]> git.ipfire.org Git - thirdparty/linux.git/blame - drivers/spi/spi-stm32.c
Merge tag 'printk-for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/printk...
[thirdparty/linux.git] / drivers / spi / spi-stm32.c
CommitLineData
d57a984f
CG
1// SPDX-License-Identifier: GPL-2.0
2//
3// STMicroelectronics STM32 SPI Controller driver (master mode only)
4//
5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
dcbe0d84
AD
8#include <linux/debugfs.h>
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dmaengine.h>
dcbe0d84
AD
12#include <linux/interrupt.h>
13#include <linux/iopoll.h>
14#include <linux/module.h>
15#include <linux/of_platform.h>
038ac869 16#include <linux/pm_runtime.h>
dcbe0d84
AD
17#include <linux/reset.h>
18#include <linux/spi/spi.h>
19
20#define DRIVER_NAME "spi_stm32"
21
00505edf
CG
22/* STM32F4 SPI registers */
23#define STM32F4_SPI_CR1 0x00
24#define STM32F4_SPI_CR2 0x04
25#define STM32F4_SPI_SR 0x08
26#define STM32F4_SPI_DR 0x0C
27#define STM32F4_SPI_I2SCFGR 0x1C
28
29/* STM32F4_SPI_CR1 bit fields */
30#define STM32F4_SPI_CR1_CPHA BIT(0)
31#define STM32F4_SPI_CR1_CPOL BIT(1)
32#define STM32F4_SPI_CR1_MSTR BIT(2)
33#define STM32F4_SPI_CR1_BR_SHIFT 3
34#define STM32F4_SPI_CR1_BR GENMASK(5, 3)
35#define STM32F4_SPI_CR1_SPE BIT(6)
36#define STM32F4_SPI_CR1_LSBFRST BIT(7)
37#define STM32F4_SPI_CR1_SSI BIT(8)
38#define STM32F4_SPI_CR1_SSM BIT(9)
39#define STM32F4_SPI_CR1_RXONLY BIT(10)
40#define STM32F4_SPI_CR1_DFF BIT(11)
41#define STM32F4_SPI_CR1_CRCNEXT BIT(12)
42#define STM32F4_SPI_CR1_CRCEN BIT(13)
43#define STM32F4_SPI_CR1_BIDIOE BIT(14)
44#define STM32F4_SPI_CR1_BIDIMODE BIT(15)
45#define STM32F4_SPI_CR1_BR_MIN 0
46#define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
47
48/* STM32F4_SPI_CR2 bit fields */
49#define STM32F4_SPI_CR2_RXDMAEN BIT(0)
50#define STM32F4_SPI_CR2_TXDMAEN BIT(1)
51#define STM32F4_SPI_CR2_SSOE BIT(2)
52#define STM32F4_SPI_CR2_FRF BIT(4)
53#define STM32F4_SPI_CR2_ERRIE BIT(5)
54#define STM32F4_SPI_CR2_RXNEIE BIT(6)
55#define STM32F4_SPI_CR2_TXEIE BIT(7)
56
57/* STM32F4_SPI_SR bit fields */
58#define STM32F4_SPI_SR_RXNE BIT(0)
59#define STM32F4_SPI_SR_TXE BIT(1)
60#define STM32F4_SPI_SR_CHSIDE BIT(2)
61#define STM32F4_SPI_SR_UDR BIT(3)
62#define STM32F4_SPI_SR_CRCERR BIT(4)
63#define STM32F4_SPI_SR_MODF BIT(5)
64#define STM32F4_SPI_SR_OVR BIT(6)
65#define STM32F4_SPI_SR_BSY BIT(7)
66#define STM32F4_SPI_SR_FRE BIT(8)
67
68/* STM32F4_SPI_I2SCFGR bit fields */
69#define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
70
71/* STM32F4 SPI Baud Rate min/max divisor */
72#define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
73#define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
74
86026630
CG
75/* STM32H7 SPI registers */
76#define STM32H7_SPI_CR1 0x00
77#define STM32H7_SPI_CR2 0x04
78#define STM32H7_SPI_CFG1 0x08
79#define STM32H7_SPI_CFG2 0x0C
80#define STM32H7_SPI_IER 0x10
81#define STM32H7_SPI_SR 0x14
82#define STM32H7_SPI_IFCR 0x18
83#define STM32H7_SPI_TXDR 0x20
84#define STM32H7_SPI_RXDR 0x30
85#define STM32H7_SPI_I2SCFGR 0x50
86
87/* STM32H7_SPI_CR1 bit fields */
88#define STM32H7_SPI_CR1_SPE BIT(0)
89#define STM32H7_SPI_CR1_MASRX BIT(8)
90#define STM32H7_SPI_CR1_CSTART BIT(9)
91#define STM32H7_SPI_CR1_CSUSP BIT(10)
92#define STM32H7_SPI_CR1_HDDIR BIT(11)
93#define STM32H7_SPI_CR1_SSI BIT(12)
94
95/* STM32H7_SPI_CR2 bit fields */
96#define STM32H7_SPI_CR2_TSIZE_SHIFT 0
97#define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
98
99/* STM32H7_SPI_CFG1 bit fields */
100#define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
101#define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
102#define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
103#define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
104#define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
105#define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
106#define STM32H7_SPI_CFG1_MBR_SHIFT 28
107#define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
108#define STM32H7_SPI_CFG1_MBR_MIN 0
109#define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
110
111/* STM32H7_SPI_CFG2 bit fields */
112#define STM32H7_SPI_CFG2_MIDI_SHIFT 4
113#define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
114#define STM32H7_SPI_CFG2_COMM_SHIFT 17
115#define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
116#define STM32H7_SPI_CFG2_SP_SHIFT 19
117#define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
118#define STM32H7_SPI_CFG2_MASTER BIT(22)
119#define STM32H7_SPI_CFG2_LSBFRST BIT(23)
120#define STM32H7_SPI_CFG2_CPHA BIT(24)
121#define STM32H7_SPI_CFG2_CPOL BIT(25)
122#define STM32H7_SPI_CFG2_SSM BIT(26)
123#define STM32H7_SPI_CFG2_AFCNTR BIT(31)
124
125/* STM32H7_SPI_IER bit fields */
126#define STM32H7_SPI_IER_RXPIE BIT(0)
127#define STM32H7_SPI_IER_TXPIE BIT(1)
128#define STM32H7_SPI_IER_DXPIE BIT(2)
129#define STM32H7_SPI_IER_EOTIE BIT(3)
130#define STM32H7_SPI_IER_TXTFIE BIT(4)
131#define STM32H7_SPI_IER_OVRIE BIT(6)
132#define STM32H7_SPI_IER_MODFIE BIT(9)
133#define STM32H7_SPI_IER_ALL GENMASK(10, 0)
134
135/* STM32H7_SPI_SR bit fields */
136#define STM32H7_SPI_SR_RXP BIT(0)
137#define STM32H7_SPI_SR_TXP BIT(1)
138#define STM32H7_SPI_SR_EOT BIT(3)
139#define STM32H7_SPI_SR_OVR BIT(6)
140#define STM32H7_SPI_SR_MODF BIT(9)
141#define STM32H7_SPI_SR_SUSP BIT(11)
142#define STM32H7_SPI_SR_RXPLVL_SHIFT 13
143#define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
144#define STM32H7_SPI_SR_RXWNE BIT(15)
145
146/* STM32H7_SPI_IFCR bit fields */
147#define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
148
149/* STM32H7_SPI_I2SCFGR bit fields */
150#define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
151
152/* STM32H7 SPI Master Baud Rate min/max divisor */
153#define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
154#define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
dcbe0d84 155
9d5fce16
CG
156/* STM32H7 SPI Communication mode */
157#define STM32H7_SPI_FULL_DUPLEX 0
158#define STM32H7_SPI_SIMPLEX_TX 1
159#define STM32H7_SPI_SIMPLEX_RX 2
160#define STM32H7_SPI_HALF_DUPLEX 3
161
162/* SPI Communication type */
dcbe0d84
AD
163#define SPI_FULL_DUPLEX 0
164#define SPI_SIMPLEX_TX 1
165#define SPI_SIMPLEX_RX 2
9d5fce16
CG
166#define SPI_3WIRE_TX 3
167#define SPI_3WIRE_RX 4
dcbe0d84
AD
168
169#define SPI_1HZ_NS 1000000000
170
00505edf
CG
171/*
172 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
173 * without fifo buffers.
