]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
fixed invalid type
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
53a5960a
PB
37#if defined(CONFIG_USER_ONLY)
38#include <qemu.h>
39#endif
54936004 40
fd6ce8f6 41//#define DEBUG_TB_INVALIDATE
66e85a21 42//#define DEBUG_FLUSH
9fa3e853 43//#define DEBUG_TLB
67d3b957 44//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
45
46/* make various TB consistency checks */
5fafdf24
TS
47//#define DEBUG_TB_CHECK
48//#define DEBUG_TLB_CHECK
fd6ce8f6 49
1196be37 50//#define DEBUG_IOPORT
db7b5426 51//#define DEBUG_SUBPAGE
1196be37 52
99773bd4
PB
53#if !defined(CONFIG_USER_ONLY)
54/* TB consistency checks only implemented for usermode emulation. */
55#undef DEBUG_TB_CHECK
56#endif
57
fd6ce8f6
FB
58/* threshold to flush the translated code buffer */
59#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
60
9fa3e853
FB
61#define SMC_BITMAP_USE_THRESHOLD 10
62
63#define MMAP_AREA_START 0x00000000
64#define MMAP_AREA_END 0xa8000000
fd6ce8f6 65
108c49b8
FB
66#if defined(TARGET_SPARC64)
67#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
68#elif defined(TARGET_SPARC)
69#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
70#elif defined(TARGET_ALPHA)
71#define TARGET_PHYS_ADDR_SPACE_BITS 42
72#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
73#elif defined(TARGET_PPC64)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#else
76/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
77#define TARGET_PHYS_ADDR_SPACE_BITS 32
78#endif
79
fd6ce8f6 80TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
9fa3e853 81TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
fd6ce8f6 82int nb_tbs;
eb51d102
FB
83/* any access to the tbs or the page table must use this lock */
84spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 85
b8076a74 86uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
fd6ce8f6
FB
87uint8_t *code_gen_ptr;
88
9fa3e853
FB
89int phys_ram_size;
90int phys_ram_fd;
91uint8_t *phys_ram_base;
1ccde1cb 92uint8_t *phys_ram_dirty;
e9a1ab19 93static ram_addr_t phys_ram_alloc_offset = 0;
9fa3e853 94
6a00d601
FB
95CPUState *first_cpu;
96/* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
5fafdf24 98CPUState *cpu_single_env;
6a00d601 99
54936004 100typedef struct PageDesc {
92e873b9 101 /* list of TBs intersecting this ram page */
fd6ce8f6 102 TranslationBlock *first_tb;
9fa3e853
FB
103 /* in order to optimize self modifying code, we count the number
104 of lookups we do to a given page to use a bitmap */
105 unsigned int code_write_count;
106 uint8_t *code_bitmap;
107#if defined(CONFIG_USER_ONLY)
108 unsigned long flags;
109#endif
54936004
FB
110} PageDesc;
111
92e873b9
FB
112typedef struct PhysPageDesc {
113 /* offset in host memory of the page + io_index in the low 12 bits */
e04f40b5 114 uint32_t phys_offset;
92e873b9
FB
115} PhysPageDesc;
116
54936004 117#define L2_BITS 10
bedb69ea
JM
118#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
119/* XXX: this is a temporary hack for alpha target.
120 * In the future, this is to be replaced by a multi-level table
121 * to actually be able to handle the complete 64 bits address space.
122 */
123#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
124#else
54936004 125#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 126#endif
54936004
FB
127
128#define L1_SIZE (1 << L1_BITS)
129#define L2_SIZE (1 << L2_BITS)
130
33417e70 131static void io_mem_init(void);
fd6ce8f6 132
83fb7adf
FB
133unsigned long qemu_real_host_page_size;
134unsigned long qemu_host_page_bits;
135unsigned long qemu_host_page_size;
136unsigned long qemu_host_page_mask;
54936004 137
92e873b9 138/* XXX: for system emulation, it could just be an array */
54936004 139static PageDesc *l1_map[L1_SIZE];
0a962c02 140PhysPageDesc **l1_phys_map;
54936004 141
33417e70 142/* io memory support */
33417e70
FB
143CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
144CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 145void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 146static int io_mem_nb;
6658ffb8
PB
147#if defined(CONFIG_SOFTMMU)
148static int io_mem_watch;
149#endif
33417e70 150
34865134
FB
151/* log support */
152char *logfilename = "/tmp/qemu.log";
153FILE *logfile;
154int loglevel;
e735b91c 155static int log_append = 0;
34865134 156
e3db7226
FB
157/* statistics */
158static int tlb_flush_count;
159static int tb_flush_count;
160static int tb_phys_invalidate_count;
161
db7b5426
BS
162#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
163typedef struct subpage_t {
164 target_phys_addr_t base;
165 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE];
166 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE];
167 void *opaque[TARGET_PAGE_SIZE];
168} subpage_t;
169
b346ff46 170static void page_init(void)
54936004 171{
83fb7adf 172 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 173 TARGET_PAGE_SIZE */
67b915a5 174#ifdef _WIN32
d5a8f07c
FB
175 {
176 SYSTEM_INFO system_info;
177 DWORD old_protect;
3b46e624 178
d5a8f07c
FB
179 GetSystemInfo(&system_info);
180 qemu_real_host_page_size = system_info.dwPageSize;
3b46e624 181
d5a8f07c
FB
182 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
183 PAGE_EXECUTE_READWRITE, &old_protect);
184 }
67b915a5 185#else
83fb7adf 186 qemu_real_host_page_size = getpagesize();
d5a8f07c
FB
187 {
188 unsigned long start, end;
189
190 start = (unsigned long)code_gen_buffer;
191 start &= ~(qemu_real_host_page_size - 1);
3b46e624 192
d5a8f07c
FB
193 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
3b46e624 196
5fafdf24 197 mprotect((void *)start, end - start,
d5a8f07c
FB
198 PROT_READ | PROT_WRITE | PROT_EXEC);
199 }
67b915a5 200#endif
d5a8f07c 201
83fb7adf
FB
202 if (qemu_host_page_size == 0)
203 qemu_host_page_size = qemu_real_host_page_size;
204 if (qemu_host_page_size < TARGET_PAGE_SIZE)
205 qemu_host_page_size = TARGET_PAGE_SIZE;
206 qemu_host_page_bits = 0;
207 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
208 qemu_host_page_bits++;
209 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
210 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
211 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
54936004
FB
212}
213
fd6ce8f6 214static inline PageDesc *page_find_alloc(unsigned int index)
54936004 215{
54936004
FB
216 PageDesc **lp, *p;
217
54936004
FB
218 lp = &l1_map[index >> L2_BITS];
219 p = *lp;
220 if (!p) {
221 /* allocate if not found */
59817ccb 222 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
fd6ce8f6 223 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
54936004
FB
224 *lp = p;
225 }
226 return p + (index & (L2_SIZE - 1));
227}
228
fd6ce8f6 229static inline PageDesc *page_find(unsigned int index)
54936004 230{
54936004
FB
231 PageDesc *p;
232
54936004
FB
233 p = l1_map[index >> L2_BITS];
234 if (!p)
235 return 0;
fd6ce8f6
FB
236 return p + (index & (L2_SIZE - 1));
237}
238
108c49b8 239static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 240{
108c49b8 241 void **lp, **p;
e3f4e2a4 242 PhysPageDesc *pd;
92e873b9 243
108c49b8
FB
244 p = (void **)l1_phys_map;
245#if TARGET_PHYS_ADDR_SPACE_BITS > 32
246
247#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
248#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
249#endif
250 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
251 p = *lp;
252 if (!p) {
253 /* allocate if not found */
108c49b8
FB
254 if (!alloc)
255 return NULL;
256 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
257 memset(p, 0, sizeof(void *) * L1_SIZE);
258 *lp = p;
259 }
260#endif
261 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
262 pd = *lp;
263 if (!pd) {
264 int i;
108c49b8
FB
265 /* allocate if not found */
266 if (!alloc)
267 return NULL;
e3f4e2a4
PB
268 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
269 *lp = pd;
270 for (i = 0; i < L2_SIZE; i++)
271 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 272 }
e3f4e2a4 273 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
274}
275
108c49b8 276static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 277{
108c49b8 278 return phys_page_find_alloc(index, 0);
92e873b9
FB
279}
280
9fa3e853 281#if !defined(CONFIG_USER_ONLY)
6a00d601 282static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 283static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 284 target_ulong vaddr);
9fa3e853 285#endif
fd6ce8f6 286
6a00d601 287void cpu_exec_init(CPUState *env)
fd6ce8f6 288{
6a00d601
FB
289 CPUState **penv;
290 int cpu_index;
291
fd6ce8f6
FB
292 if (!code_gen_ptr) {
293 code_gen_ptr = code_gen_buffer;
b346ff46 294 page_init();
33417e70 295 io_mem_init();
fd6ce8f6 296 }
6a00d601
FB
297 env->next_cpu = NULL;
298 penv = &first_cpu;
299 cpu_index = 0;
300 while (*penv != NULL) {
301 penv = (CPUState **)&(*penv)->next_cpu;
302 cpu_index++;
303 }
304 env->cpu_index = cpu_index;
6658ffb8 305 env->nb_watchpoints = 0;
6a00d601 306 *penv = env;
fd6ce8f6
FB
307}
308
9fa3e853
FB
309static inline void invalidate_page_bitmap(PageDesc *p)
310{
311 if (p->code_bitmap) {
59817ccb 312 qemu_free(p->code_bitmap);
9fa3e853
FB
313 p->code_bitmap = NULL;
314 }
315 p->code_write_count = 0;
316}
317
fd6ce8f6
FB
318/* set to NULL all the 'first_tb' fields in all PageDescs */
319static void page_flush_tb(void)
320{
321 int i, j;
322 PageDesc *p;
323
324 for(i = 0; i < L1_SIZE; i++) {
325 p = l1_map[i];
326 if (p) {
9fa3e853
FB
327 for(j = 0; j < L2_SIZE; j++) {
328 p->first_tb = NULL;
329 invalidate_page_bitmap(p);
330 p++;
331 }
fd6ce8f6
FB
332 }
333 }
334}
335
336/* flush all the translation blocks */
d4e8164f 337/* XXX: tb_flush is currently not thread safe */
6a00d601 338void tb_flush(CPUState *env1)
fd6ce8f6 339{
6a00d601 340 CPUState *env;
0124311e 341#if defined(DEBUG_FLUSH)
ab3d1727
BS
342 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
343 (unsigned long)(code_gen_ptr - code_gen_buffer),
344 nb_tbs, nb_tbs > 0 ?
