]> git.ipfire.org Git - people/ms/linux.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: Pre UDMA EIDE PIO mode selection
[people/ms/linux.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
64static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
59a10b17 67static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
8bf62ece 68static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
69static void ata_set_mode(struct ata_port *ap);
70static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
057ace5e 71static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
1da177e4 72static int fgb(u32 bitmap);
057ace5e 73static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
1da177e4
LT
76static void __ata_qc_complete(struct ata_queued_cmd *qc);
77
78static unsigned int ata_unique_id = 1;
79static struct workqueue_struct *ata_wq;
80
1623c81e
JG
81int atapi_enabled = 0;
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
1da177e4
LT
85MODULE_AUTHOR("Jeff Garzik");
86MODULE_DESCRIPTION("Library module for ATA devices");
87MODULE_LICENSE("GPL");
88MODULE_VERSION(DRV_VERSION);
89
90/**
6f0ef4fa 91 * ata_tf_load_pio - send taskfile registers to host controller
1da177e4
LT
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
94 *
95 * Outputs ATA taskfile to standard ATA host controller.
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
057ace5e 101static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
102{
103 struct ata_ioports *ioaddr = &ap->ioaddr;
104 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
105
106 if (tf->ctl != ap->last_ctl) {
107 outb(tf->ctl, ioaddr->ctl_addr);
108 ap->last_ctl = tf->ctl;
109 ata_wait_idle(ap);
110 }
111
112 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113 outb(tf->hob_feature, ioaddr->feature_addr);
114 outb(tf->hob_nsect, ioaddr->nsect_addr);
115 outb(tf->hob_lbal, ioaddr->lbal_addr);
116 outb(tf->hob_lbam, ioaddr->lbam_addr);
117 outb(tf->hob_lbah, ioaddr->lbah_addr);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
119 tf->hob_feature,
120 tf->hob_nsect,
121 tf->hob_lbal,
122 tf->hob_lbam,
123 tf->hob_lbah);
124 }
125
126 if (is_addr) {
127 outb(tf->feature, ioaddr->feature_addr);
128 outb(tf->nsect, ioaddr->nsect_addr);
129 outb(tf->lbal, ioaddr->lbal_addr);
130 outb(tf->lbam, ioaddr->lbam_addr);
131 outb(tf->lbah, ioaddr->lbah_addr);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
133 tf->feature,
134 tf->nsect,
135 tf->lbal,
136 tf->lbam,
137 tf->lbah);
138 }
139
140 if (tf->flags & ATA_TFLAG_DEVICE) {
141 outb(tf->device, ioaddr->device_addr);
142 VPRINTK("device 0x%X\n", tf->device);
143 }
144
145 ata_wait_idle(ap);
146}
147
148/**
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
152 *
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
057ace5e 159static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
160{
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
163
164 if (tf->ctl != ap->last_ctl) {
165 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166 ap->last_ctl = tf->ctl;
167 ata_wait_idle(ap);
168 }
169
170 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
177 tf->hob_feature,
178 tf->hob_nsect,
179 tf->hob_lbal,
180 tf->hob_lbam,
181 tf->hob_lbah);
182 }
183
184 if (is_addr) {
185 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
191 tf->feature,
192 tf->nsect,
193 tf->lbal,
194 tf->lbam,
195 tf->lbah);
196 }
197
198 if (tf->flags & ATA_TFLAG_DEVICE) {
199 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200 VPRINTK("device 0x%X\n", tf->device);
201 }
202
203 ata_wait_idle(ap);
204}
205
0baab86b
EF
206
207/**
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
211 *
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
217 *
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
222 *
223 * May be used as the tf_load() entry in ata_port_operations.
224 *
225 * LOCKING:
226 * Inherited from caller.
227 */
057ace5e 228void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
229{
230 if (ap->flags & ATA_FLAG_MMIO)
231 ata_tf_load_mmio(ap, tf);
232 else
233 ata_tf_load_pio(ap, tf);
234}
235
236/**
0baab86b 237 * ata_exec_command_pio - issue ATA command to host controller
1da177e4
LT
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
240 *
0baab86b 241 * Issues PIO write to ATA command register, with proper
1da177e4
LT
242 * synchronization with interrupt handler / other threads.
243 *
244 * LOCKING:
245 * spin_lock_irqsave(host_set lock)
246 */
247
057ace5e 248static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
249{
250 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
251
252 outb(tf->command, ap->ioaddr.command_addr);
253 ata_pause(ap);
254}
255
256
257/**
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
261 *
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
264 *
265 * LOCKING:
266 * spin_lock_irqsave(host_set lock)
267 */
268
057ace5e 269static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
270{
271 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
272
273 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
274 ata_pause(ap);
275}
276
0baab86b
EF
277
278/**
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
282 *
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
285 *
286 * LOCKING:
287 * spin_lock_irqsave(host_set lock)
288 */
057ace5e 289void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
290{
291 if (ap->flags & ATA_FLAG_MMIO)
292 ata_exec_command_mmio(ap, tf);
293 else
294 ata_exec_command_pio(ap, tf);
295}
296
1da177e4
LT
297/**
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
301 *
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
304 * other threads.
305 *
306 * LOCKING:
1da177e4
LT
307 * spin_lock_irqsave(host_set lock)
308 */
309
e5338254
JG
310static inline void ata_tf_to_host(struct ata_port *ap,
311 const struct ata_taskfile *tf)
1da177e4
LT
312{
313 ap->ops->tf_load(ap, tf);
314 ap->ops->exec_command(ap, tf);
315}
316
317/**
0baab86b 318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
1da177e4
LT
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
321 *
322 * Reads ATA taskfile registers for currently-selected device
323 * into @tf.
324 *
325 * LOCKING:
326 * Inherited from caller.
327 */
328
329static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
330{
331 struct ata_ioports *ioaddr = &ap->ioaddr;
332
ac19bff2 333 tf->command = ata_check_status(ap);
0169e284 334 tf->feature = inb(ioaddr->error_addr);
1da177e4
LT
335 tf->nsect = inb(ioaddr->nsect_addr);
336 tf->lbal = inb(ioaddr->lbal_addr);
337 tf->lbam = inb(ioaddr->lbam_addr);
338 tf->lbah = inb(ioaddr->lbah_addr);
339 tf->device = inb(ioaddr->device_addr);
340
341 if (tf->flags & ATA_TFLAG_LBA48) {
342 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
343 tf->hob_feature = inb(ioaddr->error_addr);
344 tf->hob_nsect = inb(ioaddr->nsect_addr);
345 tf->hob_lbal = inb(ioaddr->lbal_addr);
346 tf->hob_lbam = inb(ioaddr->lbam_addr);
347 tf->hob_lbah = inb(ioaddr->lbah_addr);
348 }
349}
350
351/**
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
355 *
356 * Reads ATA taskfile registers for currently-selected device
357 * into @tf via MMIO.
358 *
359 * LOCKING:
360 * Inherited from caller.
361 */
362
363static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
364{
365 struct ata_ioports *ioaddr = &ap->ioaddr;
366
ac19bff2 367 tf->command = ata_check_status(ap);
0169e284 368 tf->feature = readb((void __iomem *)ioaddr->error_addr);
1da177e4
LT
369 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
370 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
371 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
372 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
373 tf->device = readb((void __iomem *)ioaddr->device_addr);
374
375 if (tf->flags & ATA_TFLAG_LBA48) {
376 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
377 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
378 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
379 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
380 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
381 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
382 }
383}
384
0baab86b
EF
385
386/**
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
390 *
391 * Reads ATA taskfile registers for currently-selected device
392 * into @tf.
393 *
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
396 *
397 * May be used as the tf_read() entry in ata_port_operations.
398 *
399 * LOCKING:
400 * Inherited from caller.
401 */
1da177e4
LT
402void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
403{
404 if (ap->flags & ATA_FLAG_MMIO)
405 ata_tf_read_mmio(ap, tf);
406 else
407 ata_tf_read_pio(ap, tf);
408}
409
410/**
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
413 *
414 * Reads ATA taskfile status register for currently-selected device
0baab86b 415 * and return its value. This also clears pending interrupts
1da177e4
LT
416 * from this device
417 *
418 * LOCKING:
419 * Inherited from caller.
420 */
421static u8 ata_check_status_pio(struct ata_port *ap)
422{
423 return inb(ap->ioaddr.status_addr);
424}
425
426/**
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
429 *
430 * Reads ATA taskfile status register for currently-selected device
0baab86b 431 * via MMIO and return its value. This also clears pending interrupts
1da177e4
LT
432 * from this device
433 *
434 * LOCKING:
435 * Inherited from caller.
436 */
437static u8 ata_check_status_mmio(struct ata_port *ap)
438{
439 return readb((void __iomem *) ap->ioaddr.status_addr);
440}
441
0baab86b
EF
442
443/**
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
446 *
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
449 * from this device
450 *
451 * May be used as the check_status() entry in ata_port_operations.
452 *
453 * LOCKING:
454 * Inherited from caller.
455 */
1da177e4
LT
456u8 ata_check_status(struct ata_port *ap)
457{
458 if (ap->flags & ATA_FLAG_MMIO)
459 return ata_check_status_mmio(ap);
460 return ata_check_status_pio(ap);
461}
462
0baab86b
EF
463
464/**
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
467 *
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
470 *
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
473 *
474 * LOCKING:
475 * Inherited from caller.
476 */
1da177e4
LT
477u8 ata_altstatus(struct ata_port *ap)
478{
479 if (ap->ops->check_altstatus)
480 return ap->ops->check_altstatus(ap);
481
482 if (ap->flags & ATA_FLAG_MMIO)
483 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
484 return inb(ap->ioaddr.altstatus_addr);
485}
486
0baab86b 487
1da177e4
LT
488/**
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
493 *
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
496 *
497 * LOCKING:
498 * Inherited from caller.
499 */
500
057ace5e 501void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
502{
503 fis[0] = 0x27; /* Register - Host to Device FIS */
504 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis[2] = tf->command;
507 fis[3] = tf->feature;
508
509 fis[4] = tf->lbal;
510 fis[5] = tf->lbam;
511 fis[6] = tf->lbah;
512 fis[7] = tf->device;
513
514 fis[8] = tf->hob_lbal;
515 fis[9] = tf->hob_lbam;
516 fis[10] = tf->hob_lbah;
517 fis[11] = tf->hob_feature;
518
519 fis[12] = tf->nsect;
520 fis[13] = tf->hob_nsect;
521 fis[14] = 0;
522 fis[15] = tf->ctl;
523
524 fis[16] = 0;
525 fis[17] = 0;
526 fis[18] = 0;
527 fis[19] = 0;
528}
529
530/**
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
534 *
e12a1be6 535 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
536 *
537 * LOCKING:
538 * Inherited from caller.
539 */
540
057ace5e 541void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
542{
543 tf->command = fis[2]; /* status */
544 tf->feature = fis[3]; /* error */
545
546 tf->lbal = fis[4];
547 tf->lbam = fis[5];
548 tf->lbah = fis[6];
549 tf->device = fis[7];
550
551 tf->hob_lbal = fis[8];
552 tf->hob_lbam = fis[9];
553 tf->hob_lbah = fis[10];
554
555 tf->nsect = fis[12];
556 tf->hob_nsect = fis[13];
557}
558
8cbd6df1
AL
559static const u8 ata_rw_cmds[] = {
560 /* pio multi */
561 ATA_CMD_READ_MULTI,
562 ATA_CMD_WRITE_MULTI,
563 ATA_CMD_READ_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
565 0,
566 0,
567 0,
568 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
569 /* pio */
570 ATA_CMD_PIO_READ,
571 ATA_CMD_PIO_WRITE,
572 ATA_CMD_PIO_READ_EXT,
573 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
574 0,
575 0,
576 0,
577 0,
8cbd6df1
AL
578 /* dma */
579 ATA_CMD_READ,
580 ATA_CMD_WRITE,
581 ATA_CMD_READ_EXT,
9a3dccc4
TH
582 ATA_CMD_WRITE_EXT,
583 0,
584 0,
585 0,
586 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 587};
1da177e4
LT
588
589/**
8cbd6df1
AL
590 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
591 * @qc: command to examine and configure
1da177e4 592 *
8cbd6df1
AL
593 * Examine the device configuration and tf->flags to calculate
594 * the proper read/write commands and protocol to use.
1da177e4
LT
595 *
596 * LOCKING:
597 * caller.
598 */
9a3dccc4 599int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 600{
8cbd6df1
AL
601 struct ata_taskfile *tf = &qc->tf;
602 struct ata_device *dev = qc->dev;
9a3dccc4 603 u8 cmd;
1da177e4 604
9a3dccc4 605 int index, fua, lba48, write;
8cbd6df1 606
9a3dccc4 607 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
608 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
609 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 610
8cbd6df1
AL
611 if (dev->flags & ATA_DFLAG_PIO) {
612 tf->protocol = ATA_PROT_PIO;
9a3dccc4 613 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
614 } else {
615 tf->protocol = ATA_PROT_DMA;
9a3dccc4 616 index = 16;
8cbd6df1 617 }
1da177e4 618
9a3dccc4
TH
619 cmd = ata_rw_cmds[index + fua + lba48 + write];
620 if (cmd) {
621 tf->command = cmd;
622 return 0;
623 }
624 return -1;
1da177e4
LT
625}
626
98ac62de 627static const char * const xfer_mode_str[] = {
1da177e4
LT
628 "UDMA/16",
629 "UDMA/25",
630 "UDMA/33",
631 "UDMA/44",
632 "UDMA/66",
633 "UDMA/100",
634 "UDMA/133",
635 "UDMA7",
636 "MWDMA0",
637 "MWDMA1",
638 "MWDMA2",
639 "PIO0",
640 "PIO1",
641 "PIO2",
642 "PIO3",
643 "PIO4",
644};
645
646/**
647 * ata_udma_string - convert UDMA bit offset to string
648 * @mask: mask of bits supported; only highest bit counts.
649 *
650 * Determine string which represents the highest speed
651 * (highest bit in @udma_mask).
652 *
653 * LOCKING:
654 * None.
655 *
656 * RETURNS:
657 * Constant C string representing highest speed listed in
658 * @udma_mask, or the constant C string "<n/a>".
659 */
660
661static const char *ata_mode_string(unsigned int mask)
662{
663 int i;
664
665 for (i = 7; i >= 0; i--)
666 if (mask & (1 << i))
667 goto out;
668 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
669 if (mask & (1 << i))
670 goto out;
671 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
672 if (mask & (1 << i))
673 goto out;
674
675 return "<n/a>";
676
677out:
678 return xfer_mode_str[i];
679}
680
681/**
682 * ata_pio_devchk - PATA device presence detection
683 * @ap: ATA channel to examine
684 * @device: Device to examine (starting at zero)
685 *
686 * This technique was originally described in
687 * Hale Landis's ATADRVR (www.ata-atapi.com), and
688 * later found its way into the ATA/ATAPI spec.
689 *
690 * Write a pattern to the ATA shadow registers,
691 * and if a device is present, it will respond by
692 * correctly storing and echoing back the
693 * ATA shadow register contents.
694 *
695 * LOCKING:
696 * caller.
697 */
698
699static unsigned int ata_pio_devchk(struct ata_port *ap,
700 unsigned int device)
701{
702 struct ata_ioports *ioaddr = &ap->ioaddr;
703 u8 nsect, lbal;
704
705 ap->ops->dev_select(ap, device);
706
707 outb(0x55, ioaddr->nsect_addr);
708 outb(0xaa, ioaddr->lbal_addr);
709
710 outb(0xaa, ioaddr->nsect_addr);
711 outb(0x55, ioaddr->lbal_addr);
712
713 outb(0x55, ioaddr->nsect_addr);
714 outb(0xaa, ioaddr->lbal_addr);
715
716 nsect = inb(ioaddr->nsect_addr);
717 lbal = inb(ioaddr->lbal_addr);
718
719 if ((nsect == 0x55) && (lbal == 0xaa))
720 return 1; /* we found a device */
721
722 return 0; /* nothing found */
723}
724
725/**
726 * ata_mmio_devchk - PATA device presence detection
727 * @ap: ATA channel to examine
728 * @device: Device to examine (starting at zero)
729 *
730 * This technique was originally described in
731 * Hale Landis's ATADRVR (www.ata-atapi.com), and
732 * later found its way into the ATA/ATAPI spec.
733 *
734 * Write a pattern to the ATA shadow registers,
735 * and if a device is present, it will respond by
736 * correctly storing and echoing back the
737 * ATA shadow register contents.
738 *
739 * LOCKING:
740 * caller.
741 */
742
743static unsigned int ata_mmio_devchk(struct ata_port *ap,
744 unsigned int device)
745{
746 struct ata_ioports *ioaddr = &ap->ioaddr;
747 u8 nsect, lbal;
748
749 ap->ops->dev_select(ap, device);
750
751 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
752 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
753
754 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
755 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
756
757 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
758 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
759
760 nsect = readb((void __iomem *) ioaddr->nsect_addr);
761 lbal = readb((void __iomem *) ioaddr->lbal_addr);
762
763 if ((nsect == 0x55) && (lbal == 0xaa))
764 return 1; /* we found a device */
765
766 return 0; /* nothing found */
767}
768
769/**
770 * ata_devchk - PATA device presence detection
771 * @ap: ATA channel to examine
772 * @device: Device to examine (starting at zero)
773 *
774 * Dispatch ATA device presence detection, depending
775 * on whether we are using PIO or MMIO to talk to the
776 * ATA shadow registers.
777 *
778 * LOCKING:
779 * caller.
780 */
781
782static unsigned int ata_devchk(struct ata_port *ap,
783 unsigned int device)
784{
785 if (ap->flags & ATA_FLAG_MMIO)
786 return ata_mmio_devchk(ap, device);
787 return ata_pio_devchk(ap, device);
788}
789
790/**
791 * ata_dev_classify - determine device type based on ATA-spec signature
792 * @tf: ATA taskfile register set for device to be identified
793 *
794 * Determine from taskfile register contents whether a device is
795 * ATA or ATAPI, as per "Signature and persistence" section
796 * of ATA/PI spec (volume 1, sect 5.14).
797 *
798 * LOCKING:
799 * None.
800 *
801 * RETURNS:
802 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
803 * the event of failure.
804 */
805
057ace5e 806unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
807{
808 /* Apple's open source Darwin code hints that some devices only
809 * put a proper signature into the LBA mid/high registers,
810 * So, we only check those. It's sufficient for uniqueness.
811 */
812
813 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
814 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
815 DPRINTK("found ATA device by sig\n");
816 return ATA_DEV_ATA;
817 }
818
819 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
820 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
821 DPRINTK("found ATAPI device by sig\n");
822 return ATA_DEV_ATAPI;
823 }
824
825 DPRINTK("unknown device\n");
826 return ATA_DEV_UNKNOWN;
827}
828
829/**
830 * ata_dev_try_classify - Parse returned ATA device signature
831 * @ap: ATA channel to examine
832 * @device: Device to examine (starting at zero)
833 *
834 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
835 * an ATA/ATAPI-defined set of values is placed in the ATA
836 * shadow registers, indicating the results of device detection
837 * and diagnostics.