174 */
175#define SPI_DMA_MIN_BYTES 16
176
55166853 177/**
1c52be8b 178 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
55166853
CG
179 * @reg: register offset
180 * @mask: bitfield mask
181 * @shift: left shift
182 */
183struct stm32_spi_reg {
184 int reg;
185 int mask;
186 int shift;
187};
188
189/**
1c52be8b
AV
190 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
191 * @en: enable register and SPI enable bit
192 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
193 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
194 * @cpol: clock polarity register and polarity bit
195 * @cpha: clock phase register and phase bit
196 * @lsb_first: LSB transmitted first register and bit
197 * @br: baud rate register and bitfields
198 * @rx: SPI RX data register
199 * @tx: SPI TX data register
55166853
CG
200 */
201struct stm32_spi_regspec {
202 const struct stm32_spi_reg en;
203 const struct stm32_spi_reg dma_rx_en;
204 const struct stm32_spi_reg dma_tx_en;
205 const struct stm32_spi_reg cpol;
206 const struct stm32_spi_reg cpha;
207 const struct stm32_spi_reg lsb_first;
208 const struct stm32_spi_reg br;
209 const struct stm32_spi_reg rx;
210 const struct stm32_spi_reg tx;
211};
212
213struct stm32_spi;
214
215/**
1c52be8b 216 * struct stm32_spi_cfg - stm32 compatible configuration data
55166853
CG
217 * @regs: registers descriptions
218 * @get_fifo_size: routine to get fifo size
219 * @get_bpw_mask: routine to get bits per word mask
220 * @disable: routine to disable controller
221 * @config: routine to configure controller as SPI Master
222 * @set_bpw: routine to configure registers to for bits per word
223 * @set_mode: routine to configure registers to desired mode
224 * @set_data_idleness: optional routine to configure registers to desired idle
225 * time between frames (if driver has this functionality)
1c52be8b 226 * @set_number_of_data: optional routine to configure registers to desired
55166853
CG
227 * number of data (if driver has this functionality)
228 * @can_dma: routine to determine if the transfer is eligible for DMA use
229 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
230 * using DMA
1c52be8b
AV
231 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
232 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
55166853
CG
233 * @transfer_one_irq: routine to configure interrupts for driver
234 * @irq_handler_event: Interrupt handler for SPI controller events
235 * @irq_handler_thread: thread of interrupt handler for SPI controller
236 * @baud_rate_div_min: minimum baud rate divisor
237 * @baud_rate_div_max: maximum baud rate divisor
238 * @has_fifo: boolean to know if fifo is used for driver
239 * @has_startbit: boolean to know if start bit is used to start transfer
240 */
241struct stm32_spi_cfg {
242 const struct stm32_spi_regspec *regs;
243 int (*get_fifo_size)(struct stm32_spi *spi);
244 int (*get_bpw_mask)(struct stm32_spi *spi);
245 void (*disable)(struct stm32_spi *spi);
246 int (*config)(struct stm32_spi *spi);
247 void (*set_bpw)(struct stm32_spi *spi);
248 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
249 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
250 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
251 void (*transfer_one_dma_start)(struct stm32_spi *spi);
252 void (*dma_rx_cb)(void *data);
253 void (*dma_tx_cb)(void *data);
254 int (*transfer_one_irq)(struct stm32_spi *spi);
255 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
256 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
257 unsigned int baud_rate_div_min;
258 unsigned int baud_rate_div_max;
259 bool has_fifo;
260};
261
dcbe0d84
AD
262/**
263 * struct stm32_spi - private data of the SPI controller
264 * @dev: driver model representation of the controller
265 * @master: controller master interface
55166853 266 * @cfg: compatible configuration data
dcbe0d84
AD
267 * @base: virtual memory area
268 * @clk: hw kernel clock feeding the SPI clock generator
269 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
270 * @rst: SPI controller reset line
271 * @lock: prevent I/O concurrent access
272 * @irq: SPI controller interrupt line
273 * @fifo_size: size of the embedded fifo in bytes
274 * @cur_midi: master inter-data idleness in ns
275 * @cur_speed: speed configured in Hz
276 * @cur_bpw: number of bits in a single SPI data frame
277 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
278 * @cur_comm: SPI communication mode
279 * @cur_xferlen: current transfer length in bytes
280 * @cur_usedma: boolean to know if dma is used in current transfer
281 * @tx_buf: data to be written, or NULL
282 * @rx_buf: data to be read, or NULL
283 * @tx_len: number of data to be written in bytes
284 * @rx_len: number of data to be read in bytes
285 * @dma_tx: dma channel for TX transfer
286 * @dma_rx: dma channel for RX transfer
287 * @phys_addr: SPI registers physical base address
288 */
289struct stm32_spi {
290 struct device *dev;
291 struct spi_master *master;
55166853 292 const struct stm32_spi_cfg *cfg;
dcbe0d84
AD
293 void __iomem *base;
294 struct clk *clk;
295 u32 clk_rate;
296 struct reset_control *rst;
297 spinlock_t lock; /* prevent I/O concurrent access */
298 int irq;
299 unsigned int fifo_size;
300
301 unsigned int cur_midi;
302 unsigned int cur_speed;
303 unsigned int cur_bpw;
304 unsigned int cur_fthlv;
305 unsigned int cur_comm;
306 unsigned int cur_xferlen;
307 bool cur_usedma;
308
309 const void *tx_buf;
310 void *rx_buf;
311 int tx_len;
312 int rx_len;
313 struct dma_chan *dma_tx;
314 struct dma_chan *dma_rx;
315 dma_addr_t phys_addr;
316};
317
00505edf
CG
318static const struct stm32_spi_regspec stm32f4_spi_regspec = {
319 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
320
321 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
322 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
323
324 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
325 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
326 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
327 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
328
329 .rx = { STM32F4_SPI_DR },
330 .tx = { STM32F4_SPI_DR },
331};
332
55166853
CG
333static const struct stm32_spi_regspec stm32h7_spi_regspec = {
334 /* SPI data transfer is enabled but spi_ker_ck is idle.
335 * CFG1 and CFG2 registers are write protected when SPE is enabled.
336 */
337 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
338
339 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
340 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
341
342 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
343 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
344 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
345 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
346 STM32H7_SPI_CFG1_MBR_SHIFT },
347
348 .rx = { STM32H7_SPI_RXDR },
349 .tx = { STM32H7_SPI_TXDR },
350};
351
dcbe0d84
AD
352static inline void stm32_spi_set_bits(struct stm32_spi *spi,
353 u32 offset, u32 bits)
354{
355 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
356 spi->base + offset);
357}
358
359static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
360 u32 offset, u32 bits)
361{
362 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
363 spi->base + offset);
364}
365
366/**
55166853 367 * stm32h7_spi_get_fifo_size - Return fifo size
dcbe0d84
AD
368 * @spi: pointer to the spi controller data structure
369 */
55166853 370static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
dcbe0d84
AD
371{
372 unsigned long flags;
373 u32 count = 0;
374
375 spin_lock_irqsave(&spi->lock, flags);
376
86026630 377 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
dcbe0d84 378
86026630
CG
379 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
380 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
dcbe0d84 381
86026630 382 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
dcbe0d84
AD
383
384 spin_unlock_irqrestore(&spi->lock, flags);
385
386 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
387
388 return count;
389}
390
00505edf
CG
391/**
392 * stm32f4_spi_get_bpw_mask - Return bits per word mask
393 * @spi: pointer to the spi controller data structure
394 */
395static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
396{
397 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
398 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
399}
400
dcbe0d84 401/**
55166853 402 * stm32h7_spi_get_bpw_mask - Return bits per word mask
dcbe0d84
AD
403 * @spi: pointer to the spi controller data structure
404 */
55166853 405static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
dcbe0d84
AD
406{
407 unsigned long flags;
408 u32 cfg1, max_bpw;
409
410 spin_lock_irqsave(&spi->lock, flags);
411
412 /*
413 * The most significant bit at DSIZE bit field is reserved when the
414 * maximum data size of periperal instances is limited to 16-bit
415 */
86026630 416 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
dcbe0d84 417
86026630
CG
418 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
419 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
420 STM32H7_SPI_CFG1_DSIZE_SHIFT;
dcbe0d84
AD
421 max_bpw += 1;
422
423 spin_unlock_irqrestore(&spi->lock, flags);
424
425 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
426
427 return SPI_BPW_RANGE_MASK(4, max_bpw);
428}
429
430/**
9d5fce16 431 * stm32_spi_prepare_mbr - Determine baud rate divisor value
dcbe0d84
AD
432 * @spi: pointer to the spi controller data structure
433 * @speed_hz: requested speed
9d5fce16
CG
434 * @min_div: minimum baud rate divisor
435 * @max_div: maximum baud rate divisor
dcbe0d84 436 *
9d5fce16 437 * Return baud rate divisor value in case of success or -EINVAL
dcbe0d84 438 */
9d5fce16
CG
439static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
440 u32 min_div, u32 max_div)
dcbe0d84
AD
441{
442 u32 div, mbrdiv;
443
444 div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
445
446 /*
447 * SPI framework set xfer->speed_hz to master->max_speed_hz if
448 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
449 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
450 * no need to check it there.
451 * However, we need to ensure the following calculations.
452 */
9d5fce16 453 if ((div < min_div) || (div > max_div))
dcbe0d84
AD
454 return -EINVAL;
455
456 /* Determine the first power of 2 greater than or equal to div */
128ebb89
AD
457 if (div & (div - 1))
458 mbrdiv = fls(div);
459 else
460 mbrdiv = fls(div) - 1;
dcbe0d84
AD
461
462 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
463
464 return mbrdiv - 1;
465}
466
467/**
55166853 468 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
dcbe0d84
AD
469 * @spi: pointer to the spi controller data structure
470 */
55166853 471static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
dcbe0d84
AD
472{
473 u32 fthlv, half_fifo;
474
475 /* data packet should not exceed 1/2 of fifo space */
476 half_fifo = (spi->fifo_size / 2);
477
128ebb89
AD
478 if (spi->cur_bpw <= 8)
479 fthlv = half_fifo;
480 else if (spi->cur_bpw <= 16)
481 fthlv = half_fifo / 2;
482 else
483 fthlv = half_fifo / 4;
dcbe0d84
AD
484
485 /* align packet size with data registers access */
486 if (spi->cur_bpw > 8)
487 fthlv -= (fthlv % 2); /* multiple of 2 */
488 else
489 fthlv -= (fthlv % 4); /* multiple of 4 */
490
491 return fthlv;
492}
493
00505edf
CG
494/**
495 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
496 * @spi: pointer to the spi controller data structure
497 *
498 * Read from tx_buf depends on remaining bytes to avoid to read beyond
499 * tx_buf end.