345 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6
FB
346#endif
347 nb_tbs = 0;
3b46e624 348
6a00d601
FB
349 for(env = first_cpu; env != NULL; env = env->next_cpu) {
350 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
351 }
9fa3e853 352
8a8a608f 353 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 354 page_flush_tb();
9fa3e853 355
fd6ce8f6 356 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
357 /* XXX: flush processor icache at this point if cache flush is
358 expensive */
e3db7226 359 tb_flush_count++;
fd6ce8f6
FB
360}
361
362#ifdef DEBUG_TB_CHECK
363
bc98a7ef 364static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
365{
366 TranslationBlock *tb;
367 int i;
368 address &= TARGET_PAGE_MASK;
99773bd4
PB
369 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
370 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
371 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
372 address >= tb->pc + tb->size)) {
373 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 374 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
375 }
376 }
377 }
378}
379
380/* verify that all the pages have correct rights for code */
381static void tb_page_check(void)
382{
383 TranslationBlock *tb;
384 int i, flags1, flags2;
3b46e624 385
99773bd4
PB
386 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
387 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
388 flags1 = page_get_flags(tb->pc);
389 flags2 = page_get_flags(tb->pc + tb->size - 1);
390 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
391 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 392 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
393 }
394 }
395 }
396}
397
d4e8164f
FB
398void tb_jmp_check(TranslationBlock *tb)
399{
400 TranslationBlock *tb1;
401 unsigned int n1;
402
403 /* suppress any remaining jumps to this TB */
404 tb1 = tb->jmp_first;
405 for(;;) {
406 n1 = (long)tb1 & 3;
407 tb1 = (TranslationBlock *)((long)tb1 & ~3);
408 if (n1 == 2)
409 break;
410 tb1 = tb1->jmp_next[n1];
411 }
412 /* check end of list */
413 if (tb1 != tb) {
414 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
415 }
416}
417
fd6ce8f6
FB
418#endif
419
420/* invalidate one TB */
421static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
422 int next_offset)
423{
424 TranslationBlock *tb1;
425 for(;;) {
426 tb1 = *ptb;
427 if (tb1 == tb) {
428 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
429 break;
430 }
431 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
432 }
433}
434
9fa3e853
FB
435static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
436{
437 TranslationBlock *tb1;
438 unsigned int n1;
439
440 for(;;) {
441 tb1 = *ptb;
442 n1 = (long)tb1 & 3;
443 tb1 = (TranslationBlock *)((long)tb1 & ~3);
444 if (tb1 == tb) {
445 *ptb = tb1->page_next[n1];
446 break;
447 }
448 ptb = &tb1->page_next[n1];
449 }
450}
451
d4e8164f
FB
452static inline void tb_jmp_remove(TranslationBlock *tb, int n)
453{
454 TranslationBlock *tb1, **ptb;
455 unsigned int n1;
456
457 ptb = &tb->jmp_next[n];
458 tb1 = *ptb;
459 if (tb1) {
460 /* find tb(n) in circular list */
461 for(;;) {
462 tb1 = *ptb;
463 n1 = (long)tb1 & 3;
464 tb1 = (TranslationBlock *)((long)tb1 & ~3);
465 if (n1 == n && tb1 == tb)
466 break;
467 if (n1 == 2) {
468 ptb = &tb1->jmp_first;
469 } else {
470 ptb = &tb1->jmp_next[n1];
471 }
472 }
473 /* now we can suppress tb(n) from the list */
474 *ptb = tb->jmp_next[n];
475
476 tb->jmp_next[n] = NULL;
477 }
478}
479
480/* reset the jump entry 'n' of a TB so that it is not chained to
481 another TB */
482static inline void tb_reset_jump(TranslationBlock *tb, int n)
483{
484 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
485}
486
8a40a180 487static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
fd6ce8f6 488{
6a00d601 489 CPUState *env;
8a40a180 490 PageDesc *p;
d4e8164f 491 unsigned int h, n1;
8a40a180
FB
492 target_ulong phys_pc;
493 TranslationBlock *tb1, *tb2;
3b46e624 494
8a40a180
FB
495 /* remove the TB from the hash list */
496 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
497 h = tb_phys_hash_func(phys_pc);
5fafdf24 498 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
499 offsetof(TranslationBlock, phys_hash_next));
500
501 /* remove the TB from the page list */
502 if (tb->page_addr[0] != page_addr) {
503 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
504 tb_page_remove(&p->first_tb, tb);
505 invalidate_page_bitmap(p);
506 }
507 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
508 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
509 tb_page_remove(&p->first_tb, tb);
510 invalidate_page_bitmap(p);
511 }
512
36bdbe54 513 tb_invalidated_flag = 1;
59817ccb 514
fd6ce8f6 515 /* remove the TB from the hash list */
8a40a180 516 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 if (env->tb_jmp_cache[h] == tb)
519 env->tb_jmp_cache[h] = NULL;
520 }
d4e8164f
FB
521
522 /* suppress this TB from the two jump lists */
523 tb_jmp_remove(tb, 0);
524 tb_jmp_remove(tb, 1);
525
526 /* suppress any remaining jumps to this TB */
527 tb1 = tb->jmp_first;
528 for(;;) {
529 n1 = (long)tb1 & 3;
530 if (n1 == 2)
531 break;
532 tb1 = (TranslationBlock *)((long)tb1 & ~3);
533 tb2 = tb1->jmp_next[n1];
534 tb_reset_jump(tb1, n1);
535 tb1->jmp_next[n1] = NULL;
536 tb1 = tb2;
537 }
538 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 539
e3db7226 540 tb_phys_invalidate_count++;
9fa3e853
FB
541}
542
543static inline void set_bits(uint8_t *tab, int start, int len)
544{
545 int end, mask, end1;
546
547 end = start + len;
548 tab += start >> 3;
549 mask = 0xff << (start & 7);
550 if ((start & ~7) == (end & ~7)) {
551 if (start < end) {
552 mask &= ~(0xff << (end & 7));
553 *tab |= mask;
554 }
555 } else {
556 *tab++ |= mask;
557 start = (start + 8) & ~7;
558 end1 = end & ~7;
559 while (start < end1) {
560 *tab++ = 0xff;
561 start += 8;
562 }
563 if (start < end) {
564 mask = ~(0xff << (end & 7));
565 *tab |= mask;
566 }
567 }
568}
569
570static void build_page_bitmap(PageDesc *p)
571{
572 int n, tb_start, tb_end;
573 TranslationBlock *tb;
3b46e624 574
59817ccb 575 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
576 if (!p->code_bitmap)
577 return;
578 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
579
580 tb = p->first_tb;
581 while (tb != NULL) {
582 n = (long)tb & 3;
583 tb = (TranslationBlock *)((long)tb & ~3);
584 /* NOTE: this is subtle as a TB may span two physical pages */
585 if (n == 0) {
586 /* NOTE: tb_end may be after the end of the page, but
587 it is not a problem */
588 tb_start = tb->pc & ~TARGET_PAGE_MASK;
589 tb_end = tb_start + tb->size;
590 if (tb_end > TARGET_PAGE_SIZE)
591 tb_end = TARGET_PAGE_SIZE;
592 } else {
593 tb_start = 0;
594 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
595 }
596 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
597 tb = tb->page_next[n];
598 }
599}
600
d720b93d
FB
601#ifdef TARGET_HAS_PRECISE_SMC
602
5fafdf24 603static void tb_gen_code(CPUState *env,
d720b93d
FB
604 target_ulong pc, target_ulong cs_base, int flags,
605 int cflags)
606{
607 TranslationBlock *tb;
608 uint8_t *tc_ptr;
609 target_ulong phys_pc, phys_page2, virt_page2;
610 int code_gen_size;
611
c27004ec
FB
612 phys_pc = get_phys_addr_code(env, pc);
613 tb = tb_alloc(pc);
d720b93d
FB
614 if (!tb) {
615 /* flush must be done */
616 tb_flush(env);
617 /* cannot fail at this point */
c27004ec 618 tb = tb_alloc(pc);
d720b93d
FB
619 }
620 tc_ptr = code_gen_ptr;
621 tb->tc_ptr = tc_ptr;
622 tb->cs_base = cs_base;
623 tb->flags = flags;
624 tb->cflags = cflags;
625 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
626 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 627
d720b93d 628 /* check next page if needed */
c27004ec 629 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 630 phys_page2 = -1;
c27004ec 631 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
632 phys_page2 = get_phys_addr_code(env, virt_page2);
633 }
634 tb_link_phys(tb, phys_pc, phys_page2);
635}
636#endif
3b46e624 637
9fa3e853
FB
638/* invalidate all TBs which intersect with the target physical page
639 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
640 the same physical page. 'is_cpu_write_access' should be true if called
641 from a real cpu write access: the virtual CPU will exit the current
642 TB if code is modified inside this TB. */
5fafdf24 643void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
d720b93d
FB
644 int is_cpu_write_access)
645{
646 int n, current_tb_modified, current_tb_not_found, current_flags;
d720b93d 647 CPUState *env = cpu_single_env;
9fa3e853 648 PageDesc *p;
ea1c1802 649 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
9fa3e853 650 target_ulong tb_start, tb_end;
d720b93d 651 target_ulong current_pc, current_cs_base;
9fa3e853
FB
652
653 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 654 if (!p)
9fa3e853 655 return;
5fafdf24 656 if (!p->code_bitmap &&
d720b93d
FB
657 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
658 is_cpu_write_access) {
9fa3e853
FB
659 /* build code bitmap */
660 build_page_bitmap(p);
661 }
662
663 /* we remove all the TBs in the range [start, end[ */
664 /* XXX: see if in some cases it could be faster to invalidate all the code */
d720b93d
FB
665 current_tb_not_found = is_cpu_write_access;
666 current_tb_modified = 0;
667 current_tb = NULL; /* avoid warning */
668 current_pc = 0; /* avoid warning */
669 current_cs_base = 0; /* avoid warning */
670 current_flags = 0; /* avoid warning */
9fa3e853
FB
671 tb = p->first_tb;
672 while (tb != NULL) {
673 n = (long)tb & 3;
674 tb = (TranslationBlock *)((long)tb & ~3);
675 tb_next = tb->page_next[n];
676 /* NOTE: this is subtle as a TB may span two physical pages */
677 if (n == 0) {
678 /* NOTE: tb_end may be after the end of the page, but
679 it is not a problem */
680 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
681 tb_end = tb_start + tb->size;
682 } else {
683 tb_start = tb->page_addr[1];
684 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
685 }
686 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
687#ifdef TARGET_HAS_PRECISE_SMC
688 if (current_tb_not_found) {
689 current_tb_not_found = 0;
690 current_tb = NULL;
691 if (env->mem_write_pc) {
692 /* now we have a real cpu fault */
693 current_tb = tb_find_pc(env->mem_write_pc);
694 }
695 }
696 if (current_tb == tb &&
697 !(current_tb->cflags & CF_SINGLE_INSN)) {
698 /* If we are modifying the current TB, we must stop
699 its execution. We could be more precise by checking
700 that the modification is after the current PC, but it
701 would require a specialized function to partially
702 restore the CPU state */
3b46e624 703
d720b93d 704 current_tb_modified = 1;
5fafdf24 705 cpu_restore_state(current_tb, env,
d720b93d
FB
706 env->mem_write_pc, NULL);
707#if defined(TARGET_I386)
708 current_flags = env->hflags;
709 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
710 current_cs_base = (target_ulong)env->segs[R_CS].base;
711 current_pc = current_cs_base + env->eip;
712#else
713#error unsupported CPU
714#endif
715 }
716#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
717 /* we need to do that to handle the case where a signal
718 occurs while doing tb_phys_invalidate() */
719 saved_tb = NULL;
720 if (env) {
721 saved_tb = env->current_tb;
722 env->current_tb = NULL;
723 }
9fa3e853 724 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
725 if (env) {
726 env->current_tb = saved_tb;
727 if (env->interrupt_request && env->current_tb)
728 cpu_interrupt(env, env->interrupt_request);
729 }
9fa3e853
FB
730 }
731 tb = tb_next;
732 }
733#if !defined(CONFIG_USER_ONLY)
734 /* if no code remaining, no need to continue to use slow writes */
735 if (!p->first_tb) {
736 invalidate_page_bitmap(p);
d720b93d
FB
737 if (is_cpu_write_access) {
738 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
739 }
740 }
741#endif
742#ifdef TARGET_HAS_PRECISE_SMC
743 if (current_tb_modified) {
744 /* we generate a block containing just the instruction