838 *
839 * Select the ATA device, and read the values from the ATA shadow
840 * registers. Then parse according to the Error register value,
841 * and the spec-defined values examined by ata_dev_classify().
842 *
843 * LOCKING:
844 * caller.
845 */
846
847static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
848{
849 struct ata_device *dev = &ap->device[device];
850 struct ata_taskfile tf;
851 unsigned int class;
852 u8 err;
853
854 ap->ops->dev_select(ap, device);
855
856 memset(&tf, 0, sizeof(tf));
857
1da177e4 858 ap->ops->tf_read(ap, &tf);
0169e284 859 err = tf.feature;
1da177e4
LT
860
861 dev->class = ATA_DEV_NONE;
862
863 /* see if device passed diags */
864 if (err == 1)
865 /* do nothing */ ;
866 else if ((device == 0) && (err == 0x81))
867 /* do nothing */ ;
868 else
869 return err;
870
871 /* determine if device if ATA or ATAPI */
872 class = ata_dev_classify(&tf);
873 if (class == ATA_DEV_UNKNOWN)
874 return err;
875 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
876 return err;
877
878 dev->class = class;
879
880 return err;
881}
882
883/**
884 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
885 * @id: IDENTIFY DEVICE results we will examine
886 * @s: string into which data is output
887 * @ofs: offset into identify device page
888 * @len: length of string to return. must be an even number.
889 *
890 * The strings in the IDENTIFY DEVICE page are broken up into
891 * 16-bit chunks. Run through the string, and output each
892 * 8-bit chunk linearly, regardless of platform.
893 *
894 * LOCKING:
895 * caller.
896 */
897
057ace5e 898void ata_dev_id_string(const u16 *id, unsigned char *s,
1da177e4
LT
899 unsigned int ofs, unsigned int len)
900{
901 unsigned int c;
902
903 while (len > 0) {
904 c = id[ofs] >> 8;
905 *s = c;
906 s++;
907
908 c = id[ofs] & 0xff;
909 *s = c;
910 s++;
911
912 ofs++;
913 len -= 2;
914 }
915}
916
0baab86b
EF
917
918/**
919 * ata_noop_dev_select - Select device 0/1 on ATA bus
920 * @ap: ATA channel to manipulate
921 * @device: ATA device (numbered from zero) to select
922 *
923 * This function performs no actual function.
924 *
925 * May be used as the dev_select() entry in ata_port_operations.
926 *
927 * LOCKING:
928 * caller.
929 */
1da177e4
LT
930void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
931{
932}
933
0baab86b 934
1da177e4
LT
935/**
936 * ata_std_dev_select - Select device 0/1 on ATA bus
937 * @ap: ATA channel to manipulate
938 * @device: ATA device (numbered from zero) to select
939 *
940 * Use the method defined in the ATA specification to
941 * make either device 0, or device 1, active on the
0baab86b
EF
942 * ATA channel. Works with both PIO and MMIO.
943 *
944 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
945 *
946 * LOCKING:
947 * caller.
948 */
949
950void ata_std_dev_select (struct ata_port *ap, unsigned int device)
951{
952 u8 tmp;
953
954 if (device == 0)
955 tmp = ATA_DEVICE_OBS;
956 else
957 tmp = ATA_DEVICE_OBS | ATA_DEV1;
958
959 if (ap->flags & ATA_FLAG_MMIO) {
960 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
961 } else {
962 outb(tmp, ap->ioaddr.device_addr);
963 }
964 ata_pause(ap); /* needed; also flushes, for mmio */
965}
966
967/**
968 * ata_dev_select - Select device 0/1 on ATA bus
969 * @ap: ATA channel to manipulate
970 * @device: ATA device (numbered from zero) to select
971 * @wait: non-zero to wait for Status register BSY bit to clear
972 * @can_sleep: non-zero if context allows sleeping
973 *
974 * Use the method defined in the ATA specification to
975 * make either device 0, or device 1, active on the
976 * ATA channel.
977 *
978 * This is a high-level version of ata_std_dev_select(),
979 * which additionally provides the services of inserting
980 * the proper pauses and status polling, where needed.
981 *
982 * LOCKING:
983 * caller.
984 */
985
986void ata_dev_select(struct ata_port *ap, unsigned int device,
987 unsigned int wait, unsigned int can_sleep)
988{
989 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
990 ap->id, device, wait);
991
992 if (wait)
993 ata_wait_idle(ap);
994
995 ap->ops->dev_select(ap, device);
996
997 if (wait) {
998 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
999 msleep(150);
1000 ata_wait_idle(ap);
1001 }
1002}
1003
1004/**
1005 * ata_dump_id - IDENTIFY DEVICE info debugging output
1006 * @dev: Device whose IDENTIFY DEVICE page we will dump
1007 *
1008 * Dump selected 16-bit words from a detected device's
1009 * IDENTIFY PAGE page.
1010 *
1011 * LOCKING:
1012 * caller.
1013 */
1014
057ace5e 1015static inline void ata_dump_id(const struct ata_device *dev)
1da177e4
LT
1016{
1017 DPRINTK("49==0x%04x "
1018 "53==0x%04x "
1019 "63==0x%04x "
1020 "64==0x%04x "
1021 "75==0x%04x \n",
1022 dev->id[49],
1023 dev->id[53],
1024 dev->id[63],
1025 dev->id[64],
1026 dev->id[75]);
1027 DPRINTK("80==0x%04x "
1028 "81==0x%04x "
1029 "82==0x%04x "
1030 "83==0x%04x "
1031 "84==0x%04x \n",
1032 dev->id[80],
1033 dev->id[81],
1034 dev->id[82],
1035 dev->id[83],
1036 dev->id[84]);
1037 DPRINTK("88==0x%04x "
1038 "93==0x%04x\n",
1039 dev->id[88],
1040 dev->id[93]);
1041}
1042
11e29e21
AC
1043/*
1044 * Compute the PIO modes available for this device. This is not as
1045 * trivial as it seems if we must consider early devices correctly.
1046 *
1047 * FIXME: pre IDE drive timing (do we care ?).
1048 */
1049
057ace5e 1050static unsigned int ata_pio_modes(const struct ata_device *adev)
11e29e21
AC
1051{
1052 u16 modes;
1053
ffa29456
AC
1054 /* Usual case. Word 53 indicates word 64 is valid */
1055 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
11e29e21
AC
1056 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1057 modes <<= 3;
1058 modes |= 0x7;
1059 return modes;
1060 }
1061
ffa29456
AC
1062 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1063 number for the maximum. Turn it into a mask and return it */
1064 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
11e29e21 1065 return modes;
ffa29456
AC
1066 /* But wait.. there's more. Design your standards by committee and
1067 you too can get a free iordy field to process. However its the
1068 speeds not the modes that are supported... Note drivers using the
1069 timing API will get this right anyway */
11e29e21
AC
1070}
1071
a2a7a662
TH
1072struct ata_exec_internal_arg {
1073 unsigned int err_mask;
1074 struct ata_taskfile *tf;
1075 struct completion *waiting;
1076};
1077
1078int ata_qc_complete_internal(struct ata_queued_cmd *qc)
1079{
1080 struct ata_exec_internal_arg *arg = qc->private_data;
1081 struct completion *waiting = arg->waiting;
1082
1083 if (!(qc->err_mask & ~AC_ERR_DEV))
1084 qc->ap->ops->tf_read(qc->ap, arg->tf);
1085 arg->err_mask = qc->err_mask;
1086 arg->waiting = NULL;
1087 complete(waiting);
1088
1089 return 0;
1090}
1091
1092/**
1093 * ata_exec_internal - execute libata internal command
1094 * @ap: Port to which the command is sent
1095 * @dev: Device to which the command is sent
1096 * @tf: Taskfile registers for the command and the result
1097 * @dma_dir: Data tranfer direction of the command
1098 * @buf: Data buffer of the command
1099 * @buflen: Length of data buffer
1100 *
1101 * Executes libata internal command with timeout. @tf contains
1102 * command on entry and result on return. Timeout and error
1103 * conditions are reported via return value. No recovery action
1104 * is taken after a command times out. It's caller's duty to
1105 * clean up after timeout.
1106 *
1107 * LOCKING:
1108 * None. Should be called with kernel context, might sleep.
1109 */
1110
1111static unsigned
1112ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1113 struct ata_taskfile *tf,
1114 int dma_dir, void *buf, unsigned int buflen)
1115{
1116 u8 command = tf->command;
1117 struct ata_queued_cmd *qc;
1118 DECLARE_COMPLETION(wait);
1119 unsigned long flags;
1120 struct ata_exec_internal_arg arg;
1121
1122 spin_lock_irqsave(&ap->host_set->lock, flags);
1123
1124 qc = ata_qc_new_init(ap, dev);
1125 BUG_ON(qc == NULL);
1126
1127 qc->tf = *tf;
1128 qc->dma_dir = dma_dir;
1129 if (dma_dir != DMA_NONE) {
1130 ata_sg_init_one(qc, buf, buflen);
1131 qc->nsect = buflen / ATA_SECT_SIZE;
1132 }
1133
1134 arg.waiting = &wait;
1135 arg.tf = tf;
1136 qc->private_data = &arg;
1137 qc->complete_fn = ata_qc_complete_internal;
1138
1139 if (ata_qc_issue(qc))
1140 goto issue_fail;
1141
1142 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1143
1144 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1145 spin_lock_irqsave(&ap->host_set->lock, flags);
1146
1147 /* We're racing with irq here. If we lose, the
1148 * following test prevents us from completing the qc
1149 * again. If completion irq occurs after here but
1150 * before the caller cleans up, it will result in a
1151 * spurious interrupt. We can live with that.
1152 */
1153 if (arg.waiting) {
1154 qc->err_mask = AC_ERR_OTHER;
1155 ata_qc_complete(qc);
1156 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1157 ap->id, command);
1158 }
1159
1160 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1161 }
1162
1163 return arg.err_mask;
1164
1165 issue_fail:
1166 ata_qc_free(qc);
1167 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1168 return AC_ERR_OTHER;
1169}
1170
1da177e4
LT
1171/**
1172 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1173 * @ap: port on which device we wish to probe resides
1174 * @device: device bus address, starting at zero
1175 *
1176 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1177 * command, and read back the 512-byte device information page.
1178 * The device information page is fed to us via the standard
1179 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1180 * using standard PIO-IN paths)
1181 *
1182 * After reading the device information page, we use several
1183 * bits of information from it to initialize data structures
1184 * that will be used during the lifetime of the ata_device.
1185 * Other data from the info page is used to disqualify certain
1186 * older ATA devices we do not wish to support.
1187 *
1188 * LOCKING:
1189 * Inherited from caller. Some functions called by this function
1190 * obtain the host_set lock.
1191 */
1192
1193static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1194{
1195 struct ata_device *dev = &ap->device[device];
8bf62ece 1196 unsigned int major_version;
1da177e4
LT
1197 u16 tmp;
1198 unsigned long xfer_modes;
1da177e4 1199 unsigned int using_edd;
a0123703
TH
1200 struct ata_taskfile tf;
1201 unsigned int err_mask;
1da177e4
LT
1202 int rc;
1203
1204 if (!ata_dev_present(dev)) {
1205 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1206 ap->id, device);
1207 return;
1208 }
1209
1210 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1211 using_edd = 0;
1212 else
1213 using_edd = 1;
1214
1215 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1216
1217 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1218 dev->class == ATA_DEV_NONE);
1219
1220 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1221
1da177e4 1222retry:
a0123703
TH
1223 ata_tf_init(ap, &tf, device);
1224
1da177e4 1225 if (dev->class == ATA_DEV_ATA) {
a0123703 1226 tf.command = ATA_CMD_ID_ATA;
1da177e4
LT
1227 DPRINTK("do ATA identify\n");
1228 } else {
a0123703 1229 tf.command = ATA_CMD_ID_ATAPI;
1da177e4
LT
1230 DPRINTK("do ATAPI identify\n");
1231 }
1232
a0123703 1233 tf.protocol = ATA_PROT_PIO;
1da177e4 1234
a0123703
TH
1235 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1236 dev->id, sizeof(dev->id));
1da177e4 1237
a0123703
TH
1238 if (err_mask) {
1239 if (err_mask & ~AC_ERR_DEV)
1240 goto err_out;
0169e284 1241
1da177e4
LT
1242 /*
1243 * arg! EDD works for all test cases, but seems to return
1244 * the ATA signature for some ATAPI devices. Until the
1245 * reason for this is found and fixed, we fix up the mess
1246 * here. If IDENTIFY DEVICE returns command aborted
1247 * (as ATAPI devices do), then we issue an
1248 * IDENTIFY PACKET DEVICE.
1249 *
1250 * ATA software reset (SRST, the default) does not appear
1251 * to have this problem.
1252 */
7c398335 1253 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
a0123703 1254 u8 err = tf.feature;
1da177e4
LT
1255 if (err & ATA_ABORTED) {
1256 dev->class = ATA_DEV_ATAPI;
1da177e4
LT
1257 goto retry;
1258 }
1259 }
1260 goto err_out;
1261 }
1262
1263 swap_buf_le16(dev->id, ATA_ID_WORDS);
1264
1265 /* print device capabilities */
1266 printk(KERN_DEBUG "ata%u: dev %u cfg "
1267 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1268 ap->id, device, dev->id[49],
1269 dev->id[82], dev->id[83], dev->id[84],
1270 dev->id[85], dev->id[86], dev->id[87],
1271 dev->id[88]);
1272
1273 /*
1274 * common ATA, ATAPI feature tests
1275 */
1276
8bf62ece
AL
1277 /* we require DMA support (bits 8 of word 49) */
1278 if (!ata_id_has_dma(dev->id)) {
1279 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1da177e4
LT
1280 goto err_out_nosup;
1281 }
1282
1283 /* quick-n-dirty find max transfer mode; for printk only */
1284 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1285 if (!xfer_modes)
1286 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
11e29e21
AC
1287 if (!xfer_modes)
1288 xfer_modes = ata_pio_modes(dev);
1da177e4
LT
1289
1290 ata_dump_id(dev);
1291
1292 /* ATA-specific feature tests */
1293 if (dev->class == ATA_DEV_ATA) {
1294 if (!ata_id_is_ata(dev->id)) /* sanity check */
1295 goto err_out_nosup;
1296
8bf62ece 1297 /* get major version */
1da177e4 1298 tmp = dev->id[ATA_ID_MAJOR_VER];
8bf62ece
AL
1299 for (major_version = 14; major_version >= 1; major_version--)
1300 if (tmp & (1 << major_version))
1da177e4
LT
1301 break;
1302
8bf62ece
AL
1303 /*
1304 * The exact sequence expected by certain pre-ATA4 drives is:
1305 * SRST RESET
1306 * IDENTIFY
1307 * INITIALIZE DEVICE PARAMETERS
1308 * anything else..
1309 * Some drives were very specific about that exact sequence.
1310 */
59a10b17 1311 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
8bf62ece
AL
1312 ata_dev_init_params(ap, dev);
1313
59a10b17
AL
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1316 */
1317 ata_dev_reread_id(ap, dev);
1318 }
1319
8bf62ece
AL
1320 if (ata_id_has_lba(dev->id)) {
1321 dev->flags |= ATA_DFLAG_LBA;
1322
1323 if (ata_id_has_lba48(dev->id)) {
1324 dev->flags |= ATA_DFLAG_LBA48;
1325 dev->n_sectors = ata_id_u64(dev->id, 100);
1326 } else {
1327 dev->n_sectors = ata_id_u32(dev->id, 60);
1328 }
1329
1330 /* print device info to dmesg */
1331 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1332 ap->id, device,
1333 major_version,
1334 ata_mode_string(xfer_modes),
1335 (unsigned long long)dev->n_sectors,
1336 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1337 } else {
1338 /* CHS */
1339
1340 /* Default translation */
1341 dev->cylinders = dev->id[1];
1342 dev->heads = dev->id[3];
1343 dev->sectors = dev->id[6];
1344 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1345
1346 if (ata_id_current_chs_valid(dev->id)) {
1347 /* Current CHS translation is valid. */
1348 dev->cylinders = dev->id[54];
1349 dev->heads = dev->id[55];
1350 dev->sectors = dev->id[56];
1351
1352 dev->n_sectors = ata_id_u32(dev->id, 57);
1353 }
1354
1355 /* print device info to dmesg */
1356 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1357 ap->id, device,
1358 major_version,
1359 ata_mode_string(xfer_modes),
1360 (unsigned long long)dev->n_sectors,
1361 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1da177e4 1362
1da177e4
LT
1363 }
1364
1365 ap->host->max_cmd_len = 16;
1da177e4
LT
1366 }
1367
1368 /* ATAPI-specific feature tests */
2c13b7ce 1369 else if (dev->class == ATA_DEV_ATAPI) {
1da177e4
LT
1370 if (ata_id_is_ata(dev->id)) /* sanity check */
1371 goto err_out_nosup;
1372
1373 rc = atapi_cdb_len(dev->id);
1374 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1375 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1376 goto err_out_nosup;
1377 }
1378 ap->cdb_len = (unsigned int) rc;
1379 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1380
1381 /* print device info to dmesg */
1382 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1383 ap->id, device,
1384 ata_mode_string(xfer_modes));
1385 }
1386
1387 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1388 return;
1389
1390err_out_nosup:
1391 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1392 ap->id, device);
1393err_out:
1394 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1395 DPRINTK("EXIT, err\n");
1396}
1397
6f2f3812 1398
057ace5e 1399static inline u8 ata_dev_knobble(const struct ata_port *ap)
6f2f3812
BC
1400{
1401 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1402}
1403
1404/**
1405 * ata_dev_config - Run device specific handlers and check for
1406 * SATA->PATA bridges
8a60a071 1407 * @ap: Bus
6f2f3812
BC
1408 * @i: Device
1409 *
1410 * LOCKING:
1411 */
8a60a071 1412
6f2f3812
BC
1413void ata_dev_config(struct ata_port *ap, unsigned int i)
1414{
1415 /* limit bridge transfers to udma5, 200 sectors */
1416 if (ata_dev_knobble(ap)) {
1417 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1418 ap->id, ap->device->devno);
1419 ap->udma_mask &= ATA_UDMA5;
1420 ap->host->max_sectors = ATA_MAX_SECTORS;
1421 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1422 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1423 }
1424
1425 if (ap->ops->dev_config)
1426 ap->ops->dev_config(ap, &ap->device[i]);
1427}
1428
1da177e4
LT
1429/**
1430 * ata_bus_probe - Reset and probe ATA bus
1431 * @ap: Bus to probe
1432 *
0cba632b
JG
1433 * Master ATA bus probing function. Initiates a hardware-dependent
1434 * bus reset, then attempts to identify any devices found on
1435 * the bus.
1436 *
1da177e4 1437 * LOCKING:
0cba632b 1438 * PCI/etc. bus probe sem.
1da177e4
LT
1439 *
1440 * RETURNS:
1441 * Zero on success, non-zero on error.
