]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/mwalle/tags/lm32-fixes/20140204' into staging
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
54936004 48
022c62cb 49#include "exec/cputlb.h"
5b6dd868 50#include "translate-all.h"
0cac1b66 51
022c62cb 52#include "exec/memory-internal.h"
220c3ebd 53#include "exec/ram_addr.h"
582b55a9 54#include "qemu/cache-utils.h"
67d95c15 55
b35ba30f
MT
56#include "qemu/range.h"
57
db7b5426 58//#define DEBUG_SUBPAGE
1196be37 59
e2eef170 60#if !defined(CONFIG_USER_ONLY)
981fdf23 61static bool in_migration;
94a6b54f 62
a3161038 63RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
64
65static MemoryRegion *system_memory;
309cb471 66static MemoryRegion *system_io;
62152b8a 67
f6790af6
AK
68AddressSpace address_space_io;
69AddressSpace address_space_memory;
2673a5da 70
0844e007 71MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 72static MemoryRegion io_mem_unassigned;
0e0df1e2 73
e2eef170 74#endif
9fa3e853 75
bdc44640 76struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
77/* current CPU in the current thread. It is only valid inside
78 cpu_exec() */
4917cf44 79DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 80/* 0 = Do not count executed instructions.
bf20dc07 81 1 = Precise instruction counting.
2e70f6ef 82 2 = Adaptive rate instruction counting. */
5708fc66 83int use_icount;
6a00d601 84
e2eef170 85#if !defined(CONFIG_USER_ONLY)
4346ae3e 86
1db8abb1
PB
87typedef struct PhysPageEntry PhysPageEntry;
88
89struct PhysPageEntry {
9736e55b 90 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 91 uint32_t skip : 6;
9736e55b 92 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 93 uint32_t ptr : 26;
1db8abb1
PB
94};
95
8b795765
MT
96#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
97
03f49957 98/* Size of the L2 (and L3, etc) page tables. */
57271d63 99#define ADDR_SPACE_BITS 64
03f49957 100
026736ce 101#define P_L2_BITS 9
03f49957
PB
102#define P_L2_SIZE (1 << P_L2_BITS)
103
104#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
105
106typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 107
53cb28cb
MA
108typedef struct PhysPageMap {
109 unsigned sections_nb;
110 unsigned sections_nb_alloc;
111 unsigned nodes_nb;
112 unsigned nodes_nb_alloc;
113 Node *nodes;
114 MemoryRegionSection *sections;
115} PhysPageMap;
116
1db8abb1
PB
117struct AddressSpaceDispatch {
118 /* This is a multi-level map on the physical address space.
119 * The bottom level has pointers to MemoryRegionSections.
120 */
121 PhysPageEntry phys_map;
53cb28cb 122 PhysPageMap map;
acc9d80b 123 AddressSpace *as;
1db8abb1
PB
124};
125
90260c6c
JK
126#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
127typedef struct subpage_t {
128 MemoryRegion iomem;
acc9d80b 129 AddressSpace *as;
90260c6c
JK
130 hwaddr base;
131 uint16_t sub_section[TARGET_PAGE_SIZE];
132} subpage_t;
133
b41aac4f
LPF
134#define PHYS_SECTION_UNASSIGNED 0
135#define PHYS_SECTION_NOTDIRTY 1
136#define PHYS_SECTION_ROM 2
137#define PHYS_SECTION_WATCH 3
5312bd8b 138
e2eef170 139static void io_mem_init(void);
62152b8a 140static void memory_map_init(void);
e2eef170 141
1ec9b909 142static MemoryRegion io_mem_watch;
6658ffb8 143#endif
fd6ce8f6 144
6d9a1304 145#if !defined(CONFIG_USER_ONLY)
d6f2ea22 146
53cb28cb 147static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 148{
53cb28cb
MA
149 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
150 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
151 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
152 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 153 }
f7bf5461
AK
154}
155
53cb28cb 156static uint32_t phys_map_node_alloc(PhysPageMap *map)
f7bf5461
AK
157{
158 unsigned i;
8b795765 159 uint32_t ret;
f7bf5461 160
53cb28cb 161 ret = map->nodes_nb++;
f7bf5461 162 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 163 assert(ret != map->nodes_nb_alloc);
03f49957 164 for (i = 0; i < P_L2_SIZE; ++i) {
53cb28cb
MA
165 map->nodes[ret][i].skip = 1;
166 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 167 }
f7bf5461 168 return ret;
d6f2ea22
AK
169}
170
53cb28cb
MA
171static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
172 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 173 int level)
f7bf5461
AK
174{
175 PhysPageEntry *p;
176 int i;
03f49957 177 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 178
9736e55b 179 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
53cb28cb
MA
180 lp->ptr = phys_map_node_alloc(map);
181 p = map->nodes[lp->ptr];
f7bf5461 182 if (level == 0) {
03f49957 183 for (i = 0; i < P_L2_SIZE; i++) {
9736e55b 184 p[i].skip = 0;
b41aac4f 185 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 186 }
67c4d23c 187 }
f7bf5461 188 } else {
53cb28cb 189 p = map->nodes[lp->ptr];
92e873b9 190 }
03f49957 191 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 192
03f49957 193 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 194 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 195 lp->skip = 0;
c19e8800 196 lp->ptr = leaf;
07f07b31
AK
197 *index += step;
198 *nb -= step;
2999097b 199 } else {
53cb28cb 200 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
201 }
202 ++lp;
f7bf5461
AK
203 }
204}
205
ac1970fb 206static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 207 hwaddr index, hwaddr nb,
2999097b 208 uint16_t leaf)
f7bf5461 209{
2999097b 210 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 211 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 212
53cb28cb 213 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
214}
215
b35ba30f
MT
216/* Compact a non leaf page entry. Simply detect that the entry has a single child,
217 * and update our entry so we can skip it and go directly to the destination.
218 */
219static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
220{
221 unsigned valid_ptr = P_L2_SIZE;
222 int valid = 0;
223 PhysPageEntry *p;
224 int i;
225
226 if (lp->ptr == PHYS_MAP_NODE_NIL) {
227 return;
228 }
229
230 p = nodes[lp->ptr];
231 for (i = 0; i < P_L2_SIZE; i++) {
232 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
233 continue;
234 }
235
236 valid_ptr = i;
237 valid++;
238 if (p[i].skip) {
239 phys_page_compact(&p[i], nodes, compacted);
240 }
241 }
242
243 /* We can only compress if there's only one child. */
244 if (valid != 1) {
245 return;
246 }
247
248 assert(valid_ptr < P_L2_SIZE);
249
250 /* Don't compress if it won't fit in the # of bits we have. */
251 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
252 return;
253 }
254
255 lp->ptr = p[valid_ptr].ptr;
256 if (!p[valid_ptr].skip) {
257 /* If our only child is a leaf, make this a leaf. */
258 /* By design, we should have made this node a leaf to begin with so we
259 * should never reach here.
260 * But since it's so simple to handle this, let's do it just in case we
261 * change this rule.
262 */
263 lp->skip = 0;
264 } else {
265 lp->skip += p[valid_ptr].skip;
266 }
267}
268
269static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
270{
271 DECLARE_BITMAP(compacted, nodes_nb);
272
273 if (d->phys_map.skip) {
53cb28cb 274 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
275 }
276}
277
97115a8d 278static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 279 Node *nodes, MemoryRegionSection *sections)
92e873b9 280{
31ab2b4a 281 PhysPageEntry *p;
97115a8d 282 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 283 int i;
f1f6e3b8 284
9736e55b 285 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 286 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 287 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 288 }
9affd6fc 289 p = nodes[lp.ptr];
03f49957 290 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 291 }
b35ba30f
MT
292
293 if (sections[lp.ptr].size.hi ||
294 range_covers_byte(sections[lp.ptr].offset_within_address_space,
295 sections[lp.ptr].size.lo, addr)) {
296 return &sections[lp.ptr];
297 } else {
298 return &sections[PHYS_SECTION_UNASSIGNED];
299 }
f3705d53
AK
300}
301
e5548617
BS
302bool memory_region_is_unassigned(MemoryRegion *mr)
303{
2a8e7499 304 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 305 && mr != &io_mem_watch;
fd6ce8f6 306}
149f54b5 307
c7086b4a 308static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
309 hwaddr addr,
310 bool resolve_subpage)
9f029603 311{
90260c6c
JK
312 MemoryRegionSection *section;
313 subpage_t *subpage;
314
53cb28cb 315 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
316 if (resolve_subpage && section->mr->subpage) {
317 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 318 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
319 }
320 return section;
9f029603
JK
321}
322
90260c6c 323static MemoryRegionSection *
c7086b4a 324address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 325 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
326{
327 MemoryRegionSection *section;
360e607b 328 Int128 diff, diff_page;
149f54b5 329
c7086b4a 330 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
331 /* Compute offset within MemoryRegionSection */
332 addr -= section->offset_within_address_space;
333
334 /* Compute offset within MemoryRegion */
335 *xlat = addr + section->offset_within_region;
336
360e607b 337 diff_page = int128_make64(((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr);
149f54b5 338 diff = int128_sub(section->mr->size, int128_make64(addr));
360e607b 339 diff = int128_min(diff, diff_page);
3752a036 340 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
341 return section;
342}
90260c6c 343
5c8a00ce
PB
344MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
345 hwaddr *xlat, hwaddr *plen,
346 bool is_write)
90260c6c 347{
30951157
AK
348 IOMMUTLBEntry iotlb;
349 MemoryRegionSection *section;
350 MemoryRegion *mr;
351 hwaddr len = *plen;
352
353 for (;;) {
360e607b 354 section = address_space_translate_internal(as->dispatch, addr, &addr, &len, true);
30951157
AK
355 mr = section->mr;
356
357 if (!mr->iommu_ops) {
358 break;
359 }
360
361 iotlb = mr->iommu_ops->translate(mr, addr);
362 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
363 | (addr & iotlb.addr_mask));
364 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
365 if (!(iotlb.perm & (1 << is_write))) {
366 mr = &io_mem_unassigned;
367 break;
368 }
369
370 as = iotlb.target_as;
371 }
372
373 *plen = len;
374 *xlat = addr;
375 return mr;
90260c6c
JK
376}
377
378MemoryRegionSection *
379address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
380 hwaddr *plen)
381{
30951157 382 MemoryRegionSection *section;
c7086b4a 383 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
384
385 assert(!section->mr->iommu_ops);
386 return section;
90260c6c 387}
5b6dd868 388#endif
fd6ce8f6 389
5b6dd868 390void cpu_exec_init_all(void)
fdbb84d1 391{
5b6dd868 392#if !defined(CONFIG_USER_ONLY)
b2a8658e 393 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
394 memory_map_init();
395 io_mem_init();
fdbb84d1 396#endif
5b6dd868 397}
fdbb84d1 398
b170fce3 399#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
400
401static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 402{
259186a7 403 CPUState *cpu = opaque;
a513fe19 404
5b6dd868
BS
405 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
406 version_id is increased. */
259186a7
AF
407 cpu->interrupt_request &= ~0x01;
408 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
409
410 return 0;
a513fe19 411}
7501267e 412
1a1562f5 413const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
414 .name = "cpu_common",
415 .version_id = 1,
416 .minimum_version_id = 1,
417 .minimum_version_id_old = 1,
418 .post_load = cpu_common_post_load,
419 .fields = (VMStateField []) {
259186a7
AF
420 VMSTATE_UINT32(halted, CPUState),
421 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
422 VMSTATE_END_OF_LIST()
423 }
424};
1a1562f5 425
5b6dd868 426#endif
ea041c0e 427
38d8f5c8 428CPUState *qemu_get_cpu(int index)
