]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
exec: introduce memory_ldst.inc.c
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
b67d9a52 27#include "tcg.h"
741da0d3 28#include "hw/qdev-core.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3
PB
44#include "sysemu/dma.h"
45#include "exec/address-spaces.h"
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
5b6dd868 52#include "translate-all.h"
7615936e 53#include "sysemu/replay.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
508127e2 57#include "exec/log.h"
67d95c15 58
9dfeca7c
BR
59#include "migration/vmstate.h"
60
b35ba30f 61#include "qemu/range.h"
794e8f30
MT
62#ifndef _WIN32
63#include "qemu/mmap-alloc.h"
64#endif
b35ba30f 65
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
e2eef170 68#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
69/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
71 */
0d53d9fe 72RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
73
74static MemoryRegion *system_memory;
309cb471 75static MemoryRegion *system_io;
62152b8a 76
f6790af6
AK
77AddressSpace address_space_io;
78AddressSpace address_space_memory;
2673a5da 79
0844e007 80MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 81static MemoryRegion io_mem_unassigned;
0e0df1e2 82
7bd4f430
PB
83/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84#define RAM_PREALLOC (1 << 0)
85
dbcb8981
PB
86/* RAM is mmap-ed with MAP_SHARED */
87#define RAM_SHARED (1 << 1)
88
62be4e3a
MT
89/* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
91 */
92#define RAM_RESIZEABLE (1 << 2)
93
e2eef170 94#endif
9fa3e853 95
20bccb82
PM
96#ifdef TARGET_PAGE_BITS_VARY
97int target_page_bits;
98bool target_page_bits_decided;
99#endif
100
bdc44640 101struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
102/* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
f240eb6f 104__thread CPUState *current_cpu;
2e70f6ef 105/* 0 = Do not count executed instructions.
bf20dc07 106 1 = Precise instruction counting.
2e70f6ef 107 2 = Adaptive rate instruction counting. */
5708fc66 108int use_icount;
6a00d601 109
20bccb82
PM
110bool set_preferred_target_page_bits(int bits)
111{
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
116 */
117#ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
122 }
123 target_page_bits = bits;
124 }
125#endif
126 return true;
127}
128
e2eef170 129#if !defined(CONFIG_USER_ONLY)
4346ae3e 130
20bccb82
PM
131static void finalize_target_page_bits(void)
132{
133#ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
136 }
137 target_page_bits_decided = true;
138#endif
139}
140
1db8abb1
PB
141typedef struct PhysPageEntry PhysPageEntry;
142
143struct PhysPageEntry {
9736e55b 144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 145 uint32_t skip : 6;
9736e55b 146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 147 uint32_t ptr : 26;
1db8abb1
PB
148};
149
8b795765
MT
150#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151
03f49957 152/* Size of the L2 (and L3, etc) page tables. */
57271d63 153#define ADDR_SPACE_BITS 64
03f49957 154
026736ce 155#define P_L2_BITS 9
03f49957
PB
156#define P_L2_SIZE (1 << P_L2_BITS)
157
158#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159
160typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 161
53cb28cb 162typedef struct PhysPageMap {
79e2b9ae
PB
163 struct rcu_head rcu;
164
53cb28cb
MA
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171} PhysPageMap;
172
1db8abb1 173struct AddressSpaceDispatch {
79e2b9ae
PB
174 struct rcu_head rcu;
175
729633c2 176 MemoryRegionSection *mru_section;
1db8abb1
PB
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
179 */
180 PhysPageEntry phys_map;
53cb28cb 181 PhysPageMap map;
acc9d80b 182 AddressSpace *as;
1db8abb1
PB
183};
184
90260c6c
JK
185#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186typedef struct subpage_t {
187 MemoryRegion iomem;
acc9d80b 188 AddressSpace *as;
90260c6c 189 hwaddr base;
2615fabd 190 uint16_t sub_section[];
90260c6c
JK
191} subpage_t;
192
b41aac4f
LPF
193#define PHYS_SECTION_UNASSIGNED 0
194#define PHYS_SECTION_NOTDIRTY 1
195#define PHYS_SECTION_ROM 2
196#define PHYS_SECTION_WATCH 3
5312bd8b 197
e2eef170 198static void io_mem_init(void);
62152b8a 199static void memory_map_init(void);
09daed84 200static void tcg_commit(MemoryListener *listener);
e2eef170 201
1ec9b909 202static MemoryRegion io_mem_watch;
32857f4d
PM
203
204/**
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
210 */
211struct CPUAddressSpace {
212 CPUState *cpu;
213 AddressSpace *as;
214 struct AddressSpaceDispatch *memory_dispatch;
215 MemoryListener tcg_as_listener;
216};
217
6658ffb8 218#endif
fd6ce8f6 219
6d9a1304 220#if !defined(CONFIG_USER_ONLY)
d6f2ea22 221
53cb28cb 222static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 223{
101420b8 224 static unsigned alloc_hint = 16;
53cb28cb 225 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 226 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
227 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
228 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 229 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 230 }
f7bf5461
AK
231}
232
db94604b 233static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
234{
235 unsigned i;
8b795765 236 uint32_t ret;
db94604b
PB
237 PhysPageEntry e;
238 PhysPageEntry *p;
f7bf5461 239
53cb28cb 240 ret = map->nodes_nb++;
db94604b 241 p = map->nodes[ret];
f7bf5461 242 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 243 assert(ret != map->nodes_nb_alloc);
db94604b
PB
244
245 e.skip = leaf ? 0 : 1;
246 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 247 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 248 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 249 }
f7bf5461 250 return ret;
d6f2ea22
AK
251}
252
53cb28cb
MA
253static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 255 int level)
f7bf5461
AK
256{
257 PhysPageEntry *p;
03f49957 258 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 259
9736e55b 260 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 261 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 262 }
db94604b 263 p = map->nodes[lp->ptr];
03f49957 264 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 265
03f49957 266 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 267 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 268 lp->skip = 0;
c19e8800 269 lp->ptr = leaf;
07f07b31
AK
270 *index += step;
271 *nb -= step;
2999097b 272 } else {
53cb28cb 273 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
274 }
275 ++lp;
f7bf5461
AK
276 }
277}
278
ac1970fb 279static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 280 hwaddr index, hwaddr nb,
2999097b 281 uint16_t leaf)
f7bf5461 282{
2999097b 283 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 284 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 285
53cb28cb 286 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
287}
288
b35ba30f
MT
289/* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
291 */
efee678d 292static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
293{
294 unsigned valid_ptr = P_L2_SIZE;
295 int valid = 0;
296 PhysPageEntry *p;
297 int i;
298
299 if (lp->ptr == PHYS_MAP_NODE_NIL) {
300 return;
301 }
302
303 p = nodes[lp->ptr];
304 for (i = 0; i < P_L2_SIZE; i++) {
305 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
306 continue;
307 }
308
309 valid_ptr = i;
310 valid++;
311 if (p[i].skip) {
efee678d 312 phys_page_compact(&p[i], nodes);
b35ba30f
MT
313 }
314 }
315
316 /* We can only compress if there's only one child. */
317 if (valid != 1) {
318 return;
319 }
320
321 assert(valid_ptr < P_L2_SIZE);
322
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
325 return;
326 }
327
328 lp->ptr = p[valid_ptr].ptr;
329 if (!p[valid_ptr].skip) {
330 /* If our only child is a leaf, make this a leaf. */
331 /* By design, we should have made this node a leaf to begin with so we
332 * should never reach here.
333 * But since it's so simple to handle this, let's do it just in case we
334 * change this rule.
335 */
336 lp->skip = 0;
337 } else {
338 lp->skip += p[valid_ptr].skip;
339 }
340}
341
342static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
343{
b35ba30f 344 if (d->phys_map.skip) {
efee678d 345 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
346 }
347}
348
29cb533d
FZ
349static inline bool section_covers_addr(const MemoryRegionSection *section,
350 hwaddr addr)
351{
352 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
353 * the section must cover the entire address space.
354 */
258dfaaa 355 return int128_gethi(section->size) ||
29cb533d 356 range_covers_byte(section->offset_within_address_space,
258dfaaa 357 int128_getlo(section->size), addr);
29cb533d
FZ
358}
359
97115a8d 360static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 361 Node *nodes, MemoryRegionSection *sections)
92e873b9 362{
31ab2b4a 363 PhysPageEntry *p;
97115a8d 364 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 365 int i;
f1f6e3b8 366
9736e55b 367 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 368 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 369 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 370 }
9affd6fc 371 p = nodes[lp.ptr];
03f49957 372 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 373 }
b35ba30f 374
29cb533d 375 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
376 return &sections[lp.ptr];
377 } else {
378 return &sections[PHYS_SECTION_UNASSIGNED];
379 }
f3705d53
AK
380}
381
e5548617
BS
382bool memory_region_is_unassigned(MemoryRegion *mr)
383{
2a8e7499 384 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 385 && mr != &io_mem_watch;
fd6ce8f6 386}
149f54b5 387
79e2b9ae 388/* Called from RCU critical section */
c7086b4a 389static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
390 hwaddr addr,
391 bool resolve_subpage)
9f029603 392{
729633c2 393 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 394 subpage_t *subpage;
729633c2 395 bool update;
90260c6c 396
729633c2
FZ
397 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
398 section_covers_addr(section, addr)) {
399 update = false;
400 } else {
401 section = phys_page_find(d->phys_map, addr, d->map.nodes,
402 d->map.sections);
403 update = true;
404 }
90260c6c
JK
405 if (resolve_subpage && section->mr->subpage) {
406 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 407 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 408 }
729633c2
FZ
409 if (update) {
410 atomic_set(&d->mru_section, section);
411 }
90260c6c 412 return section;
9f029603
JK
413}
414
79e2b9ae 415/* Called from RCU critical section */
90260c6c 416static MemoryRegionSection *
c7086b4a 417address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 418 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
419{
420 MemoryRegionSection *section;
965eb2fc 421 MemoryRegion *mr;
a87f3954 422 Int128 diff;
149f54b5 423
c7086b4a 424 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
425 /* Compute offset within MemoryRegionSection */
426 addr -= section->offset_within_address_space;
427
428 /* Compute offset within MemoryRegion */
429 *xlat = addr + section->offset_within_region;
430
965eb2fc 431 mr = section->mr;
b242e0e0
PB
432
433 /* MMIO registers can be expected to perform full-width accesses based only
434 * on their address, without considering adjacent registers that could
435 * decode to completely different MemoryRegions. When such registers
436 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
437 * regions overlap wildly. For this reason we cannot clamp the accesses
438 * here.
439 *
440 * If the length is small (as is the case for address_space_ldl/stl),
441 * everything works fine. If the incoming length is large, however,
442 * the caller really has to do the clamping through memory_access_size.
