]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/spi/spi-bcm2835.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / drivers / spi / spi-bcm2835.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
f8043872
CB
2/*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
e34ff011 7 * Copyright (C) 2015 Martin Sperl
f8043872
CB
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
f8043872
CB
12 */
13
14#include <linux/clk.h>
15#include <linux/completion.h>
154f7da5 16#include <linux/debugfs.h>
f8043872 17#include <linux/delay.h>
3ecd37ed
MS
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
f8043872
CB
20#include <linux/err.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
3ecd37ed 26#include <linux/of_address.h>
f8043872 27#include <linux/of_device.h>
3bd158c5
LW
28#include <linux/gpio/consumer.h>
29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
3ecd37ed 31#include <linux/of_irq.h>
f8043872
CB
32#include <linux/spi/spi.h>
33
34/* SPI register offsets */
35#define BCM2835_SPI_CS 0x00
36#define BCM2835_SPI_FIFO 0x04
37#define BCM2835_SPI_CLK 0x08
38#define BCM2835_SPI_DLEN 0x0c
39#define BCM2835_SPI_LTOH 0x10
40#define BCM2835_SPI_DC 0x14
41
42/* Bitfields in CS */
43#define BCM2835_SPI_CS_LEN_LONG 0x02000000
44#define BCM2835_SPI_CS_DMA_LEN 0x01000000
45#define BCM2835_SPI_CS_CSPOL2 0x00800000
46#define BCM2835_SPI_CS_CSPOL1 0x00400000
47#define BCM2835_SPI_CS_CSPOL0 0x00200000
48#define BCM2835_SPI_CS_RXF 0x00100000
49#define BCM2835_SPI_CS_RXR 0x00080000
50#define BCM2835_SPI_CS_TXD 0x00040000
51#define BCM2835_SPI_CS_RXD 0x00020000
52#define BCM2835_SPI_CS_DONE 0x00010000
53#define BCM2835_SPI_CS_LEN 0x00002000
54#define BCM2835_SPI_CS_REN 0x00001000
55#define BCM2835_SPI_CS_ADCS 0x00000800
56#define BCM2835_SPI_CS_INTR 0x00000400
57#define BCM2835_SPI_CS_INTD 0x00000200
58#define BCM2835_SPI_CS_DMAEN 0x00000100
59#define BCM2835_SPI_CS_TA 0x00000080
60#define BCM2835_SPI_CS_CSPOL 0x00000040
61#define BCM2835_SPI_CS_CLEAR_RX 0x00000020
62#define BCM2835_SPI_CS_CLEAR_TX 0x00000010
63#define BCM2835_SPI_CS_CPOL 0x00000008
64#define BCM2835_SPI_CS_CPHA 0x00000004
65#define BCM2835_SPI_CS_CS_10 0x00000002
66#define BCM2835_SPI_CS_CS_01 0x00000001
67
2e0733bc
LW
68#define BCM2835_SPI_FIFO_SIZE 64
69#define BCM2835_SPI_FIFO_SIZE_3_4 48
3ecd37ed 70#define BCM2835_SPI_DMA_MIN_LENGTH 96
603e92ff 71#define BCM2835_SPI_NUM_CS 4 /* raise as necessary */
6935224d
MS
72#define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
73 | SPI_NO_CS | SPI_3WIRE)
f8043872
CB
74
75#define DRV_NAME "spi-bcm2835"
76
ff245d90
MS
77/* define polling limits */
78unsigned int polling_limit_us = 30;
79module_param(polling_limit_us, uint, 0664);
80MODULE_PARM_DESC(polling_limit_us,
81 "time in us to run a transfer in polling mode\n");
82
acf0f856
LW
83/**
84 * struct bcm2835_spi - BCM2835 SPI controller
85 * @regs: base address of register map
86 * @clk: core clock, divided to calculate serial clock
87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
3bd7f658 88 * @tfr: SPI transfer currently processed
acf0f856
LW
89 * @tx_buf: pointer whence next transmitted byte is read
90 * @rx_buf: pointer where next received byte is written
91 * @tx_len: remaining bytes to transmit
92 * @rx_len: remaining bytes to receive
3bd7f658
LW
93 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
94 * length is not a multiple of 4 (to overcome hardware limitation)
95 * @rx_prologue: bytes received without DMA if first RX sglist entry's
96 * length is not a multiple of 4 (to overcome hardware limitation)
97 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
571e31fa
LW
98 * @prepare_cs: precalculated CS register value for ->prepare_message()
99 * (uses slave-specific clock polarity and phase settings)
154f7da5
MS
100 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
101 * unloading the module
102 * @count_transfer_polling: count of how often polling mode is used
103 * @count_transfer_irq: count of how often interrupt mode is used
104 * @count_transfer_irq_after_polling: count of how often we fall back to
105 * interrupt mode after starting in polling mode.
