]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
Allocate memory below 4GB as one chunk
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 74#elif defined(TARGET_X86_64)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 76#elif defined(TARGET_I386)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 78#else
108c49b8
FB
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
c227f099
AL
119 ram_addr_t offset;
120 ram_addr_t length;
94a6b54f
PB
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 127 of this variable will break. */
c227f099 128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004
FB
181static PageDesc *l1_map[L1_SIZE];
182
e2eef170 183#if !defined(CONFIG_USER_ONLY)
6d9a1304
PB
184static PhysPageDesc **l1_phys_map;
185
e2eef170
PB
186static void io_mem_init(void);
187
33417e70 188/* io memory support */
33417e70
FB
189CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
190CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 191void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 192static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
193static int io_mem_watch;
194#endif
33417e70 195
34865134 196/* log support */
1e8b27ca
JR
197#ifdef WIN32
198static const char *logfilename = "qemu.log";
199#else
d9b630fd 200static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 201#endif
34865134
FB
202FILE *logfile;
203int loglevel;
e735b91c 204static int log_append = 0;
34865134 205
e3db7226
FB
206/* statistics */
207static int tlb_flush_count;
208static int tb_flush_count;
209static int tb_phys_invalidate_count;
210
7cb69cae
FB
211#ifdef _WIN32
212static void map_exec(void *addr, long size)
213{
214 DWORD old_protect;
215 VirtualProtect(addr, size,
216 PAGE_EXECUTE_READWRITE, &old_protect);
217
218}
219#else
220static void map_exec(void *addr, long size)
221{
4369415f 222 unsigned long start, end, page_size;
7cb69cae 223
4369415f 224 page_size = getpagesize();
7cb69cae 225 start = (unsigned long)addr;
4369415f 226 start &= ~(page_size - 1);
7cb69cae
FB
227
228 end = (unsigned long)addr + size;
4369415f
FB
229 end += page_size - 1;
230 end &= ~(page_size - 1);
7cb69cae
FB
231
232 mprotect((void *)start, end - start,
233 PROT_READ | PROT_WRITE | PROT_EXEC);
234}
235#endif
236
b346ff46 237static void page_init(void)
54936004 238{
83fb7adf 239 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 240 TARGET_PAGE_SIZE */
c2b48b69
AL
241#ifdef _WIN32
242 {
243 SYSTEM_INFO system_info;
244
245 GetSystemInfo(&system_info);
246 qemu_real_host_page_size = system_info.dwPageSize;
247 }
248#else
249 qemu_real_host_page_size = getpagesize();
250#endif
83fb7adf
FB
251 if (qemu_host_page_size == 0)
252 qemu_host_page_size = qemu_real_host_page_size;
253 if (qemu_host_page_size < TARGET_PAGE_SIZE)
254 qemu_host_page_size = TARGET_PAGE_SIZE;
255 qemu_host_page_bits = 0;
256 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
257 qemu_host_page_bits++;
258 qemu_host_page_mask = ~(qemu_host_page_size - 1);
6d9a1304 259#if !defined(CONFIG_USER_ONLY)
108c49b8
FB
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
6d9a1304 262#endif
50a9569b
AZ
263
264#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
265 {
266 long long startaddr, endaddr;
267 FILE *f;
268 int n;
269
c8a706fe 270 mmap_lock();
0776590d 271 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
272 f = fopen("/proc/self/maps", "r");
273 if (f) {
274 do {
275 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
276 if (n == 2) {
e0b8d65a
BS
277 startaddr = MIN(startaddr,
278 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
279 endaddr = MIN(endaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 281 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
282 TARGET_PAGE_ALIGN(endaddr),
283 PAGE_RESERVED);
284 }
285 } while (!feof(f));
286 fclose(f);
287 }
c8a706fe 288 mmap_unlock();
50a9569b
AZ
289 }
290#endif
54936004
FB
291}
292
434929bf 293static inline PageDesc **page_l1_map(target_ulong index)
54936004 294{
17e2377a
PB
295#if TARGET_LONG_BITS > 32
296 /* Host memory outside guest VM. For 32-bit targets we have already
297 excluded high addresses. */
d8173e0f 298 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
299 return NULL;
300#endif
434929bf
AL
301 return &l1_map[index >> L2_BITS];
302}
303
304static inline PageDesc *page_find_alloc(target_ulong index)
305{
306 PageDesc **lp, *p;
307 lp = page_l1_map(index);
308 if (!lp)
309 return NULL;
310
54936004
FB
311 p = *lp;
312 if (!p) {
313 /* allocate if not found */
17e2377a 314#if defined(CONFIG_USER_ONLY)
17e2377a
PB
315 size_t len = sizeof(PageDesc) * L2_SIZE;
316 /* Don't use qemu_malloc because it may recurse. */
660f11be 317 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 318 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 319 *lp = p;
fb1c2cd7
AJ
320 if (h2g_valid(p)) {
321 unsigned long addr = h2g(p);
17e2377a
PB
322 page_set_flags(addr & TARGET_PAGE_MASK,
323 TARGET_PAGE_ALIGN(addr + len),
324 PAGE_RESERVED);
325 }
326#else
327 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
328 *lp = p;
329#endif
54936004
FB
330 }
331 return p + (index & (L2_SIZE - 1));
332}
333
00f82b8a 334static inline PageDesc *page_find(target_ulong index)
54936004 335{
434929bf
AL
336 PageDesc **lp, *p;
337 lp = page_l1_map(index);
338 if (!lp)
339 return NULL;
54936004 340
434929bf 341 p = *lp;
660f11be
BS
342 if (!p) {
343 return NULL;
344 }
fd6ce8f6
FB
345 return p + (index & (L2_SIZE - 1));
346}
347
6d9a1304 348#if !defined(CONFIG_USER_ONLY)
c227f099 349static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 350{
108c49b8 351 void **lp, **p;
e3f4e2a4 352 PhysPageDesc *pd;
92e873b9 353
108c49b8
FB
354 p = (void **)l1_phys_map;
355#if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359#endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
108c49b8
FB
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370#endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
372 pd = *lp;
373 if (!pd) {
374 int i;
108c49b8
FB
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
e3f4e2a4
PB
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
67c4d23c 380 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
92e873b9 384 }
e3f4e2a4 385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
386}
387
c227f099 388static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 389{
108c49b8 390 return phys_page_find_alloc(index, 0);
92e873b9
FB
391}
392
c227f099
AL
393static void tlb_protect_code(ram_addr_t ram_addr);
394static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 395 target_ulong vaddr);
c8a706fe
PB
396#define mmap_lock() do { } while(0)
397#define mmap_unlock() do { } while(0)
9fa3e853 398#endif
fd6ce8f6 399
4369415f
FB
400#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
401
402#if defined(CONFIG_USER_ONLY)
ccbb4d44 403/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
404 user mode. It will change when a dedicated libc will be used */
405#define USE_STATIC_CODE_GEN_BUFFER
406#endif
407
408#ifdef USE_STATIC_CODE_GEN_BUFFER
409static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
410#endif
411
8fcd3692 412static void code_gen_alloc(unsigned long tb_size)
26a5f13b 413{
4369415f
FB
414#ifdef USE_STATIC_CODE_GEN_BUFFER
415 code_gen_buffer = static_code_gen_buffer;
416 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
417 map_exec(code_gen_buffer, code_gen_buffer_size);
418#else
26a5f13b
FB
419 code_gen_buffer_size = tb_size;
420 if (code_gen_buffer_size == 0) {
4369415f
FB
421#if defined(CONFIG_USER_ONLY)
422 /* in user mode, phys_ram_size is not meaningful */
423 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
424#else
ccbb4d44 425 /* XXX: needs adjustments */
94a6b54f 426 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 427#endif
26a5f13b
FB
428 }
429 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
430 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
431 /* The code gen buffer location may have constraints depending on
432 the host cpu and OS */
433#if defined(__linux__)
434 {
435 int flags;
141ac468
BS
436 void *start = NULL;
437
26a5f13b
FB
438 flags = MAP_PRIVATE | MAP_ANONYMOUS;
439#if defined(__x86_64__)
440 flags |= MAP_32BIT;
441 /* Cannot map more than that */
442 if (code_gen_buffer_size > (800 * 1024 * 1024))
443 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
444#elif defined(__sparc_v9__)
445 // Map the buffer below 2G, so we can use direct calls and branches
446 flags |= MAP_FIXED;
447 start = (void *) 0x60000000UL;
448 if (code_gen_buffer_size > (512 * 1024 * 1024))
449 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 450#elif defined(__arm__)
63d41246 451 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
452 flags |= MAP_FIXED;
453 start = (void *) 0x01000000UL;
454 if (code_gen_buffer_size > 16 * 1024 * 1024)
455 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 456#endif
141ac468
BS
457 code_gen_buffer = mmap(start, code_gen_buffer_size,
458 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
459 flags, -1, 0);
460 if (code_gen_buffer == MAP_FAILED) {
461 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
462 exit(1);
463 }
464 }
a167ba50 465#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
466 {
467 int flags;
468 void *addr = NULL;
469 flags = MAP_PRIVATE | MAP_ANONYMOUS;
470#if defined(__x86_64__)
471 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
472 * 0x40000000 is free */
473 flags |= MAP_FIXED;
474 addr = (void *)0x40000000;
475 /* Cannot map more than that */
476 if (code_gen_buffer_size > (800 * 1024 * 1024))
477 code_gen_buffer_size = (800 * 1024 * 1024);
478#endif
479 code_gen_buffer = mmap(addr, code_gen_buffer_size,
480 PROT_WRITE | PROT_READ | PROT_EXEC,
481 flags, -1, 0);
482 if (code_gen_buffer == MAP_FAILED) {
483 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
484 exit(1);
485 }
486 }
26a5f13b
FB
487#else
488 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
489 map_exec(code_gen_buffer, code_gen_buffer_size);
490#endif
4369415f 491#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
492 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
493 code_gen_buffer_max_size = code_gen_buffer_size -
494 code_gen_max_block_size();
495 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
496 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
497}
498
499/* Must be called before using the QEMU cpus. 'tb_size' is the size
500 (in bytes) allocated to the translation buffer. Zero means default
501 size. */
502void cpu_exec_init_all(unsigned long tb_size)
503{
26a5f13b
FB
504 cpu_gen_init();
505 code_gen_alloc(tb_size);
506 code_gen_ptr = code_gen_buffer;
4369415f 507 page_init();
e2eef170 508#if !defined(CONFIG_USER_ONLY)
26a5f13b 509 io_mem_init();
e2eef170 510#endif
26a5f13b
FB
511}
512
9656f324
PB
513#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
514
d4bfa4d7 515static void cpu_common_pre_save(void *opaque)
9656f324 516{
d4bfa4d7 517 CPUState *env = opaque;
9656f324 518
4c0960c0 519 cpu_synchronize_state(env);
9656f324
PB
520}
521
e7f4eff7 522static int cpu_common_pre_load(void *opaque)
9656f324
PB
523{
524 CPUState *env = opaque;
525
4c0960c0 526 cpu_synchronize_state(env);
e7f4eff7
JQ
527 return 0;
528}
529
e59fb374 530static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
531{
532 CPUState *env = opaque;
9656f324 533
3098dba0
AJ
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
9656f324
PB
537 tlb_flush(env, 1);
538
539 return 0;
540}
e7f4eff7
JQ
541
542static const VMStateDescription vmstate_cpu_common = {
543 .name = "cpu_common",
544 .version_id = 1,
545 .minimum_version_id = 1,
546 .minimum_version_id_old = 1,
547 .pre_save = cpu_common_pre_save,
548 .pre_load = cpu_common_pre_load,
549 .post_load = cpu_common_post_load,
550 .fields = (VMStateField []) {
551 VMSTATE_UINT32(halted, CPUState),
552 VMSTATE_UINT32(interrupt_request, CPUState),
553 VMSTATE_END_OF_LIST()
554 }
555};
9656f324
PB
556#endif
557
950f1472
GC
558CPUState *qemu_get_cpu(int cpu)
559{
560 CPUState *env = first_cpu;
561
562 while (env) {
563 if (env->cpu_index == cpu)
564 break;
565 env = env->next_cpu;
566 }
567
568 return env;
569}
570
6a00d601 571void cpu_exec_init(CPUState *env)
fd6ce8f6 572{
6a00d601
FB
573 CPUState **penv;
574 int cpu_index;
575
c2764719
PB
576#if defined(CONFIG_USER_ONLY)
577 cpu_list_lock();
578#endif
6a00d601
FB
579 env->next_cpu = NULL;
580 penv = &first_cpu;
581 cpu_index = 0;
582 while (*penv != NULL) {
1e9fa730 583 penv = &(*penv)->next_cpu;
6a00d601
FB
584 cpu_index++;
585 }
586 env->cpu_index = cpu_index;
268a362c 587 env->numa_node = 0;
72cf2d4f
BS
588 QTAILQ_INIT(&env->breakpoints);
589 QTAILQ_INIT(&env->watchpoints);
6a00d601 590 *penv = env;
c2764719
PB
591#if defined(CONFIG_USER_ONLY)
592 cpu_list_unlock();
593#endif
b3c7724c 594#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 595 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
596 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
597 cpu_save, cpu_load, env);
598#endif
fd6ce8f6
FB
599}
600
9fa3e853
FB
601static inline void invalidate_page_bitmap(PageDesc *p)
602{
603 if (p->code_bitmap) {
59817ccb 604 qemu_free(p->code_bitmap);
9fa3e853
FB
605 p->code_bitmap = NULL;
606 }
607 p->code_write_count = 0;
608}
609
fd6ce8f6
FB
610/* set to NULL all the 'first_tb' fields in all PageDescs */
611static void page_flush_tb(void)
612{
613 int i, j;
614 PageDesc *p;
615
616 for(i = 0; i < L1_SIZE; i++) {
617 p = l1_map[i];
618 if (p) {
9fa3e853
FB
619 for(j = 0; j < L2_SIZE; j++) {
620 p->first_tb = NULL;
621 invalidate_page_bitmap(p);
622 p++;
623 }
fd6ce8f6
FB
624 }
625 }
626}
627
628/* flush all the translation blocks */
d4e8164f 629/* XXX: tb_flush is currently not thread safe */
6a00d601 630void tb_flush(CPUState *env1)
fd6ce8f6 631{
6a00d601 632 CPUState *env;
0124311e 633#if defined(DEBUG_FLUSH)
ab3d1727
BS
634 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
635 (unsigned long)(code_gen_ptr - code_gen_buffer),
636 nb_tbs, nb_tbs > 0 ?
