]> git.ipfire.org Git - people/arne_f/kernel.git/blame - drivers/watchdog/octeon-wdt-main.c
ARC: [plat-hsdk]: Switch ethernet phy-mode to rgmii-id
[people/arne_f/kernel.git] / drivers / watchdog / octeon-wdt-main.c
CommitLineData
4c076fb4
DD
1/*
2 * Octeon Watchdog driver
3 *
381cec02 4 * Copyright (C) 2007-2017 Cavium, Inc.
4c076fb4 5 *
3d588c93
AK
6 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
7 *
4c076fb4
DD
8 * Some parts derived from wdt.c
9 *
10 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
11 * All Rights Reserved.
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 *
18 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
19 * warranty for any of this software. This material is provided
20 * "AS-IS" and at no charge.
21 *
22 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file "COPYING" in the main directory of this archive
26 * for more details.
27 *
28 *
29 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
30 * For most systems this is less than 10 seconds, so to allow for
31 * software to request longer watchdog heartbeats, we maintain software
32 * counters to count multiples of the base rate. If the system locks
33 * up in such a manner that we can not run the software counters, the
34 * only result is a watchdog reset sooner than was requested. But
35 * that is OK, because in this case userspace would likely not be able
36 * to do anything anyhow.
37 *
38 * The hardware watchdog interval we call the period. The OCTEON
39 * watchdog goes through several stages, after the first period an
40 * irq is asserted, then if it is not reset, after the next period NMI
41 * is asserted, then after an additional period a chip wide soft reset.
42 * So for the software counters, we reset watchdog after each period
43 * and decrement the counter. But for the last two periods we need to
44 * let the watchdog progress to the NMI stage so we disable the irq
45 * and let it proceed. Once in the NMI, we print the register state
46 * to the serial port and then wait for the reset.
47 *
48 * A watchdog is maintained for each CPU in the system, that way if
49 * one CPU suffers a lockup, we also get a register dump and reset.
50 * The userspace ping resets the watchdog on all CPUs.
51 *
52 * Before userspace opens the watchdog device, we still run the
53 * watchdogs to catch any lockups that may be kernel related.
54 *
55 */
56
27c766aa
JP
57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
4c076fb4
DD
59#include <linux/interrupt.h>
60#include <linux/watchdog.h>
61#include <linux/cpumask.h>
4c076fb4 62#include <linux/module.h>
4c076fb4
DD
63#include <linux/delay.h>
64#include <linux/cpu.h>
ca4d3e67 65#include <linux/irq.h>
4c076fb4
DD
66
67#include <asm/mipsregs.h>
68#include <asm/uasm.h>
69
70#include <asm/octeon/octeon.h>
49d148b4 71#include <asm/octeon/cvmx-boot-vector.h>
0cd4e7a9 72#include <asm/octeon/cvmx-ciu2-defs.h>
1d1821b2
CM
73#include <asm/octeon/cvmx-rst-defs.h>
74
75/* Watchdog interrupt major block number (8 MSBs of intsn) */
76#define WD_BLOCK_NUMBER 0x01
0cd4e7a9
DD
77
78static int divisor;
4c076fb4
DD
79
80/* The count needed to achieve timeout_sec. */
81static unsigned int timeout_cnt;
82
83/* The maximum period supported. */
84static unsigned int max_timeout_sec;
85
86/* The current period. */
87static unsigned int timeout_sec;
88
89/* Set to non-zero when userspace countdown mode active */
381cec02 90static bool do_countdown;
4c076fb4
DD
91static unsigned int countdown_reset;
92static unsigned int per_cpu_countdown[NR_CPUS];
93
94static cpumask_t irq_enabled_cpus;
95
96#define WD_TIMO 60 /* Default heartbeat = 60 seconds */
97
1d1821b2
CM
98#define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
99