443 */
965eb2fc 444 if (memory_region_is_ram(mr)) {
e4a511f8 445 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
446 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
447 }
149f54b5
PB
448 return section;
449}
90260c6c 450
41063e1e 451/* Called from RCU critical section */
5c8a00ce
PB
452MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
453 hwaddr *xlat, hwaddr *plen,
454 bool is_write)
90260c6c 455{
30951157
AK
456 IOMMUTLBEntry iotlb;
457 MemoryRegionSection *section;
458 MemoryRegion *mr;
30951157
AK
459
460 for (;;) {
79e2b9ae
PB
461 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
462 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
463 mr = section->mr;
464
465 if (!mr->iommu_ops) {
466 break;
467 }
468
8d7b8cb9 469 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
470 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
471 | (addr & iotlb.addr_mask));
23820dbf 472 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
473 if (!(iotlb.perm & (1 << is_write))) {
474 mr = &io_mem_unassigned;
475 break;
476 }
477
478 as = iotlb.target_as;
479 }
480
fe680d0d 481 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 482 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 483 *plen = MIN(page, *plen);
a87f3954
PB
484 }
485
30951157
AK
486 *xlat = addr;
487 return mr;
90260c6c
JK
488}
489
79e2b9ae 490/* Called from RCU critical section */
90260c6c 491MemoryRegionSection *
d7898cda 492address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 493 hwaddr *xlat, hwaddr *plen)
90260c6c 494{
30951157 495 MemoryRegionSection *section;
f35e44e7 496 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
497
498 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
499
500 assert(!section->mr->iommu_ops);
501 return section;
90260c6c 502}
5b6dd868 503#endif
fd6ce8f6 504
b170fce3 505#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
506
507static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 508{
259186a7 509 CPUState *cpu = opaque;
a513fe19 510
5b6dd868
BS
511 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
512 version_id is increased. */
259186a7 513 cpu->interrupt_request &= ~0x01;
c01a71c1 514 tlb_flush(cpu, 1);
5b6dd868
BS
515
516 return 0;
a513fe19 517}
7501267e 518
6c3bff0e
PD
519static int cpu_common_pre_load(void *opaque)
520{
521 CPUState *cpu = opaque;
522
adee6424 523 cpu->exception_index = -1;
6c3bff0e
PD
524
525 return 0;
526}
527
528static bool cpu_common_exception_index_needed(void *opaque)
529{
530 CPUState *cpu = opaque;
531
adee6424 532 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
533}
534
535static const VMStateDescription vmstate_cpu_common_exception_index = {
536 .name = "cpu_common/exception_index",
537 .version_id = 1,
538 .minimum_version_id = 1,
5cd8cada 539 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
540 .fields = (VMStateField[]) {
541 VMSTATE_INT32(exception_index, CPUState),
542 VMSTATE_END_OF_LIST()
543 }
544};
545
bac05aa9
AS
546static bool cpu_common_crash_occurred_needed(void *opaque)
547{
548 CPUState *cpu = opaque;
549
550 return cpu->crash_occurred;
551}
552
553static const VMStateDescription vmstate_cpu_common_crash_occurred = {
554 .name = "cpu_common/crash_occurred",
555 .version_id = 1,
556 .minimum_version_id = 1,
557 .needed = cpu_common_crash_occurred_needed,
558 .fields = (VMStateField[]) {
559 VMSTATE_BOOL(crash_occurred, CPUState),
560 VMSTATE_END_OF_LIST()
561 }
562};
563
1a1562f5 564const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
565 .name = "cpu_common",
566 .version_id = 1,
567 .minimum_version_id = 1,
6c3bff0e 568 .pre_load = cpu_common_pre_load,
5b6dd868 569 .post_load = cpu_common_post_load,
35d08458 570 .fields = (VMStateField[]) {
259186a7
AF
571 VMSTATE_UINT32(halted, CPUState),
572 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 573 VMSTATE_END_OF_LIST()
6c3bff0e 574 },
5cd8cada
JQ
575 .subsections = (const VMStateDescription*[]) {
576 &vmstate_cpu_common_exception_index,
bac05aa9 577 &vmstate_cpu_common_crash_occurred,
5cd8cada 578 NULL
5b6dd868
BS
579 }
580};
1a1562f5 581
5b6dd868 582#endif
ea041c0e 583
38d8f5c8 584CPUState *qemu_get_cpu(int index)
ea041c0e 585{
bdc44640 586 CPUState *cpu;
ea041c0e 587
bdc44640 588 CPU_FOREACH(cpu) {
55e5c285 589 if (cpu->cpu_index == index) {
bdc44640 590 return cpu;
55e5c285 591 }
ea041c0e 592 }
5b6dd868 593
bdc44640 594 return NULL;
ea041c0e
FB
595}
596
09daed84 597#if !defined(CONFIG_USER_ONLY)
56943e8c 598void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 599{
12ebc9a7
PM
600 CPUAddressSpace *newas;
601
602 /* Target code should have set num_ases before calling us */
603 assert(asidx < cpu->num_ases);
604
56943e8c
PM
605 if (asidx == 0) {
606 /* address space 0 gets the convenience alias */
607 cpu->as = as;
608 }
609
12ebc9a7
PM
610 /* KVM cannot currently support multiple address spaces. */
611 assert(asidx == 0 || !kvm_enabled());
09daed84 612
12ebc9a7
PM
613 if (!cpu->cpu_ases) {
614 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 615 }
32857f4d 616
12ebc9a7
PM
617 newas = &cpu->cpu_ases[asidx];
618 newas->cpu = cpu;
619 newas->as = as;
56943e8c 620 if (tcg_enabled()) {
12ebc9a7
PM
621 newas->tcg_as_listener.commit = tcg_commit;
622 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 623 }
09daed84 624}
651a5bc0
PM
625
626AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
627{
628 /* Return the AddressSpace corresponding to the specified index */
629 return cpu->cpu_ases[asidx].as;
630}
09daed84
EI
631#endif
632
7bbc124e 633void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 634{
9dfeca7c
BR
635 CPUClass *cc = CPU_GET_CLASS(cpu);
636
267f685b 637 cpu_list_remove(cpu);
9dfeca7c
BR
638
639 if (cc->vmsd != NULL) {
640 vmstate_unregister(NULL, cc->vmsd, cpu);
641 }
642 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
643 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
644 }
1c59eb39
BR
645}
646
39e329e3 647void cpu_exec_initfn(CPUState *cpu)
ea041c0e 648{
56943e8c 649 cpu->as = NULL;
12ebc9a7 650 cpu->num_ases = 0;
56943e8c 651
291135b5 652#ifndef CONFIG_USER_ONLY
291135b5 653 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
654
655 /* This is a softmmu CPU object, so create a property for it
656 * so users can wire up its memory. (This can't go in qom/cpu.c
657 * because that file is compiled only once for both user-mode
658 * and system builds.) The default if no link is set up is to use
659 * the system address space.
660 */
661 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
662 (Object **)&cpu->memory,
663 qdev_prop_allow_set_link_before_realize,
664 OBJ_PROP_LINK_UNREF_ON_RELEASE,
665 &error_abort);
666 cpu->memory = system_memory;
667 object_ref(OBJECT(cpu->memory));
291135b5 668#endif
39e329e3
LV
669}
670
ce5b1bbf 671void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
672{
673 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 674
267f685b 675 cpu_list_add(cpu);
1bc7e522
IM
676
677#ifndef CONFIG_USER_ONLY
e0d47944 678 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 679 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 680 }
b170fce3 681 if (cc->vmsd != NULL) {
741da0d3 682 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 683 }
741da0d3 684#endif
ea041c0e
FB
685}
686
00b941e5 687static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 688{
a9353fe8
PM
689 /* Flush the whole TB as this will not have race conditions
690 * even if we don't have proper locking yet.
691 * Ideally we would just invalidate the TBs for the
692 * specified PC.
693 */
694 tb_flush(cpu);
1e7855a5 695}
d720b93d 696
c527ee8f 697#if defined(CONFIG_USER_ONLY)
75a34036 698void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
699
700{
701}
702
3ee887e8
PM
703int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
704 int flags)
705{
706 return -ENOSYS;
707}
708
709void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
710{
711}
712
75a34036 713int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
714 int flags, CPUWatchpoint **watchpoint)
715{
716 return -ENOSYS;
717}
718#else
6658ffb8 719/* Add a watchpoint. */
75a34036 720int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 721 int flags, CPUWatchpoint **watchpoint)
6658ffb8 722{
c0ce998e 723 CPUWatchpoint *wp;
6658ffb8 724
05068c0d 725 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 726 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
727 error_report("tried to set invalid watchpoint at %"
728 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
729 return -EINVAL;
730 }
7267c094 731 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
732
733 wp->vaddr = addr;
05068c0d 734 wp->len = len;
a1d1bb31
AL
735 wp->flags = flags;
736
2dc9f411 737 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
738 if (flags & BP_GDB) {
739 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
740 } else {
741 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
742 }
6658ffb8 743
31b030d4 744 tlb_flush_page(cpu, addr);
a1d1bb31
AL
745
746 if (watchpoint)
747 *watchpoint = wp;
748 return 0;
6658ffb8
PB
749}
750
a1d1bb31 751/* Remove a specific watchpoint. */
75a34036 752int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 753 int flags)
6658ffb8 754{
a1d1bb31 755 CPUWatchpoint *wp;
6658ffb8 756
ff4700b0 757 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 758 if (addr == wp->vaddr && len == wp->len
6e140f28 759 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 760 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
761 return 0;
762 }
763 }
a1d1bb31 764 return -ENOENT;
6658ffb8
PB
765}
766
a1d1bb31 767/* Remove a specific watchpoint by reference. */
75a34036 768void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 769{
ff4700b0 770 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 771
31b030d4 772 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 773
7267c094 774 g_free(watchpoint);
a1d1bb31
AL
775}
776
777/* Remove all matching watchpoints. */
75a34036 778void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 779{
c0ce998e 780 CPUWatchpoint *wp, *next;
a1d1bb31 781
ff4700b0 782 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
783 if (wp->flags & mask) {
784 cpu_watchpoint_remove_by_ref(cpu, wp);
785 }
c0ce998e 786 }
7d03f82f 787}
05068c0d
PM
788
789/* Return true if this watchpoint address matches the specified
790 * access (ie the address range covered by the watchpoint overlaps
791 * partially or completely with the address range covered by the
792 * access).
793 */
794static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
795 vaddr addr,
796 vaddr len)
797{
798 /* We know the lengths are non-zero, but a little caution is
799 * required to avoid errors in the case where the range ends
800 * exactly at the top of the address space and so addr + len
801 * wraps round to zero.
802 */
803 vaddr wpend = wp->vaddr + wp->len - 1;
804 vaddr addrend = addr + len - 1;
805
806 return !(addr > wpend || wp->vaddr > addrend);
807}
808
c527ee8f 809#endif
7d03f82f 810
a1d1bb31 811/* Add a breakpoint. */
b3310ab3 812int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 813 CPUBreakpoint **breakpoint)
4c3a88a2 814{
c0ce998e 815 CPUBreakpoint *bp;
3b46e624 816
7267c094 817 bp = g_malloc(sizeof(*bp));
4c3a88a2 818
a1d1bb31
AL
819 bp->pc = pc;
820 bp->flags = flags;
821
2dc9f411 822 /* keep all GDB-injected breakpoints in front */
00b941e5 823 if (flags & BP_GDB) {
f0c3c505 824 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 825 } else {
f0c3c505 826 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 827 }
3b46e624 828
f0c3c505 829 breakpoint_invalidate(cpu, pc);
a1d1bb31 830
00b941e5 831 if (breakpoint) {
a1d1bb31 832 *breakpoint = bp;
00b941e5 833 }
4c3a88a2 834 return 0;
4c3a88a2
FB
835}
836
a1d1bb31 837/* Remove a specific breakpoint. */
b3310ab3 838int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 839{
a1d1bb31
AL
840 CPUBreakpoint *bp;
841
f0c3c505 842 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 843 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 844 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
845 return 0;
846 }
7d03f82f 847 }
a1d1bb31 848 return -ENOENT;
7d03f82f
EI
849}
850
a1d1bb31 851/* Remove a specific breakpoint by reference. */
b3310ab3 852void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 853{
f0c3c505
AF
854 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
855
856 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 857
7267c094 858 g_free(breakpoint);
a1d1bb31
AL
859}
860
861/* Remove all matching breakpoints. */
b3310ab3 862void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 863{
c0ce998e 864 CPUBreakpoint *bp, *next;
a1d1bb31 865
f0c3c505 866 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
867 if (bp->flags & mask) {
868 cpu_breakpoint_remove_by_ref(cpu, bp);
869 }
c0ce998e 870 }
4c3a88a2
FB
871}
872
c33a346e
FB
873/* enable or disable single step mode. EXCP_DEBUG is returned by the
874 CPU loop after each instruction */
3825b28f 875void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 876{
ed2803da
AF
877 if (cpu->singlestep_enabled != enabled) {
878 cpu->singlestep_enabled = enabled;
879 if (kvm_enabled()) {
38e478ec 880 kvm_update_guest_debug(cpu, 0);
ed2803da 881 } else {
ccbb4d44 882 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 883 /* XXX: only flush what is necessary */
bbd77c18 884 tb_flush(cpu);
e22a25c9 885 }
c33a346e 886 }
c33a346e
FB
887}
888
a47dddd7 889void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
890{
891 va_list ap;
493ae1f0 892 va_list ap2;
7501267e
FB
893
894 va_start(ap, fmt);
493ae1f0 895 va_copy(ap2, ap);
7501267e
FB
896 fprintf(stderr, "qemu: fatal: ");
897 vfprintf(stderr, fmt, ap);
898 fprintf(stderr, "\n");
878096ee 899 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 900 if (qemu_log_separate()) {
1ee73216 901 qemu_log_lock();
93fcfe39
AL
902 qemu_log("qemu: fatal: ");
903 qemu_log_vprintf(fmt, ap2);
904 qemu_log("\n");
a0762859 905 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 906 qemu_log_flush();
1ee73216 907 qemu_log_unlock();
93fcfe39 908 qemu_log_close();
924edcae 909 }
493ae1f0 910 va_end(ap2);
f9373291 911 va_end(ap);
7615936e 912 replay_finish();
fd052bf6
RV
913#if defined(CONFIG_USER_ONLY)
914 {
915 struct sigaction act;
916 sigfillset(&act.sa_mask);
917 act.sa_handler = SIG_DFL;
918 sigaction(SIGABRT, &act, NULL);
919 }
920#endif
7501267e
FB
921 abort();
922}
923
0124311e 924#if !defined(CONFIG_USER_ONLY)
0dc3f44a 925/* Called from RCU critical section */
041603fe
PB
926static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
927{
928 RAMBlock *block;
929
43771539 930 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 931 if (block && addr - block->offset < block->max_length) {
68851b98 932 return block;
041603fe 933 }
0dc3f44a 934 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 935 if (addr - block->offset < block->max_length) {
041603fe
PB
936 goto found;
937 }
938 }
939
940 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
941 abort();
942
943found:
43771539
PB
944 /* It is safe to write mru_block outside the iothread lock. This
945 * is what happens:
946 *
947 * mru_block = xxx
948 * rcu_read_unlock()
949 * xxx removed from list
950 * rcu_read_lock()
951 * read mru_block
952 * mru_block = NULL;
953 * call_rcu(reclaim_ramblock, xxx);
954 * rcu_read_unlock()
955 *
956 * atomic_rcu_set is not needed here. The block was already published
957 * when it was placed into the list. Here we're just making an extra
958 * copy of the pointer.