637 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 638#endif
26a5f13b 639 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
640 cpu_abort(env1, "Internal error: code buffer overflow\n");
641
fd6ce8f6 642 nb_tbs = 0;
3b46e624 643
6a00d601
FB
644 for(env = first_cpu; env != NULL; env = env->next_cpu) {
645 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
646 }
9fa3e853 647
8a8a608f 648 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 649 page_flush_tb();
9fa3e853 650
fd6ce8f6 651 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
652 /* XXX: flush processor icache at this point if cache flush is
653 expensive */
e3db7226 654 tb_flush_count++;
fd6ce8f6
FB
655}
656
657#ifdef DEBUG_TB_CHECK
658
bc98a7ef 659static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
660{
661 TranslationBlock *tb;
662 int i;
663 address &= TARGET_PAGE_MASK;
99773bd4
PB
664 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
665 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
666 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
667 address >= tb->pc + tb->size)) {
0bf9e31a
BS
668 printf("ERROR invalidate: address=" TARGET_FMT_lx
669 " PC=%08lx size=%04x\n",
99773bd4 670 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
671 }
672 }
673 }
674}
675
676/* verify that all the pages have correct rights for code */
677static void tb_page_check(void)
678{
679 TranslationBlock *tb;
680 int i, flags1, flags2;
3b46e624 681
99773bd4
PB
682 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
683 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
684 flags1 = page_get_flags(tb->pc);
685 flags2 = page_get_flags(tb->pc + tb->size - 1);
686 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
687 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 688 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
689 }
690 }
691 }
692}
693
694#endif
695
696/* invalidate one TB */
697static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
698 int next_offset)
699{
700 TranslationBlock *tb1;
701 for(;;) {
702 tb1 = *ptb;
703 if (tb1 == tb) {
704 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
705 break;
706 }
707 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
708 }
709}
710
9fa3e853
FB
711static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
712{
713 TranslationBlock *tb1;
714 unsigned int n1;
715
716 for(;;) {
717 tb1 = *ptb;
718 n1 = (long)tb1 & 3;
719 tb1 = (TranslationBlock *)((long)tb1 & ~3);
720 if (tb1 == tb) {
721 *ptb = tb1->page_next[n1];
722 break;
723 }
724 ptb = &tb1->page_next[n1];
725 }
726}
727
d4e8164f
FB
728static inline void tb_jmp_remove(TranslationBlock *tb, int n)
729{
730 TranslationBlock *tb1, **ptb;
731 unsigned int n1;
732
733 ptb = &tb->jmp_next[n];
734 tb1 = *ptb;
735 if (tb1) {
736 /* find tb(n) in circular list */
737 for(;;) {
738 tb1 = *ptb;
739 n1 = (long)tb1 & 3;
740 tb1 = (TranslationBlock *)((long)tb1 & ~3);
741 if (n1 == n && tb1 == tb)
742 break;
743 if (n1 == 2) {
744 ptb = &tb1->jmp_first;
745 } else {
746 ptb = &tb1->jmp_next[n1];
747 }
748 }
749 /* now we can suppress tb(n) from the list */
750 *ptb = tb->jmp_next[n];
751
752 tb->jmp_next[n] = NULL;
753 }
754}
755
756/* reset the jump entry 'n' of a TB so that it is not chained to
757 another TB */
758static inline void tb_reset_jump(TranslationBlock *tb, int n)
759{
760 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
761}
762
2e70f6ef 763void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 764{
6a00d601 765 CPUState *env;
8a40a180 766 PageDesc *p;
d4e8164f 767 unsigned int h, n1;
c227f099 768 target_phys_addr_t phys_pc;
8a40a180 769 TranslationBlock *tb1, *tb2;
3b46e624 770
8a40a180
FB
771 /* remove the TB from the hash list */
772 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
773 h = tb_phys_hash_func(phys_pc);
5fafdf24 774 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
775 offsetof(TranslationBlock, phys_hash_next));
776
777 /* remove the TB from the page list */
778 if (tb->page_addr[0] != page_addr) {
779 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
780 tb_page_remove(&p->first_tb, tb);
781 invalidate_page_bitmap(p);
782 }
783 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
784 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
785 tb_page_remove(&p->first_tb, tb);
786 invalidate_page_bitmap(p);
787 }
788
36bdbe54 789 tb_invalidated_flag = 1;
59817ccb 790
fd6ce8f6 791 /* remove the TB from the hash list */
8a40a180 792 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
793 for(env = first_cpu; env != NULL; env = env->next_cpu) {
794 if (env->tb_jmp_cache[h] == tb)
795 env->tb_jmp_cache[h] = NULL;
796 }
d4e8164f
FB
797
798 /* suppress this TB from the two jump lists */
799 tb_jmp_remove(tb, 0);
800 tb_jmp_remove(tb, 1);
801
802 /* suppress any remaining jumps to this TB */
803 tb1 = tb->jmp_first;
804 for(;;) {
805 n1 = (long)tb1 & 3;
806 if (n1 == 2)
807 break;
808 tb1 = (TranslationBlock *)((long)tb1 & ~3);
809 tb2 = tb1->jmp_next[n1];
810 tb_reset_jump(tb1, n1);
811 tb1->jmp_next[n1] = NULL;
812 tb1 = tb2;
813 }
814 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 815
e3db7226 816 tb_phys_invalidate_count++;
9fa3e853
FB
817}
818
819static inline void set_bits(uint8_t *tab, int start, int len)
820{
821 int end, mask, end1;
822
823 end = start + len;
824 tab += start >> 3;
825 mask = 0xff << (start & 7);
826 if ((start & ~7) == (end & ~7)) {
827 if (start < end) {
828 mask &= ~(0xff << (end & 7));
829 *tab |= mask;
830 }
831 } else {
832 *tab++ |= mask;
833 start = (start + 8) & ~7;
834 end1 = end & ~7;
835 while (start < end1) {
836 *tab++ = 0xff;
837 start += 8;
838 }
839 if (start < end) {
840 mask = ~(0xff << (end & 7));
841 *tab |= mask;
842 }
843 }
844}
845
846static void build_page_bitmap(PageDesc *p)
847{
848 int n, tb_start, tb_end;
849 TranslationBlock *tb;
3b46e624 850
b2a7081a 851 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
852
853 tb = p->first_tb;
854 while (tb != NULL) {
855 n = (long)tb & 3;
856 tb = (TranslationBlock *)((long)tb & ~3);
857 /* NOTE: this is subtle as a TB may span two physical pages */
858 if (n == 0) {
859 /* NOTE: tb_end may be after the end of the page, but
860 it is not a problem */
861 tb_start = tb->pc & ~TARGET_PAGE_MASK;
862 tb_end = tb_start + tb->size;
863 if (tb_end > TARGET_PAGE_SIZE)
864 tb_end = TARGET_PAGE_SIZE;
865 } else {
866 tb_start = 0;
867 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
868 }
869 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
870 tb = tb->page_next[n];
871 }
872}
873
2e70f6ef
PB
874TranslationBlock *tb_gen_code(CPUState *env,
875 target_ulong pc, target_ulong cs_base,
876 int flags, int cflags)
d720b93d
FB
877{
878 TranslationBlock *tb;
879 uint8_t *tc_ptr;
880 target_ulong phys_pc, phys_page2, virt_page2;
881 int code_gen_size;
882
c27004ec
FB
883 phys_pc = get_phys_addr_code(env, pc);
884 tb = tb_alloc(pc);
d720b93d
FB
885 if (!tb) {
886 /* flush must be done */
887 tb_flush(env);
888 /* cannot fail at this point */
c27004ec 889 tb = tb_alloc(pc);
2e70f6ef
PB
890 /* Don't forget to invalidate previous TB info. */
891 tb_invalidated_flag = 1;
d720b93d
FB
892 }
893 tc_ptr = code_gen_ptr;
894 tb->tc_ptr = tc_ptr;
895 tb->cs_base = cs_base;
896 tb->flags = flags;
897 tb->cflags = cflags;
d07bde88 898 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 899 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 900
d720b93d 901 /* check next page if needed */
c27004ec 902 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 903 phys_page2 = -1;
c27004ec 904 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
905 phys_page2 = get_phys_addr_code(env, virt_page2);
906 }
907 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 908 return tb;
d720b93d 909}
3b46e624 910
9fa3e853
FB
911/* invalidate all TBs which intersect with the target physical page
912 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
913 the same physical page. 'is_cpu_write_access' should be true if called
914 from a real cpu write access: the virtual CPU will exit the current
915 TB if code is modified inside this TB. */
c227f099 916void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
917 int is_cpu_write_access)
918{
6b917547 919 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 920 CPUState *env = cpu_single_env;
9fa3e853 921 target_ulong tb_start, tb_end;
6b917547
AL
922 PageDesc *p;
923 int n;
924#ifdef TARGET_HAS_PRECISE_SMC
925 int current_tb_not_found = is_cpu_write_access;
926 TranslationBlock *current_tb = NULL;
927 int current_tb_modified = 0;
928 target_ulong current_pc = 0;
929 target_ulong current_cs_base = 0;
930 int current_flags = 0;
931#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
932
933 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 934 if (!p)
9fa3e853 935 return;
5fafdf24 936 if (!p->code_bitmap &&
d720b93d
FB
937 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
938 is_cpu_write_access) {
9fa3e853
FB
939 /* build code bitmap */
940 build_page_bitmap(p);
941 }
942
943 /* we remove all the TBs in the range [start, end[ */
944 /* XXX: see if in some cases it could be faster to invalidate all the code */
945 tb = p->first_tb;
946 while (tb != NULL) {
947 n = (long)tb & 3;
948 tb = (TranslationBlock *)((long)tb & ~3);
949 tb_next = tb->page_next[n];
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
955 tb_end = tb_start + tb->size;
956 } else {
957 tb_start = tb->page_addr[1];
958 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
959 }
960 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
961#ifdef TARGET_HAS_PRECISE_SMC
962 if (current_tb_not_found) {
963 current_tb_not_found = 0;
964 current_tb = NULL;
2e70f6ef 965 if (env->mem_io_pc) {
d720b93d 966 /* now we have a real cpu fault */
2e70f6ef 967 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
968 }
969 }
970 if (current_tb == tb &&
2e70f6ef 971 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
972 /* If we are modifying the current TB, we must stop
973 its execution. We could be more precise by checking
974 that the modification is after the current PC, but it
975 would require a specialized function to partially
976 restore the CPU state */
3b46e624 977
d720b93d 978 current_tb_modified = 1;
5fafdf24 979 cpu_restore_state(current_tb, env,
2e70f6ef 980 env->mem_io_pc, NULL);
6b917547
AL
981 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
982 &current_flags);
d720b93d
FB
983 }
984#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
985 /* we need to do that to handle the case where a signal
986 occurs while doing tb_phys_invalidate() */
987 saved_tb = NULL;
988 if (env) {
989 saved_tb = env->current_tb;
990 env->current_tb = NULL;
991 }
9fa3e853 992 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
993 if (env) {
994 env->current_tb = saved_tb;
995 if (env->interrupt_request && env->current_tb)
996 cpu_interrupt(env, env->interrupt_request);
997 }
9fa3e853
FB
998 }
999 tb = tb_next;
1000 }
1001#if !defined(CONFIG_USER_ONLY)
1002 /* if no code remaining, no need to continue to use slow writes */
1003 if (!p->first_tb) {
1004 invalidate_page_bitmap(p);
d720b93d 1005 if (is_cpu_write_access) {
2e70f6ef 1006 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1007 }
1008 }
1009#endif
1010#ifdef TARGET_HAS_PRECISE_SMC
1011 if (current_tb_modified) {
1012 /* we generate a block containing just the instruction
1013 modifying the memory. It will ensure that it cannot modify
1014 itself */
ea1c1802 1015 env->current_tb = NULL;
2e70f6ef 1016 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1017 cpu_resume_from_signal(env, NULL);
9fa3e853 1018 }
fd6ce8f6 1019#endif
9fa3e853 1020}
fd6ce8f6 1021
9fa3e853 1022/* len must be <= 8 and start must be a multiple of len */
c227f099 1023static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1024{
1025 PageDesc *p;
1026 int offset, b;
59817ccb 1027#if 0
a4193c8a 1028 if (1) {
93fcfe39
AL
1029 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1030 cpu_single_env->mem_io_vaddr, len,
1031 cpu_single_env->eip,
1032 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1033 }
1034#endif
9fa3e853 1035 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1036 if (!p)
9fa3e853
FB
1037 return;
1038 if (p->code_bitmap) {
1039 offset = start & ~TARGET_PAGE_MASK;
1040 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1041 if (b & ((1 << len) - 1))
1042 goto do_invalidate;
1043 } else {
1044 do_invalidate:
d720b93d 1045 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1046 }
1047}
1048
9fa3e853 1049#if !defined(CONFIG_SOFTMMU)
c227f099 1050static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1051 unsigned long pc, void *puc)
9fa3e853 1052{
6b917547 1053 TranslationBlock *tb;
9fa3e853 1054 PageDesc *p;
6b917547 1055 int n;
d720b93d 1056#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1057 TranslationBlock *current_tb = NULL;
d720b93d 1058 CPUState *env = cpu_single_env;
6b917547
AL
1059 int current_tb_modified = 0;
1060 target_ulong current_pc = 0;
1061 target_ulong current_cs_base = 0;
1062 int current_flags = 0;
d720b93d 1063#endif
9fa3e853
FB
1064
1065 addr &= TARGET_PAGE_MASK;
1066 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1067 if (!p)
9fa3e853
FB
1068 return;
1069 tb = p->first_tb;
d720b93d
FB
1070#ifdef TARGET_HAS_PRECISE_SMC
1071 if (tb && pc != 0) {
1072 current_tb = tb_find_pc(pc);
1073 }
1074#endif
9fa3e853
FB
1075 while (tb != NULL) {
1076 n = (long)tb & 3;
1077 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1078#ifdef TARGET_HAS_PRECISE_SMC
1079 if (current_tb == tb &&
2e70f6ef 1080 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1081 /* If we are modifying the current TB, we must stop
1082 its execution. We could be more precise by checking
1083 that the modification is after the current PC, but it
1084 would require a specialized function to partially
1085 restore the CPU state */
3b46e624 1086
d720b93d
FB
1087 current_tb_modified = 1;
1088 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1089 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1090 &current_flags);
d720b93d
FB
1091 }
1092#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1093 tb_phys_invalidate(tb, addr);
1094 tb = tb->page_next[n];
1095 }
fd6ce8f6 1096 p->first_tb = NULL;
d720b93d
FB
1097#ifdef TARGET_HAS_PRECISE_SMC
1098 if (current_tb_modified) {
1099 /* we generate a block containing just the instruction
1100 modifying the memory. It will ensure that it cannot modify
1101 itself */
ea1c1802 1102 env->current_tb = NULL;