745 modifying the memory. It will ensure that it cannot modify
746 itself */
ea1c1802 747 env->current_tb = NULL;
5fafdf24 748 tb_gen_code(env, current_pc, current_cs_base, current_flags,
d720b93d
FB
749 CF_SINGLE_INSN);
750 cpu_resume_from_signal(env, NULL);
9fa3e853 751 }
fd6ce8f6 752#endif
9fa3e853 753}
fd6ce8f6 754
9fa3e853 755/* len must be <= 8 and start must be a multiple of len */
d720b93d 756static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
9fa3e853
FB
757{
758 PageDesc *p;
759 int offset, b;
59817ccb 760#if 0
a4193c8a
FB
761 if (1) {
762 if (loglevel) {
5fafdf24
TS
763 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
764 cpu_single_env->mem_write_vaddr, len,
765 cpu_single_env->eip,
a4193c8a
FB
766 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
767 }
59817ccb
FB
768 }
769#endif
9fa3e853 770 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 771 if (!p)
9fa3e853
FB
772 return;
773 if (p->code_bitmap) {
774 offset = start & ~TARGET_PAGE_MASK;
775 b = p->code_bitmap[offset >> 3] >> (offset & 7);
776 if (b & ((1 << len) - 1))
777 goto do_invalidate;
778 } else {
779 do_invalidate:
d720b93d 780 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
781 }
782}
783
9fa3e853 784#if !defined(CONFIG_SOFTMMU)
5fafdf24 785static void tb_invalidate_phys_page(target_ulong addr,
d720b93d 786 unsigned long pc, void *puc)
9fa3e853 787{
d720b93d
FB
788 int n, current_flags, current_tb_modified;
789 target_ulong current_pc, current_cs_base;
9fa3e853 790 PageDesc *p;
d720b93d
FB
791 TranslationBlock *tb, *current_tb;
792#ifdef TARGET_HAS_PRECISE_SMC
793 CPUState *env = cpu_single_env;
794#endif
9fa3e853
FB
795
796 addr &= TARGET_PAGE_MASK;
797 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 798 if (!p)
9fa3e853
FB
799 return;
800 tb = p->first_tb;
d720b93d
FB
801 current_tb_modified = 0;
802 current_tb = NULL;
803 current_pc = 0; /* avoid warning */
804 current_cs_base = 0; /* avoid warning */
805 current_flags = 0; /* avoid warning */
806#ifdef TARGET_HAS_PRECISE_SMC
807 if (tb && pc != 0) {
808 current_tb = tb_find_pc(pc);
809 }
810#endif
9fa3e853
FB
811 while (tb != NULL) {
812 n = (long)tb & 3;
813 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
814#ifdef TARGET_HAS_PRECISE_SMC
815 if (current_tb == tb &&
816 !(current_tb->cflags & CF_SINGLE_INSN)) {
817 /* If we are modifying the current TB, we must stop
818 its execution. We could be more precise by checking
819 that the modification is after the current PC, but it
820 would require a specialized function to partially
821 restore the CPU state */
3b46e624 822
d720b93d
FB
823 current_tb_modified = 1;
824 cpu_restore_state(current_tb, env, pc, puc);
825#if defined(TARGET_I386)
826 current_flags = env->hflags;
827 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
828 current_cs_base = (target_ulong)env->segs[R_CS].base;
829 current_pc = current_cs_base + env->eip;
830#else
831#error unsupported CPU
832#endif
833 }
834#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
835 tb_phys_invalidate(tb, addr);
836 tb = tb->page_next[n];
837 }
fd6ce8f6 838 p->first_tb = NULL;
d720b93d
FB
839#ifdef TARGET_HAS_PRECISE_SMC
840 if (current_tb_modified) {
841 /* we generate a block containing just the instruction
842 modifying the memory. It will ensure that it cannot modify
843 itself */
ea1c1802 844 env->current_tb = NULL;
5fafdf24 845 tb_gen_code(env, current_pc, current_cs_base, current_flags,
d720b93d
FB
846 CF_SINGLE_INSN);
847 cpu_resume_from_signal(env, puc);
848 }
849#endif
fd6ce8f6 850}
9fa3e853 851#endif
fd6ce8f6
FB
852
853/* add the tb in the target page and protect it if necessary */
5fafdf24 854static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 855 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
856{
857 PageDesc *p;
9fa3e853
FB
858 TranslationBlock *last_first_tb;
859
860 tb->page_addr[n] = page_addr;
3a7d929e 861 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
862 tb->page_next[n] = p->first_tb;
863 last_first_tb = p->first_tb;
864 p->first_tb = (TranslationBlock *)((long)tb | n);
865 invalidate_page_bitmap(p);
fd6ce8f6 866
107db443 867#if defined(TARGET_HAS_SMC) || 1
d720b93d 868
9fa3e853 869#if defined(CONFIG_USER_ONLY)
fd6ce8f6 870 if (p->flags & PAGE_WRITE) {
53a5960a
PB
871 target_ulong addr;
872 PageDesc *p2;
9fa3e853
FB
873 int prot;
874
fd6ce8f6
FB
875 /* force the host page as non writable (writes will have a
876 page fault + mprotect overhead) */
53a5960a 877 page_addr &= qemu_host_page_mask;
fd6ce8f6 878 prot = 0;
53a5960a
PB
879 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
880 addr += TARGET_PAGE_SIZE) {
881
882 p2 = page_find (addr >> TARGET_PAGE_BITS);
883 if (!p2)
884 continue;
885 prot |= p2->flags;
886 p2->flags &= ~PAGE_WRITE;
887 page_get_flags(addr);
888 }
5fafdf24 889 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
890 (prot & PAGE_BITS) & ~PAGE_WRITE);
891#ifdef DEBUG_TB_INVALIDATE
ab3d1727 892 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 893 page_addr);
fd6ce8f6 894#endif
fd6ce8f6 895 }
9fa3e853
FB
896#else
897 /* if some code is already present, then the pages are already
898 protected. So we handle the case where only the first TB is
899 allocated in a physical page */
900 if (!last_first_tb) {
6a00d601 901 tlb_protect_code(page_addr);
9fa3e853
FB
902 }
903#endif
d720b93d
FB
904
905#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
906}
907
908/* Allocate a new translation block. Flush the translation buffer if
909 too many translation blocks or too much generated code. */
c27004ec 910TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
911{
912 TranslationBlock *tb;
fd6ce8f6 913
5fafdf24 914 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
fd6ce8f6 915 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
d4e8164f 916 return NULL;
fd6ce8f6
FB
917 tb = &tbs[nb_tbs++];
918 tb->pc = pc;
b448f2f3 919 tb->cflags = 0;
d4e8164f
FB
920 return tb;
921}
922
9fa3e853
FB
923/* add a new TB and link it to the physical page tables. phys_page2 is
924 (-1) to indicate that only one page contains the TB. */
5fafdf24 925void tb_link_phys(TranslationBlock *tb,
9fa3e853 926 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 927{
9fa3e853
FB
928 unsigned int h;
929 TranslationBlock **ptb;
930
931 /* add in the physical hash table */
932 h = tb_phys_hash_func(phys_pc);
933 ptb = &tb_phys_hash[h];
934 tb->phys_hash_next = *ptb;
935 *ptb = tb;
fd6ce8f6
FB
936
937 /* add in the page list */
9fa3e853
FB
938 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
939 if (phys_page2 != -1)
940 tb_alloc_page(tb, 1, phys_page2);
941 else
942 tb->page_addr[1] = -1;
9fa3e853 943
d4e8164f
FB
944 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
945 tb->jmp_next[0] = NULL;
946 tb->jmp_next[1] = NULL;
947
948 /* init original jump addresses */
949 if (tb->tb_next_offset[0] != 0xffff)
950 tb_reset_jump(tb, 0);
951 if (tb->tb_next_offset[1] != 0xffff)
952 tb_reset_jump(tb, 1);
8a40a180
FB
953
954#ifdef DEBUG_TB_CHECK
955 tb_page_check();
956#endif
fd6ce8f6
FB
957}
958
9fa3e853
FB
959/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
960 tb[1].tc_ptr. Return NULL if not found */
961TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 962{
9fa3e853
FB
963 int m_min, m_max, m;
964 unsigned long v;
965 TranslationBlock *tb;
a513fe19
FB
966
967 if (nb_tbs <= 0)
968 return NULL;
969 if (tc_ptr < (unsigned long)code_gen_buffer ||
970 tc_ptr >= (unsigned long)code_gen_ptr)
971 return NULL;
972 /* binary search (cf Knuth) */
973 m_min = 0;
974 m_max = nb_tbs - 1;
975 while (m_min <= m_max) {
976 m = (m_min + m_max) >> 1;
977 tb = &tbs[m];
978 v = (unsigned long)tb->tc_ptr;
979 if (v == tc_ptr)
980 return tb;
981 else if (tc_ptr < v) {
982 m_max = m - 1;
983 } else {
984 m_min = m + 1;
985 }
5fafdf24 986 }
a513fe19
FB
987 return &tbs[m_max];
988}
7501267e 989
ea041c0e
FB
990static void tb_reset_jump_recursive(TranslationBlock *tb);
991
992static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
993{
994 TranslationBlock *tb1, *tb_next, **ptb;
995 unsigned int n1;
996
997 tb1 = tb->jmp_next[n];
998 if (tb1 != NULL) {
999 /* find head of list */
1000 for(;;) {
1001 n1 = (long)tb1 & 3;
1002 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1003 if (n1 == 2)
1004 break;
1005 tb1 = tb1->jmp_next[n1];
1006 }
1007 /* we are now sure now that tb jumps to tb1 */
1008 tb_next = tb1;
1009
1010 /* remove tb from the jmp_first list */
1011 ptb = &tb_next->jmp_first;
1012 for(;;) {
1013 tb1 = *ptb;
1014 n1 = (long)tb1 & 3;
1015 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1016 if (n1 == n && tb1 == tb)
1017 break;
1018 ptb = &tb1->jmp_next[n1];
1019 }
1020 *ptb = tb->jmp_next[n];
1021 tb->jmp_next[n] = NULL;
3b46e624 1022
ea041c0e
FB
1023 /* suppress the jump to next tb in generated code */
1024 tb_reset_jump(tb, n);
1025
0124311e 1026 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1027 tb_reset_jump_recursive(tb_next);
1028 }
1029}
1030
1031static void tb_reset_jump_recursive(TranslationBlock *tb)
1032{
1033 tb_reset_jump_recursive2(tb, 0);
1034 tb_reset_jump_recursive2(tb, 1);
1035}
1036
1fddef4b 1037#if defined(TARGET_HAS_ICE)
d720b93d
FB
1038static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1039{
9b3c35e0
JM
1040 target_phys_addr_t addr;
1041 target_ulong pd;
c2f07f81
PB
1042 ram_addr_t ram_addr;
1043 PhysPageDesc *p;
d720b93d 1044
c2f07f81
PB
1045 addr = cpu_get_phys_page_debug(env, pc);
1046 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1047 if (!p) {
1048 pd = IO_MEM_UNASSIGNED;
1049 } else {
1050 pd = p->phys_offset;
1051 }
1052 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1053 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1054}
c27004ec 1055#endif
d720b93d 1056
6658ffb8
PB
1057/* Add a watchpoint. */
1058int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1059{
1060 int i;
1061
1062 for (i = 0; i < env->nb_watchpoints; i++) {
1063 if (addr == env->watchpoint[i].vaddr)
1064 return 0;
1065 }
1066 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1067 return -1;
1068
1069 i = env->nb_watchpoints++;
1070 env->watchpoint[i].vaddr = addr;
1071 tlb_flush_page(env, addr);
1072 /* FIXME: This flush is needed because of the hack to make memory ops
1073 terminate the TB. It can be removed once the proper IO trap and
1074 re-execute bits are in. */
1075 tb_flush(env);
1076 return i;
1077}
1078
1079/* Remove a watchpoint. */
1080int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1081{
1082 int i;
1083
1084 for (i = 0; i < env->nb_watchpoints; i++) {
1085 if (addr == env->watchpoint[i].vaddr) {
1086 env->nb_watchpoints--;
1087 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1088 tlb_flush_page(env, addr);
1089 return 0;
1090 }
1091 }
1092 return -1;
1093}
1094
c33a346e
FB
1095/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1096 breakpoint is reached */
2e12669a 1097int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
4c3a88a2 1098{
1fddef4b 1099#if defined(TARGET_HAS_ICE)
4c3a88a2 1100 int i;
3b46e624 1101
4c3a88a2
FB
1102 for(i = 0; i < env->nb_breakpoints; i++) {
1103 if (env->breakpoints[i] == pc)
1104 return 0;
1105 }
1106
1107 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1108 return -1;
1109 env->breakpoints[env->nb_breakpoints++] = pc;
3b46e624 1110
d720b93d 1111 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1112 return 0;
1113#else
1114 return -1;
1115#endif
1116}
1117
1118/* remove a breakpoint */
2e12669a 1119int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
4c3a88a2 1120{
1fddef4b 1121#if defined(TARGET_HAS_ICE)
4c3a88a2
FB
1122 int i;
1123 for(i = 0; i < env->nb_breakpoints; i++) {
1124 if (env->breakpoints[i] == pc)
1125 goto found;
1126 }
1127 return -1;
1128 found:
4c3a88a2 1129 env->nb_breakpoints--;
1fddef4b
FB
1130 if (i < env->nb_breakpoints)
1131 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
d720b93d
FB
1132
1133 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1134 return 0;