500 */
501static void stm32f4_spi_write_tx(struct stm32_spi *spi)
502{
503 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
504 STM32F4_SPI_SR_TXE)) {
505 u32 offs = spi->cur_xferlen - spi->tx_len;
506
507 if (spi->cur_bpw == 16) {
508 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
509
510 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
511 spi->tx_len -= sizeof(u16);
512 } else {
513 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
514
515 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
516 spi->tx_len -= sizeof(u8);
517 }
518 }
519
520 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
521}
522
dcbe0d84 523/**
55166853 524 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
dcbe0d84
AD
525 * @spi: pointer to the spi controller data structure
526 *
527 * Read from tx_buf depends on remaining bytes to avoid to read beyond
528 * tx_buf end.
529 */
55166853 530static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
dcbe0d84
AD
531{
532 while ((spi->tx_len > 0) &&
86026630
CG
533 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
534 STM32H7_SPI_SR_TXP)) {
dcbe0d84
AD
535 u32 offs = spi->cur_xferlen - spi->tx_len;
536
537 if (spi->tx_len >= sizeof(u32)) {
538 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
539
86026630 540 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
dcbe0d84
AD
541 spi->tx_len -= sizeof(u32);
542 } else if (spi->tx_len >= sizeof(u16)) {
543 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
544
86026630 545 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
dcbe0d84
AD
546 spi->tx_len -= sizeof(u16);
547 } else {
548 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
549
86026630 550 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
dcbe0d84
AD
551 spi->tx_len -= sizeof(u8);
552 }
553 }
554
555 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
556}
557
00505edf
CG
558/**
559 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
560 * @spi: pointer to the spi controller data structure
561 *
562 * Write in rx_buf depends on remaining bytes to avoid to write beyond
563 * rx_buf end.
564 */
565static void stm32f4_spi_read_rx(struct stm32_spi *spi)
566{
567 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
568 STM32F4_SPI_SR_RXNE)) {
569 u32 offs = spi->cur_xferlen - spi->rx_len;
570
571 if (spi->cur_bpw == 16) {
572 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
573
574 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
575 spi->rx_len -= sizeof(u16);
576 } else {
577 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
578
579 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
580 spi->rx_len -= sizeof(u8);
581 }
582 }
583
584 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
585}
586
dcbe0d84 587/**
55166853 588 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
dcbe0d84 589 * @spi: pointer to the spi controller data structure
1c52be8b 590 * @flush: boolean indicating that FIFO should be flushed
dcbe0d84
AD
591 *
592 * Write in rx_buf depends on remaining bytes to avoid to write beyond
593 * rx_buf end.
594 */
55166853 595static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
dcbe0d84 596{
86026630
CG
597 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
599 STM32H7_SPI_SR_RXPLVL_SHIFT;
dcbe0d84
AD
600
601 while ((spi->rx_len > 0) &&
86026630
CG
602 ((sr & STM32H7_SPI_SR_RXP) ||
603 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
dcbe0d84
AD
604 u32 offs = spi->cur_xferlen - spi->rx_len;
605
606 if ((spi->rx_len >= sizeof(u32)) ||
86026630 607 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
dcbe0d84
AD
608 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
609
86026630 610 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
dcbe0d84
AD
611 spi->rx_len -= sizeof(u32);
612 } else if ((spi->rx_len >= sizeof(u16)) ||
613 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
614 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
615
86026630 616 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
dcbe0d84
AD
617 spi->rx_len -= sizeof(u16);
618 } else {
619 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
620
86026630 621 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
dcbe0d84
AD
622 spi->rx_len -= sizeof(u8);
623 }
624
86026630
CG
625 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
626 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
627 STM32H7_SPI_SR_RXPLVL_SHIFT;
dcbe0d84
AD
628 }
629
630 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
631 flush ? "(flush)" : "", spi->rx_len);
632}
633
634/**
635 * stm32_spi_enable - Enable SPI controller
636 * @spi: pointer to the spi controller data structure
dcbe0d84
AD
637 */
638static void stm32_spi_enable(struct stm32_spi *spi)
639{
640 dev_dbg(spi->dev, "enable controller\n");
641
55166853
CG
642 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643 spi->cfg->regs->en.mask);
dcbe0d84
AD
644}
645
00505edf
CG
646/**
647 * stm32f4_spi_disable - Disable SPI controller
648 * @spi: pointer to the spi controller data structure
649 */
650static void stm32f4_spi_disable(struct stm32_spi *spi)
651{
652 unsigned long flags;
653 u32 sr;
654
655 dev_dbg(spi->dev, "disable controller\n");
656
657 spin_lock_irqsave(&spi->lock, flags);
658
659 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660 STM32F4_SPI_CR1_SPE)) {
661 spin_unlock_irqrestore(&spi->lock, flags);
662 return;
663 }
664
665 /* Disable interrupts */
666 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667 STM32F4_SPI_CR2_RXNEIE |
668 STM32F4_SPI_CR2_ERRIE);
669
670 /* Wait until BSY = 0 */
671 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672 sr, !(sr & STM32F4_SPI_SR_BSY),
673 10, 100000) < 0) {
674 dev_warn(spi->dev, "disabling condition timeout\n");
675 }
676
677 if (spi->cur_usedma && spi->dma_tx)
678 dmaengine_terminate_all(spi->dma_tx);
679 if (spi->cur_usedma && spi->dma_rx)
680 dmaengine_terminate_all(spi->dma_rx);
681
682 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
683
684 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685 STM32F4_SPI_CR2_RXDMAEN);
686
687 /* Sequence to clear OVR flag */
688 readl_relaxed(spi->base + STM32F4_SPI_DR);
689 readl_relaxed(spi->base + STM32F4_SPI_SR);
690
691 spin_unlock_irqrestore(&spi->lock, flags);
692}
693
dcbe0d84 694/**
55166853 695 * stm32h7_spi_disable - Disable SPI controller
dcbe0d84
AD
696 * @spi: pointer to the spi controller data structure
697 *
698 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
55166853 699 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
dcbe0d84 700 * RX-Fifo.
55166853
CG
701 * Normally, if TSIZE has been configured, we should relax the hardware at the
702 * reception of the EOT interrupt. But in case of error, EOT will not be
703 * raised. So the subsystem unprepare_message call allows us to properly
704 * complete the transfer from an hardware point of view.
dcbe0d84 705 */
55166853 706static void stm32h7_spi_disable(struct stm32_spi *spi)
dcbe0d84
AD
707{
708 unsigned long flags;
709 u32 cr1, sr;
710
711 dev_dbg(spi->dev, "disable controller\n");
712
713 spin_lock_irqsave(&spi->lock, flags);
714
86026630 715 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
dcbe0d84 716
86026630 717 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
dcbe0d84
AD
718 spin_unlock_irqrestore(&spi->lock, flags);
719 return;
720 }
721
722 /* Wait on EOT or suspend the flow */
86026630
CG
723 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
724 sr, !(sr & STM32H7_SPI_SR_EOT),
dcbe0d84 725 10, 100000) < 0) {
86026630
CG
726 if (cr1 & STM32H7_SPI_CR1_CSTART) {
727 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
728 spi->base + STM32H7_SPI_CR1);
dcbe0d84 729 if (readl_relaxed_poll_timeout_atomic(
86026630
CG
730 spi->base + STM32H7_SPI_SR,
731 sr, !(sr & STM32H7_SPI_SR_SUSP),
dcbe0d84
AD
732 10, 100000) < 0)
733 dev_warn(spi->dev,
734 "Suspend request timeout\n");
735 }
736 }
737
738 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
55166853 739 stm32h7_spi_read_rxfifo(spi, true);
dcbe0d84 740
2cbee7f8 741 if (spi->cur_usedma && spi->dma_tx)
dcbe0d84 742 dmaengine_terminate_all(spi->dma_tx);
2cbee7f8 743 if (spi->cur_usedma && spi->dma_rx)
dcbe0d84
AD
744 dmaengine_terminate_all(spi->dma_rx);
745
86026630 746 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
dcbe0d84 747
86026630
CG
748 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
749 STM32H7_SPI_CFG1_RXDMAEN);
dcbe0d84
AD
750
751 /* Disable interrupts and clear status flags */
86026630
CG
752 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
753 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
dcbe0d84
AD
754
755 spin_unlock_irqrestore(&spi->lock, flags);
756}
757
758/**
759 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
1c52be8b
AV
760 * @master: controller master interface
761 * @spi_dev: pointer to the spi device
762 * @transfer: pointer to spi transfer
dcbe0d84 763 *
00505edf
CG
764 * If driver has fifo and the current transfer size is greater than fifo size,
765 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
dcbe0d84
AD
766 */
767static bool stm32_spi_can_dma(struct spi_master *master,
768 struct spi_device *spi_dev,
769 struct spi_transfer *transfer)
770{
00505edf 771 unsigned int dma_size;
dcbe0d84
AD
772 struct stm32_spi *spi = spi_master_get_devdata(master);
773
00505edf
CG
774 if (spi->cfg->has_fifo)
775 dma_size = spi->fifo_size;
776 else
777 dma_size = SPI_DMA_MIN_BYTES;
778
dcbe0d84 779 dev_dbg(spi->dev, "%s: %s\n", __func__,
00505edf 780 (transfer->len > dma_size) ? "true" : "false");
dcbe0d84 781
00505edf
CG
782 return (transfer->len > dma_size);
783}
784
785/**
786 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
787 * @irq: interrupt line
788 * @dev_id: SPI controller master interface
789 */
790static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
791{
792 struct spi_master *master = dev_id;
793 struct stm32_spi *spi = spi_master_get_devdata(master);
794 u32 sr, mask = 0;
795 unsigned long flags;
796 bool end = false;
797
798 spin_lock_irqsave(&spi->lock, flags);
799
800 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
801 /*
802 * BSY flag is not handled in interrupt but it is normal behavior when
803 * this flag is set.