959 */
041603fe
PB
960 ram_list.mru_block = block;
961 return block;
962}
963
a2f4d5be 964static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 965{
9a13565d 966 CPUState *cpu;
041603fe 967 ram_addr_t start1;
a2f4d5be
JQ
968 RAMBlock *block;
969 ram_addr_t end;
970
971 end = TARGET_PAGE_ALIGN(start + length);
972 start &= TARGET_PAGE_MASK;
d24981d3 973
0dc3f44a 974 rcu_read_lock();
041603fe
PB
975 block = qemu_get_ram_block(start);
976 assert(block == qemu_get_ram_block(end - 1));
1240be24 977 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
978 CPU_FOREACH(cpu) {
979 tlb_reset_dirty(cpu, start1, length);
980 }
0dc3f44a 981 rcu_read_unlock();
d24981d3
JQ
982}
983
5579c7f3 984/* Note: start and end must be within the same ram block. */
03eebc9e
SH
985bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
986 ram_addr_t length,
987 unsigned client)
1ccde1cb 988{
5b82b703 989 DirtyMemoryBlocks *blocks;
03eebc9e 990 unsigned long end, page;
5b82b703 991 bool dirty = false;
03eebc9e
SH
992
993 if (length == 0) {
994 return false;
995 }
f23db169 996
03eebc9e
SH
997 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
998 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
999
1000 rcu_read_lock();
1001
1002 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1003
1004 while (page < end) {
1005 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1006 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1007 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1008
1009 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1010 offset, num);
1011 page += num;
1012 }
1013
1014 rcu_read_unlock();
03eebc9e
SH
1015
1016 if (dirty && tcg_enabled()) {
a2f4d5be 1017 tlb_reset_dirty_range_all(start, length);
5579c7f3 1018 }
03eebc9e
SH
1019
1020 return dirty;
1ccde1cb
FB
1021}
1022
79e2b9ae 1023/* Called from RCU critical section */
bb0e627a 1024hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1025 MemoryRegionSection *section,
1026 target_ulong vaddr,
1027 hwaddr paddr, hwaddr xlat,
1028 int prot,
1029 target_ulong *address)
e5548617 1030{
a8170e5e 1031 hwaddr iotlb;
e5548617
BS
1032 CPUWatchpoint *wp;
1033
cc5bea60 1034 if (memory_region_is_ram(section->mr)) {
e5548617 1035 /* Normal RAM. */
e4e69794 1036 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1037 if (!section->readonly) {
b41aac4f 1038 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1039 } else {
b41aac4f 1040 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1041 }
1042 } else {
0b8e2c10
PM
1043 AddressSpaceDispatch *d;
1044
1045 d = atomic_rcu_read(&section->address_space->dispatch);
1046 iotlb = section - d->map.sections;
149f54b5 1047 iotlb += xlat;
e5548617
BS
1048 }
1049
1050 /* Make accesses to pages with watchpoints go via the
1051 watchpoint trap routines. */
ff4700b0 1052 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1053 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1054 /* Avoid trapping reads of pages with a write breakpoint. */
1055 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1056 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1057 *address |= TLB_MMIO;
1058 break;
1059 }
1060 }
1061 }
1062
1063 return iotlb;
1064}
9fa3e853
FB
1065#endif /* defined(CONFIG_USER_ONLY) */
1066
e2eef170 1067#if !defined(CONFIG_USER_ONLY)
8da3ff18 1068
c227f099 1069static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1070 uint16_t section);
acc9d80b 1071static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1072
a2b257d6
IM
1073static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1074 qemu_anon_ram_alloc;
91138037
MA
1075
1076/*
1077 * Set a custom physical guest memory alloator.
1078 * Accelerators with unusual needs may need this. Hopefully, we can
1079 * get rid of it eventually.
1080 */
a2b257d6 1081void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1082{
1083 phys_mem_alloc = alloc;
1084}
1085
53cb28cb
MA
1086static uint16_t phys_section_add(PhysPageMap *map,
1087 MemoryRegionSection *section)
5312bd8b 1088{
68f3f65b
PB
1089 /* The physical section number is ORed with a page-aligned
1090 * pointer to produce the iotlb entries. Thus it should
1091 * never overflow into the page-aligned value.
1092 */
53cb28cb 1093 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1094
53cb28cb
MA
1095 if (map->sections_nb == map->sections_nb_alloc) {
1096 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1097 map->sections = g_renew(MemoryRegionSection, map->sections,
1098 map->sections_nb_alloc);
5312bd8b 1099 }
53cb28cb 1100 map->sections[map->sections_nb] = *section;
dfde4e6e 1101 memory_region_ref(section->mr);
53cb28cb 1102 return map->sections_nb++;
5312bd8b
AK
1103}
1104
058bc4b5
PB
1105static void phys_section_destroy(MemoryRegion *mr)
1106{
55b4e80b
DS
1107 bool have_sub_page = mr->subpage;
1108
dfde4e6e
PB
1109 memory_region_unref(mr);
1110
55b4e80b 1111 if (have_sub_page) {
058bc4b5 1112 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1113 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1114 g_free(subpage);
1115 }
1116}
1117
6092666e 1118static void phys_sections_free(PhysPageMap *map)
5312bd8b 1119{
9affd6fc
PB
1120 while (map->sections_nb > 0) {
1121 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1122 phys_section_destroy(section->mr);
1123 }
9affd6fc
PB
1124 g_free(map->sections);
1125 g_free(map->nodes);
5312bd8b
AK
1126}
1127
ac1970fb 1128static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1129{
1130 subpage_t *subpage;
a8170e5e 1131 hwaddr base = section->offset_within_address_space
0f0cb164 1132 & TARGET_PAGE_MASK;
97115a8d 1133 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1134 d->map.nodes, d->map.sections);
0f0cb164
AK
1135 MemoryRegionSection subsection = {
1136 .offset_within_address_space = base,
052e87b0 1137 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1138 };
a8170e5e 1139 hwaddr start, end;
0f0cb164 1140
f3705d53 1141 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1142
f3705d53 1143 if (!(existing->mr->subpage)) {
acc9d80b 1144 subpage = subpage_init(d->as, base);
3be91e86 1145 subsection.address_space = d->as;
0f0cb164 1146 subsection.mr = &subpage->iomem;
ac1970fb 1147 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1148 phys_section_add(&d->map, &subsection));
0f0cb164 1149 } else {
f3705d53 1150 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1151 }
1152 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1153 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1154 subpage_register(subpage, start, end,
1155 phys_section_add(&d->map, section));
0f0cb164
AK
1156}
1157
1158
052e87b0
PB
1159static void register_multipage(AddressSpaceDispatch *d,
1160 MemoryRegionSection *section)
33417e70 1161{
a8170e5e 1162 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1163 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1164 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1165 TARGET_PAGE_BITS));
dd81124b 1166
733d5ef5
PB
1167 assert(num_pages);
1168 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1169}
1170
ac1970fb 1171static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1172{
89ae337a 1173 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1174 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1175 MemoryRegionSection now = *section, remain = *section;
052e87b0 1176 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1177
733d5ef5
PB
1178 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1179 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1180 - now.offset_within_address_space;
1181
052e87b0 1182 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1183 register_subpage(d, &now);
733d5ef5 1184 } else {
052e87b0 1185 now.size = int128_zero();
733d5ef5 1186 }
052e87b0
PB
1187 while (int128_ne(remain.size, now.size)) {
1188 remain.size = int128_sub(remain.size, now.size);
1189 remain.offset_within_address_space += int128_get64(now.size);
1190 remain.offset_within_region += int128_get64(now.size);
69b67646 1191 now = remain;
052e87b0 1192 if (int128_lt(remain.size, page_size)) {
733d5ef5 1193 register_subpage(d, &now);
88266249 1194 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1195 now.size = page_size;
ac1970fb 1196 register_subpage(d, &now);
69b67646 1197 } else {
052e87b0 1198 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1199 register_multipage(d, &now);
69b67646 1200 }
0f0cb164
AK
1201 }
1202}
1203
62a2744c
SY
1204void qemu_flush_coalesced_mmio_buffer(void)
1205{
1206 if (kvm_enabled())
1207 kvm_flush_coalesced_mmio_buffer();
1208}
1209
b2a8658e
UD
1210void qemu_mutex_lock_ramlist(void)
1211{
1212 qemu_mutex_lock(&ram_list.mutex);
1213}
1214
1215void qemu_mutex_unlock_ramlist(void)
1216{
1217 qemu_mutex_unlock(&ram_list.mutex);
1218}
1219
e1e84ba0 1220#ifdef __linux__
d6af99c9
HZ
1221static int64_t get_file_size(int fd)
1222{
1223 int64_t size = lseek(fd, 0, SEEK_END);
1224 if (size < 0) {
1225 return -errno;
1226 }
1227 return size;
1228}
1229
04b16653
AW
1230static void *file_ram_alloc(RAMBlock *block,
1231 ram_addr_t memory,
7f56e740
PB
1232 const char *path,
1233 Error **errp)
c902760f 1234{
fd97fd44 1235 bool unlink_on_error = false;
c902760f 1236 char *filename;
8ca761f6
PF
1237 char *sanitized_name;
1238 char *c;
056b68af 1239 void *area = MAP_FAILED;
5c3ece79 1240 int fd = -1;
d6af99c9 1241 int64_t file_size;
c902760f
MT
1242
1243 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1244 error_setg(errp,
1245 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1246 return NULL;
c902760f
MT
1247 }
1248
fd97fd44
MA
1249 for (;;) {
1250 fd = open(path, O_RDWR);
1251 if (fd >= 0) {
1252 /* @path names an existing file, use it */
1253 break;
8d31d6b6 1254 }
fd97fd44
MA
1255 if (errno == ENOENT) {
1256 /* @path names a file that doesn't exist, create it */
1257 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1258 if (fd >= 0) {
1259 unlink_on_error = true;
1260 break;
1261 }
1262 } else if (errno == EISDIR) {
1263 /* @path names a directory, create a file there */
1264 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1265 sanitized_name = g_strdup(memory_region_name(block->mr));
1266 for (c = sanitized_name; *c != '\0'; c++) {
1267 if (*c == '/') {
1268 *c = '_';
1269 }
1270 }
8ca761f6 1271
fd97fd44
MA
1272 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1273 sanitized_name);
1274 g_free(sanitized_name);
8d31d6b6 1275
fd97fd44
MA
1276 fd = mkstemp(filename);
1277 if (fd >= 0) {
1278 unlink(filename);
1279 g_free(filename);
1280 break;
1281 }
1282 g_free(filename);
8d31d6b6 1283 }
fd97fd44
MA
1284 if (errno != EEXIST && errno != EINTR) {
1285 error_setg_errno(errp, errno,
1286 "can't open backing store %s for guest RAM",
1287 path);
1288 goto error;
1289 }
1290 /*
1291 * Try again on EINTR and EEXIST. The latter happens when
1292 * something else creates the file between our two open().
