]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
memory: Add MemoryListener to typedefs.h
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
54936004 48
022c62cb 49#include "exec/cputlb.h"
5b6dd868 50#include "translate-all.h"
0cac1b66 51
022c62cb 52#include "exec/memory-internal.h"
220c3ebd 53#include "exec/ram_addr.h"
582b55a9 54#include "qemu/cache-utils.h"
67d95c15 55
b35ba30f
MT
56#include "qemu/range.h"
57
db7b5426 58//#define DEBUG_SUBPAGE
1196be37 59
e2eef170 60#if !defined(CONFIG_USER_ONLY)
981fdf23 61static bool in_migration;
94a6b54f 62
a3161038 63RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
64
65static MemoryRegion *system_memory;
309cb471 66static MemoryRegion *system_io;
62152b8a 67
f6790af6
AK
68AddressSpace address_space_io;
69AddressSpace address_space_memory;
2673a5da 70
0844e007 71MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 72static MemoryRegion io_mem_unassigned;
0e0df1e2 73
e2eef170 74#endif
9fa3e853 75
bdc44640 76struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
77/* current CPU in the current thread. It is only valid inside
78 cpu_exec() */
4917cf44 79DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 80/* 0 = Do not count executed instructions.
bf20dc07 81 1 = Precise instruction counting.
2e70f6ef 82 2 = Adaptive rate instruction counting. */
5708fc66 83int use_icount;
6a00d601 84
e2eef170 85#if !defined(CONFIG_USER_ONLY)
4346ae3e 86
1db8abb1
PB
87typedef struct PhysPageEntry PhysPageEntry;
88
89struct PhysPageEntry {
9736e55b 90 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 91 uint32_t skip : 6;
9736e55b 92 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 93 uint32_t ptr : 26;
1db8abb1
PB
94};
95
8b795765
MT
96#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
97
03f49957 98/* Size of the L2 (and L3, etc) page tables. */
57271d63 99#define ADDR_SPACE_BITS 64
03f49957 100
026736ce 101#define P_L2_BITS 9
03f49957
PB
102#define P_L2_SIZE (1 << P_L2_BITS)
103
104#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
105
106typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 107
53cb28cb
MA
108typedef struct PhysPageMap {
109 unsigned sections_nb;
110 unsigned sections_nb_alloc;
111 unsigned nodes_nb;
112 unsigned nodes_nb_alloc;
113 Node *nodes;
114 MemoryRegionSection *sections;
115} PhysPageMap;
116
1db8abb1
PB
117struct AddressSpaceDispatch {
118 /* This is a multi-level map on the physical address space.
119 * The bottom level has pointers to MemoryRegionSections.
120 */
121 PhysPageEntry phys_map;
53cb28cb 122 PhysPageMap map;
acc9d80b 123 AddressSpace *as;
1db8abb1
PB
124};
125
90260c6c
JK
126#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
127typedef struct subpage_t {
128 MemoryRegion iomem;
acc9d80b 129 AddressSpace *as;
90260c6c
JK
130 hwaddr base;
131 uint16_t sub_section[TARGET_PAGE_SIZE];
132} subpage_t;
133
b41aac4f
LPF
134#define PHYS_SECTION_UNASSIGNED 0
135#define PHYS_SECTION_NOTDIRTY 1
136#define PHYS_SECTION_ROM 2
137#define PHYS_SECTION_WATCH 3
5312bd8b 138
e2eef170 139static void io_mem_init(void);
62152b8a 140static void memory_map_init(void);
e2eef170 141
1ec9b909 142static MemoryRegion io_mem_watch;
6658ffb8 143#endif
fd6ce8f6 144
6d9a1304 145#if !defined(CONFIG_USER_ONLY)
d6f2ea22 146
53cb28cb 147static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 148{
53cb28cb
MA
149 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
150 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
151 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
152 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 153 }
f7bf5461
AK
154}
155
53cb28cb 156static uint32_t phys_map_node_alloc(PhysPageMap *map)
f7bf5461
AK
157{
158 unsigned i;
8b795765 159 uint32_t ret;
f7bf5461 160
53cb28cb 161 ret = map->nodes_nb++;
f7bf5461 162 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 163 assert(ret != map->nodes_nb_alloc);
03f49957 164 for (i = 0; i < P_L2_SIZE; ++i) {
53cb28cb
MA
165 map->nodes[ret][i].skip = 1;
166 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 167 }
f7bf5461 168 return ret;
d6f2ea22
AK
