]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - drivers/rtc/interface.c
NFS4: Only set creation opendata if O_CREAT
[thirdparty/kernel/stable.git] / drivers / rtc / interface.c
CommitLineData
cdf7545a 1// SPDX-License-Identifier: GPL-2.0
0c86edc0
AZ
2/*
3 * RTC subsystem, interface functions
4 *
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * based on arch/arm/common/rtctime.c
cdf7545a 9 */
0c86edc0
AZ
10
11#include <linux/rtc.h>
d43c36dc 12#include <linux/sched.h>
2113852b 13#include <linux/module.h>
97144c67 14#include <linux/log2.h>
6610e089 15#include <linux/workqueue.h>
0c86edc0 16
29a1f599
BW
17#define CREATE_TRACE_POINTS
18#include <trace/events/rtc.h>
19
aa0be0f4
JS
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
98951564
BW
23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24{
25 time64_t secs;
26
27 if (!rtc->offset_secs)
28 return;
29
30 secs = rtc_tm_to_time64(tm);
31
32 /*
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
36 * the offset.
37 */
38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 (rtc->start_secs < rtc->range_min &&
40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 return;
42
43 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44}
45
46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47{
48 time64_t secs;
49
50 if (!rtc->offset_secs)
51 return;
52
53 secs = rtc_tm_to_time64(tm);
54
55 /*
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
60 */
61 if (secs >= rtc->range_min && secs <= rtc->range_max)
62 return;
63
64 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65}
66
4c4e5df1
BW
67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68{
69 if (rtc->range_min != rtc->range_max) {
70 time64_t time = rtc_tm_to_time64(tm);
98951564
BW
71 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 rtc->range_min;
73 time64_t range_max = rtc->set_start_time ?
74 (rtc->start_secs + rtc->range_max - rtc->range_min) :
75 rtc->range_max;
4c4e5df1 76
98951564 77 if (time < range_min || time > range_max)
4c4e5df1
BW
78 return -ERANGE;
79 }
80
81 return 0;
82}
83
6610e089 84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
0c86edc0
AZ
85{
86 int err;
606cc43c
AB
87
88 if (!rtc->ops) {
0c86edc0 89 err = -ENODEV;
606cc43c 90 } else if (!rtc->ops->read_time) {
0c86edc0 91 err = -EINVAL;
606cc43c 92 } else {
0c86edc0 93 memset(tm, 0, sizeof(struct rtc_time));
cd966209 94 err = rtc->ops->read_time(rtc->dev.parent, tm);
16682c86 95 if (err < 0) {
d0bddb51
AK
96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 err);
16682c86
HG
98 return err;
99 }
100
98951564
BW
101 rtc_add_offset(rtc, tm);
102
16682c86
HG
103 err = rtc_valid_tm(tm);
104 if (err < 0)
d0bddb51 105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
0c86edc0 106 }
6610e089
JS
107 return err;
108}
109
110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111{
112 int err;
0c86edc0 113
6610e089
JS
114 err = mutex_lock_interruptible(&rtc->ops_lock);
115 if (err)
116 return err;
117
118 err = __rtc_read_time(rtc, tm);
0c86edc0 119 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
120
121 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
0c86edc0
AZ
122 return err;
123}
124EXPORT_SYMBOL_GPL(rtc_read_time);
125
ab6a2d70 126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
0c86edc0
AZ
127{
128 int err;
0c86edc0
AZ
129
130 err = rtc_valid_tm(tm);
131 if (err != 0)
132 return err;
133
4c4e5df1
BW
134 err = rtc_valid_range(rtc, tm);
135 if (err)
136 return err;
71db049e 137
98951564
BW
138 rtc_subtract_offset(rtc, tm);
139
0c86edc0
AZ
140 err = mutex_lock_interruptible(&rtc->ops_lock);
141 if (err)
b68bb263 142 return err;
0c86edc0
AZ
143
144 if (!rtc->ops)
145 err = -ENODEV;
bbccf83f 146 else if (rtc->ops->set_time)
cd966209 147 err = rtc->ops->set_time(rtc->dev.parent, tm);
606cc43c 148 else
bbccf83f 149 err = -EINVAL;
0c86edc0 150
14d0e347 151 pm_stay_awake(rtc->dev.parent);
0c86edc0 152 mutex_unlock(&rtc->ops_lock);
5f9679d2
N
153 /* A timer might have just expired */
154 schedule_work(&rtc->irqwork);
29a1f599
BW
155
156 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
0c86edc0
AZ
157 return err;