106 * These are counted as well in @count_transfer_polling and
107 * @count_transfer_irq
108 * @count_transfer_dma: count how often dma mode is used
8259bf66
LW
109 * @chip_select: SPI slave currently selected
110 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
111 * @tx_dma_active: whether a TX DMA descriptor is in progress
112 * @rx_dma_active: whether a RX DMA descriptor is in progress
113 * (used by bcm2835_spi_dma_tx_done() to handle a race)
2b8279ae
LW
114 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
115 * (cyclically copies from zero page to TX FIFO)
116 * @fill_tx_addr: bus address of zero page
8259bf66
LW
117 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
118 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
119 * @clear_rx_addr: bus address of @clear_rx_cs
120 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
121 * (uses slave-specific clock polarity and phase settings)
acf0f856 122 */
f8043872
CB
123struct bcm2835_spi {
124 void __iomem *regs;
125 struct clk *clk;
126 int irq;
3bd7f658 127 struct spi_transfer *tfr;
f8043872
CB
128 const u8 *tx_buf;
129 u8 *rx_buf;
e34ff011
MS
130 int tx_len;
131 int rx_len;
3bd7f658
LW
132 int tx_prologue;
133 int rx_prologue;
b31a9299 134 unsigned int tx_spillover;
571e31fa 135 u32 prepare_cs[BCM2835_SPI_NUM_CS];
154f7da5
MS
136
137 struct dentry *debugfs_dir;
138 u64 count_transfer_polling;
139 u64 count_transfer_irq;
140 u64 count_transfer_irq_after_polling;
141 u64 count_transfer_dma;
8259bf66
LW
142
143 u8 chip_select;
144 unsigned int tx_dma_active;
145 unsigned int rx_dma_active;
2b8279ae
LW
146 struct dma_async_tx_descriptor *fill_tx_desc;
147 dma_addr_t fill_tx_addr;
8259bf66
LW
148 struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
149 dma_addr_t clear_rx_addr;
150 u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
f8043872
CB
151};
152
154f7da5
MS
153#if defined(CONFIG_DEBUG_FS)
154static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
155 const char *dname)
156{
157 char name[64];
158 struct dentry *dir;
159
160 /* get full name */
161 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
162
163 /* the base directory */
164 dir = debugfs_create_dir(name, NULL);
165 bs->debugfs_dir = dir;
166
167 /* the counters */
168 debugfs_create_u64("count_transfer_polling", 0444, dir,
169 &bs->count_transfer_polling);
170 debugfs_create_u64("count_transfer_irq", 0444, dir,
171 &bs->count_transfer_irq);
172 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
173 &bs->count_transfer_irq_after_polling);
174 debugfs_create_u64("count_transfer_dma", 0444, dir,
175 &bs->count_transfer_dma);
176}
177
178static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
179{
180 debugfs_remove_recursive(bs->debugfs_dir);
181 bs->debugfs_dir = NULL;
182}
183#else
184static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
185 const char *dname)
186{
187}
188
189static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
190{
191}
192#endif /* CONFIG_DEBUG_FS */
193
e37687c9 194static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
f8043872
CB
195{
196 return readl(bs->regs + reg);
197}
198
e37687c9 199static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
f8043872
CB
200{
201 writel(val, bs->regs + reg);
202}
203
4adf3129 204static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
f8043872
CB
205{
206 u8 byte;
207
e34ff011
MS
208 while ((bs->rx_len) &&
209 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
f8043872
CB
210 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
211 if (bs->rx_buf)
212 *bs->rx_buf++ = byte;
e34ff011 213 bs->rx_len--;
f8043872
CB
214 }
215}
216
4adf3129 217static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
f8043872
CB
218{
219 u8 byte;
220
e34ff011 221 while ((bs->tx_len) &&
4adf3129 222 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
f8043872
CB
223 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
224 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
e34ff011 225 bs->tx_len--;
f8043872
CB
226 }
227}
228
3bd7f658
LW
229/**
230 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
231 * @bs: BCM2835 SPI controller
232 * @count: bytes to read from RX FIFO
233 *
234 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
235 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
236 * in the CS register is set (such that a read from the FIFO register receives
b31a9299 237 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
3bd7f658
LW
238 */
239static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
240{
241 u32 val;
b31a9299 242 int len;
3bd7f658
LW
243
244 bs->rx_len -= count;
245
246 while (count > 0) {
247 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
b31a9299
LW
248 len = min(count, 4);
249 memcpy(bs->rx_buf, &val, len);
250 bs->rx_buf += len;
3bd7f658
LW
251 count -= 4;
252 }
253}
254
255/**
256 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
257 * @bs: BCM2835 SPI controller
258 * @count: bytes to write to TX FIFO
259 *
260 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
261 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
262 * in the CS register is set (such that a write to the FIFO register transmits
263 * 32-bit instead of just 8-bit).
264 */
265static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
266{
267 u32 val;
b31a9299 268 int len;
3bd7f658
LW
269
270 bs->tx_len -= count;
271
272 while (count > 0) {
273 if (bs->tx_buf) {
b31a9299 274 len = min(count, 4);
3bd7f658
LW
275 memcpy(&val, bs->tx_buf, len);
276 bs->tx_buf += len;
277 } else {
278 val = 0;
279 }
280 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
281 count -= 4;
282 }
283}
284
285/**
286 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
287 * @bs: BCM2835 SPI controller
b31a9299
LW
288 *
289 * The caller must ensure that the RX FIFO can accommodate as many bytes
290 * as have been written to the TX FIFO: Transmission is halted once the
291 * RX FIFO is full, causing this function to spin forever.
3bd7f658
LW
292 */
293static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
294{
295 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
296 cpu_relax();
297}
298
2e0733bc
LW
299/**
300 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
301 * @bs: BCM2835 SPI controller
302 * @count: bytes available for reading in RX FIFO
303 */
304static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
305{
306 u8 val;
307
308 count = min(count, bs->rx_len);
309 bs->rx_len -= count;
310
311 while (count) {
312 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
313 if (bs->rx_buf)
314 *bs->rx_buf++ = val;
315 count--;
316 }
317}
318
319/**
320 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
321 * @bs: BCM2835 SPI controller
322 * @count: bytes available for writing in TX FIFO
323 */
324static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
325{
326 u8 val;
327
328 count = min(count, bs->tx_len);
329 bs->tx_len -= count;
330
331 while (count) {
332 val = bs->tx_buf ? *bs->tx_buf++ : 0;
333 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
334 count--;
335 }
336}
337
5f336ea5 338static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
e34ff011 339{
5f336ea5 340 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
e34ff011
MS
341 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
342
343 /* Disable SPI interrupts and transfer */
344 cs &= ~(BCM2835_SPI_CS_INTR |
345 BCM2835_SPI_CS_INTD |
3ecd37ed 346 BCM2835_SPI_CS_DMAEN |
e34ff011 347 BCM2835_SPI_CS_TA);
4c524191
LW
348 /*
349 * Transmission sometimes breaks unless the DONE bit is written at the
350 * end of every transfer. The spec says it's a RO bit. Either the
351 * spec is wrong and the bit is actually of type RW1C, or it's a
352 * hardware erratum.
353 */
354 cs |= BCM2835_SPI_CS_DONE;
e34ff011
MS
355 /* and reset RX/TX FIFOS */
356 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
357
358 /* and reset the SPI_HW */
359 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
3ecd37ed
MS
360 /* as well as DLEN */
361 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
e34ff011
MS
362}
363
f8043872
CB
364static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
365{
5f336ea5
LW
366 struct spi_controller *ctlr = dev_id;
367 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
2e0733bc
LW
368 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
369
370 /*
371 * An interrupt is signaled either if DONE is set (TX FIFO empty)
372 * or if RXR is set (RX FIFO >= ¾ full).
