drivers will be reseted along with the remote processor making the
1632 * remoteproc functional again.
1633 *
1634 * This function can sleep, so it cannot be called from atomic context.
1635 */
1636int rproc_trigger_recovery(struct rproc *rproc)
1637{
7e83cab8
SJ
1638 const struct firmware *firmware_p;
1639 struct device *dev = &rproc->dev;
1640 int ret;
1641
1642 dev_err(dev, "recovering %s\n", rproc->name);
70b85ef8 1643
7e83cab8
SJ
1644 ret = mutex_lock_interruptible(&rproc->lock);
1645 if (ret)
1646 return ret;
1647
fcd58037 1648 ret = rproc_stop(rproc, true);
7e83cab8
SJ
1649 if (ret)
1650 goto unlock_mutex;
ddf71187 1651
2666ca91
SJ
1652 /* generate coredump */
1653 rproc_coredump(rproc);
1654
7e83cab8
SJ
1655 /* load firmware */
1656 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1657 if (ret < 0) {
1658 dev_err(dev, "request_firmware failed: %d\n", ret);
1659 goto unlock_mutex;
1660 }
ddf71187 1661
7e83cab8
SJ
1662 /* boot the remote processor up again */
1663 ret = rproc_start(rproc, firmware_p);
1664
1665 release_firmware(firmware_p);
1666
1667unlock_mutex:
1668 mutex_unlock(&rproc->lock);
1669 return ret;
70b85ef8
FGL
1670}
1671
8afd519c
FGL
1672/**
1673 * rproc_crash_handler_work() - handle a crash
1674 *
1675 * This function needs to handle everything related to a crash, like cpu
1676 * registers and stack dump, information to help to debug the fatal error, etc.
1677 */
1678static void rproc_crash_handler_work(struct work_struct *work)
1679{
1680 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1681 struct device *dev = &rproc->dev;
1682
1683 dev_dbg(dev, "enter %s\n", __func__);
1684
1685 mutex_lock(&rproc->lock);
1686
1687 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1688 /* handle only the first crash detected */
1689 mutex_unlock(&rproc->lock);
1690 return;
1691 }
1692
1693 rproc->state = RPROC_CRASHED;
1694 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1695 rproc->name);
1696
1697 mutex_unlock(&rproc->lock);
1698
2e37abb8
FGL
1699 if (!rproc->recovery_disabled)
1700 rproc_trigger_recovery(rproc);
8afd519c
FGL
1701}
1702
400e64df 1703/**
1b0ef906 1704 * rproc_boot() - boot a remote processor
400e64df
OBC
1705 * @rproc: handle of a remote processor
1706 *
1707 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1708 *
1709 * If the remote processor is already powered on, this function immediately
1710 * returns (successfully).
1711 *
1712 * Returns 0 on success, and an appropriate error value otherwise.
1713 */
1b0ef906 1714int rproc_boot(struct rproc *rproc)
400e64df
OBC
1715{
1716 const struct firmware *firmware_p;
1717 struct device *dev;
1718 int ret;
1719
1720 if (!rproc) {
1721 pr_err("invalid rproc handle\n");
1722 return -EINVAL;
1723 }
1724
b5ab5e24 1725 dev = &rproc->dev;
400e64df
OBC
1726
1727 ret = mutex_lock_interruptible(&rproc->lock);
1728 if (ret) {
1729 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1730 return ret;
1731 }
1732
2099c77d
SJ
1733 if (rproc->state == RPROC_DELETED) {
1734 ret = -ENODEV;
1735 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1736 goto unlock_mutex;
1737 }
1738
400e64df
OBC
1739 /* skip the boot process if rproc is already powered up */
1740 if (atomic_inc_return(&rproc->power) > 1) {
1741 ret = 0;
1742 goto unlock_mutex;
1743 }
1744
1745 dev_info(dev, "powering up %s\n", rproc->name);
1746
1747 /* load firmware */
1748 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1749 if (ret < 0) {
1750 dev_err(dev, "request_firmware failed: %d\n", ret);
1751 goto downref_rproc;
1752 }
1753
1754 ret = rproc_fw_boot(rproc, firmware_p);
1755
1756 release_firmware(firmware_p);
1757
1758downref_rproc:
fbb6aacb 1759 if (ret)
400e64df 1760 atomic_dec(&rproc->power);
400e64df
OBC
1761unlock_mutex:
1762 mutex_unlock(&rproc->lock);
1763 return ret;
1764}
1765EXPORT_SYMBOL(rproc_boot);
1766
1767/**
1768 * rproc_shutdown() - power off the remote processor
1769 * @rproc: the remote processor
1770 *
1771 * Power off a remote processor (previously booted with rproc_boot()).