1293 */
8d31d6b6 1294 }
c902760f 1295
863e9621 1296 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1297 block->mr->align = block->page_size;
1298#if defined(__s390x__)
1299 if (kvm_enabled()) {
1300 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1301 }
1302#endif
fd97fd44 1303
d6af99c9
HZ
1304 file_size = get_file_size(fd);
1305
863e9621 1306 if (memory < block->page_size) {
fd97fd44 1307 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1308 "or larger than page size 0x%zx",
1309 memory, block->page_size);
f9a49dfa 1310 goto error;
c902760f 1311 }
c902760f 1312
1775f111
HZ
1313 if (file_size > 0 && file_size < memory) {
1314 error_setg(errp, "backing store %s size 0x%" PRIx64
1315 " does not match 'size' option 0x" RAM_ADDR_FMT,
1316 path, file_size, memory);
1317 goto error;
1318 }
1319
863e9621 1320 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1321
1322 /*
1323 * ftruncate is not supported by hugetlbfs in older
1324 * hosts, so don't bother bailing out on errors.
1325 * If anything goes wrong with it under other filesystems,
1326 * mmap will fail.
d6af99c9
HZ
1327 *
1328 * Do not truncate the non-empty backend file to avoid corrupting
1329 * the existing data in the file. Disabling shrinking is not
1330 * enough. For example, the current vNVDIMM implementation stores
1331 * the guest NVDIMM labels at the end of the backend file. If the
1332 * backend file is later extended, QEMU will not be able to find
1333 * those labels. Therefore, extending the non-empty backend file
1334 * is disabled as well.
c902760f 1335 */
d6af99c9 1336 if (!file_size && ftruncate(fd, memory)) {
9742bf26 1337 perror("ftruncate");
7f56e740 1338 }
c902760f 1339
d2f39add
DD
1340 area = qemu_ram_mmap(fd, memory, block->mr->align,
1341 block->flags & RAM_SHARED);
c902760f 1342 if (area == MAP_FAILED) {
7f56e740 1343 error_setg_errno(errp, errno,
fd97fd44 1344 "unable to map backing store for guest RAM");
f9a49dfa 1345 goto error;
c902760f 1346 }
ef36fa14
MT
1347
1348 if (mem_prealloc) {
056b68af
IM
1349 os_mem_prealloc(fd, area, memory, errp);
1350 if (errp && *errp) {
1351 goto error;
1352 }
ef36fa14
MT
1353 }
1354
04b16653 1355 block->fd = fd;
c902760f 1356 return area;
f9a49dfa
MT
1357
1358error:
056b68af
IM
1359 if (area != MAP_FAILED) {
1360 qemu_ram_munmap(area, memory);
1361 }
fd97fd44
MA
1362 if (unlink_on_error) {
1363 unlink(path);
1364 }
5c3ece79
PB
1365 if (fd != -1) {
1366 close(fd);
1367 }
f9a49dfa 1368 return NULL;
c902760f
MT
1369}
1370#endif
1371
0dc3f44a 1372/* Called with the ramlist lock held. */
d17b5288 1373static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1374{
1375 RAMBlock *block, *next_block;
3e837b2c 1376 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1377
49cd9ac6
SH
1378 assert(size != 0); /* it would hand out same offset multiple times */
1379
0dc3f44a 1380 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1381 return 0;
0d53d9fe 1382 }
04b16653 1383
0dc3f44a 1384 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1385 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1386
62be4e3a 1387 end = block->offset + block->max_length;
04b16653 1388
0dc3f44a 1389 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1390 if (next_block->offset >= end) {
1391 next = MIN(next, next_block->offset);
1392 }
1393 }
1394 if (next - end >= size && next - end < mingap) {
3e837b2c 1395 offset = end;
04b16653
AW
1396 mingap = next - end;
1397 }
1398 }
3e837b2c
AW
1399
1400 if (offset == RAM_ADDR_MAX) {
1401 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1402 (uint64_t)size);
1403 abort();
1404 }
1405
04b16653
AW
1406 return offset;
1407}
1408
652d7ec2 1409ram_addr_t last_ram_offset(void)
d17b5288
AW
1410{
1411 RAMBlock *block;
1412 ram_addr_t last = 0;
1413
0dc3f44a
MD
1414 rcu_read_lock();
1415 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1416 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1417 }
0dc3f44a 1418 rcu_read_unlock();
d17b5288
AW
1419 return last;
1420}
1421
ddb97f1d
JB
1422static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1423{
1424 int ret;
ddb97f1d
JB
1425
1426 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1427 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1428 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1429 if (ret) {
1430 perror("qemu_madvise");
1431 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1432 "but dump_guest_core=off specified\n");
1433 }
1434 }
1435}
1436
422148d3
DDAG
1437const char *qemu_ram_get_idstr(RAMBlock *rb)
1438{
1439 return rb->idstr;
1440}
1441
ae3a7047 1442/* Called with iothread lock held. */
fa53a0e5 1443void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1444{
fa53a0e5 1445 RAMBlock *block;
20cfe881 1446
c5705a77
AK
1447 assert(new_block);
1448 assert(!new_block->idstr[0]);
84b89d78 1449
09e5ab63
AL
1450 if (dev) {
1451 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1452 if (id) {
1453 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1454 g_free(id);
84b89d78
CM
1455 }
1456 }
1457 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1458
ab0a9956 1459 rcu_read_lock();
0dc3f44a 1460 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
fa53a0e5
GA
1461 if (block != new_block &&
1462 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1463 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1464 new_block->idstr);
1465 abort();
1466 }
1467 }
0dc3f44a 1468 rcu_read_unlock();
c5705a77
AK
1469}
1470
ae3a7047 1471/* Called with iothread lock held. */
fa53a0e5 1472void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1473{
ae3a7047
MD
1474 /* FIXME: arch_init.c assumes that this is not called throughout
1475 * migration. Ignore the problem since hot-unplug during migration
1476 * does not work anyway.
1477 */
20cfe881
HT
1478 if (block) {
1479 memset(block->idstr, 0, sizeof(block->idstr));
1480 }
1481}
1482
863e9621
DDAG
1483size_t qemu_ram_pagesize(RAMBlock *rb)
1484{
1485 return rb->page_size;
1486}
1487
8490fc78
LC
1488static int memory_try_enable_merging(void *addr, size_t len)
1489{
75cc7f01 1490 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1491 /* disabled by the user */
1492 return 0;
1493 }
1494
1495 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1496}
1497
62be4e3a
MT
1498/* Only legal before guest might have detected the memory size: e.g. on
1499 * incoming migration, or right after reset.
1500 *
1501 * As memory core doesn't know how is memory accessed, it is up to
1502 * resize callback to update device state and/or add assertions to detect
1503 * misuse, if necessary.
1504 */
fa53a0e5 1505int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1506{
62be4e3a
MT
1507 assert(block);
1508
4ed023ce 1509 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1510
62be4e3a
MT
1511 if (block->used_length == newsize) {
1512 return 0;
1513 }
1514
1515 if (!(block->flags & RAM_RESIZEABLE)) {
1516 error_setg_errno(errp, EINVAL,
1517 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1518 " in != 0x" RAM_ADDR_FMT, block->idstr,
1519 newsize, block->used_length);
1520 return -EINVAL;
1521 }
1522
1523 if (block->max_length < newsize) {
1524 error_setg_errno(errp, EINVAL,
1525 "Length too large: %s: 0x" RAM_ADDR_FMT
1526 " > 0x" RAM_ADDR_FMT, block->idstr,
1527 newsize, block->max_length);
1528 return -EINVAL;
1529 }
1530
1531 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1532 block->used_length = newsize;
58d2707e
PB
1533 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1534 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1535 memory_region_set_size(block->mr, newsize);
1536 if (block->resized) {
1537 block->resized(block->idstr, newsize, block->host);
1538 }
1539 return 0;
1540}
1541
5b82b703
SH
1542/* Called with ram_list.mutex held */
1543static void dirty_memory_extend(ram_addr_t old_ram_size,
1544 ram_addr_t new_ram_size)
1545{
1546 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1547 DIRTY_MEMORY_BLOCK_SIZE);
1548 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1549 DIRTY_MEMORY_BLOCK_SIZE);
1550 int i;
1551
1552 /* Only need to extend if block count increased */
1553 if (new_num_blocks <= old_num_blocks) {
1554 return;
1555 }
1556
1557 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1558 DirtyMemoryBlocks *old_blocks;
1559 DirtyMemoryBlocks *new_blocks;
1560 int j;
1561
1562 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1563 new_blocks = g_malloc(sizeof(*new_blocks) +
1564 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1565
1566 if (old_num_blocks) {
1567 memcpy(new_blocks->blocks, old_blocks->blocks,
1568 old_num_blocks * sizeof(old_blocks->blocks[0]));
1569 }
1570
1571 for (j = old_num_blocks; j < new_num_blocks; j++) {
1572 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1573 }
1574
1575 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1576
1577 if (old_blocks) {
1578 g_free_rcu(old_blocks, rcu);
1579 }
1580 }
1581}
1582
528f46af 1583static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1584{
e1c57ab8 1585 RAMBlock *block;
0d53d9fe 1586 RAMBlock *last_block = NULL;
2152f5ca 1587 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1588 Error *err = NULL;
2152f5ca
JQ
1589
1590 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1591
b2a8658e 1592 qemu_mutex_lock_ramlist();
9b8424d5 1593 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1594
1595 if (!new_block->host) {
1596 if (xen_enabled()) {
9b8424d5 1597 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1598 new_block->mr, &err);
1599 if (err) {
1600 error_propagate(errp, err);
1601 qemu_mutex_unlock_ramlist();
39c350ee 1602 return;
37aa7a0e 1603 }
e1c57ab8 1604 } else {
9b8424d5 1605 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1606 &new_block->mr->align);
39228250 1607 if (!new_block->host) {
ef701d7b
HT
1608 error_setg_errno(errp, errno,
1609 "cannot set up guest memory '%s'",
1610 memory_region_name(new_block->mr));
1611 qemu_mutex_unlock_ramlist();
39c350ee 1612 return;
39228250 1613 }
9b8424d5 1614 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1615 }
c902760f 1616 }
94a6b54f 1617
dd631697
LZ
1618 new_ram_size = MAX(old_ram_size,
1619 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1620 if (new_ram_size > old_ram_size) {
1621 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1622 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1623 }
0d53d9fe
MD
1624 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1625 * QLIST (which has an RCU-friendly variant) does not have insertion at
1626 * tail, so save the last element in last_block.