169}
170
53cb28cb
MA
171static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
172 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 173 int level)
f7bf5461
AK
174{
175 PhysPageEntry *p;
176 int i;
03f49957 177 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 178
9736e55b 179 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
53cb28cb
MA
180 lp->ptr = phys_map_node_alloc(map);
181 p = map->nodes[lp->ptr];
f7bf5461 182 if (level == 0) {
03f49957 183 for (i = 0; i < P_L2_SIZE; i++) {
9736e55b 184 p[i].skip = 0;
b41aac4f 185 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 186 }
67c4d23c 187 }
f7bf5461 188 } else {
53cb28cb 189 p = map->nodes[lp->ptr];
92e873b9 190 }
03f49957 191 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 192
03f49957 193 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 194 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 195 lp->skip = 0;
c19e8800 196 lp->ptr = leaf;
07f07b31
AK
197 *index += step;
198 *nb -= step;
2999097b 199 } else {
53cb28cb 200 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
201 }
202 ++lp;
f7bf5461
AK
203 }
204}
205
ac1970fb 206static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 207 hwaddr index, hwaddr nb,
2999097b 208 uint16_t leaf)
f7bf5461 209{
2999097b 210 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 211 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 212
53cb28cb 213 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
214}
215
b35ba30f
MT
216/* Compact a non leaf page entry. Simply detect that the entry has a single child,
217 * and update our entry so we can skip it and go directly to the destination.
218 */
219static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
220{
221 unsigned valid_ptr = P_L2_SIZE;
222 int valid = 0;
223 PhysPageEntry *p;
224 int i;
225
226 if (lp->ptr == PHYS_MAP_NODE_NIL) {
227 return;
228 }
229
230 p = nodes[lp->ptr];
231 for (i = 0; i < P_L2_SIZE; i++) {
232 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
233 continue;
234 }
235
236 valid_ptr = i;
237 valid++;
238 if (p[i].skip) {
239 phys_page_compact(&p[i], nodes, compacted);
240 }
241 }
242
243 /* We can only compress if there's only one child. */
244 if (valid != 1) {
245 return;
246 }
247
248 assert(valid_ptr < P_L2_SIZE);
249
250 /* Don't compress if it won't fit in the # of bits we have. */
251 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
252 return;
253 }
254
255 lp->ptr = p[valid_ptr].ptr;
256 if (!p[valid_ptr].skip) {
257 /* If our only child is a leaf, make this a leaf. */
258 /* By design, we should have made this node a leaf to begin with so we
259 * should never reach here.
260 * But since it's so simple to handle this, let's do it just in case we
261 * change this rule.
262 */
263 lp->skip = 0;
264 } else {
265 lp->skip += p[valid_ptr].skip;
266 }
267}
268
269static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
270{
271 DECLARE_BITMAP(compacted, nodes_nb);
272
273 if (d->phys_map.skip) {
53cb28cb 274 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
275 }
276}
277
97115a8d 278static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 279 Node *nodes, MemoryRegionSection *sections)
92e873b9 280{
31ab2b4a 281 PhysPageEntry *p;
97115a8d 282 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 283 int i;
f1f6e3b8 284
9736e55b 285 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 286 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 287 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 288 }
9affd6fc 289 p = nodes[lp.ptr];
03f49957 290 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 291 }
b35ba30f
MT
292
293 if (sections[lp.ptr].size.hi ||
294 range_covers_byte(sections[lp.ptr].offset_within_address_space,
295 sections[lp.ptr].size.lo, addr)) {
296 return &sections[lp.ptr];
297 } else {
298 return &sections[PHYS_SECTION_UNASSIGNED];
299 }
f3705d53
AK
300}
301
e5548617
BS
302bool memory_region_is_unassigned(MemoryRegion *mr)
303{
2a8e7499 304 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 305 && mr != &io_mem_watch;
fd6ce8f6 306}
149f54b5 307