804 */
805 sr &= ~STM32F4_SPI_SR_BSY;
806
807 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
808 spi->cur_comm == SPI_3WIRE_TX)) {
809 /* OVR flag shouldn't be handled for TX only mode */
810 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
811 mask |= STM32F4_SPI_SR_TXE;
812 }
813
61367d0b 814 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
815 spi->cur_comm == SPI_SIMPLEX_RX ||
816 spi->cur_comm == SPI_3WIRE_RX)) {
00505edf
CG
817 /* TXE flag is set and is handled when RXNE flag occurs */
818 sr &= ~STM32F4_SPI_SR_TXE;
819 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
820 }
821
822 if (!(sr & mask)) {
823 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
824 spin_unlock_irqrestore(&spi->lock, flags);
825 return IRQ_NONE;
826 }
827
828 if (sr & STM32F4_SPI_SR_OVR) {
829 dev_warn(spi->dev, "Overrun: received value discarded\n");
830
831 /* Sequence to clear OVR flag */
832 readl_relaxed(spi->base + STM32F4_SPI_DR);
833 readl_relaxed(spi->base + STM32F4_SPI_SR);
834
835 /*
836 * If overrun is detected, it means that something went wrong,
837 * so stop the current transfer. Transfer can wait for next
838 * RXNE but DR is already read and end never happens.
839 */
840 end = true;
841 goto end_irq;
842 }
843
844 if (sr & STM32F4_SPI_SR_TXE) {
845 if (spi->tx_buf)
846 stm32f4_spi_write_tx(spi);
847 if (spi->tx_len == 0)
848 end = true;
849 }
850
851 if (sr & STM32F4_SPI_SR_RXNE) {
852 stm32f4_spi_read_rx(spi);
853 if (spi->rx_len == 0)
854 end = true;
61367d0b 855 else if (spi->tx_buf)/* Load data for discontinuous mode */
00505edf
CG
856 stm32f4_spi_write_tx(spi);
857 }
858
859end_irq:
860 if (end) {
861 /* Immediately disable interrupts to do not generate new one */
862 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
863 STM32F4_SPI_CR2_TXEIE |
864 STM32F4_SPI_CR2_RXNEIE |
865 STM32F4_SPI_CR2_ERRIE);
866 spin_unlock_irqrestore(&spi->lock, flags);
867 return IRQ_WAKE_THREAD;
868 }
869
870 spin_unlock_irqrestore(&spi->lock, flags);
871 return IRQ_HANDLED;
872}
873
874/**
875 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
876 * @irq: interrupt line
877 * @dev_id: SPI controller master interface
878 */
879static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
880{
881 struct spi_master *master = dev_id;
882 struct stm32_spi *spi = spi_master_get_devdata(master);
883
884 spi_finalize_current_transfer(master);
885 stm32f4_spi_disable(spi);
886
887 return IRQ_HANDLED;
dcbe0d84
AD
888}
889
890/**
55166853 891 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
dcbe0d84
AD
892 * @irq: interrupt line
893 * @dev_id: SPI controller master interface
894 */
55166853 895static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
dcbe0d84
AD
896{
897 struct spi_master *master = dev_id;
898 struct stm32_spi *spi = spi_master_get_devdata(master);
899 u32 sr, ier, mask;
900 unsigned long flags;
901 bool end = false;
902
903 spin_lock_irqsave(&spi->lock, flags);
904
86026630
CG
905 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
906 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
dcbe0d84
AD
907
908 mask = ier;
909 /* EOTIE is triggered on EOT, SUSP and TXC events. */
86026630 910 mask |= STM32H7_SPI_SR_SUSP;
dcbe0d84
AD
911 /*
912 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
913 * Full-Duplex, need to poll RXP event to know if there are remaining
914 * data, before disabling SPI.
915 */
128ebb89 916 if (spi->rx_buf && !spi->cur_usedma)
86026630 917 mask |= STM32H7_SPI_SR_RXP;
dcbe0d84
AD
918
919 if (!(sr & mask)) {
920 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
921 sr, ier);
922 spin_unlock_irqrestore(&spi->lock, flags);
923 return IRQ_NONE;
924 }
925
86026630 926 if (sr & STM32H7_SPI_SR_SUSP) {
dcbe0d84
AD
927 dev_warn(spi->dev, "Communication suspended\n");
928 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
55166853 929 stm32h7_spi_read_rxfifo(spi, false);
c67ad368
AD
930 /*
931 * If communication is suspended while using DMA, it means
932 * that something went wrong, so stop the current transfer
933 */
934 if (spi->cur_usedma)
935 end = true;
dcbe0d84
AD
936 }
937
86026630 938 if (sr & STM32H7_SPI_SR_MODF) {
dcbe0d84
AD
939 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
940 end = true;
941 }
942
86026630 943 if (sr & STM32H7_SPI_SR_OVR) {
dcbe0d84
AD
944 dev_warn(spi->dev, "Overrun: received value discarded\n");
945 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
55166853 946 stm32h7_spi_read_rxfifo(spi, false);
c67ad368
AD
947 /*
948 * If overrun is detected while using DMA, it means that
949 * something went wrong, so stop the current transfer
950 */
951 if (spi->cur_usedma)
952 end = true;
dcbe0d84
AD
953 }
954
86026630 955 if (sr & STM32H7_SPI_SR_EOT) {
dcbe0d84 956 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
55166853 957 stm32h7_spi_read_rxfifo(spi, true);
dcbe0d84
AD
958 end = true;
959 }
960
86026630 961 if (sr & STM32H7_SPI_SR_TXP)
dcbe0d84 962 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
55166853 963 stm32h7_spi_write_txfifo(spi);
dcbe0d84 964
86026630 965 if (sr & STM32H7_SPI_SR_RXP)
dcbe0d84 966 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
55166853 967 stm32h7_spi_read_rxfifo(spi, false);
dcbe0d84 968
86026630 969 writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
dcbe0d84
AD
970
971 spin_unlock_irqrestore(&spi->lock, flags);
972
973 if (end) {
974 spi_finalize_current_transfer(master);
55166853 975 stm32h7_spi_disable(spi);
dcbe0d84
AD
976 }
977
978 return IRQ_HANDLED;
979}
980
dcbe0d84
AD
981/**
982 * stm32_spi_prepare_msg - set up the controller to transfer a single message
1c52be8b
AV
983 * @master: controller master interface
984 * @msg: pointer to spi message
dcbe0d84
AD
985 */
986static int stm32_spi_prepare_msg(struct spi_master *master,
987 struct spi_message *msg)
988{
989 struct stm32_spi *spi = spi_master_get_devdata(master);
990 struct spi_device *spi_dev = msg->spi;
991 struct device_node *np = spi_dev->dev.of_node;
992 unsigned long flags;
55166853 993 u32 clrb = 0, setb = 0;
dcbe0d84
AD
994
995 /* SPI slave device may need time between data frames */
996 spi->cur_midi = 0;
042c1c60 997 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
dcbe0d84
AD
998 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
999
1000 if (spi_dev->mode & SPI_CPOL)
55166853 1001 setb |= spi->cfg->regs->cpol.mask;
dcbe0d84 1002 else
55166853 1003 clrb |= spi->cfg->regs->cpol.mask;
dcbe0d84
AD
1004
1005 if (spi_dev->mode & SPI_CPHA)
55166853 1006 setb |= spi->cfg->regs->cpha.mask;
dcbe0d84 1007 else
55166853 1008 clrb |= spi->cfg->regs->cpha.mask;
dcbe0d84
AD
1009
1010 if (spi_dev->mode & SPI_LSB_FIRST)
55166853 1011 setb |= spi->cfg->regs->lsb_first.mask;
dcbe0d84 1012 else
55166853 1013 clrb |= spi->cfg->regs->lsb_first.mask;
dcbe0d84
AD
1014
1015 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1016 spi_dev->mode & SPI_CPOL,
1017 spi_dev->mode & SPI_CPHA,
1018 spi_dev->mode & SPI_LSB_FIRST,
1019 spi_dev->mode & SPI_CS_HIGH);
1020
1021 spin_lock_irqsave(&spi->lock, flags);
1022
55166853
CG
1023 /* CPOL, CPHA and LSB FIRST bits have common register */
1024 if (clrb || setb)
dcbe0d84 1025 writel_relaxed(
55166853
CG
1026 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1027 ~clrb) | setb,
1028 spi->base + spi->cfg->regs->cpol.reg);
dcbe0d84
AD
1029
1030 spin_unlock_irqrestore(&spi->lock, flags);
1031
1032 return 0;
1033}
1034
00505edf
CG
1035/**
1036 * stm32f4_spi_dma_tx_cb - dma callback
1c52be8b 1037 * @data: pointer to the spi controller data structure
00505edf
CG
1038 *
1039 * DMA callback is called when the transfer is complete for DMA TX channel.