ea041c0e 429{
bdc44640 430 CPUState *cpu;
ea041c0e 431
bdc44640 432 CPU_FOREACH(cpu) {
55e5c285 433 if (cpu->cpu_index == index) {
bdc44640 434 return cpu;
55e5c285 435 }
ea041c0e 436 }
5b6dd868 437
bdc44640 438 return NULL;
ea041c0e
FB
439}
440
5b6dd868 441void cpu_exec_init(CPUArchState *env)
ea041c0e 442{
5b6dd868 443 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 444 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 445 CPUState *some_cpu;
5b6dd868
BS
446 int cpu_index;
447
448#if defined(CONFIG_USER_ONLY)
449 cpu_list_lock();
450#endif
5b6dd868 451 cpu_index = 0;
bdc44640 452 CPU_FOREACH(some_cpu) {
5b6dd868
BS
453 cpu_index++;
454 }
55e5c285 455 cpu->cpu_index = cpu_index;
1b1ed8dc 456 cpu->numa_node = 0;
5b6dd868
BS
457 QTAILQ_INIT(&env->breakpoints);
458 QTAILQ_INIT(&env->watchpoints);
459#ifndef CONFIG_USER_ONLY
460 cpu->thread_id = qemu_get_thread_id();
461#endif
bdc44640 462 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
463#if defined(CONFIG_USER_ONLY)
464 cpu_list_unlock();
465#endif
e0d47944
AF
466 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
467 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
468 }
5b6dd868 469#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
470 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
471 cpu_save, cpu_load, env);
b170fce3 472 assert(cc->vmsd == NULL);
e0d47944 473 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 474#endif
b170fce3
AF
475 if (cc->vmsd != NULL) {
476 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
477 }
ea041c0e
FB
478}
479
1fddef4b 480#if defined(TARGET_HAS_ICE)
94df27fd 481#if defined(CONFIG_USER_ONLY)
00b941e5 482static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
483{
484 tb_invalidate_phys_page_range(pc, pc + 1, 0);
485}
486#else
00b941e5 487static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 488{
e8262a1b
MF
489 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
490 if (phys != -1) {
491 tb_invalidate_phys_addr(phys | (pc & ~TARGET_PAGE_MASK));
492 }
1e7855a5 493}
c27004ec 494#endif
94df27fd 495#endif /* TARGET_HAS_ICE */
d720b93d 496
c527ee8f 497#if defined(CONFIG_USER_ONLY)
9349b4f9 498void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
499
500{
501}
502
9349b4f9 503int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
504 int flags, CPUWatchpoint **watchpoint)
505{
506 return -ENOSYS;
507}
508#else
6658ffb8 509/* Add a watchpoint. */
9349b4f9 510int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 511 int flags, CPUWatchpoint **watchpoint)
6658ffb8 512{
b4051334 513 target_ulong len_mask = ~(len - 1);
c0ce998e 514 CPUWatchpoint *wp;
6658ffb8 515
b4051334 516 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
517 if ((len & (len - 1)) || (addr & ~len_mask) ||
518 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
519 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
520 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
521 return -EINVAL;
522 }
7267c094 523 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
524
525 wp->vaddr = addr;
b4051334 526 wp->len_mask = len_mask;
a1d1bb31
AL
527 wp->flags = flags;
528
2dc9f411 529 /* keep all GDB-injected watchpoints in front */
c0ce998e 530 if (flags & BP_GDB)
72cf2d4f 531 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 532 else
72cf2d4f 533 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 534
6658ffb8 535 tlb_flush_page(env, addr);
a1d1bb31
AL
536
537 if (watchpoint)
538 *watchpoint = wp;
539 return 0;
6658ffb8
PB
540}
541
a1d1bb31 542/* Remove a specific watchpoint. */
9349b4f9 543int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 544 int flags)
6658ffb8 545{
b4051334 546 target_ulong len_mask = ~(len - 1);
a1d1bb31 547 CPUWatchpoint *wp;
6658ffb8 548
72cf2d4f 549 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 550 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 551 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 552 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
553 return 0;
554 }
555 }
a1d1bb31 556 return -ENOENT;
6658ffb8
PB
557}
558
a1d1bb31 559/* Remove a specific watchpoint by reference. */
9349b4f9 560void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 561{
72cf2d4f 562 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 563
a1d1bb31
AL
564 tlb_flush_page(env, watchpoint->vaddr);
565
7267c094 566 g_free(watchpoint);
a1d1bb31
AL
567}
568
569/* Remove all matching watchpoints. */
9349b4f9 570void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 571{
c0ce998e 572 CPUWatchpoint *wp, *next;
a1d1bb31 573
72cf2d4f 574 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
575 if (wp->flags & mask)
576 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 577 }
7d03f82f 578}
c527ee8f 579#endif
7d03f82f 580
a1d1bb31 581/* Add a breakpoint. */
9349b4f9 582int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 583 CPUBreakpoint **breakpoint)
4c3a88a2 584{
1fddef4b 585#if defined(TARGET_HAS_ICE)
c0ce998e 586 CPUBreakpoint *bp;
3b46e624 587
7267c094 588 bp = g_malloc(sizeof(*bp));
4c3a88a2 589
a1d1bb31
AL
590 bp->pc = pc;
591 bp->flags = flags;
592
2dc9f411 593 /* keep all GDB-injected breakpoints in front */
00b941e5 594 if (flags & BP_GDB) {
72cf2d4f 595 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
00b941e5 596 } else {
72cf2d4f 597 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
00b941e5 598 }
3b46e624 599
00b941e5 600 breakpoint_invalidate(ENV_GET_CPU(env), pc);
a1d1bb31 601
00b941e5 602 if (breakpoint) {
a1d1bb31 603 *breakpoint = bp;
00b941e5 604 }
4c3a88a2
FB
605 return 0;
606#else
a1d1bb31 607 return -ENOSYS;
4c3a88a2
FB
608#endif
609}
610
a1d1bb31 611/* Remove a specific breakpoint. */
9349b4f9 612int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 613{
7d03f82f 614#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
615 CPUBreakpoint *bp;
616
72cf2d4f 617 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
618 if (bp->pc == pc && bp->flags == flags) {
619 cpu_breakpoint_remove_by_ref(env, bp);
620 return 0;
621 }
7d03f82f 622 }
a1d1bb31
AL
623 return -ENOENT;
624#else
625 return -ENOSYS;
7d03f82f
EI
626#endif
627}
628
a1d1bb31 629/* Remove a specific breakpoint by reference. */
9349b4f9 630void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 631{
1fddef4b 632#if defined(TARGET_HAS_ICE)
72cf2d4f 633 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 634
00b941e5 635 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
a1d1bb31 636
7267c094 637 g_free(breakpoint);
a1d1bb31
AL
638#endif
639}
640
641/* Remove all matching breakpoints. */
9349b4f9 642void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
643{
644#if defined(TARGET_HAS_ICE)
c0ce998e 645 CPUBreakpoint *bp, *next;
a1d1bb31 646
72cf2d4f 647 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
648 if (bp->flags & mask)
649 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 650 }
4c3a88a2
FB
651#endif
652}
653
c33a346e
FB
654/* enable or disable single step mode. EXCP_DEBUG is returned by the
655 CPU loop after each instruction */
3825b28f 656void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 657{
1fddef4b 658#if defined(TARGET_HAS_ICE)
ed2803da
AF
659 if (cpu->singlestep_enabled != enabled) {
660 cpu->singlestep_enabled = enabled;
661 if (kvm_enabled()) {
38e478ec 662 kvm_update_guest_debug(cpu, 0);
ed2803da 663 } else {
ccbb4d44 664 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 665 /* XXX: only flush what is necessary */
38e478ec 666 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
667 tb_flush(env);
668 }
c33a346e
FB
669 }
670#endif
671}
672
9349b4f9 673void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 674{
878096ee 675 CPUState *cpu = ENV_GET_CPU(env);
7501267e 676 va_list ap;
493ae1f0 677 va_list ap2;
7501267e
FB
678
679 va_start(ap, fmt);
493ae1f0 680 va_copy(ap2, ap);
7501267e
FB
681 fprintf(stderr, "qemu: fatal: ");
682 vfprintf(stderr, fmt, ap);
683 fprintf(stderr, "\n");
878096ee 684 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
685 if (qemu_log_enabled()) {
686 qemu_log("qemu: fatal: ");
687 qemu_log_vprintf(fmt, ap2);
688 qemu_log("\n");
a0762859 689 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 690 qemu_log_flush();
93fcfe39 691 qemu_log_close();
924edcae 692 }
493ae1f0 693 va_end(ap2);
f9373291 694 va_end(ap);
fd052bf6
RV
695#if defined(CONFIG_USER_ONLY)
696 {
697 struct sigaction act;
698 sigfillset(&act.sa_mask);
699 act.sa_handler = SIG_DFL;
700 sigaction(SIGABRT, &act, NULL);
701 }
702#endif
7501267e
FB
703 abort();
704}
705
0124311e 706#if !defined(CONFIG_USER_ONLY)
041603fe
PB
707static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
708{
709 RAMBlock *block;
710
711 /* The list is protected by the iothread lock here. */
712 block = ram_list.mru_block;
713 if (block && addr - block->offset < block->length) {
714 goto found;
715 }
716 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
717 if (addr - block->offset < block->length) {
718 goto found;
719 }
720 }
721
722 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
723 abort();
724
725found:
726 ram_list.mru_block = block;
727 return block;
728}
729
a2f4d5be 730static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 731{
041603fe 732 ram_addr_t start1;
a2f4d5be
JQ
733 RAMBlock *block;
734 ram_addr_t end;
735
736 end = TARGET_PAGE_ALIGN(start + length);
737 start &= TARGET_PAGE_MASK;
d24981d3 738
041603fe
PB
739 block = qemu_get_ram_block(start);
740 assert(block == qemu_get_ram_block(end - 1));
741 start1 = (uintptr_t)block->host + (start - block->offset);
742 cpu_tlb_reset_dirty_all(start1, length);
d24981d3
JQ
743}
744
5579c7f3 745/* Note: start and end must be within the same ram block. */
a2f4d5be 746void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
52159192 747 unsigned client)
1ccde1cb 748{
1ccde1cb
FB
749 if (length == 0)
750 return;
ace694cc 751 cpu_physical_memory_clear_dirty_range(start, length, client);
f23db169 752
d24981d3 753 if (tcg_enabled()) {
a2f4d5be 754 tlb_reset_dirty_range_all(start, length);
5579c7f3 755 }
1ccde1cb
FB
756}
757
981fdf23 758static void cpu_physical_memory_set_dirty_tracking(bool enable)
74576198
AL
759{
760 in_migration = enable;
74576198
AL
761}
762
a8170e5e 763hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
764 MemoryRegionSection *section,
765 target_ulong vaddr,
766 hwaddr paddr, hwaddr xlat,
767 int prot,
768 target_ulong *address)
e5548617 769{
a8170e5e 770 hwaddr iotlb;
e5548617
BS
771 CPUWatchpoint *wp;
772
cc5bea60 773 if (memory_region_is_ram(section->mr)) {
e5548617
BS
774 /* Normal RAM. */
775 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 776 + xlat;
e5548617 777 if (!section->readonly) {
b41aac4f 778 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 779 } else {
b41aac4f 780 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
781 }
782 } else {
53cb28cb 783 iotlb = section - address_space_memory.dispatch->map.sections;
149f54b5 784 iotlb += xlat;
e5548617
BS
785 }
786
787 /* Make accesses to pages with watchpoints go via the
788 watchpoint trap routines. */
789 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
790 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
791 /* Avoid trapping reads of pages with a write breakpoint. */
792 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 793 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
794 *address |= TLB_MMIO;
795 break;
796 }
797 }
798 }
799
800 return iotlb;
801}
9fa3e853
FB
802#endif /* defined(CONFIG_USER_ONLY) */
803
e2eef170 804#if !defined(CONFIG_USER_ONLY)
8da3ff18 805
c227f099 806static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 807 uint16_t section);
acc9d80b 808static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 809
575ddeb4 810static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
91138037
MA
811
812/*
813 * Set a custom physical guest memory alloator.