2e70f6ef 1103 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1104 cpu_resume_from_signal(env, puc);
1105 }
1106#endif
fd6ce8f6 1107}
9fa3e853 1108#endif
fd6ce8f6
FB
1109
1110/* add the tb in the target page and protect it if necessary */
5fafdf24 1111static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1112 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1113{
1114 PageDesc *p;
9fa3e853
FB
1115 TranslationBlock *last_first_tb;
1116
1117 tb->page_addr[n] = page_addr;
3a7d929e 1118 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1119 tb->page_next[n] = p->first_tb;
1120 last_first_tb = p->first_tb;
1121 p->first_tb = (TranslationBlock *)((long)tb | n);
1122 invalidate_page_bitmap(p);
fd6ce8f6 1123
107db443 1124#if defined(TARGET_HAS_SMC) || 1
d720b93d 1125
9fa3e853 1126#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1127 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1128 target_ulong addr;
1129 PageDesc *p2;
9fa3e853
FB
1130 int prot;
1131
fd6ce8f6
FB
1132 /* force the host page as non writable (writes will have a
1133 page fault + mprotect overhead) */
53a5960a 1134 page_addr &= qemu_host_page_mask;
fd6ce8f6 1135 prot = 0;
53a5960a
PB
1136 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1137 addr += TARGET_PAGE_SIZE) {
1138
1139 p2 = page_find (addr >> TARGET_PAGE_BITS);
1140 if (!p2)
1141 continue;
1142 prot |= p2->flags;
1143 p2->flags &= ~PAGE_WRITE;
1144 page_get_flags(addr);
1145 }
5fafdf24 1146 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1147 (prot & PAGE_BITS) & ~PAGE_WRITE);
1148#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1149 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1150 page_addr);
fd6ce8f6 1151#endif
fd6ce8f6 1152 }
9fa3e853
FB
1153#else
1154 /* if some code is already present, then the pages are already
1155 protected. So we handle the case where only the first TB is
1156 allocated in a physical page */
1157 if (!last_first_tb) {
6a00d601 1158 tlb_protect_code(page_addr);
9fa3e853
FB
1159 }
1160#endif
d720b93d
FB
1161
1162#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1163}
1164
1165/* Allocate a new translation block. Flush the translation buffer if
1166 too many translation blocks or too much generated code. */
c27004ec 1167TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1168{
1169 TranslationBlock *tb;
fd6ce8f6 1170
26a5f13b
FB
1171 if (nb_tbs >= code_gen_max_blocks ||
1172 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1173 return NULL;
fd6ce8f6
FB
1174 tb = &tbs[nb_tbs++];
1175 tb->pc = pc;
b448f2f3 1176 tb->cflags = 0;
d4e8164f
FB
1177 return tb;
1178}
1179
2e70f6ef
PB
1180void tb_free(TranslationBlock *tb)
1181{
bf20dc07 1182 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1183 Ignore the hard cases and just back up if this TB happens to
1184 be the last one generated. */
1185 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1186 code_gen_ptr = tb->tc_ptr;
1187 nb_tbs--;
1188 }
1189}
1190
9fa3e853
FB
1191/* add a new TB and link it to the physical page tables. phys_page2 is
1192 (-1) to indicate that only one page contains the TB. */
5fafdf24 1193void tb_link_phys(TranslationBlock *tb,
9fa3e853 1194 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1195{
9fa3e853
FB
1196 unsigned int h;
1197 TranslationBlock **ptb;
1198
c8a706fe
PB
1199 /* Grab the mmap lock to stop another thread invalidating this TB
1200 before we are done. */
1201 mmap_lock();
9fa3e853
FB
1202 /* add in the physical hash table */
1203 h = tb_phys_hash_func(phys_pc);
1204 ptb = &tb_phys_hash[h];
1205 tb->phys_hash_next = *ptb;
1206 *ptb = tb;
fd6ce8f6
FB
1207
1208 /* add in the page list */
9fa3e853
FB
1209 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1210 if (phys_page2 != -1)
1211 tb_alloc_page(tb, 1, phys_page2);
1212 else
1213 tb->page_addr[1] = -1;
9fa3e853 1214
d4e8164f
FB
1215 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1216 tb->jmp_next[0] = NULL;
1217 tb->jmp_next[1] = NULL;
1218
1219 /* init original jump addresses */
1220 if (tb->tb_next_offset[0] != 0xffff)
1221 tb_reset_jump(tb, 0);
1222 if (tb->tb_next_offset[1] != 0xffff)
1223 tb_reset_jump(tb, 1);
8a40a180
FB
1224
1225#ifdef DEBUG_TB_CHECK
1226 tb_page_check();
1227#endif
c8a706fe 1228 mmap_unlock();
fd6ce8f6
FB
1229}
1230
9fa3e853
FB
1231/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1232 tb[1].tc_ptr. Return NULL if not found */
1233TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1234{
9fa3e853
FB
1235 int m_min, m_max, m;
1236 unsigned long v;
1237 TranslationBlock *tb;
a513fe19
FB
1238
1239 if (nb_tbs <= 0)
1240 return NULL;
1241 if (tc_ptr < (unsigned long)code_gen_buffer ||
1242 tc_ptr >= (unsigned long)code_gen_ptr)
1243 return NULL;
1244 /* binary search (cf Knuth) */
1245 m_min = 0;
1246 m_max = nb_tbs - 1;
1247 while (m_min <= m_max) {
1248 m = (m_min + m_max) >> 1;
1249 tb = &tbs[m];
1250 v = (unsigned long)tb->tc_ptr;
1251 if (v == tc_ptr)
1252 return tb;
1253 else if (tc_ptr < v) {
1254 m_max = m - 1;
1255 } else {
1256 m_min = m + 1;
1257 }
5fafdf24 1258 }
a513fe19
FB
1259 return &tbs[m_max];
1260}
7501267e 1261
ea041c0e
FB
1262static void tb_reset_jump_recursive(TranslationBlock *tb);
1263
1264static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1265{
1266 TranslationBlock *tb1, *tb_next, **ptb;
1267 unsigned int n1;
1268
1269 tb1 = tb->jmp_next[n];
1270 if (tb1 != NULL) {
1271 /* find head of list */
1272 for(;;) {
1273 n1 = (long)tb1 & 3;
1274 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1275 if (n1 == 2)
1276 break;
1277 tb1 = tb1->jmp_next[n1];
1278 }
1279 /* we are now sure now that tb jumps to tb1 */
1280 tb_next = tb1;
1281
1282 /* remove tb from the jmp_first list */
1283 ptb = &tb_next->jmp_first;
1284 for(;;) {
1285 tb1 = *ptb;
1286 n1 = (long)tb1 & 3;
1287 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1288 if (n1 == n && tb1 == tb)
1289 break;
1290 ptb = &tb1->jmp_next[n1];
1291 }
1292 *ptb = tb->jmp_next[n];
1293 tb->jmp_next[n] = NULL;
3b46e624 1294
ea041c0e
FB
1295 /* suppress the jump to next tb in generated code */
1296 tb_reset_jump(tb, n);
1297
0124311e 1298 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1299 tb_reset_jump_recursive(tb_next);
1300 }
1301}
1302
1303static void tb_reset_jump_recursive(TranslationBlock *tb)
1304{
1305 tb_reset_jump_recursive2(tb, 0);
1306 tb_reset_jump_recursive2(tb, 1);
1307}
1308
1fddef4b 1309#if defined(TARGET_HAS_ICE)
94df27fd
PB
1310#if defined(CONFIG_USER_ONLY)
1311static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1312{
1313 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1314}
1315#else
d720b93d
FB
1316static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317{
c227f099 1318 target_phys_addr_t addr;
9b3c35e0 1319 target_ulong pd;
c227f099 1320 ram_addr_t ram_addr;
c2f07f81 1321 PhysPageDesc *p;
d720b93d 1322
c2f07f81
PB
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1329 }
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1332}
c27004ec 1333#endif
94df27fd 1334#endif /* TARGET_HAS_ICE */
d720b93d 1335
c527ee8f
PB
1336#if defined(CONFIG_USER_ONLY)
1337void cpu_watchpoint_remove_all(CPUState *env, int mask)
1338
1339{
1340}
1341
1342int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1343 int flags, CPUWatchpoint **watchpoint)
1344{
1345 return -ENOSYS;
1346}
1347#else
6658ffb8 1348/* Add a watchpoint. */
a1d1bb31
AL
1349int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1350 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1351{
b4051334 1352 target_ulong len_mask = ~(len - 1);
c0ce998e 1353 CPUWatchpoint *wp;
6658ffb8 1354
b4051334
AL
1355 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1356 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1357 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1358 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1359 return -EINVAL;
1360 }
a1d1bb31 1361 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1362
1363 wp->vaddr = addr;
b4051334 1364 wp->len_mask = len_mask;
a1d1bb31
AL
1365 wp->flags = flags;
1366
2dc9f411 1367 /* keep all GDB-injected watchpoints in front */
c0ce998e 1368 if (flags & BP_GDB)
72cf2d4f 1369 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1370 else
72cf2d4f 1371 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1372
6658ffb8 1373 tlb_flush_page(env, addr);
a1d1bb31
AL
1374
1375 if (watchpoint)
1376 *watchpoint = wp;
1377 return 0;
6658ffb8
PB
1378}
1379
a1d1bb31
AL
1380/* Remove a specific watchpoint. */
1381int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1382 int flags)
6658ffb8 1383{
b4051334 1384 target_ulong len_mask = ~(len - 1);
a1d1bb31 1385 CPUWatchpoint *wp;
6658ffb8 1386
72cf2d4f 1387 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1388 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1389 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1390 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1391 return 0;
1392 }
1393 }
a1d1bb31 1394 return -ENOENT;
6658ffb8
PB
1395}
1396
a1d1bb31
AL
1397/* Remove a specific watchpoint by reference. */
1398void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1399{
72cf2d4f 1400 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1401
a1d1bb31
AL
1402 tlb_flush_page(env, watchpoint->vaddr);
1403
1404 qemu_free(watchpoint);
1405}
1406
1407/* Remove all matching watchpoints. */
1408void cpu_watchpoint_remove_all(CPUState *env, int mask)
1409{
c0ce998e 1410 CPUWatchpoint *wp, *next;
a1d1bb31 1411
72cf2d4f 1412 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1413 if (wp->flags & mask)
1414 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1415 }
7d03f82f 1416}
c527ee8f 1417#endif
7d03f82f 1418
a1d1bb31
AL
1419/* Add a breakpoint. */
1420int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1421 CPUBreakpoint **breakpoint)
4c3a88a2 1422{
1fddef4b 1423#if defined(TARGET_HAS_ICE)
c0ce998e 1424 CPUBreakpoint *bp;
3b46e624 1425
a1d1bb31 1426 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1427
a1d1bb31
AL
1428 bp->pc = pc;
1429 bp->flags = flags;
1430
2dc9f411 1431 /* keep all GDB-injected breakpoints in front */
c0ce998e 1432 if (flags & BP_GDB)
72cf2d4f 1433 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1434 else
72cf2d4f 1435 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1436
d720b93d 1437 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1438
1439 if (breakpoint)
1440 *breakpoint = bp;
4c3a88a2
FB
1441 return 0;
1442#else
a1d1bb31 1443 return -ENOSYS;
4c3a88a2
FB
1444#endif
1445}
1446
a1d1bb31
AL
1447/* Remove a specific breakpoint. */
1448int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1449{
7d03f82f 1450#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1451 CPUBreakpoint *bp;
1452
72cf2d4f 1453 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1454 if (bp->pc == pc && bp->flags == flags) {
1455 cpu_breakpoint_remove_by_ref(env, bp);
1456 return 0;
1457 }
7d03f82f 1458 }
a1d1bb31
AL
1459 return -ENOENT;
1460#else
1461 return -ENOSYS;
7d03f82f
EI
1462#endif
1463}
1464
a1d1bb31
AL
1465/* Remove a specific breakpoint by reference. */
1466void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1467{
1fddef4b 1468#if defined(TARGET_HAS_ICE)
72cf2d4f 1469 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1470
a1d1bb31
AL
1471 breakpoint_invalidate(env, breakpoint->pc);
1472
1473 qemu_free(breakpoint);
1474#endif
1475}
1476
1477/* Remove all matching breakpoints. */
1478void cpu_breakpoint_remove_all(CPUState *env, int mask)
1479{
1480#if defined(TARGET_HAS_ICE)
c0ce998e 1481 CPUBreakpoint *bp, *next;
a1d1bb31 1482
72cf2d4f 1483 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1484 if (bp->flags & mask)
1485 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1486 }
4c3a88a2
FB
1487#endif
1488}
1489
c33a346e
FB
1490/* enable or disable single step mode. EXCP_DEBUG is returned by the
1491 CPU loop after each instruction */
1492void cpu_single_step(CPUState *env, int enabled)
1493{
1fddef4b 1494#if defined(TARGET_HAS_ICE)
c33a346e
FB
1495 if (env->singlestep_enabled != enabled) {
1496 env->singlestep_enabled = enabled;
e22a25c9
AL
1497 if (kvm_enabled())
1498 kvm_update_guest_debug(env, 0);
1499 else {
ccbb4d44 1500 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1501 /* XXX: only flush what is necessary */
1502 tb_flush(env);
1503 }
c33a346e
FB
1504 }
1505#endif
1506}
1507
34865134
FB
1508/* enable or disable low levels log */
1509void cpu_set_log(int log_flags)
1510{
1511 loglevel = log_flags;
1512 if (loglevel && !logfile) {
11fcfab4 1513 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1514 if (!logfile) {
1515 perror(logfilename);
1516 _exit(1);
1517 }
9fa3e853
FB
1518#if !defined(CONFIG_SOFTMMU)
1519 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1520 {
b55266b5 1521 static char logfile_buf[4096];
9fa3e853
FB
1522 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1523 }
bf65f53f
FN
1524#elif !defined(_WIN32)
1525 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1526 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1527#endif
e735b91c
PB
1528 log_append = 1;
1529 }
1530 if (!loglevel && logfile) {
1531 fclose(logfile);
1532 logfile = NULL;
34865134
FB
1533 }
1534}
1535
1536void cpu_set_log_filename(const char *filename)
1537{
1538 logfilename = strdup(filename);
e735b91c
PB
1539 if (logfile) {
1540 fclose(logfile);
1541 logfile = NULL;
1542 }
1543 cpu_set_log(loglevel);
34865134 1544}
c33a346e 1545
3098dba0 1546static void cpu_unlink_tb(CPUState *env)
ea041c0e 1547{
3098dba0
AJ
1548 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1549 problem and hope the cpu will stop of its own accord. For userspace
1550 emulation this often isn't actually as bad as it sounds. Often
1551 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1552 TranslationBlock *tb;
c227f099 1553 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1554
cab1b4bd 1555 spin_lock(&interrupt_lock);
3098dba0
AJ
1556 tb = env->current_tb;
1557 /* if the cpu is currently executing code, we must unlink it and
1558 all the potentially executing TB */
f76cfe56 1559 if (tb) {
3098dba0
AJ
1560 env->current_tb = NULL;
1561 tb_reset_jump_recursive(tb);
be214e6c 1562 }
cab1b4bd 1563 spin_unlock(&interrupt_lock);
3098dba0
AJ
1564}
1565
1566/* mask must never be zero, except for A20 change call */
1567void cpu_interrupt(CPUState *env, int mask)
1568{
1569 int old_mask;
be214e6c 1570
2e70f6ef 1571 old_mask = env->interrupt_request;
68a79315 1572 env->interrupt_request |= mask;
3098dba0 1573
8edac960
AL
1574#ifndef CONFIG_USER_ONLY
1575 /*
1576 * If called from iothread context, wake the target cpu in
1577 * case its halted.