1442 */
1443
1444static int ata_bus_probe(struct ata_port *ap)
1445{
1446 unsigned int i, found = 0;
1447
1448 ap->ops->phy_reset(ap);
1449 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1450 goto err_out;
1451
1452 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1453 ata_dev_identify(ap, i);
1454 if (ata_dev_present(&ap->device[i])) {
1455 found = 1;
6f2f3812 1456 ata_dev_config(ap,i);
1da177e4
LT
1457 }
1458 }
1459
1460 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1461 goto err_out_disable;
1462
1463 ata_set_mode(ap);
1464 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1465 goto err_out_disable;
1466
1467 return 0;
1468
1469err_out_disable:
1470 ap->ops->port_disable(ap);
1471err_out:
1472 return -1;
1473}
1474
1475/**
0cba632b
JG
1476 * ata_port_probe - Mark port as enabled
1477 * @ap: Port for which we indicate enablement
1da177e4 1478 *
0cba632b
JG
1479 * Modify @ap data structure such that the system
1480 * thinks that the entire port is enabled.
1481 *
1482 * LOCKING: host_set lock, or some other form of
1483 * serialization.
1da177e4
LT
1484 */
1485
1486void ata_port_probe(struct ata_port *ap)
1487{
1488 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1489}
1490
1491/**
780a87f7
JG
1492 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1493 * @ap: SATA port associated with target SATA PHY.
1da177e4 1494 *
780a87f7
JG
1495 * This function issues commands to standard SATA Sxxx
1496 * PHY registers, to wake up the phy (and device), and
1497 * clear any reset condition.
1da177e4
LT
1498 *
1499 * LOCKING:
0cba632b 1500 * PCI/etc. bus probe sem.
1da177e4
LT
1501 *
1502 */
1503void __sata_phy_reset(struct ata_port *ap)
1504{
1505 u32 sstatus;
1506 unsigned long timeout = jiffies + (HZ * 5);
1507
1508 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1509 /* issue phy wake/reset */
1510 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1511 /* Couldn't find anything in SATA I/II specs, but
1512 * AHCI-1.1 10.4.2 says at least 1 ms. */
1513 mdelay(1);
1da177e4 1514 }
cdcca89e 1515 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1516
1517 /* wait for phy to become ready, if necessary */
1518 do {
1519 msleep(200);
1520 sstatus = scr_read(ap, SCR_STATUS);
1521 if ((sstatus & 0xf) != 1)
1522 break;
1523 } while (time_before(jiffies, timeout));
1524
1525 /* TODO: phy layer with polling, timeouts, etc. */
656563e3
JG
1526 sstatus = scr_read(ap, SCR_STATUS);
1527 if (sata_dev_present(ap)) {
1528 const char *speed;
1529 u32 tmp;
1530
1531 tmp = (sstatus >> 4) & 0xf;
1532 if (tmp & (1 << 0))
1533 speed = "1.5";
1534 else if (tmp & (1 << 1))
1535 speed = "3.0";
1536 else
1537 speed = "<unknown>";
1538 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1539 ap->id, speed, sstatus);
1da177e4 1540 ata_port_probe(ap);
656563e3
JG
1541 } else {
1542 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1da177e4
LT
1543 ap->id, sstatus);
1544 ata_port_disable(ap);
1545 }
1546
1547 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1548 return;
1549
1550 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1551 ata_port_disable(ap);
1552 return;
1553 }
1554
1555 ap->cbl = ATA_CBL_SATA;
1556}
1557
1558/**
780a87f7
JG
1559 * sata_phy_reset - Reset SATA bus.
1560 * @ap: SATA port associated with target SATA PHY.
1da177e4 1561 *
780a87f7
JG
1562 * This function resets the SATA bus, and then probes
1563 * the bus for devices.
1da177e4
LT
1564 *
1565 * LOCKING:
0cba632b 1566 * PCI/etc. bus probe sem.
1da177e4
LT
1567 *
1568 */
1569void sata_phy_reset(struct ata_port *ap)
1570{
1571 __sata_phy_reset(ap);
1572 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1573 return;
1574 ata_bus_reset(ap);
1575}
1576
1577/**
780a87f7
JG
1578 * ata_port_disable - Disable port.
1579 * @ap: Port to be disabled.
1da177e4 1580 *
780a87f7
JG
1581 * Modify @ap data structure such that the system
1582 * thinks that the entire port is disabled, and should
1583 * never attempt to probe or communicate with devices
1584 * on this port.
1585 *
1586 * LOCKING: host_set lock, or some other form of
1587 * serialization.
1da177e4
LT
1588 */
1589
1590void ata_port_disable(struct ata_port *ap)
1591{
1592 ap->device[0].class = ATA_DEV_NONE;
1593 ap->device[1].class = ATA_DEV_NONE;
1594 ap->flags |= ATA_FLAG_PORT_DISABLED;
1595}
1596
452503f9
AC
1597/*
1598 * This mode timing computation functionality is ported over from
1599 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1600 */
1601/*
1602 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1603 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1604 * for PIO 5, which is a nonstandard extension and UDMA6, which
1605 * is currently supported only by Maxtor drives.
1606 */
1607
1608static const struct ata_timing ata_timing[] = {
1609
1610 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1611 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1612 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1613 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1614
1615 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1616 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1617 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1618
1619/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1620
1621 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1622 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1623 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1624
1625 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1626 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1627 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1628
1629/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1630 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1631 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1632
1633 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1634 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1635 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1636
1637/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1638
1639 { 0xFF }
1640};
1641
1642#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1643#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1644
1645static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1646{
1647 q->setup = EZ(t->setup * 1000, T);
1648 q->act8b = EZ(t->act8b * 1000, T);
1649 q->rec8b = EZ(t->rec8b * 1000, T);
1650 q->cyc8b = EZ(t->cyc8b * 1000, T);
1651 q->active = EZ(t->active * 1000, T);
1652 q->recover = EZ(t->recover * 1000, T);
1653 q->cycle = EZ(t->cycle * 1000, T);
1654 q->udma = EZ(t->udma * 1000, UT);
1655}
1656
1657void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1658 struct ata_timing *m, unsigned int what)
1659{
1660 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1661 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1662 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1663 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1664 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1665 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1666 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1667 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1668}
1669
1670static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1671{
1672 const struct ata_timing *t;
1673
1674 for (t = ata_timing; t->mode != speed; t++)
91190758 1675 if (t->mode == 0xFF)
452503f9
AC
1676 return NULL;
1677 return t;
1678}
1679
1680int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1681 struct ata_timing *t, int T, int UT)
1682{
1683 const struct ata_timing *s;
1684 struct ata_timing p;
1685
1686 /*
1687 * Find the mode.
75b1f2f8 1688 */
452503f9
AC
1689
1690 if (!(s = ata_timing_find_mode(speed)))
1691 return -EINVAL;
1692
75b1f2f8
AL
1693 memcpy(t, s, sizeof(*s));
1694
452503f9
AC
1695 /*
1696 * If the drive is an EIDE drive, it can tell us it needs extended
1697 * PIO/MW_DMA cycle timing.
1698 */
1699
1700 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1701 memset(&p, 0, sizeof(p));
1702 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1703 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1704 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1705 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1706 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1707 }
1708 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1709 }
1710
1711 /*
1712 * Convert the timing to bus clock counts.
1713 */
1714
75b1f2f8 1715 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1716
1717 /*
1718 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1719 * and some other commands. We have to ensure that the DMA cycle timing is
1720 * slower/equal than the fastest PIO timing.
1721 */
1722
1723 if (speed > XFER_PIO_4) {
1724 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1725 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1726 }
1727
1728 /*
1729 * Lenghten active & recovery time so that cycle time is correct.
1730 */
1731
1732 if (t->act8b + t->rec8b < t->cyc8b) {
1733 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1734 t->rec8b = t->cyc8b - t->act8b;
1735 }
1736
1737 if (t->active + t->recover < t->cycle) {
1738 t->active += (t->cycle - (t->active + t->recover)) / 2;
1739 t->recover = t->cycle - t->active;
1740 }
1741
1742 return 0;
1743}
1744
057ace5e 1745static const struct {
1da177e4
LT
1746 unsigned int shift;
1747 u8 base;
1748} xfer_mode_classes[] = {
1749 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1750 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1751 { ATA_SHIFT_PIO, XFER_PIO_0 },
1752};
1753
858119e1 1754static u8 base_from_shift(unsigned int shift)
1da177e4
LT
1755{
1756 int i;
1757
1758 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1759 if (xfer_mode_classes[i].shift == shift)
1760 return xfer_mode_classes[i].base;
1761
1762 return 0xff;
1763}
1764
1765static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1766{
1767 int ofs, idx;
1768 u8 base;
1769
1770 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1771 return;
1772
1773 if (dev->xfer_shift == ATA_SHIFT_PIO)
1774 dev->flags |= ATA_DFLAG_PIO;
1775
1776 ata_dev_set_xfermode(ap, dev);
1777
1778 base = base_from_shift(dev->xfer_shift);
1779 ofs = dev->xfer_mode - base;
1780 idx = ofs + dev->xfer_shift;
1781 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1782
1783 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1784 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1785
1786 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1787 ap->id, dev->devno, xfer_mode_str[idx]);
1788}
1789
1790static int ata_host_set_pio(struct ata_port *ap)
1791{
1792 unsigned int mask;
1793 int x, i;
1794 u8 base, xfer_mode;
1795
1796 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1797 x = fgb(mask);
1798 if (x < 0) {
1799 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1800 return -1;
1801 }
1802
1803 base = base_from_shift(ATA_SHIFT_PIO);
1804 xfer_mode = base + x;
1805
1806 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1807 (int)base, (int)xfer_mode, mask, x);
1808
1809 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1810 struct ata_device *dev = &ap->device[i];
1811 if (ata_dev_present(dev)) {
1812 dev->pio_mode = xfer_mode;
1813 dev->xfer_mode = xfer_mode;
1814 dev->xfer_shift = ATA_SHIFT_PIO;
1815 if (ap->ops->set_piomode)
1816 ap->ops->set_piomode(ap, dev);
1817 }
1818 }
1819
1820 return 0;
1821}
1822
1823static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1824 unsigned int xfer_shift)
1825{
1826 int i;
1827
1828 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1829 struct ata_device *dev = &ap->device[i];
1830 if (ata_dev_present(dev)) {
1831 dev->dma_mode = xfer_mode;
1832 dev->xfer_mode = xfer_mode;
1833 dev->xfer_shift = xfer_shift;
1834 if (ap->ops->set_dmamode)
1835 ap->ops->set_dmamode(ap, dev);
1836 }
1837 }
1838}
1839
1840/**
1841 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1842 * @ap: port on which timings will be programmed
1843 *
780a87f7
JG
1844 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1845 *
1da177e4 1846 * LOCKING:
0cba632b 1847 * PCI/etc. bus probe sem.
1da177e4
LT
1848 *
1849 */
1850static void ata_set_mode(struct ata_port *ap)
1851{
8cbd6df1 1852 unsigned int xfer_shift;
1da177e4
LT
1853 u8 xfer_mode;
1854 int rc;
1855
1856 /* step 1: always set host PIO timings */
1857 rc = ata_host_set_pio(ap);
1858 if (rc)
1859 goto err_out;
1860
1861 /* step 2: choose the best data xfer mode */
1862 xfer_mode = xfer_shift = 0;
1863 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1864 if (rc)
1865 goto err_out;
1866
1867 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1868 if (xfer_shift != ATA_SHIFT_PIO)
1869 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1870
1871 /* step 4: update devices' xfer mode */
1872 ata_dev_set_mode(ap, &ap->device[0]);
1873 ata_dev_set_mode(ap, &ap->device[1]);
1874
1875 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1876 return;
1877
1878 if (ap->ops->post_set_mode)
1879 ap->ops->post_set_mode(ap);
1880
1da177e4
LT
1881 return;
1882
1883err_out:
1884 ata_port_disable(ap);
1885}
1886
1887/**
1888 * ata_busy_sleep - sleep until BSY clears, or timeout
1889 * @ap: port containing status register to be polled
1890 * @tmout_pat: impatience timeout
1891 * @tmout: overall timeout
1892 *
780a87f7
JG
1893 * Sleep until ATA Status register bit BSY clears,
1894 * or a timeout occurs.
1895 *
1896 * LOCKING: None.
1da177e4
LT
1897 *
1898 */
1899
1900static unsigned int ata_busy_sleep (struct ata_port *ap,
1901 unsigned long tmout_pat,
1902 unsigned long tmout)
1903{
1904 unsigned long timer_start, timeout;
1905 u8 status;
1906
1907 status = ata_busy_wait(ap, ATA_BUSY, 300);
1908 timer_start = jiffies;
1909 timeout = timer_start + tmout_pat;
1910 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1911 msleep(50);
1912 status = ata_busy_wait(ap, ATA_BUSY, 3);
1913 }
1914
1915 if (status & ATA_BUSY)
1916 printk(KERN_WARNING "ata%u is slow to respond, "
1917 "please be patient\n", ap->id);
1918
1919 timeout = timer_start + tmout;
1920 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1921 msleep(50);
1922 status = ata_chk_status(ap);
1923 }
1924
1925 if (status & ATA_BUSY) {
1926 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1927 ap->id, tmout / HZ);
1928 return 1;
1929 }
1930
1931 return 0;
1932}
1933
1934static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1935{
1936 struct ata_ioports *ioaddr = &ap->ioaddr;
1937 unsigned int dev0 = devmask & (1 << 0);
1938 unsigned int dev1 = devmask & (1 << 1);
1939 unsigned long timeout;
1940
1941 /* if device 0 was found in ata_devchk, wait for its
1942 * BSY bit to clear
1943 */
1944 if (dev0)
1945 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1946
1947 /* if device 1 was found in ata_devchk, wait for
1948 * register access, then wait for BSY to clear
1949 */
1950 timeout = jiffies + ATA_TMOUT_BOOT;
1951 while (dev1) {
1952 u8 nsect, lbal;
1953
1954 ap->ops->dev_select(ap, 1);
1955 if (ap->flags & ATA_FLAG_MMIO) {
1956 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1957 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1958 } else {
1959 nsect = inb(ioaddr->nsect_addr);
1960 lbal = inb(ioaddr->lbal_addr);
1961 }
1962 if ((nsect == 1) && (lbal == 1))
1963 break;
1964 if (time_after(jiffies, timeout)) {
1965 dev1 = 0;
1966 break;
1967 }
1968 msleep(50); /* give drive a breather */
1969 }
1970 if (dev1)
1971 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1972
1973 /* is all this really necessary? */
1974 ap->ops->dev_select(ap, 0);
1975 if (dev1)
1976 ap->ops->dev_select(ap, 1);
1977 if (dev0)
1978 ap->ops->dev_select(ap, 0);
1979}
1980
1981/**
0cba632b
JG
1982 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1983 * @ap: Port to reset and probe
1984 *
1985 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1986 * probe the bus. Not often used these days.
1da177e4
LT
1987 *
1988 * LOCKING:
0cba632b 1989 * PCI/etc. bus probe sem.
e5338254 1990 * Obtains host_set lock.
1da177e4
LT
1991 *
1992 */
1993
1994static unsigned int ata_bus_edd(struct ata_port *ap)
1995{
1996 struct ata_taskfile tf;
e5338254 1997 unsigned long flags;
1da177e4
LT
1998
1999 /* set up execute-device-diag (bus reset) taskfile */
2000 /* also, take interrupts to a known state (disabled) */
2001 DPRINTK("execute-device-diag\n");
2002 ata_tf_init(ap, &tf, 0);
2003 tf.ctl |= ATA_NIEN;
2004 tf.command = ATA_CMD_EDD;
2005 tf.protocol = ATA_PROT_NODATA;
2006
2007 /* do bus reset */
e5338254 2008 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 2009 ata_tf_to_host(ap, &tf);
e5338254 2010 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
2011
2012 /* spec says at least 2ms. but who knows with those
2013 * crazy ATAPI devices...
2014 */
2015 msleep(150);
2016
2017 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2018}
2019
2020static unsigned int ata_bus_softreset(struct ata_port *ap,
2021 unsigned int devmask)
2022{
2023 struct ata_ioports *ioaddr = &ap->ioaddr;
2024
2025 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2026
2027 /* software reset. causes dev0 to be selected */
2028 if (ap->flags & ATA_FLAG_MMIO) {
2029 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2030 udelay(20); /* FIXME: flush */
2031 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2032 udelay(20); /* FIXME: flush */
2033 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2034 } else {
2035 outb(ap->ctl, ioaddr->ctl_addr);
2036 udelay(10);
2037 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2038 udelay(10);
2039 outb(ap->ctl, ioaddr->ctl_addr);
2040 }
2041
2042 /* spec mandates ">= 2ms" before checking status.
2043 * We wait 150ms, because that was the magic delay used for
2044 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2045 * between when the ATA command register is written, and then
2046 * status is checked. Because waiting for "a while" before
2047 * checking status is fine, post SRST, we perform this magic
2048 * delay here as well.
2049 */
2050 msleep(150);
2051
2052 ata_bus_post_reset(ap, devmask);
2053
2054 return 0;
2055}
2056
2057/**
2058 * ata_bus_reset - reset host port and associated ATA channel
2059 * @ap: port to reset
2060 *
2061 * This is typically the first time we actually start issuing
2062 * commands to the ATA channel. We wait for BSY to clear, then
2063 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2064 * result. Determine what devices, if any, are on the channel
2065 * by looking at the device 0/1 error register. Look at the signature
2066 * stored in each device's taskfile registers, to determine if
2067 * the device is ATA or ATAPI.
2068 *
2069 * LOCKING:
0cba632b
JG
2070 * PCI/etc. bus probe sem.
2071 * Obtains host_set lock.
