]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
postcopy: Chunk discards for hugepages
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
b67d9a52 27#include "tcg.h"
741da0d3 28#include "hw/qdev-core.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3
PB
44#include "sysemu/dma.h"
45#include "exec/address-spaces.h"
9c17d615 46#include "sysemu/xen-mapcache.h"
0ab8ed18 47#include "trace-root.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
5b6dd868 52#include "translate-all.h"
7615936e 53#include "sysemu/replay.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
508127e2 57#include "exec/log.h"
67d95c15 58
9dfeca7c
BR
59#include "migration/vmstate.h"
60
b35ba30f 61#include "qemu/range.h"
794e8f30
MT
62#ifndef _WIN32
63#include "qemu/mmap-alloc.h"
64#endif
b35ba30f 65
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
e2eef170 68#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
69/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
71 */
0d53d9fe 72RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
73
74static MemoryRegion *system_memory;
309cb471 75static MemoryRegion *system_io;
62152b8a 76
f6790af6
AK
77AddressSpace address_space_io;
78AddressSpace address_space_memory;
2673a5da 79
0844e007 80MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 81static MemoryRegion io_mem_unassigned;
0e0df1e2 82
7bd4f430
PB
83/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84#define RAM_PREALLOC (1 << 0)
85
dbcb8981
PB
86/* RAM is mmap-ed with MAP_SHARED */
87#define RAM_SHARED (1 << 1)
88
62be4e3a
MT
89/* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
91 */
92#define RAM_RESIZEABLE (1 << 2)
93
e2eef170 94#endif
9fa3e853 95
20bccb82
PM
96#ifdef TARGET_PAGE_BITS_VARY
97int target_page_bits;
98bool target_page_bits_decided;
99#endif
100
bdc44640 101struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
102/* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
f240eb6f 104__thread CPUState *current_cpu;
2e70f6ef 105/* 0 = Do not count executed instructions.
bf20dc07 106 1 = Precise instruction counting.
2e70f6ef 107 2 = Adaptive rate instruction counting. */
5708fc66 108int use_icount;
6a00d601 109
20bccb82
PM
110bool set_preferred_target_page_bits(int bits)
111{
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
116 */
117#ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
122 }
123 target_page_bits = bits;
124 }
125#endif
126 return true;
127}
128
e2eef170 129#if !defined(CONFIG_USER_ONLY)
4346ae3e 130
20bccb82
PM
131static void finalize_target_page_bits(void)
132{
133#ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
136 }
137 target_page_bits_decided = true;
138#endif
139}
140
1db8abb1
PB
141typedef struct PhysPageEntry PhysPageEntry;
142
143struct PhysPageEntry {
9736e55b 144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 145 uint32_t skip : 6;
9736e55b 146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 147 uint32_t ptr : 26;
1db8abb1
PB
148};
149
8b795765
MT
150#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151
03f49957 152/* Size of the L2 (and L3, etc) page tables. */
57271d63 153#define ADDR_SPACE_BITS 64
03f49957 154
026736ce 155#define P_L2_BITS 9
03f49957
PB
156#define P_L2_SIZE (1 << P_L2_BITS)
157
158#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159
160typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 161
53cb28cb 162typedef struct PhysPageMap {
79e2b9ae
PB
163 struct rcu_head rcu;
164
53cb28cb
MA
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171} PhysPageMap;
172
1db8abb1 173struct AddressSpaceDispatch {
79e2b9ae
PB
174 struct rcu_head rcu;
175
729633c2 176 MemoryRegionSection *mru_section;
1db8abb1
PB
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
179 */
180 PhysPageEntry phys_map;
53cb28cb 181 PhysPageMap map;
acc9d80b 182 AddressSpace *as;
1db8abb1
PB
183};
184
90260c6c
JK
185#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186typedef struct subpage_t {
187 MemoryRegion iomem;
acc9d80b 188 AddressSpace *as;
90260c6c 189 hwaddr base;
2615fabd 190 uint16_t sub_section[];
90260c6c
JK
191} subpage_t;
192
b41aac4f
LPF
193#define PHYS_SECTION_UNASSIGNED 0
194#define PHYS_SECTION_NOTDIRTY 1
195#define PHYS_SECTION_ROM 2
196#define PHYS_SECTION_WATCH 3
5312bd8b 197
e2eef170 198static void io_mem_init(void);
62152b8a 199static void memory_map_init(void);
09daed84 200static void tcg_commit(MemoryListener *listener);
e2eef170 201
1ec9b909 202static MemoryRegion io_mem_watch;
32857f4d
PM
203
204/**
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
210 */
211struct CPUAddressSpace {
212 CPUState *cpu;
213 AddressSpace *as;
214 struct AddressSpaceDispatch *memory_dispatch;
215 MemoryListener tcg_as_listener;
216};
217
6658ffb8 218#endif
fd6ce8f6 219
6d9a1304 220#if !defined(CONFIG_USER_ONLY)
d6f2ea22 221
53cb28cb 222static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 223{
101420b8 224 static unsigned alloc_hint = 16;
53cb28cb 225 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 226 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
227 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
228 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 229 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 230 }
f7bf5461
AK
231}
232
db94604b 233static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
234{
235 unsigned i;
8b795765 236 uint32_t ret;
db94604b
PB
237 PhysPageEntry e;
238 PhysPageEntry *p;
f7bf5461 239
53cb28cb 240 ret = map->nodes_nb++;
db94604b 241 p = map->nodes[ret];
f7bf5461 242 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 243 assert(ret != map->nodes_nb_alloc);
db94604b
PB
244
245 e.skip = leaf ? 0 : 1;
246 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 247 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 248 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 249 }
f7bf5461 250 return ret;
d6f2ea22
AK
251}
252
53cb28cb
MA
253static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
254 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 255 int level)
f7bf5461
AK
256{
257 PhysPageEntry *p;
03f49957 258 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 259
9736e55b 260 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 261 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 262 }
db94604b 263 p = map->nodes[lp->ptr];
03f49957 264 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 265
03f49957 266 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 267 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 268 lp->skip = 0;
c19e8800 269 lp->ptr = leaf;
07f07b31
AK
270 *index += step;
271 *nb -= step;
2999097b 272 } else {
53cb28cb 273 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
274 }
275 ++lp;
f7bf5461
AK
276 }
277}
278
ac1970fb 279static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 280 hwaddr index, hwaddr nb,
2999097b 281 uint16_t leaf)
f7bf5461 282{
2999097b 283 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 284 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 285
53cb28cb 286 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
287}
288
b35ba30f
MT
289/* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
291 */
efee678d 292static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
293{
294 unsigned valid_ptr = P_L2_SIZE;
295 int valid = 0;
296 PhysPageEntry *p;
297 int i;
298
299 if (lp->ptr == PHYS_MAP_NODE_NIL) {
300 return;
301 }
302
303 p = nodes[lp->ptr];
304 for (i = 0; i < P_L2_SIZE; i++) {
305 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
306 continue;
307 }
308
309 valid_ptr = i;
310 valid++;
311 if (p[i].skip) {
efee678d 312 phys_page_compact(&p[i], nodes);
b35ba30f
MT
313 }
314 }
315
316 /* We can only compress if there's only one child. */
317 if (valid != 1) {
318 return;
319 }
320
321 assert(valid_ptr < P_L2_SIZE);
322
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
325 return;
326 }
327
328 lp->ptr = p[valid_ptr].ptr;
329 if (!p[valid_ptr].skip) {
330 /* If our only child is a leaf, make this a leaf. */
331 /* By design, we should have made this node a leaf to begin with so we
332 * should never reach here.
333 * But since it's so simple to handle this, let's do it just in case we
334 * change this rule.
335 */
336 lp->skip = 0;
337 } else {
338 lp->skip += p[valid_ptr].skip;
339 }
340}
341
342static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
343{
b35ba30f 344 if (d->phys_map.skip) {
efee678d 345 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
346 }
347}
348
29cb533d
FZ
349static inline bool section_covers_addr(const MemoryRegionSection *section,
350 hwaddr addr)
351{
352 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
353 * the section must cover the entire address space.
354 */
258dfaaa 355 return int128_gethi(section->size) ||
29cb533d 356 range_covers_byte(section->offset_within_address_space,
258dfaaa 357 int128_getlo(section->size), addr);
29cb533d
FZ
358}
359
97115a8d 360static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 361 Node *nodes, MemoryRegionSection *sections)
92e873b9 362{
31ab2b4a 363 PhysPageEntry *p;
97115a8d 364 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 365 int i;
f1f6e3b8 366
9736e55b 367 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 368 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 369 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 370 }
9affd6fc 371 p = nodes[lp.ptr];
03f49957 372 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 373 }
b35ba30f 374
29cb533d 375 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
376 return &sections[lp.ptr];
377 } else {
378 return &sections[PHYS_SECTION_UNASSIGNED];
379 }
f3705d53
AK
380}
381
e5548617
BS
382bool memory_region_is_unassigned(MemoryRegion *mr)
383{
2a8e7499 384 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 385 && mr != &io_mem_watch;
fd6ce8f6 386}
149f54b5 387
79e2b9ae 388/* Called from RCU critical section */
c7086b4a 389static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
390 hwaddr addr,
391 bool resolve_subpage)
9f029603 392{
729633c2 393 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 394 subpage_t *subpage;
729633c2 395 bool update;
90260c6c 396
729633c2
FZ
397 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
398 section_covers_addr(section, addr)) {
399 update = false;
400 } else {
401 section = phys_page_find(d->phys_map, addr, d->map.nodes,
402 d->map.sections);
403 update = true;
404 }
90260c6c
JK
405 if (resolve_subpage && section->mr->subpage) {
406 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 407 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 408 }
729633c2
FZ
409 if (update) {
410 atomic_set(&d->mru_section, section);
411 }
90260c6c 412 return section;
9f029603
JK
413}
414
79e2b9ae 415/* Called from RCU critical section */
90260c6c 416static MemoryRegionSection *
c7086b4a 417address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 418 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
419{
420 MemoryRegionSection *section;
965eb2fc 421 MemoryRegion *mr;
a87f3954 422 Int128 diff;
149f54b5 423
c7086b4a 424 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
425 /* Compute offset within MemoryRegionSection */
426 addr -= section->offset_within_address_space;
427
428 /* Compute offset within MemoryRegion */
429 *xlat = addr + section->offset_within_region;
430
965eb2fc 431 mr = section->mr;
b242e0e0
PB
432
433 /* MMIO registers can be expected to perform full-width accesses based only
434 * on their address, without considering adjacent registers that could
435 * decode to completely different MemoryRegions. When such registers
436 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
437 * regions overlap wildly. For this reason we cannot clamp the accesses
438 * here.
439 *
440 * If the length is small (as is the case for address_space_ldl/stl),
441 * everything works fine. If the incoming length is large, however,
442 * the caller really has to do the clamping through memory_access_size.