1578 */
1579 if (!qemu_cpu_self(env)) {
1580 qemu_cpu_kick(env);
1581 return;
1582 }
1583#endif
1584
2e70f6ef 1585 if (use_icount) {
266910c4 1586 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1587#ifndef CONFIG_USER_ONLY
2e70f6ef 1588 if (!can_do_io(env)
be214e6c 1589 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1590 cpu_abort(env, "Raised interrupt while not in I/O function");
1591 }
1592#endif
1593 } else {
3098dba0 1594 cpu_unlink_tb(env);
ea041c0e
FB
1595 }
1596}
1597
b54ad049
FB
1598void cpu_reset_interrupt(CPUState *env, int mask)
1599{
1600 env->interrupt_request &= ~mask;
1601}
1602
3098dba0
AJ
1603void cpu_exit(CPUState *env)
1604{
1605 env->exit_request = 1;
1606 cpu_unlink_tb(env);
1607}
1608
c7cd6a37 1609const CPULogItem cpu_log_items[] = {
5fafdf24 1610 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1611 "show generated host assembly code for each compiled TB" },
1612 { CPU_LOG_TB_IN_ASM, "in_asm",
1613 "show target assembly code for each compiled TB" },
5fafdf24 1614 { CPU_LOG_TB_OP, "op",
57fec1fe 1615 "show micro ops for each compiled TB" },
f193c797 1616 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1617 "show micro ops "
1618#ifdef TARGET_I386
1619 "before eflags optimization and "
f193c797 1620#endif
e01a1157 1621 "after liveness analysis" },
f193c797
FB
1622 { CPU_LOG_INT, "int",
1623 "show interrupts/exceptions in short format" },
1624 { CPU_LOG_EXEC, "exec",
1625 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1626 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1627 "show CPU state before block translation" },
f193c797
FB
1628#ifdef TARGET_I386
1629 { CPU_LOG_PCALL, "pcall",
1630 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1631 { CPU_LOG_RESET, "cpu_reset",
1632 "show CPU state before CPU resets" },
f193c797 1633#endif
8e3a9fd2 1634#ifdef DEBUG_IOPORT
fd872598
FB
1635 { CPU_LOG_IOPORT, "ioport",
1636 "show all i/o ports accesses" },
8e3a9fd2 1637#endif
f193c797
FB
1638 { 0, NULL, NULL },
1639};
1640
f6f3fbca
MT
1641#ifndef CONFIG_USER_ONLY
1642static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1643 = QLIST_HEAD_INITIALIZER(memory_client_list);
1644
1645static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1646 ram_addr_t size,
1647 ram_addr_t phys_offset)
1648{
1649 CPUPhysMemoryClient *client;
1650 QLIST_FOREACH(client, &memory_client_list, list) {
1651 client->set_memory(client, start_addr, size, phys_offset);
1652 }
1653}
1654
1655static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1656 target_phys_addr_t end)
1657{
1658 CPUPhysMemoryClient *client;
1659 QLIST_FOREACH(client, &memory_client_list, list) {
1660 int r = client->sync_dirty_bitmap(client, start, end);
1661 if (r < 0)
1662 return r;
1663 }
1664 return 0;
1665}
1666
1667static int cpu_notify_migration_log(int enable)
1668{
1669 CPUPhysMemoryClient *client;
1670 QLIST_FOREACH(client, &memory_client_list, list) {
1671 int r = client->migration_log(client, enable);
1672 if (r < 0)
1673 return r;
1674 }
1675 return 0;
1676}
1677
1678static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1679 CPUPhysMemoryClient *client)
1680{
1681 PhysPageDesc *pd;
1682 int l1, l2;
1683
1684 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1685 pd = phys_map[l1];
1686 if (!pd) {
1687 continue;
1688 }
1689 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1690 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1691 continue;
1692 }
1693 client->set_memory(client, pd[l2].region_offset,
1694 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1695 }
1696 }
1697}
1698
1699static void phys_page_for_each(CPUPhysMemoryClient *client)
1700{
1701#if TARGET_PHYS_ADDR_SPACE_BITS > 32
1702
1703#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1704#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1705#endif
1706 void **phys_map = (void **)l1_phys_map;
1707 int l1;
1708 if (!l1_phys_map) {
1709 return;
1710 }
1711 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1712 if (phys_map[l1]) {
1713 phys_page_for_each_in_l1_map(phys_map[l1], client);
1714 }
1715 }
1716#else
1717 if (!l1_phys_map) {
1718 return;
1719 }
1720 phys_page_for_each_in_l1_map(l1_phys_map, client);
1721#endif
1722}
1723
1724void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1725{
1726 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1727 phys_page_for_each(client);
1728}
1729
1730void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1731{
1732 QLIST_REMOVE(client, list);
1733}
1734#endif
1735
f193c797
FB
1736static int cmp1(const char *s1, int n, const char *s2)
1737{
1738 if (strlen(s2) != n)
1739 return 0;
1740 return memcmp(s1, s2, n) == 0;
1741}
3b46e624 1742
f193c797
FB
1743/* takes a comma separated list of log masks. Return 0 if error. */
1744int cpu_str_to_log_mask(const char *str)
1745{
c7cd6a37 1746 const CPULogItem *item;
f193c797
FB
1747 int mask;
1748 const char *p, *p1;
1749
1750 p = str;
1751 mask = 0;
1752 for(;;) {
1753 p1 = strchr(p, ',');
1754 if (!p1)
1755 p1 = p + strlen(p);
8e3a9fd2
FB
1756 if(cmp1(p,p1-p,"all")) {
1757 for(item = cpu_log_items; item->mask != 0; item++) {
1758 mask |= item->mask;
1759 }
1760 } else {
f193c797
FB
1761 for(item = cpu_log_items; item->mask != 0; item++) {
1762 if (cmp1(p, p1 - p, item->name))
1763 goto found;
1764 }
1765 return 0;
8e3a9fd2 1766 }
f193c797
FB
1767 found:
1768 mask |= item->mask;
1769 if (*p1 != ',')
1770 break;
1771 p = p1 + 1;
1772 }
1773 return mask;
1774}
ea041c0e 1775
7501267e
FB
1776void cpu_abort(CPUState *env, const char *fmt, ...)
1777{
1778 va_list ap;
493ae1f0 1779 va_list ap2;
7501267e
FB
1780
1781 va_start(ap, fmt);
493ae1f0 1782 va_copy(ap2, ap);
7501267e
FB
1783 fprintf(stderr, "qemu: fatal: ");
1784 vfprintf(stderr, fmt, ap);
1785 fprintf(stderr, "\n");
1786#ifdef TARGET_I386
7fe48483
FB
1787 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1788#else
1789 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1790#endif
93fcfe39
AL
1791 if (qemu_log_enabled()) {
1792 qemu_log("qemu: fatal: ");
1793 qemu_log_vprintf(fmt, ap2);
1794 qemu_log("\n");
f9373291 1795#ifdef TARGET_I386
93fcfe39 1796 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1797#else
93fcfe39 1798 log_cpu_state(env, 0);
f9373291 1799#endif
31b1a7b4 1800 qemu_log_flush();
93fcfe39 1801 qemu_log_close();
924edcae 1802 }
493ae1f0 1803 va_end(ap2);
f9373291 1804 va_end(ap);
fd052bf6
RV
1805#if defined(CONFIG_USER_ONLY)
1806 {
1807 struct sigaction act;
1808 sigfillset(&act.sa_mask);
1809 act.sa_handler = SIG_DFL;
1810 sigaction(SIGABRT, &act, NULL);
1811 }
1812#endif
7501267e
FB
1813 abort();
1814}
1815
c5be9f08
TS
1816CPUState *cpu_copy(CPUState *env)
1817{
01ba9816 1818 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1819 CPUState *next_cpu = new_env->next_cpu;
1820 int cpu_index = new_env->cpu_index;
5a38f081
AL
1821#if defined(TARGET_HAS_ICE)
1822 CPUBreakpoint *bp;
1823 CPUWatchpoint *wp;
1824#endif
1825
c5be9f08 1826 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1827
1828 /* Preserve chaining and index. */
c5be9f08
TS
1829 new_env->next_cpu = next_cpu;
1830 new_env->cpu_index = cpu_index;
5a38f081
AL
1831
1832 /* Clone all break/watchpoints.