814 * Accelerators with unusual needs may need this. Hopefully, we can
815 * get rid of it eventually.
816 */
575ddeb4 817void phys_mem_set_alloc(void *(*alloc)(size_t))
91138037
MA
818{
819 phys_mem_alloc = alloc;
820}
821
53cb28cb
MA
822static uint16_t phys_section_add(PhysPageMap *map,
823 MemoryRegionSection *section)
5312bd8b 824{
68f3f65b
PB
825 /* The physical section number is ORed with a page-aligned
826 * pointer to produce the iotlb entries. Thus it should
827 * never overflow into the page-aligned value.
828 */
53cb28cb 829 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 830
53cb28cb
MA
831 if (map->sections_nb == map->sections_nb_alloc) {
832 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
833 map->sections = g_renew(MemoryRegionSection, map->sections,
834 map->sections_nb_alloc);
5312bd8b 835 }
53cb28cb 836 map->sections[map->sections_nb] = *section;
dfde4e6e 837 memory_region_ref(section->mr);
53cb28cb 838 return map->sections_nb++;
5312bd8b
AK
839}
840
058bc4b5
PB
841static void phys_section_destroy(MemoryRegion *mr)
842{
dfde4e6e
PB
843 memory_region_unref(mr);
844
058bc4b5
PB
845 if (mr->subpage) {
846 subpage_t *subpage = container_of(mr, subpage_t, iomem);
847 memory_region_destroy(&subpage->iomem);
848 g_free(subpage);
849 }
850}
851
6092666e 852static void phys_sections_free(PhysPageMap *map)
5312bd8b 853{
9affd6fc
PB
854 while (map->sections_nb > 0) {
855 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
856 phys_section_destroy(section->mr);
857 }
9affd6fc
PB
858 g_free(map->sections);
859 g_free(map->nodes);
5312bd8b
AK
860}
861
ac1970fb 862static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
863{
864 subpage_t *subpage;
a8170e5e 865 hwaddr base = section->offset_within_address_space
0f0cb164 866 & TARGET_PAGE_MASK;
97115a8d 867 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 868 d->map.nodes, d->map.sections);
0f0cb164
AK
869 MemoryRegionSection subsection = {
870 .offset_within_address_space = base,
052e87b0 871 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 872 };
a8170e5e 873 hwaddr start, end;
0f0cb164 874
f3705d53 875 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 876
f3705d53 877 if (!(existing->mr->subpage)) {
acc9d80b 878 subpage = subpage_init(d->as, base);
0f0cb164 879 subsection.mr = &subpage->iomem;
ac1970fb 880 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 881 phys_section_add(&d->map, &subsection));
0f0cb164 882 } else {
f3705d53 883 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
884 }
885 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 886 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
887 subpage_register(subpage, start, end,
888 phys_section_add(&d->map, section));
0f0cb164
AK
889}
890
891
052e87b0
PB
892static void register_multipage(AddressSpaceDispatch *d,
893 MemoryRegionSection *section)
33417e70 894{
a8170e5e 895 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 896 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
897 uint64_t num_pages = int128_get64(int128_rshift(section->size,
898 TARGET_PAGE_BITS));
dd81124b 899
733d5ef5
PB
900 assert(num_pages);
901 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
902}
903
ac1970fb 904static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 905{
89ae337a 906 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 907 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 908 MemoryRegionSection now = *section, remain = *section;
052e87b0 909 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 910
733d5ef5
PB
911 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
912 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
913 - now.offset_within_address_space;
914
052e87b0 915 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 916 register_subpage(d, &now);
733d5ef5 917 } else {
052e87b0 918 now.size = int128_zero();
733d5ef5 919 }
052e87b0
PB
920 while (int128_ne(remain.size, now.size)) {
921 remain.size = int128_sub(remain.size, now.size);
922 remain.offset_within_address_space += int128_get64(now.size);
923 remain.offset_within_region += int128_get64(now.size);
69b67646 924 now = remain;
052e87b0 925 if (int128_lt(remain.size, page_size)) {
733d5ef5 926 register_subpage(d, &now);
88266249 927 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 928 now.size = page_size;
ac1970fb 929 register_subpage(d, &now);
69b67646 930 } else {
052e87b0 931 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 932 register_multipage(d, &now);
69b67646 933 }
0f0cb164
AK
934 }
935}
936
62a2744c
SY
937void qemu_flush_coalesced_mmio_buffer(void)
938{
939 if (kvm_enabled())
940 kvm_flush_coalesced_mmio_buffer();
941}
942
b2a8658e
UD
943void qemu_mutex_lock_ramlist(void)
944{
945 qemu_mutex_lock(&ram_list.mutex);
946}
947
948void qemu_mutex_unlock_ramlist(void)
949{
950 qemu_mutex_unlock(&ram_list.mutex);
951}
952
e1e84ba0 953#ifdef __linux__
c902760f
MT
954
955#include <sys/vfs.h>
956
957#define HUGETLBFS_MAGIC 0x958458f6
958
959static long gethugepagesize(const char *path)
960{
961 struct statfs fs;
962 int ret;
963
964 do {
9742bf26 965 ret = statfs(path, &fs);
c902760f
MT
966 } while (ret != 0 && errno == EINTR);
967
968 if (ret != 0) {
9742bf26
YT
969 perror(path);
970 return 0;
c902760f
MT
971 }
972
973 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 974 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
975
976 return fs.f_bsize;
977}
978
ef36fa14
MT
979static sigjmp_buf sigjump;
980
981static void sigbus_handler(int signal)
982{
983 siglongjmp(sigjump, 1);
984}
985
04b16653
AW
986static void *file_ram_alloc(RAMBlock *block,
987 ram_addr_t memory,
988 const char *path)
c902760f
MT
989{
990 char *filename;
8ca761f6
PF
991 char *sanitized_name;
992 char *c;
c902760f
MT
993 void *area;
994 int fd;
c902760f
MT
995 unsigned long hpagesize;
996
997 hpagesize = gethugepagesize(path);
998 if (!hpagesize) {
9742bf26 999 return NULL;
c902760f
MT
1000 }
1001
1002 if (memory < hpagesize) {
1003 return NULL;
1004 }
1005
1006 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1007 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1008 return NULL;
1009 }
1010
8ca761f6
PF
1011 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1012 sanitized_name = g_strdup(block->mr->name);
1013 for (c = sanitized_name; *c != '\0'; c++) {
1014 if (*c == '/')
1015 *c = '_';
1016 }
1017
1018 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1019 sanitized_name);
1020 g_free(sanitized_name);
c902760f
MT
1021
1022 fd = mkstemp(filename);
1023 if (fd < 0) {
9742bf26 1024 perror("unable to create backing store for hugepages");
e4ada482 1025 g_free(filename);
9742bf26 1026 return NULL;
c902760f
MT
1027 }
1028 unlink(filename);
e4ada482 1029 g_free(filename);
c902760f
MT
1030
1031 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1032
1033 /*
1034 * ftruncate is not supported by hugetlbfs in older
1035 * hosts, so don't bother bailing out on errors.
1036 * If anything goes wrong with it under other filesystems,
1037 * mmap will fail.