1135#else
1136 return -1;
1137#endif
1138}
1139
c33a346e
FB
1140/* enable or disable single step mode. EXCP_DEBUG is returned by the
1141 CPU loop after each instruction */
1142void cpu_single_step(CPUState *env, int enabled)
1143{
1fddef4b 1144#if defined(TARGET_HAS_ICE)
c33a346e
FB
1145 if (env->singlestep_enabled != enabled) {
1146 env->singlestep_enabled = enabled;
1147 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1148 /* XXX: only flush what is necessary */
0124311e 1149 tb_flush(env);
c33a346e
FB
1150 }
1151#endif
1152}
1153
34865134
FB
1154/* enable or disable low levels log */
1155void cpu_set_log(int log_flags)
1156{
1157 loglevel = log_flags;
1158 if (loglevel && !logfile) {
11fcfab4 1159 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1160 if (!logfile) {
1161 perror(logfilename);
1162 _exit(1);
1163 }
9fa3e853
FB
1164#if !defined(CONFIG_SOFTMMU)
1165 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1166 {
1167 static uint8_t logfile_buf[4096];
1168 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1169 }
1170#else
34865134 1171 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1172#endif
e735b91c
PB
1173 log_append = 1;
1174 }
1175 if (!loglevel && logfile) {
1176 fclose(logfile);
1177 logfile = NULL;
34865134
FB
1178 }
1179}
1180
1181void cpu_set_log_filename(const char *filename)
1182{
1183 logfilename = strdup(filename);
e735b91c
PB
1184 if (logfile) {
1185 fclose(logfile);
1186 logfile = NULL;
1187 }
1188 cpu_set_log(loglevel);
34865134 1189}
c33a346e 1190
0124311e 1191/* mask must never be zero, except for A20 change call */
68a79315 1192void cpu_interrupt(CPUState *env, int mask)
ea041c0e
FB
1193{
1194 TranslationBlock *tb;
ee8b7021 1195 static int interrupt_lock;
59817ccb 1196
68a79315 1197 env->interrupt_request |= mask;
ea041c0e
FB
1198 /* if the cpu is currently executing code, we must unlink it and
1199 all the potentially executing TB */
1200 tb = env->current_tb;
ee8b7021
FB
1201 if (tb && !testandset(&interrupt_lock)) {
1202 env->current_tb = NULL;
ea041c0e 1203 tb_reset_jump_recursive(tb);
ee8b7021 1204 interrupt_lock = 0;
ea041c0e
FB
1205 }
1206}
1207
b54ad049
FB
1208void cpu_reset_interrupt(CPUState *env, int mask)
1209{
1210 env->interrupt_request &= ~mask;
1211}
1212
f193c797 1213CPULogItem cpu_log_items[] = {
5fafdf24 1214 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1215 "show generated host assembly code for each compiled TB" },
1216 { CPU_LOG_TB_IN_ASM, "in_asm",
1217 "show target assembly code for each compiled TB" },
5fafdf24 1218 { CPU_LOG_TB_OP, "op",
f193c797
FB
1219 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1220#ifdef TARGET_I386
1221 { CPU_LOG_TB_OP_OPT, "op_opt",
1222 "show micro ops after optimization for each compiled TB" },
1223#endif
1224 { CPU_LOG_INT, "int",
1225 "show interrupts/exceptions in short format" },
1226 { CPU_LOG_EXEC, "exec",
1227 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1228 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1229 "show CPU state before block translation" },
f193c797
FB
1230#ifdef TARGET_I386
1231 { CPU_LOG_PCALL, "pcall",
1232 "show protected mode far calls/returns/exceptions" },
1233#endif
8e3a9fd2 1234#ifdef DEBUG_IOPORT
fd872598
FB
1235 { CPU_LOG_IOPORT, "ioport",
1236 "show all i/o ports accesses" },
8e3a9fd2 1237#endif
f193c797
FB
1238 { 0, NULL, NULL },
1239};
1240
1241static int cmp1(const char *s1, int n, const char *s2)
1242{
1243 if (strlen(s2) != n)
1244 return 0;
1245 return memcmp(s1, s2, n) == 0;
1246}
3b46e624 1247
f193c797
FB
1248/* takes a comma separated list of log masks. Return 0 if error. */
1249int cpu_str_to_log_mask(const char *str)
1250{
1251 CPULogItem *item;
1252 int mask;
1253 const char *p, *p1;
1254
1255 p = str;
1256 mask = 0;
1257 for(;;) {
1258 p1 = strchr(p, ',');
1259 if (!p1)
1260 p1 = p + strlen(p);
8e3a9fd2
FB
1261 if(cmp1(p,p1-p,"all")) {
1262 for(item = cpu_log_items; item->mask != 0; item++) {
1263 mask |= item->mask;
1264 }
1265 } else {
f193c797
FB
1266 for(item = cpu_log_items; item->mask != 0; item++) {
1267 if (cmp1(p, p1 - p, item->name))
1268 goto found;
1269 }
1270 return 0;
8e3a9fd2 1271 }
f193c797
FB
1272 found:
1273 mask |= item->mask;
1274 if (*p1 != ',')
1275 break;
1276 p = p1 + 1;
1277 }
1278 return mask;
1279}
ea041c0e 1280
7501267e
FB
1281void cpu_abort(CPUState *env, const char *fmt, ...)
1282{
1283 va_list ap;
1284
1285 va_start(ap, fmt);
1286 fprintf(stderr, "qemu: fatal: ");
1287 vfprintf(stderr, fmt, ap);
1288 fprintf(stderr, "\n");
1289#ifdef TARGET_I386
0573fbfc
TS
1290 if(env->intercept & INTERCEPT_SVM_MASK) {
1291 /* most probably the virtual machine should not
1292 be shut down but rather caught by the VMM */
1293 vmexit(SVM_EXIT_SHUTDOWN, 0);
1294 }
7fe48483
FB
1295 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1296#else
1297 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1298#endif
924edcae 1299 if (logfile) {
f9373291
JM
1300 fprintf(logfile, "qemu: fatal: ");
1301 vfprintf(logfile, fmt, ap);
1302 fprintf(logfile, "\n");
1303#ifdef TARGET_I386
1304 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1305#else
1306 cpu_dump_state(env, logfile, fprintf, 0);
1307#endif
924edcae
AZ
1308 fflush(logfile);
1309 fclose(logfile);
1310 }
f9373291 1311 va_end(ap);
7501267e
FB
1312 abort();
1313}
1314
c5be9f08
TS
1315CPUState *cpu_copy(CPUState *env)
1316{
aaed909a
FB
1317#if 0
1318 /* XXX: broken, must be handled by each CPU */
c5be9f08
TS
1319 CPUState *new_env = cpu_init();
1320 /* preserve chaining and index */
1321 CPUState *next_cpu = new_env->next_cpu;
1322 int cpu_index = new_env->cpu_index;
1323 memcpy(new_env, env, sizeof(CPUState));
1324 new_env->next_cpu = next_cpu;
1325 new_env->cpu_index = cpu_index;
1326 return new_env;
aaed909a
FB
1327#else
1328 return NULL;
1329#endif
c5be9f08
TS
1330}
1331
0124311e
FB
1332#if !defined(CONFIG_USER_ONLY)
1333
ee8b7021
FB
1334/* NOTE: if flush_global is true, also flush global entries (not
1335 implemented yet) */
1336void tlb_flush(CPUState *env, int flush_global)
33417e70 1337{
33417e70 1338 int i;
0124311e 1339
9fa3e853
FB
1340#if defined(DEBUG_TLB)
1341 printf("tlb_flush:\n");
1342#endif
0124311e
FB
1343 /* must reset current TB so that interrupts cannot modify the
1344 links while we are modifying them */
1345 env->current_tb = NULL;
1346
33417e70 1347 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1348 env->tlb_table[0][i].addr_read = -1;
1349 env->tlb_table[0][i].addr_write = -1;
1350 env->tlb_table[0][i].addr_code = -1;
1351 env->tlb_table[1][i].addr_read = -1;
1352 env->tlb_table[1][i].addr_write = -1;
1353 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1354#if (NB_MMU_MODES >= 3)
1355 env->tlb_table[2][i].addr_read = -1;
1356 env->tlb_table[2][i].addr_write = -1;
1357 env->tlb_table[2][i].addr_code = -1;
1358#if (NB_MMU_MODES == 4)
1359 env->tlb_table[3][i].addr_read = -1;
1360 env->tlb_table[3][i].addr_write = -1;
1361 env->tlb_table[3][i].addr_code = -1;
1362#endif
1363#endif
33417e70 1364 }
9fa3e853 1365
8a40a180 1366 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853
FB
1367
1368#if !defined(CONFIG_SOFTMMU)
1369 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
0a962c02
FB
1370#endif
1371#ifdef USE_KQEMU
1372 if (env->kqemu_enabled) {
1373 kqemu_flush(env, flush_global);
1374 }
9fa3e853 1375#endif
e3db7226 1376 tlb_flush_count++;
33417e70
FB
1377}
1378
274da6b2 1379static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1380{
5fafdf24 1381 if (addr == (tlb_entry->addr_read &
84b7b8e7 1382 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1383 addr == (tlb_entry->addr_write &
84b7b8e7 1384 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1385 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1386 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1387 tlb_entry->addr_read = -1;
1388 tlb_entry->addr_write = -1;
1389 tlb_entry->addr_code = -1;
1390 }
61382a50
FB
1391}
1392
2e12669a 1393void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1394{
8a40a180 1395 int i;
9fa3e853 1396 TranslationBlock *tb;
0124311e 1397
9fa3e853 1398#if defined(DEBUG_TLB)
108c49b8 1399 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1400#endif
0124311e
FB
1401 /* must reset current TB so that interrupts cannot modify the
1402 links while we are modifying them */
1403 env->current_tb = NULL;
61382a50
FB
1404
1405 addr &= TARGET_PAGE_MASK;
1406 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1407 tlb_flush_entry(&env->tlb_table[0][i], addr);
1408 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1409#if (NB_MMU_MODES >= 3)
1410 tlb_flush_entry(&env->tlb_table[2][i], addr);
1411#if (NB_MMU_MODES == 4)
1412 tlb_flush_entry(&env->tlb_table[3][i], addr);
1413#endif
1414#endif
0124311e 1415
b362e5e0
PB
1416 /* Discard jump cache entries for any tb which might potentially
1417 overlap the flushed page. */
1418 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1419 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1420
1421 i = tb_jmp_cache_hash_page(addr);
1422 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
9fa3e853 1423
0124311e 1424#if !defined(CONFIG_SOFTMMU)
9fa3e853 1425 if (addr < MMAP_AREA_END)
0124311e 1426 munmap((void *)addr, TARGET_PAGE_SIZE);
61382a50 1427#endif
0a962c02
FB
1428#ifdef USE_KQEMU
1429 if (env->kqemu_enabled) {
1430 kqemu_flush_page(env, addr);
1431 }
1432#endif
9fa3e853
FB
1433}
1434
9fa3e853
FB
1435/* update the TLBs so that writes to code in the virtual page 'addr'
1436 can be detected */
6a00d601 1437static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1438{
5fafdf24 1439 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1440 ram_addr + TARGET_PAGE_SIZE,
1441 CODE_DIRTY_FLAG);
9fa3e853
FB
1442}
1443
9fa3e853 1444/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1445 tested for self modifying code */
5fafdf24 1446static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1447 target_ulong vaddr)
9fa3e853 1448{
3a7d929e 1449 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1450}
1451
5fafdf24 1452static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1453 unsigned long start, unsigned long length)
1454{
1455 unsigned long addr;
84b7b8e7
FB
1456 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1457 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1458 if ((addr - start) < length) {
84b7b8e7 1459 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1ccde1cb
FB
1460 }
1461 }
1462}
1463
3a7d929e 1464void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1465 int dirty_flags)
1ccde1cb
FB
1466{
1467 CPUState *env;
4f2ac237 1468 unsigned long length, start1;
0a962c02
FB
1469 int i, mask, len;
1470 uint8_t *p;
1ccde1cb
FB
1471
1472 start &= TARGET_PAGE_MASK;
1473 end = TARGET_PAGE_ALIGN(end);
1474
1475 length = end - start;
1476 if (length == 0)
1477 return;
0a962c02 1478 len = length >> TARGET_PAGE_BITS;
3a7d929e 1479#ifdef USE_KQEMU
6a00d601
FB
1480 /* XXX: should not depend on cpu context */
1481 env = first_cpu;
3a7d929e 1482 if (env->kqemu_enabled) {
f23db169
FB
1483 ram_addr_t addr;
1484 addr = start;
1485 for(i = 0; i < len; i++) {
1486 kqemu_set_notdirty(env, addr);
1487 addr += TARGET_PAGE_SIZE;
1488 }
3a7d929e
FB
1489 }
1490#endif
f23db169
FB
1491 mask = ~dirty_flags;
1492 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1493 for(i = 0; i < len; i++)
1494 p[i] &= mask;
1495
1ccde1cb
FB
1496 /* we modify the TLB cache so that the dirty bit will be set again
1497 when accessing the range */
59817ccb 1498 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1499 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1500 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1501 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1502 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1503 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1504#if (NB_MMU_MODES >= 3)
1505 for(i = 0; i < CPU_TLB_SIZE; i++)