1833 Note: Once we support ptrace with hw-debug register access, make sure
1834 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1835 QTAILQ_INIT(&env->breakpoints);
1836 QTAILQ_INIT(&env->watchpoints);
5a38f081 1837#if defined(TARGET_HAS_ICE)
72cf2d4f 1838 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1839 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1840 }
72cf2d4f 1841 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1842 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1843 wp->flags, NULL);
1844 }
1845#endif
1846
c5be9f08
TS
1847 return new_env;
1848}
1849
0124311e
FB
1850#if !defined(CONFIG_USER_ONLY)
1851
5c751e99
EI
1852static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1853{
1854 unsigned int i;
1855
1856 /* Discard jump cache entries for any tb which might potentially
1857 overlap the flushed page. */
1858 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1859 memset (&env->tb_jmp_cache[i], 0,
1860 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1861
1862 i = tb_jmp_cache_hash_page(addr);
1863 memset (&env->tb_jmp_cache[i], 0,
1864 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1865}
1866
08738984
IK
1867static CPUTLBEntry s_cputlb_empty_entry = {
1868 .addr_read = -1,
1869 .addr_write = -1,
1870 .addr_code = -1,
1871 .addend = -1,
1872};
1873
ee8b7021
FB
1874/* NOTE: if flush_global is true, also flush global entries (not
1875 implemented yet) */
1876void tlb_flush(CPUState *env, int flush_global)
33417e70 1877{
33417e70 1878 int i;
0124311e 1879
9fa3e853
FB
1880#if defined(DEBUG_TLB)
1881 printf("tlb_flush:\n");
1882#endif
0124311e
FB
1883 /* must reset current TB so that interrupts cannot modify the
1884 links while we are modifying them */
1885 env->current_tb = NULL;
1886
33417e70 1887 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1888 int mmu_idx;
1889 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1890 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1891 }
33417e70 1892 }
9fa3e853 1893
8a40a180 1894 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1895
e3db7226 1896 tlb_flush_count++;
33417e70
FB
1897}
1898
274da6b2 1899static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1900{
5fafdf24 1901 if (addr == (tlb_entry->addr_read &
84b7b8e7 1902 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1903 addr == (tlb_entry->addr_write &
84b7b8e7 1904 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1905 addr == (tlb_entry->addr_code &
84b7b8e7 1906 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1907 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1908 }
61382a50
FB
1909}
1910
2e12669a 1911void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1912{
8a40a180 1913 int i;
cfde4bd9 1914 int mmu_idx;
0124311e 1915
9fa3e853 1916#if defined(DEBUG_TLB)
108c49b8 1917 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1918#endif
0124311e
FB
1919 /* must reset current TB so that interrupts cannot modify the
1920 links while we are modifying them */
1921 env->current_tb = NULL;
61382a50
FB
1922
1923 addr &= TARGET_PAGE_MASK;
1924 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1925 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1926 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1927
5c751e99 1928 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1929}
1930
9fa3e853
FB
1931/* update the TLBs so that writes to code in the virtual page 'addr'
1932 can be detected */
c227f099 1933static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1934{
5fafdf24 1935 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1936 ram_addr + TARGET_PAGE_SIZE,
1937 CODE_DIRTY_FLAG);
9fa3e853
FB
1938}
1939
9fa3e853 1940/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1941 tested for self modifying code */
c227f099 1942static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1943 target_ulong vaddr)
9fa3e853 1944{
3a7d929e 1945 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1946}
1947
5fafdf24 1948static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1949 unsigned long start, unsigned long length)
1950{
1951 unsigned long addr;
84b7b8e7
FB
1952 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1953 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1954 if ((addr - start) < length) {
0f459d16 1955 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1956 }
1957 }
1958}
1959
5579c7f3 1960/* Note: start and end must be within the same ram block. */
c227f099 1961void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1962 int dirty_flags)
1ccde1cb
FB
1963{
1964 CPUState *env;
4f2ac237 1965 unsigned long length, start1;
0a962c02
FB
1966 int i, mask, len;
1967 uint8_t *p;
1ccde1cb
FB
1968
1969 start &= TARGET_PAGE_MASK;
1970 end = TARGET_PAGE_ALIGN(end);
1971
1972 length = end - start;
1973 if (length == 0)
1974 return;
0a962c02 1975 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1976 mask = ~dirty_flags;
1977 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1978 for(i = 0; i < len; i++)
1979 p[i] &= mask;
1980
1ccde1cb
FB
1981 /* we modify the TLB cache so that the dirty bit will be set again
1982 when accessing the range */
5579c7f3
PB
1983 start1 = (unsigned long)qemu_get_ram_ptr(start);
1984 /* Chek that we don't span multiple blocks - this breaks the
1985 address comparisons below. */
1986 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1987 != (end - 1) - start) {
1988 abort();
1989 }
1990
6a00d601 1991 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1992 int mmu_idx;
1993 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1994 for(i = 0; i < CPU_TLB_SIZE; i++)
1995 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1996 start1, length);
1997 }
6a00d601 1998 }
1ccde1cb
FB
1999}
2000
74576198
AL
2001int cpu_physical_memory_set_dirty_tracking(int enable)
2002{
f6f3fbca 2003 int ret = 0;
74576198 2004 in_migration = enable;
f6f3fbca
MT
2005 ret = cpu_notify_migration_log(!!enable);
2006 return ret;
74576198
AL
2007}
2008
2009int cpu_physical_memory_get_dirty_tracking(void)
2010{
2011 return in_migration;
2012}
2013
c227f099
AL
2014int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2015 target_phys_addr_t end_addr)
2bec46dc 2016{
7b8f3b78 2017 int ret;
151f7749 2018
f6f3fbca 2019 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2020 return ret;
2bec46dc
AL
2021}
2022
3a7d929e
FB
2023static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2024{
c227f099 2025 ram_addr_t ram_addr;
5579c7f3 2026 void *p;
3a7d929e 2027
84b7b8e7 2028 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2029 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2030 + tlb_entry->addend);
2031 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2032 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2033 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2034 }
2035 }
2036}
2037
2038/* update the TLB according to the current state of the dirty bits */
2039void cpu_tlb_update_dirty(CPUState *env)
2040{
2041 int i;
cfde4bd9
IY
2042 int mmu_idx;
2043 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2044 for(i = 0; i < CPU_TLB_SIZE; i++)
2045 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2046 }
3a7d929e
FB
2047}
2048
0f459d16 2049static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2050{
0f459d16
PB
2051 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2052 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2053}
2054
0f459d16
PB
2055/* update the TLB corresponding to virtual page vaddr
2056 so that it is no longer dirty */
2057static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2058{
1ccde1cb 2059 int i;
cfde4bd9 2060 int mmu_idx;
1ccde1cb 2061
0f459d16 2062 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2063 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2064 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2065 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2066}
2067
59817ccb
FB
2068/* add a new TLB entry. At most one entry for a given virtual address
2069 is permitted. Return 0 if OK or 2 if the page could not be mapped
2070 (can only happen in non SOFTMMU mode for I/O pages or pages
2071 conflicting with the host address space). */
5fafdf24 2072int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2073 target_phys_addr_t paddr, int prot,
6ebbf390 2074 int mmu_idx, int is_softmmu)
9fa3e853 2075{
92e873b9 2076 PhysPageDesc *p;
4f2ac237 2077 unsigned long pd;
9fa3e853 2078 unsigned int index;
4f2ac237 2079 target_ulong address;
0f459d16 2080 target_ulong code_address;
c227f099 2081 target_phys_addr_t addend;
9fa3e853 2082 int ret;
84b7b8e7 2083 CPUTLBEntry *te;
a1d1bb31 2084 CPUWatchpoint *wp;
c227f099 2085 target_phys_addr_t iotlb;
9fa3e853 2086
92e873b9 2087 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2088 if (!p) {
2089 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2090 } else {
2091 pd = p->phys_offset;
9fa3e853
FB
2092 }
2093#if defined(DEBUG_TLB)
6ebbf390
JM
2094 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2095 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2096#endif
2097
2098 ret = 0;
0f459d16
PB
2099 address = vaddr;
2100 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2101 /* IO memory case (romd handled later) */
2102 address |= TLB_MMIO;
2103 }
5579c7f3 2104 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2105 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2106 /* Normal RAM. */
2107 iotlb = pd & TARGET_PAGE_MASK;
2108 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2109 iotlb |= IO_MEM_NOTDIRTY;
2110 else
2111 iotlb |= IO_MEM_ROM;
2112 } else {
ccbb4d44 2113 /* IO handlers are currently passed a physical address.
0f459d16
PB
2114 It would be nice to pass an offset from the base address
2115 of that region. This would avoid having to special case RAM,
2116 and avoid full address decoding in every device.
2117 We can't use the high bits of pd for this because
2118 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2119 iotlb = (pd & ~TARGET_PAGE_MASK);
2120 if (p) {
8da3ff18
PB
2121 iotlb += p->region_offset;
2122 } else {
2123 iotlb += paddr;
2124 }
0f459d16
PB
2125 }
2126
2127 code_address = address;
2128 /* Make accesses to pages with watchpoints go via the
2129 watchpoint trap routines. */
72cf2d4f 2130 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2131 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2132 iotlb = io_mem_watch + paddr;
2133 /* TODO: The memory case can be optimized by not trapping
2134 reads of pages with a write breakpoint. */
2135 address |= TLB_MMIO;
6658ffb8 2136 }
0f459d16 2137 }
d79acba4 2138
0f459d16
PB
2139 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2140 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2141 te = &env->tlb_table[mmu_idx][index];
2142 te->addend = addend - vaddr;
2143 if (prot & PAGE_READ) {
2144 te->addr_read = address;
2145 } else {
2146 te->addr_read = -1;
2147 }
5c751e99 2148
0f459d16
PB
2149 if (prot & PAGE_EXEC) {
2150 te->addr_code = code_address;
2151 } else {
2152 te->addr_code = -1;
2153 }
2154 if (prot & PAGE_WRITE) {
2155 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2156 (pd & IO_MEM_ROMD)) {
2157 /* Write access calls the I/O callback. */
2158 te->addr_write = address | TLB_MMIO;
2159 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2160 !cpu_physical_memory_is_dirty(pd)) {
2161 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2162 } else {
0f459d16 2163 te->addr_write = address;
9fa3e853 2164 }
0f459d16
PB
2165 } else {
2166 te->addr_write = -1;
9fa3e853 2167 }
9fa3e853
FB
2168 return ret;
2169}
2170
0124311e
FB
2171#else
2172
ee8b7021 2173void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2174{
2175}
2176
2e12669a 2177void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2178{
2179}
2180
edf8e2af
MW
2181/*
2182 * Walks guest process memory "regions" one by one
2183 * and calls callback function 'fn' for each region.
2184 */
2185int walk_memory_regions(void *priv,
2186 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2187{
9fa3e853 2188 unsigned long start, end;
edf8e2af 2189 PageDesc *p = NULL;
9fa3e853 2190 int i, j, prot, prot1;
edf8e2af 2191 int rc = 0;
33417e70 2192
edf8e2af 2193 start = end = -1;
9fa3e853 2194 prot = 0;
edf8e2af
MW
2195
2196 for (i = 0; i <= L1_SIZE; i++) {
2197 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2198 for (j = 0; j < L2_SIZE; j++) {
2199 prot1 = (p == NULL) ? 0 : p[j].flags;
2200 /*
2201 * "region" is one continuous chunk of memory
2202 * that has same protection flags set.
2203 */
9fa3e853
FB
2204 if (prot1 != prot) {
2205 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2206 if (start != -1) {
edf8e2af
MW
2207 rc = (*fn)(priv, start, end, prot);
2208 /* callback can stop iteration by returning != 0 */
2209 if (rc != 0)
2210 return (rc);
9fa3e853
FB
2211 }
2212 if (prot1 != 0)
2213 start = end;
2214 else
2215 start = -1;
2216 prot = prot1;
2217 }
edf8e2af 2218 if (p == NULL)
9fa3e853
FB
2219 break;
2220 }
33417e70 2221 }
edf8e2af
MW
2222 return (rc);
2223}
2224
2225static int dump_region(void *priv, unsigned long start,
2226 unsigned long end, unsigned long prot)
2227{
2228 FILE *f = (FILE *)priv;
2229
2230 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2231 start, end, end - start,
2232 ((prot & PAGE_READ) ? 'r' : '-'),
2233 ((prot & PAGE_WRITE) ? 'w' : '-'),
2234 ((prot & PAGE_EXEC) ? 'x' : '-'));
2235
2236 return (0);
2237}
2238
2239/* dump memory mappings */
2240void page_dump(FILE *f)
2241{
2242 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2243 "start", "end", "size", "prot");
2244 walk_memory_regions(f, dump_region);
33417e70
FB
2245}
2246
53a5960a 2247int page_get_flags(target_ulong address)
33417e70 2248{
9fa3e853
FB
2249 PageDesc *p;
2250
2251 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2252 if (!p)
9fa3e853
FB
2253 return 0;
2254 return p->flags;
2255}
2256
2257/* modify the flags of a page and invalidate the code if
ccbb4d44 2258 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2259 depending on PAGE_WRITE */
53a5960a 2260void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2261{
2262 PageDesc *p;
53a5960a 2263 target_ulong addr;
9fa3e853 2264
c8a706fe 2265 /* mmap_lock should already be held. */
9fa3e853
FB
2266 start = start & TARGET_PAGE_MASK;
2267 end = TARGET_PAGE_ALIGN(end);
2268 if (flags & PAGE_WRITE)
2269 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2270 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2271 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2272 /* We may be called for host regions that are outside guest
2273 address space. */
2274 if (!p)
2275 return;
9fa3e853
FB
2276 /* if the write protection is set, then we invalidate the code
2277 inside */
5fafdf24 2278 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2279 (flags & PAGE_WRITE) &&
2280 p->first_tb) {
d720b93d 2281 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2282 }
2283 p->flags = flags;
2284 }
33417e70
FB
2285}
2286
3d97b40b
TS
2287int page_check_range(target_ulong start, target_ulong len, int flags)
2288{
2289 PageDesc *p;
2290 target_ulong end;
2291 target_ulong addr;
2292
55f280c9
AZ
2293 if (start + len < start)
2294 /* we've wrapped around */
2295 return -1;
2296
3d97b40b
TS
2297 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2298 start = start & TARGET_PAGE_MASK;
2299
3d97b40b
TS
2300 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2301 p = page_find(addr >> TARGET_PAGE_BITS);
2302 if( !p )
2303 return -1;
2304 if( !(p->flags & PAGE_VALID) )
2305 return -1;
2306
dae3270c 2307 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2308 return -1;
dae3270c
FB
2309 if (flags & PAGE_WRITE) {
2310 if (!(p->flags & PAGE_WRITE_ORG))
2311 return -1;
2312 /* unprotect the page if it was put read-only because it
2313 contains translated code */
2314 if (!(p->flags & PAGE_WRITE)) {
2315 if (!page_unprotect(addr, 0, NULL))
2316 return -1;
2317 }
2318 return 0;
2319 }
3d97b40b
TS
2320 }
2321 return 0;
2322}
2323
9fa3e853 2324/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2325 page. Return TRUE if the fault was successfully handled. */
53a5960a 2326int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2327{
2328 unsigned int page_index, prot, pindex;
2329 PageDesc *p, *p1;
53a5960a 2330 target_ulong host_start, host_end, addr;
9fa3e853 2331
c8a706fe
PB
2332 /* Technically this isn't safe inside a signal handler. However we
2333 know this only ever happens in a synchronous SEGV handler, so in
2334 practice it seems to be ok. */
2335 mmap_lock();
2336
83fb7adf 2337 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2338 page_index = host_start >> TARGET_PAGE_BITS;
2339 p1 = page_find(page_index);
c8a706fe
PB
2340 if (!p1) {
2341 mmap_unlock();
9fa3e853 2342 return 0;
c8a706fe 2343 }
83fb7adf 2344 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2345 p = p1;
2346 prot = 0;
2347 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2348 prot |= p->flags;
2349 p++;
2350 }
2351 /* if the page was really writable, then we change its
2352 protection back to writable */
2353 if (prot & PAGE_WRITE_ORG) {
2354 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2355 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2356 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2357 (prot & PAGE_BITS) | PAGE_WRITE);
2358 p1[pindex].flags |= PAGE_WRITE;
2359 /* and since the content will be modified, we must invalidate
2360 the corresponding translated code. */
d720b93d 2361 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2362#ifdef DEBUG_TB_CHECK
2363 tb_invalidate_check(address);
2364#endif
c8a706fe 2365 mmap_unlock();
9fa3e853
FB
2366 return 1;
2367 }
2368 }
c8a706fe 2369 mmap_unlock();
9fa3e853
FB
2370 return 0;
2371}
2372
6a00d601
FB
2373static inline void tlb_set_dirty(CPUState *env,
2374 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2375{
2376}
9fa3e853
FB
2377#endif /* defined(CONFIG_USER_ONLY) */
2378
e2eef170 2379#if !defined(CONFIG_USER_ONLY)
8da3ff18 2380
c04b2b78
PB
2381#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2382typedef struct subpage_t {
2383 target_phys_addr_t base;
2384 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2385 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2386 void *opaque[TARGET_PAGE_SIZE][2][4];
2387 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2388} subpage_t;
2389
c227f099
AL
2390static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2391 ram_addr_t memory, ram_addr_t region_offset);
2392static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2393 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2394#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2395 need_subpage) \
2396 do { \
2397 if (addr > start_addr) \
2398 start_addr2 = 0; \
2399 else { \
2400 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2401 if (start_addr2 > 0) \
2402 need_subpage = 1; \
2403 } \
2404 \
49e9fba2 2405 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2406 end_addr2 = TARGET_PAGE_SIZE - 1; \
2407 else { \
2408 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2409 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2410 need_subpage = 1; \
2411 } \
2412 } while (0)
2413
8f2498f9
MT
2414/* register physical memory.