4c076fb4 100static int heartbeat = WD_TIMO;
381cec02 101module_param(heartbeat, int, 0444);
4c076fb4
DD
102MODULE_PARM_DESC(heartbeat,
103 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
104 __MODULE_STRING(WD_TIMO) ")");
105
86a1e189 106static bool nowayout = WATCHDOG_NOWAYOUT;
381cec02 107module_param(nowayout, bool, 0444);
4c076fb4
DD
108MODULE_PARM_DESC(nowayout,
109 "Watchdog cannot be stopped once started (default="
110 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
111
381cec02
SH
112static int disable;
113module_param(disable, int, 0444);
114MODULE_PARM_DESC(disable,
115 "Disable the watchdog entirely (default=0)");
116
49d148b4 117static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
4c076fb4
DD
118
119void octeon_wdt_nmi_stage2(void);
120
4c076fb4
DD
121static int cpu2core(int cpu)
122{
123#ifdef CONFIG_SMP
1d1821b2 124 return cpu_logical_map(cpu) & 0x3f;
4c076fb4
DD
125#else
126 return cvmx_get_core_num();
127#endif
128}
129
4c076fb4
DD
130/**
131 * Poke the watchdog when an interrupt is received
132 *
133 * @cpl:
134 * @dev_id:
135 *
136 * Returns
137 */
138static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
139{
1d1821b2
CM
140 int cpu = raw_smp_processor_id();
141 unsigned int core = cpu2core(cpu);
142 int node = cpu_to_node(cpu);
4c076fb4 143
381cec02 144 if (do_countdown) {
4c076fb4
DD
145 if (per_cpu_countdown[cpu] > 0) {
146 /* We're alive, poke the watchdog */
1d1821b2 147 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
4c076fb4
DD
148 per_cpu_countdown[cpu]--;
149 } else {
150 /* Bad news, you are about to reboot. */
151 disable_irq_nosync(cpl);
152 cpumask_clear_cpu(cpu, &irq_enabled_cpus);
153 }
154 } else {
155 /* Not open, just ping away... */
1d1821b2 156 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
4c076fb4
DD
157 }
158 return IRQ_HANDLED;
159}
160
161/* From setup.c */
162extern int prom_putchar(char c);
163
164/**
165 * Write a string to the uart
166 *
167 * @str: String to write
168 */
169static void octeon_wdt_write_string(const char *str)
170{
171 /* Just loop writing one byte at a time */
172 while (*str)
173 prom_putchar(*str++);
174}
175
176/**
177 * Write a hex number out of the uart
178 *
179 * @value: Number to display
180 * @digits: Number of digits to print (1 to 16)
181 */
182static void octeon_wdt_write_hex(u64 value, int digits)
183{
184 int d;
185 int v;
8692cf0a 186
4c076fb4
DD
187 for (d = 0; d < digits; d++) {
188 v = (value >> ((digits - d - 1) * 4)) & 0xf;
189 if (v >= 10)
190 prom_putchar('a' + v - 10);
191 else
192 prom_putchar('0' + v);
193 }
194}
195
3a30c07e 196static const char reg_name[][3] = {
4c076fb4
DD
197 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
198 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
199 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
200 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
201};
202
203/**
204 * NMI stage 3 handler. NMIs are handled in the following manner:
205 * 1) The first NMI handler enables CVMSEG and transfers from
206 * the bootbus region into normal memory. It is careful to not
207 * destroy any registers.
208 * 2) The second stage handler uses CVMSEG to save the registers
209 * and create a stack for C code. It then calls the third level
210 * handler with one argument, a pointer to the register values.
211 * 3) The third, and final, level handler is the following C
212 * function that prints out some useful infomration.
213 *
214 * @reg: Pointer to register state before the NMI
215 */
216void octeon_wdt_nmi_stage3(u64 reg[32])
217{
218 u64 i;
219
220 unsigned int coreid = cvmx_get_core_num();
221 /*
222 * Save status and cause early to get them before any changes
223 * might happen.