1772 *
1773 * In case @rproc is still being used by an additional user(s), then
1774 * this function will just decrement the power refcount and exit,
1775 * without really powering off the device.
1776 *
1777 * Every call to rproc_boot() must (eventually) be accompanied by a call
1778 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1779 *
1780 * Notes:
1781 * - we're not decrementing the rproc's refcount, only the power refcount.
1782 * which means that the @rproc handle stays valid even after rproc_shutdown()
1783 * returns, and users can still use it with a subsequent rproc_boot(), if
1784 * needed.
400e64df
OBC
1785 */
1786void rproc_shutdown(struct rproc *rproc)
1787{
b5ab5e24 1788 struct device *dev = &rproc->dev;
400e64df
OBC
1789 int ret;
1790
1791 ret = mutex_lock_interruptible(&rproc->lock);
1792 if (ret) {
1793 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1794 return;
1795 }
1796
1797 /* if the remote proc is still needed, bail out */
1798 if (!atomic_dec_and_test(&rproc->power))
1799 goto out;
1800
fcd58037 1801 ret = rproc_stop(rproc, false);
400e64df
OBC
1802 if (ret) {
1803 atomic_inc(&rproc->power);
400e64df
OBC
1804 goto out;
1805 }
1806
1807 /* clean up all acquired resources */
1808 rproc_resource_cleanup(rproc);
1809
1810 rproc_disable_iommu(rproc);
1811
988d204c 1812 /* Free the copy of the resource table */
a0c10687
BA
1813 kfree(rproc->cached_table);
1814 rproc->cached_table = NULL;
988d204c 1815 rproc->table_ptr = NULL;
400e64df
OBC
1816out:
1817 mutex_unlock(&rproc->lock);
400e64df
OBC
1818}
1819EXPORT_SYMBOL(rproc_shutdown);
1820
fec47d86
DG
1821/**
1822 * rproc_get_by_phandle() - find a remote processor by phandle
1823 * @phandle: phandle to the rproc
1824 *
1825 * Finds an rproc handle using the remote processor's phandle, and then
1826 * return a handle to the rproc.
1827 *
1828 * This function increments the remote processor's refcount, so always
1829 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1830 *
1831 * Returns the rproc handle on success, and NULL on failure.
1832 */
8de3dbd0 1833#ifdef CONFIG_OF
fec47d86
DG
1834struct rproc *rproc_get_by_phandle(phandle phandle)
1835{
1836 struct rproc *rproc = NULL, *r;
1837 struct device_node *np;
1838
1839 np = of_find_node_by_phandle(phandle);
1840 if (!np)
1841 return NULL;
1842
1843 mutex_lock(&rproc_list_mutex);
1844 list_for_each_entry(r, &rproc_list, node) {
1845 if (r->dev.parent && r->dev.parent->of_node == np) {
fbb6aacb
BA
1846 /* prevent underlying implementation from being removed */
1847 if (!try_module_get(r->dev.parent->driver->owner)) {
1848 dev_err(&r->dev, "can't get owner\n");
1849 break;
1850 }
1851
fec47d86
DG
1852 rproc = r;
1853 get_device(&rproc->dev);
1854 break;
1855 }
1856 }
1857 mutex_unlock(&rproc_list_mutex);
1858
1859 of_node_put(np);
1860
1861 return rproc;
1862}
8de3dbd0
OBC
1863#else
1864struct rproc *rproc_get_by_phandle(phandle phandle)
1865{
1866 return NULL;
1867}
1868#endif
fec47d86
DG
1869EXPORT_SYMBOL(rproc_get_by_phandle);
1870
400e64df 1871/**
160e7c84 1872 * rproc_add() - register a remote processor
400e64df
OBC
1873 * @rproc: the remote processor handle to register
1874 *
1875 * Registers @rproc with the remoteproc framework, after it has been
1876 * allocated with rproc_alloc().
1877 *
1878 * This is called by the platform-specific rproc implementation, whenever
1879 * a new remote processor device is probed.