443 */
965eb2fc 444 if (memory_region_is_ram(mr)) {
e4a511f8 445 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
446 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
447 }
149f54b5
PB
448 return section;
449}
90260c6c 450
41063e1e 451/* Called from RCU critical section */
052c8fa9
JW
452IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
453 bool is_write)
454{
455 IOMMUTLBEntry iotlb = {0};
456 MemoryRegionSection *section;
457 MemoryRegion *mr;
458
459 for (;;) {
460 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
461 section = address_space_lookup_region(d, addr, false);
462 addr = addr - section->offset_within_address_space
463 + section->offset_within_region;
464 mr = section->mr;
465
466 if (!mr->iommu_ops) {
467 break;
468 }
469
470 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
471 if (!(iotlb.perm & (1 << is_write))) {
472 iotlb.target_as = NULL;
473 break;
474 }
475
476 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
477 | (addr & iotlb.addr_mask));
478 as = iotlb.target_as;
479 }
480
481 return iotlb;
482}
483
484/* Called from RCU critical section */
5c8a00ce
PB
485MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
486 hwaddr *xlat, hwaddr *plen,
487 bool is_write)
90260c6c 488{
30951157
AK
489 IOMMUTLBEntry iotlb;
490 MemoryRegionSection *section;
491 MemoryRegion *mr;
30951157
AK
492
493 for (;;) {
79e2b9ae
PB
494 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
495 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
496 mr = section->mr;
497
498 if (!mr->iommu_ops) {
499 break;
500 }
501
8d7b8cb9 502 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
503 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
504 | (addr & iotlb.addr_mask));
23820dbf 505 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
506 if (!(iotlb.perm & (1 << is_write))) {
507 mr = &io_mem_unassigned;
508 break;
509 }
510
511 as = iotlb.target_as;
512 }
513
fe680d0d 514 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 515 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 516 *plen = MIN(page, *plen);
a87f3954
PB
517 }
518
30951157
AK
519 *xlat = addr;
520 return mr;
90260c6c
JK
521}
522
79e2b9ae 523/* Called from RCU critical section */
90260c6c 524MemoryRegionSection *
d7898cda 525address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 526 hwaddr *xlat, hwaddr *plen)
90260c6c 527{
30951157 528 MemoryRegionSection *section;
f35e44e7 529 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
530
531 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
532
533 assert(!section->mr->iommu_ops);
534 return section;
90260c6c 535}
5b6dd868 536#endif
fd6ce8f6 537
b170fce3 538#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
539
540static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 541{
259186a7 542 CPUState *cpu = opaque;
a513fe19 543
5b6dd868
BS
544 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
545 version_id is increased. */
259186a7 546 cpu->interrupt_request &= ~0x01;
d10eb08f 547 tlb_flush(cpu);
5b6dd868
BS
548
549 return 0;
a513fe19 550}
7501267e 551
6c3bff0e
PD
552static int cpu_common_pre_load(void *opaque)
553{
554 CPUState *cpu = opaque;
555
adee6424 556 cpu->exception_index = -1;
6c3bff0e
PD
557
558 return 0;
559}
560
561static bool cpu_common_exception_index_needed(void *opaque)
562{
563 CPUState *cpu = opaque;
564
adee6424 565 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
566}
567
568static const VMStateDescription vmstate_cpu_common_exception_index = {
569 .name = "cpu_common/exception_index",
570 .version_id = 1,
571 .minimum_version_id = 1,
5cd8cada 572 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
573 .fields = (VMStateField[]) {
574 VMSTATE_INT32(exception_index, CPUState),
575 VMSTATE_END_OF_LIST()
576 }
577};
578
bac05aa9
AS
579static bool cpu_common_crash_occurred_needed(void *opaque)
580{
581 CPUState *cpu = opaque;
582
583 return cpu->crash_occurred;
584}
585
586static const VMStateDescription vmstate_cpu_common_crash_occurred = {
587 .name = "cpu_common/crash_occurred",
588 .version_id = 1,
589 .minimum_version_id = 1,
590 .needed = cpu_common_crash_occurred_needed,
591 .fields = (VMStateField[]) {
592 VMSTATE_BOOL(crash_occurred, CPUState),
593 VMSTATE_END_OF_LIST()
594 }
595};
596
1a1562f5 597const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
598 .name = "cpu_common",
599 .version_id = 1,
600 .minimum_version_id = 1,
6c3bff0e 601 .pre_load = cpu_common_pre_load,
5b6dd868 602 .post_load = cpu_common_post_load,
35d08458 603 .fields = (VMStateField[]) {
259186a7
AF
604 VMSTATE_UINT32(halted, CPUState),
605 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 606 VMSTATE_END_OF_LIST()
6c3bff0e 607 },
5cd8cada
JQ
608 .subsections = (const VMStateDescription*[]) {
609 &vmstate_cpu_common_exception_index,
bac05aa9 610 &vmstate_cpu_common_crash_occurred,
5cd8cada 611 NULL
5b6dd868
BS
612 }
613};
1a1562f5 614
5b6dd868 615#endif
ea041c0e 616
38d8f5c8 617CPUState *qemu_get_cpu(int index)
ea041c0e 618{
bdc44640 619 CPUState *cpu;
ea041c0e 620
bdc44640 621 CPU_FOREACH(cpu) {
55e5c285 622 if (cpu->cpu_index == index) {
bdc44640 623 return cpu;
55e5c285 624 }
ea041c0e 625 }
5b6dd868 626
bdc44640 627 return NULL;
ea041c0e
FB
628}
629
09daed84 630#if !defined(CONFIG_USER_ONLY)
56943e8c 631void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 632{
12ebc9a7
PM
633 CPUAddressSpace *newas;
634
635 /* Target code should have set num_ases before calling us */
636 assert(asidx < cpu->num_ases);
637
56943e8c
PM
638 if (asidx == 0) {
639 /* address space 0 gets the convenience alias */
640 cpu->as = as;
641 }
642
12ebc9a7
PM
643 /* KVM cannot currently support multiple address spaces. */
644 assert(asidx == 0 || !kvm_enabled());
09daed84 645
12ebc9a7
PM
646 if (!cpu->cpu_ases) {
647 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 648 }
32857f4d 649
12ebc9a7
PM
650 newas = &cpu->cpu_ases[asidx];
651 newas->cpu = cpu;
652 newas->as = as;
56943e8c 653 if (tcg_enabled()) {
12ebc9a7
PM
654 newas->tcg_as_listener.commit = tcg_commit;
655 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 656 }
09daed84 657}
651a5bc0
PM
658
659AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
660{
661 /* Return the AddressSpace corresponding to the specified index */
662 return cpu->cpu_ases[asidx].as;
663}
09daed84
EI
664#endif
665
7bbc124e 666void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 667{
9dfeca7c
BR
668 CPUClass *cc = CPU_GET_CLASS(cpu);
669
267f685b 670 cpu_list_remove(cpu);
9dfeca7c
BR
671
672 if (cc->vmsd != NULL) {
673 vmstate_unregister(NULL, cc->vmsd, cpu);
674 }
675 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
676 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
677 }
1c59eb39
BR
678}
679
39e329e3 680void cpu_exec_initfn(CPUState *cpu)
ea041c0e 681{
56943e8c 682 cpu->as = NULL;
12ebc9a7 683 cpu->num_ases = 0;
56943e8c 684
291135b5 685#ifndef CONFIG_USER_ONLY
291135b5 686 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
687
688 /* This is a softmmu CPU object, so create a property for it
689 * so users can wire up its memory. (This can't go in qom/cpu.c
690 * because that file is compiled only once for both user-mode
691 * and system builds.) The default if no link is set up is to use
692 * the system address space.
693 */
694 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
695 (Object **)&cpu->memory,
696 qdev_prop_allow_set_link_before_realize,
697 OBJ_PROP_LINK_UNREF_ON_RELEASE,
698 &error_abort);
699 cpu->memory = system_memory;
700 object_ref(OBJECT(cpu->memory));
291135b5 701#endif
39e329e3
LV
702}
703
ce5b1bbf 704void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
705{
706 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 707
267f685b 708 cpu_list_add(cpu);
1bc7e522
IM
709
710#ifndef CONFIG_USER_ONLY
e0d47944 711 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 712 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 713 }
b170fce3 714 if (cc->vmsd != NULL) {
741da0d3 715 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 716 }
741da0d3 717#endif
ea041c0e
FB
718}
719
00b941e5 720static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 721{
a9353fe8
PM
722 /* Flush the whole TB as this will not have race conditions
723 * even if we don't have proper locking yet.
724 * Ideally we would just invalidate the TBs for the
725 * specified PC.
726 */
727 tb_flush(cpu);
1e7855a5 728}
d720b93d 729
c527ee8f 730#if defined(CONFIG_USER_ONLY)
75a34036 731void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
732
733{
734}
735
3ee887e8
PM
736int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
737 int flags)
738{
739 return -ENOSYS;
740}
741
742void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
743{
744}
745
75a34036 746int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
747 int flags, CPUWatchpoint **watchpoint)
748{
749 return -ENOSYS;
750}
751#else
6658ffb8 752/* Add a watchpoint. */
75a34036 753int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 754 int flags, CPUWatchpoint **watchpoint)
6658ffb8 755{
c0ce998e 756 CPUWatchpoint *wp;
6658ffb8 757
05068c0d 758 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 759 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
760 error_report("tried to set invalid watchpoint at %"
761 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
762 return -EINVAL;
763 }
7267c094 764 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
765
766 wp->vaddr = addr;
05068c0d 767 wp->len = len;
a1d1bb31
AL
768 wp->flags = flags;
769
2dc9f411 770 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
771 if (flags & BP_GDB) {
772 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
773 } else {
774 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
775 }
6658ffb8 776
31b030d4 777 tlb_flush_page(cpu, addr);
a1d1bb31
AL
778
779 if (watchpoint)
780 *watchpoint = wp;
781 return 0;
6658ffb8
PB
782}
783
a1d1bb31 784/* Remove a specific watchpoint. */
75a34036 785int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 786 int flags)
6658ffb8 787{
a1d1bb31 788 CPUWatchpoint *wp;
6658ffb8 789
ff4700b0 790 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 791 if (addr == wp->vaddr && len == wp->len
6e140f28 792 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 793 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
794 return 0;
795 }
796 }
a1d1bb31 797 return -ENOENT;
6658ffb8
PB
798}
799
a1d1bb31 800/* Remove a specific watchpoint by reference. */
75a34036 801void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 802{
ff4700b0 803 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 804
31b030d4 805 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 806
7267c094 807 g_free(watchpoint);
a1d1bb31
AL
808}
809
810/* Remove all matching watchpoints. */
75a34036 811void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 812{
c0ce998e 813 CPUWatchpoint *wp, *next;
a1d1bb31 814
ff4700b0 815 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
816 if (wp->flags & mask) {
817 cpu_watchpoint_remove_by_ref(cpu, wp);
818 }
c0ce998e 819 }
7d03f82f 820}
05068c0d
PM
821
822/* Return true if this watchpoint address matches the specified
823 * access (ie the address range covered by the watchpoint overlaps
824 * partially or completely with the address range covered by the
825 * access).
826 */
827static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
828 vaddr addr,
829 vaddr len)
830{
831 /* We know the lengths are non-zero, but a little caution is
832 * required to avoid errors in the case where the range ends
833 * exactly at the top of the address space and so addr + len
834 * wraps round to zero.
835 */
836 vaddr wpend = wp->vaddr + wp->len - 1;
837 vaddr addrend = addr + len - 1;
838
839 return !(addr > wpend || wp->vaddr > addrend);
840}
841
c527ee8f 842#endif
7d03f82f 843
a1d1bb31 844/* Add a breakpoint. */
b3310ab3 845int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 846 CPUBreakpoint **breakpoint)
4c3a88a2 847{
c0ce998e 848 CPUBreakpoint *bp;
3b46e624 849
7267c094 850 bp = g_malloc(sizeof(*bp));
4c3a88a2 851
a1d1bb31
AL
852 bp->pc = pc;
853 bp->flags = flags;
854
2dc9f411 855 /* keep all GDB-injected breakpoints in front */
00b941e5 856 if (flags & BP_GDB) {
f0c3c505 857 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 858 } else {
f0c3c505 859 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 860 }
3b46e624 861
f0c3c505 862 breakpoint_invalidate(cpu, pc);
a1d1bb31 863
00b941e5 864 if (breakpoint) {
a1d1bb31 865 *breakpoint = bp;
00b941e5 866 }
4c3a88a2 867 return 0;
4c3a88a2
FB
868}
869
a1d1bb31 870/* Remove a specific breakpoint. */
b3310ab3 871int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 872{
a1d1bb31
AL
873 CPUBreakpoint *bp;
874
f0c3c505 875 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 876 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 877 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
878 return 0;
879 }
7d03f82f 880 }
a1d1bb31 881 return -ENOENT;
7d03f82f
EI
882}
883
a1d1bb31 884/* Remove a specific breakpoint by reference. */
b3310ab3 885void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 886{
f0c3c505
AF
887 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
888
889 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 890
7267c094 891 g_free(breakpoint);
a1d1bb31
AL
892}
893
894/* Remove all matching breakpoints. */
b3310ab3 895void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 896{
c0ce998e 897 CPUBreakpoint *bp, *next;
a1d1bb31 898
f0c3c505 899 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
900 if (bp->flags & mask) {
901 cpu_breakpoint_remove_by_ref(cpu, bp);
902 }
c0ce998e 903 }
4c3a88a2
FB
904}
905
c33a346e
FB
906/* enable or disable single step mode. EXCP_DEBUG is returned by the
907 CPU loop after each instruction */
3825b28f 908void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 909{
ed2803da
AF
910 if (cpu->singlestep_enabled != enabled) {
911 cpu->singlestep_enabled = enabled;
912 if (kvm_enabled()) {
38e478ec 913 kvm_update_guest_debug(cpu, 0);
ed2803da 914 } else {
ccbb4d44 915 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 916 /* XXX: only flush what is necessary */
bbd77c18 917 tb_flush(cpu);
e22a25c9 918 }
c33a346e 919 }
c33a346e
FB
920}
921
a47dddd7 922void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
923{
924 va_list ap;
493ae1f0 925 va_list ap2;
7501267e
FB
926
927 va_start(ap, fmt);
493ae1f0 928 va_copy(ap2, ap);
7501267e
FB
929 fprintf(stderr, "qemu: fatal: ");
930 vfprintf(stderr, fmt, ap);
931 fprintf(stderr, "\n");
878096ee 932 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 933 if (qemu_log_separate()) {
1ee73216 934 qemu_log_lock();
93fcfe39
AL
935 qemu_log("qemu: fatal: ");
936 qemu_log_vprintf(fmt, ap2);
937 qemu_log("\n");
a0762859 938 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 939 qemu_log_flush();
1ee73216 940 qemu_log_unlock();
93fcfe39 941 qemu_log_close();
924edcae 942 }
493ae1f0 943 va_end(ap2);
f9373291 944 va_end(ap);
7615936e 945 replay_finish();
fd052bf6
RV
946#if defined(CONFIG_USER_ONLY)
947 {
948 struct sigaction act;
949 sigfillset(&act.sa_mask);
950 act.sa_handler = SIG_DFL;
951 sigaction(SIGABRT, &act, NULL);
952 }
953#endif
7501267e
FB
954 abort();
955}
956
0124311e 957#if !defined(CONFIG_USER_ONLY)
0dc3f44a 958/* Called from RCU critical section */
041603fe
PB
959static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
960{
961 RAMBlock *block;
962
43771539 963 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 964 if (block && addr - block->offset < block->max_length) {
68851b98 965 return block;
041603fe 966 }
0dc3f44a 967 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 968 if (addr - block->offset < block->max_length) {
041603fe
PB
969 goto found;
970 }
971 }
972
973 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
974 abort();
975
976found:
43771539
PB
977 /* It is safe to write mru_block outside the iothread lock. This
978 * is what happens:
979 *
980 * mru_block = xxx
981 * rcu_read_unlock()
982 * xxx removed from list
983 * rcu_read_lock()
984 * read mru_block
985 * mru_block = NULL;
986 * call_rcu(reclaim_ramblock, xxx);
987 * rcu_read_unlock()
988 *
989 * atomic_rcu_set is not needed here. The block was already published
990 * when it was placed into the list. Here we're just making an extra
991 * copy of the pointer.