2415 For RAM, 'size' must be a multiple of the target page size.
2416 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2417 io memory page. The address used when calling the IO function is
2418 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2419 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2420 before calculating this offset. This should not be a problem unless
2421 the low bits of start_addr and region_offset differ. */
c227f099
AL
2422void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2423 ram_addr_t size,
2424 ram_addr_t phys_offset,
2425 ram_addr_t region_offset)
33417e70 2426{
c227f099 2427 target_phys_addr_t addr, end_addr;
92e873b9 2428 PhysPageDesc *p;
9d42037b 2429 CPUState *env;
c227f099 2430 ram_addr_t orig_size = size;
db7b5426 2431 void *subpage;
33417e70 2432
f6f3fbca
MT
2433 cpu_notify_set_memory(start_addr, size, phys_offset);
2434
67c4d23c
PB
2435 if (phys_offset == IO_MEM_UNASSIGNED) {
2436 region_offset = start_addr;
2437 }
8da3ff18 2438 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2439 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2440 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2441 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2442 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2443 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2444 ram_addr_t orig_memory = p->phys_offset;
2445 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2446 int need_subpage = 0;
2447
2448 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2449 need_subpage);
4254fab8 2450 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2451 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2452 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2453 &p->phys_offset, orig_memory,
2454 p->region_offset);
db7b5426
BS
2455 } else {
2456 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2457 >> IO_MEM_SHIFT];
2458 }
8da3ff18
PB
2459 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2460 region_offset);
2461 p->region_offset = 0;
db7b5426
BS
2462 } else {
2463 p->phys_offset = phys_offset;
2464 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2465 (phys_offset & IO_MEM_ROMD))
2466 phys_offset += TARGET_PAGE_SIZE;
2467 }
2468 } else {
2469 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2470 p->phys_offset = phys_offset;
8da3ff18 2471 p->region_offset = region_offset;
db7b5426 2472 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2473 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2474 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2475 } else {
c227f099 2476 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2477 int need_subpage = 0;
2478
2479 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2480 end_addr2, need_subpage);
2481
4254fab8 2482 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2483 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2484 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2485 addr & TARGET_PAGE_MASK);
db7b5426 2486 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2487 phys_offset, region_offset);
2488 p->region_offset = 0;
db7b5426
BS
2489 }
2490 }
2491 }
8da3ff18 2492 region_offset += TARGET_PAGE_SIZE;
33417e70 2493 }
3b46e624 2494
9d42037b
FB
2495 /* since each CPU stores ram addresses in its TLB cache, we must
2496 reset the modified entries */
2497 /* XXX: slow ! */
2498 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2499 tlb_flush(env, 1);
2500 }
33417e70
FB
2501}
2502
ba863458 2503/* XXX: temporary until new memory mapping API */
c227f099 2504ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2505{
2506 PhysPageDesc *p;
2507
2508 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2509 if (!p)
2510 return IO_MEM_UNASSIGNED;
2511 return p->phys_offset;
2512}
2513
c227f099 2514void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2515{
2516 if (kvm_enabled())
2517 kvm_coalesce_mmio_region(addr, size);
2518}
2519
c227f099 2520void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2521{
2522 if (kvm_enabled())
2523 kvm_uncoalesce_mmio_region(addr, size);
2524}
2525
62a2744c
SY
2526void qemu_flush_coalesced_mmio_buffer(void)
2527{
2528 if (kvm_enabled())
2529 kvm_flush_coalesced_mmio_buffer();
2530}
2531
c227f099 2532ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2533{
2534 RAMBlock *new_block;
2535
94a6b54f
PB
2536 size = TARGET_PAGE_ALIGN(size);
2537 new_block = qemu_malloc(sizeof(*new_block));
2538
6b02494d
AG
2539#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2540 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2541 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2542 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2543#else
94a6b54f 2544 new_block->host = qemu_vmalloc(size);
6b02494d 2545#endif
ccb167e9
IE
2546#ifdef MADV_MERGEABLE
2547 madvise(new_block->host, size, MADV_MERGEABLE);
2548#endif
94a6b54f
PB
2549 new_block->offset = last_ram_offset;
2550 new_block->length = size;
2551
2552 new_block->next = ram_blocks;
2553 ram_blocks = new_block;
2554
2555 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2556 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2557 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2558 0xff, size >> TARGET_PAGE_BITS);
2559
2560 last_ram_offset += size;
2561
6f0437e8
JK
2562 if (kvm_enabled())
2563 kvm_setup_guest_memory(new_block->host, size);
2564
94a6b54f
PB
2565 return new_block->offset;
2566}
e9a1ab19 2567
c227f099 2568void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2569{
94a6b54f 2570 /* TODO: implement this. */
e9a1ab19
FB
2571}
2572
dc828ca1 2573/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2574 With the exception of the softmmu code in this file, this should
2575 only be used for local memory (e.g. video ram) that the device owns,
2576 and knows it isn't going to access beyond the end of the block.
2577
2578 It should not be used for general purpose DMA.
2579 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2580 */
c227f099 2581void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2582{
94a6b54f
PB
2583 RAMBlock *prev;
2584 RAMBlock **prevp;
2585 RAMBlock *block;
2586
94a6b54f
PB
2587 prev = NULL;
2588 prevp = &ram_blocks;
2589 block = ram_blocks;
2590 while (block && (block->offset > addr
2591 || block->offset + block->length <= addr)) {
2592 if (prev)
2593 prevp = &prev->next;
2594 prev = block;
2595 block = block->next;
2596 }
2597 if (!block) {
2598 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2599 abort();
2600 }
2601 /* Move this entry to to start of the list. */
2602 if (prev) {
2603 prev->next = block->next;
2604 block->next = *prevp;
2605 *prevp = block;
2606 }
2607 return block->host + (addr - block->offset);
dc828ca1
PB
2608}
2609
5579c7f3
PB
2610/* Some of the softmmu routines need to translate from a host pointer
2611 (typically a TLB entry) back to a ram offset. */
c227f099 2612ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2613{
94a6b54f 2614 RAMBlock *prev;
94a6b54f
PB
2615 RAMBlock *block;
2616 uint8_t *host = ptr;
2617
94a6b54f 2618 prev = NULL;
94a6b54f
PB
2619 block = ram_blocks;
2620 while (block && (block->host > host
2621 || block->host + block->length <= host)) {
94a6b54f
PB
2622 prev = block;
2623 block = block->next;
2624 }
2625 if (!block) {
2626 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2627 abort();
2628 }
2629 return block->offset + (host - block->host);
5579c7f3
PB
2630}
2631
c227f099 2632static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2633{
67d3b957 2634#ifdef DEBUG_UNASSIGNED
ab3d1727 2635 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2636#endif
faed1c2a 2637#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2638 do_unassigned_access(addr, 0, 0, 0, 1);
2639#endif
2640 return 0;
2641}
2642
c227f099 2643static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2644{
2645#ifdef DEBUG_UNASSIGNED
2646 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2647#endif
faed1c2a 2648#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2649 do_unassigned_access(addr, 0, 0, 0, 2);
2650#endif
2651 return 0;
2652}
2653
c227f099 2654static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2655{
2656#ifdef DEBUG_UNASSIGNED
2657 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2658#endif
faed1c2a 2659#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2660 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2661#endif
33417e70
FB
2662 return 0;
2663}
2664
c227f099 2665static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2666{
67d3b957 2667#ifdef DEBUG_UNASSIGNED
ab3d1727 2668 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2669#endif
faed1c2a 2670#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2671 do_unassigned_access(addr, 1, 0, 0, 1);
2672#endif
2673}
2674
c227f099 2675static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2676{
2677#ifdef DEBUG_UNASSIGNED
2678 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2679#endif
faed1c2a 2680#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2681 do_unassigned_access(addr, 1, 0, 0, 2);
2682#endif
2683}
2684
c227f099 2685static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2686{
2687#ifdef DEBUG_UNASSIGNED
2688 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2689#endif
faed1c2a 2690#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2691 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2692#endif
33417e70
FB
2693}
2694
d60efc6b 2695static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2696 unassigned_mem_readb,
e18231a3
BS
2697 unassigned_mem_readw,
2698 unassigned_mem_readl,
33417e70
FB
2699};
2700
d60efc6b 2701static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2702 unassigned_mem_writeb,
e18231a3
BS
2703 unassigned_mem_writew,
2704 unassigned_mem_writel,
33417e70
FB
2705};
2706
c227f099 2707static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2708 uint32_t val)
9fa3e853 2709{
3a7d929e 2710 int dirty_flags;
3a7d929e
FB
2711 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2712 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2713#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2714 tb_invalidate_phys_page_fast(ram_addr, 1);
2715 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2716#endif
3a7d929e 2717 }
5579c7f3 2718 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2719 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2720 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2721 /* we remove the notdirty callback only if the code has been
2722 flushed */
2723 if (dirty_flags == 0xff)
2e70f6ef 2724 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2725}
2726
c227f099 2727static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2728 uint32_t val)
9fa3e853 2729{
3a7d929e 2730 int dirty_flags;
3a7d929e
FB
2731 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2732 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2733#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2734 tb_invalidate_phys_page_fast(ram_addr, 2);
2735 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2736#endif
3a7d929e 2737 }
5579c7f3 2738 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2739 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2740 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2741 /* we remove the notdirty callback only if the code has been
2742 flushed */
2743 if (dirty_flags == 0xff)
2e70f6ef 2744 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2745}
2746
c227f099 2747static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2748 uint32_t val)
9fa3e853 2749{
3a7d929e 2750 int dirty_flags;
3a7d929e
FB
2751 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2752 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2753#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2754 tb_invalidate_phys_page_fast(ram_addr, 4);
2755 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2756#endif
3a7d929e 2757 }
5579c7f3 2758 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2759 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2760 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2761 /* we remove the notdirty callback only if the code has been
2762 flushed */
2763 if (dirty_flags == 0xff)
2e70f6ef 2764 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2765}
2766
d60efc6b 2767static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2768 NULL, /* never used */
2769 NULL, /* never used */
2770 NULL, /* never used */
2771};
2772
d60efc6b 2773static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2774 notdirty_mem_writeb,
2775 notdirty_mem_writew,
2776 notdirty_mem_writel,
2777};
2778
0f459d16 2779/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2780static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2781{
2782 CPUState *env = cpu_single_env;
06d55cc1
AL
2783 target_ulong pc, cs_base;
2784 TranslationBlock *tb;
0f459d16 2785 target_ulong vaddr;
a1d1bb31 2786 CPUWatchpoint *wp;
06d55cc1 2787 int cpu_flags;
0f459d16 2788
06d55cc1
AL
2789 if (env->watchpoint_hit) {
2790 /* We re-entered the check after replacing the TB. Now raise
2791 * the debug interrupt so that is will trigger after the
2792 * current instruction. */
2793 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2794 return;
2795 }
2e70f6ef 2796 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2797 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2798 if ((vaddr == (wp->vaddr & len_mask) ||
2799 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2800 wp->flags |= BP_WATCHPOINT_HIT;
2801 if (!env->watchpoint_hit) {
2802 env->watchpoint_hit = wp;
2803 tb = tb_find_pc(env->mem_io_pc);
2804 if (!tb) {
2805 cpu_abort(env, "check_watchpoint: could not find TB for "
2806 "pc=%p", (void *)env->mem_io_pc);
2807 }
2808 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2809 tb_phys_invalidate(tb, -1);
2810 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2811 env->exception_index = EXCP_DEBUG;
2812 } else {
2813 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2814 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2815 }
2816 cpu_resume_from_signal(env, NULL);
06d55cc1 2817 }
6e140f28
AL
2818 } else {
2819 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2820 }
2821 }
2822}
2823
6658ffb8
PB
2824/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2825 so these check for a hit then pass through to the normal out-of-line
2826 phys routines. */
c227f099 2827static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2828{
b4051334 2829 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2830 return ldub_phys(addr);
2831}
2832
c227f099 2833static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2834{
b4051334 2835 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2836 return lduw_phys(addr);
2837}
2838
c227f099 2839static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2840{
b4051334 2841 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2842 return ldl_phys(addr);
2843}
2844
c227f099 2845static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2846 uint32_t val)
2847{
b4051334 2848 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2849 stb_phys(addr, val);
2850}
2851
c227f099 2852static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2853 uint32_t val)