1da177e4
LT
2072 *
2073 * SIDE EFFECTS:
2074 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2075 */
2076
2077void ata_bus_reset(struct ata_port *ap)
2078{
2079 struct ata_ioports *ioaddr = &ap->ioaddr;
2080 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2081 u8 err;
2082 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2083
2084 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2085
2086 /* determine if device 0/1 are present */
2087 if (ap->flags & ATA_FLAG_SATA_RESET)
2088 dev0 = 1;
2089 else {
2090 dev0 = ata_devchk(ap, 0);
2091 if (slave_possible)
2092 dev1 = ata_devchk(ap, 1);
2093 }
2094
2095 if (dev0)
2096 devmask |= (1 << 0);
2097 if (dev1)
2098 devmask |= (1 << 1);
2099
2100 /* select device 0 again */
2101 ap->ops->dev_select(ap, 0);
2102
2103 /* issue bus reset */
2104 if (ap->flags & ATA_FLAG_SRST)
2105 rc = ata_bus_softreset(ap, devmask);
2106 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2107 /* set up device control */
2108 if (ap->flags & ATA_FLAG_MMIO)
2109 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2110 else
2111 outb(ap->ctl, ioaddr->ctl_addr);
2112 rc = ata_bus_edd(ap);
2113 }
2114
2115 if (rc)
2116 goto err_out;
2117
2118 /*
2119 * determine by signature whether we have ATA or ATAPI devices
2120 */
2121 err = ata_dev_try_classify(ap, 0);
2122 if ((slave_possible) && (err != 0x81))
2123 ata_dev_try_classify(ap, 1);
2124
2125 /* re-enable interrupts */
2126 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2127 ata_irq_on(ap);
2128
2129 /* is double-select really necessary? */
2130 if (ap->device[1].class != ATA_DEV_NONE)
2131 ap->ops->dev_select(ap, 1);
2132 if (ap->device[0].class != ATA_DEV_NONE)
2133 ap->ops->dev_select(ap, 0);
2134
2135 /* if no devices were detected, disable this port */
2136 if ((ap->device[0].class == ATA_DEV_NONE) &&
2137 (ap->device[1].class == ATA_DEV_NONE))
2138 goto err_out;
2139
2140 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2141 /* set up device control for ATA_FLAG_SATA_RESET */
2142 if (ap->flags & ATA_FLAG_MMIO)
2143 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2144 else
2145 outb(ap->ctl, ioaddr->ctl_addr);
2146 }
2147
2148 DPRINTK("EXIT\n");
2149 return;
2150
2151err_out:
2152 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2153 ap->ops->port_disable(ap);
2154
2155 DPRINTK("EXIT\n");
2156}
2157
057ace5e
JG
2158static void ata_pr_blacklisted(const struct ata_port *ap,
2159 const struct ata_device *dev)
1da177e4
LT
2160{
2161 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2162 ap->id, dev->devno);
2163}
2164
98ac62de 2165static const char * const ata_dma_blacklist [] = {
1da177e4
LT
2166 "WDC AC11000H",
2167 "WDC AC22100H",
2168 "WDC AC32500H",
2169 "WDC AC33100H",
2170 "WDC AC31600H",
2171 "WDC AC32100H",
2172 "WDC AC23200L",
2173 "Compaq CRD-8241B",
2174 "CRD-8400B",
2175 "CRD-8480B",
2176 "CRD-8482B",
2177 "CRD-84",
2178 "SanDisk SDP3B",
2179 "SanDisk SDP3B-64",
2180 "SANYO CD-ROM CRD",
2181 "HITACHI CDR-8",
2182 "HITACHI CDR-8335",
2183 "HITACHI CDR-8435",
2184 "Toshiba CD-ROM XM-6202B",
e922256a 2185 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2186 "CD-532E-A",
2187 "E-IDE CD-ROM CR-840",
2188 "CD-ROM Drive/F5A",
2189 "WPI CDD-820",
2190 "SAMSUNG CD-ROM SC-148C",
2191 "SAMSUNG CD-ROM SC",
2192 "SanDisk SDP3B-64",
1da177e4
LT
2193 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2194 "_NEC DV5800A",
2195};
2196
057ace5e 2197static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4
LT
2198{
2199 unsigned char model_num[40];
2200 char *s;
2201 unsigned int len;
2202 int i;
2203
2204 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2205 sizeof(model_num));
2206 s = &model_num[0];
2207 len = strnlen(s, sizeof(model_num));
2208
2209 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2210 while ((len > 0) && (s[len - 1] == ' ')) {
2211 len--;
2212 s[len] = 0;
2213 }
2214
2215 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2216 if (!strncmp(ata_dma_blacklist[i], s, len))
2217 return 1;
2218
2219 return 0;
2220}
2221
057ace5e 2222static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
1da177e4 2223{
057ace5e 2224 const struct ata_device *master, *slave;
1da177e4
LT
2225 unsigned int mask;
2226
2227 master = &ap->device[0];
2228 slave = &ap->device[1];
2229
2230 assert (ata_dev_present(master) || ata_dev_present(slave));
2231
2232 if (shift == ATA_SHIFT_UDMA) {
2233 mask = ap->udma_mask;
2234 if (ata_dev_present(master)) {
2235 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2236 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2237 mask = 0;
2238 ata_pr_blacklisted(ap, master);
2239 }
2240 }
2241 if (ata_dev_present(slave)) {
2242 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2243 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2244 mask = 0;
2245 ata_pr_blacklisted(ap, slave);
2246 }
2247 }
2248 }
2249 else if (shift == ATA_SHIFT_MWDMA) {
2250 mask = ap->mwdma_mask;
2251 if (ata_dev_present(master)) {
2252 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2253 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2254 mask = 0;
2255 ata_pr_blacklisted(ap, master);
2256 }
2257 }
2258 if (ata_dev_present(slave)) {
2259 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2260 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2261 mask = 0;
2262 ata_pr_blacklisted(ap, slave);
2263 }
2264 }
2265 }
2266 else if (shift == ATA_SHIFT_PIO) {
2267 mask = ap->pio_mask;
2268 if (ata_dev_present(master)) {
2269 /* spec doesn't return explicit support for
2270 * PIO0-2, so we fake it
2271 */
2272 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2273 tmp_mode <<= 3;
2274 tmp_mode |= 0x7;
2275 mask &= tmp_mode;
2276 }
2277 if (ata_dev_present(slave)) {
2278 /* spec doesn't return explicit support for
2279 * PIO0-2, so we fake it
2280 */
2281 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2282 tmp_mode <<= 3;
2283 tmp_mode |= 0x7;
2284 mask &= tmp_mode;
2285 }
2286 }
2287 else {
2288 mask = 0xffffffff; /* shut up compiler warning */
2289 BUG();
2290 }
2291
2292 return mask;
2293}
2294
2295/* find greatest bit */
2296static int fgb(u32 bitmap)
2297{
2298 unsigned int i;
2299 int x = -1;
2300
2301 for (i = 0; i < 32; i++)
2302 if (bitmap & (1 << i))
2303 x = i;
2304
2305 return x;
2306}
2307
2308/**
2309 * ata_choose_xfer_mode - attempt to find best transfer mode
2310 * @ap: Port for which an xfer mode will be selected
2311 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2312 * @xfer_shift_out: (output) bit shift that selects this mode
2313 *
0cba632b
JG
2314 * Based on host and device capabilities, determine the
2315 * maximum transfer mode that is amenable to all.
2316 *
1da177e4 2317 * LOCKING:
0cba632b 2318 * PCI/etc. bus probe sem.
1da177e4
LT
2319 *
2320 * RETURNS:
2321 * Zero on success, negative on error.
2322 */
2323
057ace5e 2324static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
2325 u8 *xfer_mode_out,
2326 unsigned int *xfer_shift_out)
2327{
2328 unsigned int mask, shift;
2329 int x, i;
2330
2331 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2332 shift = xfer_mode_classes[i].shift;
2333 mask = ata_get_mode_mask(ap, shift);
2334
2335 x = fgb(mask);
2336 if (x >= 0) {
2337 *xfer_mode_out = xfer_mode_classes[i].base + x;
2338 *xfer_shift_out = shift;
2339 return 0;
2340 }
2341 }
2342
2343 return -1;
2344}
2345
2346/**
2347 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2348 * @ap: Port associated with device @dev
2349 * @dev: Device to which command will be sent
2350 *
780a87f7
JG
2351 * Issue SET FEATURES - XFER MODE command to device @dev
2352 * on port @ap.
2353 *
1da177e4 2354 * LOCKING:
0cba632b 2355 * PCI/etc. bus probe sem.
1da177e4
LT
2356 */
2357
2358static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2359{
a0123703 2360 struct ata_taskfile tf;
1da177e4
LT
2361
2362 /* set up set-features taskfile */
2363 DPRINTK("set features - xfer mode\n");
2364
a0123703
TH
2365 ata_tf_init(ap, &tf, dev->devno);
2366 tf.command = ATA_CMD_SET_FEATURES;
2367 tf.feature = SETFEATURES_XFER;
2368 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2369 tf.protocol = ATA_PROT_NODATA;
2370 tf.nsect = dev->xfer_mode;
1da177e4 2371
a0123703
TH
2372 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2373 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2374 ap->id);
1da177e4 2375 ata_port_disable(ap);
a0123703 2376 }
1da177e4
LT
2377
2378 DPRINTK("EXIT\n");
2379}
2380
59a10b17
AL
2381/**
2382 * ata_dev_reread_id - Reread the device identify device info
2383 * @ap: port where the device is
2384 * @dev: device to reread the identify device info
2385 *
2386 * LOCKING:
2387 */
2388
2389static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2390{
a0123703 2391 struct ata_taskfile tf;
59a10b17 2392
a0123703 2393 ata_tf_init(ap, &tf, dev->devno);
59a10b17
AL
2394
2395 if (dev->class == ATA_DEV_ATA) {
a0123703 2396 tf.command = ATA_CMD_ID_ATA;
59a10b17
AL
2397 DPRINTK("do ATA identify\n");
2398 } else {
a0123703 2399 tf.command = ATA_CMD_ID_ATAPI;
59a10b17
AL
2400 DPRINTK("do ATAPI identify\n");
2401 }
2402
a0123703
TH
2403 tf.flags |= ATA_TFLAG_DEVICE;
2404 tf.protocol = ATA_PROT_PIO;
59a10b17 2405
a0123703
TH
2406 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2407 dev->id, sizeof(dev->id)))
59a10b17
AL
2408 goto err_out;
2409
59a10b17
AL
2410 swap_buf_le16(dev->id, ATA_ID_WORDS);
2411
2412 ata_dump_id(dev);
2413
2414 DPRINTK("EXIT\n");
2415
2416 return;
2417err_out:
a0123703 2418 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
59a10b17
AL
2419 ata_port_disable(ap);
2420}
2421
8bf62ece
AL
2422/**
2423 * ata_dev_init_params - Issue INIT DEV PARAMS command
2424 * @ap: Port associated with device @dev
2425 * @dev: Device to which command will be sent
2426 *
2427 * LOCKING:
2428 */
2429
2430static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2431{
a0123703 2432 struct ata_taskfile tf;
8bf62ece
AL
2433 u16 sectors = dev->id[6];
2434 u16 heads = dev->id[3];
2435
2436 /* Number of sectors per track 1-255. Number of heads 1-16 */
2437 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2438 return;
2439
2440 /* set up init dev params taskfile */
2441 DPRINTK("init dev params \n");
2442
a0123703
TH
2443 ata_tf_init(ap, &tf, dev->devno);
2444 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2445 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2446 tf.protocol = ATA_PROT_NODATA;
2447 tf.nsect = sectors;
2448 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2449
a0123703
TH
2450 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2451 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2452 ap->id);
8bf62ece 2453 ata_port_disable(ap);
a0123703 2454 }
8bf62ece
AL
2455
2456 DPRINTK("EXIT\n");
2457}
2458
1da177e4 2459/**
0cba632b
JG
2460 * ata_sg_clean - Unmap DMA memory associated with command
2461 * @qc: Command containing DMA memory to be released
2462 *
2463 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2464 *
2465 * LOCKING:
0cba632b 2466 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2467 */
2468
2469static void ata_sg_clean(struct ata_queued_cmd *qc)
2470{
2471 struct ata_port *ap = qc->ap;
cedc9a47 2472 struct scatterlist *sg = qc->__sg;
1da177e4 2473 int dir = qc->dma_dir;
cedc9a47 2474 void *pad_buf = NULL;
1da177e4
LT
2475
2476 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2477 assert(sg != NULL);
2478
2479 if (qc->flags & ATA_QCFLAG_SINGLE)
2480 assert(qc->n_elem == 1);
2481
2c13b7ce 2482 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2483
cedc9a47
JG
2484 /* if we padded the buffer out to 32-bit bound, and data
2485 * xfer direction is from-device, we must copy from the
2486 * pad buffer back into the supplied buffer
2487 */
2488 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2489 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2490
2491 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d
JG
2492 if (qc->n_elem)
2493 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2494 /* restore last sg */
2495 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2496 if (pad_buf) {
2497 struct scatterlist *psg = &qc->pad_sgent;
2498 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2499 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2500 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2501 }
2502 } else {
e1410f2d
JG
2503 if (sg_dma_len(&sg[0]) > 0)
2504 dma_unmap_single(ap->host_set->dev,
2505 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2506 dir);
cedc9a47
JG
2507 /* restore sg */
2508 sg->length += qc->pad_len;
2509 if (pad_buf)
2510 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2511 pad_buf, qc->pad_len);
2512 }
1da177e4
LT
2513
2514 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2515 qc->__sg = NULL;
1da177e4
LT
2516}
2517
2518/**
2519 * ata_fill_sg - Fill PCI IDE PRD table
2520 * @qc: Metadata associated with taskfile to be transferred
2521 *
780a87f7
JG
2522 * Fill PCI IDE PRD (scatter-gather) table with segments
2523 * associated with the current disk command.
2524 *
1da177e4 2525 * LOCKING:
780a87f7 2526 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2527 *
2528 */
2529static void ata_fill_sg(struct ata_queued_cmd *qc)
2530{
1da177e4 2531 struct ata_port *ap = qc->ap;
cedc9a47
JG
2532 struct scatterlist *sg;
2533 unsigned int idx;
1da177e4 2534
cedc9a47 2535 assert(qc->__sg != NULL);
1da177e4
LT
2536 assert(qc->n_elem > 0);
2537
2538 idx = 0;
cedc9a47 2539 ata_for_each_sg(sg, qc) {
1da177e4
LT
2540 u32 addr, offset;
2541 u32 sg_len, len;
2542
2543 /* determine if physical DMA addr spans 64K boundary.
2544 * Note h/w doesn't support 64-bit, so we unconditionally
2545 * truncate dma_addr_t to u32.
2546 */
2547 addr = (u32) sg_dma_address(sg);
2548 sg_len = sg_dma_len(sg);
2549
2550 while (sg_len) {
2551 offset = addr & 0xffff;
2552 len = sg_len;
2553 if ((offset + sg_len) > 0x10000)
2554 len = 0x10000 - offset;
2555
2556 ap->prd[idx].addr = cpu_to_le32(addr);
2557 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2558 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2559
2560 idx++;
2561 sg_len -= len;
2562 addr += len;
2563 }
2564 }
2565
2566 if (idx)
2567 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2568}
2569/**
2570 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2571 * @qc: Metadata associated with taskfile to check
2572 *
780a87f7
JG
2573 * Allow low-level driver to filter ATA PACKET commands, returning
2574 * a status indicating whether or not it is OK to use DMA for the
2575 * supplied PACKET command.
2576 *
1da177e4 2577 * LOCKING:
0cba632b
JG
2578 * spin_lock_irqsave(host_set lock)
2579 *
1da177e4
LT
2580 * RETURNS: 0 when ATAPI DMA can be used
2581 * nonzero otherwise
2582 */
2583int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2584{
2585 struct ata_port *ap = qc->ap;
2586 int rc = 0; /* Assume ATAPI DMA is OK by default */
2587
2588 if (ap->ops->check_atapi_dma)
2589 rc = ap->ops->check_atapi_dma(qc);
2590
2591 return rc;
2592}
2593/**
2594 * ata_qc_prep - Prepare taskfile for submission
2595 * @qc: Metadata associated with taskfile to be prepared
2596 *
780a87f7
JG
2597 * Prepare ATA taskfile for submission.
2598 *
1da177e4
LT
2599 * LOCKING:
2600 * spin_lock_irqsave(host_set lock)
2601 */
2602void ata_qc_prep(struct ata_queued_cmd *qc)
2603{
2604 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2605 return;
2606
2607 ata_fill_sg(qc);
2608}
2609
0cba632b
JG
2610/**
2611 * ata_sg_init_one - Associate command with memory buffer
2612 * @qc: Command to be associated
2613 * @buf: Memory buffer
2614 * @buflen: Length of memory buffer, in bytes.
2615 *
2616 * Initialize the data-related elements of queued_cmd @qc
2617 * to point to a single memory buffer, @buf of byte length @buflen.
2618 *
2619 * LOCKING:
2620 * spin_lock_irqsave(host_set lock)
2621 */
2622
1da177e4
LT
2623void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2624{
2625 struct scatterlist *sg;
2626
2627 qc->flags |= ATA_QCFLAG_SINGLE;
2628
2629 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2630 qc->__sg = &qc->sgent;
1da177e4 2631 qc->n_elem = 1;
cedc9a47 2632 qc->orig_n_elem = 1;
1da177e4
LT
2633 qc->buf_virt = buf;
2634
cedc9a47 2635 sg = qc->__sg;
f0612bbc 2636 sg_init_one(sg, buf, buflen);
1da177e4
LT
2637}
2638
0cba632b
JG
2639/**
2640 * ata_sg_init - Associate command with scatter-gather table.
2641 * @qc: Command to be associated
2642 * @sg: Scatter-gather table.
2643 * @n_elem: Number of elements in s/g table.
2644 *
2645 * Initialize the data-related elements of queued_cmd @qc
2646 * to point to a scatter-gather table @sg, containing @n_elem
2647 * elements.
2648 *
2649 * LOCKING:
2650 * spin_lock_irqsave(host_set lock)
2651 */
2652
1da177e4
LT
2653void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2654 unsigned int n_elem)
2655{
2656 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2657 qc->__sg = sg;
1da177e4 2658 qc->n_elem = n_elem;
cedc9a47 2659 qc->orig_n_elem = n_elem;
1da177e4
LT
2660}
2661
2662/**
0cba632b
JG
2663 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2664 * @qc: Command with memory buffer to be mapped.
2665 *
2666 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2667 *
2668 * LOCKING:
2669 * spin_lock_irqsave(host_set lock)
2670 *
2671 * RETURNS:
0cba632b 2672 * Zero on success, negative on error.
1da177e4
LT
2673 */
2674
2675static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2676{
2677 struct ata_port *ap = qc->ap;
2678 int dir = qc->dma_dir;
cedc9a47 2679 struct scatterlist *sg = qc->__sg;
1da177e4
LT
2680 dma_addr_t dma_address;
2681
cedc9a47
JG
2682 /* we must lengthen transfers to end on a 32-bit boundary */
2683 qc->pad_len = sg->length & 3;
2684 if (qc->pad_len) {
2685 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2686 struct scatterlist *psg = &qc->pad_sgent;
2687
2688 assert(qc->dev->class == ATA_DEV_ATAPI);
2689
2690 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2691
2692 if (qc->tf.flags & ATA_TFLAG_WRITE)
2693 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2694 qc->pad_len);
2695
2696 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2697 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2698 /* trim sg */
2699 sg->length -= qc->pad_len;
2700
2701 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2702 sg->length, qc->pad_len);
2703 }
2704
e1410f2d
JG
2705 if (!sg->length) {
2706 sg_dma_address(sg) = 0;
2707 goto skip_map;
2708 }
2709
1da177e4 2710 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2711 sg->length, dir);
537a95d9
TH
2712 if (dma_mapping_error(dma_address)) {
2713 /* restore sg */
2714 sg->length += qc->pad_len;
1da177e4 2715 return -1;
537a95d9 2716 }
1da177e4
LT
2717
2718 sg_dma_address(sg) = dma_address;
e1410f2d 2719skip_map:
32529e01 2720 sg_dma_len(sg) = sg->length;
1da177e4
LT
2721
2722 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2723 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2724
2725 return 0;
2726}
2727
2728/**
0cba632b
JG
2729 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2730 * @qc: Command with scatter-gather table to be mapped.