158}
159EXPORT_SYMBOL_GPL(rtc_set_time);
160
606cc43c
AB
161static int rtc_read_alarm_internal(struct rtc_device *rtc,
162 struct rtc_wkalrm *alarm)
f44f7f96
JS
163{
164 int err;
165
166 err = mutex_lock_interruptible(&rtc->ops_lock);
167 if (err)
168 return err;
169
606cc43c 170 if (!rtc->ops) {
f44f7f96 171 err = -ENODEV;
606cc43c 172 } else if (!rtc->ops->read_alarm) {
f44f7f96 173 err = -EINVAL;
606cc43c 174 } else {
d68778b8
UKK
175 alarm->enabled = 0;
176 alarm->pending = 0;
177 alarm->time.tm_sec = -1;
178 alarm->time.tm_min = -1;
179 alarm->time.tm_hour = -1;
180 alarm->time.tm_mday = -1;
181 alarm->time.tm_mon = -1;
182 alarm->time.tm_year = -1;
183 alarm->time.tm_wday = -1;
184 alarm->time.tm_yday = -1;
185 alarm->time.tm_isdst = -1;
f44f7f96
JS
186 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
187 }
188
189 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
190
191 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
f44f7f96
JS
192 return err;
193}
194
195int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
196{
197 int err;
198 struct rtc_time before, now;
199 int first_time = 1;
bc10aa93 200 time64_t t_now, t_alm;
f44f7f96 201 enum { none, day, month, year } missing = none;
606cc43c 202 unsigned int days;
f44f7f96
JS
203
204 /* The lower level RTC driver may return -1 in some fields,
205 * creating invalid alarm->time values, for reasons like:
206 *
207 * - The hardware may not be capable of filling them in;
208 * many alarms match only on time-of-day fields, not
209 * day/month/year calendar data.
210 *
211 * - Some hardware uses illegal values as "wildcard" match
212 * values, which non-Linux firmware (like a BIOS) may try
213 * to set up as e.g. "alarm 15 minutes after each hour".
214 * Linux uses only oneshot alarms.
215 *
216 * When we see that here, we deal with it by using values from
217 * a current RTC timestamp for any missing (-1) values. The
218 * RTC driver prevents "periodic alarm" modes.
219 *
220 * But this can be racey, because some fields of the RTC timestamp
221 * may have wrapped in the interval since we read the RTC alarm,
222 * which would lead to us inserting inconsistent values in place
223 * of the -1 fields.
224 *
225 * Reading the alarm and timestamp in the reverse sequence
226 * would have the same race condition, and not solve the issue.
227 *
228 * So, we must first read the RTC timestamp,
229 * then read the RTC alarm value,
230 * and then read a second RTC timestamp.
231 *
232 * If any fields of the second timestamp have changed
233 * when compared with the first timestamp, then we know
234 * our timestamp may be inconsistent with that used by
235 * the low-level rtc_read_alarm_internal() function.
236 *
237 * So, when the two timestamps disagree, we just loop and do
238 * the process again to get a fully consistent set of values.
239 *
240 * This could all instead be done in the lower level driver,
241 * but since more than one lower level RTC implementation needs it,
242 * then it's probably best best to do it here instead of there..
243 */
244
245 /* Get the "before" timestamp */
246 err = rtc_read_time(rtc, &before);
247 if (err < 0)
248 return err;
249 do {
250 if (!first_time)
251 memcpy(&before, &now, sizeof(struct rtc_time));
252 first_time = 0;
253
254 /* get the RTC alarm values, which may be incomplete */
255 err = rtc_read_alarm_internal(rtc, alarm);
256 if (err)
257 return err;
258
259 /* full-function RTCs won't have such missing fields */
fd6792bb
AB
260 if (rtc_valid_tm(&alarm->time) == 0) {
261 rtc_add_offset(rtc, &alarm->time);
f44f7f96 262 return 0;
fd6792bb 263 }
f44f7f96
JS
264
265 /* get the "after" timestamp, to detect wrapped fields */
266 err = rtc_read_time(rtc, &now);
267 if (err < 0)
268 return err;
269
270 /* note that tm_sec is a "don't care" value here: */
606cc43c
AB
271 } while (before.tm_min != now.tm_min ||
272 before.tm_hour != now.tm_hour ||
273 before.tm_mon != now.tm_mon ||
274 before.tm_year != now.tm_year);
f44f7f96
JS
275
276 /* Fill in the missing alarm fields using the timestamp; we
277 * know there's at least one since alarm->time is invalid.