373 */
374 if (cs & BCM2835_SPI_CS_RXF)
375 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
376 else if (cs & BCM2835_SPI_CS_RXR)
377 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
378
379 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
380 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
f8043872 381
4adf3129
MS
382 /* Read as many bytes as possible from FIFO */
383 bcm2835_rd_fifo(bs);
e34ff011
MS
384 /* Write as many bytes as possible to FIFO */
385 bcm2835_wr_fifo(bs);
386
56c17234 387 if (!bs->rx_len) {
e34ff011 388 /* Transfer complete - reset SPI HW */
5f336ea5 389 bcm2835_spi_reset_hw(ctlr);
e34ff011 390 /* wake up the framework */
5f336ea5 391 complete(&ctlr->xfer_completion);
f8043872
CB
392 }
393
4adf3129 394 return IRQ_HANDLED;
f8043872
CB
395}
396
5f336ea5 397static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
704f32d4
MS
398 struct spi_device *spi,
399 struct spi_transfer *tfr,
2e0733bc 400 u32 cs, bool fifo_empty)
704f32d4 401{
5f336ea5 402 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
704f32d4 403
154f7da5
MS
404 /* update usage statistics */
405 bs->count_transfer_irq++;
406
704f32d4 407 /*
5c09e42f
LW
408 * Enable HW block, but with interrupts still disabled.
409 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
704f32d4 410 */
5c09e42f
LW
411 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
412
413 /* fill TX FIFO as much as possible */
2e0733bc
LW
414 if (fifo_empty)
415 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
5c09e42f
LW
416 bcm2835_wr_fifo(bs);
417
418 /* enable interrupts */
704f32d4
MS
419 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
420 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
421
422 /* signal that we need to wait for completion */
423 return 1;
424}
425
3bd7f658
LW
426/**
427 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
5f336ea5 428 * @ctlr: SPI master controller
3bd7f658
LW
429 * @tfr: SPI transfer
430 * @bs: BCM2835 SPI controller
431 * @cs: CS register
432 *
433 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
434 * Only the final write access is permitted to transmit less than 4 bytes, the
435 * SPI controller deduces its intended size from the DLEN register.
436 *
437 * If a TX or RX sglist contains multiple entries, one per page, and the first
438 * entry starts in the middle of a page, that first entry's length may not be
439 * a multiple of 4. Subsequent entries are fine because they span an entire
440 * page, hence do have a length that's a multiple of 4.
441 *
442 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
443 * because they are contiguous in physical memory and therefore not split on
444 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
445 * buffers.
446 *
447 * The DMA engine is incapable of combining sglist entries into a continuous
448 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
449 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
450 * entry is rounded up by throwing away received bytes.
451 *
452 * Overcome this limitation by transferring the first few bytes without DMA:
453 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
454 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
455 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
456 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
457 *
458 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
459 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
460 * Caution, the additional 4 bytes spill over to the second TX sglist entry
461 * if the length of the first is *exactly* 1.
462 *
463 * At most 6 bytes are written and at most 3 bytes read. Do we know the
464 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
465 *
466 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
467 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
468 * the width but also garbles the FIFO's contents. The prologue must therefore
469 * be transmitted in 32-bit width to ensure that the following DMA transfer can
470 * pick up the residue in the RX FIFO in ungarbled form.
471 */
5f336ea5 472static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
3bd7f658
LW
473 struct spi_transfer *tfr,
474 struct bcm2835_spi *bs,
475 u32 cs)
476{
477 int tx_remaining;
478
479 bs->tfr = tfr;
480 bs->tx_prologue = 0;
481 bs->rx_prologue = 0;
482 bs->tx_spillover = false;
483
2b8279ae 484 if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
3bd7f658
LW
485 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
486
8259bf66 487 if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
3bd7f658
LW
488 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
489
490 if (bs->rx_prologue > bs->tx_prologue) {
2b8279ae 491 if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
3bd7f658
LW
492 bs->tx_prologue = bs->rx_prologue;
493 } else {
494 bs->tx_prologue += 4;
495 bs->tx_spillover =
496 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
497 }
498 }
499 }
500
501 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
502 if (!bs->tx_prologue)
503 return;
504
505 /* Write and read RX prologue. Adjust first entry in RX sglist. */
506 if (bs->rx_prologue) {
507 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
508 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
509 | BCM2835_SPI_CS_DMAEN);
510 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
511 bcm2835_wait_tx_fifo_empty(bs);
512 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
4c524191
LW
513 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
514 | BCM2835_SPI_CS_CLEAR_TX
515 | BCM2835_SPI_CS_DONE);
3bd7f658 516
5f336ea5 517 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
b31a9299
LW
518 sg_dma_address(&tfr->rx_sg.sgl[0]),
519 bs->rx_prologue, DMA_FROM_DEVICE);
3bd7f658 520
b31a9299
LW
521 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
522 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
3bd7f658
LW
523 }
524
2b8279ae
LW
525 if (!bs->tx_buf)
526 return;
527
3bd7f658
LW
528 /*
529 * Write remaining TX prologue. Adjust first entry in TX sglist.
530 * Also adjust second entry if prologue spills over to it.
531 */
532 tx_remaining = bs->tx_prologue - bs->rx_prologue;
533 if (tx_remaining) {
534 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
535 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
536 | BCM2835_SPI_CS_DMAEN);
537 bcm2835_wr_fifo_count(bs, tx_remaining);
538 bcm2835_wait_tx_fifo_empty(bs);
4c524191
LW
539 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
540 | BCM2835_SPI_CS_DONE);
3bd7f658
LW
541 }
542
543 if (likely(!bs->tx_spillover)) {
b31a9299
LW
544 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
545 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
3bd7f658 546 } else {
b31a9299
LW
547 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
548 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
549 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
3bd7f658
LW
550 }
551}
552
553/**
554 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
555 * @bs: BCM2835 SPI controller
556 *
557 * Undo changes which were made to an SPI transfer's sglist when transmitting
558 * the prologue. This is necessary to ensure the same memory ranges are
559 * unmapped that were originally mapped.