1627 */
0dc3f44a 1628 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1629 last_block = block;
9b8424d5 1630 if (block->max_length < new_block->max_length) {
abb26d63
PB
1631 break;
1632 }
1633 }
1634 if (block) {
0dc3f44a 1635 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1636 } else if (last_block) {
0dc3f44a 1637 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1638 } else { /* list is empty */
0dc3f44a 1639 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1640 }
0d6d3c87 1641 ram_list.mru_block = NULL;
94a6b54f 1642
0dc3f44a
MD
1643 /* Write list before version */
1644 smp_wmb();
f798b07f 1645 ram_list.version++;
b2a8658e 1646 qemu_mutex_unlock_ramlist();
f798b07f 1647
9b8424d5 1648 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1649 new_block->used_length,
1650 DIRTY_CLIENTS_ALL);
94a6b54f 1651
a904c911
PB
1652 if (new_block->host) {
1653 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1654 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1655 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1656 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
e1c57ab8 1657 }
94a6b54f 1658}
e9a1ab19 1659
0b183fc8 1660#ifdef __linux__
528f46af
FZ
1661RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1662 bool share, const char *mem_path,
1663 Error **errp)
e1c57ab8
PB
1664{
1665 RAMBlock *new_block;
ef701d7b 1666 Error *local_err = NULL;
e1c57ab8
PB
1667
1668 if (xen_enabled()) {
7f56e740 1669 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1670 return NULL;
e1c57ab8
PB
1671 }
1672
1673 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1674 /*
1675 * file_ram_alloc() needs to allocate just like
1676 * phys_mem_alloc, but we haven't bothered to provide
1677 * a hook there.
1678 */
7f56e740
PB
1679 error_setg(errp,
1680 "-mem-path not supported with this accelerator");
528f46af 1681 return NULL;
e1c57ab8
PB
1682 }
1683
4ed023ce 1684 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1685 new_block = g_malloc0(sizeof(*new_block));
1686 new_block->mr = mr;
9b8424d5
MT
1687 new_block->used_length = size;
1688 new_block->max_length = size;
dbcb8981 1689 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1690 new_block->host = file_ram_alloc(new_block, size,
1691 mem_path, errp);
1692 if (!new_block->host) {
1693 g_free(new_block);
528f46af 1694 return NULL;
7f56e740
PB
1695 }
1696
528f46af 1697 ram_block_add(new_block, &local_err);
ef701d7b
HT
1698 if (local_err) {
1699 g_free(new_block);
1700 error_propagate(errp, local_err);
528f46af 1701 return NULL;
ef701d7b 1702 }
528f46af 1703 return new_block;
e1c57ab8 1704}
0b183fc8 1705#endif
e1c57ab8 1706
62be4e3a 1707static
528f46af
FZ
1708RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1709 void (*resized)(const char*,
1710 uint64_t length,
1711 void *host),
1712 void *host, bool resizeable,
1713 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1714{
1715 RAMBlock *new_block;
ef701d7b 1716 Error *local_err = NULL;
e1c57ab8 1717
4ed023ce
DDAG
1718 size = HOST_PAGE_ALIGN(size);
1719 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1720 new_block = g_malloc0(sizeof(*new_block));
1721 new_block->mr = mr;
62be4e3a 1722 new_block->resized = resized;
9b8424d5
MT
1723 new_block->used_length = size;
1724 new_block->max_length = max_size;
62be4e3a 1725 assert(max_size >= size);
e1c57ab8 1726 new_block->fd = -1;
863e9621 1727 new_block->page_size = getpagesize();
e1c57ab8
PB
1728 new_block->host = host;
1729 if (host) {
7bd4f430 1730 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1731 }
62be4e3a
MT
1732 if (resizeable) {
1733 new_block->flags |= RAM_RESIZEABLE;
1734 }
528f46af 1735 ram_block_add(new_block, &local_err);
ef701d7b
HT
1736 if (local_err) {
1737 g_free(new_block);
1738 error_propagate(errp, local_err);
528f46af 1739 return NULL;
ef701d7b 1740 }
528f46af 1741 return new_block;
e1c57ab8
PB
1742}
1743
528f46af 1744RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1745 MemoryRegion *mr, Error **errp)
1746{
1747 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1748}
1749
528f46af 1750RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1751{
62be4e3a
MT
1752 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1753}
1754
528f46af 1755RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1756 void (*resized)(const char*,
1757 uint64_t length,
1758 void *host),
1759 MemoryRegion *mr, Error **errp)
1760{
1761 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1762}
1763
43771539
PB
1764static void reclaim_ramblock(RAMBlock *block)
1765{
1766 if (block->flags & RAM_PREALLOC) {
1767 ;
1768 } else if (xen_enabled()) {
1769 xen_invalidate_map_cache_entry(block->host);
1770#ifndef _WIN32
1771 } else if (block->fd >= 0) {
2f3a2bb1 1772 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1773 close(block->fd);
1774#endif
1775 } else {
1776 qemu_anon_ram_free(block->host, block->max_length);
1777 }
1778 g_free(block);
1779}
1780
f1060c55 1781void qemu_ram_free(RAMBlock *block)
e9a1ab19 1782{
85bc2a15
MAL
1783 if (!block) {
1784 return;
1785 }
1786
b2a8658e 1787 qemu_mutex_lock_ramlist();
f1060c55
FZ
1788 QLIST_REMOVE_RCU(block, next);
1789 ram_list.mru_block = NULL;
1790 /* Write list before version */
1791 smp_wmb();
1792 ram_list.version++;
1793 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1794 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1795}
1796
cd19cfa2
HY
1797#ifndef _WIN32
1798void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1799{
1800 RAMBlock *block;
1801 ram_addr_t offset;
1802 int flags;
1803 void *area, *vaddr;
1804
0dc3f44a 1805 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1806 offset = addr - block->offset;
9b8424d5 1807 if (offset < block->max_length) {
1240be24 1808 vaddr = ramblock_ptr(block, offset);
7bd4f430 1809 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1810 ;
dfeaf2ab
MA
1811 } else if (xen_enabled()) {
1812 abort();
cd19cfa2
HY
1813 } else {
1814 flags = MAP_FIXED;
3435f395 1815 if (block->fd >= 0) {
dbcb8981
PB
1816 flags |= (block->flags & RAM_SHARED ?
1817 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1818 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1819 flags, block->fd, offset);
cd19cfa2 1820 } else {
2eb9fbaa
MA
1821 /*
1822 * Remap needs to match alloc. Accelerators that
1823 * set phys_mem_alloc never remap. If they did,
1824 * we'd need a remap hook here.
1825 */
1826 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1827
cd19cfa2
HY
1828 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1829 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1830 flags, -1, 0);
cd19cfa2
HY
1831 }
1832 if (area != vaddr) {
f15fbc4b
AP
1833 fprintf(stderr, "Could not remap addr: "
1834 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1835 length, addr);
1836 exit(1);
1837 }
8490fc78 1838 memory_try_enable_merging(vaddr, length);
ddb97f1d 1839 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1840 }
cd19cfa2
HY
1841 }
1842 }
1843}
1844#endif /* !_WIN32 */
1845
1b5ec234 1846/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1847 * This should not be used for general purpose DMA. Use address_space_map
1848 * or address_space_rw instead. For local memory (e.g. video ram) that the
1849 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1850 *
49b24afc 1851 * Called within RCU critical section.
1b5ec234 1852 */
0878d0e1 1853void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1854{
3655cb9c
GA
1855 RAMBlock *block = ram_block;
1856
1857 if (block == NULL) {
1858 block = qemu_get_ram_block(addr);
0878d0e1 1859 addr -= block->offset;
3655cb9c 1860 }
ae3a7047
MD
1861
1862 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1863 /* We need to check if the requested address is in the RAM
1864 * because we don't want to map the entire memory in QEMU.
1865 * In that case just map until the end of the page.
1866 */
1867 if (block->offset == 0) {
49b24afc 1868 return xen_map_cache(addr, 0, 0);
0d6d3c87 1869 }
ae3a7047
MD
1870
1871 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1872 }
0878d0e1 1873 return ramblock_ptr(block, addr);
dc828ca1
PB
1874}
1875
0878d0e1 1876/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 1877 * but takes a size argument.
0dc3f44a 1878 *
e81bcda5 1879 * Called within RCU critical section.
ae3a7047 1880 */
3655cb9c
GA
1881static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1882 hwaddr *size)
38bee5dc 1883{
3655cb9c 1884 RAMBlock *block = ram_block;
8ab934f9
SS
1885 if (*size == 0) {
1886 return NULL;
1887 }
e81bcda5 1888
3655cb9c
GA
1889 if (block == NULL) {
1890 block = qemu_get_ram_block(addr);
0878d0e1 1891 addr -= block->offset;
3655cb9c 1892 }
0878d0e1 1893 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
1894
1895 if (xen_enabled() && block->host == NULL) {
1896 /* We need to check if the requested address is in the RAM
1897 * because we don't want to map the entire memory in QEMU.
1898 * In that case just map the requested area.
1899 */
1900 if (block->offset == 0) {
1901 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1902 }
1903
e81bcda5 1904 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1905 }
e81bcda5 1906
0878d0e1 1907 return ramblock_ptr(block, addr);
38bee5dc
SS
1908}
1909
422148d3
DDAG
1910/*
1911 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1912 * in that RAMBlock.
1913 *
1914 * ptr: Host pointer to look up
1915 * round_offset: If true round the result offset down to a page boundary
1916 * *ram_addr: set to result ram_addr
1917 * *offset: set to result offset within the RAMBlock
1918 *
1919 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1920 *
1921 * By the time this function returns, the returned pointer is not protected
1922 * by RCU anymore. If the caller is not within an RCU critical section and
1923 * does not hold the iothread lock, it must have other means of protecting the
1924 * pointer, such as a reference to the region that includes the incoming
1925 * ram_addr_t.
1926 */
422148d3 1927RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 1928 ram_addr_t *offset)
5579c7f3 1929{
94a6b54f
PB
1930 RAMBlock *block;
1931 uint8_t *host = ptr;
1932
868bb33f 1933 if (xen_enabled()) {
f615f396 1934 ram_addr_t ram_addr;
0dc3f44a 1935 rcu_read_lock();
f615f396
PB
1936 ram_addr = xen_ram_addr_from_mapcache(ptr);
1937 block = qemu_get_ram_block(ram_addr);
422148d3 1938 if (block) {
d6b6aec4 1939 *offset = ram_addr - block->offset;
422148d3 1940 }
0dc3f44a 1941 rcu_read_unlock();
422148d3 1942 return block;
712c2b41
SS
1943 }
1944
0dc3f44a
MD
1945 rcu_read_lock();
1946 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1947 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1948 goto found;
1949 }
1950
0dc3f44a 1951 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1952 /* This case append when the block is not mapped. */
1953 if (block->host == NULL) {
1954 continue;
1955 }
9b8424d5 1956 if (host - block->host < block->max_length) {
23887b79 1957 goto found;
f471a17e 1958 }
94a6b54f 1959 }
432d268c 1960
0dc3f44a 1961 rcu_read_unlock();
1b5ec234 1962 return NULL;
23887b79
PB
1963
1964found:
422148d3
DDAG
1965 *offset = (host - block->host);
1966 if (round_offset) {
1967 *offset &= TARGET_PAGE_MASK;
1968 }
0dc3f44a 1969 rcu_read_unlock();
422148d3
DDAG
1970 return block;
1971}
1972
e3dd7493
DDAG
1973/*
1974 * Finds the named RAMBlock
1975 *
1976 * name: The name of RAMBlock to find
1977 *
1978 * Returns: RAMBlock (or NULL if not found)
1979 */
1980RAMBlock *qemu_ram_block_by_name(const char *name)
1981{
1982 RAMBlock *block;
1983
1984 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1985 if (!strcmp(name, block->idstr)) {
1986 return block;
1987 }
1988 }
1989
1990 return NULL;
1991}
1992
422148d3
DDAG
1993/* Some of the softmmu routines need to translate from a host pointer
1994 (typically a TLB entry) back to a ram offset. */
07bdaa41 1995ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
1996{
1997 RAMBlock *block;
f615f396 1998 ram_addr_t offset;
422148d3 1999
f615f396 2000 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2001 if (!block) {
07bdaa41 2002 return RAM_ADDR_INVALID;
422148d3
DDAG
2003 }
2004
07bdaa41 2005 return block->offset + offset;
e890261f 2006}
f471a17e 2007
49b24afc 2008/* Called within RCU critical section. */
a8170e5e 2009static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2010 uint64_t val, unsigned size)
9fa3e853 2011{
ba051fb5
AB
2012 bool locked = false;
2013
52159192 2014 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2015 locked = true;
2016 tb_lock();
0e0df1e2 2017 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2018 }
0e0df1e2
AK
2019 switch (size) {
2020 case 1:
0878d0e1 2021 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2022 break;
2023 case 2:
0878d0e1 2024 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2025 break;
2026 case 4:
0878d0e1 2027 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2028 break;
2029 default:
2030 abort();
3a7d929e 2031 }
ba051fb5
AB
2032
2033 if (locked) {
2034 tb_unlock();
2035 }
2036
58d2707e
PB
2037 /* Set both VGA and migration bits for simplicity and to remove
2038 * the notdirty callback faster.