278 */
279 if (alarm->time.tm_sec == -1)
280 alarm->time.tm_sec = now.tm_sec;
281 if (alarm->time.tm_min == -1)
282 alarm->time.tm_min = now.tm_min;
283 if (alarm->time.tm_hour == -1)
284 alarm->time.tm_hour = now.tm_hour;
285
286 /* For simplicity, only support date rollover for now */
e74a8f2e 287 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
f44f7f96
JS
288 alarm->time.tm_mday = now.tm_mday;
289 missing = day;
290 }
606cc43c 291 if ((unsigned int)alarm->time.tm_mon >= 12) {
f44f7f96
JS
292 alarm->time.tm_mon = now.tm_mon;
293 if (missing == none)
294 missing = month;
295 }
296 if (alarm->time.tm_year == -1) {
297 alarm->time.tm_year = now.tm_year;
298 if (missing == none)
299 missing = year;
300 }
301
da96aea0
VJ
302 /* Can't proceed if alarm is still invalid after replacing
303 * missing fields.
304 */
305 err = rtc_valid_tm(&alarm->time);
306 if (err)
307 goto done;
308
f44f7f96 309 /* with luck, no rollover is needed */
bc10aa93
XP
310 t_now = rtc_tm_to_time64(&now);
311 t_alm = rtc_tm_to_time64(&alarm->time);
f44f7f96
JS
312 if (t_now < t_alm)
313 goto done;
314
315 switch (missing) {
f44f7f96
JS
316 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
317 * that will trigger at 5am will do so at 5am Tuesday, which
318 * could also be in the next month or year. This is a common
319 * case, especially for PCs.
320 */
321 case day:
322 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
323 t_alm += 24 * 60 * 60;
bc10aa93 324 rtc_time64_to_tm(t_alm, &alarm->time);
f44f7f96
JS
325 break;
326
327 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
328 * be next month. An alarm matching on the 30th, 29th, or 28th
329 * may end up in the month after that! Many newer PCs support
330 * this type of alarm.
331 */
332 case month:
333 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
334 do {
606cc43c 335 if (alarm->time.tm_mon < 11) {
f44f7f96 336 alarm->time.tm_mon++;
606cc43c 337 } else {
f44f7f96
JS
338 alarm->time.tm_mon = 0;
339 alarm->time.tm_year++;
340 }
341 days = rtc_month_days(alarm->time.tm_mon,
606cc43c 342 alarm->time.tm_year);
f44f7f96
JS
343 } while (days < alarm->time.tm_mday);
344 break;
345
346 /* Year rollover ... easy except for leap years! */
347 case year:
348 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
349 do {
350 alarm->time.tm_year++;
606cc43c
AB
351 } while (!is_leap_year(alarm->time.tm_year + 1900) &&
352 rtc_valid_tm(&alarm->time) != 0);
f44f7f96
JS
353 break;
354
355 default:
356 dev_warn(&rtc->dev, "alarm rollover not handled\n");
357 }
358
ee1d9014
AN
359 err = rtc_valid_tm(&alarm->time);
360
da96aea0 361done:
5548cbf7 362 if (err)
606cc43c
AB
363 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
364 &alarm->time);
ee1d9014
AN
365
366 return err;
f44f7f96
JS
367}
368
6610e089 369int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0c86edc0
AZ
370{
371 int err;
0c86edc0
AZ
372
373 err = mutex_lock_interruptible(&rtc->ops_lock);
374 if (err)
b68bb263 375 return err;
606cc43c 376 if (!rtc->ops) {
d5553a55 377 err = -ENODEV;
606cc43c 378 } else if (!rtc->ops->read_alarm) {
d5553a55 379 err = -EINVAL;
606cc43c 380 } else {
d5553a55
JS
381 memset(alarm, 0, sizeof(struct rtc_wkalrm));
382 alarm->enabled = rtc->aie_timer.enabled;
6610e089 383 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
d5553a55 384 }
0c86edc0 385 mutex_unlock(&rtc->ops_lock);
6610e089 386
29a1f599 387 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
d5553a55 388 return err;
0c86edc0 389}
6610e089 390EXPORT_SYMBOL_GPL(rtc_read_alarm);
0e36a9a4 391
d576fe49 392static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0e36a9a4 393{
6610e089 394 struct rtc_time tm;
bc10aa93 395 time64_t now, scheduled;
0e36a9a4 396 int err;
0e36a9a4 397
6610e089
JS
398 err = rtc_valid_tm(&alarm->time);
399 if (err)
0e36a9a4 400 return err;
98951564 401
bc10aa93 402 scheduled = rtc_tm_to_time64(&alarm->time);
a01cc657 403
6610e089
JS
404 /* Make sure we're not setting alarms in the past */
405 err = __rtc_read_time(rtc, &tm);
ca6dc2da
HG
406 if (err)
407 return err;
bc10aa93 408 now = rtc_tm_to_time64(&tm);
6610e089
JS
409 if (scheduled <= now)
410 return -ETIME;
411 /*
412 * XXX - We just checked to make sure the alarm time is not
413 * in the past, but there is still a race window where if
414 * the is alarm set for the next second and the second ticks
415 * over right here, before we set the alarm.