560 */
561static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
562{
563 struct spi_transfer *tfr = bs->tfr;
564
565 if (!bs->tx_prologue)
566 return;
567
568 if (bs->rx_prologue) {
b31a9299
LW
569 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
570 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
3bd7f658
LW
571 }
572
2b8279ae
LW
573 if (!bs->tx_buf)
574 goto out;
575
3bd7f658 576 if (likely(!bs->tx_spillover)) {
b31a9299
LW
577 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
578 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
3bd7f658 579 } else {
b31a9299
LW
580 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
581 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
582 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
3bd7f658 583 }
2b8279ae 584out:
1513ceee 585 bs->tx_prologue = 0;
3bd7f658
LW
586}
587
8259bf66
LW
588/**
589 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
590 * @data: SPI master controller
591 *
592 * Used for bidirectional and RX-only transfers.
593 */
594static void bcm2835_spi_dma_rx_done(void *data)
3ecd37ed 595{
5f336ea5
LW
596 struct spi_controller *ctlr = data;
597 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
3ecd37ed 598
2b8279ae 599 /* terminate tx-dma as we do not have an irq for it
3ecd37ed
MS
600 * because when the rx dma will terminate and this callback
601 * is called the tx-dma must have finished - can't get to this
602 * situation otherwise...
603 */
1513ceee 604 dmaengine_terminate_async(ctlr->dma_tx);
8259bf66
LW
605 bs->tx_dma_active = false;
606 bs->rx_dma_active = false;
1513ceee 607 bcm2835_spi_undo_prologue(bs);
3ecd37ed 608
2b8279ae
LW
609 /* reset fifo and HW */
610 bcm2835_spi_reset_hw(ctlr);
3ecd37ed
MS
611
612 /* and mark as completed */;
5f336ea5 613 complete(&ctlr->xfer_completion);
3ecd37ed
MS
614}
615
8259bf66
LW
616/**
617 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
618 * @data: SPI master controller
619 *
620 * Used for TX-only transfers.
621 */
622static void bcm2835_spi_dma_tx_done(void *data)
623{
624 struct spi_controller *ctlr = data;
625 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
626
627 /* busy-wait for TX FIFO to empty */
628 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
629 bcm2835_wr(bs, BCM2835_SPI_CS,
630 bs->clear_rx_cs[bs->chip_select]);
631
632 bs->tx_dma_active = false;
633 smp_wmb();
634
635 /*
636 * In case of a very short transfer, RX DMA may not have been
637 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
638 * to terminate it immediately after issuing.
639 */
640 if (cmpxchg(&bs->rx_dma_active, true, false))
641 dmaengine_terminate_async(ctlr->dma_rx);
642
643 bcm2835_spi_undo_prologue(bs);
644 bcm2835_spi_reset_hw(ctlr);
645 complete(&ctlr->xfer_completion);
646}
647
648/**
649 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
650 * @ctlr: SPI master controller
651 * @spi: SPI slave
652 * @tfr: SPI transfer
653 * @bs: BCM2835 SPI controller
654 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
655 *
656 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
657 * Return 0 on success or a negative error number.
658 */
5f336ea5 659static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
8259bf66 660 struct spi_device *spi,
3ecd37ed 661 struct spi_transfer *tfr,
8259bf66 662 struct bcm2835_spi *bs,
3ecd37ed
MS
663 bool is_tx)
664{
665 struct dma_chan *chan;
666 struct scatterlist *sgl;
667 unsigned int nents;
668 enum dma_transfer_direction dir;
669 unsigned long flags;
670
671 struct dma_async_tx_descriptor *desc;
672 dma_cookie_t cookie;
673
674 if (is_tx) {
675 dir = DMA_MEM_TO_DEV;
5f336ea5 676 chan = ctlr->dma_tx;
3ecd37ed
MS
677 nents = tfr->tx_sg.nents;
678 sgl = tfr->tx_sg.sgl;
8259bf66 679 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
3ecd37ed
MS
680 } else {
681 dir = DMA_DEV_TO_MEM;
5f336ea5 682 chan = ctlr->dma_rx;
3ecd37ed
MS
683 nents = tfr->rx_sg.nents;
684 sgl = tfr->rx_sg.sgl;
685 flags = DMA_PREP_INTERRUPT;
686 }
687 /* prepare the channel */
688 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
689 if (!desc)
690 return -EINVAL;
691
8259bf66
LW
692 /*
693 * Completion is signaled by the RX channel for bidirectional and
694 * RX-only transfers; else by the TX channel for TX-only transfers.
695 */
3ecd37ed 696 if (!is_tx) {
8259bf66 697 desc->callback = bcm2835_spi_dma_rx_done;
5f336ea5 698 desc->callback_param = ctlr;
8259bf66
LW
699 } else if (!tfr->rx_buf) {
700 desc->callback = bcm2835_spi_dma_tx_done;
5f336ea5 701 desc->callback_param = ctlr;
8259bf66 702 bs->chip_select = spi->chip_select;
3ecd37ed
MS
703 }
704
705 /* submit it to DMA-engine */
706 cookie = dmaengine_submit(desc);
707
708 return dma_submit_error(cookie);
709}
710
8259bf66
LW
711/**
712 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
713 * @ctlr: SPI master controller
714 * @spi: SPI slave
715 * @tfr: SPI transfer
716 * @cs: CS register
717 *
718 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
719 * the TX and RX DMA channel to copy between memory and FIFO register.
720 *
721 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
722 * memory is pointless. However not reading the RX FIFO isn't an option either
723 * because transmission is halted once it's full. As a workaround, cyclically
724 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
725 *
726 * The CS register value is precalculated in bcm2835_spi_setup(). Normally
727 * this is called only once, on slave registration. A DMA descriptor to write
728 * this value is preallocated in bcm2835_dma_init(). All that's left to do
729 * when performing a TX-only transfer is to submit this descriptor to the RX
730 * DMA channel. Latency is thereby minimized. The descriptor does not
731 * generate any interrupts while running. It must be terminated once the
732 * TX DMA channel is done.
733 *
734 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
735 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
736 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
737 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold
738 * reduction in bus traffic and thus energy consumption is achieved.
2b8279ae
LW
739 *
740 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
741 * copying from the zero page. The DMA descriptor to do this is preallocated
742 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
743 * done and can then be reused.
744 *
745 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
746 * page and utilizes the DMA controller's ability to synthesize zeroes instead
747 * of copying them from memory. This reduces traffic on the memory bus. The
748 * feature is not available on so-called "lite" channels, but normally TX DMA
749 * is backed by a full-featured channel.