2731 *
2732 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2733 *
2734 * LOCKING:
2735 * spin_lock_irqsave(host_set lock)
2736 *
2737 * RETURNS:
0cba632b 2738 * Zero on success, negative on error.
1da177e4
LT
2739 *
2740 */
2741
2742static int ata_sg_setup(struct ata_queued_cmd *qc)
2743{
2744 struct ata_port *ap = qc->ap;
cedc9a47
JG
2745 struct scatterlist *sg = qc->__sg;
2746 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 2747 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
2748
2749 VPRINTK("ENTER, ata%u\n", ap->id);
2750 assert(qc->flags & ATA_QCFLAG_SG);
2751
cedc9a47
JG
2752 /* we must lengthen transfers to end on a 32-bit boundary */
2753 qc->pad_len = lsg->length & 3;
2754 if (qc->pad_len) {
2755 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2756 struct scatterlist *psg = &qc->pad_sgent;
2757 unsigned int offset;
2758
2759 assert(qc->dev->class == ATA_DEV_ATAPI);
2760
2761 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2762
2763 /*
2764 * psg->page/offset are used to copy to-be-written
2765 * data in this function or read data in ata_sg_clean.
2766 */
2767 offset = lsg->offset + lsg->length - qc->pad_len;
2768 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2769 psg->offset = offset_in_page(offset);
2770
2771 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2772 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2773 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 2774 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2775 }
2776
2777 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2778 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2779 /* trim last sg */
2780 lsg->length -= qc->pad_len;
e1410f2d
JG
2781 if (lsg->length == 0)
2782 trim_sg = 1;
cedc9a47
JG
2783
2784 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2785 qc->n_elem - 1, lsg->length, qc->pad_len);
2786 }
2787
e1410f2d
JG
2788 pre_n_elem = qc->n_elem;
2789 if (trim_sg && pre_n_elem)
2790 pre_n_elem--;
2791
2792 if (!pre_n_elem) {
2793 n_elem = 0;
2794 goto skip_map;
2795 }
2796
1da177e4 2797 dir = qc->dma_dir;
e1410f2d 2798 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
537a95d9
TH
2799 if (n_elem < 1) {
2800 /* restore last sg */
2801 lsg->length += qc->pad_len;
1da177e4 2802 return -1;
537a95d9 2803 }
1da177e4
LT
2804
2805 DPRINTK("%d sg elements mapped\n", n_elem);
2806
e1410f2d 2807skip_map:
1da177e4
LT
2808 qc->n_elem = n_elem;
2809
2810 return 0;
2811}
2812
40e8c82c
TH
2813/**
2814 * ata_poll_qc_complete - turn irq back on and finish qc
2815 * @qc: Command to complete
8e8b77dd 2816 * @err_mask: ATA status register content
40e8c82c
TH
2817 *
2818 * LOCKING:
2819 * None. (grabs host lock)
2820 */
2821
a22e2eb0 2822void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
2823{
2824 struct ata_port *ap = qc->ap;
b8f6153e 2825 unsigned long flags;
40e8c82c 2826
b8f6153e 2827 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
2828 ap->flags &= ~ATA_FLAG_NOINTR;
2829 ata_irq_on(ap);
a22e2eb0 2830 ata_qc_complete(qc);
b8f6153e 2831 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
2832}
2833
1da177e4
LT
2834/**
2835 * ata_pio_poll -
6f0ef4fa 2836 * @ap: the target ata_port
1da177e4
LT
2837 *
2838 * LOCKING:
0cba632b 2839 * None. (executing in kernel thread context)
1da177e4
LT
2840 *
2841 * RETURNS:
6f0ef4fa 2842 * timeout value to use
1da177e4
LT
2843 */
2844
2845static unsigned long ata_pio_poll(struct ata_port *ap)
2846{
c14b8331 2847 struct ata_queued_cmd *qc;
1da177e4 2848 u8 status;
14be71f4
AL
2849 unsigned int poll_state = HSM_ST_UNKNOWN;
2850 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 2851
c14b8331
AL
2852 qc = ata_qc_from_tag(ap, ap->active_tag);
2853 assert(qc != NULL);
2854
14be71f4
AL
2855 switch (ap->hsm_task_state) {
2856 case HSM_ST:
2857 case HSM_ST_POLL:
2858 poll_state = HSM_ST_POLL;
2859 reg_state = HSM_ST;
1da177e4 2860 break;
14be71f4
AL
2861 case HSM_ST_LAST:
2862 case HSM_ST_LAST_POLL:
2863 poll_state = HSM_ST_LAST_POLL;
2864 reg_state = HSM_ST_LAST;
1da177e4
LT
2865 break;
2866 default:
2867 BUG();
2868 break;
2869 }
2870
2871 status = ata_chk_status(ap);
2872 if (status & ATA_BUSY) {
2873 if (time_after(jiffies, ap->pio_task_timeout)) {
1c848984 2874 qc->err_mask |= AC_ERR_ATA_BUS;
7c398335 2875 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
2876 return 0;
2877 }
14be71f4 2878 ap->hsm_task_state = poll_state;
1da177e4
LT
2879 return ATA_SHORT_PAUSE;
2880 }
2881
14be71f4 2882 ap->hsm_task_state = reg_state;
1da177e4
LT
2883 return 0;
2884}
2885
2886/**
6f0ef4fa
RD
2887 * ata_pio_complete - check if drive is busy or idle
2888 * @ap: the target ata_port
1da177e4
LT
2889 *
2890 * LOCKING:
0cba632b 2891 * None. (executing in kernel thread context)
7fb6ec28
JG
2892 *
2893 * RETURNS:
2894 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
2895 */
2896
7fb6ec28 2897static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
2898{
2899 struct ata_queued_cmd *qc;
2900 u8 drv_stat;
2901
2902 /*
31433ea3
AC
2903 * This is purely heuristic. This is a fast path. Sometimes when
2904 * we enter, BSY will be cleared in a chk-status or two. If not,
2905 * the drive is probably seeking or something. Snooze for a couple
2906 * msecs, then chk-status again. If still busy, fall back to
14be71f4 2907 * HSM_ST_POLL state.
1da177e4 2908 */
fe79e683
AL
2909 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2910 if (drv_stat & ATA_BUSY) {
1da177e4 2911 msleep(2);
fe79e683
AL
2912 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2913 if (drv_stat & ATA_BUSY) {
14be71f4 2914 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 2915 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 2916 return 0;
1da177e4
LT
2917 }
2918 }
2919
c14b8331
AL
2920 qc = ata_qc_from_tag(ap, ap->active_tag);
2921 assert(qc != NULL);
2922
1da177e4
LT
2923 drv_stat = ata_wait_idle(ap);
2924 if (!ata_ok(drv_stat)) {
1c848984 2925 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 2926 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 2927 return 0;
1da177e4
LT
2928 }
2929
14be71f4 2930 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 2931
a22e2eb0
AL
2932 assert(qc->err_mask == 0);
2933 ata_poll_qc_complete(qc);
7fb6ec28
JG
2934
2935 /* another command may start at this point */
2936
2937 return 1;
1da177e4
LT
2938}
2939
0baab86b
EF
2940
2941/**
6f0ef4fa 2942 * swap_buf_le16 - swap halves of 16-words in place
0baab86b
EF
2943 * @buf: Buffer to swap
2944 * @buf_words: Number of 16-bit words in buffer.
2945 *
2946 * Swap halves of 16-bit words if needed to convert from
2947 * little-endian byte order to native cpu byte order, or
2948 * vice-versa.
2949 *
2950 * LOCKING:
6f0ef4fa 2951 * Inherited from caller.
0baab86b 2952 */
1da177e4
LT
2953void swap_buf_le16(u16 *buf, unsigned int buf_words)
2954{
2955#ifdef __BIG_ENDIAN
2956 unsigned int i;
2957
2958 for (i = 0; i < buf_words; i++)
2959 buf[i] = le16_to_cpu(buf[i]);
2960#endif /* __BIG_ENDIAN */
2961}
2962
6ae4cfb5
AL
2963/**
2964 * ata_mmio_data_xfer - Transfer data by MMIO
2965 * @ap: port to read/write
2966 * @buf: data buffer
2967 * @buflen: buffer length
344babaa 2968 * @write_data: read/write
6ae4cfb5
AL
2969 *
2970 * Transfer data from/to the device data register by MMIO.
2971 *
2972 * LOCKING:
2973 * Inherited from caller.
6ae4cfb5
AL
2974 */
2975
1da177e4
LT
2976static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2977 unsigned int buflen, int write_data)
2978{
2979 unsigned int i;
2980 unsigned int words = buflen >> 1;
2981 u16 *buf16 = (u16 *) buf;
2982 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2983
6ae4cfb5 2984 /* Transfer multiple of 2 bytes */
1da177e4
LT
2985 if (write_data) {
2986 for (i = 0; i < words; i++)
2987 writew(le16_to_cpu(buf16[i]), mmio);
2988 } else {
2989 for (i = 0; i < words; i++)
2990 buf16[i] = cpu_to_le16(readw(mmio));
2991 }
6ae4cfb5
AL
2992
2993 /* Transfer trailing 1 byte, if any. */
2994 if (unlikely(buflen & 0x01)) {
2995 u16 align_buf[1] = { 0 };
2996 unsigned char *trailing_buf = buf + buflen - 1;
2997
2998 if (write_data) {
2999 memcpy(align_buf, trailing_buf, 1);
3000 writew(le16_to_cpu(align_buf[0]), mmio);
3001 } else {
3002 align_buf[0] = cpu_to_le16(readw(mmio));
3003 memcpy(trailing_buf, align_buf, 1);
3004 }
3005 }
1da177e4
LT
3006}
3007
6ae4cfb5
AL
3008/**
3009 * ata_pio_data_xfer - Transfer data by PIO
3010 * @ap: port to read/write
3011 * @buf: data buffer
3012 * @buflen: buffer length
344babaa 3013 * @write_data: read/write
6ae4cfb5
AL
3014 *
3015 * Transfer data from/to the device data register by PIO.
3016 *
3017 * LOCKING:
3018 * Inherited from caller.
6ae4cfb5
AL
3019 */
3020
1da177e4
LT
3021static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3022 unsigned int buflen, int write_data)
3023{
6ae4cfb5 3024 unsigned int words = buflen >> 1;
1da177e4 3025
6ae4cfb5 3026 /* Transfer multiple of 2 bytes */
1da177e4 3027 if (write_data)
6ae4cfb5 3028 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3029 else
6ae4cfb5
AL
3030 insw(ap->ioaddr.data_addr, buf, words);
3031
3032 /* Transfer trailing 1 byte, if any. */
3033 if (unlikely(buflen & 0x01)) {
3034 u16 align_buf[1] = { 0 };
3035 unsigned char *trailing_buf = buf + buflen - 1;
3036
3037 if (write_data) {
3038 memcpy(align_buf, trailing_buf, 1);
3039 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3040 } else {
3041 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3042 memcpy(trailing_buf, align_buf, 1);
3043 }
3044 }
1da177e4
LT
3045}
3046
6ae4cfb5
AL
3047/**
3048 * ata_data_xfer - Transfer data from/to the data register.
3049 * @ap: port to read/write
3050 * @buf: data buffer
3051 * @buflen: buffer length
3052 * @do_write: read/write
3053 *
3054 * Transfer data from/to the device data register.
3055 *
3056 * LOCKING:
3057 * Inherited from caller.
6ae4cfb5
AL
3058 */
3059
1da177e4
LT
3060static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3061 unsigned int buflen, int do_write)
3062{
3063 if (ap->flags & ATA_FLAG_MMIO)
3064 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3065 else
3066 ata_pio_data_xfer(ap, buf, buflen, do_write);
3067}
3068
6ae4cfb5
AL
3069/**
3070 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3071 * @qc: Command on going
3072 *
3073 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3074 *
3075 * LOCKING:
3076 * Inherited from caller.
3077 */
3078
1da177e4
LT
3079static void ata_pio_sector(struct ata_queued_cmd *qc)
3080{
3081 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3082 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3083 struct ata_port *ap = qc->ap;
3084 struct page *page;
3085 unsigned int offset;
3086 unsigned char *buf;
3087
3088 if (qc->cursect == (qc->nsect - 1))
14be71f4 3089 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3090
3091 page = sg[qc->cursg].page;
3092 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3093
3094 /* get the current page and offset */
3095 page = nth_page(page, (offset >> PAGE_SHIFT));
3096 offset %= PAGE_SIZE;
3097
3098 buf = kmap(page) + offset;
3099
3100 qc->cursect++;
3101 qc->cursg_ofs++;
3102
32529e01 3103 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3104 qc->cursg++;
3105 qc->cursg_ofs = 0;
3106 }
3107
3108 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3109
3110 /* do the actual data transfer */
3111 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3112 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3113
3114 kunmap(page);
3115}
3116
6ae4cfb5
AL
3117/**
3118 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3119 * @qc: Command on going
3120 * @bytes: number of bytes
3121 *
3122 * Transfer Transfer data from/to the ATAPI device.
3123 *
3124 * LOCKING:
3125 * Inherited from caller.
3126 *
3127 */
3128
1da177e4
LT
3129static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3130{
3131 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3132 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3133 struct ata_port *ap = qc->ap;
3134 struct page *page;
3135 unsigned char *buf;
3136 unsigned int offset, count;
3137
563a6e1f 3138 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3139 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3140
3141next_sg:
563a6e1f 3142 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3143 /*
563a6e1f
AL
3144 * The end of qc->sg is reached and the device expects
3145 * more data to transfer. In order not to overrun qc->sg
3146 * and fulfill length specified in the byte count register,
3147 * - for read case, discard trailing data from the device
3148 * - for write case, padding zero data to the device
3149 */
3150 u16 pad_buf[1] = { 0 };
3151 unsigned int words = bytes >> 1;
3152 unsigned int i;
3153
3154 if (words) /* warning if bytes > 1 */
7fb6ec28 3155 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3156 ap->id, bytes);
3157
3158 for (i = 0; i < words; i++)
3159 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3160
14be71f4 3161 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3162 return;
3163 }
3164
cedc9a47 3165 sg = &qc->__sg[qc->cursg];
1da177e4 3166
1da177e4
LT
3167 page = sg->page;
3168 offset = sg->offset + qc->cursg_ofs;
3169
3170 /* get the current page and offset */
3171 page = nth_page(page, (offset >> PAGE_SHIFT));
3172 offset %= PAGE_SIZE;
3173
6952df03 3174 /* don't overrun current sg */
32529e01 3175 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3176
3177 /* don't cross page boundaries */
3178 count = min(count, (unsigned int)PAGE_SIZE - offset);
3179
3180 buf = kmap(page) + offset;
3181
3182 bytes -= count;
3183 qc->curbytes += count;
3184 qc->cursg_ofs += count;
3185
32529e01 3186 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3187 qc->cursg++;
3188 qc->cursg_ofs = 0;
3189 }
3190
3191 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3192
3193 /* do the actual data transfer */
3194 ata_data_xfer(ap, buf, count, do_write);
3195
3196 kunmap(page);
3197
563a6e1f 3198 if (bytes)
1da177e4 3199 goto next_sg;
1da177e4
LT
3200}
3201
6ae4cfb5
AL
3202/**
3203 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3204 * @qc: Command on going
3205 *
3206 * Transfer Transfer data from/to the ATAPI device.
3207 *
3208 * LOCKING:
3209 * Inherited from caller.
6ae4cfb5
AL
3210 */
3211
1da177e4
LT
3212static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3213{
3214 struct ata_port *ap = qc->ap;
3215 struct ata_device *dev = qc->dev;
3216 unsigned int ireason, bc_lo, bc_hi, bytes;
3217 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3218
3219 ap->ops->tf_read(ap, &qc->tf);
3220 ireason = qc->tf.nsect;
3221 bc_lo = qc->tf.lbam;
3222 bc_hi = qc->tf.lbah;
3223 bytes = (bc_hi << 8) | bc_lo;
3224
3225 /* shall be cleared to zero, indicating xfer of data */
3226 if (ireason & (1 << 0))
3227 goto err_out;
3228
3229 /* make sure transfer direction matches expected */
3230 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3231 if (do_write != i_write)
3232 goto err_out;
3233
3234 __atapi_pio_bytes(qc, bytes);
3235
3236 return;
3237
3238err_out:
3239 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3240 ap->id, dev->devno);
1c848984 3241 qc->err_mask |= AC_ERR_ATA_BUS;
14be71f4 3242 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3243}
3244
3245/**
6f0ef4fa
RD
3246 * ata_pio_block - start PIO on a block
3247 * @ap: the target ata_port
1da177e4
LT
3248 *
3249 * LOCKING:
0cba632b 3250 * None. (executing in kernel thread context)
1da177e4
LT
3251 */
3252
3253static void ata_pio_block(struct ata_port *ap)
3254{
3255 struct ata_queued_cmd *qc;
3256 u8 status;
3257
3258 /*
6f0ef4fa 3259 * This is purely heuristic. This is a fast path.
1da177e4
LT
3260 * Sometimes when we enter, BSY will be cleared in
3261 * a chk-status or two. If not, the drive is probably seeking
3262 * or something. Snooze for a couple msecs, then
3263 * chk-status again. If still busy, fall back to
14be71f4 3264 * HSM_ST_POLL state.
1da177e4
LT
3265 */
3266 status = ata_busy_wait(ap, ATA_BUSY, 5);
3267 if (status & ATA_BUSY) {
3268 msleep(2);
3269 status = ata_busy_wait(ap, ATA_BUSY, 10);
3270 if (status & ATA_BUSY) {
14be71f4 3271 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3272 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3273 return;
3274 }
3275 }
3276
3277 qc = ata_qc_from_tag(ap, ap->active_tag);
3278 assert(qc != NULL);
3279
fe79e683
AL
3280 /* check error */
3281 if (status & (ATA_ERR | ATA_DF)) {
3282 qc->err_mask |= AC_ERR_DEV;
3283 ap->hsm_task_state = HSM_ST_ERR;
3284 return;
3285 }
3286
3287 /* transfer data if any */
1da177e4 3288 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3289 /* DRQ=0 means no more data to transfer */
1da177e4 3290 if ((status & ATA_DRQ) == 0) {
14be71f4 3291 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3292 return;
3293 }
3294
3295 atapi_pio_bytes(qc);
3296 } else {
3297 /* handle BSY=0, DRQ=0 as error */
3298 if ((status & ATA_DRQ) == 0) {
1c848984 3299 qc->err_mask |= AC_ERR_ATA_BUS;
14be71f4 3300 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3301 return;
3302 }
3303
3304 ata_pio_sector(qc);
3305 }
3306}
3307
3308static void ata_pio_error(struct ata_port *ap)
3309{
3310 struct ata_queued_cmd *qc;
a7dac447
JG
3311
3312 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
1da177e4
LT
3313
3314 qc = ata_qc_from_tag(ap, ap->active_tag);
3315 assert(qc != NULL);
3316
1c848984
AL
3317 /* make sure qc->err_mask is available to
3318 * know what's wrong and recover
3319 */
3320 assert(qc->err_mask);
3321
14be71f4 3322 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3323
a22e2eb0 3324 ata_poll_qc_complete(qc);
1da177e4
LT
3325}
3326
3327static void ata_pio_task(void *_data)
3328{
3329 struct ata_port *ap = _data;
7fb6ec28
JG
3330 unsigned long timeout;
3331 int qc_completed;
3332
3333fsm_start:
3334 timeout = 0;
3335 qc_completed = 0;
1da177e4 3336
14be71f4
AL
3337 switch (ap->hsm_task_state) {
3338 case HSM_ST_IDLE:
1da177e4
LT
3339 return;
3340
14be71f4 3341 case HSM_ST:
1da177e4
LT
3342 ata_pio_block(ap);
3343 break;
3344
14be71f4 3345 case HSM_ST_LAST:
7fb6ec28 3346 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3347 break;
3348
14be71f4
AL
3349 case HSM_ST_POLL:
3350 case HSM_ST_LAST_POLL:
1da177e4
LT
3351 timeout = ata_pio_poll(ap);
3352 break;
3353
14be71f4
AL
3354 case HSM_ST_TMOUT:
3355 case HSM_ST_ERR:
1da177e4
LT
3356 ata_pio_error(ap);
3357 return;
3358 }
3359
3360 if (timeout)
7fb6ec28
JG
3361 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3362 else if (!qc_completed)
3363 goto fsm_start;
1da177e4
LT
3364}
3365
1da177e4
LT
3366/**
3367 * ata_qc_timeout - Handle timeout of queued command
3368 * @qc: Command that timed out
3369 *
3370 * Some part of the kernel (currently, only the SCSI layer)
3371 * has noticed that the active command on port @ap has not
3372 * completed after a specified length of time. Handle this
3373 * condition by disabling DMA (if necessary) and completing
3374 * transactions, with error if necessary.