1038 */
1039 if (ftruncate(fd, memory))
9742bf26 1040 perror("ftruncate");
c902760f 1041
c902760f 1042 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
c902760f 1043 if (area == MAP_FAILED) {
9742bf26
YT
1044 perror("file_ram_alloc: can't mmap RAM pages");
1045 close(fd);
1046 return (NULL);
c902760f 1047 }
ef36fa14
MT
1048
1049 if (mem_prealloc) {
1050 int ret, i;
1051 struct sigaction act, oldact;
1052 sigset_t set, oldset;
1053
1054 memset(&act, 0, sizeof(act));
1055 act.sa_handler = &sigbus_handler;
1056 act.sa_flags = 0;
1057
1058 ret = sigaction(SIGBUS, &act, &oldact);
1059 if (ret) {
1060 perror("file_ram_alloc: failed to install signal handler");
1061 exit(1);
1062 }
1063
1064 /* unblock SIGBUS */
1065 sigemptyset(&set);
1066 sigaddset(&set, SIGBUS);
1067 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1068
1069 if (sigsetjmp(sigjump, 1)) {
1070 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1071 exit(1);
1072 }
1073
1074 /* MAP_POPULATE silently ignores failures */
2ba82852 1075 for (i = 0; i < (memory/hpagesize); i++) {
ef36fa14
MT
1076 memset(area + (hpagesize*i), 0, 1);
1077 }
1078
1079 ret = sigaction(SIGBUS, &oldact, NULL);
1080 if (ret) {
1081 perror("file_ram_alloc: failed to reinstall signal handler");
1082 exit(1);
1083 }
1084
1085 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1086 }
1087
04b16653 1088 block->fd = fd;
c902760f
MT
1089 return area;
1090}
e1e84ba0
MA
1091#else
1092static void *file_ram_alloc(RAMBlock *block,
1093 ram_addr_t memory,
1094 const char *path)
1095{
1096 fprintf(stderr, "-mem-path not supported on this host\n");
1097 exit(1);
1098}
c902760f
MT
1099#endif
1100
d17b5288 1101static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1102{
1103 RAMBlock *block, *next_block;
3e837b2c 1104 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1105
49cd9ac6
SH
1106 assert(size != 0); /* it would hand out same offset multiple times */
1107
a3161038 1108 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
1109 return 0;
1110
a3161038 1111 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 1112 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1113
1114 end = block->offset + block->length;
1115
a3161038 1116 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1117 if (next_block->offset >= end) {
1118 next = MIN(next, next_block->offset);
1119 }
1120 }
1121 if (next - end >= size && next - end < mingap) {
3e837b2c 1122 offset = end;
04b16653
AW
1123 mingap = next - end;
1124 }
1125 }
3e837b2c
AW
1126
1127 if (offset == RAM_ADDR_MAX) {
1128 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1129 (uint64_t)size);
1130 abort();
1131 }
1132
04b16653
AW
1133 return offset;
1134}
1135
652d7ec2 1136ram_addr_t last_ram_offset(void)
d17b5288
AW
1137{
1138 RAMBlock *block;
1139 ram_addr_t last = 0;
1140
a3161038 1141 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1142 last = MAX(last, block->offset + block->length);
1143
1144 return last;
1145}
1146
ddb97f1d
JB
1147static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1148{
1149 int ret;
ddb97f1d
JB
1150
1151 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1152 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1153 "dump-guest-core", true)) {
ddb97f1d
JB
1154 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1155 if (ret) {
1156 perror("qemu_madvise");
1157 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1158 "but dump_guest_core=off specified\n");
1159 }
1160 }
1161}
1162
c5705a77 1163void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1164{
1165 RAMBlock *new_block, *block;
1166
c5705a77 1167 new_block = NULL;
a3161038 1168 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1169 if (block->offset == addr) {
1170 new_block = block;
1171 break;
1172 }
1173 }
1174 assert(new_block);
1175 assert(!new_block->idstr[0]);
84b89d78 1176
09e5ab63
AL
1177 if (dev) {
1178 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1179 if (id) {
1180 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1181 g_free(id);
84b89d78
CM
1182 }
1183 }
1184 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1185
b2a8658e
UD
1186 /* This assumes the iothread lock is taken here too. */
1187 qemu_mutex_lock_ramlist();
a3161038 1188 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1189 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1190 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1191 new_block->idstr);
1192 abort();
1193 }
1194 }
b2a8658e 1195 qemu_mutex_unlock_ramlist();
c5705a77
AK
1196}
1197
8490fc78
LC
1198static int memory_try_enable_merging(void *addr, size_t len)
1199{
2ff3de68 1200 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1201 /* disabled by the user */
1202 return 0;
1203 }
1204
1205 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1206}
1207
c5705a77
AK
1208ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1209 MemoryRegion *mr)
1210{
abb26d63 1211 RAMBlock *block, *new_block;
2152f5ca
JQ
1212 ram_addr_t old_ram_size, new_ram_size;
1213
1214 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77
AK
1215
1216 size = TARGET_PAGE_ALIGN(size);
1217 new_block = g_malloc0(sizeof(*new_block));
3435f395 1218 new_block->fd = -1;
84b89d78 1219
b2a8658e
UD
1220 /* This assumes the iothread lock is taken here too. */
1221 qemu_mutex_lock_ramlist();
7c637366 1222 new_block->mr = mr;
432d268c 1223 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1224 if (host) {
1225 new_block->host = host;
cd19cfa2 1226 new_block->flags |= RAM_PREALLOC_MASK;
dfeaf2ab
MA
1227 } else if (xen_enabled()) {
1228 if (mem_path) {
1229 fprintf(stderr, "-mem-path not supported with Xen\n");
1230 exit(1);
1231 }
1232 xen_ram_alloc(new_block->offset, size, mr);
6977dfe6
YT
1233 } else {
1234 if (mem_path) {
e1e84ba0
MA
1235 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1236 /*
1237 * file_ram_alloc() needs to allocate just like
1238 * phys_mem_alloc, but we haven't bothered to provide
1239 * a hook there.
1240 */
1241 fprintf(stderr,
1242 "-mem-path not supported with this accelerator\n");
1243 exit(1);
1244 }
6977dfe6 1245 new_block->host = file_ram_alloc(new_block, size, mem_path);
0628c182
MA
1246 }
1247 if (!new_block->host) {
91138037 1248 new_block->host = phys_mem_alloc(size);
39228250
MA
1249 if (!new_block->host) {
1250 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1251 new_block->mr->name, strerror(errno));
1252 exit(1);
1253 }
8490fc78 1254 memory_try_enable_merging(new_block->host, size);
6977dfe6 1255 }
c902760f 1256 }
94a6b54f
PB
1257 new_block->length = size;
1258
abb26d63
PB
1259 /* Keep the list sorted from biggest to smallest block. */
1260 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1261 if (block->length < new_block->length) {
1262 break;
1263 }
1264 }
1265 if (block) {
1266 QTAILQ_INSERT_BEFORE(block, new_block, next);
1267 } else {
1268 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1269 }
0d6d3c87 1270 ram_list.mru_block = NULL;
94a6b54f 1271
f798b07f 1272 ram_list.version++;
b2a8658e 1273 qemu_mutex_unlock_ramlist();
f798b07f 1274
2152f5ca
JQ
1275 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1276
1277 if (new_ram_size > old_ram_size) {
1ab4c8ce
JQ
1278 int i;
1279 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1280 ram_list.dirty_memory[i] =
1281 bitmap_zero_extend(ram_list.dirty_memory[i],
1282 old_ram_size, new_ram_size);
1283 }
2152f5ca 1284 }
75218e7f 1285 cpu_physical_memory_set_dirty_range(new_block->offset, size);
94a6b54f 1286
ddb97f1d 1287 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1288 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
3e469dbf 1289 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
ddb97f1d 1290
6f0437e8
JK
1291 if (kvm_enabled())
1292 kvm_setup_guest_memory(new_block->host, size);
1293
94a6b54f
PB
1294 return new_block->offset;
1295}
e9a1ab19 1296
c5705a77 1297ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1298{
c5705a77 1299 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1300}
1301
1f2e98b6
AW
1302void qemu_ram_free_from_ptr(ram_addr_t addr)
1303{
1304 RAMBlock *block;
1305
b2a8658e
UD
1306 /* This assumes the iothread lock is taken here too. */
1307 qemu_mutex_lock_ramlist();
a3161038 1308 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1309 if (addr == block->offset) {
a3161038 1310 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1311 ram_list.mru_block = NULL;
f798b07f 1312 ram_list.version++;
7267c094 1313 g_free(block);
b2a8658e 1314 break;
1f2e98b6
AW
1315 }
1316 }
b2a8658e 1317 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1318}
1319
c227f099 1320void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1321{
04b16653
AW
1322 RAMBlock *block;
1323
b2a8658e
UD
1324 /* This assumes the iothread lock is taken here too. */
1325 qemu_mutex_lock_ramlist();
a3161038 1326 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1327 if (addr == block->offset) {
a3161038 1328 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1329 ram_list.mru_block = NULL;
f798b07f 1330 ram_list.version++;
cd19cfa2
HY
1331 if (block->flags & RAM_PREALLOC_MASK) {
1332 ;
dfeaf2ab
MA
1333 } else if (xen_enabled()) {
1334 xen_invalidate_map_cache_entry(block->host);
089f3f76 1335#ifndef _WIN32
3435f395
MA
1336 } else if (block->fd >= 0) {
1337 munmap(block->host, block->length);
1338 close(block->fd);
089f3f76 1339#endif
04b16653 1340 } else {
dfeaf2ab 1341 qemu_anon_ram_free(block->host, block->length);
04b16653 1342 }
7267c094 1343 g_free(block);
b2a8658e 1344 break;
04b16653
AW
1345 }
1346 }
b2a8658e 1347 qemu_mutex_unlock_ramlist();
04b16653 1348
e9a1ab19
FB
1349}
1350
cd19cfa2
HY
1351#ifndef _WIN32
1352void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1353{
1354 RAMBlock *block;
1355 ram_addr_t offset;
1356 int flags;
1357 void *area, *vaddr;
1358
a3161038 1359 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1360 offset = addr - block->offset;
1361 if (offset < block->length) {
1362 vaddr = block->host + offset;
1363 if (block->flags & RAM_PREALLOC_MASK) {
1364 ;
dfeaf2ab
MA
1365 } else if (xen_enabled()) {
1366 abort();
cd19cfa2
HY
1367 } else {
1368 flags = MAP_FIXED;
1369 munmap(vaddr, length);
3435f395 1370 if (block->fd >= 0) {
cd19cfa2 1371#ifdef MAP_POPULATE
3435f395
MA
1372 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1373 MAP_PRIVATE;
fd28aa13 1374#else
3435f395 1375 flags |= MAP_PRIVATE;
cd19cfa2 1376#endif
3435f395
MA
1377 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1378 flags, block->fd, offset);
cd19cfa2 1379 } else {
2eb9fbaa
MA
1380 /*
1381 * Remap needs to match alloc. Accelerators that
1382 * set phys_mem_alloc never remap. If they did,
1383 * we'd need a remap hook here.
1384 */
1385 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1386
cd19cfa2
HY
1387 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1388 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1389 flags, -1, 0);
cd19cfa2
HY
1390 }
1391 if (area != vaddr) {
f15fbc4b
AP
1392 fprintf(stderr, "Could not remap addr: "
1393 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1394 length, addr);
1395 exit(1);
1396 }
8490fc78 1397 memory_try_enable_merging(vaddr, length);
ddb97f1d 1398 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1399 }
1400 return;
1401 }
1402 }
1403}
1404#endif /* !_WIN32 */
1405
1b5ec234
PB
1406/* Return a host pointer to ram allocated with qemu_ram_alloc.