750 *
751 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
752 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
753 * has been counted down to zero (hardware erratum). Thus, when the transfer
754 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
755 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
756 * performed at the end of an RX-only transfer.
8259bf66 757 */
5f336ea5 758static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
3ecd37ed
MS
759 struct spi_device *spi,
760 struct spi_transfer *tfr,
761 u32 cs)
762{
5f336ea5 763 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
8259bf66 764 dma_cookie_t cookie;
3ecd37ed
MS
765 int ret;
766
154f7da5
MS
767 /* update usage statistics */
768 bs->count_transfer_dma++;
769
3bd7f658
LW
770 /*
771 * Transfer first few bytes without DMA if length of first TX or RX
772 * sglist entry is not a multiple of 4 bytes (hardware limitation).
773 */
5f336ea5 774 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
3ecd37ed
MS
775
776 /* setup tx-DMA */
2b8279ae
LW
777 if (bs->tx_buf) {
778 ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
779 } else {
780 cookie = dmaengine_submit(bs->fill_tx_desc);
781 ret = dma_submit_error(cookie);
782 }
3ecd37ed 783 if (ret)
3bd7f658 784 goto err_reset_hw;
3ecd37ed 785
3ecd37ed 786 /* set the DMA length */
3bd7f658 787 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
3ecd37ed
MS
788
789 /* start the HW */
790 bcm2835_wr(bs, BCM2835_SPI_CS,
791 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
792
8259bf66
LW
793 bs->tx_dma_active = true;
794 smp_wmb();
795
796 /* start TX early */
797 dma_async_issue_pending(ctlr->dma_tx);
798
3ecd37ed
MS
799 /* setup rx-DMA late - to run transfers while
800 * mapping of the rx buffers still takes place
801 * this saves 10us or more.
802 */
8259bf66
LW
803 if (bs->rx_buf) {
804 ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
805 } else {
806 cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
807 ret = dma_submit_error(cookie);
808 }
3ecd37ed
MS
809 if (ret) {
810 /* need to reset on errors */
5f336ea5 811 dmaengine_terminate_sync(ctlr->dma_tx);
8259bf66 812 bs->tx_dma_active = false;
3bd7f658 813 goto err_reset_hw;
3ecd37ed
MS
814 }
815
816 /* start rx dma late */
5f336ea5 817 dma_async_issue_pending(ctlr->dma_rx);
8259bf66
LW
818 bs->rx_dma_active = true;
819 smp_mb();
820
821 /*
822 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
823 * may run before RX DMA is issued. Terminate RX DMA if so.
824 */
825 if (!bs->rx_buf && !bs->tx_dma_active &&
826 cmpxchg(&bs->rx_dma_active, true, false)) {
827 dmaengine_terminate_async(ctlr->dma_rx);
828 bcm2835_spi_reset_hw(ctlr);
829 }
3ecd37ed
MS
830
831 /* wait for wakeup in framework */
832 return 1;
3bd7f658
LW
833
834err_reset_hw:
5f336ea5 835 bcm2835_spi_reset_hw(ctlr);
3bd7f658
LW
836 bcm2835_spi_undo_prologue(bs);
837 return ret;
3ecd37ed
MS
838}
839
5f336ea5 840static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
3ecd37ed
MS
841 struct spi_device *spi,
842 struct spi_transfer *tfr)
843{
3ecd37ed
MS
844 /* we start DMA efforts only on bigger transfers */
845 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
846 return false;
847
3ecd37ed
MS
848 /* return OK */
849 return true;
850}
851
8259bf66
LW
852static void bcm2835_dma_release(struct spi_controller *ctlr,
853 struct bcm2835_spi *bs)
3ecd37ed 854{
8259bf66
LW
855 int i;
856
5f336ea5
LW
857 if (ctlr->dma_tx) {
858 dmaengine_terminate_sync(ctlr->dma_tx);
2b8279ae
LW
859
860 if (bs->fill_tx_desc)
861 dmaengine_desc_free(bs->fill_tx_desc);
862
863 if (bs->fill_tx_addr)
864 dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
865 bs->fill_tx_addr, sizeof(u32),
866 DMA_TO_DEVICE,
867 DMA_ATTR_SKIP_CPU_SYNC);
868
5f336ea5
LW
869 dma_release_channel(ctlr->dma_tx);
870 ctlr->dma_tx = NULL;
3ecd37ed 871 }
8259bf66 872
5f336ea5
LW
873 if (ctlr->dma_rx) {
874 dmaengine_terminate_sync(ctlr->dma_rx);
8259bf66
LW
875
876 for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
877 if (bs->clear_rx_desc[i])
878 dmaengine_desc_free(bs->clear_rx_desc[i]);
879
880 if (bs->clear_rx_addr)
881 dma_unmap_single(ctlr->dma_rx->device->dev,
882 bs->clear_rx_addr,
883 sizeof(bs->clear_rx_cs),
884 DMA_TO_DEVICE);
885
5f336ea5
LW
886 dma_release_channel(ctlr->dma_rx);
887 ctlr->dma_rx = NULL;
3ecd37ed
MS
888 }
889}
890
6133fed0
PU
891static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
892 struct bcm2835_spi *bs)
3ecd37ed
MS
893{
894 struct dma_slave_config slave_config;
895 const __be32 *addr;
896 dma_addr_t dma_reg_base;
8259bf66 897 int ret, i;
3ecd37ed
MS
898
899 /* base address in dma-space */
5f336ea5 900 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
3ecd37ed
MS
901 if (!addr) {
902 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
6133fed0
PU
903 /* Fall back to interrupt mode */
904 return 0;
3ecd37ed
MS
905 }
906 dma_reg_base = be32_to_cpup(addr);
907
908 /* get tx/rx dma */
6133fed0
PU
909 ctlr->dma_tx = dma_request_chan(dev, "tx");
910 if (IS_ERR(ctlr->dma_tx)) {
3ecd37ed 911 dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
6133fed0
PU
912 ret = PTR_ERR(ctlr->dma_tx);
913 ctlr->dma_tx = NULL;
3ecd37ed
MS
914 goto err;
915 }
6133fed0
PU
916 ctlr->dma_rx = dma_request_chan(dev, "rx");
917 if (IS_ERR(ctlr->dma_rx)) {
3ecd37ed 918 dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
6133fed0
PU
919 ret = PTR_ERR(ctlr->dma_rx);
920 ctlr->dma_rx = NULL;
3ecd37ed
MS
921 goto err_release;
922 }
923
2b8279ae
LW
924 /*
925 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
926 * or, in case of an RX-only transfer, cyclically copies from the zero
927 * page to the FIFO using a preallocated, reusable descriptor.