a01cc657 416 */
a01cc657 417
fd6792bb
AB
418 rtc_subtract_offset(rtc, &alarm->time);
419
157e8bf8
LT
420 if (!rtc->ops)
421 err = -ENODEV;
422 else if (!rtc->ops->set_alarm)
423 err = -EINVAL;
424 else
425 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
426
29a1f599 427 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
157e8bf8 428 return err;
0e36a9a4 429}
0c86edc0 430
ab6a2d70 431int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0c86edc0
AZ
432{
433 int err;
0c86edc0 434
abfdff44
AB
435 if (!rtc->ops)
436 return -ENODEV;
437 else if (!rtc->ops->set_alarm)
438 return -EINVAL;
439
f8245c26
DB
440 err = rtc_valid_tm(&alarm->time);
441 if (err != 0)
442 return err;
443
4c4e5df1
BW
444 err = rtc_valid_range(rtc, &alarm->time);
445 if (err)
446 return err;
71db049e 447
0c86edc0
AZ
448 err = mutex_lock_interruptible(&rtc->ops_lock);
449 if (err)
b68bb263 450 return err;
3ff2e13c 451 if (rtc->aie_timer.enabled)
96c8f06a 452 rtc_timer_remove(rtc, &rtc->aie_timer);
3ff2e13c 453
6610e089 454 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
8b0e1953 455 rtc->aie_timer.period = 0;
3ff2e13c 456 if (alarm->enabled)
aa0be0f4 457 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
3ff2e13c 458
0c86edc0 459 mutex_unlock(&rtc->ops_lock);
98951564 460
aa0be0f4 461 return err;
0c86edc0
AZ
462}
463EXPORT_SYMBOL_GPL(rtc_set_alarm);
464
f6d5b331
JS
465/* Called once per device from rtc_device_register */
466int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
467{
468 int err;
bd729d72 469 struct rtc_time now;
f6d5b331
JS
470
471 err = rtc_valid_tm(&alarm->time);
472 if (err != 0)
473 return err;
474
bd729d72
JS
475 err = rtc_read_time(rtc, &now);
476 if (err)
477 return err;
478
f6d5b331
JS
479 err = mutex_lock_interruptible(&rtc->ops_lock);
480 if (err)
481 return err;
482
483 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
8b0e1953 484 rtc->aie_timer.period = 0;
bd729d72 485
6785b3b6 486 /* Alarm has to be enabled & in the future for us to enqueue it */
2456e855
TG
487 if (alarm->enabled && (rtc_tm_to_ktime(now) <
488 rtc->aie_timer.node.expires)) {
f6d5b331
JS
489 rtc->aie_timer.enabled = 1;
490 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
29a1f599 491 trace_rtc_timer_enqueue(&rtc->aie_timer);
f6d5b331
JS
492 }
493 mutex_unlock(&rtc->ops_lock);
494 return err;
495}
496EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
497
099e6576
AZ
498int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
499{
606cc43c
AB
500 int err;
501
502 err = mutex_lock_interruptible(&rtc->ops_lock);
099e6576
AZ
503 if (err)
504 return err;
505
6610e089 506 if (rtc->aie_timer.enabled != enabled) {
aa0be0f4
JS
507 if (enabled)
508 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
509 else
96c8f06a 510 rtc_timer_remove(rtc, &rtc->aie_timer);
6610e089
JS
511 }
512
aa0be0f4 513 if (err)
516373b8
UKK
514 /* nothing */;
515 else if (!rtc->ops)
099e6576
AZ
516 err = -ENODEV;
517 else if (!rtc->ops->alarm_irq_enable)
518 err = -EINVAL;
519 else
520 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
521
522 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
523
524 trace_rtc_alarm_irq_enable(enabled, err);
099e6576
AZ
525 return err;
526}
527EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
528
529int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
530{
606cc43c
AB
531 int err;
532
533 err = mutex_lock_interruptible(&rtc->ops_lock);
099e6576
AZ
534 if (err)
535 return err;
536
456d66ec
JS
537#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
538 if (enabled == 0 && rtc->uie_irq_active) {
539 mutex_unlock(&rtc->ops_lock);
540 return rtc_dev_update_irq_enable_emul(rtc, 0);
541 }
542#endif
6610e089
JS
543 /* make sure we're changing state */
544 if (rtc->uie_rtctimer.enabled == enabled)
545 goto out;
546
4a649903
JS
547 if (rtc->uie_unsupported) {
548 err = -EINVAL;
549 goto out;
550 }
551
6610e089
JS
552 if (enabled) {
553 struct rtc_time tm;
554 ktime_t now, onesec;
555
556 __rtc_read_time(rtc, &tm);
557 onesec = ktime_set(1, 0);
558 now = rtc_tm_to_ktime(tm);
559 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
560 rtc->uie_rtctimer.period = ktime_set(1, 0);
aa0be0f4 561 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
606cc43c 562 } else {
96c8f06a 563 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
606cc43c 564 }
099e6576 565
6610e089 566out:
099e6576 567 mutex_unlock(&rtc->ops_lock);
456d66ec
JS
568#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
569 /*
c48cadf5
WS
570 * Enable emulation if the driver returned -EINVAL to signal that it has
571 * been configured without interrupts or they are not available at the
572 * moment.