3375 *
3376 * This also handles the case of the "lost interrupt", where
3377 * for some reason (possibly hardware bug, possibly driver bug)
3378 * an interrupt was not delivered to the driver, even though the
3379 * transaction completed successfully.
3380 *
3381 * LOCKING:
0cba632b 3382 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3383 */
3384
3385static void ata_qc_timeout(struct ata_queued_cmd *qc)
3386{
3387 struct ata_port *ap = qc->ap;
b8f6153e 3388 struct ata_host_set *host_set = ap->host_set;
1da177e4 3389 u8 host_stat = 0, drv_stat;
b8f6153e 3390 unsigned long flags;
1da177e4
LT
3391
3392 DPRINTK("ENTER\n");
3393
b8f6153e
JG
3394 spin_lock_irqsave(&host_set->lock, flags);
3395
1da177e4
LT
3396 /* hack alert! We cannot use the supplied completion
3397 * function from inside the ->eh_strategy_handler() thread.
3398 * libata is the only user of ->eh_strategy_handler() in
3399 * any kernel, so the default scsi_done() assumes it is
3400 * not being called from the SCSI EH.
3401 */
3402 qc->scsidone = scsi_finish_command;
3403
3404 switch (qc->tf.protocol) {
3405
3406 case ATA_PROT_DMA:
3407 case ATA_PROT_ATAPI_DMA:
3408 host_stat = ap->ops->bmdma_status(ap);
3409
3410 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3411 ap->ops->bmdma_stop(qc);
1da177e4
LT
3412
3413 /* fall through */
3414
3415 default:
3416 ata_altstatus(ap);
3417 drv_stat = ata_chk_status(ap);
3418
3419 /* ack bmdma irq events */
3420 ap->ops->irq_clear(ap);
3421
3422 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3423 ap->id, qc->tf.command, drv_stat, host_stat);
3424
3425 /* complete taskfile transaction */
a22e2eb0
AL
3426 qc->err_mask |= ac_err_mask(drv_stat);
3427 ata_qc_complete(qc);
1da177e4
LT
3428 break;
3429 }
b8f6153e
JG
3430
3431 spin_unlock_irqrestore(&host_set->lock, flags);
3432
1da177e4
LT
3433 DPRINTK("EXIT\n");
3434}
3435
3436/**
3437 * ata_eng_timeout - Handle timeout of queued command
3438 * @ap: Port on which timed-out command is active
3439 *
3440 * Some part of the kernel (currently, only the SCSI layer)
3441 * has noticed that the active command on port @ap has not
3442 * completed after a specified length of time. Handle this
3443 * condition by disabling DMA (if necessary) and completing
3444 * transactions, with error if necessary.
3445 *
3446 * This also handles the case of the "lost interrupt", where
3447 * for some reason (possibly hardware bug, possibly driver bug)
3448 * an interrupt was not delivered to the driver, even though the
3449 * transaction completed successfully.
3450 *
3451 * LOCKING:
3452 * Inherited from SCSI layer (none, can sleep)
3453 */
3454
3455void ata_eng_timeout(struct ata_port *ap)
3456{
3457 struct ata_queued_cmd *qc;
3458
3459 DPRINTK("ENTER\n");
3460
3461 qc = ata_qc_from_tag(ap, ap->active_tag);
e12669e7
JG
3462 if (qc)
3463 ata_qc_timeout(qc);
3464 else {
1da177e4
LT
3465 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3466 ap->id);
3467 goto out;
3468 }
3469
1da177e4
LT
3470out:
3471 DPRINTK("EXIT\n");
3472}
3473
3474/**
3475 * ata_qc_new - Request an available ATA command, for queueing
3476 * @ap: Port associated with device @dev
3477 * @dev: Device from whom we request an available command structure
3478 *
3479 * LOCKING:
0cba632b 3480 * None.
1da177e4
LT
3481 */
3482
3483static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3484{
3485 struct ata_queued_cmd *qc = NULL;
3486 unsigned int i;
3487
3488 for (i = 0; i < ATA_MAX_QUEUE; i++)
3489 if (!test_and_set_bit(i, &ap->qactive)) {
3490 qc = ata_qc_from_tag(ap, i);
3491 break;
3492 }
3493
3494 if (qc)
3495 qc->tag = i;
3496
3497 return qc;
3498}
3499
3500/**
3501 * ata_qc_new_init - Request an available ATA command, and initialize it
3502 * @ap: Port associated with device @dev
3503 * @dev: Device from whom we request an available command structure
3504 *
3505 * LOCKING:
0cba632b 3506 * None.
1da177e4
LT
3507 */
3508
3509struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3510 struct ata_device *dev)
3511{
3512 struct ata_queued_cmd *qc;
3513
3514 qc = ata_qc_new(ap);
3515 if (qc) {
1da177e4
LT
3516 qc->scsicmd = NULL;
3517 qc->ap = ap;
3518 qc->dev = dev;
1da177e4 3519
2c13b7ce 3520 ata_qc_reinit(qc);
1da177e4
LT
3521 }
3522
3523 return qc;
3524}
3525
1da177e4
LT
3526static void __ata_qc_complete(struct ata_queued_cmd *qc)
3527{
3528 struct ata_port *ap = qc->ap;
b5632303 3529 unsigned int tag;
1da177e4
LT
3530
3531 qc->flags = 0;
3532 tag = qc->tag;
3533 if (likely(ata_tag_valid(tag))) {
3534 if (tag == ap->active_tag)
3535 ap->active_tag = ATA_TAG_POISON;
3536 qc->tag = ATA_TAG_POISON;
1da177e4 3537 clear_bit(tag, &ap->qactive);
b5632303 3538 }
1da177e4
LT
3539}
3540
3541/**
3542 * ata_qc_free - free unused ata_queued_cmd
3543 * @qc: Command to complete
3544 *
3545 * Designed to free unused ata_queued_cmd object
3546 * in case something prevents using it.
3547 *
3548 * LOCKING:
0cba632b 3549 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3550 */
3551void ata_qc_free(struct ata_queued_cmd *qc)
3552{
3553 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4
LT
3554
3555 __ata_qc_complete(qc);
3556}
3557
3558/**
3559 * ata_qc_complete - Complete an active ATA command
3560 * @qc: Command to complete
8e8b77dd 3561 * @err_mask: ATA Status register contents
0cba632b
JG
3562 *
3563 * Indicate to the mid and upper layers that an ATA
3564 * command has completed, with either an ok or not-ok status.
1da177e4
LT
3565 *
3566 * LOCKING:
0cba632b 3567 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3568 */
3569
a22e2eb0 3570void ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4
LT
3571{
3572 int rc;
3573
3574 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3575 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3576
3577 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3578 ata_sg_clean(qc);
3579
3f3791d3
AL
3580 /* atapi: mark qc as inactive to prevent the interrupt handler
3581 * from completing the command twice later, before the error handler
3582 * is called. (when rc != 0 and atapi request sense is needed)
3583 */
3584 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3585
1da177e4 3586 /* call completion callback */
a22e2eb0 3587 rc = qc->complete_fn(qc);
1da177e4
LT
3588
3589 /* if callback indicates not to complete command (non-zero),
3590 * return immediately
3591 */
3592 if (rc != 0)
3593 return;
3594
3595 __ata_qc_complete(qc);
3596
3597 VPRINTK("EXIT\n");
3598}
3599
3600static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3601{
3602 struct ata_port *ap = qc->ap;
3603
3604 switch (qc->tf.protocol) {
3605 case ATA_PROT_DMA:
3606 case ATA_PROT_ATAPI_DMA:
3607 return 1;
3608
3609 case ATA_PROT_ATAPI:
3610 case ATA_PROT_PIO:
3611 case ATA_PROT_PIO_MULT:
3612 if (ap->flags & ATA_FLAG_PIO_DMA)
3613 return 1;
3614
3615 /* fall through */
3616
3617 default:
3618 return 0;
3619 }
3620
3621 /* never reached */
3622}
3623
3624/**
3625 * ata_qc_issue - issue taskfile to device
3626 * @qc: command to issue to device
3627 *
3628 * Prepare an ATA command to submission to device.
3629 * This includes mapping the data into a DMA-able
3630 * area, filling in the S/G table, and finally
3631 * writing the taskfile to hardware, starting the command.
3632 *
3633 * LOCKING:
3634 * spin_lock_irqsave(host_set lock)
3635 *
3636 * RETURNS:
3637 * Zero on success, negative on error.
3638 */
3639
3640int ata_qc_issue(struct ata_queued_cmd *qc)
3641{
3642 struct ata_port *ap = qc->ap;
3643
3644 if (ata_should_dma_map(qc)) {
3645 if (qc->flags & ATA_QCFLAG_SG) {
3646 if (ata_sg_setup(qc))
3647 goto err_out;
3648 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3649 if (ata_sg_setup_one(qc))
3650 goto err_out;
3651 }
3652 } else {
3653 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3654 }
3655
3656 ap->ops->qc_prep(qc);
3657
3658 qc->ap->active_tag = qc->tag;
3659 qc->flags |= ATA_QCFLAG_ACTIVE;
3660
3661 return ap->ops->qc_issue(qc);
3662
3663err_out:
3664 return -1;
3665}
3666
0baab86b 3667
1da177e4
LT
3668/**
3669 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3670 * @qc: command to issue to device
3671 *
3672 * Using various libata functions and hooks, this function
3673 * starts an ATA command. ATA commands are grouped into
3674 * classes called "protocols", and issuing each type of protocol
3675 * is slightly different.
3676 *
0baab86b
EF
3677 * May be used as the qc_issue() entry in ata_port_operations.
3678 *
1da177e4
LT
3679 * LOCKING:
3680 * spin_lock_irqsave(host_set lock)
3681 *
3682 * RETURNS:
3683 * Zero on success, negative on error.
3684 */
3685
3686int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3687{
3688 struct ata_port *ap = qc->ap;
3689
3690 ata_dev_select(ap, qc->dev->devno, 1, 0);
3691
3692 switch (qc->tf.protocol) {
3693 case ATA_PROT_NODATA:
e5338254 3694 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3695 break;
3696
3697 case ATA_PROT_DMA:
3698 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3699 ap->ops->bmdma_setup(qc); /* set up bmdma */
3700 ap->ops->bmdma_start(qc); /* initiate bmdma */
3701 break;
3702
3703 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3704 ata_qc_set_polling(qc);
e5338254 3705 ata_tf_to_host(ap, &qc->tf);
14be71f4 3706 ap->hsm_task_state = HSM_ST;
1da177e4
LT
3707 queue_work(ata_wq, &ap->pio_task);
3708 break;
3709
3710 case ATA_PROT_ATAPI:
3711 ata_qc_set_polling(qc);
e5338254 3712 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3713 queue_work(ata_wq, &ap->packet_task);
3714 break;
3715
3716 case ATA_PROT_ATAPI_NODATA:
c1389503 3717 ap->flags |= ATA_FLAG_NOINTR;
e5338254 3718 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3719 queue_work(ata_wq, &ap->packet_task);
3720 break;
3721
3722 case ATA_PROT_ATAPI_DMA:
c1389503 3723 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
3724 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3725 ap->ops->bmdma_setup(qc); /* set up bmdma */
3726 queue_work(ata_wq, &ap->packet_task);
3727 break;
3728
3729 default:
3730 WARN_ON(1);
3731 return -1;
3732 }
3733
3734 return 0;
3735}
3736
3737/**
0baab86b 3738 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
3739 * @qc: Info associated with this ATA transaction.
3740 *
3741 * LOCKING:
3742 * spin_lock_irqsave(host_set lock)
3743 */
3744
3745static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3746{
3747 struct ata_port *ap = qc->ap;
3748 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3749 u8 dmactl;
3750 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3751
3752 /* load PRD table addr. */
3753 mb(); /* make sure PRD table writes are visible to controller */
3754 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3755
3756 /* specify data direction, triple-check start bit is clear */
3757 dmactl = readb(mmio + ATA_DMA_CMD);
3758 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3759 if (!rw)
3760 dmactl |= ATA_DMA_WR;
3761 writeb(dmactl, mmio + ATA_DMA_CMD);
3762
3763 /* issue r/w command */
3764 ap->ops->exec_command(ap, &qc->tf);
3765}
3766
3767/**
b73fc89f 3768 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
3769 * @qc: Info associated with this ATA transaction.
3770 *
3771 * LOCKING:
3772 * spin_lock_irqsave(host_set lock)
3773 */
3774
3775static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3776{
3777 struct ata_port *ap = qc->ap;
3778 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3779 u8 dmactl;
3780
3781 /* start host DMA transaction */
3782 dmactl = readb(mmio + ATA_DMA_CMD);
3783 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3784
3785 /* Strictly, one may wish to issue a readb() here, to
3786 * flush the mmio write. However, control also passes
3787 * to the hardware at this point, and it will interrupt
3788 * us when we are to resume control. So, in effect,
3789 * we don't care when the mmio write flushes.
3790 * Further, a read of the DMA status register _immediately_
3791 * following the write may not be what certain flaky hardware
3792 * is expected, so I think it is best to not add a readb()
3793 * without first all the MMIO ATA cards/mobos.
3794 * Or maybe I'm just being paranoid.
3795 */
3796}
3797
3798/**
3799 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3800 * @qc: Info associated with this ATA transaction.
3801 *
3802 * LOCKING:
3803 * spin_lock_irqsave(host_set lock)
3804 */
3805
3806static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3807{
3808 struct ata_port *ap = qc->ap;
3809 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3810 u8 dmactl;
3811
3812 /* load PRD table addr. */
3813 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3814
3815 /* specify data direction, triple-check start bit is clear */
3816 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3817 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3818 if (!rw)
3819 dmactl |= ATA_DMA_WR;
3820 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3821
3822 /* issue r/w command */
3823 ap->ops->exec_command(ap, &qc->tf);
3824}
3825
3826/**
3827 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3828 * @qc: Info associated with this ATA transaction.
3829 *
3830 * LOCKING:
3831 * spin_lock_irqsave(host_set lock)
3832 */
3833
3834static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3835{
3836 struct ata_port *ap = qc->ap;
3837 u8 dmactl;
3838
3839 /* start host DMA transaction */
3840 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3841 outb(dmactl | ATA_DMA_START,
3842 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3843}
3844
0baab86b
EF
3845
3846/**
3847 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3848 * @qc: Info associated with this ATA transaction.
3849 *
3850 * Writes the ATA_DMA_START flag to the DMA command register.
3851 *
3852 * May be used as the bmdma_start() entry in ata_port_operations.
3853 *
3854 * LOCKING:
3855 * spin_lock_irqsave(host_set lock)
3856 */
1da177e4
LT
3857void ata_bmdma_start(struct ata_queued_cmd *qc)
3858{
3859 if (qc->ap->flags & ATA_FLAG_MMIO)
3860 ata_bmdma_start_mmio(qc);
3861 else
3862 ata_bmdma_start_pio(qc);
3863}
3864
0baab86b
EF
3865
3866/**
3867 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3868 * @qc: Info associated with this ATA transaction.
3869 *
3870 * Writes address of PRD table to device's PRD Table Address
3871 * register, sets the DMA control register, and calls
3872 * ops->exec_command() to start the transfer.
3873 *
3874 * May be used as the bmdma_setup() entry in ata_port_operations.
3875 *
3876 * LOCKING:
3877 * spin_lock_irqsave(host_set lock)
3878 */
1da177e4
LT
3879void ata_bmdma_setup(struct ata_queued_cmd *qc)
3880{
3881 if (qc->ap->flags & ATA_FLAG_MMIO)
3882 ata_bmdma_setup_mmio(qc);
3883 else
3884 ata_bmdma_setup_pio(qc);
3885}
3886
0baab86b
EF
3887
3888/**
3889 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 3890 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3891 *
3892 * Clear interrupt and error flags in DMA status register.
3893 *
3894 * May be used as the irq_clear() entry in ata_port_operations.
3895 *
3896 * LOCKING:
3897 * spin_lock_irqsave(host_set lock)
3898 */
3899
1da177e4
LT
3900void ata_bmdma_irq_clear(struct ata_port *ap)
3901{
3902 if (ap->flags & ATA_FLAG_MMIO) {
3903 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3904 writeb(readb(mmio), mmio);
3905 } else {
3906 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3907 outb(inb(addr), addr);
3908 }
3909
3910}
3911
0baab86b
EF
3912
3913/**
3914 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 3915 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3916 *
3917 * Read and return BMDMA status register.
3918 *
3919 * May be used as the bmdma_status() entry in ata_port_operations.
3920 *
3921 * LOCKING:
3922 * spin_lock_irqsave(host_set lock)
3923 */
3924
1da177e4
LT
3925u8 ata_bmdma_status(struct ata_port *ap)
3926{
3927 u8 host_stat;
3928 if (ap->flags & ATA_FLAG_MMIO) {
3929 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3930 host_stat = readb(mmio + ATA_DMA_STATUS);
3931 } else
ee500aab 3932 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
3933 return host_stat;
3934}
3935
0baab86b
EF
3936
3937/**
3938 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 3939 * @qc: Command we are ending DMA for
0baab86b
EF
3940 *
3941 * Clears the ATA_DMA_START flag in the dma control register
3942 *
3943 * May be used as the bmdma_stop() entry in ata_port_operations.