928 */
3ecd37ed
MS
929 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
930 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
931
5f336ea5 932 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
3ecd37ed
MS
933 if (ret)
934 goto err_config;
935
2b8279ae
LW
936 bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
937 ZERO_PAGE(0), 0, sizeof(u32),
938 DMA_TO_DEVICE,
939 DMA_ATTR_SKIP_CPU_SYNC);
940 if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
941 dev_err(dev, "cannot map zero page - not using DMA mode\n");
942 bs->fill_tx_addr = 0;
dd4441ab 943 ret = -ENOMEM;
2b8279ae
LW
944 goto err_release;
945 }
946
947 bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
948 bs->fill_tx_addr,
949 sizeof(u32), 0,
950 DMA_MEM_TO_DEV, 0);
951 if (!bs->fill_tx_desc) {
952 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
dd4441ab 953 ret = -ENOMEM;
2b8279ae
LW
954 goto err_release;
955 }
956
957 ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
958 if (ret) {
959 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
960 goto err_release;
961 }
962
8259bf66
LW
963 /*
964 * The RX DMA channel is used bidirectionally: It either reads the
965 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
966 * precalculated value to the CS register to clear the RX FIFO.
967 */
3ecd37ed
MS
968 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
969 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
8259bf66
LW
970 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
971 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
3ecd37ed 972
5f336ea5 973 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
3ecd37ed
MS
974 if (ret)
975 goto err_config;
976
8259bf66
LW
977 bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
978 bs->clear_rx_cs,
979 sizeof(bs->clear_rx_cs),
980 DMA_TO_DEVICE);
981 if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
982 dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
983 bs->clear_rx_addr = 0;
dd4441ab 984 ret = -ENOMEM;
8259bf66
LW
985 goto err_release;
986 }
987
988 for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
989 bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
990 bs->clear_rx_addr + i * sizeof(u32),
991 sizeof(u32), 0,
992 DMA_MEM_TO_DEV, 0);
993 if (!bs->clear_rx_desc[i]) {
994 dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
dd4441ab 995 ret = -ENOMEM;
8259bf66
LW
996 goto err_release;
997 }
998
999 ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
1000 if (ret) {
1001 dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
1002 goto err_release;
1003 }
1004 }
1005
3ecd37ed 1006 /* all went well, so set can_dma */
5f336ea5 1007 ctlr->can_dma = bcm2835_spi_can_dma;
3ecd37ed 1008
6133fed0 1009 return 0;
3ecd37ed
MS
1010
1011err_config:
1012 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
1013 ret);
1014err_release:
8259bf66 1015 bcm2835_dma_release(ctlr, bs);
3ecd37ed 1016err:
6133fed0
PU
1017 /*
1018 * Only report error for deferred probing, otherwise fall back to
1019 * interrupt mode
1020 */
1021 if (ret != -EPROBE_DEFER)
1022 ret = 0;
1023
1024 return ret;
3ecd37ed
MS
1025}
1026
5f336ea5 1027static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
a750b124
MS
1028 struct spi_device *spi,
1029 struct spi_transfer *tfr,
9ac3f90d 1030 u32 cs)
a750b124 1031{
5f336ea5 1032 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
a750b124
MS
1033 unsigned long timeout;
1034
154f7da5
MS
1035 /* update usage statistics */
1036 bs->count_transfer_polling++;
1037
a750b124
MS
1038 /* enable HW block without interrupts */
1039 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1040
1041 /* fill in the fifo before timeout calculations
1042 * if we are interrupted here, then the data is
1043 * getting transferred by the HW while we are interrupted
1044 */
2e0733bc 1045 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
a750b124 1046
ff245d90
MS
1047 /* set the timeout to at least 2 jiffies */
1048 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
a750b124
MS
1049
1050 /* loop until finished the transfer */
1051 while (bs->rx_len) {
1052 /* fill in tx fifo with remaining data */
1053 bcm2835_wr_fifo(bs);
1054
1055 /* read from fifo as much as possible */
1056 bcm2835_rd_fifo(bs);
1057
1058 /* if there is still data pending to read
1059 * then check the timeout
1060 */
1061 if (bs->rx_len && time_after(jiffies, timeout)) {
1062 dev_dbg_ratelimited(&spi->dev,
1063 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1064 jiffies - timeout,
1065 bs->tx_len, bs->rx_len);
1066 /* fall back to interrupt mode */
154f7da5
MS
1067
1068 /* update usage statistics */
1069 bs->count_transfer_irq_after_polling++;
1070
5f336ea5 1071 return bcm2835_spi_transfer_one_irq(ctlr, spi,
2e0733bc 1072 tfr, cs, false);
a750b124
MS
1073 }
1074 }
1075
1076 /* Transfer complete - reset SPI HW */
5f336ea5 1077 bcm2835_spi_reset_hw(ctlr);
a750b124
MS
1078 /* and return without waiting for completion */
1079 return 0;
1080}
1081
5f336ea5 1082static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
e34ff011
MS
1083 struct spi_device *spi,
1084 struct spi_transfer *tfr)
f8043872 1085{
5f336ea5 1086 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
ff245d90
MS
1087 unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
1088 unsigned long hz_per_byte, byte_limit;
571e31fa 1089 u32 cs = bs->prepare_cs[spi->chip_select];
f8043872 1090
e34ff011 1091 /* set clock */
f8043872
CB
1092 spi_hz = tfr->speed_hz;
1093 clk_hz = clk_get_rate(bs->clk);
1094
1095 if (spi_hz >= clk_hz / 2) {
1096 cdiv = 2; /* clk_hz/2 is the fastest we can go */
1097 } else if (spi_hz) {
210b4923
MS
1098 /* CDIV must be a multiple of two */
1099 cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1100 cdiv += (cdiv % 2);
f8043872
CB
1101
1102 if (cdiv >= 65536)
1103 cdiv = 0; /* 0 is the slowest we can go */
342f948a 1104 } else {
f8043872 1105 cdiv = 0; /* 0 is the slowest we can go */
342f948a 1106 }
704f32d4 1107 spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
e34ff011 1108 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
f8043872 1109
acace73d 1110 /* handle all the 3-wire mode */
8259bf66 1111 if (spi->mode & SPI_3WIRE && tfr->rx_buf)
6935224d 1112 cs |= BCM2835_SPI_CS_REN;
f8043872 1113
e34ff011 1114 /* set transmit buffers and length */
f8043872
CB
1115 bs->tx_buf = tfr->tx_buf;
1116 bs->rx_buf = tfr->rx_buf;
e34ff011
MS
1117 bs->tx_len = tfr->len;
1118 bs->rx_len = tfr->len;
f8043872 1119
7f1922eb
MS
1120 /* Calculate the estimated time in us the transfer runs. Note that
1121 * there is 1 idle clocks cycles after each byte getting transferred
1122 * so we have 9 cycles/byte. This is used to find the number of Hz
1123 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
1124 * per 300,000 Hz of bus clock.