456d66ec
JS
573 */
574 if (err == -EINVAL)
575 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
576#endif
099e6576
AZ
577 return err;
578}
579EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
580
d728b1e6 581/**
6610e089
JS
582 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
583 * @rtc: pointer to the rtc device
584 *
585 * This function is called when an AIE, UIE or PIE mode interrupt
25985edc 586 * has occurred (or been emulated).
6610e089 587 *
d728b1e6 588 */
456d66ec 589void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
0c86edc0 590{
e6229bec
AN
591 unsigned long flags;
592
6610e089 593 /* mark one irq of the appropriate mode */
e6229bec 594 spin_lock_irqsave(&rtc->irq_lock, flags);
606cc43c 595 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
e6229bec 596 spin_unlock_irqrestore(&rtc->irq_lock, flags);
0c86edc0 597
0c86edc0
AZ
598 wake_up_interruptible(&rtc->irq_queue);
599 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
600}
6610e089 601
6610e089
JS
602/**
603 * rtc_aie_update_irq - AIE mode rtctimer hook
9a032011 604 * @rtc: pointer to the rtc_device
6610e089
JS
605 *
606 * This functions is called when the aie_timer expires.
607 */
9a032011 608void rtc_aie_update_irq(struct rtc_device *rtc)
6610e089 609{
6610e089
JS
610 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
611}
612
6610e089
JS
613/**
614 * rtc_uie_update_irq - UIE mode rtctimer hook
9a032011 615 * @rtc: pointer to the rtc_device
6610e089
JS
616 *
617 * This functions is called when the uie_timer expires.
618 */
9a032011 619void rtc_uie_update_irq(struct rtc_device *rtc)
6610e089 620{
6610e089
JS
621 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
622}
623
6610e089
JS
624/**
625 * rtc_pie_update_irq - PIE mode hrtimer hook
626 * @timer: pointer to the pie mode hrtimer
627 *
628 * This function is used to emulate PIE mode interrupts
629 * using an hrtimer. This function is called when the periodic
630 * hrtimer expires.
631 */
632enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
633{
634 struct rtc_device *rtc;
635 ktime_t period;
636 int count;
606cc43c 637
6610e089
JS
638 rtc = container_of(timer, struct rtc_device, pie_timer);
639
8b0e1953 640 period = NSEC_PER_SEC / rtc->irq_freq;
6610e089
JS
641 count = hrtimer_forward_now(timer, period);
642
643 rtc_handle_legacy_irq(rtc, count, RTC_PF);
644
645 return HRTIMER_RESTART;
646}
647
648/**
649 * rtc_update_irq - Triggered when a RTC interrupt occurs.
650 * @rtc: the rtc device
651 * @num: how many irqs are being reported (usually one)
652 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
653 * Context: any
654 */
655void rtc_update_irq(struct rtc_device *rtc,
606cc43c 656 unsigned long num, unsigned long events)
6610e089 657{
e7cba884 658 if (IS_ERR_OR_NULL(rtc))
131c9cc8
AZ
659 return;
660
7523ceed 661 pm_stay_awake(rtc->dev.parent);
6610e089
JS
662 schedule_work(&rtc->irqwork);
663}
0c86edc0
AZ
664EXPORT_SYMBOL_GPL(rtc_update_irq);
665
9f3b795a 666static int __rtc_match(struct device *dev, const void *data)
71da8905 667{
9f3b795a 668 const char *name = data;
71da8905 669
d4afc76c 670 if (strcmp(dev_name(dev), name) == 0)
71da8905
DY
671 return 1;
672 return 0;
673}
674
9f3b795a 675struct rtc_device *rtc_class_open(const char *name)
0c86edc0 676{
cd966209 677 struct device *dev;
ab6a2d70 678 struct rtc_device *rtc = NULL;
0c86edc0 679
695794ae 680 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
71da8905
DY
681 if (dev)
682 rtc = to_rtc_device(dev);
0c86edc0 683
ab6a2d70
DB
684 if (rtc) {
685 if (!try_module_get(rtc->owner)) {
cd966209 686 put_device(dev);
ab6a2d70
DB
687 rtc = NULL;
688 }
0c86edc0 689 }
0c86edc0 690
ab6a2d70 691 return rtc;
0c86edc0
AZ
692}
693EXPORT_SYMBOL_GPL(rtc_class_open);
694
ab6a2d70 695void rtc_class_close(struct rtc_device *rtc)
0c86edc0 696{
ab6a2d70 697 module_put(rtc->owner);
cd966209 698 put_device(&rtc->dev);
0c86edc0
AZ
699}
700EXPORT_SYMBOL_GPL(rtc_class_close);
701
3c8bb90e
TG
702static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
703{
704 /*
705 * We always cancel the timer here first, because otherwise
706 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
707 * when we manage to start the timer before the callback
708 * returns HRTIMER_RESTART.