1506 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1507#if (NB_MMU_MODES == 4)
1508 for(i = 0; i < CPU_TLB_SIZE; i++)
1509 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1510#endif
1511#endif
6a00d601 1512 }
59817ccb
FB
1513
1514#if !defined(CONFIG_SOFTMMU)
1515 /* XXX: this is expensive */
1516 {
1517 VirtPageDesc *p;
1518 int j;
1519 target_ulong addr;
1520
1521 for(i = 0; i < L1_SIZE; i++) {
1522 p = l1_virt_map[i];
1523 if (p) {
1524 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1525 for(j = 0; j < L2_SIZE; j++) {
1526 if (p->valid_tag == virt_valid_tag &&
1527 p->phys_addr >= start && p->phys_addr < end &&
1528 (p->prot & PROT_WRITE)) {
1529 if (addr < MMAP_AREA_END) {
5fafdf24 1530 mprotect((void *)addr, TARGET_PAGE_SIZE,
59817ccb
FB
1531 p->prot & ~PROT_WRITE);
1532 }
1533 }
1534 addr += TARGET_PAGE_SIZE;
1535 p++;
1536 }
1537 }
1538 }
1539 }
1540#endif
1ccde1cb
FB
1541}
1542
3a7d929e
FB
1543static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1544{
1545 ram_addr_t ram_addr;
1546
84b7b8e7 1547 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1548 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1549 tlb_entry->addend - (unsigned long)phys_ram_base;
1550 if (!cpu_physical_memory_is_dirty(ram_addr)) {
84b7b8e7 1551 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
3a7d929e
FB
1552 }
1553 }
1554}
1555
1556/* update the TLB according to the current state of the dirty bits */
1557void cpu_tlb_update_dirty(CPUState *env)
1558{
1559 int i;
1560 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1561 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1562 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1563 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1564#if (NB_MMU_MODES >= 3)
1565 for(i = 0; i < CPU_TLB_SIZE; i++)
1566 tlb_update_dirty(&env->tlb_table[2][i]);
1567#if (NB_MMU_MODES == 4)
1568 for(i = 0; i < CPU_TLB_SIZE; i++)
1569 tlb_update_dirty(&env->tlb_table[3][i]);
1570#endif
1571#endif
3a7d929e
FB
1572}
1573
5fafdf24 1574static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
108c49b8 1575 unsigned long start)
1ccde1cb
FB
1576{
1577 unsigned long addr;
84b7b8e7
FB
1578 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1579 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1580 if (addr == start) {
84b7b8e7 1581 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1ccde1cb
FB
1582 }
1583 }
1584}
1585
1586/* update the TLB corresponding to virtual page vaddr and phys addr
1587 addr so that it is no longer dirty */
6a00d601
FB
1588static inline void tlb_set_dirty(CPUState *env,
1589 unsigned long addr, target_ulong vaddr)
1ccde1cb 1590{
1ccde1cb
FB
1591 int i;
1592
1ccde1cb
FB
1593 addr &= TARGET_PAGE_MASK;
1594 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1595 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1596 tlb_set_dirty1(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1597#if (NB_MMU_MODES >= 3)
1598 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1599#if (NB_MMU_MODES == 4)
1600 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1601#endif
1602#endif
9fa3e853
FB
1603}
1604
59817ccb
FB
1605/* add a new TLB entry. At most one entry for a given virtual address
1606 is permitted. Return 0 if OK or 2 if the page could not be mapped
1607 (can only happen in non SOFTMMU mode for I/O pages or pages
1608 conflicting with the host address space). */
5fafdf24
TS
1609int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1610 target_phys_addr_t paddr, int prot,
6ebbf390 1611 int mmu_idx, int is_softmmu)
9fa3e853 1612{
92e873b9 1613 PhysPageDesc *p;
4f2ac237 1614 unsigned long pd;
9fa3e853 1615 unsigned int index;
4f2ac237 1616 target_ulong address;
108c49b8 1617 target_phys_addr_t addend;
9fa3e853 1618 int ret;
84b7b8e7 1619 CPUTLBEntry *te;
6658ffb8 1620 int i;
9fa3e853 1621
92e873b9 1622 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1623 if (!p) {
1624 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1625 } else {
1626 pd = p->phys_offset;
9fa3e853
FB
1627 }
1628#if defined(DEBUG_TLB)
6ebbf390
JM
1629 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1630 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1631#endif
1632
1633 ret = 0;
1634#if !defined(CONFIG_SOFTMMU)
5fafdf24 1635 if (is_softmmu)
9fa3e853
FB
1636#endif
1637 {
2a4188a3 1638 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
9fa3e853
FB
1639 /* IO memory case */
1640 address = vaddr | pd;
1641 addend = paddr;
1642 } else {
1643 /* standard memory */
1644 address = vaddr;
1645 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1646 }
6658ffb8
PB
1647
1648 /* Make accesses to pages with watchpoints go via the
1649 watchpoint trap routines. */
1650 for (i = 0; i < env->nb_watchpoints; i++) {
1651 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1652 if (address & ~TARGET_PAGE_MASK) {
d79acba4 1653 env->watchpoint[i].addend = 0;
6658ffb8
PB
1654 address = vaddr | io_mem_watch;
1655 } else {
d79acba4
AZ
1656 env->watchpoint[i].addend = pd - paddr +
1657 (unsigned long) phys_ram_base;
6658ffb8
PB
1658 /* TODO: Figure out how to make read watchpoints coexist
1659 with code. */
1660 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1661 }
1662 }
1663 }
d79acba4 1664
90f18422 1665 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
9fa3e853 1666 addend -= vaddr;
6ebbf390 1667 te = &env->tlb_table[mmu_idx][index];
84b7b8e7 1668 te->addend = addend;
67b915a5 1669 if (prot & PAGE_READ) {
84b7b8e7
FB
1670 te->addr_read = address;
1671 } else {
1672 te->addr_read = -1;
1673 }
1674 if (prot & PAGE_EXEC) {
1675 te->addr_code = address;
9fa3e853 1676 } else {
84b7b8e7 1677 te->addr_code = -1;
9fa3e853 1678 }
67b915a5 1679 if (prot & PAGE_WRITE) {
5fafdf24 1680 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
856074ec
FB
1681 (pd & IO_MEM_ROMD)) {
1682 /* write access calls the I/O callback */
5fafdf24 1683 te->addr_write = vaddr |
856074ec 1684 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
5fafdf24 1685 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1ccde1cb 1686 !cpu_physical_memory_is_dirty(pd)) {
84b7b8e7 1687 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
9fa3e853 1688 } else {
84b7b8e7 1689 te->addr_write = address;
9fa3e853
FB
1690 }
1691 } else {
84b7b8e7 1692 te->addr_write = -1;
9fa3e853
FB
1693 }
1694 }
1695#if !defined(CONFIG_SOFTMMU)
1696 else {
1697 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1698 /* IO access: no mapping is done as it will be handled by the
1699 soft MMU */
1700 if (!(env->hflags & HF_SOFTMMU_MASK))
1701 ret = 2;
1702 } else {
1703 void *map_addr;
59817ccb
FB
1704
1705 if (vaddr >= MMAP_AREA_END) {
1706 ret = 2;
1707 } else {
1708 if (prot & PROT_WRITE) {
5fafdf24 1709 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
d720b93d 1710#if defined(TARGET_HAS_SMC) || 1
59817ccb 1711 first_tb ||
d720b93d 1712#endif
5fafdf24 1713 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
59817ccb
FB
1714 !cpu_physical_memory_is_dirty(pd))) {
1715 /* ROM: we do as if code was inside */
1716 /* if code is present, we only map as read only and save the
1717 original mapping */
1718 VirtPageDesc *vp;
3b46e624 1719
90f18422 1720 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
59817ccb
FB
1721 vp->phys_addr = pd;
1722 vp->prot = prot;
1723 vp->valid_tag = virt_valid_tag;
1724 prot &= ~PAGE_WRITE;
1725 }
1726 }
5fafdf24 1727 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
59817ccb
FB
1728 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1729 if (map_addr == MAP_FAILED) {
1730 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1731 paddr, vaddr);
9fa3e853 1732 }
9fa3e853
FB
1733 }
1734 }
1735 }
1736#endif
1737 return ret;
1738}
1739
1740/* called from signal handler: invalidate the code and unprotect the
1741 page. Return TRUE if the fault was succesfully handled. */
53a5960a 1742int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
9fa3e853
FB
1743{
1744#if !defined(CONFIG_SOFTMMU)
1745 VirtPageDesc *vp;
1746
1747#if defined(DEBUG_TLB)
1748 printf("page_unprotect: addr=0x%08x\n", addr);
1749#endif
1750 addr &= TARGET_PAGE_MASK;
59817ccb
FB
1751
1752 /* if it is not mapped, no need to worry here */
1753 if (addr >= MMAP_AREA_END)
1754 return 0;
9fa3e853
FB
1755 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1756 if (!vp)
1757 return 0;
1758 /* NOTE: in this case, validate_tag is _not_ tested as it
1759 validates only the code TLB */
1760 if (vp->valid_tag != virt_valid_tag)
1761 return 0;
1762 if (!(vp->prot & PAGE_WRITE))
1763 return 0;
1764#if defined(DEBUG_TLB)
5fafdf24 1765 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
9fa3e853
FB
1766 addr, vp->phys_addr, vp->prot);
1767#endif
59817ccb
FB
1768 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1769 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1770 (unsigned long)addr, vp->prot);
d720b93d 1771 /* set the dirty bit */
0a962c02 1772 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
d720b93d
FB
1773 /* flush the code inside */
1774 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
9fa3e853
FB
1775 return 1;
1776#else
1777 return 0;
1778#endif
33417e70
FB
1779}
1780
0124311e
FB
1781#else
1782
ee8b7021 1783void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1784{
1785}
1786
2e12669a 1787void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
1788{
1789}
1790
5fafdf24
TS
1791int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1792 target_phys_addr_t paddr, int prot,
6ebbf390 1793 int mmu_idx, int is_softmmu)
9fa3e853
FB
1794{
1795 return 0;
1796}
0124311e 1797
9fa3e853
FB
1798/* dump memory mappings */
1799void page_dump(FILE *f)
33417e70 1800{
9fa3e853
FB
1801 unsigned long start, end;
1802 int i, j, prot, prot1;
1803 PageDesc *p;
33417e70 1804
9fa3e853
FB
1805 fprintf(f, "%-8s %-8s %-8s %s\n",
1806 "start", "end", "size", "prot");
1807 start = -1;
1808 end = -1;
1809 prot = 0;
1810 for(i = 0; i <= L1_SIZE; i++) {
1811 if (i < L1_SIZE)
1812 p = l1_map[i];
1813 else
1814 p = NULL;
1815 for(j = 0;j < L2_SIZE; j++) {
1816 if (!p)
1817 prot1 = 0;
1818 else
1819 prot1 = p[j].flags;
1820 if (prot1 != prot) {
1821 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1822 if (start != -1) {
1823 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 1824 start, end, end - start,
9fa3e853
FB
1825 prot & PAGE_READ ? 'r' : '-',
1826 prot & PAGE_WRITE ? 'w' : '-',
1827 prot & PAGE_EXEC ? 'x' : '-');
1828 }
1829 if (prot1 != 0)
1830 start = end;
1831 else
1832 start = -1;
1833 prot = prot1;
1834 }
1835 if (!p)
1836 break;
1837 }
33417e70 1838 }
33417e70
FB
1839}
1840
53a5960a 1841int page_get_flags(target_ulong address)
33417e70 1842{
9fa3e853
FB
1843 PageDesc *p;
1844
1845 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 1846 if (!p)
9fa3e853
FB
1847 return 0;
1848 return p->flags;
1849}
1850
1851/* modify the flags of a page and invalidate the code if
1852 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1853 depending on PAGE_WRITE */
53a5960a 1854void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
1855{
1856 PageDesc *p;
53a5960a 1857 target_ulong addr;
9fa3e853
FB
1858
1859 start = start & TARGET_PAGE_MASK;
1860 end = TARGET_PAGE_ALIGN(end);
1861 if (flags & PAGE_WRITE)
1862 flags |= PAGE_WRITE_ORG;
1863 spin_lock(&tb_lock);
1864 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1865 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1866 /* if the write protection is set, then we invalidate the code
1867 inside */
5fafdf24 1868 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
1869 (flags & PAGE_WRITE) &&
1870 p->first_tb) {
d720b93d 1871 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
1872 }
1873 p->flags = flags;
1874 }
1875 spin_unlock(&tb_lock);
33417e70
FB
1876}
1877
3d97b40b
TS
1878int page_check_range(target_ulong start, target_ulong len, int flags)
1879{
1880 PageDesc *p;
1881 target_ulong end;
1882 target_ulong addr;
1883
1884 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1885 start = start & TARGET_PAGE_MASK;