1880 *
1881 * Returns 0 on success and an appropriate error code otherwise.
1882 *
1883 * Note: this function initiates an asynchronous firmware loading
1884 * context, which will look for virtio devices supported by the rproc's
1885 * firmware.
1886 *
1887 * If found, those virtio devices will be created and added, so as a result
7a186941 1888 * of registering this remote processor, additional virtio drivers might be
400e64df 1889 * probed.
400e64df 1890 */
160e7c84 1891int rproc_add(struct rproc *rproc)
400e64df 1892{
b5ab5e24 1893 struct device *dev = &rproc->dev;
70b85ef8 1894 int ret;
400e64df 1895
b5ab5e24
OBC
1896 ret = device_add(dev);
1897 if (ret < 0)
1898 return ret;
400e64df 1899
b5ab5e24 1900 dev_info(dev, "%s is available\n", rproc->name);
400e64df
OBC
1901
1902 /* create debugfs entries */
1903 rproc_create_debug_dir(rproc);
7a20c64d
SJ
1904
1905 /* if rproc is marked always-on, request it to boot */
1906 if (rproc->auto_boot) {
5e6533f7 1907 ret = rproc_trigger_auto_boot(rproc);
7a20c64d
SJ
1908 if (ret < 0)
1909 return ret;
1910 }
400e64df 1911
d2e12e66
DG
1912 /* expose to rproc_get_by_phandle users */
1913 mutex_lock(&rproc_list_mutex);
1914 list_add(&rproc->node, &rproc_list);
1915 mutex_unlock(&rproc_list_mutex);
1916
1917 return 0;
400e64df 1918}
160e7c84 1919EXPORT_SYMBOL(rproc_add);
400e64df 1920
b5ab5e24
OBC
1921/**
1922 * rproc_type_release() - release a remote processor instance
1923 * @dev: the rproc's device
1924 *
1925 * This function should _never_ be called directly.
1926 *
1927 * It will be called by the driver core when no one holds a valid pointer
1928 * to @dev anymore.
1929 */
1930static void rproc_type_release(struct device *dev)
1931{
1932 struct rproc *rproc = container_of(dev, struct rproc, dev);
1933
7183a2a7
OBC
1934 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1935
b5ab5e24
OBC
1936 idr_destroy(&rproc->notifyids);
1937
1938 if (rproc->index >= 0)
1939 ida_simple_remove(&rproc_dev_index, rproc->index);
1940
0f57dc6a 1941 kfree(rproc->firmware);
fb98e2bd 1942 kfree(rproc->ops);
b5ab5e24
OBC
1943 kfree(rproc);
1944}
1945
c42ca04d 1946static const struct device_type rproc_type = {
b5ab5e24
OBC
1947 .name = "remoteproc",
1948 .release = rproc_type_release,
1949};
400e64df
OBC
1950
1951/**
1952 * rproc_alloc() - allocate a remote processor handle
1953 * @dev: the underlying device
1954 * @name: name of this remote processor
1955 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1956 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1957 * @len: length of private data needed by the rproc driver (in bytes)
1958 *
1959 * Allocates a new remote processor handle, but does not register
8b4aec9a 1960 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1961 *
1962 * This function should be used by rproc implementations during initialization
1963 * of the remote processor.
1964 *
1965 * After creating an rproc handle using this function, and when ready,
160e7c84 1966 * implementations should then call rproc_add() to complete
400e64df
OBC
1967 * the registration of the remote processor.
1968 *
1969 * On success the new rproc is returned, and on failure, NULL.
1970 *
1971 * Note: _never_ directly deallocate @rproc, even if it was not registered
433c0e04 1972 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
400e64df
OBC
1973 */
1974struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
1975 const struct rproc_ops *ops,
1976 const char *firmware, int len)
400e64df
OBC
1977{
1978 struct rproc *rproc;
8b4aec9a 1979 char *p, *template = "rproc-%s-fw";
0f57dc6a 1980 int name_len;
400e64df
OBC
1981
1982 if (!dev || !name || !ops)
1983 return NULL;
1984
0f57dc6a 1985 if (!firmware) {
8b4aec9a 1986 /*
8b4aec9a 1987 * If the caller didn't pass in a firmware name then
0f57dc6a 1988 * construct a default name.