2039 */
2040 cpu_physical_memory_set_dirty_range(ram_addr, size,
2041 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2042 /* we remove the notdirty callback only if the code has been
2043 flushed */
a2cd8c85 2044 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2045 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2046 }
9fa3e853
FB
2047}
2048
b018ddf6
PB
2049static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2050 unsigned size, bool is_write)
2051{
2052 return is_write;
2053}
2054
0e0df1e2 2055static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2056 .write = notdirty_mem_write,
b018ddf6 2057 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2058 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2059};
2060
0f459d16 2061/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2062static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2063{
93afeade 2064 CPUState *cpu = current_cpu;
568496c0 2065 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2066 CPUArchState *env = cpu->env_ptr;
06d55cc1 2067 target_ulong pc, cs_base;
0f459d16 2068 target_ulong vaddr;
a1d1bb31 2069 CPUWatchpoint *wp;
89fee74a 2070 uint32_t cpu_flags;
0f459d16 2071
ff4700b0 2072 if (cpu->watchpoint_hit) {
06d55cc1
AL
2073 /* We re-entered the check after replacing the TB. Now raise
2074 * the debug interrupt so that is will trigger after the
2075 * current instruction. */
93afeade 2076 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2077 return;
2078 }
93afeade 2079 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2080 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2081 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2082 && (wp->flags & flags)) {
08225676
PM
2083 if (flags == BP_MEM_READ) {
2084 wp->flags |= BP_WATCHPOINT_HIT_READ;
2085 } else {
2086 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2087 }
2088 wp->hitaddr = vaddr;
66b9b43c 2089 wp->hitattrs = attrs;
ff4700b0 2090 if (!cpu->watchpoint_hit) {
568496c0
SF
2091 if (wp->flags & BP_CPU &&
2092 !cc->debug_check_watchpoint(cpu, wp)) {
2093 wp->flags &= ~BP_WATCHPOINT_HIT;
2094 continue;
2095 }
ff4700b0 2096 cpu->watchpoint_hit = wp;
a5e99826
FK
2097
2098 /* The tb_lock will be reset when cpu_loop_exit or
2099 * cpu_loop_exit_noexc longjmp back into the cpu_exec
2100 * main loop.
2101 */
2102 tb_lock();
239c51a5 2103 tb_check_watchpoint(cpu);
6e140f28 2104 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2105 cpu->exception_index = EXCP_DEBUG;
5638d180 2106 cpu_loop_exit(cpu);
6e140f28
AL
2107 } else {
2108 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2109 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2110 cpu_loop_exit_noexc(cpu);
6e140f28 2111 }
06d55cc1 2112 }
6e140f28
AL
2113 } else {
2114 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2115 }
2116 }
2117}
2118
6658ffb8
PB
2119/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2120 so these check for a hit then pass through to the normal out-of-line
2121 phys routines. */
66b9b43c
PM
2122static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2123 unsigned size, MemTxAttrs attrs)
6658ffb8 2124{
66b9b43c
PM
2125 MemTxResult res;
2126 uint64_t data;
79ed0416
PM
2127 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2128 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2129
2130 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2131 switch (size) {
66b9b43c 2132 case 1:
79ed0416 2133 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2134 break;
2135 case 2:
79ed0416 2136 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2137 break;
2138 case 4:
79ed0416 2139 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2140 break;
1ec9b909
AK
2141 default: abort();
2142 }
66b9b43c
PM
2143 *pdata = data;
2144 return res;
6658ffb8
PB
2145}
2146
66b9b43c
PM
2147static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2148 uint64_t val, unsigned size,
2149 MemTxAttrs attrs)
6658ffb8 2150{
66b9b43c 2151 MemTxResult res;
79ed0416
PM
2152 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2153 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2154
2155 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2156 switch (size) {
67364150 2157 case 1:
79ed0416 2158 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2159 break;
2160 case 2:
79ed0416 2161 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2162 break;
2163 case 4:
79ed0416 2164 address_space_stl(as, addr, val, attrs, &res);
67364150 2165 break;
1ec9b909
AK
2166 default: abort();
2167 }
66b9b43c 2168 return res;
6658ffb8
PB
2169}
2170
1ec9b909 2171static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2172 .read_with_attrs = watch_mem_read,
2173 .write_with_attrs = watch_mem_write,
1ec9b909 2174 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2175};
6658ffb8 2176
f25a49e0
PM
2177static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2178 unsigned len, MemTxAttrs attrs)
db7b5426 2179{
acc9d80b 2180 subpage_t *subpage = opaque;
ff6cff75 2181 uint8_t buf[8];
5c9eb028 2182 MemTxResult res;
791af8c8 2183
db7b5426 2184#if defined(DEBUG_SUBPAGE)
016e9d62 2185 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2186 subpage, len, addr);
db7b5426 2187#endif
5c9eb028
PM
2188 res = address_space_read(subpage->as, addr + subpage->base,
2189 attrs, buf, len);
2190 if (res) {
2191 return res;
f25a49e0 2192 }
acc9d80b
JK
2193 switch (len) {
2194 case 1:
f25a49e0
PM
2195 *data = ldub_p(buf);
2196 return MEMTX_OK;
acc9d80b 2197 case 2:
f25a49e0
PM
2198 *data = lduw_p(buf);
2199 return MEMTX_OK;
acc9d80b 2200 case 4:
f25a49e0
PM
2201 *data = ldl_p(buf);
2202 return MEMTX_OK;
ff6cff75 2203 case 8:
f25a49e0
PM
2204 *data = ldq_p(buf);
2205 return MEMTX_OK;
acc9d80b
JK
2206 default:
2207 abort();
2208 }
db7b5426
BS
2209}
2210
f25a49e0
PM
2211static MemTxResult subpage_write(void *opaque, hwaddr addr,
2212 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2213{
acc9d80b 2214 subpage_t *subpage = opaque;
ff6cff75 2215 uint8_t buf[8];
acc9d80b 2216
db7b5426 2217#if defined(DEBUG_SUBPAGE)
016e9d62 2218 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2219 " value %"PRIx64"\n",
2220 __func__, subpage, len, addr, value);
db7b5426 2221#endif
acc9d80b
JK
2222 switch (len) {
2223 case 1:
2224 stb_p(buf, value);
2225 break;
2226 case 2:
2227 stw_p(buf, value);
2228 break;
2229 case 4:
2230 stl_p(buf, value);
2231 break;
ff6cff75
PB
2232 case 8:
2233 stq_p(buf, value);
2234 break;
acc9d80b
JK
2235 default:
2236 abort();
2237 }
5c9eb028
PM
2238 return address_space_write(subpage->as, addr + subpage->base,
2239 attrs, buf, len);
db7b5426
BS
2240}
2241
c353e4cc 2242static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2243 unsigned len, bool is_write)
c353e4cc 2244{
acc9d80b 2245 subpage_t *subpage = opaque;
c353e4cc 2246#if defined(DEBUG_SUBPAGE)
016e9d62 2247 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2248 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2249#endif
2250
acc9d80b 2251 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2252 len, is_write);
c353e4cc
PB
2253}
2254
70c68e44 2255static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2256 .read_with_attrs = subpage_read,
2257 .write_with_attrs = subpage_write,
ff6cff75
PB
2258 .impl.min_access_size = 1,
2259 .impl.max_access_size = 8,
2260 .valid.min_access_size = 1,
2261 .valid.max_access_size = 8,
c353e4cc 2262 .valid.accepts = subpage_accepts,
70c68e44 2263 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2264};
2265
c227f099 2266static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2267 uint16_t section)
db7b5426
BS
2268{
2269 int idx, eidx;
2270
2271 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2272 return -1;
2273 idx = SUBPAGE_IDX(start);
2274 eidx = SUBPAGE_IDX(end);
2275#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2276 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2277 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2278#endif
db7b5426 2279 for (; idx <= eidx; idx++) {
5312bd8b 2280 mmio->sub_section[idx] = section;
db7b5426
BS
2281 }
2282
2283 return 0;
2284}
2285
acc9d80b 2286static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2287{
c227f099 2288 subpage_t *mmio;
db7b5426 2289
2615fabd 2290 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2291 mmio->as = as;
1eec614b 2292 mmio->base = base;
2c9b15ca 2293 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2294 NULL, TARGET_PAGE_SIZE);
b3b00c78 2295 mmio->iomem.subpage = true;
db7b5426 2296#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2297 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2298 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2299#endif
b41aac4f 2300 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2301
2302 return mmio;
2303}
2304
a656e22f
PC
2305static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2306 MemoryRegion *mr)
5312bd8b 2307{
a656e22f 2308 assert(as);
5312bd8b 2309 MemoryRegionSection section = {
a656e22f 2310 .address_space = as,
5312bd8b
AK
2311 .mr = mr,
2312 .offset_within_address_space = 0,
2313 .offset_within_region = 0,
052e87b0 2314 .size = int128_2_64(),
5312bd8b
AK
2315 };
2316
53cb28cb 2317 return phys_section_add(map, &section);
5312bd8b
AK
2318}
2319
a54c87b6 2320MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2321{
a54c87b6
PM
2322 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2323 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2324 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2325 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2326
2327 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2328}
2329
e9179ce1
AK
2330static void io_mem_init(void)
2331{
1f6245e5 2332 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2333 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2334 NULL, UINT64_MAX);
2c9b15ca 2335 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2336 NULL, UINT64_MAX);
2c9b15ca 2337 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2338 NULL, UINT64_MAX);
e9179ce1
AK
2339}
2340
ac1970fb 2341static void mem_begin(MemoryListener *listener)
00752703
PB
2342{
2343 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2344 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2345 uint16_t n;
2346
a656e22f 2347 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2348 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2349 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2350 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2351 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2352 assert(n == PHYS_SECTION_ROM);
a656e22f 2353 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2354 assert(n == PHYS_SECTION_WATCH);
00752703 2355
9736e55b 2356 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2357 d->as = as;
2358 as->next_dispatch = d;
2359}
2360
79e2b9ae
PB
2361static void address_space_dispatch_free(AddressSpaceDispatch *d)
2362{
2363 phys_sections_free(&d->map);
2364 g_free(d);
2365}
2366
00752703 2367static void mem_commit(MemoryListener *listener)
ac1970fb 2368{
89ae337a 2369 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2370 AddressSpaceDispatch *cur = as->dispatch;
2371 AddressSpaceDispatch *next = as->next_dispatch;
2372
53cb28cb 2373 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2374
79e2b9ae 2375 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2376 if (cur) {
79e2b9ae 2377 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2378 }
9affd6fc
PB
2379}
2380
1d71148e 2381static void tcg_commit(MemoryListener *listener)
50c1e149 2382{
32857f4d
PM
2383 CPUAddressSpace *cpuas;
2384 AddressSpaceDispatch *d;
117712c3
AK
2385
2386 /* since each CPU stores ram addresses in its TLB cache, we must
2387 reset the modified entries */
32857f4d
PM
2388 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2389 cpu_reloading_memory_map();
2390 /* The CPU and TLB are protected by the iothread lock.