224 */
225 u64 cp0_cause = read_c0_cause();
226 u64 cp0_status = read_c0_status();
227 u64 cp0_error_epc = read_c0_errorepc();
228 u64 cp0_epc = read_c0_epc();
229
230 /* Delay so output from all cores output is not jumbled together. */
0cd4e7a9 231 udelay(85000 * coreid);
4c076fb4
DD
232
233 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
0cd4e7a9 234 octeon_wdt_write_hex(coreid, 2);
4c076fb4
DD
235 octeon_wdt_write_string(" ***\r\n");
236 for (i = 0; i < 32; i++) {
237 octeon_wdt_write_string("\t");
238 octeon_wdt_write_string(reg_name[i]);
239 octeon_wdt_write_string("\t0x");
240 octeon_wdt_write_hex(reg[i], 16);
241 if (i & 1)
242 octeon_wdt_write_string("\r\n");
243 }
244 octeon_wdt_write_string("\terr_epc\t0x");
245 octeon_wdt_write_hex(cp0_error_epc, 16);
246
247 octeon_wdt_write_string("\tepc\t0x");
248 octeon_wdt_write_hex(cp0_epc, 16);
249 octeon_wdt_write_string("\r\n");
250
251 octeon_wdt_write_string("\tstatus\t0x");
252 octeon_wdt_write_hex(cp0_status, 16);
253 octeon_wdt_write_string("\tcause\t0x");
254 octeon_wdt_write_hex(cp0_cause, 16);
255 octeon_wdt_write_string("\r\n");
256
0cd4e7a9
DD
257 /* The CIU register is different for each Octeon model. */
258 if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
259 octeon_wdt_write_string("\tsrc_wd\t0x");
260 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
261 octeon_wdt_write_string("\ten_wd\t0x");
262 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
263 octeon_wdt_write_string("\r\n");
264 octeon_wdt_write_string("\tsrc_rml\t0x");
265 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
266 octeon_wdt_write_string("\ten_rml\t0x");
267 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
268 octeon_wdt_write_string("\r\n");
269 octeon_wdt_write_string("\tsum\t0x");
270 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
271 octeon_wdt_write_string("\r\n");
272 } else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
273 octeon_wdt_write_string("\tsum0\t0x");
274 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
275 octeon_wdt_write_string("\ten0\t0x");
276 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
277 octeon_wdt_write_string("\r\n");
278 }
4c076fb4
DD
279
280 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
1d1821b2
CM
281
282 /*
283 * G-30204: We must trigger a soft reset before watchdog
284 * does an incomplete job of doing it.
285 */
286 if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
287 u64 scr;
288 unsigned int node = cvmx_get_node_num();
289 unsigned int lcore = cvmx_get_local_core_num();
290 union cvmx_ciu_wdogx ciu_wdog;
291
292 /*
293 * Wait for other cores to print out information, but
294 * not too long. Do the soft reset before watchdog
295 * can trigger it.
296 */
297 do {
298 ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
299 } while (ciu_wdog.s.cnt > 0x10000);
300
301 scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
302 scr |= 1 << 11; /* Indicate watchdog in bit 11 */
303 cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
304 cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
305 }
306}
307
308static int octeon_wdt_cpu_to_irq(int cpu)
309{
310 unsigned int coreid;
311 int node;
312 int irq;
313
314 coreid = cpu2core(cpu);
315 node = cpu_to_node(cpu);
316
317 if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
318 struct irq_domain *domain;
319 int hwirq;
320
321 domain = octeon_irq_get_block_domain(node,
322 WD_BLOCK_NUMBER);
323 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
324 irq = irq_find_mapping(domain, hwirq);
325 } else {
326 irq = OCTEON_IRQ_WDOG0 + coreid;
327 }
328 return irq;
4c076fb4
DD
329}
330
948b9c60 331static int octeon_wdt_cpu_pre_down(unsigned int cpu)
4c076fb4
DD
332{
333 unsigned int core;
1d1821b2 334 int node;
4c076fb4
DD
335 union cvmx_ciu_wdogx ciu_wdog;
336
337 core = cpu2core(cpu);
338
1d1821b2 339 node = cpu_to_node(cpu);
4c076fb4
DD
340
341 /* Poke the watchdog to clear out its state */
1d1821b2 342 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
4c076fb4
DD
343
344 /* Disable the hardware. */
345 ciu_wdog.u64 = 0;
1d1821b2 346 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
4c076fb4 347
1d1821b2 348 free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
948b9c60 349 return 0;
4c076fb4
DD
350}
351
948b9c60 352static int octeon_wdt_cpu_online(unsigned int cpu)
4c076fb4
DD
353{
354 unsigned int core;
355 unsigned int irq;
356 union cvmx_ciu_wdogx ciu_wdog;
1d1821b2
CM
357 int node;
358 struct irq_domain *domain;
359 int hwirq;
4c076fb4
DD
360
361 core = cpu2core(cpu);
1d1821b2 362 node = cpu_to_node(cpu);
4c076fb4 363
49d148b4
SH
364 octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
365
4c076fb4
DD
366 /* Disable it before doing anything with the interrupts. */
367 ciu_wdog.u64 = 0;