992 */
041603fe
PB
993 ram_list.mru_block = block;
994 return block;
995}
996
a2f4d5be 997static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 998{
9a13565d 999 CPUState *cpu;
041603fe 1000 ram_addr_t start1;
a2f4d5be
JQ
1001 RAMBlock *block;
1002 ram_addr_t end;
1003
1004 end = TARGET_PAGE_ALIGN(start + length);
1005 start &= TARGET_PAGE_MASK;
d24981d3 1006
0dc3f44a 1007 rcu_read_lock();
041603fe
PB
1008 block = qemu_get_ram_block(start);
1009 assert(block == qemu_get_ram_block(end - 1));
1240be24 1010 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1011 CPU_FOREACH(cpu) {
1012 tlb_reset_dirty(cpu, start1, length);
1013 }
0dc3f44a 1014 rcu_read_unlock();
d24981d3
JQ
1015}
1016
5579c7f3 1017/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1018bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1019 ram_addr_t length,
1020 unsigned client)
1ccde1cb 1021{
5b82b703 1022 DirtyMemoryBlocks *blocks;
03eebc9e 1023 unsigned long end, page;
5b82b703 1024 bool dirty = false;
03eebc9e
SH
1025
1026 if (length == 0) {
1027 return false;
1028 }
f23db169 1029
03eebc9e
SH
1030 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1031 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1032
1033 rcu_read_lock();
1034
1035 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1036
1037 while (page < end) {
1038 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1039 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1040 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1041
1042 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1043 offset, num);
1044 page += num;
1045 }
1046
1047 rcu_read_unlock();
03eebc9e
SH
1048
1049 if (dirty && tcg_enabled()) {
a2f4d5be 1050 tlb_reset_dirty_range_all(start, length);
5579c7f3 1051 }
03eebc9e
SH
1052
1053 return dirty;
1ccde1cb
FB
1054}
1055
79e2b9ae 1056/* Called from RCU critical section */
bb0e627a 1057hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1058 MemoryRegionSection *section,
1059 target_ulong vaddr,
1060 hwaddr paddr, hwaddr xlat,
1061 int prot,
1062 target_ulong *address)
e5548617 1063{
a8170e5e 1064 hwaddr iotlb;
e5548617
BS
1065 CPUWatchpoint *wp;
1066
cc5bea60 1067 if (memory_region_is_ram(section->mr)) {
e5548617 1068 /* Normal RAM. */
e4e69794 1069 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1070 if (!section->readonly) {
b41aac4f 1071 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1072 } else {
b41aac4f 1073 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1074 }
1075 } else {
0b8e2c10
PM
1076 AddressSpaceDispatch *d;
1077
1078 d = atomic_rcu_read(&section->address_space->dispatch);
1079 iotlb = section - d->map.sections;
149f54b5 1080 iotlb += xlat;
e5548617
BS
1081 }
1082
1083 /* Make accesses to pages with watchpoints go via the
1084 watchpoint trap routines. */
ff4700b0 1085 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1086 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1087 /* Avoid trapping reads of pages with a write breakpoint. */
1088 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1089 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1090 *address |= TLB_MMIO;
1091 break;
1092 }
1093 }
1094 }
1095
1096 return iotlb;
1097}
9fa3e853
FB
1098#endif /* defined(CONFIG_USER_ONLY) */
1099
e2eef170 1100#if !defined(CONFIG_USER_ONLY)
8da3ff18 1101
c227f099 1102static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1103 uint16_t section);
acc9d80b 1104static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1105
a2b257d6
IM
1106static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1107 qemu_anon_ram_alloc;
91138037
MA
1108
1109/*
1110 * Set a custom physical guest memory alloator.
1111 * Accelerators with unusual needs may need this. Hopefully, we can
1112 * get rid of it eventually.
1113 */
a2b257d6 1114void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1115{
1116 phys_mem_alloc = alloc;
1117}
1118
53cb28cb
MA
1119static uint16_t phys_section_add(PhysPageMap *map,
1120 MemoryRegionSection *section)
5312bd8b 1121{
68f3f65b
PB
1122 /* The physical section number is ORed with a page-aligned
1123 * pointer to produce the iotlb entries. Thus it should
1124 * never overflow into the page-aligned value.
1125 */
53cb28cb 1126 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1127
53cb28cb
MA
1128 if (map->sections_nb == map->sections_nb_alloc) {
1129 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1130 map->sections = g_renew(MemoryRegionSection, map->sections,
1131 map->sections_nb_alloc);
5312bd8b 1132 }
53cb28cb 1133 map->sections[map->sections_nb] = *section;
dfde4e6e 1134 memory_region_ref(section->mr);
53cb28cb 1135 return map->sections_nb++;
5312bd8b
AK
1136}
1137
058bc4b5
PB
1138static void phys_section_destroy(MemoryRegion *mr)
1139{
55b4e80b
DS
1140 bool have_sub_page = mr->subpage;
1141
dfde4e6e
PB
1142 memory_region_unref(mr);
1143
55b4e80b 1144 if (have_sub_page) {
058bc4b5 1145 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1146 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1147 g_free(subpage);
1148 }
1149}
1150
6092666e 1151static void phys_sections_free(PhysPageMap *map)
5312bd8b 1152{
9affd6fc
PB
1153 while (map->sections_nb > 0) {
1154 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1155 phys_section_destroy(section->mr);
1156 }
9affd6fc
PB
1157 g_free(map->sections);
1158 g_free(map->nodes);
5312bd8b
AK
1159}
1160
ac1970fb 1161static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1162{
1163 subpage_t *subpage;
a8170e5e 1164 hwaddr base = section->offset_within_address_space
0f0cb164 1165 & TARGET_PAGE_MASK;
97115a8d 1166 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1167 d->map.nodes, d->map.sections);
0f0cb164
AK
1168 MemoryRegionSection subsection = {
1169 .offset_within_address_space = base,
052e87b0 1170 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1171 };
a8170e5e 1172 hwaddr start, end;
0f0cb164 1173
f3705d53 1174 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1175
f3705d53 1176 if (!(existing->mr->subpage)) {
acc9d80b 1177 subpage = subpage_init(d->as, base);
3be91e86 1178 subsection.address_space = d->as;
0f0cb164 1179 subsection.mr = &subpage->iomem;
ac1970fb 1180 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1181 phys_section_add(&d->map, &subsection));
0f0cb164 1182 } else {
f3705d53 1183 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1184 }
1185 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1186 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1187 subpage_register(subpage, start, end,
1188 phys_section_add(&d->map, section));
0f0cb164
AK
1189}
1190
1191
052e87b0
PB
1192static void register_multipage(AddressSpaceDispatch *d,
1193 MemoryRegionSection *section)
33417e70 1194{
a8170e5e 1195 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1196 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1197 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1198 TARGET_PAGE_BITS));
dd81124b 1199
733d5ef5
PB
1200 assert(num_pages);
1201 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1202}
1203
ac1970fb 1204static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1205{
89ae337a 1206 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1207 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1208 MemoryRegionSection now = *section, remain = *section;
052e87b0 1209 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1210
733d5ef5
PB
1211 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1212 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1213 - now.offset_within_address_space;
1214
052e87b0 1215 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1216 register_subpage(d, &now);
733d5ef5 1217 } else {
052e87b0 1218 now.size = int128_zero();
733d5ef5 1219 }
052e87b0
PB
1220 while (int128_ne(remain.size, now.size)) {
1221 remain.size = int128_sub(remain.size, now.size);
1222 remain.offset_within_address_space += int128_get64(now.size);
1223 remain.offset_within_region += int128_get64(now.size);
69b67646 1224 now = remain;
052e87b0 1225 if (int128_lt(remain.size, page_size)) {
733d5ef5 1226 register_subpage(d, &now);
88266249 1227 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1228 now.size = page_size;
ac1970fb 1229 register_subpage(d, &now);
69b67646 1230 } else {
052e87b0 1231 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1232 register_multipage(d, &now);
69b67646 1233 }
0f0cb164
AK
1234 }
1235}
1236
62a2744c
SY
1237void qemu_flush_coalesced_mmio_buffer(void)
1238{
1239 if (kvm_enabled())
1240 kvm_flush_coalesced_mmio_buffer();
1241}
1242
b2a8658e
UD
1243void qemu_mutex_lock_ramlist(void)
1244{
1245 qemu_mutex_lock(&ram_list.mutex);
1246}
1247
1248void qemu_mutex_unlock_ramlist(void)
1249{
1250 qemu_mutex_unlock(&ram_list.mutex);
1251}
1252
e1e84ba0 1253#ifdef __linux__
d6af99c9
HZ
1254static int64_t get_file_size(int fd)
1255{
1256 int64_t size = lseek(fd, 0, SEEK_END);
1257 if (size < 0) {
1258 return -errno;
1259 }
1260 return size;
1261}
1262
04b16653
AW
1263static void *file_ram_alloc(RAMBlock *block,
1264 ram_addr_t memory,
7f56e740
PB
1265 const char *path,
1266 Error **errp)
c902760f 1267{
fd97fd44 1268 bool unlink_on_error = false;
c902760f 1269 char *filename;
8ca761f6
PF
1270 char *sanitized_name;
1271 char *c;
056b68af 1272 void *area = MAP_FAILED;
5c3ece79 1273 int fd = -1;
d6af99c9 1274 int64_t file_size;
c902760f
MT
1275
1276 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1277 error_setg(errp,
1278 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1279 return NULL;
c902760f
MT
1280 }
1281
fd97fd44
MA
1282 for (;;) {
1283 fd = open(path, O_RDWR);
1284 if (fd >= 0) {
1285 /* @path names an existing file, use it */
1286 break;
8d31d6b6 1287 }
fd97fd44
MA
1288 if (errno == ENOENT) {
1289 /* @path names a file that doesn't exist, create it */
1290 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1291 if (fd >= 0) {
1292 unlink_on_error = true;
1293 break;
1294 }
1295 } else if (errno == EISDIR) {
1296 /* @path names a directory, create a file there */
1297 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1298 sanitized_name = g_strdup(memory_region_name(block->mr));
1299 for (c = sanitized_name; *c != '\0'; c++) {
1300 if (*c == '/') {
1301 *c = '_';
1302 }
1303 }
8ca761f6 1304
fd97fd44
MA
1305 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1306 sanitized_name);
1307 g_free(sanitized_name);
8d31d6b6 1308
fd97fd44
MA
1309 fd = mkstemp(filename);
1310 if (fd >= 0) {
1311 unlink(filename);
1312 g_free(filename);
1313 break;
1314 }
1315 g_free(filename);
8d31d6b6 1316 }
fd97fd44
MA
1317 if (errno != EEXIST && errno != EINTR) {
1318 error_setg_errno(errp, errno,
1319 "can't open backing store %s for guest RAM",
1320 path);
1321 goto error;
1322 }
1323 /*
1324 * Try again on EINTR and EEXIST. The latter happens when
1325 * something else creates the file between our two open().