2391 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2392 * may have split the RCU critical section.
2393 */
2394 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2395 atomic_rcu_set(&cpuas->memory_dispatch, d);
32857f4d 2396 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2397}
2398
ac1970fb
AK
2399void address_space_init_dispatch(AddressSpace *as)
2400{
00752703 2401 as->dispatch = NULL;
89ae337a 2402 as->dispatch_listener = (MemoryListener) {
ac1970fb 2403 .begin = mem_begin,
00752703 2404 .commit = mem_commit,
ac1970fb
AK
2405 .region_add = mem_add,
2406 .region_nop = mem_add,
2407 .priority = 0,
2408 };
89ae337a 2409 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2410}
2411
6e48e8f9
PB
2412void address_space_unregister(AddressSpace *as)
2413{
2414 memory_listener_unregister(&as->dispatch_listener);
2415}
2416
83f3c251
AK
2417void address_space_destroy_dispatch(AddressSpace *as)
2418{
2419 AddressSpaceDispatch *d = as->dispatch;
2420
79e2b9ae
PB
2421 atomic_rcu_set(&as->dispatch, NULL);
2422 if (d) {
2423 call_rcu(d, address_space_dispatch_free, rcu);
2424 }
83f3c251
AK
2425}
2426
62152b8a
AK
2427static void memory_map_init(void)
2428{
7267c094 2429 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2430
57271d63 2431 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2432 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2433
7267c094 2434 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2435 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2436 65536);
7dca8043 2437 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2438}
2439
2440MemoryRegion *get_system_memory(void)
2441{
2442 return system_memory;
2443}
2444
309cb471
AK
2445MemoryRegion *get_system_io(void)
2446{
2447 return system_io;
2448}
2449
e2eef170
PB
2450#endif /* !defined(CONFIG_USER_ONLY) */
2451
13eb76e0
FB
2452/* physical memory access (slow version, mainly for debug) */
2453#if defined(CONFIG_USER_ONLY)
f17ec444 2454int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2455 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2456{
2457 int l, flags;
2458 target_ulong page;
53a5960a 2459 void * p;
13eb76e0
FB
2460
2461 while (len > 0) {
2462 page = addr & TARGET_PAGE_MASK;
2463 l = (page + TARGET_PAGE_SIZE) - addr;
2464 if (l > len)
2465 l = len;
2466 flags = page_get_flags(page);
2467 if (!(flags & PAGE_VALID))
a68fe89c 2468 return -1;
13eb76e0
FB
2469 if (is_write) {
2470 if (!(flags & PAGE_WRITE))
a68fe89c 2471 return -1;
579a97f7 2472 /* XXX: this code should not depend on lock_user */
72fb7daa 2473 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2474 return -1;
72fb7daa
AJ
2475 memcpy(p, buf, l);
2476 unlock_user(p, addr, l);
13eb76e0
FB
2477 } else {
2478 if (!(flags & PAGE_READ))
a68fe89c 2479 return -1;
579a97f7 2480 /* XXX: this code should not depend on lock_user */
72fb7daa 2481 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2482 return -1;
72fb7daa 2483 memcpy(buf, p, l);
5b257578 2484 unlock_user(p, addr, 0);
13eb76e0
FB
2485 }
2486 len -= l;
2487 buf += l;
2488 addr += l;
2489 }
a68fe89c 2490 return 0;
13eb76e0 2491}
8df1cd07 2492
13eb76e0 2493#else
51d7a9eb 2494
845b6214 2495static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2496 hwaddr length)
51d7a9eb 2497{
e87f7778 2498 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2499 addr += memory_region_get_ram_addr(mr);
2500
e87f7778
PB
2501 /* No early return if dirty_log_mask is or becomes 0, because
2502 * cpu_physical_memory_set_dirty_range will still call
2503 * xen_modified_memory.
2504 */
2505 if (dirty_log_mask) {
2506 dirty_log_mask =
2507 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2508 }
2509 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2510 tb_lock();
e87f7778 2511 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2512 tb_unlock();
e87f7778 2513 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2514 }
e87f7778 2515 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2516}
2517
23326164 2518static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2519{
e1622f4b 2520 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2521
2522 /* Regions are assumed to support 1-4 byte accesses unless
2523 otherwise specified. */
23326164
RH
2524 if (access_size_max == 0) {
2525 access_size_max = 4;
2526 }
2527
2528 /* Bound the maximum access by the alignment of the address. */
2529 if (!mr->ops->impl.unaligned) {
2530 unsigned align_size_max = addr & -addr;
2531 if (align_size_max != 0 && align_size_max < access_size_max) {
2532 access_size_max = align_size_max;
2533 }
82f2563f 2534 }
23326164
RH
2535
2536 /* Don't attempt accesses larger than the maximum. */
2537 if (l > access_size_max) {
2538 l = access_size_max;
82f2563f 2539 }
6554f5c0 2540 l = pow2floor(l);
23326164
RH
2541
2542 return l;
82f2563f
PB
2543}
2544
4840f10e 2545static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2546{
4840f10e
JK
2547 bool unlocked = !qemu_mutex_iothread_locked();
2548 bool release_lock = false;
2549
2550 if (unlocked && mr->global_locking) {
2551 qemu_mutex_lock_iothread();
2552 unlocked = false;
2553 release_lock = true;
2554 }
125b3806 2555 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2556 if (unlocked) {
2557 qemu_mutex_lock_iothread();
2558 }
125b3806 2559 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2560 if (unlocked) {
2561 qemu_mutex_unlock_iothread();
2562 }
125b3806 2563 }
4840f10e
JK
2564
2565 return release_lock;
125b3806
PB
2566}
2567
a203ac70
PB
2568/* Called within RCU critical section. */
2569static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2570 MemTxAttrs attrs,
2571 const uint8_t *buf,
2572 int len, hwaddr addr1,
2573 hwaddr l, MemoryRegion *mr)
13eb76e0 2574{
13eb76e0 2575 uint8_t *ptr;
791af8c8 2576 uint64_t val;
3b643495 2577 MemTxResult result = MEMTX_OK;
4840f10e 2578 bool release_lock = false;
3b46e624 2579
a203ac70 2580 for (;;) {
eb7eeb88
PB
2581 if (!memory_access_is_direct(mr, true)) {
2582 release_lock |= prepare_mmio_access(mr);
2583 l = memory_access_size(mr, l, addr1);
2584 /* XXX: could force current_cpu to NULL to avoid
2585 potential bugs */
2586 switch (l) {
2587 case 8:
2588 /* 64 bit write access */
2589 val = ldq_p(buf);
2590 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2591 attrs);
2592 break;
2593 case 4:
2594 /* 32 bit write access */
2595 val = ldl_p(buf);
2596 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2597 attrs);
2598 break;
2599 case 2:
2600 /* 16 bit write access */
2601 val = lduw_p(buf);
2602 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2603 attrs);
2604 break;
2605 case 1:
2606 /* 8 bit write access */
2607 val = ldub_p(buf);
2608 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2609 attrs);
2610 break;
2611 default:
2612 abort();
13eb76e0
FB
2613 }
2614 } else {
eb7eeb88 2615 /* RAM case */
0878d0e1 2616 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2617 memcpy(ptr, buf, l);
2618 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2619 }
4840f10e
JK
2620
2621 if (release_lock) {
2622 qemu_mutex_unlock_iothread();
2623 release_lock = false;
2624 }
2625
13eb76e0
FB
2626 len -= l;
2627 buf += l;
2628 addr += l;
a203ac70
PB
2629
2630 if (!len) {
2631 break;
2632 }
2633
2634 l = len;
2635 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2636 }
fd8aaa76 2637
3b643495 2638 return result;
13eb76e0 2639}
8df1cd07 2640
a203ac70
PB
2641MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2642 const uint8_t *buf, int len)
ac1970fb 2643{
eb7eeb88 2644 hwaddr l;
eb7eeb88
PB
2645 hwaddr addr1;
2646 MemoryRegion *mr;
2647 MemTxResult result = MEMTX_OK;
eb7eeb88 2648
a203ac70
PB
2649 if (len > 0) {
2650 rcu_read_lock();
eb7eeb88 2651 l = len;
a203ac70
PB
2652 mr = address_space_translate(as, addr, &addr1, &l, true);
2653 result = address_space_write_continue(as, addr, attrs, buf, len,
2654 addr1, l, mr);
2655 rcu_read_unlock();
2656 }
2657
2658 return result;
2659}
2660
2661/* Called within RCU critical section. */
2662MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2663 MemTxAttrs attrs, uint8_t *buf,
2664 int len, hwaddr addr1, hwaddr l,
2665 MemoryRegion *mr)
2666{
2667 uint8_t *ptr;
2668 uint64_t val;
2669 MemTxResult result = MEMTX_OK;
2670 bool release_lock = false;
eb7eeb88 2671
a203ac70 2672 for (;;) {
eb7eeb88
PB
2673 if (!memory_access_is_direct(mr, false)) {
2674 /* I/O case */
2675 release_lock |= prepare_mmio_access(mr);
2676 l = memory_access_size(mr, l, addr1);
2677 switch (l) {
2678 case 8:
2679 /* 64 bit read access */
2680 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2681 attrs);
2682 stq_p(buf, val);
2683 break;
2684 case 4:
2685 /* 32 bit read access */
2686 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2687 attrs);
2688 stl_p(buf, val);
2689 break;
2690 case 2:
2691 /* 16 bit read access */
2692 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2693 attrs);
2694 stw_p(buf, val);
2695 break;
2696 case 1:
2697 /* 8 bit read access */
2698 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2699 attrs);
2700 stb_p(buf, val);
2701 break;
2702 default:
2703 abort();
2704 }
2705 } else {
2706 /* RAM case */
0878d0e1 2707 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2708 memcpy(buf, ptr, l);
2709 }
2710
2711 if (release_lock) {
2712 qemu_mutex_unlock_iothread();
2713 release_lock = false;
2714 }
2715
2716 len -= l;
2717 buf += l;
2718 addr += l;
a203ac70
PB
2719
2720 if (!len) {
2721 break;
2722 }
2723
2724 l = len;
2725 mr = address_space_translate(as, addr, &addr1, &l, false);
2726 }
2727
2728 return result;
2729}
2730
3cc8f884
PB
2731MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2732 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2733{
2734 hwaddr l;
2735 hwaddr addr1;
2736 MemoryRegion *mr;
2737 MemTxResult result = MEMTX_OK;
2738
2739 if (len > 0) {
2740 rcu_read_lock();
2741 l = len;
2742 mr = address_space_translate(as, addr, &addr1, &l, false);
2743 result = address_space_read_continue(as, addr, attrs, buf, len,
2744 addr1, l, mr);
2745 rcu_read_unlock();
eb7eeb88 2746 }
eb7eeb88
PB
2747
2748 return result;
ac1970fb
AK
2749}
2750
eb7eeb88
PB
2751MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2752 uint8_t *buf, int len, bool is_write)
2753{
2754 if (is_write) {
2755 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2756 } else {
2757 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2758 }
2759}
ac1970fb 2760
a8170e5e 2761void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2762 int len, int is_write)
2763{
5c9eb028
PM
2764 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2765 buf, len, is_write);
ac1970fb
AK
2766}
2767
582b55a9
AG
2768enum write_rom_type {
2769 WRITE_DATA,
2770 FLUSH_CACHE,
2771};
2772
2a221651 2773static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2774 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2775{
149f54b5 2776 hwaddr l;
d0ecd2aa 2777 uint8_t *ptr;
149f54b5 2778 hwaddr addr1;
5c8a00ce 2779 MemoryRegion *mr;
3b46e624 2780
41063e1e 2781 rcu_read_lock();
d0ecd2aa 2782 while (len > 0) {
149f54b5 2783 l = len;
2a221651 2784 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2785
5c8a00ce
PB
2786 if (!(memory_region_is_ram(mr) ||
2787 memory_region_is_romd(mr))) {
b242e0e0 2788 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2789 } else {
d0ecd2aa 2790 /* ROM/RAM case */
0878d0e1 2791 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2792 switch (type) {
2793 case WRITE_DATA:
2794 memcpy(ptr, buf, l);
845b6214 2795 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2796 break;
2797 case FLUSH_CACHE:
2798 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2799 break;
2800 }
d0ecd2aa
FB
2801 }
2802 len -= l;
2803 buf += l;
2804 addr += l;
2805 }
41063e1e 2806 rcu_read_unlock();
d0ecd2aa
FB
2807}
2808
582b55a9 2809/* used for ROM loading : can write in RAM and ROM */
2a221651 2810void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2811 const uint8_t *buf, int len)
2812{
2a221651 2813 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2814}
2815
2816void cpu_flush_icache_range(hwaddr start, int len)
2817{
2818 /*
2819 * This function should do the same thing as an icache flush that was
2820 * triggered from within the guest. For TCG we are always cache coherent,
2821 * so there is no need to flush anything. For KVM / Xen we need to flush
2822 * the host's instruction cache at least.