1886
1887 if( end < start )
1888 /* we've wrapped around */
1889 return -1;
1890 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1891 p = page_find(addr >> TARGET_PAGE_BITS);
1892 if( !p )
1893 return -1;
1894 if( !(p->flags & PAGE_VALID) )
1895 return -1;
1896
1897 if (!(p->flags & PAGE_READ) && (flags & PAGE_READ) )
1898 return -1;
1899 if (!(p->flags & PAGE_WRITE) && (flags & PAGE_WRITE) )
1900 return -1;
1901 }
1902 return 0;
1903}
1904
9fa3e853
FB
1905/* called from signal handler: invalidate the code and unprotect the
1906 page. Return TRUE if the fault was succesfully handled. */
53a5960a 1907int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
1908{
1909 unsigned int page_index, prot, pindex;
1910 PageDesc *p, *p1;
53a5960a 1911 target_ulong host_start, host_end, addr;
9fa3e853 1912
83fb7adf 1913 host_start = address & qemu_host_page_mask;
9fa3e853
FB
1914 page_index = host_start >> TARGET_PAGE_BITS;
1915 p1 = page_find(page_index);
1916 if (!p1)
1917 return 0;
83fb7adf 1918 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
1919 p = p1;
1920 prot = 0;
1921 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1922 prot |= p->flags;
1923 p++;
1924 }
1925 /* if the page was really writable, then we change its
1926 protection back to writable */
1927 if (prot & PAGE_WRITE_ORG) {
1928 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1929 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 1930 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
1931 (prot & PAGE_BITS) | PAGE_WRITE);
1932 p1[pindex].flags |= PAGE_WRITE;
1933 /* and since the content will be modified, we must invalidate
1934 the corresponding translated code. */
d720b93d 1935 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
1936#ifdef DEBUG_TB_CHECK
1937 tb_invalidate_check(address);
1938#endif
1939 return 1;
1940 }
1941 }
1942 return 0;
1943}
1944
1945/* call this function when system calls directly modify a memory area */
53a5960a
PB
1946/* ??? This should be redundant now we have lock_user. */
1947void page_unprotect_range(target_ulong data, target_ulong data_size)
9fa3e853 1948{
53a5960a 1949 target_ulong start, end, addr;
9fa3e853 1950
53a5960a 1951 start = data;
9fa3e853
FB
1952 end = start + data_size;
1953 start &= TARGET_PAGE_MASK;
1954 end = TARGET_PAGE_ALIGN(end);
1955 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
d720b93d 1956 page_unprotect(addr, 0, NULL);
9fa3e853
FB
1957 }
1958}
1959
6a00d601
FB
1960static inline void tlb_set_dirty(CPUState *env,
1961 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
1962{
1963}
9fa3e853
FB
1964#endif /* defined(CONFIG_USER_ONLY) */
1965
db7b5426
BS
1966static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1967 int memory);
1968static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
1969 int orig_memory);
1970#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
1971 need_subpage) \
1972 do { \
1973 if (addr > start_addr) \
1974 start_addr2 = 0; \
1975 else { \
1976 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
1977 if (start_addr2 > 0) \
1978 need_subpage = 1; \
1979 } \
1980 \
49e9fba2 1981 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
1982 end_addr2 = TARGET_PAGE_SIZE - 1; \
1983 else { \
1984 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
1985 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
1986 need_subpage = 1; \
1987 } \
1988 } while (0)
1989
33417e70
FB
1990/* register physical memory. 'size' must be a multiple of the target
1991 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1992 io memory page */
5fafdf24 1993void cpu_register_physical_memory(target_phys_addr_t start_addr,
2e12669a
FB
1994 unsigned long size,
1995 unsigned long phys_offset)
33417e70 1996{
108c49b8 1997 target_phys_addr_t addr, end_addr;
92e873b9 1998 PhysPageDesc *p;
9d42037b 1999 CPUState *env;
db7b5426
BS
2000 unsigned long orig_size = size;
2001 void *subpage;
33417e70 2002
5fd386f6 2003 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2004 end_addr = start_addr + (target_phys_addr_t)size;
2005 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2006 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2007 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2008 unsigned long orig_memory = p->phys_offset;
2009 target_phys_addr_t start_addr2, end_addr2;
2010 int need_subpage = 0;
2011
2012 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2013 need_subpage);
2014 if (need_subpage) {
2015 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2016 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2017 &p->phys_offset, orig_memory);
2018 } else {
2019 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2020 >> IO_MEM_SHIFT];
2021 }
2022 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2023 } else {
2024 p->phys_offset = phys_offset;
2025 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2026 (phys_offset & IO_MEM_ROMD))
2027 phys_offset += TARGET_PAGE_SIZE;
2028 }
2029 } else {
2030 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2031 p->phys_offset = phys_offset;
2032 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2033 (phys_offset & IO_MEM_ROMD))
2034 phys_offset += TARGET_PAGE_SIZE;
2035 else {
2036 target_phys_addr_t start_addr2, end_addr2;
2037 int need_subpage = 0;
2038
2039 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2040 end_addr2, need_subpage);
2041
2042 if (need_subpage) {
2043 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2044 &p->phys_offset, IO_MEM_UNASSIGNED);
2045 subpage_register(subpage, start_addr2, end_addr2,
2046 phys_offset);
2047 }
2048 }
2049 }
33417e70 2050 }
3b46e624 2051
9d42037b
FB
2052 /* since each CPU stores ram addresses in its TLB cache, we must
2053 reset the modified entries */
2054 /* XXX: slow ! */
2055 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2056 tlb_flush(env, 1);
2057 }
33417e70
FB
2058}
2059
ba863458
FB
2060/* XXX: temporary until new memory mapping API */
2061uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2062{
2063 PhysPageDesc *p;
2064
2065 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2066 if (!p)
2067 return IO_MEM_UNASSIGNED;
2068 return p->phys_offset;
2069}
2070
e9a1ab19
FB
2071/* XXX: better than nothing */
2072ram_addr_t qemu_ram_alloc(unsigned int size)
2073{
2074 ram_addr_t addr;
2075 if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
5fafdf24 2076 fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
e9a1ab19
FB
2077 size, phys_ram_size);
2078 abort();
2079 }
2080 addr = phys_ram_alloc_offset;
2081 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2082 return addr;
2083}
2084
2085void qemu_ram_free(ram_addr_t addr)
2086{
2087}
2088
a4193c8a 2089static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2090{
67d3b957 2091#ifdef DEBUG_UNASSIGNED
ab3d1727 2092 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316
BS
2093#endif
2094#ifdef TARGET_SPARC
6c36d3fa 2095 do_unassigned_access(addr, 0, 0, 0);
f1ccf904
TS
2096#elif TARGET_CRIS
2097 do_unassigned_access(addr, 0, 0, 0);
67d3b957 2098#endif
33417e70
FB
2099 return 0;
2100}
2101
a4193c8a 2102static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2103{
67d3b957 2104#ifdef DEBUG_UNASSIGNED
ab3d1727 2105 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2106#endif
b4f0a316 2107#ifdef TARGET_SPARC
6c36d3fa 2108 do_unassigned_access(addr, 1, 0, 0);
f1ccf904
TS
2109#elif TARGET_CRIS
2110 do_unassigned_access(addr, 1, 0, 0);
b4f0a316 2111#endif
33417e70
FB
2112}
2113
2114static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2115 unassigned_mem_readb,
2116 unassigned_mem_readb,
2117 unassigned_mem_readb,
2118};
2119
2120static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2121 unassigned_mem_writeb,
2122 unassigned_mem_writeb,
2123 unassigned_mem_writeb,
2124};
2125
3a7d929e 2126static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 2127{
3a7d929e
FB
2128 unsigned long ram_addr;
2129 int dirty_flags;
2130 ram_addr = addr - (unsigned long)phys_ram_base;
2131 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2132 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2133#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2134 tb_invalidate_phys_page_fast(ram_addr, 1);
2135 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2136#endif
3a7d929e 2137 }
c27004ec 2138 stb_p((uint8_t *)(long)addr, val);
f32fc648
FB
2139#ifdef USE_KQEMU
2140 if (cpu_single_env->kqemu_enabled &&
2141 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2142 kqemu_modify_page(cpu_single_env, ram_addr);
2143#endif
f23db169
FB
2144 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2145 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2146 /* we remove the notdirty callback only if the code has been
2147 flushed */
2148 if (dirty_flags == 0xff)
6a00d601 2149 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
2150}
2151
3a7d929e 2152static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 2153{
3a7d929e
FB
2154 unsigned long ram_addr;
2155 int dirty_flags;
2156 ram_addr = addr - (unsigned long)phys_ram_base;
2157 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2158 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2159#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2160 tb_invalidate_phys_page_fast(ram_addr, 2);
2161 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2162#endif
3a7d929e 2163 }
c27004ec 2164 stw_p((uint8_t *)(long)addr, val);
f32fc648
FB
2165#ifdef USE_KQEMU
2166 if (cpu_single_env->kqemu_enabled &&
2167 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2168 kqemu_modify_page(cpu_single_env, ram_addr);
2169#endif
f23db169
FB
2170 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2171 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2172 /* we remove the notdirty callback only if the code has been
2173 flushed */
2174 if (dirty_flags == 0xff)
6a00d601 2175 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
2176}
2177
3a7d929e 2178static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 2179{
3a7d929e
FB
2180 unsigned long ram_addr;
2181 int dirty_flags;
2182 ram_addr = addr - (unsigned long)phys_ram_base;
2183 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2184 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2185#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2186 tb_invalidate_phys_page_fast(ram_addr, 4);
2187 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2188#endif
3a7d929e 2189 }
c27004ec 2190 stl_p((uint8_t *)(long)addr, val);
f32fc648
FB
2191#ifdef USE_KQEMU
2192 if (cpu_single_env->kqemu_enabled &&
2193 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2194 kqemu_modify_page(cpu_single_env, ram_addr);
2195#endif
f23db169
FB
2196 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2197 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2198 /* we remove the notdirty callback only if the code has been
2199 flushed */
2200 if (dirty_flags == 0xff)
6a00d601 2201 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
2202}
2203
3a7d929e 2204static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2205 NULL, /* never used */
2206 NULL, /* never used */
2207 NULL, /* never used */
2208};
2209
1ccde1cb
FB
2210static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2211 notdirty_mem_writeb,
2212 notdirty_mem_writew,
2213 notdirty_mem_writel,
2214};
2215
6658ffb8
PB
2216#if defined(CONFIG_SOFTMMU)
2217/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2218 so these check for a hit then pass through to the normal out-of-line
2219 phys routines. */
2220static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2221{
2222 return ldub_phys(addr);
2223}
2224
2225static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2226{
2227 return lduw_phys(addr);
2228}
2229
2230static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2231{
2232 return ldl_phys(addr);
2233}
2234
2235/* Generate a debug exception if a watchpoint has been hit.