8b4aec9a
RT
1989 */
1990 name_len = strlen(name) + strlen(template) - 2 + 1;
0f57dc6a
MR
1991 p = kmalloc(name_len, GFP_KERNEL);
1992 if (!p)
1993 return NULL;
8b4aec9a
RT
1994 snprintf(p, name_len, template, name);
1995 } else {
0f57dc6a
MR
1996 p = kstrdup(firmware, GFP_KERNEL);
1997 if (!p)
1998 return NULL;
1999 }
2000
2001 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2002 if (!rproc) {
2003 kfree(p);
2004 return NULL;
8b4aec9a
RT
2005 }
2006
fb98e2bd
BA
2007 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2008 if (!rproc->ops) {
2009 kfree(p);
2010 kfree(rproc);
2011 return NULL;
2012 }
2013
8b4aec9a 2014 rproc->firmware = p;
400e64df 2015 rproc->name = name;
400e64df 2016 rproc->priv = &rproc[1];
ddf71187 2017 rproc->auto_boot = true;
400e64df 2018
b5ab5e24
OBC
2019 device_initialize(&rproc->dev);
2020 rproc->dev.parent = dev;
2021 rproc->dev.type = &rproc_type;
2aefbef0 2022 rproc->dev.class = &rproc_class;
7c89717f 2023 rproc->dev.driver_data = rproc;
b5ab5e24
OBC
2024
2025 /* Assign a unique device index and name */
2026 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2027 if (rproc->index < 0) {
2028 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2029 put_device(&rproc->dev);
2030 return NULL;
2031 }
2032
2033 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2034
400e64df
OBC
2035 atomic_set(&rproc->power, 0);
2036
0f21f9cc
BA
2037 /* Default to ELF loader if no load function is specified */
2038 if (!rproc->ops->load) {
2039 rproc->ops->load = rproc_elf_load_segments;
c1d35c1a 2040 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
0f21f9cc
BA
2041 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2042 rproc->ops->sanity_check = rproc_elf_sanity_check;
2043 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2044 }
400e64df
OBC
2045
2046 mutex_init(&rproc->lock);
2047
7a186941
OBC
2048 idr_init(&rproc->notifyids);
2049
400e64df
OBC
2050 INIT_LIST_HEAD(&rproc->carveouts);
2051 INIT_LIST_HEAD(&rproc->mappings);
2052 INIT_LIST_HEAD(&rproc->traces);
7a186941 2053 INIT_LIST_HEAD(&rproc->rvdevs);
7bdc9650 2054 INIT_LIST_HEAD(&rproc->subdevs);
2666ca91 2055 INIT_LIST_HEAD(&rproc->dump_segments);
400e64df 2056
8afd519c
FGL
2057 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2058
400e64df
OBC
2059 rproc->state = RPROC_OFFLINE;
2060
2061 return rproc;
2062}
2063EXPORT_SYMBOL(rproc_alloc);
2064
2065/**
433c0e04
BA
2066 * rproc_free() - unroll rproc_alloc()
2067 * @rproc: the remote processor handle
2068 *
2069 * This function decrements the rproc dev refcount.
2070 *
2071 * If no one holds any reference to rproc anymore, then its refcount would
2072 * now drop to zero, and it would be freed.
2073 */
2074void rproc_free(struct rproc *rproc)
2075{
2076 put_device(&rproc->dev);
2077}
2078EXPORT_SYMBOL(rproc_free);
2079
2080/**
2081 * rproc_put() - release rproc reference
400e64df
OBC
2082 * @rproc: the remote processor handle
2083 *
c6b5a276 2084 * This function decrements the rproc dev refcount.
400e64df 2085 *
c6b5a276
OBC
2086 * If no one holds any reference to rproc anymore, then its refcount would
2087 * now drop to zero, and it would be freed.
400e64df 2088 */
160e7c84 2089void rproc_put(struct rproc *rproc)
400e64df 2090{
fbb6aacb 2091 module_put(rproc->dev.parent->driver->owner);
b5ab5e24 2092 put_device(&rproc->dev);
400e64df 2093}
160e7c84 2094EXPORT_SYMBOL(rproc_put);
400e64df
OBC
2095
2096/**
160e7c84 2097 * rproc_del() - unregister a remote processor
400e64df
OBC
2098 * @rproc: rproc handle to unregister
2099 *
400e64df
OBC
2100 * This function should be called when the platform specific rproc
2101 * implementation decides to remove the rproc device. it should
160e7c84 2102 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
2103 * has completed successfully.