1326 */
8d31d6b6 1327 }
c902760f 1328
863e9621 1329 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1330 block->mr->align = block->page_size;
1331#if defined(__s390x__)
1332 if (kvm_enabled()) {
1333 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1334 }
1335#endif
fd97fd44 1336
d6af99c9
HZ
1337 file_size = get_file_size(fd);
1338
863e9621 1339 if (memory < block->page_size) {
fd97fd44 1340 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1341 "or larger than page size 0x%zx",
1342 memory, block->page_size);
f9a49dfa 1343 goto error;
c902760f 1344 }
c902760f 1345
1775f111
HZ
1346 if (file_size > 0 && file_size < memory) {
1347 error_setg(errp, "backing store %s size 0x%" PRIx64
1348 " does not match 'size' option 0x" RAM_ADDR_FMT,
1349 path, file_size, memory);
1350 goto error;
1351 }
1352
863e9621 1353 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1354
1355 /*
1356 * ftruncate is not supported by hugetlbfs in older
1357 * hosts, so don't bother bailing out on errors.
1358 * If anything goes wrong with it under other filesystems,
1359 * mmap will fail.
d6af99c9
HZ
1360 *
1361 * Do not truncate the non-empty backend file to avoid corrupting
1362 * the existing data in the file. Disabling shrinking is not
1363 * enough. For example, the current vNVDIMM implementation stores
1364 * the guest NVDIMM labels at the end of the backend file. If the
1365 * backend file is later extended, QEMU will not be able to find
1366 * those labels. Therefore, extending the non-empty backend file
1367 * is disabled as well.
c902760f 1368 */
d6af99c9 1369 if (!file_size && ftruncate(fd, memory)) {
9742bf26 1370 perror("ftruncate");
7f56e740 1371 }
c902760f 1372
d2f39add
DD
1373 area = qemu_ram_mmap(fd, memory, block->mr->align,
1374 block->flags & RAM_SHARED);
c902760f 1375 if (area == MAP_FAILED) {
7f56e740 1376 error_setg_errno(errp, errno,
fd97fd44 1377 "unable to map backing store for guest RAM");
f9a49dfa 1378 goto error;
c902760f 1379 }
ef36fa14
MT
1380
1381 if (mem_prealloc) {
056b68af
IM
1382 os_mem_prealloc(fd, area, memory, errp);
1383 if (errp && *errp) {
1384 goto error;
1385 }
ef36fa14
MT
1386 }
1387
04b16653 1388 block->fd = fd;
c902760f 1389 return area;
f9a49dfa
MT
1390
1391error:
056b68af
IM
1392 if (area != MAP_FAILED) {
1393 qemu_ram_munmap(area, memory);
1394 }
fd97fd44
MA
1395 if (unlink_on_error) {
1396 unlink(path);
1397 }
5c3ece79
PB
1398 if (fd != -1) {
1399 close(fd);
1400 }
f9a49dfa 1401 return NULL;
c902760f
MT
1402}
1403#endif
1404
0dc3f44a 1405/* Called with the ramlist lock held. */
d17b5288 1406static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1407{
1408 RAMBlock *block, *next_block;
3e837b2c 1409 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1410
49cd9ac6
SH
1411 assert(size != 0); /* it would hand out same offset multiple times */
1412
0dc3f44a 1413 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1414 return 0;
0d53d9fe 1415 }
04b16653 1416
0dc3f44a 1417 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1418 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1419
62be4e3a 1420 end = block->offset + block->max_length;
04b16653 1421
0dc3f44a 1422 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1423 if (next_block->offset >= end) {
1424 next = MIN(next, next_block->offset);
1425 }
1426 }
1427 if (next - end >= size && next - end < mingap) {
3e837b2c 1428 offset = end;
04b16653
AW
1429 mingap = next - end;
1430 }
1431 }
3e837b2c
AW
1432
1433 if (offset == RAM_ADDR_MAX) {
1434 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1435 (uint64_t)size);
1436 abort();
1437 }
1438
04b16653
AW
1439 return offset;
1440}
1441
652d7ec2 1442ram_addr_t last_ram_offset(void)
d17b5288
AW
1443{
1444 RAMBlock *block;
1445 ram_addr_t last = 0;
1446
0dc3f44a
MD
1447 rcu_read_lock();
1448 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1449 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1450 }
0dc3f44a 1451 rcu_read_unlock();
d17b5288
AW
1452 return last;
1453}
1454
ddb97f1d
JB
1455static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1456{
1457 int ret;
ddb97f1d
JB
1458
1459 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1460 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1461 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1462 if (ret) {
1463 perror("qemu_madvise");
1464 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1465 "but dump_guest_core=off specified\n");
1466 }
1467 }
1468}
1469
422148d3
DDAG
1470const char *qemu_ram_get_idstr(RAMBlock *rb)
1471{
1472 return rb->idstr;
1473}
1474
ae3a7047 1475/* Called with iothread lock held. */
fa53a0e5 1476void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1477{
fa53a0e5 1478 RAMBlock *block;
20cfe881 1479
c5705a77
AK
1480 assert(new_block);
1481 assert(!new_block->idstr[0]);
84b89d78 1482
09e5ab63
AL
1483 if (dev) {
1484 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1485 if (id) {
1486 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1487 g_free(id);
84b89d78
CM
1488 }
1489 }
1490 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1491
ab0a9956 1492 rcu_read_lock();
0dc3f44a 1493 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
fa53a0e5
GA
1494 if (block != new_block &&
1495 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1496 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1497 new_block->idstr);
1498 abort();
1499 }
1500 }
0dc3f44a 1501 rcu_read_unlock();
c5705a77
AK
1502}
1503
ae3a7047 1504/* Called with iothread lock held. */
fa53a0e5 1505void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1506{
ae3a7047
MD
1507 /* FIXME: arch_init.c assumes that this is not called throughout
1508 * migration. Ignore the problem since hot-unplug during migration
1509 * does not work anyway.
1510 */
20cfe881
HT
1511 if (block) {
1512 memset(block->idstr, 0, sizeof(block->idstr));
1513 }
1514}
1515
863e9621
DDAG
1516size_t qemu_ram_pagesize(RAMBlock *rb)
1517{
1518 return rb->page_size;
1519}
1520
8490fc78
LC
1521static int memory_try_enable_merging(void *addr, size_t len)
1522{
75cc7f01 1523 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1524 /* disabled by the user */
1525 return 0;
1526 }
1527
1528 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1529}
1530
62be4e3a
MT
1531/* Only legal before guest might have detected the memory size: e.g. on
1532 * incoming migration, or right after reset.
1533 *
1534 * As memory core doesn't know how is memory accessed, it is up to
1535 * resize callback to update device state and/or add assertions to detect
1536 * misuse, if necessary.
1537 */
fa53a0e5 1538int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1539{
62be4e3a
MT
1540 assert(block);
1541
4ed023ce 1542 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1543
62be4e3a
MT
1544 if (block->used_length == newsize) {
1545 return 0;
1546 }
1547
1548 if (!(block->flags & RAM_RESIZEABLE)) {
1549 error_setg_errno(errp, EINVAL,
1550 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1551 " in != 0x" RAM_ADDR_FMT, block->idstr,
1552 newsize, block->used_length);
1553 return -EINVAL;
1554 }
1555
1556 if (block->max_length < newsize) {
1557 error_setg_errno(errp, EINVAL,
1558 "Length too large: %s: 0x" RAM_ADDR_FMT
1559 " > 0x" RAM_ADDR_FMT, block->idstr,
1560 newsize, block->max_length);
1561 return -EINVAL;
1562 }
1563
1564 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1565 block->used_length = newsize;
58d2707e
PB
1566 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1567 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1568 memory_region_set_size(block->mr, newsize);
1569 if (block->resized) {
1570 block->resized(block->idstr, newsize, block->host);
1571 }
1572 return 0;
1573}
1574
5b82b703
SH
1575/* Called with ram_list.mutex held */
1576static void dirty_memory_extend(ram_addr_t old_ram_size,
1577 ram_addr_t new_ram_size)
1578{
1579 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1580 DIRTY_MEMORY_BLOCK_SIZE);
1581 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1582 DIRTY_MEMORY_BLOCK_SIZE);
1583 int i;
1584
1585 /* Only need to extend if block count increased */
1586 if (new_num_blocks <= old_num_blocks) {
1587 return;
1588 }
1589
1590 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1591 DirtyMemoryBlocks *old_blocks;
1592 DirtyMemoryBlocks *new_blocks;
1593 int j;
1594
1595 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1596 new_blocks = g_malloc(sizeof(*new_blocks) +
1597 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1598
1599 if (old_num_blocks) {
1600 memcpy(new_blocks->blocks, old_blocks->blocks,
1601 old_num_blocks * sizeof(old_blocks->blocks[0]));
1602 }
1603
1604 for (j = old_num_blocks; j < new_num_blocks; j++) {
1605 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1606 }
1607
1608 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1609
1610 if (old_blocks) {
1611 g_free_rcu(old_blocks, rcu);
1612 }
1613 }
1614}
1615
528f46af 1616static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1617{
e1c57ab8 1618 RAMBlock *block;
0d53d9fe 1619 RAMBlock *last_block = NULL;
2152f5ca 1620 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1621 Error *err = NULL;
2152f5ca
JQ
1622
1623 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1624
b2a8658e 1625 qemu_mutex_lock_ramlist();
9b8424d5 1626 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1627
1628 if (!new_block->host) {
1629 if (xen_enabled()) {
9b8424d5 1630 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1631 new_block->mr, &err);
1632 if (err) {
1633 error_propagate(errp, err);
1634 qemu_mutex_unlock_ramlist();
39c350ee 1635 return;
37aa7a0e 1636 }
e1c57ab8 1637 } else {
9b8424d5 1638 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1639 &new_block->mr->align);
39228250 1640 if (!new_block->host) {
ef701d7b
HT
1641 error_setg_errno(errp, errno,
1642 "cannot set up guest memory '%s'",
1643 memory_region_name(new_block->mr));
1644 qemu_mutex_unlock_ramlist();
39c350ee 1645 return;
39228250 1646 }
9b8424d5 1647 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1648 }
c902760f 1649 }
94a6b54f 1650
dd631697
LZ
1651 new_ram_size = MAX(old_ram_size,
1652 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1653 if (new_ram_size > old_ram_size) {
1654 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1655 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1656 }
0d53d9fe
MD
1657 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1658 * QLIST (which has an RCU-friendly variant) does not have insertion at
1659 * tail, so save the last element in last_block.
1660 */
0dc3f44a 1661 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1662 last_block = block;
9b8424d5 1663 if (block->max_length < new_block->max_length) {
abb26d63
PB
1664 break;
1665 }
1666 }
1667 if (block) {
0dc3f44a 1668 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1669 } else if (last_block) {
0dc3f44a 1670 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1671 } else { /* list is empty */
0dc3f44a 1672 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1673 }
0d6d3c87 1674 ram_list.mru_block = NULL;
94a6b54f 1675
0dc3f44a
MD
1676 /* Write list before version */
1677 smp_wmb();
f798b07f 1678 ram_list.version++;
b2a8658e 1679 qemu_mutex_unlock_ramlist();
f798b07f 1680
9b8424d5 1681 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1682 new_block->used_length,
1683 DIRTY_CLIENTS_ALL);
94a6b54f 1684
a904c911
PB
1685 if (new_block->host) {
1686 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1687 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1688 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1689 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1690 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1691 }
94a6b54f 1692}
e9a1ab19 1693
0b183fc8 1694#ifdef __linux__
528f46af
FZ
1695RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1696 bool share, const char *mem_path,
1697 Error **errp)
e1c57ab8
PB
1698{
1699 RAMBlock *new_block;
ef701d7b 1700 Error *local_err = NULL;
e1c57ab8
PB
1701
1702 if (xen_enabled()) {
7f56e740 1703 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1704 return NULL;
e1c57ab8
PB
1705 }
1706
1707 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1708 /*
1709 * file_ram_alloc() needs to allocate just like
1710 * phys_mem_alloc, but we haven't bothered to provide
1711 * a hook there.