c7086b4a 308static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
309 hwaddr addr,
310 bool resolve_subpage)
9f029603 311{
90260c6c
JK
312 MemoryRegionSection *section;
313 subpage_t *subpage;
314
53cb28cb 315 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
316 if (resolve_subpage && section->mr->subpage) {
317 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 318 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
319 }
320 return section;
9f029603
JK
321}
322
90260c6c 323static MemoryRegionSection *
c7086b4a 324address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 325 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
326{
327 MemoryRegionSection *section;
a87f3954 328 Int128 diff;
149f54b5 329
c7086b4a 330 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
331 /* Compute offset within MemoryRegionSection */
332 addr -= section->offset_within_address_space;
333
334 /* Compute offset within MemoryRegion */
335 *xlat = addr + section->offset_within_region;
336
337 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 338 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
339 return section;
340}
90260c6c 341
a87f3954
PB
342static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
343{
344 if (memory_region_is_ram(mr)) {
345 return !(is_write && mr->readonly);
346 }
347 if (memory_region_is_romd(mr)) {
348 return !is_write;
349 }
350
351 return false;
352}
353
5c8a00ce
PB
354MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
355 hwaddr *xlat, hwaddr *plen,
356 bool is_write)
90260c6c 357{
30951157
AK
358 IOMMUTLBEntry iotlb;
359 MemoryRegionSection *section;
360 MemoryRegion *mr;
361 hwaddr len = *plen;
362
363 for (;;) {
a87f3954 364 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
30951157
AK
365 mr = section->mr;
366
367 if (!mr->iommu_ops) {
368 break;
369 }
370
371 iotlb = mr->iommu_ops->translate(mr, addr);
372 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
373 | (addr & iotlb.addr_mask));
374 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
375 if (!(iotlb.perm & (1 << is_write))) {
376 mr = &io_mem_unassigned;
377 break;
378 }
379
380 as = iotlb.target_as;
381 }
382
a87f3954
PB
383 if (memory_access_is_direct(mr, is_write)) {
384 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
385 len = MIN(page, len);
386 }
387
30951157
AK
388 *plen = len;
389 *xlat = addr;
390 return mr;
90260c6c
JK
391}
392
393MemoryRegionSection *
394address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
395 hwaddr *plen)
396{
30951157 397 MemoryRegionSection *section;
c7086b4a 398 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
399
400 assert(!section->mr->iommu_ops);
401 return section;
90260c6c 402}
5b6dd868 403#endif
fd6ce8f6 404
5b6dd868 405void cpu_exec_init_all(void)
fdbb84d1 406{
5b6dd868 407#if !defined(CONFIG_USER_ONLY)
b2a8658e 408 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
409 memory_map_init();
410 io_mem_init();
fdbb84d1 411#endif
5b6dd868 412}
fdbb84d1 413
b170fce3 414#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
415
416static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 417{
259186a7 418 CPUState *cpu = opaque;
a513fe19 419
5b6dd868
BS
420 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
421 version_id is increased. */
259186a7
AF
422 cpu->interrupt_request &= ~0x01;
423 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
424
425 return 0;
a513fe19 426}
7501267e 427
1a1562f5 428const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
429 .name = "cpu_common",
430 .version_id = 1,
431 .minimum_version_id = 1,
432 .minimum_version_id_old = 1,
433 .post_load = cpu_common_post_load,
434 .fields = (VMStateField []) {
259186a7
AF
435 VMSTATE_UINT32(halted, CPUState),
436 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
437 VMSTATE_END_OF_LIST()
438 }
439};
1a1562f5 440
5b6dd868 441#endif
ea041c0e 442
38d8f5c8 443CPUState *qemu_get_cpu(int index)
ea041c0e 444{
bdc44640 445 CPUState *cpu;
ea041c0e 446
bdc44640 447 CPU_FOREACH(cpu) {
55e5c285 448 if (cpu->cpu_index == index) {
bdc44640 449 return cpu;
55e5c285 450 }