1040 */
1041static void stm32f4_spi_dma_tx_cb(void *data)
1042{
1043 struct stm32_spi *spi = data;
1044
1045 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1046 spi_finalize_current_transfer(spi->master);
1047 stm32f4_spi_disable(spi);
1048 }
1049}
1050
1051/**
1052 * stm32f4_spi_dma_rx_cb - dma callback
1c52be8b 1053 * @data: pointer to the spi controller data structure
00505edf
CG
1054 *
1055 * DMA callback is called when the transfer is complete for DMA RX channel.
1056 */
1057static void stm32f4_spi_dma_rx_cb(void *data)
1058{
1059 struct stm32_spi *spi = data;
1060
1061 spi_finalize_current_transfer(spi->master);
1062 stm32f4_spi_disable(spi);
1063}
1064
dcbe0d84 1065/**
55166853 1066 * stm32h7_spi_dma_cb - dma callback
1c52be8b 1067 * @data: pointer to the spi controller data structure
dcbe0d84
AD
1068 *
1069 * DMA callback is called when the transfer is complete or when an error
1070 * occurs. If the transfer is complete, EOT flag is raised.
1071 */
55166853 1072static void stm32h7_spi_dma_cb(void *data)
dcbe0d84
AD
1073{
1074 struct stm32_spi *spi = data;
1075 unsigned long flags;
1076 u32 sr;
1077
1078 spin_lock_irqsave(&spi->lock, flags);
1079
86026630 1080 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
dcbe0d84
AD
1081
1082 spin_unlock_irqrestore(&spi->lock, flags);
1083
86026630 1084 if (!(sr & STM32H7_SPI_SR_EOT))
c67ad368 1085 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
dcbe0d84 1086
c67ad368 1087 /* Now wait for EOT, or SUSP or OVR in case of error */
dcbe0d84
AD
1088}
1089
1090/**
1091 * stm32_spi_dma_config - configure dma slave channel depending on current
1092 * transfer bits_per_word.
1c52be8b
AV
1093 * @spi: pointer to the spi controller data structure
1094 * @dma_conf: pointer to the dma_slave_config structure
1095 * @dir: direction of the dma transfer
dcbe0d84
AD
1096 */
1097static void stm32_spi_dma_config(struct stm32_spi *spi,
1098 struct dma_slave_config *dma_conf,
1099 enum dma_transfer_direction dir)
1100{
1101 enum dma_slave_buswidth buswidth;
1102 u32 maxburst;
1103
128ebb89
AD
1104 if (spi->cur_bpw <= 8)
1105 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1106 else if (spi->cur_bpw <= 16)
1107 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1108 else
1109 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
dcbe0d84 1110
00505edf
CG
1111 if (spi->cfg->has_fifo) {
1112 /* Valid for DMA Half or Full Fifo threshold */
1113 if (spi->cur_fthlv == 2)
1114 maxburst = 1;
1115 else
1116 maxburst = spi->cur_fthlv;
1117 } else {
128ebb89 1118 maxburst = 1;
00505edf 1119 }
dcbe0d84
AD
1120
1121 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1122 dma_conf->direction = dir;
1123 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
55166853 1124 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
dcbe0d84
AD
1125 dma_conf->src_addr_width = buswidth;
1126 dma_conf->src_maxburst = maxburst;
1127
1128 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1129 buswidth, maxburst);
1130 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
55166853 1131 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
dcbe0d84
AD
1132 dma_conf->dst_addr_width = buswidth;
1133 dma_conf->dst_maxburst = maxburst;
1134
1135 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1136 buswidth, maxburst);
1137 }
1138}
1139
00505edf
CG
1140/**
1141 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1142 * interrupts
1c52be8b 1143 * @spi: pointer to the spi controller data structure
00505edf
CG
1144 *
1145 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1146 * in progress.
1147 */
1148static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1149{
1150 unsigned long flags;
1151 u32 cr2 = 0;
1152
1153 /* Enable the interrupts relative to the current communication mode */
1154 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1155 cr2 |= STM32F4_SPI_CR2_TXEIE;
61367d0b 1156 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1157 spi->cur_comm == SPI_SIMPLEX_RX ||
1158 spi->cur_comm == SPI_3WIRE_RX) {
00505edf
CG
1159 /* In transmit-only mode, the OVR flag is set in the SR register
1160 * since the received data are never read. Therefore set OVR
1161 * interrupt only when rx buffer is available.
1162 */
1163 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1164 } else {
1165 return -EINVAL;
1166 }
1167
1168 spin_lock_irqsave(&spi->lock, flags);
1169
1170 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1171
1172 stm32_spi_enable(spi);
1173
1174 /* starting data transfer when buffer is loaded */
1175 if (spi->tx_buf)
1176 stm32f4_spi_write_tx(spi);
1177
1178 spin_unlock_irqrestore(&spi->lock, flags);
1179
1180 return 1;
1181}
1182
dcbe0d84 1183/**
55166853
CG
1184 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1185 * interrupts
1c52be8b 1186 * @spi: pointer to the spi controller data structure
dcbe0d84
AD
1187 *
1188 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1189 * in progress.
1190 */
55166853 1191static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
dcbe0d84
AD
1192{
1193 unsigned long flags;
1194 u32 ier = 0;
1195
1196 /* Enable the interrupts relative to the current communication mode */
1197 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
86026630 1198 ier |= STM32H7_SPI_IER_DXPIE;
dcbe0d84 1199 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
86026630 1200 ier |= STM32H7_SPI_IER_TXPIE;
dcbe0d84 1201 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
86026630 1202 ier |= STM32H7_SPI_IER_RXPIE;
dcbe0d84
AD
1203
1204 /* Enable the interrupts relative to the end of transfer */
86026630
CG
1205 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1206 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
dcbe0d84
AD
1207
1208 spin_lock_irqsave(&spi->lock, flags);
1209
1210 stm32_spi_enable(spi);
1211
1212 /* Be sure to have data in fifo before starting data transfer */
1213 if (spi->tx_buf)
55166853 1214 stm32h7_spi_write_txfifo(spi);
dcbe0d84 1215
86026630 1216 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
dcbe0d84 1217
86026630 1218 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
dcbe0d84
AD
1219
1220 spin_unlock_irqrestore(&spi->lock, flags);
1221
1222 return 1;
1223}
1224
00505edf
CG
1225/**
1226 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1227 * transfer using DMA
1c52be8b 1228 * @spi: pointer to the spi controller data structure
00505edf
CG
1229 */
1230static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1231{
1232 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1233 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1234 spi->cur_comm == SPI_FULL_DUPLEX) {
1235 /*
1236 * In transmit-only mode, the OVR flag is set in the SR register
1237 * since the received data are never read. Therefore set OVR
1238 * interrupt only when rx buffer is available.
1239 */
1240 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1241 }
1242
1243 stm32_spi_enable(spi);
1244}
1245
f8bb12f2 1246/**
55166853
CG
1247 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1248 * transfer using DMA
1c52be8b 1249 * @spi: pointer to the spi controller data structure
f8bb12f2 1250 */
55166853 1251static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
f8bb12f2
CG
1252{
1253 /* Enable the interrupts relative to the end of transfer */
1254 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1255 STM32H7_SPI_IER_TXTFIE |
1256 STM32H7_SPI_IER_OVRIE |
1257 STM32H7_SPI_IER_MODFIE);
1258
1259 stm32_spi_enable(spi);
1260
1261 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1262}
1263
dcbe0d84
AD
1264/**
1265 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1c52be8b
AV
1266 * @spi: pointer to the spi controller data structure
1267 * @xfer: pointer to the spi_transfer structure
dcbe0d84
AD
1268 *
1269 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1270 * in progress.