1712 */
7f56e740
PB
1713 error_setg(errp,
1714 "-mem-path not supported with this accelerator");
528f46af 1715 return NULL;
e1c57ab8
PB
1716 }
1717
4ed023ce 1718 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1719 new_block = g_malloc0(sizeof(*new_block));
1720 new_block->mr = mr;
9b8424d5
MT
1721 new_block->used_length = size;
1722 new_block->max_length = size;
dbcb8981 1723 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1724 new_block->host = file_ram_alloc(new_block, size,
1725 mem_path, errp);
1726 if (!new_block->host) {
1727 g_free(new_block);
528f46af 1728 return NULL;
7f56e740
PB
1729 }
1730
528f46af 1731 ram_block_add(new_block, &local_err);
ef701d7b
HT
1732 if (local_err) {
1733 g_free(new_block);
1734 error_propagate(errp, local_err);
528f46af 1735 return NULL;
ef701d7b 1736 }
528f46af 1737 return new_block;
e1c57ab8 1738}
0b183fc8 1739#endif
e1c57ab8 1740
62be4e3a 1741static
528f46af
FZ
1742RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1743 void (*resized)(const char*,
1744 uint64_t length,
1745 void *host),
1746 void *host, bool resizeable,
1747 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1748{
1749 RAMBlock *new_block;
ef701d7b 1750 Error *local_err = NULL;
e1c57ab8 1751
4ed023ce
DDAG
1752 size = HOST_PAGE_ALIGN(size);
1753 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1754 new_block = g_malloc0(sizeof(*new_block));
1755 new_block->mr = mr;
62be4e3a 1756 new_block->resized = resized;
9b8424d5
MT
1757 new_block->used_length = size;
1758 new_block->max_length = max_size;
62be4e3a 1759 assert(max_size >= size);
e1c57ab8 1760 new_block->fd = -1;
863e9621 1761 new_block->page_size = getpagesize();
e1c57ab8
PB
1762 new_block->host = host;
1763 if (host) {
7bd4f430 1764 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1765 }
62be4e3a
MT
1766 if (resizeable) {
1767 new_block->flags |= RAM_RESIZEABLE;
1768 }
528f46af 1769 ram_block_add(new_block, &local_err);
ef701d7b
HT
1770 if (local_err) {
1771 g_free(new_block);
1772 error_propagate(errp, local_err);
528f46af 1773 return NULL;
ef701d7b 1774 }
528f46af 1775 return new_block;
e1c57ab8
PB
1776}
1777
528f46af 1778RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1779 MemoryRegion *mr, Error **errp)
1780{
1781 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1782}
1783
528f46af 1784RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1785{
62be4e3a
MT
1786 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1787}
1788
528f46af 1789RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1790 void (*resized)(const char*,
1791 uint64_t length,
1792 void *host),
1793 MemoryRegion *mr, Error **errp)
1794{
1795 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1796}
1797
43771539
PB
1798static void reclaim_ramblock(RAMBlock *block)
1799{
1800 if (block->flags & RAM_PREALLOC) {
1801 ;
1802 } else if (xen_enabled()) {
1803 xen_invalidate_map_cache_entry(block->host);
1804#ifndef _WIN32
1805 } else if (block->fd >= 0) {
2f3a2bb1 1806 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1807 close(block->fd);
1808#endif
1809 } else {
1810 qemu_anon_ram_free(block->host, block->max_length);
1811 }
1812 g_free(block);
1813}
1814
f1060c55 1815void qemu_ram_free(RAMBlock *block)
e9a1ab19 1816{
85bc2a15
MAL
1817 if (!block) {
1818 return;
1819 }
1820
0987d735
PB
1821 if (block->host) {
1822 ram_block_notify_remove(block->host, block->max_length);
1823 }
1824
b2a8658e 1825 qemu_mutex_lock_ramlist();
f1060c55
FZ
1826 QLIST_REMOVE_RCU(block, next);
1827 ram_list.mru_block = NULL;
1828 /* Write list before version */
1829 smp_wmb();
1830 ram_list.version++;
1831 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1832 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1833}
1834
cd19cfa2
HY
1835#ifndef _WIN32
1836void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1837{
1838 RAMBlock *block;
1839 ram_addr_t offset;
1840 int flags;
1841 void *area, *vaddr;
1842
0dc3f44a 1843 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1844 offset = addr - block->offset;
9b8424d5 1845 if (offset < block->max_length) {
1240be24 1846 vaddr = ramblock_ptr(block, offset);
7bd4f430 1847 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1848 ;
dfeaf2ab
MA
1849 } else if (xen_enabled()) {
1850 abort();
cd19cfa2
HY
1851 } else {
1852 flags = MAP_FIXED;
3435f395 1853 if (block->fd >= 0) {
dbcb8981
PB
1854 flags |= (block->flags & RAM_SHARED ?
1855 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1856 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1857 flags, block->fd, offset);
cd19cfa2 1858 } else {
2eb9fbaa
MA
1859 /*
1860 * Remap needs to match alloc. Accelerators that
1861 * set phys_mem_alloc never remap. If they did,
1862 * we'd need a remap hook here.
1863 */
1864 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1865
cd19cfa2
HY
1866 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1867 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1868 flags, -1, 0);
cd19cfa2
HY
1869 }
1870 if (area != vaddr) {
f15fbc4b
AP
1871 fprintf(stderr, "Could not remap addr: "
1872 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1873 length, addr);
1874 exit(1);
1875 }
8490fc78 1876 memory_try_enable_merging(vaddr, length);
ddb97f1d 1877 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1878 }
cd19cfa2
HY
1879 }
1880 }
1881}
1882#endif /* !_WIN32 */
1883
1b5ec234 1884/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1885 * This should not be used for general purpose DMA. Use address_space_map
1886 * or address_space_rw instead. For local memory (e.g. video ram) that the
1887 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1888 *
49b24afc 1889 * Called within RCU critical section.
1b5ec234 1890 */
0878d0e1 1891void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1892{
3655cb9c
GA
1893 RAMBlock *block = ram_block;
1894
1895 if (block == NULL) {
1896 block = qemu_get_ram_block(addr);
0878d0e1 1897 addr -= block->offset;
3655cb9c 1898 }
ae3a7047
MD
1899
1900 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1901 /* We need to check if the requested address is in the RAM
1902 * because we don't want to map the entire memory in QEMU.
1903 * In that case just map until the end of the page.
1904 */
1905 if (block->offset == 0) {
49b24afc 1906 return xen_map_cache(addr, 0, 0);
0d6d3c87 1907 }
ae3a7047
MD
1908
1909 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1910 }
0878d0e1 1911 return ramblock_ptr(block, addr);
dc828ca1
PB
1912}
1913
0878d0e1 1914/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 1915 * but takes a size argument.
0dc3f44a 1916 *
e81bcda5 1917 * Called within RCU critical section.
ae3a7047 1918 */
3655cb9c
GA
1919static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1920 hwaddr *size)
38bee5dc 1921{
3655cb9c 1922 RAMBlock *block = ram_block;
8ab934f9
SS
1923 if (*size == 0) {
1924 return NULL;
1925 }
e81bcda5 1926
3655cb9c
GA
1927 if (block == NULL) {
1928 block = qemu_get_ram_block(addr);
0878d0e1 1929 addr -= block->offset;
3655cb9c 1930 }
0878d0e1 1931 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
1932
1933 if (xen_enabled() && block->host == NULL) {
1934 /* We need to check if the requested address is in the RAM
1935 * because we don't want to map the entire memory in QEMU.
1936 * In that case just map the requested area.
1937 */
1938 if (block->offset == 0) {
1939 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1940 }
1941
e81bcda5 1942 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1943 }
e81bcda5 1944
0878d0e1 1945 return ramblock_ptr(block, addr);
38bee5dc
SS
1946}
1947
422148d3
DDAG
1948/*
1949 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1950 * in that RAMBlock.
1951 *
1952 * ptr: Host pointer to look up
1953 * round_offset: If true round the result offset down to a page boundary
1954 * *ram_addr: set to result ram_addr
1955 * *offset: set to result offset within the RAMBlock
1956 *
1957 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1958 *
1959 * By the time this function returns, the returned pointer is not protected
1960 * by RCU anymore. If the caller is not within an RCU critical section and
1961 * does not hold the iothread lock, it must have other means of protecting the
1962 * pointer, such as a reference to the region that includes the incoming
1963 * ram_addr_t.
1964 */
422148d3 1965RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 1966 ram_addr_t *offset)
5579c7f3 1967{
94a6b54f
PB
1968 RAMBlock *block;
1969 uint8_t *host = ptr;
1970
868bb33f 1971 if (xen_enabled()) {
f615f396 1972 ram_addr_t ram_addr;
0dc3f44a 1973 rcu_read_lock();
f615f396
PB
1974 ram_addr = xen_ram_addr_from_mapcache(ptr);
1975 block = qemu_get_ram_block(ram_addr);
422148d3 1976 if (block) {
d6b6aec4 1977 *offset = ram_addr - block->offset;
422148d3 1978 }
0dc3f44a 1979 rcu_read_unlock();
422148d3 1980 return block;
712c2b41
SS
1981 }
1982
0dc3f44a
MD
1983 rcu_read_lock();
1984 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1985 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1986 goto found;
1987 }
1988
0dc3f44a 1989 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1990 /* This case append when the block is not mapped. */
1991 if (block->host == NULL) {
1992 continue;
1993 }
9b8424d5 1994 if (host - block->host < block->max_length) {
23887b79 1995 goto found;
f471a17e 1996 }
94a6b54f 1997 }
432d268c 1998
0dc3f44a 1999 rcu_read_unlock();
1b5ec234 2000 return NULL;
23887b79
PB
2001
2002found:
422148d3
DDAG
2003 *offset = (host - block->host);
2004 if (round_offset) {
2005 *offset &= TARGET_PAGE_MASK;
2006 }
0dc3f44a 2007 rcu_read_unlock();
422148d3
DDAG
2008 return block;
2009}
2010
e3dd7493
DDAG
2011/*
2012 * Finds the named RAMBlock
2013 *
2014 * name: The name of RAMBlock to find
2015 *
2016 * Returns: RAMBlock (or NULL if not found)
2017 */
2018RAMBlock *qemu_ram_block_by_name(const char *name)
2019{
2020 RAMBlock *block;
2021
2022 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2023 if (!strcmp(name, block->idstr)) {
2024 return block;
2025 }
2026 }
2027
2028 return NULL;
2029}
2030
422148d3
DDAG
2031/* Some of the softmmu routines need to translate from a host pointer
2032 (typically a TLB entry) back to a ram offset. */
07bdaa41 2033ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2034{
2035 RAMBlock *block;
f615f396 2036 ram_addr_t offset;
422148d3 2037
f615f396 2038 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2039 if (!block) {
07bdaa41 2040 return RAM_ADDR_INVALID;
422148d3
DDAG
2041 }
2042
07bdaa41 2043 return block->offset + offset;
e890261f 2044}
f471a17e 2045
49b24afc 2046/* Called within RCU critical section. */
a8170e5e 2047static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2048 uint64_t val, unsigned size)
9fa3e853 2049{
ba051fb5
AB
2050 bool locked = false;
2051
52159192 2052 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2053 locked = true;
2054 tb_lock();
0e0df1e2 2055 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2056 }
0e0df1e2
AK
2057 switch (size) {
2058 case 1:
0878d0e1 2059 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2060 break;
2061 case 2:
0878d0e1 2062 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2063 break;
2064 case 4:
0878d0e1 2065 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2066 break;
2067 default:
2068 abort();
3a7d929e 2069 }
ba051fb5
AB
2070
2071 if (locked) {
2072 tb_unlock();
2073 }
2074
58d2707e
PB
2075 /* Set both VGA and migration bits for simplicity and to remove
2076 * the notdirty callback faster.