ea041c0e 451 }
5b6dd868 452
bdc44640 453 return NULL;
ea041c0e
FB
454}
455
5b6dd868 456void cpu_exec_init(CPUArchState *env)
ea041c0e 457{
5b6dd868 458 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 459 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 460 CPUState *some_cpu;
5b6dd868
BS
461 int cpu_index;
462
463#if defined(CONFIG_USER_ONLY)
464 cpu_list_lock();
465#endif
5b6dd868 466 cpu_index = 0;
bdc44640 467 CPU_FOREACH(some_cpu) {
5b6dd868
BS
468 cpu_index++;
469 }
55e5c285 470 cpu->cpu_index = cpu_index;
1b1ed8dc 471 cpu->numa_node = 0;
5b6dd868
BS
472 QTAILQ_INIT(&env->breakpoints);
473 QTAILQ_INIT(&env->watchpoints);
474#ifndef CONFIG_USER_ONLY
475 cpu->thread_id = qemu_get_thread_id();
476#endif
bdc44640 477 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
478#if defined(CONFIG_USER_ONLY)
479 cpu_list_unlock();
480#endif
e0d47944
AF
481 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
482 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
483 }
5b6dd868 484#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
485 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
486 cpu_save, cpu_load, env);
b170fce3 487 assert(cc->vmsd == NULL);
e0d47944 488 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 489#endif
b170fce3
AF
490 if (cc->vmsd != NULL) {
491 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
492 }
ea041c0e
FB
493}
494
1fddef4b 495#if defined(TARGET_HAS_ICE)
94df27fd 496#if defined(CONFIG_USER_ONLY)
00b941e5 497static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
498{
499 tb_invalidate_phys_page_range(pc, pc + 1, 0);
500}
501#else
00b941e5 502static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 503{
e8262a1b
MF
504 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
505 if (phys != -1) {
29d8ec7b
EI
506 tb_invalidate_phys_addr(&address_space_memory,
507 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 508 }
1e7855a5 509}
c27004ec 510#endif
94df27fd 511#endif /* TARGET_HAS_ICE */
d720b93d 512
c527ee8f 513#if defined(CONFIG_USER_ONLY)
9349b4f9 514void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
515
516{
517}
518
9349b4f9 519int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
520 int flags, CPUWatchpoint **watchpoint)
521{
522 return -ENOSYS;
523}
524#else
6658ffb8 525/* Add a watchpoint. */
9349b4f9 526int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 527 int flags, CPUWatchpoint **watchpoint)
6658ffb8 528{
b4051334 529 target_ulong len_mask = ~(len - 1);
c0ce998e 530 CPUWatchpoint *wp;
6658ffb8 531
b4051334 532 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
533 if ((len & (len - 1)) || (addr & ~len_mask) ||
534 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
535 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
536 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
537 return -EINVAL;
538 }
7267c094 539 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
540
541 wp->vaddr = addr;
b4051334 542 wp->len_mask = len_mask;
a1d1bb31
AL
543 wp->flags = flags;
544
2dc9f411 545 /* keep all GDB-injected watchpoints in front */
c0ce998e 546 if (flags & BP_GDB)
72cf2d4f 547 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 548 else
72cf2d4f 549 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 550
6658ffb8 551 tlb_flush_page(env, addr);
a1d1bb31
AL
552
553 if (watchpoint)
554 *watchpoint = wp;
555 return 0;
6658ffb8
PB
556}
557
a1d1bb31 558/* Remove a specific watchpoint. */
9349b4f9 559int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 560 int flags)
6658ffb8 561{
b4051334 562 target_ulong len_mask = ~(len - 1);
a1d1bb31 563 CPUWatchpoint *wp;
6658ffb8 564
72cf2d4f 565 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 566 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 567 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 568 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
569 return 0;
570 }
571 }
a1d1bb31 572 return -ENOENT;
6658ffb8
PB
573}
574
a1d1bb31 575/* Remove a specific watchpoint by reference. */
9349b4f9 576void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 577{