1407 With the exception of the softmmu code in this file, this should
1408 only be used for local memory (e.g. video ram) that the device owns,
1409 and knows it isn't going to access beyond the end of the block.
1410
1411 It should not be used for general purpose DMA.
1412 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1413 */
1414void *qemu_get_ram_ptr(ram_addr_t addr)
1415{
1416 RAMBlock *block = qemu_get_ram_block(addr);
1417
0d6d3c87
PB
1418 if (xen_enabled()) {
1419 /* We need to check if the requested address is in the RAM
1420 * because we don't want to map the entire memory in QEMU.
1421 * In that case just map until the end of the page.
1422 */
1423 if (block->offset == 0) {
1424 return xen_map_cache(addr, 0, 0);
1425 } else if (block->host == NULL) {
1426 block->host =
1427 xen_map_cache(block->offset, block->length, 1);
1428 }
1429 }
1430 return block->host + (addr - block->offset);
dc828ca1
PB
1431}
1432
38bee5dc
SS
1433/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1434 * but takes a size argument */
cb85f7ab 1435static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1436{
8ab934f9
SS
1437 if (*size == 0) {
1438 return NULL;
1439 }
868bb33f 1440 if (xen_enabled()) {
e41d7c69 1441 return xen_map_cache(addr, *size, 1);
868bb33f 1442 } else {
38bee5dc
SS
1443 RAMBlock *block;
1444
a3161038 1445 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1446 if (addr - block->offset < block->length) {
1447 if (addr - block->offset + *size > block->length)
1448 *size = block->length - addr + block->offset;
1449 return block->host + (addr - block->offset);
1450 }
1451 }
1452
1453 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1454 abort();
38bee5dc
SS
1455 }
1456}
1457
7443b437
PB
1458/* Some of the softmmu routines need to translate from a host pointer
1459 (typically a TLB entry) back to a ram offset. */
1b5ec234 1460MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1461{
94a6b54f
PB
1462 RAMBlock *block;
1463 uint8_t *host = ptr;
1464
868bb33f 1465 if (xen_enabled()) {
e41d7c69 1466 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1467 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1468 }
1469
23887b79
PB
1470 block = ram_list.mru_block;
1471 if (block && block->host && host - block->host < block->length) {
1472 goto found;
1473 }
1474
a3161038 1475 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1476 /* This case append when the block is not mapped. */
1477 if (block->host == NULL) {
1478 continue;
1479 }
f471a17e 1480 if (host - block->host < block->length) {
23887b79 1481 goto found;
f471a17e 1482 }
94a6b54f 1483 }
432d268c 1484
1b5ec234 1485 return NULL;
23887b79
PB
1486
1487found:
1488 *ram_addr = block->offset + (host - block->host);
1b5ec234 1489 return block->mr;
e890261f 1490}
f471a17e 1491
a8170e5e 1492static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1493 uint64_t val, unsigned size)
9fa3e853 1494{
52159192 1495 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1496 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1497 }
0e0df1e2
AK
1498 switch (size) {
1499 case 1:
1500 stb_p(qemu_get_ram_ptr(ram_addr), val);
1501 break;
1502 case 2:
1503 stw_p(qemu_get_ram_ptr(ram_addr), val);
1504 break;
1505 case 4:
1506 stl_p(qemu_get_ram_ptr(ram_addr), val);
1507 break;
1508 default:
1509 abort();
3a7d929e 1510 }
52159192
JQ
1511 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1512 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
f23db169
FB
1513 /* we remove the notdirty callback only if the code has been
1514 flushed */
a2cd8c85 1515 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44
AF
1516 CPUArchState *env = current_cpu->env_ptr;
1517 tlb_set_dirty(env, env->mem_io_vaddr);
1518 }
9fa3e853
FB
1519}
1520
b018ddf6
PB
1521static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1522 unsigned size, bool is_write)
1523{
1524 return is_write;
1525}
1526
0e0df1e2 1527static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1528 .write = notdirty_mem_write,
b018ddf6 1529 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1530 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1531};
1532
0f459d16 1533/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1534static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1535{
4917cf44 1536 CPUArchState *env = current_cpu->env_ptr;
06d55cc1 1537 target_ulong pc, cs_base;
0f459d16 1538 target_ulong vaddr;
a1d1bb31 1539 CPUWatchpoint *wp;
06d55cc1 1540 int cpu_flags;
0f459d16 1541
06d55cc1
AL
1542 if (env->watchpoint_hit) {
1543 /* We re-entered the check after replacing the TB. Now raise
1544 * the debug interrupt so that is will trigger after the
1545 * current instruction. */
c3affe56 1546 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1547 return;
1548 }
2e70f6ef 1549 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1550 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1551 if ((vaddr == (wp->vaddr & len_mask) ||
1552 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1553 wp->flags |= BP_WATCHPOINT_HIT;
1554 if (!env->watchpoint_hit) {
1555 env->watchpoint_hit = wp;
5a316526 1556 tb_check_watchpoint(env);
6e140f28
AL
1557 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1558 env->exception_index = EXCP_DEBUG;
488d6577 1559 cpu_loop_exit(env);
6e140f28
AL
1560 } else {
1561 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1562 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1563 cpu_resume_from_signal(env, NULL);
6e140f28 1564 }
06d55cc1 1565 }
6e140f28
AL
1566 } else {
1567 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1568 }
1569 }
1570}
1571
6658ffb8
PB
1572/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1573 so these check for a hit then pass through to the normal out-of-line
1574 phys routines. */
a8170e5e 1575static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1576 unsigned size)
6658ffb8 1577{
1ec9b909
AK
1578 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1579 switch (size) {
1580 case 1: return ldub_phys(addr);
1581 case 2: return lduw_phys(addr);
1582 case 4: return ldl_phys(addr);
1583 default: abort();
1584 }
6658ffb8
PB
1585}
1586
a8170e5e 1587static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1588 uint64_t val, unsigned size)
6658ffb8 1589{
1ec9b909
AK
1590 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1591 switch (size) {
67364150
MF
1592 case 1:
1593 stb_phys(addr, val);
1594 break;
1595 case 2:
1596 stw_phys(addr, val);
1597 break;
1598 case 4:
1599 stl_phys(addr, val);
1600 break;
1ec9b909
AK
1601 default: abort();
1602 }
6658ffb8
PB
1603}
1604
1ec9b909
AK
1605static const MemoryRegionOps watch_mem_ops = {
1606 .read = watch_mem_read,
1607 .write = watch_mem_write,
1608 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1609};
6658ffb8 1610
a8170e5e 1611static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1612 unsigned len)
db7b5426 1613{
acc9d80b
JK
1614 subpage_t *subpage = opaque;
1615 uint8_t buf[4];
791af8c8 1616
db7b5426 1617#if defined(DEBUG_SUBPAGE)
016e9d62 1618 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 1619 subpage, len, addr);
db7b5426 1620#endif
acc9d80b
JK
1621 address_space_read(subpage->as, addr + subpage->base, buf, len);
1622 switch (len) {
1623 case 1:
1624 return ldub_p(buf);
1625 case 2:
1626 return lduw_p(buf);
1627 case 4:
1628 return ldl_p(buf);
1629 default:
1630 abort();
1631 }
db7b5426
BS
1632}
1633
a8170e5e 1634static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1635 uint64_t value, unsigned len)
db7b5426 1636{
acc9d80b
JK
1637 subpage_t *subpage = opaque;
1638 uint8_t buf[4];
1639
db7b5426 1640#if defined(DEBUG_SUBPAGE)
016e9d62 1641 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
1642 " value %"PRIx64"\n",
1643 __func__, subpage, len, addr, value);
db7b5426 1644#endif
acc9d80b
JK
1645 switch (len) {
1646 case 1:
1647 stb_p(buf, value);
1648 break;
1649 case 2:
1650 stw_p(buf, value);
1651 break;
1652 case 4:
1653 stl_p(buf, value);
1654 break;
1655 default:
1656 abort();
1657 }
1658 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1659}
1660
c353e4cc 1661static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 1662 unsigned len, bool is_write)
c353e4cc 1663{
acc9d80b 1664 subpage_t *subpage = opaque;
c353e4cc 1665#if defined(DEBUG_SUBPAGE)
016e9d62 1666 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 1667 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1668#endif
1669
acc9d80b 1670 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 1671 len, is_write);
c353e4cc
PB
1672}
1673
70c68e44
AK
1674static const MemoryRegionOps subpage_ops = {
1675 .read = subpage_read,
1676 .write = subpage_write,
c353e4cc 1677 .valid.accepts = subpage_accepts,
70c68e44 1678 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1679};
1680
c227f099 1681static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1682 uint16_t section)
db7b5426
BS
1683{
1684 int idx, eidx;
1685
1686 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1687 return -1;
1688 idx = SUBPAGE_IDX(start);
1689 eidx = SUBPAGE_IDX(end);
1690#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1691 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1692 __func__, mmio, start, end, idx, eidx, section);
db7b5426 1693#endif
db7b5426 1694 for (; idx <= eidx; idx++) {
5312bd8b 1695 mmio->sub_section[idx] = section;
db7b5426
BS
1696 }
1697
1698 return 0;
1699}
1700
acc9d80b 1701static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1702{
c227f099 1703 subpage_t *mmio;
db7b5426 1704
7267c094 1705 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1706
acc9d80b 1707 mmio->as = as;
1eec614b 1708 mmio->base = base;
2c9b15ca 1709 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1710 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1711 mmio->iomem.subpage = true;
db7b5426 1712#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1713 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1714 mmio, base, TARGET_PAGE_SIZE);
db7b5426 1715#endif
b41aac4f 1716 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1717
1718 return mmio;
1719}
1720
53cb28cb 1721static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
5312bd8b
AK
1722{
1723 MemoryRegionSection section = {
1724 .mr = mr,
1725 .offset_within_address_space = 0,
1726 .offset_within_region = 0,
052e87b0 1727 .size = int128_2_64(),
5312bd8b
AK
1728 };
1729
53cb28cb 1730 return phys_section_add(map, &section);
5312bd8b
AK
1731}
1732
a8170e5e 1733MemoryRegion *iotlb_to_region(hwaddr index)
aa102231 1734{
53cb28cb
MA
1735 return address_space_memory.dispatch->map.sections[
1736 index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1737}
1738
e9179ce1
AK
1739static void io_mem_init(void)
1740{
2c9b15ca
PB
1741 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1742 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1743 "unassigned", UINT64_MAX);
2c9b15ca 1744 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1745 "notdirty", UINT64_MAX);
2c9b15ca 1746 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1747 "watch", UINT64_MAX);
e9179ce1
AK
1748}
1749
ac1970fb 1750static void mem_begin(MemoryListener *listener)
00752703
PB
1751{
1752 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
1753 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1754 uint16_t n;
1755
1756 n = dummy_section(&d->map, &io_mem_unassigned);
1757 assert(n == PHYS_SECTION_UNASSIGNED);
1758 n = dummy_section(&d->map, &io_mem_notdirty);