3944 *
3945 * LOCKING:
3946 * spin_lock_irqsave(host_set lock)
3947 */
3948
b73fc89f 3949void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 3950{
b73fc89f 3951 struct ata_port *ap = qc->ap;
1da177e4
LT
3952 if (ap->flags & ATA_FLAG_MMIO) {
3953 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3954
3955 /* clear start/stop bit */
3956 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3957 mmio + ATA_DMA_CMD);
3958 } else {
3959 /* clear start/stop bit */
3960 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3961 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3962 }
3963
3964 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3965 ata_altstatus(ap); /* dummy read */
3966}
3967
3968/**
3969 * ata_host_intr - Handle host interrupt for given (port, task)
3970 * @ap: Port on which interrupt arrived (possibly...)
3971 * @qc: Taskfile currently active in engine
3972 *
3973 * Handle host interrupt for given queued command. Currently,
3974 * only DMA interrupts are handled. All other commands are
3975 * handled via polling with interrupts disabled (nIEN bit).
3976 *
3977 * LOCKING:
3978 * spin_lock_irqsave(host_set lock)
3979 *
3980 * RETURNS:
3981 * One if interrupt was handled, zero if not (shared irq).
3982 */
3983
3984inline unsigned int ata_host_intr (struct ata_port *ap,
3985 struct ata_queued_cmd *qc)
3986{
3987 u8 status, host_stat;
3988
3989 switch (qc->tf.protocol) {
3990
3991 case ATA_PROT_DMA:
3992 case ATA_PROT_ATAPI_DMA:
3993 case ATA_PROT_ATAPI:
3994 /* check status of DMA engine */
3995 host_stat = ap->ops->bmdma_status(ap);
3996 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3997
3998 /* if it's not our irq... */
3999 if (!(host_stat & ATA_DMA_INTR))
4000 goto idle_irq;
4001
4002 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4003 ap->ops->bmdma_stop(qc);
1da177e4
LT
4004
4005 /* fall through */
4006
4007 case ATA_PROT_ATAPI_NODATA:
4008 case ATA_PROT_NODATA:
4009 /* check altstatus */
4010 status = ata_altstatus(ap);
4011 if (status & ATA_BUSY)
4012 goto idle_irq;
4013
4014 /* check main status, clearing INTRQ */
4015 status = ata_chk_status(ap);
4016 if (unlikely(status & ATA_BUSY))
4017 goto idle_irq;
4018 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4019 ap->id, qc->tf.protocol, status);
4020
4021 /* ack bmdma irq events */
4022 ap->ops->irq_clear(ap);
4023
4024 /* complete taskfile transaction */
a22e2eb0
AL
4025 qc->err_mask |= ac_err_mask(status);
4026 ata_qc_complete(qc);
1da177e4
LT
4027 break;
4028
4029 default:
4030 goto idle_irq;
4031 }
4032
4033 return 1; /* irq handled */
4034
4035idle_irq:
4036 ap->stats.idle_irq++;
4037
4038#ifdef ATA_IRQ_TRAP
4039 if ((ap->stats.idle_irq % 1000) == 0) {
4040 handled = 1;
4041 ata_irq_ack(ap, 0); /* debug trap */
4042 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4043 }
4044#endif
4045 return 0; /* irq not handled */
4046}
4047
4048/**
4049 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4050 * @irq: irq line (unused)
4051 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4052 * @regs: unused
4053 *
0cba632b
JG
4054 * Default interrupt handler for PCI IDE devices. Calls
4055 * ata_host_intr() for each port that is not disabled.
4056 *
1da177e4 4057 * LOCKING:
0cba632b 4058 * Obtains host_set lock during operation.
1da177e4
LT
4059 *
4060 * RETURNS:
0cba632b 4061 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4062 */
4063
4064irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4065{
4066 struct ata_host_set *host_set = dev_instance;
4067 unsigned int i;
4068 unsigned int handled = 0;
4069 unsigned long flags;
4070
4071 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4072 spin_lock_irqsave(&host_set->lock, flags);
4073
4074 for (i = 0; i < host_set->n_ports; i++) {
4075 struct ata_port *ap;
4076
4077 ap = host_set->ports[i];
c1389503
TH
4078 if (ap &&
4079 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4080 struct ata_queued_cmd *qc;
4081
4082 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4083 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4084 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4085 handled |= ata_host_intr(ap, qc);
4086 }
4087 }
4088
4089 spin_unlock_irqrestore(&host_set->lock, flags);
4090
4091 return IRQ_RETVAL(handled);
4092}
4093
4094/**
4095 * atapi_packet_task - Write CDB bytes to hardware
4096 * @_data: Port to which ATAPI device is attached.
4097 *
4098 * When device has indicated its readiness to accept
4099 * a CDB, this function is called. Send the CDB.
4100 * If DMA is to be performed, exit immediately.
4101 * Otherwise, we are in polling mode, so poll
4102 * status under operation succeeds or fails.
4103 *
4104 * LOCKING:
4105 * Kernel thread context (may sleep)
4106 */
4107
4108static void atapi_packet_task(void *_data)
4109{
4110 struct ata_port *ap = _data;
4111 struct ata_queued_cmd *qc;
4112 u8 status;
4113
4114 qc = ata_qc_from_tag(ap, ap->active_tag);
4115 assert(qc != NULL);
4116 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4117
4118 /* sleep-wait for BSY to clear */
4119 DPRINTK("busy wait\n");
d8fe452b
AL
4120 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4121 qc->err_mask |= AC_ERR_ATA_BUS;
4122 goto err_out;
4123 }
1da177e4
LT
4124
4125 /* make sure DRQ is set */
4126 status = ata_chk_status(ap);
d8fe452b
AL
4127 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4128 qc->err_mask |= AC_ERR_ATA_BUS;
1da177e4 4129 goto err_out;
d8fe452b 4130 }
1da177e4
LT
4131
4132 /* send SCSI cdb */
4133 DPRINTK("send cdb\n");
4134 assert(ap->cdb_len >= 12);
1da177e4 4135
c1389503
TH
4136 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4137 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4138 unsigned long flags;
1da177e4 4139
c1389503
TH
4140 /* Once we're done issuing command and kicking bmdma,
4141 * irq handler takes over. To not lose irq, we need
4142 * to clear NOINTR flag before sending cdb, but
4143 * interrupt handler shouldn't be invoked before we're
4144 * finished. Hence, the following locking.
4145 */
4146 spin_lock_irqsave(&ap->host_set->lock, flags);
4147 ap->flags &= ~ATA_FLAG_NOINTR;
4148 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4149 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4150 ap->ops->bmdma_start(qc); /* initiate bmdma */
4151 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4152 } else {
4153 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
1da177e4 4154
c1389503 4155 /* PIO commands are handled by polling */
14be71f4 4156 ap->hsm_task_state = HSM_ST;
1da177e4
LT
4157 queue_work(ata_wq, &ap->pio_task);
4158 }
4159
4160 return;
4161
4162err_out:
a22e2eb0 4163 ata_poll_qc_complete(qc);
1da177e4
LT
4164}
4165
0baab86b
EF
4166
4167/**
4168 * ata_port_start - Set port up for dma.
4169 * @ap: Port to initialize
4170 *
4171 * Called just after data structures for each port are
4172 * initialized. Allocates space for PRD table.
4173 *
4174 * May be used as the port_start() entry in ata_port_operations.
4175 *
4176 * LOCKING:
6f0ef4fa 4177 * Inherited from caller.
0baab86b
EF
4178 */
4179
9b847548
JA
4180/*
4181 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4182 * without filling any other registers
4183 */
4184static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4185 u8 cmd)
4186{
4187 struct ata_taskfile tf;
4188 int err;
4189
4190 ata_tf_init(ap, &tf, dev->devno);
4191
4192 tf.command = cmd;
4193 tf.flags |= ATA_TFLAG_DEVICE;
4194 tf.protocol = ATA_PROT_NODATA;
4195
4196 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4197 if (err)
4198 printk(KERN_ERR "%s: ata command failed: %d\n",
4199 __FUNCTION__, err);
4200
4201 return err;
4202}
4203
4204static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4205{
4206 u8 cmd;
4207
4208 if (!ata_try_flush_cache(dev))
4209 return 0;
4210
4211 if (ata_id_has_flush_ext(dev->id))
4212 cmd = ATA_CMD_FLUSH_EXT;
4213 else
4214 cmd = ATA_CMD_FLUSH;
4215
4216 return ata_do_simple_cmd(ap, dev, cmd);
4217}
4218
4219static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4220{
4221 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4222}
4223
4224static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4225{
4226 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4227}
4228
4229/**
4230 * ata_device_resume - wakeup a previously suspended devices
4231 *
4232 * Kick the drive back into action, by sending it an idle immediate
4233 * command and making sure its transfer mode matches between drive
4234 * and host.
4235 *
4236 */
4237int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4238{
4239 if (ap->flags & ATA_FLAG_SUSPENDED) {
4240 ap->flags &= ~ATA_FLAG_SUSPENDED;
4241 ata_set_mode(ap);
4242 }
4243 if (!ata_dev_present(dev))
4244 return 0;
4245 if (dev->class == ATA_DEV_ATA)
4246 ata_start_drive(ap, dev);
4247
4248 return 0;
4249}
4250
4251/**
4252 * ata_device_suspend - prepare a device for suspend
4253 *
4254 * Flush the cache on the drive, if appropriate, then issue a
4255 * standbynow command.
4256 *
4257 */
4258int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4259{
4260 if (!ata_dev_present(dev))
4261 return 0;
4262 if (dev->class == ATA_DEV_ATA)
4263 ata_flush_cache(ap, dev);
4264
4265 ata_standby_drive(ap, dev);
4266 ap->flags |= ATA_FLAG_SUSPENDED;
4267 return 0;
4268}
4269
1da177e4
LT
4270int ata_port_start (struct ata_port *ap)
4271{
4272 struct device *dev = ap->host_set->dev;
6037d6bb 4273 int rc;
1da177e4
LT
4274
4275 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4276 if (!ap->prd)
4277 return -ENOMEM;
4278
6037d6bb
JG
4279 rc = ata_pad_alloc(ap, dev);
4280 if (rc) {
cedc9a47 4281 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4282 return rc;
cedc9a47
JG
4283 }
4284
1da177e4
LT
4285 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4286
4287 return 0;
4288}
4289
0baab86b
EF
4290
4291/**
4292 * ata_port_stop - Undo ata_port_start()
4293 * @ap: Port to shut down
4294 *
4295 * Frees the PRD table.
4296 *
4297 * May be used as the port_stop() entry in ata_port_operations.
4298 *
4299 * LOCKING:
6f0ef4fa 4300 * Inherited from caller.
0baab86b
EF
4301 */
4302
1da177e4
LT
4303void ata_port_stop (struct ata_port *ap)
4304{
4305 struct device *dev = ap->host_set->dev;
4306
4307 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4308 ata_pad_free(ap, dev);
1da177e4
LT
4309}
4310
aa8f0dc6
JG
4311void ata_host_stop (struct ata_host_set *host_set)
4312{
4313 if (host_set->mmio_base)
4314 iounmap(host_set->mmio_base);
4315}
4316
4317
1da177e4
LT
4318/**
4319 * ata_host_remove - Unregister SCSI host structure with upper layers
4320 * @ap: Port to unregister
4321 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4322 *
4323 * LOCKING:
6f0ef4fa 4324 * Inherited from caller.
1da177e4
LT
4325 */
4326
4327static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4328{
4329 struct Scsi_Host *sh = ap->host;
4330
4331 DPRINTK("ENTER\n");
4332
4333 if (do_unregister)
4334 scsi_remove_host(sh);
4335
4336 ap->ops->port_stop(ap);
4337}
4338
4339/**
4340 * ata_host_init - Initialize an ata_port structure
4341 * @ap: Structure to initialize
4342 * @host: associated SCSI mid-layer structure
4343 * @host_set: Collection of hosts to which @ap belongs
4344 * @ent: Probe information provided by low-level driver
4345 * @port_no: Port number associated with this ata_port
4346 *
0cba632b
JG
4347 * Initialize a new ata_port structure, and its associated
4348 * scsi_host.
4349 *
1da177e4 4350 * LOCKING:
0cba632b 4351 * Inherited from caller.
1da177e4
LT
4352 */
4353
4354static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4355 struct ata_host_set *host_set,
057ace5e 4356 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4357{
4358 unsigned int i;
4359
4360 host->max_id = 16;
4361 host->max_lun = 1;
4362 host->max_channel = 1;
4363 host->unique_id = ata_unique_id++;
4364 host->max_cmd_len = 12;
12413197 4365
1da177e4
LT
4366 ap->flags = ATA_FLAG_PORT_DISABLED;
4367 ap->id = host->unique_id;
4368 ap->host = host;
4369 ap->ctl = ATA_DEVCTL_OBS;
4370 ap->host_set = host_set;
4371 ap->port_no = port_no;
4372 ap->hard_port_no =
4373 ent->legacy_mode ? ent->hard_port_no : port_no;
4374 ap->pio_mask = ent->pio_mask;
4375 ap->mwdma_mask = ent->mwdma_mask;
4376 ap->udma_mask = ent->udma_mask;
4377 ap->flags |= ent->host_flags;
4378 ap->ops = ent->port_ops;
4379 ap->cbl = ATA_CBL_NONE;
4380 ap->active_tag = ATA_TAG_POISON;
4381 ap->last_ctl = 0xFF;
4382
4383 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4384 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4385
4386 for (i = 0; i < ATA_MAX_DEVICES; i++)
4387 ap->device[i].devno = i;
4388
4389#ifdef ATA_IRQ_TRAP
4390 ap->stats.unhandled_irq = 1;
4391 ap->stats.idle_irq = 1;
4392#endif
4393
4394 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4395}
4396
4397/**
4398 * ata_host_add - Attach low-level ATA driver to system
4399 * @ent: Information provided by low-level driver
4400 * @host_set: Collections of ports to which we add
4401 * @port_no: Port number associated with this host
4402 *
0cba632b
JG
4403 * Attach low-level ATA driver to system.
4404 *
1da177e4 4405 * LOCKING:
0cba632b 4406 * PCI/etc. bus probe sem.
1da177e4
LT
4407 *
4408 * RETURNS:
0cba632b 4409 * New ata_port on success, for NULL on error.
1da177e4
LT
4410 */
4411
057ace5e 4412static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4413 struct ata_host_set *host_set,
4414 unsigned int port_no)
4415{
4416 struct Scsi_Host *host;
4417 struct ata_port *ap;
4418 int rc;
4419
4420 DPRINTK("ENTER\n");
4421 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4422 if (!host)
4423 return NULL;
4424
4425 ap = (struct ata_port *) &host->hostdata[0];
4426
4427 ata_host_init(ap, host, host_set, ent, port_no);
4428
4429 rc = ap->ops->port_start(ap);
4430 if (rc)
4431 goto err_out;
4432
4433 return ap;
4434
4435err_out:
4436 scsi_host_put(host);
4437 return NULL;
4438}
4439
4440/**
0cba632b
JG
4441 * ata_device_add - Register hardware device with ATA and SCSI layers
4442 * @ent: Probe information describing hardware device to be registered
4443 *
4444 * This function processes the information provided in the probe
4445 * information struct @ent, allocates the necessary ATA and SCSI
4446 * host information structures, initializes them, and registers
4447 * everything with requisite kernel subsystems.
4448 *
4449 * This function requests irqs, probes the ATA bus, and probes
4450 * the SCSI bus.
1da177e4
LT
4451 *
4452 * LOCKING:
0cba632b 4453 * PCI/etc. bus probe sem.
1da177e4
LT
4454 *
4455 * RETURNS:
0cba632b 4456 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4457 */
4458
057ace5e 4459int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4460{
4461 unsigned int count = 0, i;
4462 struct device *dev = ent->dev;
4463 struct ata_host_set *host_set;
4464
4465 DPRINTK("ENTER\n");
4466 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4467 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4468 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4469 if (!host_set)
4470 return 0;
1da177e4
LT
4471 spin_lock_init(&host_set->lock);
4472
4473 host_set->dev = dev;
4474 host_set->n_ports = ent->n_ports;
4475 host_set->irq = ent->irq;
4476 host_set->mmio_base = ent->mmio_base;
4477 host_set->private_data = ent->private_data;
4478 host_set->ops = ent->port_ops;
4479
4480 /* register each port bound to this device */
4481 for (i = 0; i < ent->n_ports; i++) {
4482 struct ata_port *ap;
4483 unsigned long xfer_mode_mask;
4484
4485 ap = ata_host_add(ent, host_set, i);
4486 if (!ap)
4487 goto err_out;
4488
4489 host_set->ports[i] = ap;
4490 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4491 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4492 (ap->pio_mask << ATA_SHIFT_PIO);
4493
4494 /* print per-port info to dmesg */
4495 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4496 "bmdma 0x%lX irq %lu\n",
4497 ap->id,
4498 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4499 ata_mode_string(xfer_mode_mask),
4500 ap->ioaddr.cmd_addr,
4501 ap->ioaddr.ctl_addr,
4502 ap->ioaddr.bmdma_addr,
4503 ent->irq);
4504
4505 ata_chk_status(ap);
4506 host_set->ops->irq_clear(ap);
4507 count++;
4508 }
4509
57f3bda8
RD
4510 if (!count)
4511 goto err_free_ret;
1da177e4
LT
4512
4513 /* obtain irq, that is shared between channels */
4514 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4515 DRV_NAME, host_set))
4516 goto err_out;
4517
4518 /* perform each probe synchronously */
4519 DPRINTK("probe begin\n");
4520 for (i = 0; i < count; i++) {
4521 struct ata_port *ap;
4522 int rc;
4523
4524 ap = host_set->ports[i];
4525
4526 DPRINTK("ata%u: probe begin\n", ap->id);
4527 rc = ata_bus_probe(ap);
4528 DPRINTK("ata%u: probe end\n", ap->id);
4529
4530 if (rc) {
4531 /* FIXME: do something useful here?
4532 * Current libata behavior will
4533 * tear down everything when
4534 * the module is removed
4535 * or the h/w is unplugged.
4536 */
4537 }
4538
4539 rc = scsi_add_host(ap->host, dev);
4540 if (rc) {
4541 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4542 ap->id);
4543 /* FIXME: do something useful here */
4544 /* FIXME: handle unconditional calls to
4545 * scsi_scan_host and ata_host_remove, below,
4546 * at the very least
4547 */
4548 }
4549 }
4550
4551 /* probes are done, now scan each port's disk(s) */
4552 DPRINTK("probe begin\n");
4553 for (i = 0; i < count; i++) {
4554 struct ata_port *ap = host_set->ports[i];
4555
644dd0cc 4556 ata_scsi_scan_host(ap);
1da177e4
LT
4557 }
4558
4559 dev_set_drvdata(dev, host_set);
4560
4561 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4562 return ent->n_ports; /* success */
4563
4564err_out:
4565 for (i = 0; i < count; i++) {
4566 ata_host_remove(host_set->ports[i], 1);
4567 scsi_host_put(host_set->ports[i]->host);
4568 }
57f3bda8 4569err_free_ret:
1da177e4
LT
4570 kfree(host_set);
4571 VPRINTK("EXIT, returning 0\n");
4572 return 0;
4573}
4574
17b14451
AC
4575/**
4576 * ata_host_set_remove - PCI layer callback for device removal
4577 * @host_set: ATA host set that was removed
4578 *
4579 * Unregister all objects associated with this host set. Free those
4580 * objects.