2236 Returns the real physical address of the access. addr will be a host
d79acba4 2237 address in case of a RAM location. */
6658ffb8
PB
2238static target_ulong check_watchpoint(target_phys_addr_t addr)
2239{
2240 CPUState *env = cpu_single_env;
2241 target_ulong watch;
2242 target_ulong retaddr;
2243 int i;
2244
2245 retaddr = addr;
2246 for (i = 0; i < env->nb_watchpoints; i++) {
2247 watch = env->watchpoint[i].vaddr;
2248 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
d79acba4 2249 retaddr = addr - env->watchpoint[i].addend;
6658ffb8
PB
2250 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2251 cpu_single_env->watchpoint_hit = i + 1;
2252 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2253 break;
2254 }
2255 }
2256 }
2257 return retaddr;
2258}
2259
2260static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2261 uint32_t val)
2262{
2263 addr = check_watchpoint(addr);
2264 stb_phys(addr, val);
2265}
2266
2267static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2268 uint32_t val)
2269{
2270 addr = check_watchpoint(addr);
2271 stw_phys(addr, val);
2272}
2273
2274static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2275 uint32_t val)
2276{
2277 addr = check_watchpoint(addr);
2278 stl_phys(addr, val);
2279}
2280
2281static CPUReadMemoryFunc *watch_mem_read[3] = {
2282 watch_mem_readb,
2283 watch_mem_readw,
2284 watch_mem_readl,
2285};
2286
2287static CPUWriteMemoryFunc *watch_mem_write[3] = {
2288 watch_mem_writeb,
2289 watch_mem_writew,
2290 watch_mem_writel,
2291};
2292#endif
2293
db7b5426
BS
2294static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2295 unsigned int len)
2296{
2297 CPUReadMemoryFunc **mem_read;
2298 uint32_t ret;
2299 unsigned int idx;
2300
2301 idx = SUBPAGE_IDX(addr - mmio->base);
2302#if defined(DEBUG_SUBPAGE)
2303 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2304 mmio, len, addr, idx);
2305#endif
2306 mem_read = mmio->mem_read[idx];
2307 ret = (*mem_read[len])(mmio->opaque[idx], addr);
2308
2309 return ret;
2310}
2311
2312static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2313 uint32_t value, unsigned int len)
2314{
2315 CPUWriteMemoryFunc **mem_write;
2316 unsigned int idx;
2317
2318 idx = SUBPAGE_IDX(addr - mmio->base);
2319#if defined(DEBUG_SUBPAGE)
2320 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2321 mmio, len, addr, idx, value);
2322#endif
2323 mem_write = mmio->mem_write[idx];
2324 (*mem_write[len])(mmio->opaque[idx], addr, value);
2325}
2326
2327static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2328{
2329#if defined(DEBUG_SUBPAGE)
2330 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2331#endif
2332
2333 return subpage_readlen(opaque, addr, 0);
2334}
2335
2336static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2337 uint32_t value)
2338{
2339#if defined(DEBUG_SUBPAGE)
2340 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2341#endif
2342 subpage_writelen(opaque, addr, value, 0);
2343}
2344
2345static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2346{
2347#if defined(DEBUG_SUBPAGE)
2348 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2349#endif
2350
2351 return subpage_readlen(opaque, addr, 1);
2352}
2353
2354static void subpage_writew (void *opaque, target_phys_addr_t addr,
2355 uint32_t value)
2356{
2357#if defined(DEBUG_SUBPAGE)
2358 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2359#endif
2360 subpage_writelen(opaque, addr, value, 1);
2361}
2362
2363static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2364{
2365#if defined(DEBUG_SUBPAGE)
2366 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2367#endif
2368
2369 return subpage_readlen(opaque, addr, 2);
2370}
2371
2372static void subpage_writel (void *opaque,
2373 target_phys_addr_t addr, uint32_t value)
2374{
2375#if defined(DEBUG_SUBPAGE)
2376 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2377#endif
2378 subpage_writelen(opaque, addr, value, 2);
2379}
2380
2381static CPUReadMemoryFunc *subpage_read[] = {
2382 &subpage_readb,
2383 &subpage_readw,
2384 &subpage_readl,
2385};
2386
2387static CPUWriteMemoryFunc *subpage_write[] = {
2388 &subpage_writeb,
2389 &subpage_writew,
2390 &subpage_writel,
2391};
2392
2393static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2394 int memory)
2395{
2396 int idx, eidx;
2397
2398 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2399 return -1;
2400 idx = SUBPAGE_IDX(start);
2401 eidx = SUBPAGE_IDX(end);
2402#if defined(DEBUG_SUBPAGE)
2403 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2404 mmio, start, end, idx, eidx, memory);
2405#endif
2406 memory >>= IO_MEM_SHIFT;
2407 for (; idx <= eidx; idx++) {
2408 mmio->mem_read[idx] = io_mem_read[memory];
2409 mmio->mem_write[idx] = io_mem_write[memory];
2410 mmio->opaque[idx] = io_mem_opaque[memory];
2411 }
2412
2413 return 0;
2414}
2415
2416static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
2417 int orig_memory)
2418{
2419 subpage_t *mmio;
2420 int subpage_memory;
2421
2422 mmio = qemu_mallocz(sizeof(subpage_t));
2423 if (mmio != NULL) {
2424 mmio->base = base;
2425 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2426#if defined(DEBUG_SUBPAGE)
2427 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2428 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2429#endif
2430 *phys = subpage_memory | IO_MEM_SUBPAGE;
2431 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2432 }
2433
2434 return mmio;
2435}
2436
33417e70
FB
2437static void io_mem_init(void)
2438{
3a7d929e 2439 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2440 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2441 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2442 io_mem_nb = 5;
2443
6658ffb8
PB
2444#if defined(CONFIG_SOFTMMU)
2445 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2446 watch_mem_write, NULL);
2447#endif
1ccde1cb 2448 /* alloc dirty bits array */
0a962c02 2449 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2450 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2451}
2452
2453/* mem_read and mem_write are arrays of functions containing the
2454 function to access byte (index 0), word (index 1) and dword (index
2455 2). All functions must be supplied. If io_index is non zero, the
2456 corresponding io zone is modified. If it is zero, a new io zone is
2457 allocated. The return value can be used with
2458 cpu_register_physical_memory(). (-1) is returned if error. */
2459int cpu_register_io_memory(int io_index,
2460 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2461 CPUWriteMemoryFunc **mem_write,
2462 void *opaque)
33417e70
FB
2463{
2464 int i;
2465
2466 if (io_index <= 0) {
b5ff1b31 2467 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2468 return -1;
2469 io_index = io_mem_nb++;
2470 } else {
2471 if (io_index >= IO_MEM_NB_ENTRIES)
2472 return -1;
2473 }
b5ff1b31 2474
33417e70
FB
2475 for(i = 0;i < 3; i++) {
2476 io_mem_read[io_index][i] = mem_read[i];
2477 io_mem_write[io_index][i] = mem_write[i];
2478 }
a4193c8a 2479 io_mem_opaque[io_index] = opaque;
33417e70
FB
2480 return io_index << IO_MEM_SHIFT;
2481}
61382a50 2482
8926b517
FB
2483CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2484{
2485 return io_mem_write[io_index >> IO_MEM_SHIFT];
2486}
2487
2488CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2489{
2490 return io_mem_read[io_index >> IO_MEM_SHIFT];
2491}
2492
13eb76e0
FB
2493/* physical memory access (slow version, mainly for debug) */
2494#if defined(CONFIG_USER_ONLY)
5fafdf24 2495void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2496 int len, int is_write)
2497{
2498 int l, flags;
2499 target_ulong page;
53a5960a 2500 void * p;
13eb76e0
FB
2501
2502 while (len > 0) {
2503 page = addr & TARGET_PAGE_MASK;
2504 l = (page + TARGET_PAGE_SIZE) - addr;
2505 if (l > len)
2506 l = len;
2507 flags = page_get_flags(page);
2508 if (!(flags & PAGE_VALID))
2509 return;
2510 if (is_write) {
2511 if (!(flags & PAGE_WRITE))
2512 return;
53a5960a
PB
2513 p = lock_user(addr, len, 0);
2514 memcpy(p, buf, len);
2515 unlock_user(p, addr, len);
13eb76e0
FB
2516 } else {
2517 if (!(flags & PAGE_READ))
2518 return;
53a5960a
PB
2519 p = lock_user(addr, len, 1);
2520 memcpy(buf, p, len);
2521 unlock_user(p, addr, 0);
13eb76e0
FB
2522 }
2523 len -= l;
2524 buf += l;
2525 addr += l;
2526 }
2527}
8df1cd07 2528
13eb76e0 2529#else
5fafdf24 2530void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2531 int len, int is_write)
2532{
2533 int l, io_index;
2534 uint8_t *ptr;
2535 uint32_t val;
2e12669a
FB
2536 target_phys_addr_t page;
2537 unsigned long pd;
92e873b9 2538 PhysPageDesc *p;
3b46e624 2539
13eb76e0
FB
2540 while (len > 0) {
2541 page = addr & TARGET_PAGE_MASK;
2542 l = (page + TARGET_PAGE_SIZE) - addr;
2543 if (l > len)
2544 l = len;
92e873b9 2545 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2546 if (!p) {
2547 pd = IO_MEM_UNASSIGNED;
2548 } else {
2549 pd = p->phys_offset;
2550 }
3b46e624 2551
13eb76e0 2552 if (is_write) {
3a7d929e 2553 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2554 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2555 /* XXX: could force cpu_single_env to NULL to avoid
2556 potential bugs */
13eb76e0 2557 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2558 /* 32 bit write access */
c27004ec 2559 val = ldl_p(buf);
a4193c8a 2560 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2561 l = 4;
2562 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2563 /* 16 bit write access */
c27004ec 2564 val = lduw_p(buf);
a4193c8a 2565 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2566 l = 2;
2567 } else {
1c213d19 2568 /* 8 bit write access */
c27004ec 2569 val = ldub_p(buf);
a4193c8a 2570 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2571 l = 1;
2572 }
2573 } else {
b448f2f3
FB
2574 unsigned long addr1;
2575 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2576 /* RAM case */
b448f2f3 2577 ptr = phys_ram_base + addr1;
13eb76e0 2578 memcpy(ptr, buf, l);
3a7d929e
FB
2579 if (!cpu_physical_memory_is_dirty(addr1)) {
2580 /* invalidate code */
2581 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2582 /* set dirty bit */
5fafdf24 2583 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2584 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2585 }
13eb76e0
FB
2586 }
2587 } else {
5fafdf24 2588 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2589 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2590 /* I/O case */
2591 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2592 if (l >= 4 && ((addr & 3) == 0)) {