1d1821b2 368 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
4c076fb4
DD
369
370 per_cpu_countdown[cpu] = countdown_reset;
371
1d1821b2
CM
372 if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
373 /* Must get the domain for the watchdog block */
374 domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
375
376 /* Get a irq for the wd intsn (hardware interrupt) */
377 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
378 irq = irq_create_mapping(domain, hwirq);
379 irqd_set_trigger_type(irq_get_irq_data(irq),
380 IRQ_TYPE_EDGE_RISING);
381 } else
382 irq = OCTEON_IRQ_WDOG0 + core;
4c076fb4
DD
383
384 if (request_irq(irq, octeon_wdt_poke_irq,
47bfd058 385 IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
4c076fb4
DD
386 panic("octeon_wdt: Couldn't obtain irq %d", irq);
387
1d1821b2
CM
388 /* Must set the irq affinity here */
389 if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
390 cpumask_t mask;
391
392 cpumask_clear(&mask);
393 cpumask_set_cpu(cpu, &mask);
394 irq_set_affinity(irq, &mask);
395 }
396
4c076fb4
DD
397 cpumask_set_cpu(cpu, &irq_enabled_cpus);
398
399 /* Poke the watchdog to clear out its state */
1d1821b2 400 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
4c076fb4
DD
401
402 /* Finally enable the watchdog now that all handlers are installed */
403 ciu_wdog.u64 = 0;
404 ciu_wdog.s.len = timeout_cnt;
405 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
1d1821b2 406 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
4c076fb4 407
948b9c60 408 return 0;
4c076fb4
DD
409}
410
3d588c93 411static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
4c076fb4
DD
412{
413 int cpu;
414 int coreid;
1d1821b2 415 int node;
4c076fb4 416
381cec02
SH
417 if (disable)
418 return 0;
419
4c076fb4
DD
420 for_each_online_cpu(cpu) {
421 coreid = cpu2core(cpu);
1d1821b2
CM
422 node = cpu_to_node(cpu);
423 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
4c076fb4 424 per_cpu_countdown[cpu] = countdown_reset;
381cec02 425 if ((countdown_reset || !do_countdown) &&
4c076fb4
DD
426 !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
427 /* We have to enable the irq */
1d1821b2 428 enable_irq(octeon_wdt_cpu_to_irq(cpu));
4c076fb4
DD
429 cpumask_set_cpu(cpu, &irq_enabled_cpus);
430 }
431 }
3d588c93 432 return 0;
4c076fb4
DD
433}
434
435static void octeon_wdt_calc_parameters(int t)
436{
437 unsigned int periods;
438
439 timeout_sec = max_timeout_sec;
440
441
442 /*
443 * Find the largest interrupt period, that can evenly divide
444 * the requested heartbeat time.
445 */
446 while ((t % timeout_sec) != 0)
447 timeout_sec--;
448
449 periods = t / timeout_sec;
450
451 /*
452 * The last two periods are after the irq is disabled, and
453 * then to the nmi, so we subtract them off.
454 */
455
456 countdown_reset = periods > 2 ? periods - 2 : 0;
457 heartbeat = t;
0cd4e7a9 458 timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
4c076fb4
DD
459}
460
3d588c93
AK
461static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
462 unsigned int t)
4c076fb4
DD
463{
464 int cpu;
465 int coreid;
466 union cvmx_ciu_wdogx ciu_wdog;
1d1821b2 467 int node;
4c076fb4
DD
468
469 if (t <= 0)
470 return -1;
471
472 octeon_wdt_calc_parameters(t);
473
381cec02
SH
474 if (disable)
475 return 0;
476
4c076fb4
DD
477 for_each_online_cpu(cpu) {
478 coreid = cpu2core(cpu);
1d1821b2
CM
479 node = cpu_to_node(cpu);
480 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
4c076fb4
DD
481 ciu_wdog.u64 = 0;
482 ciu_wdog.s.len = timeout_cnt;
483 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
1d1821b2
CM
484 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
485 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
4c076fb4 486 }
3d588c93 487 octeon_wdt_ping(wdog); /* Get the irqs back on. */
4c076fb4
DD
488 return 0;
489}
490
3d588c93 491static int octeon_wdt_start(struct watchdog_device *wdog)
4c076fb4 492{
3d588c93 493 octeon_wdt_ping(wdog);
381cec02 494 do_countdown = 1;
3d588c93 495 return 0;
4c076fb4
DD
496}
497
3d588c93 498static int octeon_wdt_stop(struct watchdog_device *wdog)
4c076fb4 499{
381cec02 500 do_countdown = 0;
3d588c93 501 octeon_wdt_ping(wdog);
4c076fb4
DD
502 return 0;
503}
504
3d588c93
AK
505static const struct watchdog_info octeon_wdt_info = {
506 .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
507 .identity = "OCTEON",
4c076fb4
DD
508};
509
3d588c93
AK
510static const struct watchdog_ops octeon_wdt_ops = {
511 .owner = THIS_MODULE,
512 .start = octeon_wdt_start,
513 .stop = octeon_wdt_stop,
514 .ping = octeon_wdt_ping,
515 .set_timeout = octeon_wdt_set_timeout,
4c076fb4
DD
516};
517
3d588c93
AK
518static struct watchdog_device octeon_wdt = {
519 .info = &octeon_wdt_info,
520 .ops = &octeon_wdt_ops,
521};
4c076fb4 522
948b9c60 523static enum cpuhp_state octeon_wdt_online;
4c076fb4
DD
524/**
525 * Module/ driver initialization.