2077 */
2078 cpu_physical_memory_set_dirty_range(ram_addr, size,
2079 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2080 /* we remove the notdirty callback only if the code has been
2081 flushed */
a2cd8c85 2082 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2083 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2084 }
9fa3e853
FB
2085}
2086
b018ddf6
PB
2087static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2088 unsigned size, bool is_write)
2089{
2090 return is_write;
2091}
2092
0e0df1e2 2093static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2094 .write = notdirty_mem_write,
b018ddf6 2095 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2096 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2097};
2098
0f459d16 2099/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2100static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2101{
93afeade 2102 CPUState *cpu = current_cpu;
568496c0 2103 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2104 CPUArchState *env = cpu->env_ptr;
06d55cc1 2105 target_ulong pc, cs_base;
0f459d16 2106 target_ulong vaddr;
a1d1bb31 2107 CPUWatchpoint *wp;
89fee74a 2108 uint32_t cpu_flags;
0f459d16 2109
ff4700b0 2110 if (cpu->watchpoint_hit) {
06d55cc1
AL
2111 /* We re-entered the check after replacing the TB. Now raise
2112 * the debug interrupt so that is will trigger after the
2113 * current instruction. */
93afeade 2114 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2115 return;
2116 }
93afeade 2117 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2118 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2119 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2120 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2121 && (wp->flags & flags)) {
08225676
PM
2122 if (flags == BP_MEM_READ) {
2123 wp->flags |= BP_WATCHPOINT_HIT_READ;
2124 } else {
2125 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2126 }
2127 wp->hitaddr = vaddr;
66b9b43c 2128 wp->hitattrs = attrs;
ff4700b0 2129 if (!cpu->watchpoint_hit) {
568496c0
SF
2130 if (wp->flags & BP_CPU &&
2131 !cc->debug_check_watchpoint(cpu, wp)) {
2132 wp->flags &= ~BP_WATCHPOINT_HIT;
2133 continue;
2134 }
ff4700b0 2135 cpu->watchpoint_hit = wp;
a5e99826 2136
8d04fb55
JK
2137 /* Both tb_lock and iothread_mutex will be reset when
2138 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2139 * back into the cpu_exec main loop.
a5e99826
FK
2140 */
2141 tb_lock();
239c51a5 2142 tb_check_watchpoint(cpu);
6e140f28 2143 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2144 cpu->exception_index = EXCP_DEBUG;
5638d180 2145 cpu_loop_exit(cpu);
6e140f28
AL
2146 } else {
2147 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2148 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2149 cpu_loop_exit_noexc(cpu);
6e140f28 2150 }
06d55cc1 2151 }
6e140f28
AL
2152 } else {
2153 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2154 }
2155 }
2156}
2157
6658ffb8
PB
2158/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2159 so these check for a hit then pass through to the normal out-of-line
2160 phys routines. */
66b9b43c
PM
2161static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2162 unsigned size, MemTxAttrs attrs)
6658ffb8 2163{
66b9b43c
PM
2164 MemTxResult res;
2165 uint64_t data;
79ed0416
PM
2166 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2167 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2168
2169 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2170 switch (size) {
66b9b43c 2171 case 1:
79ed0416 2172 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2173 break;
2174 case 2:
79ed0416 2175 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2176 break;
2177 case 4:
79ed0416 2178 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2179 break;
1ec9b909
AK
2180 default: abort();
2181 }
66b9b43c
PM
2182 *pdata = data;
2183 return res;
6658ffb8
PB
2184}
2185
66b9b43c
PM
2186static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2187 uint64_t val, unsigned size,
2188 MemTxAttrs attrs)
6658ffb8 2189{
66b9b43c 2190 MemTxResult res;
79ed0416
PM
2191 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2192 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2193
2194 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2195 switch (size) {
67364150 2196 case 1:
79ed0416 2197 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2198 break;
2199 case 2:
79ed0416 2200 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2201 break;
2202 case 4:
79ed0416 2203 address_space_stl(as, addr, val, attrs, &res);
67364150 2204 break;
1ec9b909
AK
2205 default: abort();
2206 }
66b9b43c 2207 return res;
6658ffb8
PB
2208}
2209
1ec9b909 2210static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2211 .read_with_attrs = watch_mem_read,
2212 .write_with_attrs = watch_mem_write,
1ec9b909 2213 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2214};
6658ffb8 2215
f25a49e0
PM
2216static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2217 unsigned len, MemTxAttrs attrs)
db7b5426 2218{
acc9d80b 2219 subpage_t *subpage = opaque;
ff6cff75 2220 uint8_t buf[8];
5c9eb028 2221 MemTxResult res;
791af8c8 2222
db7b5426 2223#if defined(DEBUG_SUBPAGE)
016e9d62 2224 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2225 subpage, len, addr);
db7b5426 2226#endif
5c9eb028
PM
2227 res = address_space_read(subpage->as, addr + subpage->base,
2228 attrs, buf, len);
2229 if (res) {
2230 return res;
f25a49e0 2231 }
acc9d80b
JK
2232 switch (len) {
2233 case 1:
f25a49e0
PM
2234 *data = ldub_p(buf);
2235 return MEMTX_OK;
acc9d80b 2236 case 2:
f25a49e0
PM
2237 *data = lduw_p(buf);
2238 return MEMTX_OK;
acc9d80b 2239 case 4:
f25a49e0
PM
2240 *data = ldl_p(buf);
2241 return MEMTX_OK;
ff6cff75 2242 case 8:
f25a49e0
PM
2243 *data = ldq_p(buf);
2244 return MEMTX_OK;
acc9d80b
JK
2245 default:
2246 abort();
2247 }
db7b5426
BS
2248}
2249
f25a49e0
PM
2250static MemTxResult subpage_write(void *opaque, hwaddr addr,
2251 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2252{
acc9d80b 2253 subpage_t *subpage = opaque;
ff6cff75 2254 uint8_t buf[8];
acc9d80b 2255
db7b5426 2256#if defined(DEBUG_SUBPAGE)
016e9d62 2257 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2258 " value %"PRIx64"\n",
2259 __func__, subpage, len, addr, value);
db7b5426 2260#endif
acc9d80b
JK
2261 switch (len) {
2262 case 1:
2263 stb_p(buf, value);
2264 break;
2265 case 2:
2266 stw_p(buf, value);
2267 break;
2268 case 4:
2269 stl_p(buf, value);
2270 break;
ff6cff75
PB
2271 case 8:
2272 stq_p(buf, value);
2273 break;
acc9d80b
JK
2274 default:
2275 abort();
2276 }
5c9eb028
PM
2277 return address_space_write(subpage->as, addr + subpage->base,
2278 attrs, buf, len);
db7b5426
BS
2279}
2280
c353e4cc 2281static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2282 unsigned len, bool is_write)
c353e4cc 2283{
acc9d80b 2284 subpage_t *subpage = opaque;
c353e4cc 2285#if defined(DEBUG_SUBPAGE)
016e9d62 2286 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2287 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2288#endif
2289
acc9d80b 2290 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2291 len, is_write);
c353e4cc
PB
2292}
2293
70c68e44 2294static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2295 .read_with_attrs = subpage_read,
2296 .write_with_attrs = subpage_write,
ff6cff75
PB
2297 .impl.min_access_size = 1,
2298 .impl.max_access_size = 8,
2299 .valid.min_access_size = 1,
2300 .valid.max_access_size = 8,
c353e4cc 2301 .valid.accepts = subpage_accepts,
70c68e44 2302 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2303};
2304
c227f099 2305static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2306 uint16_t section)
db7b5426
BS
2307{
2308 int idx, eidx;
2309
2310 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2311 return -1;
2312 idx = SUBPAGE_IDX(start);
2313 eidx = SUBPAGE_IDX(end);
2314#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2315 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2316 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2317#endif
db7b5426 2318 for (; idx <= eidx; idx++) {
5312bd8b 2319 mmio->sub_section[idx] = section;
db7b5426
BS
2320 }
2321
2322 return 0;
2323}
2324
acc9d80b 2325static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2326{
c227f099 2327 subpage_t *mmio;
db7b5426 2328
2615fabd 2329 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2330 mmio->as = as;
1eec614b 2331 mmio->base = base;
2c9b15ca 2332 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2333 NULL, TARGET_PAGE_SIZE);
b3b00c78 2334 mmio->iomem.subpage = true;
db7b5426 2335#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2336 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2337 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2338#endif
b41aac4f 2339 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2340
2341 return mmio;
2342}
2343
a656e22f
PC
2344static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2345 MemoryRegion *mr)
5312bd8b 2346{
a656e22f 2347 assert(as);
5312bd8b 2348 MemoryRegionSection section = {
a656e22f 2349 .address_space = as,
5312bd8b
AK
2350 .mr = mr,
2351 .offset_within_address_space = 0,
2352 .offset_within_region = 0,
052e87b0 2353 .size = int128_2_64(),
5312bd8b
AK
2354 };
2355
53cb28cb 2356 return phys_section_add(map, &section);
5312bd8b
AK
2357}
2358
a54c87b6 2359MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2360{
a54c87b6
PM
2361 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2362 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2363 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2364 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2365
2366 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2367}
2368
e9179ce1
AK
2369static void io_mem_init(void)
2370{
1f6245e5 2371 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2372 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2373 NULL, UINT64_MAX);
8d04fb55
JK
2374
2375 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2376 * which can be called without the iothread mutex.
2377 */
2c9b15ca 2378 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2379 NULL, UINT64_MAX);
8d04fb55
JK
2380 memory_region_clear_global_locking(&io_mem_notdirty);
2381
2c9b15ca 2382 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2383 NULL, UINT64_MAX);
e9179ce1
AK
2384}
2385
ac1970fb 2386static void mem_begin(MemoryListener *listener)
00752703
PB
2387{
2388 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2389 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2390 uint16_t n;
2391
a656e22f 2392 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2393 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2394 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2395 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2396 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2397 assert(n == PHYS_SECTION_ROM);
a656e22f 2398 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2399 assert(n == PHYS_SECTION_WATCH);
00752703 2400
9736e55b 2401 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2402 d->as = as;
2403 as->next_dispatch = d;
2404}
2405
79e2b9ae
PB
2406static void address_space_dispatch_free(AddressSpaceDispatch *d)
2407{
2408 phys_sections_free(&d->map);
2409 g_free(d);
2410}
2411
00752703 2412static void mem_commit(MemoryListener *listener)
ac1970fb 2413{
89ae337a 2414 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2415 AddressSpaceDispatch *cur = as->dispatch;
2416 AddressSpaceDispatch *next = as->next_dispatch;
2417
53cb28cb 2418 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2419
79e2b9ae 2420 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2421 if (cur) {
79e2b9ae 2422 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2423 }
9affd6fc
PB
2424}
2425
1d71148e 2426static void tcg_commit(MemoryListener *listener)
50c1e149 2427{
32857f4d
PM
2428 CPUAddressSpace *cpuas;
2429 AddressSpaceDispatch *d;
117712c3
AK
2430
2431 /* since each CPU stores ram addresses in its TLB cache, we must
2432 reset the modified entries */
32857f4d
PM
2433 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2434 cpu_reloading_memory_map();
2435 /* The CPU and TLB are protected by the iothread lock.
2436 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2437 * may have split the RCU critical section.