2593 /* 32 bit read access */
a4193c8a 2594 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2595 stl_p(buf, val);
13eb76e0
FB
2596 l = 4;
2597 } else if (l >= 2 && ((addr & 1) == 0)) {
2598 /* 16 bit read access */
a4193c8a 2599 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2600 stw_p(buf, val);
13eb76e0
FB
2601 l = 2;
2602 } else {
1c213d19 2603 /* 8 bit read access */
a4193c8a 2604 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2605 stb_p(buf, val);
13eb76e0
FB
2606 l = 1;
2607 }
2608 } else {
2609 /* RAM case */
5fafdf24 2610 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2611 (addr & ~TARGET_PAGE_MASK);
2612 memcpy(buf, ptr, l);
2613 }
2614 }
2615 len -= l;
2616 buf += l;
2617 addr += l;
2618 }
2619}
8df1cd07 2620
d0ecd2aa 2621/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2622void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2623 const uint8_t *buf, int len)
2624{
2625 int l;
2626 uint8_t *ptr;
2627 target_phys_addr_t page;
2628 unsigned long pd;
2629 PhysPageDesc *p;
3b46e624 2630
d0ecd2aa
FB
2631 while (len > 0) {
2632 page = addr & TARGET_PAGE_MASK;
2633 l = (page + TARGET_PAGE_SIZE) - addr;
2634 if (l > len)
2635 l = len;
2636 p = phys_page_find(page >> TARGET_PAGE_BITS);
2637 if (!p) {
2638 pd = IO_MEM_UNASSIGNED;
2639 } else {
2640 pd = p->phys_offset;
2641 }
3b46e624 2642
d0ecd2aa 2643 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2644 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2645 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2646 /* do nothing */
2647 } else {
2648 unsigned long addr1;
2649 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2650 /* ROM/RAM case */
2651 ptr = phys_ram_base + addr1;
2652 memcpy(ptr, buf, l);
2653 }
2654 len -= l;
2655 buf += l;
2656 addr += l;
2657 }
2658}
2659
2660
8df1cd07
FB
2661/* warning: addr must be aligned */
2662uint32_t ldl_phys(target_phys_addr_t addr)
2663{
2664 int io_index;
2665 uint8_t *ptr;
2666 uint32_t val;
2667 unsigned long pd;
2668 PhysPageDesc *p;
2669
2670 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2671 if (!p) {
2672 pd = IO_MEM_UNASSIGNED;
2673 } else {
2674 pd = p->phys_offset;
2675 }
3b46e624 2676
5fafdf24 2677 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2678 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2679 /* I/O case */
2680 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2681 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2682 } else {
2683 /* RAM case */
5fafdf24 2684 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2685 (addr & ~TARGET_PAGE_MASK);
2686 val = ldl_p(ptr);
2687 }
2688 return val;
2689}
2690
84b7b8e7
FB
2691/* warning: addr must be aligned */
2692uint64_t ldq_phys(target_phys_addr_t addr)
2693{
2694 int io_index;
2695 uint8_t *ptr;
2696 uint64_t val;
2697 unsigned long pd;
2698 PhysPageDesc *p;
2699
2700 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2701 if (!p) {
2702 pd = IO_MEM_UNASSIGNED;
2703 } else {
2704 pd = p->phys_offset;
2705 }
3b46e624 2706
2a4188a3
FB
2707 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2708 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
2709 /* I/O case */
2710 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2711#ifdef TARGET_WORDS_BIGENDIAN
2712 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2713 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2714#else
2715 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2716 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2717#endif
2718 } else {
2719 /* RAM case */
5fafdf24 2720 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
2721 (addr & ~TARGET_PAGE_MASK);
2722 val = ldq_p(ptr);
2723 }
2724 return val;
2725}
2726
aab33094
FB
2727/* XXX: optimize */
2728uint32_t ldub_phys(target_phys_addr_t addr)
2729{
2730 uint8_t val;
2731 cpu_physical_memory_read(addr, &val, 1);
2732 return val;
2733}
2734
2735/* XXX: optimize */
2736uint32_t lduw_phys(target_phys_addr_t addr)
2737{
2738 uint16_t val;
2739 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2740 return tswap16(val);
2741}
2742
8df1cd07
FB
2743/* warning: addr must be aligned. The ram page is not masked as dirty
2744 and the code inside is not invalidated. It is useful if the dirty
2745 bits are used to track modified PTEs */
2746void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2747{
2748 int io_index;
2749 uint8_t *ptr;
2750 unsigned long pd;
2751 PhysPageDesc *p;
2752
2753 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2754 if (!p) {
2755 pd = IO_MEM_UNASSIGNED;
2756 } else {
2757 pd = p->phys_offset;
2758 }
3b46e624 2759
3a7d929e 2760 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2761 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2762 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2763 } else {
5fafdf24 2764 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2765 (addr & ~TARGET_PAGE_MASK);
2766 stl_p(ptr, val);
2767 }
2768}
2769
bc98a7ef
JM
2770void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2771{
2772 int io_index;
2773 uint8_t *ptr;
2774 unsigned long pd;
2775 PhysPageDesc *p;
2776
2777 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2778 if (!p) {
2779 pd = IO_MEM_UNASSIGNED;
2780 } else {
2781 pd = p->phys_offset;
2782 }
3b46e624 2783
bc98a7ef
JM
2784 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2785 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2786#ifdef TARGET_WORDS_BIGENDIAN
2787 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2788 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2789#else
2790 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2791 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2792#endif
2793 } else {
5fafdf24 2794 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
2795 (addr & ~TARGET_PAGE_MASK);
2796 stq_p(ptr, val);
2797 }
2798}
2799
8df1cd07 2800/* warning: addr must be aligned */
8df1cd07
FB
2801void stl_phys(target_phys_addr_t addr, uint32_t val)
2802{
2803 int io_index;
2804 uint8_t *ptr;
2805 unsigned long pd;
2806 PhysPageDesc *p;
2807
2808 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2809 if (!p) {
2810 pd = IO_MEM_UNASSIGNED;
2811 } else {
2812 pd = p->phys_offset;
2813 }
3b46e624 2814
3a7d929e 2815 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2816 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2817 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2818 } else {
2819 unsigned long addr1;
2820 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2821 /* RAM case */
2822 ptr = phys_ram_base + addr1;
2823 stl_p(ptr, val);
3a7d929e
FB
2824 if (!cpu_physical_memory_is_dirty(addr1)) {
2825 /* invalidate code */
2826 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2827 /* set dirty bit */
f23db169
FB
2828 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2829 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2830 }
8df1cd07
FB
2831 }
2832}
2833
aab33094
FB
2834/* XXX: optimize */
2835void stb_phys(target_phys_addr_t addr, uint32_t val)
2836{
2837 uint8_t v = val;
2838 cpu_physical_memory_write(addr, &v, 1);
2839}
2840
2841/* XXX: optimize */
2842void stw_phys(target_phys_addr_t addr, uint32_t val)
2843{
2844 uint16_t v = tswap16(val);
2845 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2846}
2847
2848/* XXX: optimize */
2849void stq_phys(target_phys_addr_t addr, uint64_t val)
2850{
2851 val = tswap64(val);
2852 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2853}
2854
13eb76e0
FB
2855#endif
2856
2857/* virtual memory access for debug */
5fafdf24 2858int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 2859 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2860{
2861 int l;
9b3c35e0
JM
2862 target_phys_addr_t phys_addr;
2863 target_ulong page;
13eb76e0
FB
2864
2865 while (len > 0) {
2866 page = addr & TARGET_PAGE_MASK;
2867 phys_addr = cpu_get_phys_page_debug(env, page);
2868 /* if no physical page mapped, return an error */
2869 if (phys_addr == -1)
2870 return -1;
2871 l = (page + TARGET_PAGE_SIZE) - addr;
2872 if (l > len)
2873 l = len;
5fafdf24 2874 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 2875 buf, l, is_write);
13eb76e0
FB
2876 len -= l;
2877 buf += l;
2878 addr += l;
2879 }
2880 return 0;
2881}
2882
e3db7226
FB
2883void dump_exec_info(FILE *f,
2884 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2885{
2886 int i, target_code_size, max_target_code_size;
2887 int direct_jmp_count, direct_jmp2_count, cross_page;
2888 TranslationBlock *tb;
3b46e624 2889
e3db7226
FB
2890 target_code_size = 0;
2891 max_target_code_size = 0;
2892 cross_page = 0;
2893 direct_jmp_count = 0;
2894 direct_jmp2_count = 0;
2895 for(i = 0; i < nb_tbs; i++) {
2896 tb = &tbs[i];
2897 target_code_size += tb->size;
2898 if (tb->size > max_target_code_size)
2899 max_target_code_size = tb->size;
2900 if (tb->page_addr[1] != -1)
2901 cross_page++;
2902 if (tb->tb_next_offset[0] != 0xffff) {
2903 direct_jmp_count++;
2904 if (tb->tb_next_offset[1] != 0xffff) {
2905 direct_jmp2_count++;
2906 }
2907 }
2908 }
2909 /* XXX: avoid using doubles ? */
2910 cpu_fprintf(f, "TB count %d\n", nb_tbs);
5fafdf24 2911 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
2912 nb_tbs ? target_code_size / nb_tbs : 0,
2913 max_target_code_size);
5fafdf24 2914 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
2915 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2916 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
2917 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2918 cross_page,
e3db7226
FB
2919 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2920 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 2921 direct_jmp_count,
e3db7226
FB
2922 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2923 direct_jmp2_count,
2924 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2925 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2926 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2927 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2928}
2929
5fafdf24 2930#if !defined(CONFIG_USER_ONLY)
61382a50
FB
2931
2932#define MMUSUFFIX _cmmu
2933#define GETPC() NULL
2934#define env cpu_single_env
b769d8fe 2935#define SOFTMMU_CODE_ACCESS
61382a50
FB
2936
2937#define SHIFT 0
2938#include "softmmu_template.h"
2939
2940#define SHIFT 1
2941#include "softmmu_template.h"
2942
2943#define SHIFT 2
2944#include "softmmu_template.h"
2945
2946#define SHIFT 3
2947#include "softmmu_template.h"
2948
2949#undef env
2950
2951#endif