709 *
710 * We cannot use hrtimer_cancel() here as a running callback
711 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
712 * would spin forever.
713 */
714 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
715 return -1;
716
717 if (enabled) {
8b0e1953 718 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
3c8bb90e
TG
719
720 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
721 }
722 return 0;
723}
724
97144c67
DB
725/**
726 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
727 * @rtc: the rtc device
97144c67
DB
728 * @enabled: true to enable periodic IRQs
729 * Context: any
730 *
731 * Note that rtc_irq_set_freq() should previously have been used to
acecb3ad 732 * specify the desired frequency of periodic IRQ.
97144c67 733 */
8719d3c9 734int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
0c86edc0
AZ
735{
736 int err = 0;
0c86edc0 737
acecb3ad
AB
738 while (rtc_update_hrtimer(rtc, enabled) < 0)
739 cpu_relax();
740
741 rtc->pie_enabled = enabled;
29a1f599
BW
742
743 trace_rtc_irq_set_state(enabled, err);
0c86edc0
AZ
744 return err;
745}
0c86edc0 746
97144c67
DB
747/**
748 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
749 * @rtc: the rtc device
acecb3ad 750 * @freq: positive frequency
97144c67
DB
751 * Context: any
752 *
753 * Note that rtc_irq_set_state() is used to enable or disable the
754 * periodic IRQs.
755 */
8719d3c9 756int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
0c86edc0 757{
56f10c63 758 int err = 0;
0c86edc0 759
6e7a333e 760 if (freq <= 0 || freq > RTC_MAX_FREQ)
83a06bf5 761 return -EINVAL;
acecb3ad
AB
762
763 rtc->irq_freq = freq;
764 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
765 cpu_relax();
29a1f599
BW
766
767 trace_rtc_irq_set_freq(freq, err);
0c86edc0
AZ
768 return err;
769}
6610e089
JS
770
771/**
96c8f06a 772 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
6610e089
JS
773 * @rtc rtc device
774 * @timer timer being added.
775 *
776 * Enqueues a timer onto the rtc devices timerqueue and sets
777 * the next alarm event appropriately.
778 *
aa0be0f4
JS
779 * Sets the enabled bit on the added timer.
780 *
6610e089
JS
781 * Must hold ops_lock for proper serialization of timerqueue
782 */
aa0be0f4 783static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089 784{
2b2f5ff0
CIK
785 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
786 struct rtc_time tm;
787 ktime_t now;
788
aa0be0f4 789 timer->enabled = 1;
2b2f5ff0
CIK
790 __rtc_read_time(rtc, &tm);
791 now = rtc_tm_to_ktime(tm);
792
793 /* Skip over expired timers */
794 while (next) {
2456e855 795 if (next->expires >= now)
2b2f5ff0
CIK
796 break;
797 next = timerqueue_iterate_next(next);
798 }
799
6610e089 800 timerqueue_add(&rtc->timerqueue, &timer->node);
29a1f599 801 trace_rtc_timer_enqueue(timer);
74717b28 802 if (!next || ktime_before(timer->node.expires, next->expires)) {
6610e089
JS
803 struct rtc_wkalrm alarm;
804 int err;
606cc43c 805
6610e089
JS
806 alarm.time = rtc_ktime_to_tm(timer->node.expires);
807 alarm.enabled = 1;
808 err = __rtc_set_alarm(rtc, &alarm);
14d0e347
ZM
809 if (err == -ETIME) {
810 pm_stay_awake(rtc->dev.parent);
6610e089 811 schedule_work(&rtc->irqwork);
14d0e347 812 } else if (err) {
aa0be0f4 813 timerqueue_del(&rtc->timerqueue, &timer->node);
29a1f599 814 trace_rtc_timer_dequeue(timer);
aa0be0f4
JS
815 timer->enabled = 0;
816 return err;
817 }
6610e089 818 }
aa0be0f4 819 return 0;
6610e089
JS
820}
821
41c7f742
RV
822static void rtc_alarm_disable(struct rtc_device *rtc)
823{
824 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
825 return;
826
827 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
29a1f599 828 trace_rtc_alarm_irq_enable(0, 0);
41c7f742
RV
829}
830
6610e089 831/**
96c8f06a 832 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
6610e089
JS
833 * @rtc rtc device
834 * @timer timer being removed.