2854{
b4051334 2855 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2856 stw_phys(addr, val);
2857}
2858
c227f099 2859static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2860 uint32_t val)
2861{
b4051334 2862 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2863 stl_phys(addr, val);
2864}
2865
d60efc6b 2866static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2867 watch_mem_readb,
2868 watch_mem_readw,
2869 watch_mem_readl,
2870};
2871
d60efc6b 2872static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2873 watch_mem_writeb,
2874 watch_mem_writew,
2875 watch_mem_writel,
2876};
6658ffb8 2877
c227f099 2878static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2879 unsigned int len)
2880{
db7b5426
BS
2881 uint32_t ret;
2882 unsigned int idx;
2883
8da3ff18 2884 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2885#if defined(DEBUG_SUBPAGE)
2886 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2887 mmio, len, addr, idx);
2888#endif
8da3ff18
PB
2889 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2890 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2891
2892 return ret;
2893}
2894
c227f099 2895static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2896 uint32_t value, unsigned int len)
2897{
db7b5426
BS
2898 unsigned int idx;
2899
8da3ff18 2900 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2901#if defined(DEBUG_SUBPAGE)
2902 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2903 mmio, len, addr, idx, value);
2904#endif
8da3ff18
PB
2905 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2906 addr + mmio->region_offset[idx][1][len],
2907 value);
db7b5426
BS
2908}
2909
c227f099 2910static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2911{
2912#if defined(DEBUG_SUBPAGE)
2913 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2914#endif
2915
2916 return subpage_readlen(opaque, addr, 0);
2917}
2918
c227f099 2919static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2920 uint32_t value)
2921{
2922#if defined(DEBUG_SUBPAGE)
2923 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2924#endif
2925 subpage_writelen(opaque, addr, value, 0);
2926}
2927
c227f099 2928static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2929{
2930#if defined(DEBUG_SUBPAGE)
2931 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2932#endif
2933
2934 return subpage_readlen(opaque, addr, 1);
2935}
2936
c227f099 2937static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2938 uint32_t value)
2939{
2940#if defined(DEBUG_SUBPAGE)
2941 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2942#endif
2943 subpage_writelen(opaque, addr, value, 1);
2944}
2945
c227f099 2946static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2947{
2948#if defined(DEBUG_SUBPAGE)
2949 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2950#endif
2951
2952 return subpage_readlen(opaque, addr, 2);
2953}
2954
2955static void subpage_writel (void *opaque,
c227f099 2956 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2957{
2958#if defined(DEBUG_SUBPAGE)
2959 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2960#endif
2961 subpage_writelen(opaque, addr, value, 2);
2962}
2963
d60efc6b 2964static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2965 &subpage_readb,
2966 &subpage_readw,
2967 &subpage_readl,
2968};
2969
d60efc6b 2970static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2971 &subpage_writeb,
2972 &subpage_writew,
2973 &subpage_writel,
2974};
2975
c227f099
AL
2976static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2977 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2978{
2979 int idx, eidx;
4254fab8 2980 unsigned int i;
db7b5426
BS
2981
2982 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2983 return -1;
2984 idx = SUBPAGE_IDX(start);
2985 eidx = SUBPAGE_IDX(end);
2986#if defined(DEBUG_SUBPAGE)
0bf9e31a 2987 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2988 mmio, start, end, idx, eidx, memory);
2989#endif
2990 memory >>= IO_MEM_SHIFT;
2991 for (; idx <= eidx; idx++) {
4254fab8 2992 for (i = 0; i < 4; i++) {
3ee89922
BS
2993 if (io_mem_read[memory][i]) {
2994 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2995 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2996 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2997 }
2998 if (io_mem_write[memory][i]) {
2999 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3000 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3001 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3002 }
4254fab8 3003 }
db7b5426
BS
3004 }
3005
3006 return 0;
3007}
3008
c227f099
AL
3009static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3010 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3011{
c227f099 3012 subpage_t *mmio;
db7b5426
BS
3013 int subpage_memory;
3014
c227f099 3015 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3016
3017 mmio->base = base;
1eed09cb 3018 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3019#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3020 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3021 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3022#endif
1eec614b
AL
3023 *phys = subpage_memory | IO_MEM_SUBPAGE;
3024 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3025 region_offset);
db7b5426
BS
3026
3027 return mmio;
3028}
3029
88715657
AL
3030static int get_free_io_mem_idx(void)
3031{
3032 int i;
3033
3034 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3035 if (!io_mem_used[i]) {
3036 io_mem_used[i] = 1;
3037 return i;
3038 }
c6703b47 3039 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3040 return -1;
3041}
3042
33417e70
FB
3043/* mem_read and mem_write are arrays of functions containing the
3044 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3045 2). Functions can be omitted with a NULL function pointer.
3ee89922 3046 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3047 modified. If it is zero, a new io zone is allocated. The return
3048 value can be used with cpu_register_physical_memory(). (-1) is
3049 returned if error. */
1eed09cb 3050static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3051 CPUReadMemoryFunc * const *mem_read,
3052 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3053 void *opaque)
33417e70 3054{
4254fab8 3055 int i, subwidth = 0;
33417e70
FB
3056
3057 if (io_index <= 0) {
88715657
AL
3058 io_index = get_free_io_mem_idx();
3059 if (io_index == -1)
3060 return io_index;
33417e70 3061 } else {
1eed09cb 3062 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3063 if (io_index >= IO_MEM_NB_ENTRIES)
3064 return -1;
3065 }
b5ff1b31 3066
33417e70 3067 for(i = 0;i < 3; i++) {
4254fab8
BS
3068 if (!mem_read[i] || !mem_write[i])
3069 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3070 io_mem_read[io_index][i] = mem_read[i];
3071 io_mem_write[io_index][i] = mem_write[i];
3072 }
a4193c8a 3073 io_mem_opaque[io_index] = opaque;
4254fab8 3074 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3075}
61382a50 3076
d60efc6b
BS
3077int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3078 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3079 void *opaque)
3080{
3081 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3082}
3083
88715657
AL
3084void cpu_unregister_io_memory(int io_table_address)
3085{
3086 int i;
3087 int io_index = io_table_address >> IO_MEM_SHIFT;
3088
3089 for (i=0;i < 3; i++) {
3090 io_mem_read[io_index][i] = unassigned_mem_read[i];
3091 io_mem_write[io_index][i] = unassigned_mem_write[i];
3092 }
3093 io_mem_opaque[io_index] = NULL;
3094 io_mem_used[io_index] = 0;
3095}
3096
e9179ce1
AK
3097static void io_mem_init(void)
3098{
3099 int i;
3100
3101 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3102 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3103 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3104 for (i=0; i<5; i++)
3105 io_mem_used[i] = 1;
3106
3107 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3108 watch_mem_write, NULL);
e9179ce1
AK
3109}
3110
e2eef170
PB
3111#endif /* !defined(CONFIG_USER_ONLY) */
3112
13eb76e0
FB
3113/* physical memory access (slow version, mainly for debug) */
3114#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3115int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3116 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3117{
3118 int l, flags;
3119 target_ulong page;
53a5960a 3120 void * p;
13eb76e0
FB
3121
3122 while (len > 0) {
3123 page = addr & TARGET_PAGE_MASK;
3124 l = (page + TARGET_PAGE_SIZE) - addr;
3125 if (l > len)
3126 l = len;
3127 flags = page_get_flags(page);
3128 if (!(flags & PAGE_VALID))
a68fe89c 3129 return -1;
13eb76e0
FB
3130 if (is_write) {
3131 if (!(flags & PAGE_WRITE))
a68fe89c 3132 return -1;
579a97f7 3133 /* XXX: this code should not depend on lock_user */
72fb7daa 3134 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3135 return -1;
72fb7daa
AJ
3136 memcpy(p, buf, l);
3137 unlock_user(p, addr, l);
13eb76e0
FB
3138 } else {
3139 if (!(flags & PAGE_READ))
a68fe89c 3140 return -1;
579a97f7 3141 /* XXX: this code should not depend on lock_user */
72fb7daa 3142 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3143 return -1;
72fb7daa 3144 memcpy(buf, p, l);
5b257578 3145 unlock_user(p, addr, 0);
13eb76e0
FB
3146 }
3147 len -= l;
3148 buf += l;
3149 addr += l;
3150 }
a68fe89c 3151 return 0;
13eb76e0 3152}
8df1cd07 3153
13eb76e0 3154#else
c227f099 3155void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3156 int len, int is_write)
3157{
3158 int l, io_index;
3159 uint8_t *ptr;
3160 uint32_t val;
c227f099 3161 target_phys_addr_t page;
2e12669a 3162 unsigned long pd;
92e873b9 3163 PhysPageDesc *p;
3b46e624 3164
13eb76e0
FB
3165 while (len > 0) {
3166 page = addr & TARGET_PAGE_MASK;
3167 l = (page + TARGET_PAGE_SIZE) - addr;
3168 if (l > len)
3169 l = len;
92e873b9 3170 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3171 if (!p) {
3172 pd = IO_MEM_UNASSIGNED;
3173 } else {
3174 pd = p->phys_offset;
3175 }
3b46e624 3176
13eb76e0 3177 if (is_write) {
3a7d929e 3178 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3179 target_phys_addr_t addr1 = addr;
13eb76e0 3180 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3181 if (p)
6c2934db 3182 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3183 /* XXX: could force cpu_single_env to NULL to avoid
3184 potential bugs */
6c2934db 3185 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3186 /* 32 bit write access */
c27004ec 3187 val = ldl_p(buf);
6c2934db 3188 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3189 l = 4;
6c2934db 3190 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3191 /* 16 bit write access */
c27004ec 3192 val = lduw_p(buf);
6c2934db 3193 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3194 l = 2;
3195 } else {
1c213d19 3196 /* 8 bit write access */
c27004ec 3197 val = ldub_p(buf);
6c2934db 3198 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3199 l = 1;
3200 }
3201 } else {
b448f2f3
FB
3202 unsigned long addr1;
3203 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3204 /* RAM case */
5579c7f3 3205 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3206 memcpy(ptr, buf, l);
3a7d929e
FB
3207 if (!cpu_physical_memory_is_dirty(addr1)) {
3208 /* invalidate code */
3209 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3210 /* set dirty bit */
5fafdf24 3211 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3212 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3213 }
13eb76e0
FB
3214 }
3215 } else {
5fafdf24 3216 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3217 !(pd & IO_MEM_ROMD)) {
c227f099 3218 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3219 /* I/O case */
3220 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3221 if (p)
6c2934db
AJ
3222 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3223 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3224 /* 32 bit read access */
6c2934db 3225 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3226 stl_p(buf, val);
13eb76e0 3227 l = 4;
6c2934db 3228 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3229 /* 16 bit read access */
6c2934db 3230 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3231 stw_p(buf, val);
13eb76e0
FB
3232 l = 2;
3233 } else {
1c213d19 3234 /* 8 bit read access */
6c2934db 3235 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3236 stb_p(buf, val);
13eb76e0
FB
3237 l = 1;
3238 }
3239 } else {
3240 /* RAM case */
5579c7f3 3241 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3242 (addr & ~TARGET_PAGE_MASK);
3243 memcpy(buf, ptr, l);
3244 }
3245 }
3246 len -= l;
3247 buf += l;
3248 addr += l;
3249 }
3250}
8df1cd07 3251
d0ecd2aa 3252/* used for ROM loading : can write in RAM and ROM */
c227f099 3253void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3254 const uint8_t *buf, int len)
3255{
3256 int l;
3257 uint8_t *ptr;
c227f099 3258 target_phys_addr_t page;
d0ecd2aa
FB
3259 unsigned long pd;
3260 PhysPageDesc *p;
3b46e624 3261
d0ecd2aa
FB
3262 while (len > 0) {
3263 page = addr & TARGET_PAGE_MASK;
3264 l = (page + TARGET_PAGE_SIZE) - addr;
3265 if (l > len)
3266 l = len;
3267 p = phys_page_find(page >> TARGET_PAGE_BITS);
3268 if (!p) {
3269 pd = IO_MEM_UNASSIGNED;
3270 } else {
3271 pd = p->phys_offset;
3272 }
3b46e624 3273
d0ecd2aa 3274 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3275 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3276 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3277 /* do nothing */
3278 } else {
3279 unsigned long addr1;
3280 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3281 /* ROM/RAM case */
5579c7f3 3282 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3283 memcpy(ptr, buf, l);
3284 }
3285 len -= l;
3286 buf += l;
3287 addr += l;
3288 }
3289}
3290
6d16c2f8
AL
3291typedef struct {
3292 void *buffer;
c227f099
AL
3293 target_phys_addr_t addr;
3294 target_phys_addr_t len;
6d16c2f8
AL
3295} BounceBuffer;
3296
3297static BounceBuffer bounce;
3298
ba223c29
AL
3299typedef struct MapClient {
3300 void *opaque;
3301 void (*callback)(void *opaque);
72cf2d4f 3302 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3303} MapClient;
3304
72cf2d4f
BS
3305static QLIST_HEAD(map_client_list, MapClient) map_client_list
3306 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3307
3308void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3309{
3310 MapClient *client = qemu_malloc(sizeof(*client));
3311
3312 client->opaque = opaque;
3313 client->callback = callback;
72cf2d4f 3314 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3315 return client;
3316}
3317
3318void cpu_unregister_map_client(void *_client)
3319{
3320 MapClient *client = (MapClient *)_client;
3321
72cf2d4f 3322 QLIST_REMOVE(client, link);
34d5e948 3323 qemu_free(client);
ba223c29
AL
3324}
3325
3326static void cpu_notify_map_clients(void)
3327{
3328 MapClient *client;
3329
72cf2d4f
BS
3330 while (!QLIST_EMPTY(&map_client_list)) {
3331 client = QLIST_FIRST(&map_client_list);
ba223c29 3332 client->callback(client->opaque);
34d5e948 3333 cpu_unregister_map_client(client);
ba223c29
AL
3334 }
3335}
3336
6d16c2f8
AL
3337/* Map a physical memory region into a host virtual address.