1759 assert(n == PHYS_SECTION_NOTDIRTY);
1760 n = dummy_section(&d->map, &io_mem_rom);
1761 assert(n == PHYS_SECTION_ROM);
1762 n = dummy_section(&d->map, &io_mem_watch);
1763 assert(n == PHYS_SECTION_WATCH);
00752703 1764
9736e55b 1765 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
1766 d->as = as;
1767 as->next_dispatch = d;
1768}
1769
1770static void mem_commit(MemoryListener *listener)
ac1970fb 1771{
89ae337a 1772 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1773 AddressSpaceDispatch *cur = as->dispatch;
1774 AddressSpaceDispatch *next = as->next_dispatch;
1775
53cb28cb 1776 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 1777
0475d94f 1778 as->dispatch = next;
b41aac4f 1779
53cb28cb
MA
1780 if (cur) {
1781 phys_sections_free(&cur->map);
1782 g_free(cur);
1783 }
9affd6fc
PB
1784}
1785
1d71148e 1786static void tcg_commit(MemoryListener *listener)
50c1e149 1787{
182735ef 1788 CPUState *cpu;
117712c3
AK
1789
1790 /* since each CPU stores ram addresses in its TLB cache, we must
1791 reset the modified entries */
1792 /* XXX: slow ! */
bdc44640 1793 CPU_FOREACH(cpu) {
182735ef
AF
1794 CPUArchState *env = cpu->env_ptr;
1795
117712c3
AK
1796 tlb_flush(env, 1);
1797 }
50c1e149
AK
1798}
1799
93632747
AK
1800static void core_log_global_start(MemoryListener *listener)
1801{
981fdf23 1802 cpu_physical_memory_set_dirty_tracking(true);
93632747
AK
1803}
1804
1805static void core_log_global_stop(MemoryListener *listener)
1806{
981fdf23 1807 cpu_physical_memory_set_dirty_tracking(false);
93632747
AK
1808}
1809
93632747 1810static MemoryListener core_memory_listener = {
93632747
AK
1811 .log_global_start = core_log_global_start,
1812 .log_global_stop = core_log_global_stop,
ac1970fb 1813 .priority = 1,
93632747
AK
1814};
1815
1d71148e
AK
1816static MemoryListener tcg_memory_listener = {
1817 .commit = tcg_commit,
1818};
1819
ac1970fb
AK
1820void address_space_init_dispatch(AddressSpace *as)
1821{
00752703 1822 as->dispatch = NULL;
89ae337a 1823 as->dispatch_listener = (MemoryListener) {
ac1970fb 1824 .begin = mem_begin,
00752703 1825 .commit = mem_commit,
ac1970fb
AK
1826 .region_add = mem_add,
1827 .region_nop = mem_add,
1828 .priority = 0,
1829 };
89ae337a 1830 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1831}
1832
83f3c251
AK
1833void address_space_destroy_dispatch(AddressSpace *as)
1834{
1835 AddressSpaceDispatch *d = as->dispatch;
1836
89ae337a 1837 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1838 g_free(d);
1839 as->dispatch = NULL;
1840}
1841
62152b8a
AK
1842static void memory_map_init(void)
1843{
7267c094 1844 system_memory = g_malloc(sizeof(*system_memory));
03f49957 1845
57271d63 1846 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 1847 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1848
7267c094 1849 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
1850 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1851 65536);
7dca8043 1852 address_space_init(&address_space_io, system_io, "I/O");
93632747 1853
f6790af6 1854 memory_listener_register(&core_memory_listener, &address_space_memory);
2641689a
LG
1855 if (tcg_enabled()) {
1856 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1857 }
62152b8a
AK
1858}
1859
1860MemoryRegion *get_system_memory(void)
1861{
1862 return system_memory;
1863}
1864
309cb471
AK
1865MemoryRegion *get_system_io(void)
1866{
1867 return system_io;
1868}
1869
e2eef170
PB
1870#endif /* !defined(CONFIG_USER_ONLY) */
1871
13eb76e0
FB
1872/* physical memory access (slow version, mainly for debug) */
1873#if defined(CONFIG_USER_ONLY)
f17ec444 1874int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1875 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1876{
1877 int l, flags;
1878 target_ulong page;
53a5960a 1879 void * p;
13eb76e0
FB
1880
1881 while (len > 0) {
1882 page = addr & TARGET_PAGE_MASK;
1883 l = (page + TARGET_PAGE_SIZE) - addr;
1884 if (l > len)
1885 l = len;
1886 flags = page_get_flags(page);
1887 if (!(flags & PAGE_VALID))
a68fe89c 1888 return -1;
13eb76e0
FB
1889 if (is_write) {
1890 if (!(flags & PAGE_WRITE))
a68fe89c 1891 return -1;
579a97f7 1892 /* XXX: this code should not depend on lock_user */
72fb7daa 1893 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1894 return -1;
72fb7daa
AJ
1895 memcpy(p, buf, l);
1896 unlock_user(p, addr, l);
13eb76e0
FB
1897 } else {
1898 if (!(flags & PAGE_READ))
a68fe89c 1899 return -1;
579a97f7 1900 /* XXX: this code should not depend on lock_user */
72fb7daa 1901 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1902 return -1;
72fb7daa 1903 memcpy(buf, p, l);
5b257578 1904 unlock_user(p, addr, 0);
13eb76e0
FB
1905 }
1906 len -= l;
1907 buf += l;
1908 addr += l;
1909 }
a68fe89c 1910 return 0;
13eb76e0 1911}
8df1cd07 1912
13eb76e0 1913#else
51d7a9eb 1914
a8170e5e
AK
1915static void invalidate_and_set_dirty(hwaddr addr,
1916 hwaddr length)
51d7a9eb 1917{
a2cd8c85 1918 if (cpu_physical_memory_is_clean(addr)) {
51d7a9eb
AP
1919 /* invalidate code */
1920 tb_invalidate_phys_page_range(addr, addr + length, 0);
1921 /* set dirty bit */
52159192
JQ
1922 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1923 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
51d7a9eb 1924 }
e226939d 1925 xen_modified_memory(addr, length);
51d7a9eb
AP
1926}
1927
2bbfa05d
PB
1928static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1929{
1930 if (memory_region_is_ram(mr)) {
1931 return !(is_write && mr->readonly);
1932 }
1933 if (memory_region_is_romd(mr)) {
1934 return !is_write;
1935 }
1936
1937 return false;
1938}
1939
23326164 1940static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1941{
e1622f4b 1942 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1943
1944 /* Regions are assumed to support 1-4 byte accesses unless
1945 otherwise specified. */
23326164
RH
1946 if (access_size_max == 0) {
1947 access_size_max = 4;
1948 }
1949
1950 /* Bound the maximum access by the alignment of the address. */
1951 if (!mr->ops->impl.unaligned) {
1952 unsigned align_size_max = addr & -addr;
1953 if (align_size_max != 0 && align_size_max < access_size_max) {
1954 access_size_max = align_size_max;
1955 }
82f2563f 1956 }
23326164
RH
1957
1958 /* Don't attempt accesses larger than the maximum. */
1959 if (l > access_size_max) {
1960 l = access_size_max;
82f2563f 1961 }
098178f2
PB
1962 if (l & (l - 1)) {
1963 l = 1 << (qemu_fls(l) - 1);
1964 }
23326164
RH
1965
1966 return l;
82f2563f
PB
1967}
1968
fd8aaa76 1969bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1970 int len, bool is_write)
13eb76e0 1971{
149f54b5 1972 hwaddr l;
13eb76e0 1973 uint8_t *ptr;
791af8c8 1974 uint64_t val;
149f54b5 1975 hwaddr addr1;
5c8a00ce 1976 MemoryRegion *mr;
fd8aaa76 1977 bool error = false;
3b46e624 1978
13eb76e0 1979 while (len > 0) {
149f54b5 1980 l = len;
5c8a00ce 1981 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1982
13eb76e0 1983 if (is_write) {
5c8a00ce
PB
1984 if (!memory_access_is_direct(mr, is_write)) {
1985 l = memory_access_size(mr, l, addr1);
4917cf44 1986 /* XXX: could force current_cpu to NULL to avoid
6a00d601 1987 potential bugs */
23326164
RH
1988 switch (l) {
1989 case 8:
1990 /* 64 bit write access */
1991 val = ldq_p(buf);
1992 error |= io_mem_write(mr, addr1, val, 8);
1993 break;
1994 case 4:
1c213d19 1995 /* 32 bit write access */
c27004ec 1996 val = ldl_p(buf);
5c8a00ce 1997 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
1998 break;
1999 case 2:
1c213d19 2000 /* 16 bit write access */
c27004ec 2001 val = lduw_p(buf);
5c8a00ce 2002 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
2003 break;
2004 case 1:
1c213d19 2005 /* 8 bit write access */
c27004ec 2006 val = ldub_p(buf);
5c8a00ce 2007 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
2008 break;
2009 default:
2010 abort();
13eb76e0 2011 }
2bbfa05d 2012 } else {
5c8a00ce 2013 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2014 /* RAM case */
5579c7f3 2015 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2016 memcpy(ptr, buf, l);
51d7a9eb 2017 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
2018 }
2019 } else {
5c8a00ce 2020 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2021 /* I/O case */
5c8a00ce 2022 l = memory_access_size(mr, l, addr1);
23326164
RH
2023 switch (l) {
2024 case 8:
2025 /* 64 bit read access */
2026 error |= io_mem_read(mr, addr1, &val, 8);
2027 stq_p(buf, val);
2028 break;
2029 case 4:
13eb76e0 2030 /* 32 bit read access */
5c8a00ce 2031 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2032 stl_p(buf, val);
23326164
RH
2033 break;
2034 case 2:
13eb76e0 2035 /* 16 bit read access */
5c8a00ce 2036 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2037 stw_p(buf, val);
23326164
RH
2038 break;
2039 case 1:
1c213d19 2040 /* 8 bit read access */
5c8a00ce 2041 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2042 stb_p(buf, val);
23326164
RH
2043 break;
2044 default:
2045 abort();
13eb76e0
FB
2046 }
2047 } else {
2048 /* RAM case */
5c8a00ce 2049 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2050 memcpy(buf, ptr, l);
13eb76e0
FB
2051 }
2052 }
2053 len -= l;
2054 buf += l;
2055 addr += l;
2056 }
fd8aaa76
PB
2057
2058 return error;
13eb76e0 2059}
8df1cd07 2060
fd8aaa76 2061bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2062 const uint8_t *buf, int len)
2063{
fd8aaa76 2064 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2065}
2066
fd8aaa76 2067bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2068{
fd8aaa76 2069 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2070}
2071
2072
a8170e5e 2073void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2074 int len, int is_write)
2075{
fd8aaa76 2076 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2077}
2078
582b55a9
AG
2079enum write_rom_type {
2080 WRITE_DATA,
2081 FLUSH_CACHE,
2082};
2083
2084static inline void cpu_physical_memory_write_rom_internal(
2085 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2086{
149f54b5 2087 hwaddr l;
d0ecd2aa 2088 uint8_t *ptr;
149f54b5 2089 hwaddr addr1;
5c8a00ce 2090 MemoryRegion *mr;
3b46e624 2091
d0ecd2aa 2092 while (len > 0) {
149f54b5 2093 l = len;
5c8a00ce
PB
2094 mr = address_space_translate(&address_space_memory,
2095 addr, &addr1, &l, true);
3b46e624 2096
5c8a00ce
PB
2097 if (!(memory_region_is_ram(mr) ||
2098 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2099 /* do nothing */
2100 } else {
5c8a00ce 2101 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2102 /* ROM/RAM case */
5579c7f3 2103 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2104 switch (type) {
2105 case WRITE_DATA:
2106 memcpy(ptr, buf, l);
2107 invalidate_and_set_dirty(addr1, l);
2108 break;
2109 case FLUSH_CACHE:
2110 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2111 break;
2112 }
d0ecd2aa
FB
2113 }
2114 len -= l;
2115 buf += l;
2116 addr += l;
2117 }
2118}
2119
582b55a9
AG
2120/* used for ROM loading : can write in RAM and ROM */
2121void cpu_physical_memory_write_rom(hwaddr addr,
2122 const uint8_t *buf, int len)
2123{
2124 cpu_physical_memory_write_rom_internal(addr, buf, len, WRITE_DATA);
2125}
2126
2127void cpu_flush_icache_range(hwaddr start, int len)
2128{
2129 /*
2130 * This function should do the same thing as an icache flush that was
2131 * triggered from within the guest. For TCG we are always cache coherent,
2132 * so there is no need to flush anything. For KVM / Xen we need to flush
2133 * the host's instruction cache at least.