4581 *
4582 * LOCKING:
4583 * Inherited from calling layer (may sleep).
4584 */
4585
17b14451
AC
4586void ata_host_set_remove(struct ata_host_set *host_set)
4587{
4588 struct ata_port *ap;
4589 unsigned int i;
4590
4591 for (i = 0; i < host_set->n_ports; i++) {
4592 ap = host_set->ports[i];
4593 scsi_remove_host(ap->host);
4594 }
4595
4596 free_irq(host_set->irq, host_set);
4597
4598 for (i = 0; i < host_set->n_ports; i++) {
4599 ap = host_set->ports[i];
4600
4601 ata_scsi_release(ap->host);
4602
4603 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4604 struct ata_ioports *ioaddr = &ap->ioaddr;
4605
4606 if (ioaddr->cmd_addr == 0x1f0)
4607 release_region(0x1f0, 8);
4608 else if (ioaddr->cmd_addr == 0x170)
4609 release_region(0x170, 8);
4610 }
4611
4612 scsi_host_put(ap->host);
4613 }
4614
4615 if (host_set->ops->host_stop)
4616 host_set->ops->host_stop(host_set);
4617
4618 kfree(host_set);
4619}
4620
1da177e4
LT
4621/**
4622 * ata_scsi_release - SCSI layer callback hook for host unload
4623 * @host: libata host to be unloaded
4624 *
4625 * Performs all duties necessary to shut down a libata port...
4626 * Kill port kthread, disable port, and release resources.
4627 *
4628 * LOCKING:
4629 * Inherited from SCSI layer.
4630 *
4631 * RETURNS:
4632 * One.
4633 */
4634
4635int ata_scsi_release(struct Scsi_Host *host)
4636{
4637 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4638
4639 DPRINTK("ENTER\n");
4640
4641 ap->ops->port_disable(ap);
4642 ata_host_remove(ap, 0);
4643
4644 DPRINTK("EXIT\n");
4645 return 1;
4646}
4647
4648/**
4649 * ata_std_ports - initialize ioaddr with standard port offsets.
4650 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4651 *
4652 * Utility function which initializes data_addr, error_addr,
4653 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4654 * device_addr, status_addr, and command_addr to standard offsets
4655 * relative to cmd_addr.
4656 *
4657 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4658 */
0baab86b 4659
1da177e4
LT
4660void ata_std_ports(struct ata_ioports *ioaddr)
4661{
4662 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4663 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4664 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4665 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4666 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4667 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4668 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4669 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4670 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4671 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4672}
4673
4674static struct ata_probe_ent *
057ace5e 4675ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
1da177e4
LT
4676{
4677 struct ata_probe_ent *probe_ent;
4678
57f3bda8 4679 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
1da177e4
LT
4680 if (!probe_ent) {
4681 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4682 kobject_name(&(dev->kobj)));
4683 return NULL;
4684 }
4685
1da177e4
LT
4686 INIT_LIST_HEAD(&probe_ent->node);
4687 probe_ent->dev = dev;
4688
4689 probe_ent->sht = port->sht;
4690 probe_ent->host_flags = port->host_flags;
4691 probe_ent->pio_mask = port->pio_mask;
4692 probe_ent->mwdma_mask = port->mwdma_mask;
4693 probe_ent->udma_mask = port->udma_mask;
4694 probe_ent->port_ops = port->port_ops;
4695
4696 return probe_ent;
4697}
4698
0baab86b
EF
4699
4700
374b1873
JG
4701#ifdef CONFIG_PCI
4702
4703void ata_pci_host_stop (struct ata_host_set *host_set)
4704{
4705 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4706
4707 pci_iounmap(pdev, host_set->mmio_base);
4708}
4709
0baab86b
EF
4710/**
4711 * ata_pci_init_native_mode - Initialize native-mode driver
4712 * @pdev: pci device to be initialized
4713 * @port: array[2] of pointers to port info structures.
47a86593 4714 * @ports: bitmap of ports present
0baab86b
EF
4715 *
4716 * Utility function which allocates and initializes an
4717 * ata_probe_ent structure for a standard dual-port
4718 * PIO-based IDE controller. The returned ata_probe_ent
4719 * structure can be passed to ata_device_add(). The returned
4720 * ata_probe_ent structure should then be freed with kfree().
47a86593
AC
4721 *
4722 * The caller need only pass the address of the primary port, the
4723 * secondary will be deduced automatically. If the device has non
4724 * standard secondary port mappings this function can be called twice,
4725 * once for each interface.
0baab86b
EF
4726 */
4727
1da177e4 4728struct ata_probe_ent *
47a86593 4729ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
1da177e4
LT
4730{
4731 struct ata_probe_ent *probe_ent =
4732 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
47a86593
AC
4733 int p = 0;
4734
1da177e4
LT
4735 if (!probe_ent)
4736 return NULL;
4737
1da177e4
LT
4738 probe_ent->irq = pdev->irq;
4739 probe_ent->irq_flags = SA_SHIRQ;
e99f8b5e 4740 probe_ent->private_data = port[0]->private_data;
1da177e4 4741
47a86593
AC
4742 if (ports & ATA_PORT_PRIMARY) {
4743 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4744 probe_ent->port[p].altstatus_addr =
4745 probe_ent->port[p].ctl_addr =
4746 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4747 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4748 ata_std_ports(&probe_ent->port[p]);
4749 p++;
4750 }
1da177e4 4751
47a86593
AC
4752 if (ports & ATA_PORT_SECONDARY) {
4753 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4754 probe_ent->port[p].altstatus_addr =
4755 probe_ent->port[p].ctl_addr =
4756 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4757 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4758 ata_std_ports(&probe_ent->port[p]);
4759 p++;
4760 }
1da177e4 4761
47a86593 4762 probe_ent->n_ports = p;
1da177e4
LT
4763 return probe_ent;
4764}
4765
0f0d5192 4766static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
1da177e4 4767{
47a86593 4768 struct ata_probe_ent *probe_ent;
1da177e4 4769
0f0d5192 4770 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
1da177e4
LT
4771 if (!probe_ent)
4772 return NULL;
1da177e4 4773
1da177e4 4774 probe_ent->legacy_mode = 1;
47a86593
AC
4775 probe_ent->n_ports = 1;
4776 probe_ent->hard_port_no = port_num;
e99f8b5e 4777 probe_ent->private_data = port->private_data;
47a86593
AC
4778
4779 switch(port_num)
4780 {
4781 case 0:
4782 probe_ent->irq = 14;
4783 probe_ent->port[0].cmd_addr = 0x1f0;
4784 probe_ent->port[0].altstatus_addr =
4785 probe_ent->port[0].ctl_addr = 0x3f6;
4786 break;
4787 case 1:
4788 probe_ent->irq = 15;
4789 probe_ent->port[0].cmd_addr = 0x170;
4790 probe_ent->port[0].altstatus_addr =
4791 probe_ent->port[0].ctl_addr = 0x376;
4792 break;
4793 }
4794 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
1da177e4 4795 ata_std_ports(&probe_ent->port[0]);
1da177e4
LT
4796 return probe_ent;
4797}
4798
4799/**
4800 * ata_pci_init_one - Initialize/register PCI IDE host controller
4801 * @pdev: Controller to be initialized
4802 * @port_info: Information from low-level host driver
4803 * @n_ports: Number of ports attached to host controller
4804 *
0baab86b
EF
4805 * This is a helper function which can be called from a driver's
4806 * xxx_init_one() probe function if the hardware uses traditional
4807 * IDE taskfile registers.
4808 *
4809 * This function calls pci_enable_device(), reserves its register
4810 * regions, sets the dma mask, enables bus master mode, and calls
4811 * ata_device_add()
4812 *
1da177e4
LT
4813 * LOCKING:
4814 * Inherited from PCI layer (may sleep).
4815 *
4816 * RETURNS:
0cba632b 4817 * Zero on success, negative on errno-based value on error.
1da177e4
LT
4818 */
4819
4820int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4821 unsigned int n_ports)
4822{
47a86593 4823 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
1da177e4
LT
4824 struct ata_port_info *port[2];
4825 u8 tmp8, mask;
4826 unsigned int legacy_mode = 0;
4827 int disable_dev_on_err = 1;
4828 int rc;
4829
4830 DPRINTK("ENTER\n");
4831
4832 port[0] = port_info[0];
4833 if (n_ports > 1)
4834 port[1] = port_info[1];
4835 else
4836 port[1] = port[0];
4837
4838 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4839 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
47a86593 4840 /* TODO: What if one channel is in native mode ... */
1da177e4
LT
4841 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4842 mask = (1 << 2) | (1 << 0);
4843 if ((tmp8 & mask) != mask)
4844 legacy_mode = (1 << 3);
4845 }
4846
4847 /* FIXME... */
47a86593
AC
4848 if ((!legacy_mode) && (n_ports > 2)) {
4849 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4850 n_ports = 2;
4851 /* For now */
1da177e4
LT
4852 }
4853
47a86593
AC
4854 /* FIXME: Really for ATA it isn't safe because the device may be
4855 multi-purpose and we want to leave it alone if it was already
4856 enabled. Secondly for shared use as Arjan says we want refcounting
4857
4858 Checking dev->is_enabled is insufficient as this is not set at
4859 boot for the primary video which is BIOS enabled
4860 */
4861
1da177e4
LT
4862 rc = pci_enable_device(pdev);
4863 if (rc)
4864 return rc;
4865
4866 rc = pci_request_regions(pdev, DRV_NAME);
4867 if (rc) {
4868 disable_dev_on_err = 0;
4869 goto err_out;
4870 }
4871
47a86593 4872 /* FIXME: Should use platform specific mappers for legacy port ranges */
1da177e4
LT
4873 if (legacy_mode) {
4874 if (!request_region(0x1f0, 8, "libata")) {
4875 struct resource *conflict, res;
4876 res.start = 0x1f0;
4877 res.end = 0x1f0 + 8 - 1;
4878 conflict = ____request_resource(&ioport_resource, &res);
4879 if (!strcmp(conflict->name, "libata"))
4880 legacy_mode |= (1 << 0);
4881 else {
4882 disable_dev_on_err = 0;
4883 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4884 }
4885 } else
4886 legacy_mode |= (1 << 0);
4887
4888 if (!request_region(0x170, 8, "libata")) {
4889 struct resource *conflict, res;
4890 res.start = 0x170;
4891 res.end = 0x170 + 8 - 1;
4892 conflict = ____request_resource(&ioport_resource, &res);
4893 if (!strcmp(conflict->name, "libata"))
4894 legacy_mode |= (1 << 1);
4895 else {
4896 disable_dev_on_err = 0;
4897 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4898 }
4899 } else
4900 legacy_mode |= (1 << 1);
4901 }
4902
4903 /* we have legacy mode, but all ports are unavailable */
4904 if (legacy_mode == (1 << 3)) {
4905 rc = -EBUSY;
4906 goto err_out_regions;
4907 }
4908
4909 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4910 if (rc)
4911 goto err_out_regions;
4912 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4913 if (rc)
4914 goto err_out_regions;
4915
4916 if (legacy_mode) {
47a86593 4917 if (legacy_mode & (1 << 0))
0f0d5192 4918 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
47a86593 4919 if (legacy_mode & (1 << 1))
0f0d5192 4920 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
47a86593
AC
4921 } else {
4922 if (n_ports == 2)
4923 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4924 else
4925 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4926 }
4927 if (!probe_ent && !probe_ent2) {
1da177e4
LT
4928 rc = -ENOMEM;
4929 goto err_out_regions;
4930 }
4931
4932 pci_set_master(pdev);
4933
4934 /* FIXME: check ata_device_add return */
4935 if (legacy_mode) {
4936 if (legacy_mode & (1 << 0))
4937 ata_device_add(probe_ent);
4938 if (legacy_mode & (1 << 1))
4939 ata_device_add(probe_ent2);
4940 } else
4941 ata_device_add(probe_ent);
4942
4943 kfree(probe_ent);
4944 kfree(probe_ent2);
4945
4946 return 0;
4947
4948err_out_regions:
4949 if (legacy_mode & (1 << 0))
4950 release_region(0x1f0, 8);
4951 if (legacy_mode & (1 << 1))
4952 release_region(0x170, 8);
4953 pci_release_regions(pdev);
4954err_out:
4955 if (disable_dev_on_err)
4956 pci_disable_device(pdev);
4957 return rc;
4958}
4959
4960/**
4961 * ata_pci_remove_one - PCI layer callback for device removal
4962 * @pdev: PCI device that was removed
4963 *
4964 * PCI layer indicates to libata via this hook that
6f0ef4fa 4965 * hot-unplug or module unload event has occurred.
1da177e4
LT
4966 * Handle this by unregistering all objects associated
4967 * with this PCI device. Free those objects. Then finally
4968 * release PCI resources and disable device.
4969 *
4970 * LOCKING:
4971 * Inherited from PCI layer (may sleep).
4972 */
4973
4974void ata_pci_remove_one (struct pci_dev *pdev)
4975{
4976 struct device *dev = pci_dev_to_dev(pdev);
4977 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4978
17b14451 4979 ata_host_set_remove(host_set);
1da177e4
LT
4980 pci_release_regions(pdev);
4981 pci_disable_device(pdev);
4982 dev_set_drvdata(dev, NULL);
4983}
4984
4985/* move to PCI subsystem */
057ace5e 4986int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4987{
4988 unsigned long tmp = 0;
4989
4990 switch (bits->width) {
4991 case 1: {
4992 u8 tmp8 = 0;
4993 pci_read_config_byte(pdev, bits->reg, &tmp8);
4994 tmp = tmp8;
4995 break;
4996 }
4997 case 2: {
4998 u16 tmp16 = 0;
4999 pci_read_config_word(pdev, bits->reg, &tmp16);
5000 tmp = tmp16;
5001 break;
5002 }
5003 case 4: {
5004 u32 tmp32 = 0;
5005 pci_read_config_dword(pdev, bits->reg, &tmp32);
5006 tmp = tmp32;
5007 break;
5008 }
5009
5010 default:
5011 return -EINVAL;
5012 }
5013
5014 tmp &= bits->mask;
5015
5016 return (tmp == bits->val) ? 1 : 0;
5017}
9b847548
JA
5018
5019int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5020{
5021 pci_save_state(pdev);
5022 pci_disable_device(pdev);
5023 pci_set_power_state(pdev, PCI_D3hot);
5024 return 0;
5025}
5026
5027int ata_pci_device_resume(struct pci_dev *pdev)
5028{
5029 pci_set_power_state(pdev, PCI_D0);
5030 pci_restore_state(pdev);
5031 pci_enable_device(pdev);
5032 pci_set_master(pdev);
5033 return 0;
5034}
1da177e4
LT
5035#endif /* CONFIG_PCI */
5036
5037
1da177e4
LT
5038static int __init ata_init(void)
5039{
5040 ata_wq = create_workqueue("ata");
5041 if (!ata_wq)
5042 return -ENOMEM;
5043
5044 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5045 return 0;
5046}
5047
5048static void __exit ata_exit(void)
5049{
5050 destroy_workqueue(ata_wq);
5051}
5052
5053module_init(ata_init);
5054module_exit(ata_exit);
5055
67846b30
JG
5056static unsigned long ratelimit_time;
5057static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5058
5059int ata_ratelimit(void)
5060{
5061 int rc;
5062 unsigned long flags;
5063
5064 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5065
5066 if (time_after(jiffies, ratelimit_time)) {
5067 rc = 1;
5068 ratelimit_time = jiffies + (HZ/5);
5069 } else
5070 rc = 0;
5071
5072 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5073
5074 return rc;
5075}
5076
1da177e4
LT
5077/*
5078 * libata is essentially a library of internal helper functions for
5079 * low-level ATA host controller drivers. As such, the API/ABI is
5080 * likely to change as new drivers are added and updated.
5081 * Do not depend on ABI/API stability.
5082 */
5083
5084EXPORT_SYMBOL_GPL(ata_std_bios_param);
5085EXPORT_SYMBOL_GPL(ata_std_ports);
5086EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5087EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5088EXPORT_SYMBOL_GPL(ata_sg_init);
5089EXPORT_SYMBOL_GPL(ata_sg_init_one);
5090EXPORT_SYMBOL_GPL(ata_qc_complete);
5091EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5092EXPORT_SYMBOL_GPL(ata_eng_timeout);
5093EXPORT_SYMBOL_GPL(ata_tf_load);
5094EXPORT_SYMBOL_GPL(ata_tf_read);
5095EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5096EXPORT_SYMBOL_GPL(ata_std_dev_select);
5097EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5098EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5099EXPORT_SYMBOL_GPL(ata_check_status);
5100EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5101EXPORT_SYMBOL_GPL(ata_exec_command);
5102EXPORT_SYMBOL_GPL(ata_port_start);
5103EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5104EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5105EXPORT_SYMBOL_GPL(ata_interrupt);
5106EXPORT_SYMBOL_GPL(ata_qc_prep);
5107EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5108EXPORT_SYMBOL_GPL(ata_bmdma_start);
5109EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5110EXPORT_SYMBOL_GPL(ata_bmdma_status);
5111EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5112EXPORT_SYMBOL_GPL(ata_port_probe);
5113EXPORT_SYMBOL_GPL(sata_phy_reset);
5114EXPORT_SYMBOL_GPL(__sata_phy_reset);
5115EXPORT_SYMBOL_GPL(ata_bus_reset);
5116EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5117EXPORT_SYMBOL_GPL(ata_ratelimit);
1da177e4
LT
5118EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5119EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5120EXPORT_SYMBOL_GPL(ata_scsi_error);
5121EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5122EXPORT_SYMBOL_GPL(ata_scsi_release);
5123EXPORT_SYMBOL_GPL(ata_host_intr);
5124EXPORT_SYMBOL_GPL(ata_dev_classify);
5125EXPORT_SYMBOL_GPL(ata_dev_id_string);
6f2f3812 5126EXPORT_SYMBOL_GPL(ata_dev_config);
1da177e4
LT
5127EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5128
452503f9
AC
5129EXPORT_SYMBOL_GPL(ata_timing_compute);
5130EXPORT_SYMBOL_GPL(ata_timing_merge);
5131
1da177e4
LT
5132#ifdef CONFIG_PCI
5133EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5134EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5135EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5136EXPORT_SYMBOL_GPL(ata_pci_init_one);
5137EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5138EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5139EXPORT_SYMBOL_GPL(ata_pci_device_resume);
1da177e4 5140#endif /* CONFIG_PCI */
9b847548
JA
5141
5142EXPORT_SYMBOL_GPL(ata_device_suspend);
5143EXPORT_SYMBOL_GPL(ata_device_resume);
5144EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5145EXPORT_SYMBOL_GPL(ata_scsi_device_resume);