1271 */
1272static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1273 struct spi_transfer *xfer)
1274{
1275 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1276 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1277 unsigned long flags;
dcbe0d84
AD
1278
1279 spin_lock_irqsave(&spi->lock, flags);
1280
1281 rx_dma_desc = NULL;
2cbee7f8 1282 if (spi->rx_buf && spi->dma_rx) {
dcbe0d84
AD
1283 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1284 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1285
1286 /* Enable Rx DMA request */
55166853
CG
1287 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1288 spi->cfg->regs->dma_rx_en.mask);
dcbe0d84
AD
1289
1290 rx_dma_desc = dmaengine_prep_slave_sg(
1291 spi->dma_rx, xfer->rx_sg.sgl,
1292 xfer->rx_sg.nents,
1293 rx_dma_conf.direction,
1294 DMA_PREP_INTERRUPT);
dcbe0d84
AD
1295 }
1296
1297 tx_dma_desc = NULL;
2cbee7f8 1298 if (spi->tx_buf && spi->dma_tx) {
dcbe0d84
AD
1299 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1300 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1301
1302 tx_dma_desc = dmaengine_prep_slave_sg(
1303 spi->dma_tx, xfer->tx_sg.sgl,
1304 xfer->tx_sg.nents,
1305 tx_dma_conf.direction,
1306 DMA_PREP_INTERRUPT);
dcbe0d84
AD
1307 }
1308
2cbee7f8
CG
1309 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1310 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1311 goto dma_desc_error;
1312
1313 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
dcbe0d84
AD
1314 goto dma_desc_error;
1315
1316 if (rx_dma_desc) {
55166853 1317 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
7b821a64
AD
1318 rx_dma_desc->callback_param = spi;
1319
dcbe0d84
AD
1320 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1321 dev_err(spi->dev, "Rx DMA submit failed\n");
1322 goto dma_desc_error;
1323 }
1324 /* Enable Rx DMA channel */
1325 dma_async_issue_pending(spi->dma_rx);
1326 }
1327
1328 if (tx_dma_desc) {
9d5fce16
CG
1329 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1330 spi->cur_comm == SPI_3WIRE_TX) {
55166853 1331 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
7b821a64
AD
1332 tx_dma_desc->callback_param = spi;
1333 }
1334
dcbe0d84
AD
1335 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1336 dev_err(spi->dev, "Tx DMA submit failed\n");
1337 goto dma_submit_error;
1338 }
1339 /* Enable Tx DMA channel */
1340 dma_async_issue_pending(spi->dma_tx);
1341
1342 /* Enable Tx DMA request */
55166853
CG
1343 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1344 spi->cfg->regs->dma_tx_en.mask);
dcbe0d84
AD
1345 }
1346
55166853 1347 spi->cfg->transfer_one_dma_start(spi);
dcbe0d84
AD
1348
1349 spin_unlock_irqrestore(&spi->lock, flags);
1350
1351 return 1;
1352
1353dma_submit_error:
2cbee7f8 1354 if (spi->dma_rx)
dcbe0d84
AD
1355 dmaengine_terminate_all(spi->dma_rx);
1356
1357dma_desc_error:
55166853
CG
1358 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1359 spi->cfg->regs->dma_rx_en.mask);
dcbe0d84
AD
1360
1361 spin_unlock_irqrestore(&spi->lock, flags);
1362
1363 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1364
2cbee7f8 1365 spi->cur_usedma = false;
55166853 1366 return spi->cfg->transfer_one_irq(spi);
dcbe0d84
AD
1367}
1368
00505edf
CG
1369/**
1370 * stm32f4_spi_set_bpw - Configure bits per word
1371 * @spi: pointer to the spi controller data structure
1372 */
1373static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1374{
1375 if (spi->cur_bpw == 16)
1376 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1377 else
1378 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1379}
1380
dcbe0d84 1381/**
55166853 1382 * stm32h7_spi_set_bpw - configure bits per word
9d5fce16 1383 * @spi: pointer to the spi controller data structure
dcbe0d84 1384 */
55166853 1385static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
dcbe0d84 1386{
9d5fce16
CG
1387 u32 bpw, fthlv;
1388 u32 cfg1_clrb = 0, cfg1_setb = 0;
dcbe0d84 1389
9d5fce16 1390 bpw = spi->cur_bpw - 1;
dcbe0d84 1391
9d5fce16
CG
1392 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1393 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1394 STM32H7_SPI_CFG1_DSIZE;
dcbe0d84 1395
55166853 1396 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
9d5fce16 1397 fthlv = spi->cur_fthlv - 1;
dcbe0d84 1398
9d5fce16
CG
1399 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1400 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1401 STM32H7_SPI_CFG1_FTHLV;
dcbe0d84 1402
9d5fce16
CG
1403 writel_relaxed(
1404 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1405 ~cfg1_clrb) | cfg1_setb,
1406 spi->base + STM32H7_SPI_CFG1);
1407}
dcbe0d84 1408
9d5fce16
CG
1409/**
1410 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1411 * @spi: pointer to the spi controller data structure
1412 * @mbrdiv: baud rate divisor value
1413 */
1414static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1415{
55166853 1416 u32 clrb = 0, setb = 0;
dcbe0d84 1417
55166853
CG
1418 clrb |= spi->cfg->regs->br.mask;
1419 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1420 spi->cfg->regs->br.mask;
dcbe0d84 1421
55166853
CG
1422 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1423 ~clrb) | setb,
1424 spi->base + spi->cfg->regs->br.reg);
9d5fce16 1425}
dcbe0d84 1426
9d5fce16
CG
1427/**
1428 * stm32_spi_communication_type - return transfer communication type
1429 * @spi_dev: pointer to the spi device
1c52be8b 1430 * @transfer: pointer to spi transfer
9d5fce16
CG
1431 */
1432static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1433 struct spi_transfer *transfer)
1434{
1435 unsigned int type = SPI_FULL_DUPLEX;
dcbe0d84 1436
dcbe0d84
AD
1437 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1438 /*
1439 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
9d5fce16 1440 * is forbidden and unvalidated by SPI subsystem so depending
dcbe0d84
AD
1441 * on the valid buffer, we can determine the direction of the
1442 * transfer.
1443 */
dcbe0d84 1444 if (!transfer->tx_buf)
9d5fce16
CG
1445 type = SPI_3WIRE_RX;
1446 else
1447 type = SPI_3WIRE_TX;
dcbe0d84
AD
1448 } else {
1449 if (!transfer->tx_buf)
9d5fce16 1450 type = SPI_SIMPLEX_RX;
dcbe0d84 1451 else if (!transfer->rx_buf)
9d5fce16 1452 type = SPI_SIMPLEX_TX;
dcbe0d84 1453 }
dcbe0d84 1454
9d5fce16
CG
1455 return type;
1456}
1457
00505edf
CG
1458/**
1459 * stm32f4_spi_set_mode - configure communication mode
1460 * @spi: pointer to the spi controller data structure
1461 * @comm_type: type of communication to configure
1462 */
1463static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1464{
1465 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1466 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1467 STM32F4_SPI_CR1_BIDIMODE |
1468 STM32F4_SPI_CR1_BIDIOE);
61367d0b 1469 } else if (comm_type == SPI_FULL_DUPLEX ||
1470 comm_type == SPI_SIMPLEX_RX) {
00505edf
CG
1471 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1472 STM32F4_SPI_CR1_BIDIMODE |
1473 STM32F4_SPI_CR1_BIDIOE);
61367d0b 1474 } else if (comm_type == SPI_3WIRE_RX) {
1475 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1476 STM32F4_SPI_CR1_BIDIMODE);
1477 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1478 STM32F4_SPI_CR1_BIDIOE);
00505edf
CG
1479 } else {
1480 return -EINVAL;
1481 }
1482
1483 return 0;
1484}
1485
9d5fce16 1486/**
55166853 1487 * stm32h7_spi_set_mode - configure communication mode
9d5fce16
CG
1488 * @spi: pointer to the spi controller data structure
1489 * @comm_type: type of communication to configure
1490 */
55166853 1491static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
9d5fce16
CG
1492{
1493 u32 mode;
1494 u32 cfg2_clrb = 0, cfg2_setb = 0;
1495
1496 if (comm_type == SPI_3WIRE_RX) {
1497 mode = STM32H7_SPI_HALF_DUPLEX;
1498 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1499 } else if (comm_type == SPI_3WIRE_TX) {
1500 mode = STM32H7_SPI_HALF_DUPLEX;
1501 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1502 } else if (comm_type == SPI_SIMPLEX_RX) {
1503 mode = STM32H7_SPI_SIMPLEX_RX;
1504 } else if (comm_type == SPI_SIMPLEX_TX) {
1505 mode = STM32H7_SPI_SIMPLEX_TX;
1506 } else {
1507 mode = STM32H7_SPI_FULL_DUPLEX;
dcbe0d84
AD
1508 }
1509
9d5fce16
CG
1510 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1511 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1512 STM32H7_SPI_CFG2_COMM;
1513
1514 writel_relaxed(
1515 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1516 ~cfg2_clrb) | cfg2_setb,
1517 spi->base + STM32H7_SPI_CFG2);
1518
1519 return 0;
1520}
1521
1522/**
55166853
CG
1523 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1524 * consecutive data frames in master mode
9d5fce16
CG
1525 * @spi: pointer to the spi controller data structure
1526 * @len: transfer len
1527 */
55166853 1528static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
9d5fce16
CG
1529{
1530 u32 cfg2_clrb = 0, cfg2_setb = 0;
1531
86026630 1532 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
9d5fce16 1533 if ((len > 1) && (spi->cur_midi > 0)) {
dcbe0d84
AD
1534 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1535 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
86026630
CG
1536 (u32)STM32H7_SPI_CFG2_MIDI >>
1537 STM32H7_SPI_CFG2_MIDI_SHIFT);
dcbe0d84
AD
1538
1539 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1540 sck_period_ns, midi, midi * sck_period_ns);
86026630
CG
1541 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1542 STM32H7_SPI_CFG2_MIDI;
dcbe0d84
AD
1543 }
1544
9d5fce16
CG
1545 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1546 ~cfg2_clrb) | cfg2_setb,
1547 spi->base + STM32H7_SPI_CFG2);
1548}
1549
1550/**
55166853 1551 * stm32h7_spi_number_of_data - configure number of data at current transfer
9d5fce16 1552 * @spi: pointer to the spi controller data structure
1c52be8b 1553 * @nb_words: transfer length (in words)
9d5fce16 1554 */
55166853 1555static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
9d5fce16
CG
1556{
1557 u32 cr2_clrb = 0, cr2_setb = 0;
1558
1559 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1560 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1561 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1562 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1563 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1564 ~cr2_clrb) | cr2_setb,
1565 spi->base + STM32H7_SPI_CR2);
1566 } else {
1567 return -EMSGSIZE;
1568 }
1569
1570 return 0;
1571}
1572
1573/**
1574 * stm32_spi_transfer_one_setup - common setup to transfer a single
1575 * spi_transfer either using DMA or
1576 * interrupts.