72cf2d4f 578 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 579
a1d1bb31
AL
580 tlb_flush_page(env, watchpoint->vaddr);
581
7267c094 582 g_free(watchpoint);
a1d1bb31
AL
583}
584
585/* Remove all matching watchpoints. */
9349b4f9 586void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 587{
c0ce998e 588 CPUWatchpoint *wp, *next;
a1d1bb31 589
72cf2d4f 590 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
591 if (wp->flags & mask)
592 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 593 }
7d03f82f 594}
c527ee8f 595#endif
7d03f82f 596
a1d1bb31 597/* Add a breakpoint. */
9349b4f9 598int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 599 CPUBreakpoint **breakpoint)
4c3a88a2 600{
1fddef4b 601#if defined(TARGET_HAS_ICE)
c0ce998e 602 CPUBreakpoint *bp;
3b46e624 603
7267c094 604 bp = g_malloc(sizeof(*bp));
4c3a88a2 605
a1d1bb31
AL
606 bp->pc = pc;
607 bp->flags = flags;
608
2dc9f411 609 /* keep all GDB-injected breakpoints in front */
00b941e5 610 if (flags & BP_GDB) {
72cf2d4f 611 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
00b941e5 612 } else {
72cf2d4f 613 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
00b941e5 614 }
3b46e624 615
00b941e5 616 breakpoint_invalidate(ENV_GET_CPU(env), pc);
a1d1bb31 617
00b941e5 618 if (breakpoint) {
a1d1bb31 619 *breakpoint = bp;
00b941e5 620 }
4c3a88a2
FB
621 return 0;
622#else
a1d1bb31 623 return -ENOSYS;
4c3a88a2
FB
624#endif
625}
626
a1d1bb31 627/* Remove a specific breakpoint. */
9349b4f9 628int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 629{
7d03f82f 630#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
631 CPUBreakpoint *bp;
632
72cf2d4f 633 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
634 if (bp->pc == pc && bp->flags == flags) {
635 cpu_breakpoint_remove_by_ref(env, bp);
636 return 0;
637 }
7d03f82f 638 }
a1d1bb31
AL
639 return -ENOENT;
640#else
641 return -ENOSYS;
7d03f82f
EI
642#endif
643}
644
a1d1bb31 645/* Remove a specific breakpoint by reference. */
9349b4f9 646void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 647{
1fddef4b 648#if defined(TARGET_HAS_ICE)
72cf2d4f 649 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 650
00b941e5 651 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
a1d1bb31 652
7267c094 653 g_free(breakpoint);
a1d1bb31
AL
654#endif
655}
656
657/* Remove all matching breakpoints. */
9349b4f9 658void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
659{
660#if defined(TARGET_HAS_ICE)
c0ce998e 661 CPUBreakpoint *bp, *next;
a1d1bb31 662
72cf2d4f 663 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
664 if (bp->flags & mask)
665 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 666 }
4c3a88a2
FB
667#endif
668}
669
c33a346e
FB
670/* enable or disable single step mode. EXCP_DEBUG is returned by the
671 CPU loop after each instruction */
3825b28f 672void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 673{
1fddef4b 674#if defined(TARGET_HAS_ICE)
ed2803da
AF
675 if (cpu->singlestep_enabled != enabled) {
676 cpu->singlestep_enabled = enabled;
677 if (kvm_enabled()) {
38e478ec 678 kvm_update_guest_debug(cpu, 0);
ed2803da 679 } else {
ccbb4d44 680 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 681 /* XXX: only flush what is necessary */
38e478ec 682 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
683 tb_flush(env);
684 }
c33a346e
FB
685 }
686#endif
687}
688
9349b4f9 689void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 690{
878096ee 691 CPUState *cpu = ENV_GET_CPU(env);
7501267e 692 va_list ap;
493ae1f0 693 va_list ap2;
7501267e
FB
694
695 va_start(ap, fmt);
493ae1f0 696 va_copy(ap2, ap);
7501267e
FB
697 fprintf(stderr, "qemu: fatal: ");
698 vfprintf(stderr, fmt, ap);
699 fprintf(stderr, "\n");
878096ee 700 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
701 if (qemu_log_enabled()) {
702 qemu_log("qemu: fatal: ");
703 qemu_log_vprintf(fmt, ap2);
704 qemu_log("\n");
a0762859 705 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 706 qemu_log_flush();
93fcfe39 707 qemu_log_close();
924edcae 708 }
493ae1f0 709 va_end(ap2);
f9373291 710 va_end(ap);