2104 *
160e7c84 2105 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 2106 * of the outstanding reference created by rproc_alloc. To decrement that
433c0e04 2107 * one last refcount, one still needs to call rproc_free().
400e64df
OBC
2108 *
2109 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2110 */
160e7c84 2111int rproc_del(struct rproc *rproc)
400e64df
OBC
2112{
2113 if (!rproc)
2114 return -EINVAL;
2115
ddf71187
BA
2116 /* if rproc is marked always-on, rproc_add() booted it */
2117 /* TODO: make sure this works with rproc->power > 1 */
2118 if (rproc->auto_boot)
2119 rproc_shutdown(rproc);
2120
2099c77d
SJ
2121 mutex_lock(&rproc->lock);
2122 rproc->state = RPROC_DELETED;
2123 mutex_unlock(&rproc->lock);
2124
b003d45b
SJ
2125 rproc_delete_debug_dir(rproc);
2126
fec47d86
DG
2127 /* the rproc is downref'ed as soon as it's removed from the klist */
2128 mutex_lock(&rproc_list_mutex);
2129 list_del(&rproc->node);
2130 mutex_unlock(&rproc_list_mutex);
2131
b5ab5e24 2132 device_del(&rproc->dev);
400e64df
OBC
2133
2134 return 0;
2135}
160e7c84 2136EXPORT_SYMBOL(rproc_del);
400e64df 2137
7bdc9650
BA
2138/**
2139 * rproc_add_subdev() - add a subdevice to a remoteproc
2140 * @rproc: rproc handle to add the subdevice to
2141 * @subdev: subdev handle to register
4902676f
BA
2142 *
2143 * Caller is responsible for populating optional subdevice function pointers.
7bdc9650 2144 */
4902676f 2145void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
7bdc9650 2146{
7bdc9650
BA
2147 list_add_tail(&subdev->node, &rproc->subdevs);
2148}
2149EXPORT_SYMBOL(rproc_add_subdev);
2150
2151/**
2152 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2153 * @rproc: rproc handle to remove the subdevice from
2154 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2155 */
2156void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2157{
2158 list_del(&subdev->node);
2159}
2160EXPORT_SYMBOL(rproc_remove_subdev);
2161
7c89717f
BA
2162/**
2163 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2164 * @dev: child device to find ancestor of
2165 *
2166 * Returns the ancestor rproc instance, or NULL if not found.
2167 */
2168struct rproc *rproc_get_by_child(struct device *dev)
2169{
2170 for (dev = dev->parent; dev; dev = dev->parent) {
2171 if (dev->type == &rproc_type)
2172 return dev->driver_data;
2173 }
2174
2175 return NULL;
2176}
2177EXPORT_SYMBOL(rproc_get_by_child);
2178
8afd519c
FGL
2179/**
2180 * rproc_report_crash() - rproc crash reporter function
2181 * @rproc: remote processor
2182 * @type: crash type
2183 *
2184 * This function must be called every time a crash is detected by the low-level
2185 * drivers implementing a specific remoteproc. This should not be called from a
2186 * non-remoteproc driver.
2187 *
2188 * This function can be called from atomic/interrupt context.
2189 */
2190void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2191{
2192 if (!rproc) {
2193 pr_err("NULL rproc pointer\n");
2194 return;
2195 }
2196
2197 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2198 rproc->name, rproc_crash_to_string(type));
2199
2200 /* create a new task to handle the error */
2201 schedule_work(&rproc->crash_handler);
2202}
2203EXPORT_SYMBOL(rproc_report_crash);
2204
400e64df
OBC
2205static int __init remoteproc_init(void)
2206{
2aefbef0 2207 rproc_init_sysfs();
400e64df 2208 rproc_init_debugfs();
b5ab5e24 2209
400e64df
OBC
2210 return 0;
2211}
2212module_init(remoteproc_init);
2213
2214static void __exit remoteproc_exit(void)
2215{
f42f79af
SA
2216 ida_destroy(&rproc_dev_index);
2217
400e64df 2218 rproc_exit_debugfs();
2aefbef0 2219 rproc_exit_sysfs();
400e64df
OBC
2220}
2221module_exit(remoteproc_exit);
2222
2223MODULE_LICENSE("GPL v2");
2224MODULE_DESCRIPTION("Generic Remote Processor Framework");