2134 */
2135 if (tcg_enabled()) {
2136 return;
2137 }
2138
2139 cpu_physical_memory_write_rom_internal(start, NULL, len, FLUSH_CACHE);
2140}
2141
6d16c2f8 2142typedef struct {
d3e71559 2143 MemoryRegion *mr;
6d16c2f8 2144 void *buffer;
a8170e5e
AK
2145 hwaddr addr;
2146 hwaddr len;
6d16c2f8
AL
2147} BounceBuffer;
2148
2149static BounceBuffer bounce;
2150
ba223c29
AL
2151typedef struct MapClient {
2152 void *opaque;
2153 void (*callback)(void *opaque);
72cf2d4f 2154 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2155} MapClient;
2156
72cf2d4f
BS
2157static QLIST_HEAD(map_client_list, MapClient) map_client_list
2158 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2159
2160void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2161{
7267c094 2162 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2163
2164 client->opaque = opaque;
2165 client->callback = callback;
72cf2d4f 2166 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2167 return client;
2168}
2169
8b9c99d9 2170static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2171{
2172 MapClient *client = (MapClient *)_client;
2173
72cf2d4f 2174 QLIST_REMOVE(client, link);
7267c094 2175 g_free(client);
ba223c29
AL
2176}
2177
2178static void cpu_notify_map_clients(void)
2179{
2180 MapClient *client;
2181
72cf2d4f
BS
2182 while (!QLIST_EMPTY(&map_client_list)) {
2183 client = QLIST_FIRST(&map_client_list);
ba223c29 2184 client->callback(client->opaque);
34d5e948 2185 cpu_unregister_map_client(client);
ba223c29
AL
2186 }
2187}
2188
51644ab7
PB
2189bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2190{
5c8a00ce 2191 MemoryRegion *mr;
51644ab7
PB
2192 hwaddr l, xlat;
2193
2194 while (len > 0) {
2195 l = len;
5c8a00ce
PB
2196 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2197 if (!memory_access_is_direct(mr, is_write)) {
2198 l = memory_access_size(mr, l, addr);
2199 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2200 return false;
2201 }
2202 }
2203
2204 len -= l;
2205 addr += l;
2206 }
2207 return true;
2208}
2209
6d16c2f8
AL
2210/* Map a physical memory region into a host virtual address.
2211 * May map a subset of the requested range, given by and returned in *plen.
2212 * May return NULL if resources needed to perform the mapping are exhausted.
2213 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2214 * Use cpu_register_map_client() to know when retrying the map operation is
2215 * likely to succeed.
6d16c2f8 2216 */
ac1970fb 2217void *address_space_map(AddressSpace *as,
a8170e5e
AK
2218 hwaddr addr,
2219 hwaddr *plen,
ac1970fb 2220 bool is_write)
6d16c2f8 2221{
a8170e5e 2222 hwaddr len = *plen;
e3127ae0
PB
2223 hwaddr done = 0;
2224 hwaddr l, xlat, base;
2225 MemoryRegion *mr, *this_mr;
2226 ram_addr_t raddr;
6d16c2f8 2227
e3127ae0
PB
2228 if (len == 0) {
2229 return NULL;
2230 }
38bee5dc 2231
e3127ae0
PB
2232 l = len;
2233 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2234 if (!memory_access_is_direct(mr, is_write)) {
2235 if (bounce.buffer) {
2236 return NULL;
6d16c2f8 2237 }
e85d9db5
KW
2238 /* Avoid unbounded allocations */
2239 l = MIN(l, TARGET_PAGE_SIZE);
2240 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2241 bounce.addr = addr;
2242 bounce.len = l;
d3e71559
PB
2243
2244 memory_region_ref(mr);
2245 bounce.mr = mr;
e3127ae0
PB
2246 if (!is_write) {
2247 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2248 }
6d16c2f8 2249
e3127ae0
PB
2250 *plen = l;
2251 return bounce.buffer;
2252 }
2253
2254 base = xlat;
2255 raddr = memory_region_get_ram_addr(mr);
2256
2257 for (;;) {
6d16c2f8
AL
2258 len -= l;
2259 addr += l;
e3127ae0
PB
2260 done += l;
2261 if (len == 0) {
2262 break;
2263 }
2264
2265 l = len;
2266 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2267 if (this_mr != mr || xlat != base + done) {
2268 break;
2269 }
6d16c2f8 2270 }
e3127ae0 2271
d3e71559 2272 memory_region_ref(mr);
e3127ae0
PB
2273 *plen = done;
2274 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2275}
2276
ac1970fb 2277/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2278 * Will also mark the memory as dirty if is_write == 1. access_len gives
2279 * the amount of memory that was actually read or written by the caller.
2280 */
a8170e5e
AK
2281void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2282 int is_write, hwaddr access_len)
6d16c2f8
AL
2283{
2284 if (buffer != bounce.buffer) {
d3e71559
PB
2285 MemoryRegion *mr;
2286 ram_addr_t addr1;
2287
2288 mr = qemu_ram_addr_from_host(buffer, &addr1);
2289 assert(mr != NULL);
6d16c2f8 2290 if (is_write) {
6d16c2f8
AL
2291 while (access_len) {
2292 unsigned l;
2293 l = TARGET_PAGE_SIZE;
2294 if (l > access_len)
2295 l = access_len;
51d7a9eb 2296 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2297 addr1 += l;
2298 access_len -= l;
2299 }
2300 }
868bb33f 2301 if (xen_enabled()) {
e41d7c69 2302 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2303 }
d3e71559 2304 memory_region_unref(mr);
6d16c2f8
AL
2305 return;
2306 }
2307 if (is_write) {
ac1970fb 2308 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2309 }
f8a83245 2310 qemu_vfree(bounce.buffer);
6d16c2f8 2311 bounce.buffer = NULL;
d3e71559 2312 memory_region_unref(bounce.mr);
ba223c29 2313 cpu_notify_map_clients();
6d16c2f8 2314}
d0ecd2aa 2315
a8170e5e
AK
2316void *cpu_physical_memory_map(hwaddr addr,
2317 hwaddr *plen,
ac1970fb
AK
2318 int is_write)
2319{
2320 return address_space_map(&address_space_memory, addr, plen, is_write);
2321}
2322
a8170e5e
AK
2323void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2324 int is_write, hwaddr access_len)
ac1970fb
AK
2325{
2326 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2327}
2328
8df1cd07 2329/* warning: addr must be aligned */
a8170e5e 2330static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2331 enum device_endian endian)
8df1cd07 2332{
8df1cd07 2333 uint8_t *ptr;
791af8c8 2334 uint64_t val;
5c8a00ce 2335 MemoryRegion *mr;
149f54b5
PB
2336 hwaddr l = 4;
2337 hwaddr addr1;
8df1cd07 2338
5c8a00ce
PB
2339 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2340 false);
2341 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2342 /* I/O case */
5c8a00ce 2343 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2344#if defined(TARGET_WORDS_BIGENDIAN)
2345 if (endian == DEVICE_LITTLE_ENDIAN) {
2346 val = bswap32(val);
2347 }
2348#else
2349 if (endian == DEVICE_BIG_ENDIAN) {
2350 val = bswap32(val);
2351 }
2352#endif
8df1cd07
FB
2353 } else {
2354 /* RAM case */
5c8a00ce 2355 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2356 & TARGET_PAGE_MASK)
149f54b5 2357 + addr1);
1e78bcc1
AG
2358 switch (endian) {
2359 case DEVICE_LITTLE_ENDIAN:
2360 val = ldl_le_p(ptr);
2361 break;
2362 case DEVICE_BIG_ENDIAN:
2363 val = ldl_be_p(ptr);
2364 break;
2365 default:
2366 val = ldl_p(ptr);
2367 break;
2368 }
8df1cd07
FB
2369 }
2370 return val;
2371}
2372
a8170e5e 2373uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2374{
2375 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2376}
2377
a8170e5e 2378uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2379{
2380 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2381}
2382
a8170e5e 2383uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2384{
2385 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2386}
2387
84b7b8e7 2388/* warning: addr must be aligned */
a8170e5e 2389static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2390 enum device_endian endian)
84b7b8e7 2391{
84b7b8e7
FB
2392 uint8_t *ptr;
2393 uint64_t val;
5c8a00ce 2394 MemoryRegion *mr;
149f54b5
PB
2395 hwaddr l = 8;
2396 hwaddr addr1;
84b7b8e7 2397
5c8a00ce
PB
2398 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2399 false);
2400 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2401 /* I/O case */
5c8a00ce 2402 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2403#if defined(TARGET_WORDS_BIGENDIAN)
2404 if (endian == DEVICE_LITTLE_ENDIAN) {
2405 val = bswap64(val);
2406 }
2407#else
2408 if (endian == DEVICE_BIG_ENDIAN) {
2409 val = bswap64(val);
2410 }
84b7b8e7
FB
2411#endif
2412 } else {
2413 /* RAM case */
5c8a00ce 2414 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2415 & TARGET_PAGE_MASK)
149f54b5 2416 + addr1);
1e78bcc1
AG
2417 switch (endian) {
2418 case DEVICE_LITTLE_ENDIAN:
2419 val = ldq_le_p(ptr);
2420 break;
2421 case DEVICE_BIG_ENDIAN:
2422 val = ldq_be_p(ptr);
2423 break;
2424 default:
2425 val = ldq_p(ptr);
2426 break;
2427 }
84b7b8e7
FB
2428 }
2429 return val;
2430}
2431
a8170e5e 2432uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2433{
2434 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2435}
2436
a8170e5e 2437uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2438{
2439 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2440}
2441
a8170e5e 2442uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2443{
2444 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2445}
2446
aab33094 2447/* XXX: optimize */