2823 */
2824 if (tcg_enabled()) {
2825 return;
2826 }
2827
2a221651
EI
2828 cpu_physical_memory_write_rom_internal(&address_space_memory,
2829 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2830}
2831
6d16c2f8 2832typedef struct {
d3e71559 2833 MemoryRegion *mr;
6d16c2f8 2834 void *buffer;
a8170e5e
AK
2835 hwaddr addr;
2836 hwaddr len;
c2cba0ff 2837 bool in_use;
6d16c2f8
AL
2838} BounceBuffer;
2839
2840static BounceBuffer bounce;
2841
ba223c29 2842typedef struct MapClient {
e95205e1 2843 QEMUBH *bh;
72cf2d4f 2844 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2845} MapClient;
2846
38e047b5 2847QemuMutex map_client_list_lock;
72cf2d4f
BS
2848static QLIST_HEAD(map_client_list, MapClient) map_client_list
2849 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2850
e95205e1
FZ
2851static void cpu_unregister_map_client_do(MapClient *client)
2852{
2853 QLIST_REMOVE(client, link);
2854 g_free(client);
2855}
2856
33b6c2ed
FZ
2857static void cpu_notify_map_clients_locked(void)
2858{
2859 MapClient *client;
2860
2861 while (!QLIST_EMPTY(&map_client_list)) {
2862 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2863 qemu_bh_schedule(client->bh);
2864 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2865 }
2866}
2867
e95205e1 2868void cpu_register_map_client(QEMUBH *bh)
ba223c29 2869{
7267c094 2870 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2871
38e047b5 2872 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2873 client->bh = bh;
72cf2d4f 2874 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2875 if (!atomic_read(&bounce.in_use)) {
2876 cpu_notify_map_clients_locked();
2877 }
38e047b5 2878 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2879}
2880
38e047b5 2881void cpu_exec_init_all(void)
ba223c29 2882{
38e047b5 2883 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
2884 /* The data structures we set up here depend on knowing the page size,
2885 * so no more changes can be made after this point.
2886 * In an ideal world, nothing we did before we had finished the
2887 * machine setup would care about the target page size, and we could
2888 * do this much later, rather than requiring board models to state
2889 * up front what their requirements are.
2890 */
2891 finalize_target_page_bits();
38e047b5 2892 io_mem_init();
680a4783 2893 memory_map_init();
38e047b5 2894 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2895}
2896
e95205e1 2897void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2898{
2899 MapClient *client;
2900
e95205e1
FZ
2901 qemu_mutex_lock(&map_client_list_lock);
2902 QLIST_FOREACH(client, &map_client_list, link) {
2903 if (client->bh == bh) {
2904 cpu_unregister_map_client_do(client);
2905 break;
2906 }
ba223c29 2907 }
e95205e1 2908 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2909}
2910
2911static void cpu_notify_map_clients(void)
2912{
38e047b5 2913 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2914 cpu_notify_map_clients_locked();
38e047b5 2915 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2916}
2917
51644ab7
PB
2918bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2919{
5c8a00ce 2920 MemoryRegion *mr;
51644ab7
PB
2921 hwaddr l, xlat;
2922
41063e1e 2923 rcu_read_lock();
51644ab7
PB
2924 while (len > 0) {
2925 l = len;
5c8a00ce
PB
2926 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2927 if (!memory_access_is_direct(mr, is_write)) {
2928 l = memory_access_size(mr, l, addr);
2929 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2930 return false;
2931 }
2932 }
2933
2934 len -= l;
2935 addr += l;
2936 }
41063e1e 2937 rcu_read_unlock();
51644ab7
PB
2938 return true;
2939}
2940
6d16c2f8
AL
2941/* Map a physical memory region into a host virtual address.
2942 * May map a subset of the requested range, given by and returned in *plen.
2943 * May return NULL if resources needed to perform the mapping are exhausted.
2944 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2945 * Use cpu_register_map_client() to know when retrying the map operation is
2946 * likely to succeed.
6d16c2f8 2947 */
ac1970fb 2948void *address_space_map(AddressSpace *as,
a8170e5e
AK
2949 hwaddr addr,
2950 hwaddr *plen,
ac1970fb 2951 bool is_write)
6d16c2f8 2952{
a8170e5e 2953 hwaddr len = *plen;
e3127ae0
PB
2954 hwaddr done = 0;
2955 hwaddr l, xlat, base;
2956 MemoryRegion *mr, *this_mr;
e81bcda5 2957 void *ptr;
6d16c2f8 2958
e3127ae0
PB
2959 if (len == 0) {
2960 return NULL;
2961 }
38bee5dc 2962
e3127ae0 2963 l = len;
41063e1e 2964 rcu_read_lock();
e3127ae0 2965 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2966
e3127ae0 2967 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2968 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2969 rcu_read_unlock();
e3127ae0 2970 return NULL;
6d16c2f8 2971 }
e85d9db5
KW
2972 /* Avoid unbounded allocations */
2973 l = MIN(l, TARGET_PAGE_SIZE);
2974 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2975 bounce.addr = addr;
2976 bounce.len = l;
d3e71559
PB
2977
2978 memory_region_ref(mr);
2979 bounce.mr = mr;
e3127ae0 2980 if (!is_write) {
5c9eb028
PM
2981 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2982 bounce.buffer, l);
8ab934f9 2983 }
6d16c2f8 2984
41063e1e 2985 rcu_read_unlock();
e3127ae0
PB
2986 *plen = l;
2987 return bounce.buffer;
2988 }
2989
2990 base = xlat;
e3127ae0
PB
2991
2992 for (;;) {
6d16c2f8
AL
2993 len -= l;
2994 addr += l;
e3127ae0
PB
2995 done += l;
2996 if (len == 0) {
2997 break;
2998 }
2999
3000 l = len;
3001 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
3002 if (this_mr != mr || xlat != base + done) {
3003 break;
3004 }
6d16c2f8 3005 }
e3127ae0 3006
d3e71559 3007 memory_region_ref(mr);
e3127ae0 3008 *plen = done;
0878d0e1 3009 ptr = qemu_ram_ptr_length(mr->ram_block, base, plen);
e81bcda5
PB
3010 rcu_read_unlock();
3011
3012 return ptr;
6d16c2f8
AL
3013}
3014
ac1970fb 3015/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3016 * Will also mark the memory as dirty if is_write == 1. access_len gives
3017 * the amount of memory that was actually read or written by the caller.
3018 */
a8170e5e
AK
3019void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3020 int is_write, hwaddr access_len)
6d16c2f8
AL
3021{
3022 if (buffer != bounce.buffer) {
d3e71559
PB
3023 MemoryRegion *mr;
3024 ram_addr_t addr1;
3025
07bdaa41 3026 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3027 assert(mr != NULL);
6d16c2f8 3028 if (is_write) {
845b6214 3029 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3030 }
868bb33f 3031 if (xen_enabled()) {
e41d7c69 3032 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3033 }
d3e71559 3034 memory_region_unref(mr);
6d16c2f8
AL
3035 return;
3036 }
3037 if (is_write) {
5c9eb028
PM
3038 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3039 bounce.buffer, access_len);
6d16c2f8 3040 }
f8a83245 3041 qemu_vfree(bounce.buffer);
6d16c2f8 3042 bounce.buffer = NULL;
d3e71559 3043 memory_region_unref(bounce.mr);
c2cba0ff 3044 atomic_mb_set(&bounce.in_use, false);
ba223c29 3045 cpu_notify_map_clients();
6d16c2f8 3046}
d0ecd2aa 3047
a8170e5e
AK
3048void *cpu_physical_memory_map(hwaddr addr,
3049 hwaddr *plen,
ac1970fb
AK
3050 int is_write)
3051{
3052 return address_space_map(&address_space_memory, addr, plen, is_write);
3053}
3054
a8170e5e
AK
3055void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3056 int is_write, hwaddr access_len)
ac1970fb
AK
3057{
3058 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3059}
3060
0ce265ff
PB
3061#define ARG1_DECL AddressSpace *as
3062#define ARG1 as
3063#define SUFFIX
3064#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3065#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3066#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3067#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3068#define RCU_READ_LOCK(...) rcu_read_lock()
3069#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3070#include "memory_ldst.inc.c"
1e78bcc1 3071
5e2972fd 3072/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3073int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3074 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3075{
3076 int l;
a8170e5e 3077 hwaddr phys_addr;
9b3c35e0 3078 target_ulong page;
13eb76e0
FB
3079
3080 while (len > 0) {
5232e4c7
PM
3081 int asidx;
3082 MemTxAttrs attrs;
3083
13eb76e0 3084 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3085 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3086 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3087 /* if no physical page mapped, return an error */
3088 if (phys_addr == -1)
3089 return -1;
3090 l = (page + TARGET_PAGE_SIZE) - addr;
3091 if (l > len)
3092 l = len;
5e2972fd 3093 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3094 if (is_write) {
5232e4c7
PM
3095 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3096 phys_addr, buf, l);
2e38847b 3097 } else {
5232e4c7
PM
3098 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3099 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3100 buf, l, 0);
2e38847b 3101 }
13eb76e0
FB
3102 len -= l;
3103 buf += l;
3104 addr += l;
3105 }
3106 return 0;
3107}
038629a6
DDAG
3108
3109/*
3110 * Allows code that needs to deal with migration bitmaps etc to still be built
3111 * target independent.
3112 */
3113size_t qemu_target_page_bits(void)
3114{
3115 return TARGET_PAGE_BITS;
3116}
3117
a68fe89c 3118#endif
13eb76e0 3119
8e4a424b
BS
3120/*
3121 * A helper function for the _utterly broken_ virtio device model to find out if
3122 * it's running on a big endian machine. Don't do this at home kids!
3123 */
98ed8ecf
GK
3124bool target_words_bigendian(void);
3125bool target_words_bigendian(void)
8e4a424b
BS
3126{
3127#if defined(TARGET_WORDS_BIGENDIAN)
3128 return true;
3129#else
3130 return false;
3131#endif
3132}
3133
76f35538 3134#ifndef CONFIG_USER_ONLY
a8170e5e 3135bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3136{
5c8a00ce 3137 MemoryRegion*mr;
149f54b5 3138 hwaddr l = 1;
41063e1e 3139 bool res;
76f35538 3140
41063e1e 3141 rcu_read_lock();
5c8a00ce
PB
3142 mr = address_space_translate(&address_space_memory,
3143 phys_addr, &phys_addr, &l, false);
76f35538 3144
41063e1e
PB
3145 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3146 rcu_read_unlock();
3147 return res;
76f35538 3148}
bd2fa51f 3149
e3807054 3150int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3151{
3152 RAMBlock *block;
e3807054 3153 int ret = 0;
bd2fa51f 3154
0dc3f44a
MD
3155 rcu_read_lock();
3156 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3157 ret = func(block->idstr, block->host, block->offset,
3158 block->used_length, opaque);
3159 if (ret) {
3160 break;
3161 }
bd2fa51f 3162 }
0dc3f44a 3163 rcu_read_unlock();
e3807054 3164 return ret;
bd2fa51f 3165}
ec3f8c99 3166#endif