2438 */
2439 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2440 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2441 tlb_flush(cpuas->cpu);
50c1e149
AK
2442}
2443
ac1970fb
AK
2444void address_space_init_dispatch(AddressSpace *as)
2445{
00752703 2446 as->dispatch = NULL;
89ae337a 2447 as->dispatch_listener = (MemoryListener) {
ac1970fb 2448 .begin = mem_begin,
00752703 2449 .commit = mem_commit,
ac1970fb
AK
2450 .region_add = mem_add,
2451 .region_nop = mem_add,
2452 .priority = 0,
2453 };
89ae337a 2454 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2455}
2456
6e48e8f9
PB
2457void address_space_unregister(AddressSpace *as)
2458{
2459 memory_listener_unregister(&as->dispatch_listener);
2460}
2461
83f3c251
AK
2462void address_space_destroy_dispatch(AddressSpace *as)
2463{
2464 AddressSpaceDispatch *d = as->dispatch;
2465
79e2b9ae
PB
2466 atomic_rcu_set(&as->dispatch, NULL);
2467 if (d) {
2468 call_rcu(d, address_space_dispatch_free, rcu);
2469 }
83f3c251
AK
2470}
2471
62152b8a
AK
2472static void memory_map_init(void)
2473{
7267c094 2474 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2475
57271d63 2476 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2477 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2478
7267c094 2479 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2480 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2481 65536);
7dca8043 2482 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2483}
2484
2485MemoryRegion *get_system_memory(void)
2486{
2487 return system_memory;
2488}
2489
309cb471
AK
2490MemoryRegion *get_system_io(void)
2491{
2492 return system_io;
2493}
2494
e2eef170
PB
2495#endif /* !defined(CONFIG_USER_ONLY) */
2496
13eb76e0
FB
2497/* physical memory access (slow version, mainly for debug) */
2498#if defined(CONFIG_USER_ONLY)
f17ec444 2499int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2500 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2501{
2502 int l, flags;
2503 target_ulong page;
53a5960a 2504 void * p;
13eb76e0
FB
2505
2506 while (len > 0) {
2507 page = addr & TARGET_PAGE_MASK;
2508 l = (page + TARGET_PAGE_SIZE) - addr;
2509 if (l > len)
2510 l = len;
2511 flags = page_get_flags(page);
2512 if (!(flags & PAGE_VALID))
a68fe89c 2513 return -1;
13eb76e0
FB
2514 if (is_write) {
2515 if (!(flags & PAGE_WRITE))
a68fe89c 2516 return -1;
579a97f7 2517 /* XXX: this code should not depend on lock_user */
72fb7daa 2518 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2519 return -1;
72fb7daa
AJ
2520 memcpy(p, buf, l);
2521 unlock_user(p, addr, l);
13eb76e0
FB
2522 } else {
2523 if (!(flags & PAGE_READ))
a68fe89c 2524 return -1;
579a97f7 2525 /* XXX: this code should not depend on lock_user */
72fb7daa 2526 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2527 return -1;
72fb7daa 2528 memcpy(buf, p, l);
5b257578 2529 unlock_user(p, addr, 0);
13eb76e0
FB
2530 }
2531 len -= l;
2532 buf += l;
2533 addr += l;
2534 }
a68fe89c 2535 return 0;
13eb76e0 2536}
8df1cd07 2537
13eb76e0 2538#else
51d7a9eb 2539
845b6214 2540static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2541 hwaddr length)
51d7a9eb 2542{
e87f7778 2543 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2544 addr += memory_region_get_ram_addr(mr);
2545
e87f7778
PB
2546 /* No early return if dirty_log_mask is or becomes 0, because
2547 * cpu_physical_memory_set_dirty_range will still call
2548 * xen_modified_memory.
2549 */
2550 if (dirty_log_mask) {
2551 dirty_log_mask =
2552 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2553 }
2554 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2555 tb_lock();
e87f7778 2556 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2557 tb_unlock();
e87f7778 2558 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2559 }
e87f7778 2560 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2561}
2562
23326164 2563static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2564{
e1622f4b 2565 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2566
2567 /* Regions are assumed to support 1-4 byte accesses unless
2568 otherwise specified. */
23326164
RH
2569 if (access_size_max == 0) {
2570 access_size_max = 4;
2571 }
2572
2573 /* Bound the maximum access by the alignment of the address. */
2574 if (!mr->ops->impl.unaligned) {
2575 unsigned align_size_max = addr & -addr;
2576 if (align_size_max != 0 && align_size_max < access_size_max) {
2577 access_size_max = align_size_max;
2578 }
82f2563f 2579 }
23326164
RH
2580
2581 /* Don't attempt accesses larger than the maximum. */
2582 if (l > access_size_max) {
2583 l = access_size_max;
82f2563f 2584 }
6554f5c0 2585 l = pow2floor(l);
23326164
RH
2586
2587 return l;
82f2563f
PB
2588}
2589
4840f10e 2590static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2591{
4840f10e
JK
2592 bool unlocked = !qemu_mutex_iothread_locked();
2593 bool release_lock = false;
2594
2595 if (unlocked && mr->global_locking) {
2596 qemu_mutex_lock_iothread();
2597 unlocked = false;
2598 release_lock = true;
2599 }
125b3806 2600 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2601 if (unlocked) {
2602 qemu_mutex_lock_iothread();
2603 }
125b3806 2604 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2605 if (unlocked) {
2606 qemu_mutex_unlock_iothread();
2607 }
125b3806 2608 }
4840f10e
JK
2609
2610 return release_lock;
125b3806
PB
2611}
2612
a203ac70
PB
2613/* Called within RCU critical section. */
2614static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2615 MemTxAttrs attrs,
2616 const uint8_t *buf,
2617 int len, hwaddr addr1,
2618 hwaddr l, MemoryRegion *mr)
13eb76e0 2619{
13eb76e0 2620 uint8_t *ptr;
791af8c8 2621 uint64_t val;
3b643495 2622 MemTxResult result = MEMTX_OK;
4840f10e 2623 bool release_lock = false;
3b46e624 2624
a203ac70 2625 for (;;) {
eb7eeb88
PB
2626 if (!memory_access_is_direct(mr, true)) {
2627 release_lock |= prepare_mmio_access(mr);
2628 l = memory_access_size(mr, l, addr1);
2629 /* XXX: could force current_cpu to NULL to avoid
2630 potential bugs */
2631 switch (l) {
2632 case 8:
2633 /* 64 bit write access */
2634 val = ldq_p(buf);
2635 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2636 attrs);
2637 break;
2638 case 4:
2639 /* 32 bit write access */
6da67de6 2640 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2641 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2642 attrs);
2643 break;
2644 case 2:
2645 /* 16 bit write access */
2646 val = lduw_p(buf);
2647 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2648 attrs);
2649 break;
2650 case 1:
2651 /* 8 bit write access */
2652 val = ldub_p(buf);
2653 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2654 attrs);
2655 break;
2656 default:
2657 abort();
13eb76e0
FB
2658 }
2659 } else {
eb7eeb88 2660 /* RAM case */
0878d0e1 2661 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2662 memcpy(ptr, buf, l);
2663 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2664 }
4840f10e
JK
2665
2666 if (release_lock) {
2667 qemu_mutex_unlock_iothread();
2668 release_lock = false;
2669 }
2670
13eb76e0
FB
2671 len -= l;
2672 buf += l;
2673 addr += l;
a203ac70
PB
2674
2675 if (!len) {
2676 break;
2677 }
2678
2679 l = len;
2680 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2681 }
fd8aaa76 2682
3b643495 2683 return result;
13eb76e0 2684}
8df1cd07 2685
a203ac70
PB
2686MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2687 const uint8_t *buf, int len)
ac1970fb 2688{
eb7eeb88 2689 hwaddr l;
eb7eeb88
PB
2690 hwaddr addr1;
2691 MemoryRegion *mr;
2692 MemTxResult result = MEMTX_OK;
eb7eeb88 2693
a203ac70
PB
2694 if (len > 0) {
2695 rcu_read_lock();
eb7eeb88 2696 l = len;
a203ac70
PB
2697 mr = address_space_translate(as, addr, &addr1, &l, true);
2698 result = address_space_write_continue(as, addr, attrs, buf, len,
2699 addr1, l, mr);
2700 rcu_read_unlock();
2701 }
2702
2703 return result;
2704}
2705
2706/* Called within RCU critical section. */
2707MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2708 MemTxAttrs attrs, uint8_t *buf,
2709 int len, hwaddr addr1, hwaddr l,
2710 MemoryRegion *mr)
2711{
2712 uint8_t *ptr;
2713 uint64_t val;
2714 MemTxResult result = MEMTX_OK;
2715 bool release_lock = false;
eb7eeb88 2716
a203ac70 2717 for (;;) {
eb7eeb88
PB
2718 if (!memory_access_is_direct(mr, false)) {
2719 /* I/O case */
2720 release_lock |= prepare_mmio_access(mr);
2721 l = memory_access_size(mr, l, addr1);
2722 switch (l) {
2723 case 8:
2724 /* 64 bit read access */
2725 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2726 attrs);
2727 stq_p(buf, val);
2728 break;
2729 case 4:
2730 /* 32 bit read access */
2731 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2732 attrs);
2733 stl_p(buf, val);
2734 break;
2735 case 2:
2736 /* 16 bit read access */
2737 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2738 attrs);
2739 stw_p(buf, val);
2740 break;
2741 case 1:
2742 /* 8 bit read access */
2743 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2744 attrs);
2745 stb_p(buf, val);
2746 break;
2747 default:
2748 abort();
2749 }
2750 } else {
2751 /* RAM case */
0878d0e1 2752 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2753 memcpy(buf, ptr, l);
2754 }
2755
2756 if (release_lock) {
2757 qemu_mutex_unlock_iothread();
2758 release_lock = false;
2759 }
2760
2761 len -= l;
2762 buf += l;
2763 addr += l;
a203ac70
PB
2764
2765 if (!len) {
2766 break;
2767 }
2768
2769 l = len;
2770 mr = address_space_translate(as, addr, &addr1, &l, false);
2771 }
2772
2773 return result;
2774}
2775
3cc8f884
PB
2776MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2777 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2778{
2779 hwaddr l;
2780 hwaddr addr1;
2781 MemoryRegion *mr;
2782 MemTxResult result = MEMTX_OK;
2783
2784 if (len > 0) {
2785 rcu_read_lock();
2786 l = len;
2787 mr = address_space_translate(as, addr, &addr1, &l, false);
2788 result = address_space_read_continue(as, addr, attrs, buf, len,
2789 addr1, l, mr);
2790 rcu_read_unlock();
eb7eeb88 2791 }
eb7eeb88
PB
2792
2793 return result;
ac1970fb
AK
2794}
2795
eb7eeb88
PB
2796MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2797 uint8_t *buf, int len, bool is_write)
2798{
2799 if (is_write) {
2800 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2801 } else {
2802 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2803 }
2804}
ac1970fb 2805
a8170e5e 2806void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2807 int len, int is_write)
2808{
5c9eb028
PM
2809 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2810 buf, len, is_write);
ac1970fb
AK
2811}
2812
582b55a9
AG
2813enum write_rom_type {
2814 WRITE_DATA,
2815 FLUSH_CACHE,
2816};
2817
2a221651 2818static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2819 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2820{
149f54b5 2821 hwaddr l;
d0ecd2aa 2822 uint8_t *ptr;
149f54b5 2823 hwaddr addr1;
5c8a00ce 2824 MemoryRegion *mr;
3b46e624 2825
41063e1e 2826 rcu_read_lock();
d0ecd2aa 2827 while (len > 0) {
149f54b5 2828 l = len;
2a221651 2829 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2830
5c8a00ce
PB
2831 if (!(memory_region_is_ram(mr) ||
2832 memory_region_is_romd(mr))) {
b242e0e0 2833 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2834 } else {
d0ecd2aa 2835 /* ROM/RAM case */
0878d0e1 2836 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2837 switch (type) {
2838 case WRITE_DATA:
2839 memcpy(ptr, buf, l);
845b6214 2840 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2841 break;
2842 case FLUSH_CACHE:
2843 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2844 break;
2845 }
d0ecd2aa
FB
2846 }
2847 len -= l;
2848 buf += l;
2849 addr += l;
2850 }
41063e1e 2851 rcu_read_unlock();
d0ecd2aa
FB
2852}
2853
582b55a9 2854/* used for ROM loading : can write in RAM and ROM */
2a221651 2855void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2856 const uint8_t *buf, int len)
2857{
2a221651 2858 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2859}
2860
2861void cpu_flush_icache_range(hwaddr start, int len)
2862{
2863 /*
2864 * This function should do the same thing as an icache flush that was
2865 * triggered from within the guest. For TCG we are always cache coherent,
2866 * so there is no need to flush anything. For KVM / Xen we need to flush
2867 * the host's instruction cache at least.
2868 */
2869 if (tcg_enabled()) {
2870 return;
2871 }
2872
2a221651
EI
2873 cpu_physical_memory_write_rom_internal(&address_space_memory,
2874 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2875}
2876
6d16c2f8 2877typedef struct {
d3e71559 2878 MemoryRegion *mr;
6d16c2f8 2879 void *buffer;
a8170e5e
AK
2880 hwaddr addr;
2881 hwaddr len;
c2cba0ff 2882 bool in_use;
6d16c2f8
AL
2883} BounceBuffer;
2884
2885static BounceBuffer bounce;
2886
ba223c29 2887typedef struct MapClient {
e95205e1 2888 QEMUBH *bh;
72cf2d4f 2889 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2890} MapClient;
2891
38e047b5 2892QemuMutex map_client_list_lock;
72cf2d4f
BS
2893static QLIST_HEAD(map_client_list, MapClient) map_client_list
2894 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2895
e95205e1
FZ
2896static void cpu_unregister_map_client_do(MapClient *client)
2897{
2898 QLIST_REMOVE(client, link);
2899 g_free(client);
2900}
2901
33b6c2ed
FZ
2902static void cpu_notify_map_clients_locked(void)
2903{
2904 MapClient *client;
2905
2906 while (!QLIST_EMPTY(&map_client_list)) {
2907 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2908 qemu_bh_schedule(client->bh);
2909 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2910 }
2911}
2912
e95205e1 2913void cpu_register_map_client(QEMUBH *bh)
ba223c29 2914{
7267c094 2915 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2916
38e047b5 2917 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2918 client->bh = bh;
72cf2d4f 2919 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2920 if (!atomic_read(&bounce.in_use)) {
2921 cpu_notify_map_clients_locked();
2922 }
38e047b5 2923 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2924}
2925
38e047b5 2926void cpu_exec_init_all(void)
ba223c29 2927{
38e047b5 2928 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
2929 /* The data structures we set up here depend on knowing the page size,
2930 * so no more changes can be made after this point.