1125 */
ff245d90
MS
1126 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1127 byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
1128
7f1922eb 1129 /* run in polling mode for short transfers */
ff245d90 1130 if (tfr->len < byte_limit)
5f336ea5 1131 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
f8043872 1132
c41d62b0
MS
1133 /* run in dma mode if conditions are right
1134 * Note that unlike poll or interrupt mode DMA mode does not have
1135 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1136 */
5f336ea5
LW
1137 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1138 return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
3ecd37ed
MS
1139
1140 /* run in interrupt-mode */
5f336ea5 1141 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
f8043872
CB
1142}
1143
5f336ea5 1144static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
acace73d
MS
1145 struct spi_message *msg)
1146{
1147 struct spi_device *spi = msg->spi;
5f336ea5 1148 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
8b7bd10e
MM
1149 int ret;
1150
5f336ea5 1151 if (ctlr->can_dma) {
3393f7d9
NSJ
1152 /*
1153 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1154 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1155 * aligned) if the limit is exceeded.
1156 */
5f336ea5 1157 ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
3393f7d9
NSJ
1158 GFP_KERNEL | GFP_DMA);
1159 if (ret)
1160 return ret;
1161 }
acace73d 1162
571e31fa
LW
1163 /*
1164 * Set up clock polarity before spi_transfer_one_message() asserts
1165 * chip select to avoid a gratuitous clock signal edge.
1166 */
1167 bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
acace73d
MS
1168
1169 return 0;
1170}
1171
5f336ea5 1172static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
e34ff011 1173 struct spi_message *msg)
f8043872 1174{
5f336ea5 1175 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
3ecd37ed
MS
1176
1177 /* if an error occurred and we have an active dma, then terminate */
1513ceee 1178 dmaengine_terminate_sync(ctlr->dma_tx);
8259bf66 1179 bs->tx_dma_active = false;
1513ceee 1180 dmaengine_terminate_sync(ctlr->dma_rx);
8259bf66 1181 bs->rx_dma_active = false;
1513ceee
LW
1182 bcm2835_spi_undo_prologue(bs);
1183
3ecd37ed 1184 /* and reset */
5f336ea5 1185 bcm2835_spi_reset_hw(ctlr);
f8043872
CB
1186}
1187
a30a555d
MS
1188static int chip_match_name(struct gpio_chip *chip, void *data)
1189{
1190 return !strcmp(chip->label, data);
1191}
1192
e34ff011
MS
1193static int bcm2835_spi_setup(struct spi_device *spi)
1194{
8259bf66
LW
1195 struct spi_controller *ctlr = spi->controller;
1196 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
a30a555d 1197 struct gpio_chip *chip;
3bd158c5 1198 enum gpio_lookup_flags lflags;
571e31fa
LW
1199 u32 cs;
1200
1201 /*
1202 * Precalculate SPI slave's CS register value for ->prepare_message():
1203 * The driver always uses software-controlled GPIO chip select, hence
1204 * set the hardware-controlled native chip select to an invalid value
1205 * to prevent it from interfering.
1206 */
1207 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1208 if (spi->mode & SPI_CPOL)
1209 cs |= BCM2835_SPI_CS_CPOL;
1210 if (spi->mode & SPI_CPHA)
1211 cs |= BCM2835_SPI_CS_CPHA;
1212 bs->prepare_cs[spi->chip_select] = cs;
3bd158c5 1213
8259bf66
LW
1214 /*
1215 * Precalculate SPI slave's CS register value to clear RX FIFO
1216 * in case of a TX-only DMA transfer.
1217 */
1218 if (ctlr->dma_rx) {
1219 bs->clear_rx_cs[spi->chip_select] = cs |
1220 BCM2835_SPI_CS_TA |
1221 BCM2835_SPI_CS_DMAEN |
1222 BCM2835_SPI_CS_CLEAR_RX;
1223 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1224 bs->clear_rx_addr,
1225 sizeof(bs->clear_rx_cs),
1226 DMA_TO_DEVICE);
1227 }
1228
e34ff011
MS
1229 /*
1230 * sanity checking the native-chipselects
1231 */
1232 if (spi->mode & SPI_NO_CS)
1233 return 0;
3bd158c5
LW
1234 /*
1235 * The SPI core has successfully requested the CS GPIO line from the
1236 * device tree, so we are done.
1237 */
1238 if (spi->cs_gpiod)
e34ff011 1239 return 0;
a30a555d
MS
1240 if (spi->chip_select > 1) {
1241 /* error in the case of native CS requested with CS > 1
1242 * officially there is a CS2, but it is not documented
1243 * which GPIO is connected with that...
1244 */
1245 dev_err(&spi->dev,
1246 "setup: only two native chip-selects are supported\n");
1247 return -EINVAL;
1248 }
3bd158c5
LW
1249
1250 /*
1251 * Translate native CS to GPIO
1252 *
1253 * FIXME: poking around in the gpiolib internals like this is
1254 * not very good practice. Find a way to locate the real problem
1255 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1256 * sometimes not assigned correctly? Erroneous device trees?
1257 */
a30a555d
MS
1258
1259 /* get the gpio chip for the base */
1260 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1261 if (!chip)
e34ff011
MS
1262 return 0;
1263
3bd158c5
LW
1264 /*
1265 * Retrieve the corresponding GPIO line used for CS.