835 *
836 * Removes a timer onto the rtc devices timerqueue and sets
837 * the next alarm event appropriately.
838 *
aa0be0f4
JS
839 * Clears the enabled bit on the removed timer.
840 *
6610e089
JS
841 * Must hold ops_lock for proper serialization of timerqueue
842 */
aa0be0f4 843static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089
JS
844{
845 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
606cc43c 846
6610e089 847 timerqueue_del(&rtc->timerqueue, &timer->node);
29a1f599 848 trace_rtc_timer_dequeue(timer);
aa0be0f4 849 timer->enabled = 0;
6610e089
JS
850 if (next == &timer->node) {
851 struct rtc_wkalrm alarm;
852 int err;
606cc43c 853
6610e089 854 next = timerqueue_getnext(&rtc->timerqueue);
41c7f742
RV
855 if (!next) {
856 rtc_alarm_disable(rtc);
6610e089 857 return;
41c7f742 858 }
6610e089
JS
859 alarm.time = rtc_ktime_to_tm(next->expires);
860 alarm.enabled = 1;
861 err = __rtc_set_alarm(rtc, &alarm);
14d0e347
ZM
862 if (err == -ETIME) {
863 pm_stay_awake(rtc->dev.parent);
6610e089 864 schedule_work(&rtc->irqwork);
14d0e347 865 }
6610e089
JS
866 }
867}
868
869/**
96c8f06a 870 * rtc_timer_do_work - Expires rtc timers
6610e089
JS
871 * @rtc rtc device
872 * @timer timer being removed.
873 *
874 * Expires rtc timers. Reprograms next alarm event if needed.
875 * Called via worktask.
876 *
877 * Serializes access to timerqueue via ops_lock mutex
878 */
96c8f06a 879void rtc_timer_do_work(struct work_struct *work)
6610e089
JS
880{
881 struct rtc_timer *timer;
882 struct timerqueue_node *next;
883 ktime_t now;
884 struct rtc_time tm;
885
886 struct rtc_device *rtc =
887 container_of(work, struct rtc_device, irqwork);
888
889 mutex_lock(&rtc->ops_lock);
890again:
891 __rtc_read_time(rtc, &tm);
892 now = rtc_tm_to_ktime(tm);
893 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
2456e855 894 if (next->expires > now)
6610e089
JS
895 break;
896
897 /* expire timer */
898 timer = container_of(next, struct rtc_timer, node);
899 timerqueue_del(&rtc->timerqueue, &timer->node);
29a1f599 900 trace_rtc_timer_dequeue(timer);
6610e089 901 timer->enabled = 0;
5a5ba10f 902 if (timer->func)
9a032011 903 timer->func(timer->rtc);
6610e089 904
29a1f599 905 trace_rtc_timer_fired(timer);
6610e089
JS
906 /* Re-add/fwd periodic timers */
907 if (ktime_to_ns(timer->period)) {
908 timer->node.expires = ktime_add(timer->node.expires,
909 timer->period);
910 timer->enabled = 1;
911 timerqueue_add(&rtc->timerqueue, &timer->node);
29a1f599 912 trace_rtc_timer_enqueue(timer);
6610e089
JS
913 }
914 }
915
916 /* Set next alarm */
917 if (next) {
918 struct rtc_wkalrm alarm;
919 int err;
6528b889
XP
920 int retry = 3;
921
6610e089
JS
922 alarm.time = rtc_ktime_to_tm(next->expires);
923 alarm.enabled = 1;
6528b889 924reprogram:
6610e089 925 err = __rtc_set_alarm(rtc, &alarm);
606cc43c 926 if (err == -ETIME) {
6610e089 927 goto again;
606cc43c 928 } else if (err) {
6528b889
XP
929 if (retry-- > 0)
930 goto reprogram;
931
932 timer = container_of(next, struct rtc_timer, node);
933 timerqueue_del(&rtc->timerqueue, &timer->node);
29a1f599 934 trace_rtc_timer_dequeue(timer);
6528b889
XP
935 timer->enabled = 0;
936 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
937 goto again;
938 }
606cc43c 939 } else {
41c7f742 940 rtc_alarm_disable(rtc);
606cc43c 941 }
6610e089 942
14d0e347 943 pm_relax(rtc->dev.parent);
6610e089
JS
944 mutex_unlock(&rtc->ops_lock);
945}
946
96c8f06a 947/* rtc_timer_init - Initializes an rtc_timer
6610e089
JS
948 * @timer: timer to be intiialized
949 * @f: function pointer to be called when timer fires
9a032011 950 * @rtc: pointer to the rtc_device
6610e089
JS
951 *
952 * Kernel interface to initializing an rtc_timer.