a8170e5e 2448uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2449{
2450 uint8_t val;
2451 cpu_physical_memory_read(addr, &val, 1);
2452 return val;
2453}
2454
733f0b02 2455/* warning: addr must be aligned */
a8170e5e 2456static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2457 enum device_endian endian)
aab33094 2458{
733f0b02
MT
2459 uint8_t *ptr;
2460 uint64_t val;
5c8a00ce 2461 MemoryRegion *mr;
149f54b5
PB
2462 hwaddr l = 2;
2463 hwaddr addr1;
733f0b02 2464
5c8a00ce
PB
2465 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2466 false);
2467 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2468 /* I/O case */
5c8a00ce 2469 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2470#if defined(TARGET_WORDS_BIGENDIAN)
2471 if (endian == DEVICE_LITTLE_ENDIAN) {
2472 val = bswap16(val);
2473 }
2474#else
2475 if (endian == DEVICE_BIG_ENDIAN) {
2476 val = bswap16(val);
2477 }
2478#endif
733f0b02
MT
2479 } else {
2480 /* RAM case */
5c8a00ce 2481 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2482 & TARGET_PAGE_MASK)
149f54b5 2483 + addr1);
1e78bcc1
AG
2484 switch (endian) {
2485 case DEVICE_LITTLE_ENDIAN:
2486 val = lduw_le_p(ptr);
2487 break;
2488 case DEVICE_BIG_ENDIAN:
2489 val = lduw_be_p(ptr);
2490 break;
2491 default:
2492 val = lduw_p(ptr);
2493 break;
2494 }
733f0b02
MT
2495 }
2496 return val;
aab33094
FB
2497}
2498
a8170e5e 2499uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2500{
2501 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2502}
2503
a8170e5e 2504uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2505{
2506 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2507}
2508
a8170e5e 2509uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2510{
2511 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2512}
2513
8df1cd07
FB
2514/* warning: addr must be aligned. The ram page is not masked as dirty
2515 and the code inside is not invalidated. It is useful if the dirty
2516 bits are used to track modified PTEs */
a8170e5e 2517void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2518{
8df1cd07 2519 uint8_t *ptr;
5c8a00ce 2520 MemoryRegion *mr;
149f54b5
PB
2521 hwaddr l = 4;
2522 hwaddr addr1;
8df1cd07 2523
5c8a00ce
PB
2524 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2525 true);
2526 if (l < 4 || !memory_access_is_direct(mr, true)) {
2527 io_mem_write(mr, addr1, val, 4);
8df1cd07 2528 } else {
5c8a00ce 2529 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2530 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2531 stl_p(ptr, val);
74576198
AL
2532
2533 if (unlikely(in_migration)) {
a2cd8c85 2534 if (cpu_physical_memory_is_clean(addr1)) {
74576198
AL
2535 /* invalidate code */
2536 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2537 /* set dirty bit */
52159192
JQ
2538 cpu_physical_memory_set_dirty_flag(addr1,
2539 DIRTY_MEMORY_MIGRATION);
2540 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
74576198
AL
2541 }
2542 }
8df1cd07
FB
2543 }
2544}
2545
2546/* warning: addr must be aligned */
a8170e5e 2547static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2548 enum device_endian endian)
8df1cd07 2549{
8df1cd07 2550 uint8_t *ptr;
5c8a00ce 2551 MemoryRegion *mr;
149f54b5
PB
2552 hwaddr l = 4;
2553 hwaddr addr1;
8df1cd07 2554
5c8a00ce
PB
2555 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2556 true);
2557 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2558#if defined(TARGET_WORDS_BIGENDIAN)
2559 if (endian == DEVICE_LITTLE_ENDIAN) {
2560 val = bswap32(val);
2561 }
2562#else
2563 if (endian == DEVICE_BIG_ENDIAN) {
2564 val = bswap32(val);
2565 }
2566#endif
5c8a00ce 2567 io_mem_write(mr, addr1, val, 4);
8df1cd07 2568 } else {
8df1cd07 2569 /* RAM case */
5c8a00ce 2570 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2571 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2572 switch (endian) {
2573 case DEVICE_LITTLE_ENDIAN:
2574 stl_le_p(ptr, val);
2575 break;
2576 case DEVICE_BIG_ENDIAN:
2577 stl_be_p(ptr, val);
2578 break;
2579 default:
2580 stl_p(ptr, val);
2581 break;
2582 }
51d7a9eb 2583 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2584 }
2585}
2586
a8170e5e 2587void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2588{
2589 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2590}
2591
a8170e5e 2592void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2593{
2594 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2595}
2596
a8170e5e 2597void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2598{
2599 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2600}
2601
aab33094 2602/* XXX: optimize */
a8170e5e 2603void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2604{
2605 uint8_t v = val;
2606 cpu_physical_memory_write(addr, &v, 1);
2607}
2608
733f0b02 2609/* warning: addr must be aligned */
a8170e5e 2610static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2611 enum device_endian endian)
aab33094 2612{
733f0b02 2613 uint8_t *ptr;
5c8a00ce 2614 MemoryRegion *mr;
149f54b5
PB
2615 hwaddr l = 2;
2616 hwaddr addr1;
733f0b02 2617
5c8a00ce
PB
2618 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2619 true);
2620 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2621#if defined(TARGET_WORDS_BIGENDIAN)
2622 if (endian == DEVICE_LITTLE_ENDIAN) {
2623 val = bswap16(val);
2624 }
2625#else
2626 if (endian == DEVICE_BIG_ENDIAN) {
2627 val = bswap16(val);
2628 }
2629#endif
5c8a00ce 2630 io_mem_write(mr, addr1, val, 2);
733f0b02 2631 } else {
733f0b02 2632 /* RAM case */
5c8a00ce 2633 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2634 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2635 switch (endian) {
2636 case DEVICE_LITTLE_ENDIAN:
2637 stw_le_p(ptr, val);
2638 break;
2639 case DEVICE_BIG_ENDIAN:
2640 stw_be_p(ptr, val);
2641 break;
2642 default:
2643 stw_p(ptr, val);
2644 break;
2645 }
51d7a9eb 2646 invalidate_and_set_dirty(addr1, 2);
733f0b02 2647 }
aab33094
FB
2648}
2649
a8170e5e 2650void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2651{
2652 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2653}
2654
a8170e5e 2655void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2656{
2657 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2658}
2659
a8170e5e 2660void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2661{
2662 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2663}
2664
aab33094 2665/* XXX: optimize */
a8170e5e 2666void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2667{
2668 val = tswap64(val);
71d2b725 2669 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2670}
2671
a8170e5e 2672void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2673{
2674 val = cpu_to_le64(val);
2675 cpu_physical_memory_write(addr, &val, 8);
2676}
2677
a8170e5e 2678void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2679{
2680 val = cpu_to_be64(val);
2681 cpu_physical_memory_write(addr, &val, 8);
2682}
2683
5e2972fd 2684/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2685int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2686 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2687{
2688 int l;
a8170e5e 2689 hwaddr phys_addr;
9b3c35e0 2690 target_ulong page;
13eb76e0
FB
2691
2692 while (len > 0) {
2693 page = addr & TARGET_PAGE_MASK;
f17ec444 2694 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2695 /* if no physical page mapped, return an error */
2696 if (phys_addr == -1)
2697 return -1;
2698 l = (page + TARGET_PAGE_SIZE) - addr;
2699 if (l > len)
2700 l = len;
5e2972fd 2701 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2702 if (is_write)
2703 cpu_physical_memory_write_rom(phys_addr, buf, l);
2704 else
5e2972fd 2705 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2706 len -= l;
2707 buf += l;
2708 addr += l;
2709 }
2710 return 0;
2711}
a68fe89c 2712#endif
13eb76e0 2713
8e4a424b
BS
2714#if !defined(CONFIG_USER_ONLY)
2715
2716/*
2717 * A helper function for the _utterly broken_ virtio device model to find out if
2718 * it's running on a big endian machine. Don't do this at home kids!
2719 */
2720bool virtio_is_big_endian(void);
2721bool virtio_is_big_endian(void)
2722{
2723#if defined(TARGET_WORDS_BIGENDIAN)
2724 return true;
2725#else
2726 return false;
2727#endif
2728}
2729
2730#endif
2731
76f35538 2732#ifndef CONFIG_USER_ONLY
a8170e5e 2733bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2734{
5c8a00ce 2735 MemoryRegion*mr;
149f54b5 2736 hwaddr l = 1;
76f35538 2737
5c8a00ce
PB
2738 mr = address_space_translate(&address_space_memory,
2739 phys_addr, &phys_addr, &l, false);
76f35538 2740
5c8a00ce
PB
2741 return !(memory_region_is_ram(mr) ||
2742 memory_region_is_romd(mr));
76f35538 2743}
bd2fa51f
MH
2744
2745void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2746{
2747 RAMBlock *block;
2748
2749 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2750 func(block->host, block->offset, block->length, opaque);
2751 }
2752}
ec3f8c99 2753#endif