3338 * May map a subset of the requested range, given by and returned in *plen.
3339 * May return NULL if resources needed to perform the mapping are exhausted.
3340 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3341 * Use cpu_register_map_client() to know when retrying the map operation is
3342 * likely to succeed.
6d16c2f8 3343 */
c227f099
AL
3344void *cpu_physical_memory_map(target_phys_addr_t addr,
3345 target_phys_addr_t *plen,
6d16c2f8
AL
3346 int is_write)
3347{
c227f099
AL
3348 target_phys_addr_t len = *plen;
3349 target_phys_addr_t done = 0;
6d16c2f8
AL
3350 int l;
3351 uint8_t *ret = NULL;
3352 uint8_t *ptr;
c227f099 3353 target_phys_addr_t page;
6d16c2f8
AL
3354 unsigned long pd;
3355 PhysPageDesc *p;
3356 unsigned long addr1;
3357
3358 while (len > 0) {
3359 page = addr & TARGET_PAGE_MASK;
3360 l = (page + TARGET_PAGE_SIZE) - addr;
3361 if (l > len)
3362 l = len;
3363 p = phys_page_find(page >> TARGET_PAGE_BITS);
3364 if (!p) {
3365 pd = IO_MEM_UNASSIGNED;
3366 } else {
3367 pd = p->phys_offset;
3368 }
3369
3370 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3371 if (done || bounce.buffer) {
3372 break;
3373 }
3374 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3375 bounce.addr = addr;
3376 bounce.len = l;
3377 if (!is_write) {
3378 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3379 }
3380 ptr = bounce.buffer;
3381 } else {
3382 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3383 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3384 }
3385 if (!done) {
3386 ret = ptr;
3387 } else if (ret + done != ptr) {
3388 break;
3389 }
3390
3391 len -= l;
3392 addr += l;
3393 done += l;
3394 }
3395 *plen = done;
3396 return ret;
3397}
3398
3399/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3400 * Will also mark the memory as dirty if is_write == 1. access_len gives
3401 * the amount of memory that was actually read or written by the caller.
3402 */
c227f099
AL
3403void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3404 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3405{
3406 if (buffer != bounce.buffer) {
3407 if (is_write) {
c227f099 3408 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3409 while (access_len) {
3410 unsigned l;
3411 l = TARGET_PAGE_SIZE;
3412 if (l > access_len)
3413 l = access_len;
3414 if (!cpu_physical_memory_is_dirty(addr1)) {
3415 /* invalidate code */
3416 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3417 /* set dirty bit */
3418 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3419 (0xff & ~CODE_DIRTY_FLAG);
3420 }
3421 addr1 += l;
3422 access_len -= l;
3423 }
3424 }
3425 return;
3426 }
3427 if (is_write) {
3428 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3429 }
f8a83245 3430 qemu_vfree(bounce.buffer);
6d16c2f8 3431 bounce.buffer = NULL;
ba223c29 3432 cpu_notify_map_clients();
6d16c2f8 3433}
d0ecd2aa 3434
8df1cd07 3435/* warning: addr must be aligned */
c227f099 3436uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3437{
3438 int io_index;
3439 uint8_t *ptr;
3440 uint32_t val;
3441 unsigned long pd;
3442 PhysPageDesc *p;
3443
3444 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3445 if (!p) {
3446 pd = IO_MEM_UNASSIGNED;
3447 } else {
3448 pd = p->phys_offset;
3449 }
3b46e624 3450
5fafdf24 3451 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3452 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3453 /* I/O case */
3454 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3455 if (p)
3456 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3457 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3458 } else {
3459 /* RAM case */
5579c7f3 3460 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3461 (addr & ~TARGET_PAGE_MASK);
3462 val = ldl_p(ptr);
3463 }
3464 return val;
3465}
3466
84b7b8e7 3467/* warning: addr must be aligned */
c227f099 3468uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3469{
3470 int io_index;
3471 uint8_t *ptr;
3472 uint64_t val;
3473 unsigned long pd;
3474 PhysPageDesc *p;
3475
3476 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3477 if (!p) {
3478 pd = IO_MEM_UNASSIGNED;
3479 } else {
3480 pd = p->phys_offset;
3481 }
3b46e624 3482
2a4188a3
FB
3483 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3484 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3485 /* I/O case */
3486 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3487 if (p)
3488 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3489#ifdef TARGET_WORDS_BIGENDIAN
3490 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3491 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3492#else
3493 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3494 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3495#endif
3496 } else {
3497 /* RAM case */
5579c7f3 3498 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3499 (addr & ~TARGET_PAGE_MASK);
3500 val = ldq_p(ptr);
3501 }
3502 return val;
3503}
3504
aab33094 3505/* XXX: optimize */
c227f099 3506uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3507{
3508 uint8_t val;
3509 cpu_physical_memory_read(addr, &val, 1);
3510 return val;
3511}
3512
3513/* XXX: optimize */
c227f099 3514uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3515{
3516 uint16_t val;
3517 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3518 return tswap16(val);
3519}
3520
8df1cd07
FB
3521/* warning: addr must be aligned. The ram page is not masked as dirty
3522 and the code inside is not invalidated. It is useful if the dirty
3523 bits are used to track modified PTEs */
c227f099 3524void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3525{
3526 int io_index;
3527 uint8_t *ptr;
3528 unsigned long pd;
3529 PhysPageDesc *p;
3530
3531 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3532 if (!p) {
3533 pd = IO_MEM_UNASSIGNED;
3534 } else {
3535 pd = p->phys_offset;
3536 }
3b46e624 3537
3a7d929e 3538 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3539 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3540 if (p)
3541 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3542 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3543 } else {
74576198 3544 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3545 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3546 stl_p(ptr, val);
74576198
AL
3547
3548 if (unlikely(in_migration)) {
3549 if (!cpu_physical_memory_is_dirty(addr1)) {
3550 /* invalidate code */
3551 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3552 /* set dirty bit */
3553 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3554 (0xff & ~CODE_DIRTY_FLAG);
3555 }
3556 }
8df1cd07
FB
3557 }
3558}
3559
c227f099 3560void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3561{
3562 int io_index;
3563 uint8_t *ptr;
3564 unsigned long pd;
3565 PhysPageDesc *p;
3566
3567 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3568 if (!p) {
3569 pd = IO_MEM_UNASSIGNED;
3570 } else {
3571 pd = p->phys_offset;
3572 }
3b46e624 3573
bc98a7ef
JM
3574 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3575 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3576 if (p)
3577 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3578#ifdef TARGET_WORDS_BIGENDIAN
3579 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3580 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3581#else
3582 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3583 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3584#endif
3585 } else {
5579c7f3 3586 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3587 (addr & ~TARGET_PAGE_MASK);
3588 stq_p(ptr, val);
3589 }
3590}
3591
8df1cd07 3592/* warning: addr must be aligned */
c227f099 3593void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3594{
3595 int io_index;
3596 uint8_t *ptr;
3597 unsigned long pd;
3598 PhysPageDesc *p;
3599
3600 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3601 if (!p) {
3602 pd = IO_MEM_UNASSIGNED;
3603 } else {
3604 pd = p->phys_offset;
3605 }
3b46e624 3606
3a7d929e 3607 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3608 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3609 if (p)
3610 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3611 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3612 } else {
3613 unsigned long addr1;
3614 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3615 /* RAM case */
5579c7f3 3616 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3617 stl_p(ptr, val);
3a7d929e
FB
3618 if (!cpu_physical_memory_is_dirty(addr1)) {
3619 /* invalidate code */
3620 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3621 /* set dirty bit */
f23db169
FB
3622 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3623 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3624 }
8df1cd07
FB
3625 }
3626}
3627
aab33094 3628/* XXX: optimize */
c227f099 3629void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3630{
3631 uint8_t v = val;
3632 cpu_physical_memory_write(addr, &v, 1);
3633}
3634
3635/* XXX: optimize */
c227f099 3636void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3637{
3638 uint16_t v = tswap16(val);
3639 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3640}
3641
3642/* XXX: optimize */
c227f099 3643void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3644{
3645 val = tswap64(val);
3646 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3647}
3648
5e2972fd 3649/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3650int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3651 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3652{
3653 int l;
c227f099 3654 target_phys_addr_t phys_addr;
9b3c35e0 3655 target_ulong page;
13eb76e0
FB
3656
3657 while (len > 0) {
3658 page = addr & TARGET_PAGE_MASK;
3659 phys_addr = cpu_get_phys_page_debug(env, page);
3660 /* if no physical page mapped, return an error */
3661 if (phys_addr == -1)
3662 return -1;
3663 l = (page + TARGET_PAGE_SIZE) - addr;
3664 if (l > len)
3665 l = len;
5e2972fd 3666 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3667 if (is_write)
3668 cpu_physical_memory_write_rom(phys_addr, buf, l);
3669 else
5e2972fd 3670 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3671 len -= l;
3672 buf += l;
3673 addr += l;
3674 }
3675 return 0;
3676}
a68fe89c 3677#endif
13eb76e0 3678
2e70f6ef
PB
3679/* in deterministic execution mode, instructions doing device I/Os
3680 must be at the end of the TB */
3681void cpu_io_recompile(CPUState *env, void *retaddr)
3682{
3683 TranslationBlock *tb;
3684 uint32_t n, cflags;
3685 target_ulong pc, cs_base;
3686 uint64_t flags;
3687
3688 tb = tb_find_pc((unsigned long)retaddr);
3689 if (!tb) {
3690 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3691 retaddr);
3692 }
3693 n = env->icount_decr.u16.low + tb->icount;
3694 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3695 /* Calculate how many instructions had been executed before the fault
bf20dc07 3696 occurred. */
2e70f6ef
PB
3697 n = n - env->icount_decr.u16.low;
3698 /* Generate a new TB ending on the I/O insn. */
3699 n++;
3700 /* On MIPS and SH, delay slot instructions can only be restarted if
3701 they were already the first instruction in the TB. If this is not
bf20dc07 3702 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3703 branch. */
3704#if defined(TARGET_MIPS)
3705 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3706 env->active_tc.PC -= 4;
3707 env->icount_decr.u16.low++;
3708 env->hflags &= ~MIPS_HFLAG_BMASK;
3709 }
3710#elif defined(TARGET_SH4)
3711 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3712 && n > 1) {
3713 env->pc -= 2;
3714 env->icount_decr.u16.low++;
3715 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3716 }
3717#endif
3718 /* This should never happen. */
3719 if (n > CF_COUNT_MASK)
3720 cpu_abort(env, "TB too big during recompile");
3721
3722 cflags = n | CF_LAST_IO;
3723 pc = tb->pc;
3724 cs_base = tb->cs_base;
3725 flags = tb->flags;
3726 tb_phys_invalidate(tb, -1);
3727 /* FIXME: In theory this could raise an exception. In practice
3728 we have already translated the block once so it's probably ok. */
3729 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3730 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3731 the first in the TB) then we end up generating a whole new TB and
3732 repeating the fault, which is horribly inefficient.
3733 Better would be to execute just this insn uncached, or generate a
3734 second new TB. */
3735 cpu_resume_from_signal(env, NULL);
3736}
3737
e3db7226
FB
3738void dump_exec_info(FILE *f,
3739 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3740{
3741 int i, target_code_size, max_target_code_size;
3742 int direct_jmp_count, direct_jmp2_count, cross_page;
3743 TranslationBlock *tb;
3b46e624 3744
e3db7226
FB
3745 target_code_size = 0;
3746 max_target_code_size = 0;
3747 cross_page = 0;
3748 direct_jmp_count = 0;
3749 direct_jmp2_count = 0;
3750 for(i = 0; i < nb_tbs; i++) {
3751 tb = &tbs[i];
3752 target_code_size += tb->size;
3753 if (tb->size > max_target_code_size)
3754 max_target_code_size = tb->size;
3755 if (tb->page_addr[1] != -1)
3756 cross_page++;
3757 if (tb->tb_next_offset[0] != 0xffff) {
3758 direct_jmp_count++;
3759 if (tb->tb_next_offset[1] != 0xffff) {
3760 direct_jmp2_count++;
3761 }
3762 }
3763 }
3764 /* XXX: avoid using doubles ? */
57fec1fe 3765 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3766 cpu_fprintf(f, "gen code size %ld/%ld\n",
3767 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3768 cpu_fprintf(f, "TB count %d/%d\n",
3769 nb_tbs, code_gen_max_blocks);
5fafdf24 3770 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3771 nb_tbs ? target_code_size / nb_tbs : 0,
3772 max_target_code_size);
5fafdf24 3773 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3774 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3775 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3776 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3777 cross_page,
e3db7226
FB
3778 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3779 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3780 direct_jmp_count,
e3db7226
FB
3781 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3782 direct_jmp2_count,
3783 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3784 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3785 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3786 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3787 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3788 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3789}
3790
5fafdf24 3791#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3792
3793#define MMUSUFFIX _cmmu
3794#define GETPC() NULL
3795#define env cpu_single_env
b769d8fe 3796#define SOFTMMU_CODE_ACCESS
61382a50
FB
3797
3798#define SHIFT 0
3799#include "softmmu_template.h"
3800
3801#define SHIFT 1
3802#include "softmmu_template.h"
3803
3804#define SHIFT 2
3805#include "softmmu_template.h"
3806
3807#define SHIFT 3
3808#include "softmmu_template.h"
3809
3810#undef env
3811
3812#endif