953 */
9a032011
AB
954void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
955 struct rtc_device *rtc)
6610e089
JS
956{
957 timerqueue_init(&timer->node);
958 timer->enabled = 0;
5a5ba10f 959 timer->func = f;
9a032011 960 timer->rtc = rtc;
6610e089
JS
961}
962
96c8f06a 963/* rtc_timer_start - Sets an rtc_timer to fire in the future
6610e089
JS
964 * @ rtc: rtc device to be used
965 * @ timer: timer being set
966 * @ expires: time at which to expire the timer
967 * @ period: period that the timer will recur
968 *
969 * Kernel interface to set an rtc_timer
970 */
3ff2e13c 971int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
606cc43c 972 ktime_t expires, ktime_t period)
6610e089
JS
973{
974 int ret = 0;
606cc43c 975
6610e089
JS
976 mutex_lock(&rtc->ops_lock);
977 if (timer->enabled)
96c8f06a 978 rtc_timer_remove(rtc, timer);
6610e089
JS
979
980 timer->node.expires = expires;
981 timer->period = period;
982
aa0be0f4 983 ret = rtc_timer_enqueue(rtc, timer);
6610e089
JS
984
985 mutex_unlock(&rtc->ops_lock);
986 return ret;
987}
988
96c8f06a 989/* rtc_timer_cancel - Stops an rtc_timer
6610e089
JS
990 * @ rtc: rtc device to be used
991 * @ timer: timer being set
992 *
993 * Kernel interface to cancel an rtc_timer
994 */
73744a64 995void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089 996{
6610e089
JS
997 mutex_lock(&rtc->ops_lock);
998 if (timer->enabled)
96c8f06a 999 rtc_timer_remove(rtc, timer);
6610e089 1000 mutex_unlock(&rtc->ops_lock);
6610e089
JS
1001}
1002
b3967067
JC
1003/**
1004 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1005 * @ rtc: rtc device to be used
1006 * @ offset: the offset in parts per billion
1007 *
1008 * see below for details.
1009 *
1010 * Kernel interface to read rtc clock offset
1011 * Returns 0 on success, or a negative number on error.
1012 * If read_offset() is not implemented for the rtc, return -EINVAL
1013 */
1014int rtc_read_offset(struct rtc_device *rtc, long *offset)
1015{
1016 int ret;
1017
1018 if (!rtc->ops)
1019 return -ENODEV;
1020
1021 if (!rtc->ops->read_offset)
1022 return -EINVAL;
1023
1024 mutex_lock(&rtc->ops_lock);
1025 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1026 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
1027
1028 trace_rtc_read_offset(*offset, ret);
b3967067
JC
1029 return ret;
1030}
6610e089 1031
b3967067
JC
1032/**
1033 * rtc_set_offset - Adjusts the duration of the average second
1034 * @ rtc: rtc device to be used
1035 * @ offset: the offset in parts per billion
1036 *
1037 * Some rtc's allow an adjustment to the average duration of a second
1038 * to compensate for differences in the actual clock rate due to temperature,
1039 * the crystal, capacitor, etc.
1040 *
8a25c8f6
RK
1041 * The adjustment applied is as follows:
1042 * t = t0 * (1 + offset * 1e-9)
1043 * where t0 is the measured length of 1 RTC second with offset = 0
1044 *
b3967067
JC
1045 * Kernel interface to adjust an rtc clock offset.
1046 * Return 0 on success, or a negative number on error.
1047 * If the rtc offset is not setable (or not implemented), return -EINVAL
1048 */
1049int rtc_set_offset(struct rtc_device *rtc, long offset)
1050{
1051 int ret;
1052
1053 if (!rtc->ops)
1054 return -ENODEV;
1055
1056 if (!rtc->ops->set_offset)
1057 return -EINVAL;
1058
1059 mutex_lock(&rtc->ops_lock);
1060 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1061 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
1062
1063 trace_rtc_set_offset(offset, ret);
b3967067
JC
1064 return ret;
1065}