fd052bf6
RV
711#if defined(CONFIG_USER_ONLY)
712 {
713 struct sigaction act;
714 sigfillset(&act.sa_mask);
715 act.sa_handler = SIG_DFL;
716 sigaction(SIGABRT, &act, NULL);
717 }
718#endif
7501267e
FB
719 abort();
720}
721
0124311e 722#if !defined(CONFIG_USER_ONLY)
041603fe
PB
723static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
724{
725 RAMBlock *block;
726
727 /* The list is protected by the iothread lock here. */
728 block = ram_list.mru_block;
729 if (block && addr - block->offset < block->length) {
730 goto found;
731 }
732 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
733 if (addr - block->offset < block->length) {
734 goto found;
735 }
736 }
737
738 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
739 abort();
740
741found:
742 ram_list.mru_block = block;
743 return block;
744}
745
a2f4d5be 746static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 747{
041603fe 748 ram_addr_t start1;
a2f4d5be
JQ
749 RAMBlock *block;
750 ram_addr_t end;
751
752 end = TARGET_PAGE_ALIGN(start + length);
753 start &= TARGET_PAGE_MASK;
d24981d3 754
041603fe
PB
755 block = qemu_get_ram_block(start);
756 assert(block == qemu_get_ram_block(end - 1));
757 start1 = (uintptr_t)block->host + (start - block->offset);
758 cpu_tlb_reset_dirty_all(start1, length);
d24981d3
JQ
759}
760
5579c7f3 761/* Note: start and end must be within the same ram block. */
a2f4d5be 762void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
52159192 763 unsigned client)
1ccde1cb 764{
1ccde1cb
FB
765 if (length == 0)
766 return;
ace694cc 767 cpu_physical_memory_clear_dirty_range(start, length, client);
f23db169 768
d24981d3 769 if (tcg_enabled()) {
a2f4d5be 770 tlb_reset_dirty_range_all(start, length);
5579c7f3 771 }
1ccde1cb
FB
772}
773
981fdf23 774static void cpu_physical_memory_set_dirty_tracking(bool enable)
74576198
AL
775{
776 in_migration = enable;
74576198
AL
777}
778
a8170e5e 779hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
780 MemoryRegionSection *section,
781 target_ulong vaddr,
782 hwaddr paddr, hwaddr xlat,
783 int prot,
784 target_ulong *address)
e5548617 785{
a8170e5e 786 hwaddr iotlb;
e5548617
BS
787 CPUWatchpoint *wp;
788
cc5bea60 789 if (memory_region_is_ram(section->mr)) {
e5548617
BS
790 /* Normal RAM. */
791 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 792 + xlat;
e5548617 793 if (!section->readonly) {
b41aac4f 794 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 795 } else {
b41aac4f 796 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
797 }
798 } else {
1b3fb98f 799 iotlb = section - section->address_space->dispatch->map.sections;
149f54b5 800 iotlb += xlat;
e5548617
BS
801 }
802
803 /* Make accesses to pages with watchpoints go via the
804 watchpoint trap routines. */
805 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
806 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
807 /* Avoid trapping reads of pages with a write breakpoint. */
808 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 809 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
810 *address |= TLB_MMIO;
811 break;
812 }
813 }
814 }
815
816 return iotlb;
817}
9fa3e853
FB
818#endif /* defined(CONFIG_USER_ONLY) */
819
e2eef170 820#if !defined(CONFIG_USER_ONLY)
8da3ff18 821
c227f099 822static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 823 uint16_t section);
acc9d80b 824static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 825
575ddeb4 826static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
91138037
MA
827
828/*
829 * Set a custom physical guest memory alloator.
830 * Accelerators with unusual needs may need this. Hopefully, we can
831 * get rid of it eventually.
832 */
575ddeb4 833void phys_mem_set_alloc(void *(*alloc)(size_t))
91138037
MA
834{
835 phys_mem_alloc = alloc;
836}
837
53cb28cb
MA
838static uint16_t phys_section_add(PhysPageMap *map,
839 MemoryRegionSection *section)
5312bd8b 840{
68f3f65b
PB
841 /* The physical section number is ORed with a page-aligned
842 * pointer to produce the iotlb entries. Thus it should
843 * never overflow into the page-aligned value.