526 *
527 * Returns Zero on success
528 */
529static int __init octeon_wdt_init(void)
530{
4c076fb4 531 int ret;
4c076fb4 532
49d148b4
SH
533 octeon_wdt_bootvector = cvmx_boot_vector_get();
534 if (!octeon_wdt_bootvector) {
535 pr_err("Error: Cannot allocate boot vector.\n");
536 return -ENOMEM;
537 }
538
0cd4e7a9
DD
539 if (OCTEON_IS_MODEL(OCTEON_CN68XX))
540 divisor = 0x200;
1d1821b2
CM
541 else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
542 divisor = 0x400;
0cd4e7a9
DD
543 else
544 divisor = 0x100;
545
4c076fb4
DD
546 /*
547 * Watchdog time expiration length = The 16 bits of LEN
548 * represent the most significant bits of a 24 bit decrementer
0cd4e7a9 549 * that decrements every divisor cycle.
4c076fb4
DD
550 *
551 * Try for a timeout of 5 sec, if that fails a smaller number
552 * of even seconds,
553 */
554 max_timeout_sec = 6;
555 do {
556 max_timeout_sec--;
0cd4e7a9 557 timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
4c076fb4
DD
558 } while (timeout_cnt > 65535);
559
560 BUG_ON(timeout_cnt == 0);
561
562 octeon_wdt_calc_parameters(heartbeat);
563
27c766aa 564 pr_info("Initial granularity %d Sec\n", timeout_sec);
4c076fb4 565
3d588c93
AK
566 octeon_wdt.timeout = timeout_sec;
567 octeon_wdt.max_timeout = UINT_MAX;
568
569 watchdog_set_nowayout(&octeon_wdt, nowayout);
570
571 ret = watchdog_register_device(&octeon_wdt);
4c076fb4 572 if (ret) {
3d588c93
AK
573 pr_err("watchdog_register_device() failed: %d\n", ret);
574 return ret;
4c076fb4
DD
575 }
576
381cec02
SH
577 if (disable) {
578 pr_notice("disabled\n");
579 return 0;
580 }
581
4c076fb4
DD
582 cpumask_clear(&irq_enabled_cpus);
583
948b9c60
SAS
584 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
585 octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
586 if (ret < 0)
587 goto err;
588 octeon_wdt_online = ret;
3d588c93 589 return 0;
948b9c60
SAS
590err:
591 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
592 watchdog_unregister_device(&octeon_wdt);
593 return ret;
4c076fb4
DD
594}
595
596/**
597 * Module / driver shutdown
598 */
599static void __exit octeon_wdt_cleanup(void)
600{
3d588c93 601 watchdog_unregister_device(&octeon_wdt);
381cec02
SH
602
603 if (disable)
604 return;
605
948b9c60 606 cpuhp_remove_state(octeon_wdt_online);
99c3bf36 607
4c076fb4
DD
608 /*
609 * Disable the boot-bus memory, the code it points to is soon
610 * to go missing.
611 */
612 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
613}
614
615MODULE_LICENSE("GPL");
381cec02
SH
616MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
617MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
4c076fb4
DD
618module_init(octeon_wdt_init);
619module_exit(octeon_wdt_cleanup);