1c52be8b
AV
1577 * @spi: pointer to the spi controller data structure
1578 * @spi_dev: pointer to the spi device
1579 * @transfer: pointer to spi transfer
9d5fce16
CG
1580 */
1581static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1582 struct spi_device *spi_dev,
1583 struct spi_transfer *transfer)
1584{
1585 unsigned long flags;
1586 unsigned int comm_type;
1587 int nb_words, ret = 0;
1588
1589 spin_lock_irqsave(&spi->lock, flags);
1590
1591 if (spi->cur_bpw != transfer->bits_per_word) {
1592 spi->cur_bpw = transfer->bits_per_word;
55166853 1593 spi->cfg->set_bpw(spi);
9d5fce16
CG
1594 }
1595
1596 if (spi->cur_speed != transfer->speed_hz) {
1597 int mbr;
1598
1599 /* Update spi->cur_speed with real clock speed */
1600 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
55166853
CG
1601 spi->cfg->baud_rate_div_min,
1602 spi->cfg->baud_rate_div_max);
9d5fce16
CG
1603 if (mbr < 0) {
1604 ret = mbr;
1605 goto out;
1606 }
1607
1608 transfer->speed_hz = spi->cur_speed;
1609 stm32_spi_set_mbr(spi, mbr);
1610 }
1611
1612 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1613 if (spi->cur_comm != comm_type) {
55166853 1614 ret = spi->cfg->set_mode(spi, comm_type);
9d5fce16
CG
1615
1616 if (ret < 0)
1617 goto out;
1618
1619 spi->cur_comm = comm_type;
1620 }
1621
55166853
CG
1622 if (spi->cfg->set_data_idleness)
1623 spi->cfg->set_data_idleness(spi, transfer->len);
dcbe0d84 1624
128ebb89
AD
1625 if (spi->cur_bpw <= 8)
1626 nb_words = transfer->len;
1627 else if (spi->cur_bpw <= 16)
1628 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1629 else
1630 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
dcbe0d84 1631
55166853
CG
1632 if (spi->cfg->set_number_of_data) {
1633 ret = spi->cfg->set_number_of_data(spi, nb_words);
1634 if (ret < 0)
1635 goto out;
1636 }
dcbe0d84
AD
1637
1638 spi->cur_xferlen = transfer->len;
1639
1640 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1641 spi->cur_comm);
1642 dev_dbg(spi->dev,
1643 "data frame of %d-bit, data packet of %d data frames\n",
1644 spi->cur_bpw, spi->cur_fthlv);
1645 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1646 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1647 spi->cur_xferlen, nb_words);
1648 dev_dbg(spi->dev, "dma %s\n",
1649 (spi->cur_usedma) ? "enabled" : "disabled");
1650
1651out:
1652 spin_unlock_irqrestore(&spi->lock, flags);
1653
1654 return ret;
1655}
1656
1657/**
1658 * stm32_spi_transfer_one - transfer a single spi_transfer
1c52be8b
AV
1659 * @master: controller master interface
1660 * @spi_dev: pointer to the spi device
1661 * @transfer: pointer to spi transfer
dcbe0d84
AD
1662 *
1663 * It must return 0 if the transfer is finished or 1 if the transfer is still
1664 * in progress.
1665 */
1666static int stm32_spi_transfer_one(struct spi_master *master,
1667 struct spi_device *spi_dev,
1668 struct spi_transfer *transfer)
1669{
1670 struct stm32_spi *spi = spi_master_get_devdata(master);
1671 int ret;
1672
1673 spi->tx_buf = transfer->tx_buf;
1674 spi->rx_buf = transfer->rx_buf;
1675 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1676 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1677
c67ad368 1678 spi->cur_usedma = (master->can_dma &&
2cbee7f8 1679 master->can_dma(master, spi_dev, transfer));
dcbe0d84
AD
1680
1681 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1682 if (ret) {
1683 dev_err(spi->dev, "SPI transfer setup failed\n");
1684 return ret;
1685 }
1686
1687 if (spi->cur_usedma)
1688 return stm32_spi_transfer_one_dma(spi, transfer);
1689 else
55166853 1690 return spi->cfg->transfer_one_irq(spi);
dcbe0d84
AD
1691}
1692
1693/**
1694 * stm32_spi_unprepare_msg - relax the hardware
1c52be8b
AV
1695 * @master: controller master interface
1696 * @msg: pointer to the spi message
dcbe0d84
AD
1697 */
1698static int stm32_spi_unprepare_msg(struct spi_master *master,
1699 struct spi_message *msg)
1700{
1701 struct stm32_spi *spi = spi_master_get_devdata(master);
1702
55166853 1703 spi->cfg->disable(spi);
dcbe0d84
AD
1704
1705 return 0;
1706}
1707
00505edf
CG
1708/**
1709 * stm32f4_spi_config - Configure SPI controller as SPI master
1c52be8b 1710 * @spi: pointer to the spi controller data structure
00505edf
CG
1711 */
1712static int stm32f4_spi_config(struct stm32_spi *spi)
1713{
1714 unsigned long flags;
1715
1716 spin_lock_irqsave(&spi->lock, flags);
1717
1718 /* Ensure I2SMOD bit is kept cleared */
1719 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1720 STM32F4_SPI_I2SCFGR_I2SMOD);
1721
1722 /*
1723 * - SS input value high
1724 * - transmitter half duplex direction
1725 * - Set the master mode (default Motorola mode)
1726 * - Consider 1 master/n slaves configuration and
1727 * SS input value is determined by the SSI bit
1728 */
1729 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1730 STM32F4_SPI_CR1_BIDIOE |
1731 STM32F4_SPI_CR1_MSTR |
1732 STM32F4_SPI_CR1_SSM);
1733
1734 spin_unlock_irqrestore(&spi->lock, flags);
1735
1736 return 0;
1737}
1738
dcbe0d84 1739/**
55166853 1740 * stm32h7_spi_config - Configure SPI controller as SPI master
1c52be8b 1741 * @spi: pointer to the spi controller data structure
dcbe0d84 1742 */
55166853 1743static int stm32h7_spi_config(struct stm32_spi *spi)
dcbe0d84
AD
1744{
1745 unsigned long flags;
1746
1747 spin_lock_irqsave(&spi->lock, flags);
1748
1749 /* Ensure I2SMOD bit is kept cleared */
86026630
CG
1750 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1751 STM32H7_SPI_I2SCFGR_I2SMOD);
dcbe0d84
AD
1752
1753 /*
1754 * - SS input value high
1755 * - transmitter half duplex direction
1756 * - automatic communication suspend when RX-Fifo is full
1757 */
86026630
CG
1758 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1759 STM32H7_SPI_CR1_HDDIR |
1760 STM32H7_SPI_CR1_MASRX);
dcbe0d84
AD
1761
1762 /*
1763 * - Set the master mode (default Motorola mode)
1764 * - Consider 1 master/n slaves configuration and
1765 * SS input value is determined by the SSI bit
1766 * - keep control of all associated GPIOs
1767 */
86026630
CG
1768 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1769 STM32H7_SPI_CFG2_SSM |
1770 STM32H7_SPI_CFG2_AFCNTR);
dcbe0d84
AD
1771
1772 spin_unlock_irqrestore(&spi->lock, flags);
1773
1774 return 0;
1775}
1776
00505edf
CG
1777static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1778 .regs = &stm32f4_spi_regspec,
1779 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1780 .disable = stm32f4_spi_disable,
1781 .config = stm32f4_spi_config,
1782 .set_bpw = stm32f4_spi_set_bpw,
1783 .set_mode = stm32f4_spi_set_mode,
1784 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1785 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1786 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1787 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1788 .irq_handler_event = stm32f4_spi_irq_event,
1789 .irq_handler_thread = stm32f4_spi_irq_thread,
1790 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1791 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1792 .has_fifo = false,
1793};
1794
55166853
CG
1795static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1796 .regs = &stm32h7_spi_regspec,
1797 .get_fifo_size = stm32h7_spi_get_fifo_size,
1798 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1799 .disable = stm32h7_spi_disable,
1800 .config = stm32h7_spi_config,
1801 .set_bpw = stm32h7_spi_set_bpw,
1802 .set_mode = stm32h7_spi_set_mode,
1803 .set_data_idleness = stm32h7_spi_data_idleness,
1804 .set_number_of_data = stm32h7_spi_number_of_data,
1805 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1806 .dma_rx_cb = stm32h7_spi_dma_cb,
1807 .dma_tx_cb = stm32h7_spi_dma_cb,
1808 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1809 .irq_handler_thread = stm32h7_spi_irq_thread,
1810 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1811 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1812 .has_fifo = true,
1813};
1814
dcbe0d84 1815static const struct of_device_id stm32_spi_of_match[] = {