2931 * In an ideal world, nothing we did before we had finished the
2932 * machine setup would care about the target page size, and we could
2933 * do this much later, rather than requiring board models to state
2934 * up front what their requirements are.
2935 */
2936 finalize_target_page_bits();
38e047b5 2937 io_mem_init();
680a4783 2938 memory_map_init();
38e047b5 2939 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2940}
2941
e95205e1 2942void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2943{
2944 MapClient *client;
2945
e95205e1
FZ
2946 qemu_mutex_lock(&map_client_list_lock);
2947 QLIST_FOREACH(client, &map_client_list, link) {
2948 if (client->bh == bh) {
2949 cpu_unregister_map_client_do(client);
2950 break;
2951 }
ba223c29 2952 }
e95205e1 2953 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2954}
2955
2956static void cpu_notify_map_clients(void)
2957{
38e047b5 2958 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2959 cpu_notify_map_clients_locked();
38e047b5 2960 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2961}
2962
51644ab7
PB
2963bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2964{
5c8a00ce 2965 MemoryRegion *mr;
51644ab7
PB
2966 hwaddr l, xlat;
2967
41063e1e 2968 rcu_read_lock();
51644ab7
PB
2969 while (len > 0) {
2970 l = len;
5c8a00ce
PB
2971 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2972 if (!memory_access_is_direct(mr, is_write)) {
2973 l = memory_access_size(mr, l, addr);
2974 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 2975 rcu_read_unlock();
51644ab7
PB
2976 return false;
2977 }
2978 }
2979
2980 len -= l;
2981 addr += l;
2982 }
41063e1e 2983 rcu_read_unlock();
51644ab7
PB
2984 return true;
2985}
2986
715c31ec
PB
2987static hwaddr
2988address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
2989 MemoryRegion *mr, hwaddr base, hwaddr len,
2990 bool is_write)
2991{
2992 hwaddr done = 0;
2993 hwaddr xlat;
2994 MemoryRegion *this_mr;
2995
2996 for (;;) {
2997 target_len -= len;
2998 addr += len;
2999 done += len;
3000 if (target_len == 0) {
3001 return done;
3002 }
3003
3004 len = target_len;
3005 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3006 if (this_mr != mr || xlat != base + done) {
3007 return done;
3008 }
3009 }
3010}
3011
6d16c2f8
AL
3012/* Map a physical memory region into a host virtual address.
3013 * May map a subset of the requested range, given by and returned in *plen.
3014 * May return NULL if resources needed to perform the mapping are exhausted.
3015 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3016 * Use cpu_register_map_client() to know when retrying the map operation is
3017 * likely to succeed.
6d16c2f8 3018 */
ac1970fb 3019void *address_space_map(AddressSpace *as,
a8170e5e
AK
3020 hwaddr addr,
3021 hwaddr *plen,
ac1970fb 3022 bool is_write)
6d16c2f8 3023{
a8170e5e 3024 hwaddr len = *plen;
715c31ec
PB
3025 hwaddr l, xlat;
3026 MemoryRegion *mr;
e81bcda5 3027 void *ptr;
6d16c2f8 3028
e3127ae0
PB
3029 if (len == 0) {
3030 return NULL;
3031 }
38bee5dc 3032
e3127ae0 3033 l = len;
41063e1e 3034 rcu_read_lock();
e3127ae0 3035 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3036
e3127ae0 3037 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3038 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3039 rcu_read_unlock();
e3127ae0 3040 return NULL;
6d16c2f8 3041 }
e85d9db5
KW
3042 /* Avoid unbounded allocations */
3043 l = MIN(l, TARGET_PAGE_SIZE);
3044 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3045 bounce.addr = addr;
3046 bounce.len = l;
d3e71559
PB
3047
3048 memory_region_ref(mr);
3049 bounce.mr = mr;
e3127ae0 3050 if (!is_write) {
5c9eb028
PM
3051 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3052 bounce.buffer, l);
8ab934f9 3053 }
6d16c2f8 3054
41063e1e 3055 rcu_read_unlock();
e3127ae0
PB
3056 *plen = l;
3057 return bounce.buffer;
3058 }
3059
e3127ae0 3060
d3e71559 3061 memory_region_ref(mr);
715c31ec
PB
3062 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3063 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
e81bcda5
PB
3064 rcu_read_unlock();
3065
3066 return ptr;
6d16c2f8
AL
3067}
3068
ac1970fb 3069/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3070 * Will also mark the memory as dirty if is_write == 1. access_len gives
3071 * the amount of memory that was actually read or written by the caller.
3072 */
a8170e5e
AK
3073void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3074 int is_write, hwaddr access_len)
6d16c2f8
AL
3075{
3076 if (buffer != bounce.buffer) {
d3e71559
PB
3077 MemoryRegion *mr;
3078 ram_addr_t addr1;
3079
07bdaa41 3080 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3081 assert(mr != NULL);
6d16c2f8 3082 if (is_write) {
845b6214 3083 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3084 }
868bb33f 3085 if (xen_enabled()) {
e41d7c69 3086 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3087 }
d3e71559 3088 memory_region_unref(mr);
6d16c2f8
AL
3089 return;
3090 }
3091 if (is_write) {
5c9eb028
PM
3092 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3093 bounce.buffer, access_len);
6d16c2f8 3094 }
f8a83245 3095 qemu_vfree(bounce.buffer);
6d16c2f8 3096 bounce.buffer = NULL;
d3e71559 3097 memory_region_unref(bounce.mr);
c2cba0ff 3098 atomic_mb_set(&bounce.in_use, false);
ba223c29 3099 cpu_notify_map_clients();
6d16c2f8 3100}
d0ecd2aa 3101
a8170e5e
AK
3102void *cpu_physical_memory_map(hwaddr addr,
3103 hwaddr *plen,
ac1970fb
AK
3104 int is_write)
3105{
3106 return address_space_map(&address_space_memory, addr, plen, is_write);
3107}
3108
a8170e5e
AK
3109void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3110 int is_write, hwaddr access_len)
ac1970fb
AK
3111{
3112 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3113}
3114
0ce265ff
PB
3115#define ARG1_DECL AddressSpace *as
3116#define ARG1 as
3117#define SUFFIX
3118#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3119#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3120#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3121#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3122#define RCU_READ_LOCK(...) rcu_read_lock()
3123#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3124#include "memory_ldst.inc.c"
1e78bcc1 3125
1f4e496e
PB
3126int64_t address_space_cache_init(MemoryRegionCache *cache,
3127 AddressSpace *as,
3128 hwaddr addr,
3129 hwaddr len,
3130 bool is_write)
3131{
3132 hwaddr l, xlat;
3133 MemoryRegion *mr;
3134 void *ptr;
3135
3136 assert(len > 0);
3137
3138 l = len;
3139 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3140 if (!memory_access_is_direct(mr, is_write)) {
3141 return -EINVAL;
3142 }
3143
3144 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3145 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3146
3147 cache->xlat = xlat;
3148 cache->is_write = is_write;
3149 cache->mr = mr;
3150 cache->ptr = ptr;
3151 cache->len = l;
3152 memory_region_ref(cache->mr);
3153
3154 return l;
3155}
3156
3157void address_space_cache_invalidate(MemoryRegionCache *cache,
3158 hwaddr addr,
3159 hwaddr access_len)
3160{
3161 assert(cache->is_write);
3162 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3163}
3164
3165void address_space_cache_destroy(MemoryRegionCache *cache)
3166{
3167 if (!cache->mr) {
3168 return;
3169 }
3170
3171 if (xen_enabled()) {
3172 xen_invalidate_map_cache_entry(cache->ptr);
3173 }
3174 memory_region_unref(cache->mr);
91047df3 3175 cache->mr = NULL;
1f4e496e
PB
3176}
3177
3178/* Called from RCU critical section. This function has the same
3179 * semantics as address_space_translate, but it only works on a
3180 * predefined range of a MemoryRegion that was mapped with
3181 * address_space_cache_init.
3182 */
3183static inline MemoryRegion *address_space_translate_cached(
3184 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3185 hwaddr *plen, bool is_write)
3186{
3187 assert(addr < cache->len && *plen <= cache->len - addr);
3188 *xlat = addr + cache->xlat;
3189 return cache->mr;
3190}
3191
3192#define ARG1_DECL MemoryRegionCache *cache
3193#define ARG1 cache
3194#define SUFFIX _cached
3195#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3196#define IS_DIRECT(mr, is_write) true
3197#define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3198#define INVALIDATE(mr, ofs, len) ((void)0)
3199#define RCU_READ_LOCK() ((void)0)
3200#define RCU_READ_UNLOCK() ((void)0)
3201#include "memory_ldst.inc.c"
3202
5e2972fd 3203/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3204int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3205 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3206{
3207 int l;
a8170e5e 3208 hwaddr phys_addr;
9b3c35e0 3209 target_ulong page;
13eb76e0
FB
3210
3211 while (len > 0) {
5232e4c7
PM
3212 int asidx;
3213 MemTxAttrs attrs;
3214
13eb76e0 3215 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3216 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3217 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3218 /* if no physical page mapped, return an error */
3219 if (phys_addr == -1)
3220 return -1;
3221 l = (page + TARGET_PAGE_SIZE) - addr;
3222 if (l > len)
3223 l = len;
5e2972fd 3224 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3225 if (is_write) {
5232e4c7
PM
3226 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3227 phys_addr, buf, l);
2e38847b 3228 } else {
5232e4c7
PM
3229 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3230 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3231 buf, l, 0);
2e38847b 3232 }
13eb76e0
FB
3233 len -= l;
3234 buf += l;
3235 addr += l;
3236 }
3237 return 0;
3238}
038629a6
DDAG
3239
3240/*
3241 * Allows code that needs to deal with migration bitmaps etc to still be built
3242 * target independent.
3243 */
3244size_t qemu_target_page_bits(void)
3245{
3246 return TARGET_PAGE_BITS;
3247}
3248
a68fe89c 3249#endif
13eb76e0 3250
8e4a424b
BS
3251/*
3252 * A helper function for the _utterly broken_ virtio device model to find out if
3253 * it's running on a big endian machine. Don't do this at home kids!
3254 */
98ed8ecf
GK
3255bool target_words_bigendian(void);
3256bool target_words_bigendian(void)
8e4a424b
BS
3257{
3258#if defined(TARGET_WORDS_BIGENDIAN)
3259 return true;
3260#else
3261 return false;
3262#endif
3263}
3264
76f35538 3265#ifndef CONFIG_USER_ONLY
a8170e5e 3266bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3267{
5c8a00ce 3268 MemoryRegion*mr;
149f54b5 3269 hwaddr l = 1;
41063e1e 3270 bool res;
76f35538 3271
41063e1e 3272 rcu_read_lock();
5c8a00ce
PB
3273 mr = address_space_translate(&address_space_memory,
3274 phys_addr, &phys_addr, &l, false);
76f35538 3275
41063e1e
PB
3276 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3277 rcu_read_unlock();
3278 return res;
76f35538 3279}
bd2fa51f 3280
e3807054 3281int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3282{
3283 RAMBlock *block;
e3807054 3284 int ret = 0;
bd2fa51f 3285
0dc3f44a
MD
3286 rcu_read_lock();
3287 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3288 ret = func(block->idstr, block->host, block->offset,
3289 block->used_length, opaque);
3290 if (ret) {
3291 break;
3292 }
bd2fa51f 3293 }
0dc3f44a 3294 rcu_read_unlock();
e3807054 3295 return ret;
bd2fa51f 3296}
ec3f8c99 3297#endif