1266 * The inversion semantics will be handled by the GPIO core
c2f102f1 1267 * code, so we pass GPIOD_OUT_LOW for "unasserted" and
3bd158c5
LW
1268 * the correct flag for inversion semantics. The SPI_CS_HIGH
1269 * on spi->mode cannot be checked for polarity in this case
1270 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
1271 */
1272 if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
1273 lflags = GPIO_ACTIVE_HIGH;
1274 else
1275 lflags = GPIO_ACTIVE_LOW;
1276 spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1277 DRV_NAME,
1278 lflags,
1279 GPIOD_OUT_LOW);
1280 if (IS_ERR(spi->cs_gpiod))
1281 return PTR_ERR(spi->cs_gpiod);
a30a555d
MS
1282
1283 /* and set up the "mode" and level */
3bd158c5
LW
1284 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1285 spi->chip_select);
a30a555d
MS
1286
1287 return 0;
f8043872
CB
1288}
1289
1290static int bcm2835_spi_probe(struct platform_device *pdev)
1291{
5f336ea5 1292 struct spi_controller *ctlr;
f8043872 1293 struct bcm2835_spi *bs;
f8043872
CB
1294 int err;
1295
8259bf66
LW
1296 ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
1297 dma_get_cache_alignment()));
5f336ea5 1298 if (!ctlr)
f8043872 1299 return -ENOMEM;
f8043872 1300
5f336ea5 1301 platform_set_drvdata(pdev, ctlr);
f8043872 1302
3bd158c5 1303 ctlr->use_gpio_descriptors = true;
5f336ea5
LW
1304 ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1305 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
571e31fa 1306 ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
5f336ea5
LW
1307 ctlr->setup = bcm2835_spi_setup;
1308 ctlr->transfer_one = bcm2835_spi_transfer_one;
1309 ctlr->handle_err = bcm2835_spi_handle_err;
1310 ctlr->prepare_message = bcm2835_spi_prepare_message;
1311 ctlr->dev.of_node = pdev->dev.of_node;
f8043872 1312
5f336ea5 1313 bs = spi_controller_get_devdata(ctlr);
f8043872 1314
6ba794df 1315 bs->regs = devm_platform_ioremap_resource(pdev, 0);
2d6e75e8
LN
1316 if (IS_ERR(bs->regs)) {
1317 err = PTR_ERR(bs->regs);
5f336ea5 1318 goto out_controller_put;
f8043872
CB
1319 }
1320
1321 bs->clk = devm_clk_get(&pdev->dev, NULL);
1322 if (IS_ERR(bs->clk)) {
1323 err = PTR_ERR(bs->clk);
f4dc4abd
JQ
1324 if (err == -EPROBE_DEFER)
1325 dev_dbg(&pdev->dev, "could not get clk: %d\n", err);
1326 else
1327 dev_err(&pdev->dev, "could not get clk: %d\n", err);
5f336ea5 1328 goto out_controller_put;
f8043872
CB
1329 }
1330
ddf0e1c2 1331 bs->irq = platform_get_irq(pdev, 0);
f8043872 1332 if (bs->irq <= 0) {
f8043872 1333 err = bs->irq ? bs->irq : -ENODEV;
5f336ea5 1334 goto out_controller_put;
f8043872
CB
1335 }
1336
1337 clk_prepare_enable(bs->clk);
1338
6133fed0
PU
1339 err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1340 if (err)
1341 goto out_clk_disable;
ddf0e1c2
MS
1342
1343 /* initialise the hardware with the default polarities */
1344 bcm2835_wr(bs, BCM2835_SPI_CS,
1345 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1346
d62069c2
MB
1347 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1348 dev_name(&pdev->dev), ctlr);
f8043872
CB
1349 if (err) {
1350 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
666224b4 1351 goto out_dma_release;
f8043872
CB
1352 }
1353
9dd277ff 1354 err = spi_register_controller(ctlr);
f8043872 1355 if (err) {
5f336ea5
LW
1356 dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1357 err);
666224b4 1358 goto out_dma_release;
f8043872
CB
1359 }
1360
154f7da5
MS
1361 bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1362
f8043872
CB
1363 return 0;
1364
666224b4
PU
1365out_dma_release:
1366 bcm2835_dma_release(ctlr, bs);
f8043872
CB
1367out_clk_disable:
1368 clk_disable_unprepare(bs->clk);
5f336ea5
LW
1369out_controller_put:
1370 spi_controller_put(ctlr);
f8043872
CB
1371 return err;
1372}
1373
1374static int bcm2835_spi_remove(struct platform_device *pdev)
1375{
5f336ea5
LW
1376 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1377 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
f8043872 1378
154f7da5
MS
1379 bcm2835_debugfs_remove(bs);
1380
9dd277ff
LW
1381 spi_unregister_controller(ctlr);
1382
05897c71
LW
1383 bcm2835_dma_release(ctlr, bs);
1384
f8043872
CB
1385 /* Clear FIFOs, and disable the HW block */
1386 bcm2835_wr(bs, BCM2835_SPI_CS,
1387 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1388
1389 clk_disable_unprepare(bs->clk);
f8043872
CB
1390
1391 return 0;
1392}
1393
118eb0e5
FF
1394static void bcm2835_spi_shutdown(struct platform_device *pdev)
1395{
1396 int ret;
1397
1398 ret = bcm2835_spi_remove(pdev);
1399 if (ret)
1400 dev_err(&pdev->dev, "failed to shutdown\n");
1401}
1402
f8043872
CB
1403static const struct of_device_id bcm2835_spi_match[] = {
1404 { .compatible = "brcm,bcm2835-spi", },
1405 {}
1406};
1407MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1408
1409static struct platform_driver bcm2835_spi_driver = {
1410 .driver = {
1411 .name = DRV_NAME,
f8043872
CB
1412 .of_match_table = bcm2835_spi_match,
1413 },
1414 .probe = bcm2835_spi_probe,
1415 .remove = bcm2835_spi_remove,
118eb0e5 1416 .shutdown = bcm2835_spi_shutdown,
f8043872
CB
1417};
1418module_platform_driver(bcm2835_spi_driver);
1419
1420MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1421MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
22bf6cd2 1422MODULE_LICENSE("GPL");