55166853 1816 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
00505edf 1817 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
dcbe0d84
AD
1818 {},
1819};
1820MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1821
1822static int stm32_spi_probe(struct platform_device *pdev)
1823{
1824 struct spi_master *master;
1825 struct stm32_spi *spi;
1826 struct resource *res;
8a6553ec 1827 int ret;
dcbe0d84
AD
1828
1829 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1830 if (!master) {
1831 dev_err(&pdev->dev, "spi master allocation failed\n");
1832 return -ENOMEM;
1833 }
1834 platform_set_drvdata(pdev, master);
1835
1836 spi = spi_master_get_devdata(master);
1837 spi->dev = &pdev->dev;
1838 spi->master = master;
1839 spin_lock_init(&spi->lock);
1840
55166853
CG
1841 spi->cfg = (const struct stm32_spi_cfg *)
1842 of_match_device(pdev->dev.driver->of_match_table,
1843 &pdev->dev)->data;
1844
dcbe0d84
AD
1845 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1846 spi->base = devm_ioremap_resource(&pdev->dev, res);
1847 if (IS_ERR(spi->base)) {
1848 ret = PTR_ERR(spi->base);
1849 goto err_master_put;
1850 }
55166853 1851
dcbe0d84
AD
1852 spi->phys_addr = (dma_addr_t)res->start;
1853
1854 spi->irq = platform_get_irq(pdev, 0);
1855 if (spi->irq <= 0) {
8d1467a6
FD
1856 ret = spi->irq;
1857 if (ret != -EPROBE_DEFER)
1858 dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
dcbe0d84
AD
1859 goto err_master_put;
1860 }
55166853
CG
1861 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1862 spi->cfg->irq_handler_event,
1863 spi->cfg->irq_handler_thread,
1864 IRQF_ONESHOT, pdev->name, master);
dcbe0d84
AD
1865 if (ret) {
1866 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1867 ret);
1868 goto err_master_put;
1869 }
1870
d4c9134a 1871 spi->clk = devm_clk_get(&pdev->dev, NULL);
dcbe0d84
AD
1872 if (IS_ERR(spi->clk)) {
1873 ret = PTR_ERR(spi->clk);
1874 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1875 goto err_master_put;
1876 }
1877
1878 ret = clk_prepare_enable(spi->clk);
1879 if (ret) {
1880 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1881 goto err_master_put;
1882 }
1883 spi->clk_rate = clk_get_rate(spi->clk);
1884 if (!spi->clk_rate) {
1885 dev_err(&pdev->dev, "clk rate = 0\n");
1886 ret = -EINVAL;
3dbb3eef 1887 goto err_clk_disable;
dcbe0d84
AD
1888 }
1889
d5e9a4a4 1890 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
dcbe0d84
AD
1891 if (!IS_ERR(spi->rst)) {
1892 reset_control_assert(spi->rst);
1893 udelay(2);
1894 reset_control_deassert(spi->rst);
1895 }
1896
55166853
CG
1897 if (spi->cfg->has_fifo)
1898 spi->fifo_size = spi->cfg->get_fifo_size(spi);
dcbe0d84 1899
55166853 1900 ret = spi->cfg->config(spi);
dcbe0d84
AD
1901 if (ret) {
1902 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1903 ret);
1904 goto err_clk_disable;
1905 }
1906
1907 master->dev.of_node = pdev->dev.of_node;
1908 master->auto_runtime_pm = true;
1909 master->bus_num = pdev->id;
d6cea11b 1910 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
6962b055 1911 SPI_3WIRE;
55166853
CG
1912 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1913 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1914 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
8a6553ec 1915 master->use_gpio_descriptors = true;
dcbe0d84
AD
1916 master->prepare_message = stm32_spi_prepare_msg;
1917 master->transfer_one = stm32_spi_transfer_one;
1918 master->unprepare_message = stm32_spi_unprepare_msg;
61367d0b 1919 master->flags = SPI_MASTER_MUST_TX;
dcbe0d84 1920
0a454258
PU
1921 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1922 if (IS_ERR(spi->dma_tx)) {
1923 ret = PTR_ERR(spi->dma_tx);
1924 spi->dma_tx = NULL;
1925 if (ret == -EPROBE_DEFER)
1926 goto err_clk_disable;
1927
dcbe0d84 1928 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
0a454258 1929 } else {
dcbe0d84 1930 master->dma_tx = spi->dma_tx;
0a454258
PU
1931 }
1932
1933 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1934 if (IS_ERR(spi->dma_rx)) {
1935 ret = PTR_ERR(spi->dma_rx);
1936 spi->dma_rx = NULL;
1937 if (ret == -EPROBE_DEFER)
1938 goto err_dma_release;
dcbe0d84 1939
dcbe0d84 1940 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
0a454258 1941 } else {
dcbe0d84 1942 master->dma_rx = spi->dma_rx;
0a454258 1943 }
dcbe0d84
AD
1944
1945 if (spi->dma_tx || spi->dma_rx)
1946 master->can_dma = stm32_spi_can_dma;
1947
038ac869
AD
1948 pm_runtime_set_active(&pdev->dev);
1949 pm_runtime_enable(&pdev->dev);
1950
dcbe0d84
AD
1951 ret = devm_spi_register_master(&pdev->dev, master);
1952 if (ret) {
1953 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1954 ret);
0a454258 1955 goto err_pm_disable;
dcbe0d84
AD
1956 }
1957
8a6553ec 1958 if (!master->cs_gpiods) {
dcbe0d84
AD
1959 dev_err(&pdev->dev, "no CS gpios available\n");
1960 ret = -EINVAL;
0a454258 1961 goto err_pm_disable;
dcbe0d84
AD
1962 }
1963
dcbe0d84
AD
1964 dev_info(&pdev->dev, "driver initialized\n");
1965
1966 return 0;
1967
0a454258
PU
1968err_pm_disable:
1969 pm_runtime_disable(&pdev->dev);
dcbe0d84
AD
1970err_dma_release:
1971 if (spi->dma_tx)
1972 dma_release_channel(spi->dma_tx);
1973 if (spi->dma_rx)
1974 dma_release_channel(spi->dma_rx);
1975err_clk_disable:
1976 clk_disable_unprepare(spi->clk);
1977err_master_put:
1978 spi_master_put(master);
1979
1980 return ret;
1981}
1982
1983static int stm32_spi_remove(struct platform_device *pdev)
1984{
1985 struct spi_master *master = platform_get_drvdata(pdev);
1986 struct stm32_spi *spi = spi_master_get_devdata(master);
1987
55166853 1988 spi->cfg->disable(spi);
dcbe0d84
AD
1989
1990 if (master->dma_tx)
1991 dma_release_channel(master->dma_tx);
1992 if (master->dma_rx)
1993 dma_release_channel(master->dma_rx);
1994
1995 clk_disable_unprepare(spi->clk);
1996
038ac869
AD
1997 pm_runtime_disable(&pdev->dev);
1998
dcbe0d84
AD
1999 return 0;
2000}
2001
038ac869
AD
2002#ifdef CONFIG_PM
2003static int stm32_spi_runtime_suspend(struct device *dev)
2004{
2005 struct spi_master *master = dev_get_drvdata(dev);
2006 struct stm32_spi *spi = spi_master_get_devdata(master);
2007
2008 clk_disable_unprepare(spi->clk);
2009
2010 return 0;
2011}
2012
2013static int stm32_spi_runtime_resume(struct device *dev)
2014{
2015 struct spi_master *master = dev_get_drvdata(dev);
2016 struct stm32_spi *spi = spi_master_get_devdata(master);
2017
2018 return clk_prepare_enable(spi->clk);
2019}
2020#endif
2021
dcbe0d84
AD
2022#ifdef CONFIG_PM_SLEEP
2023static int stm32_spi_suspend(struct device *dev)
2024{
2025 struct spi_master *master = dev_get_drvdata(dev);
dcbe0d84
AD
2026 int ret;
2027
2028 ret = spi_master_suspend(master);
2029 if (ret)
2030 return ret;
2031
038ac869 2032 return pm_runtime_force_suspend(dev);
dcbe0d84
AD
2033}
2034
2035static int stm32_spi_resume(struct device *dev)
2036{
2037 struct spi_master *master = dev_get_drvdata(dev);
2038 struct stm32_spi *spi = spi_master_get_devdata(master);
2039 int ret;
2040
038ac869 2041 ret = pm_runtime_force_resume(dev);
dcbe0d84
AD
2042 if (ret)
2043 return ret;
038ac869 2044
dcbe0d84
AD
2045 ret = spi_master_resume(master);
2046 if (ret)
2047 clk_disable_unprepare(spi->clk);
2048
2049 return ret;
2050}
2051#endif
2052
038ac869
AD
2053static const struct dev_pm_ops stm32_spi_pm_ops = {
2054 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2055 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2056 stm32_spi_runtime_resume, NULL)
2057};
dcbe0d84
AD
2058
2059static struct platform_driver stm32_spi_driver = {
2060 .probe = stm32_spi_probe,
2061 .remove = stm32_spi_remove,
2062 .driver = {
2063 .name = DRIVER_NAME,
2064 .pm = &stm32_spi_pm_ops,
2065 .of_match_table = stm32_spi_of_match,
2066 },
2067};
2068
2069module_platform_driver(stm32_spi_driver);
2070
2071MODULE_ALIAS("platform:" DRIVER_NAME);
2072MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2073MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2074MODULE_LICENSE("GPL v2");