844 */
53cb28cb 845 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 846
53cb28cb
MA
847 if (map->sections_nb == map->sections_nb_alloc) {
848 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
849 map->sections = g_renew(MemoryRegionSection, map->sections,
850 map->sections_nb_alloc);
5312bd8b 851 }
53cb28cb 852 map->sections[map->sections_nb] = *section;
dfde4e6e 853 memory_region_ref(section->mr);
53cb28cb 854 return map->sections_nb++;
5312bd8b
AK
855}
856
058bc4b5
PB
857static void phys_section_destroy(MemoryRegion *mr)
858{
dfde4e6e
PB
859 memory_region_unref(mr);
860
058bc4b5
PB
861 if (mr->subpage) {
862 subpage_t *subpage = container_of(mr, subpage_t, iomem);
863 memory_region_destroy(&subpage->iomem);
864 g_free(subpage);
865 }
866}
867
6092666e 868static void phys_sections_free(PhysPageMap *map)
5312bd8b 869{
9affd6fc
PB
870 while (map->sections_nb > 0) {
871 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
872 phys_section_destroy(section->mr);
873 }
9affd6fc
PB
874 g_free(map->sections);
875 g_free(map->nodes);
5312bd8b
AK
876}
877
ac1970fb 878static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
879{
880 subpage_t *subpage;
a8170e5e 881 hwaddr base = section->offset_within_address_space
0f0cb164 882 & TARGET_PAGE_MASK;
97115a8d 883 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 884 d->map.nodes, d->map.sections);
0f0cb164
AK
885 MemoryRegionSection subsection = {
886 .offset_within_address_space = base,
052e87b0 887 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 888 };
a8170e5e 889 hwaddr start, end;
0f0cb164 890
f3705d53 891 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 892
f3705d53 893 if (!(existing->mr->subpage)) {
acc9d80b 894 subpage = subpage_init(d->as, base);
3be91e86 895 subsection.address_space = d->as;
0f0cb164 896 subsection.mr = &subpage->iomem;
ac1970fb 897 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 898 phys_section_add(&d->map, &subsection));
0f0cb164 899 } else {
f3705d53 900 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
901 }
902 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 903 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
904 subpage_register(subpage, start, end,
905 phys_section_add(&d->map, section));
0f0cb164
AK
906}
907
908
052e87b0
PB
909static void register_multipage(AddressSpaceDispatch *d,
910 MemoryRegionSection *section)
33417e70 911{
a8170e5e 912 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 913 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
914 uint64_t num_pages = int128_get64(int128_rshift(section->size,
915 TARGET_PAGE_BITS));
dd81124b 916
733d5ef5
PB
917 assert(num_pages);
918 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
919}
920
ac1970fb 921static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 922{
89ae337a 923 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 924 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 925 MemoryRegionSection now = *section, remain = *section;
052e87b0 926 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 927
733d5ef5
PB
928 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
929 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
930 - now.offset_within_address_space;
931
052e87b0 932 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 933 register_subpage(d, &now);
733d5ef5 934 } else {
052e87b0 935 now.size = int128_zero();
733d5ef5 936 }
052e87b0
PB
937 while (int128_ne(remain.size, now.size)) {
938 remain.size = int128_sub(remain.size, now.size);
939 remain.offset_within_address_space += int128_get64(now.size);
940 remain.offset_within_region += int128_get64(now.size);
69b67646 941 now = remain;
052e87b0 942 if (int128_lt(remain.size, page_size)) {
733d5ef5 943 register_subpage(d, &now);
88266249 944 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 945 now.size = page_size;
ac1970fb 946 register_subpage(d, &now);
69b67646 947 } else {
052e87b0 948 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 949 register_multipage(d, &now);
69b67646 950 }
0f0cb164
AK
951 }
952}
953
62a2744c
SY
954void qemu_flush_coalesced_mmio_buffer(void)
955{
956 if (kvm_enabled())
957 kvm_flush_coalesced_mmio_buffer();
958}
959
b2a8658e
UD
960void qemu_mutex_lock_ramlist(void)
961{
962 qemu_mutex_lock(&ram_list.mutex);
963}
964
965void qemu_mutex_unlock_ramlist(void)
966{
967 qemu_mutex_unlock(&ram_list.mutex);
968}
969
e1e84ba0 970#ifdef __linux__
c902760f
MT
971
972#include <sys/vfs.h>
973
974#define HUGETLBFS_MAGIC 0x958458f6
975
976static long gethugepagesize(const char *path)
977{
978 struct statfs fs;
979 int ret;
980
981 do {
9742bf26 982 ret = statfs(path, &fs);
c902760f
MT
983 } while (ret != 0 && errno == EINTR);
984
985 if (ret != 0) {
9742bf26
YT
986 perror(path);
987 return 0;
c902760f
MT
988 }
989
990 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 991 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
992
993 return fs.f_bsize;
994}
995
ef36fa14
MT
996static sigjmp_buf sigjump;
997
998static void sigbus_handler(int signal)
999{
1000 siglongjmp(sigjump, 1);
1001}
1002
04b16653
AW
1003static void *file_ram_alloc(RAMBlock *block,
1004 ram_addr_t memory,
1005 const char *path)
c902760f
MT
1006{
1007 char *filename;
8ca761f6
PF
1008 char *sanitized_name;
1009 char *c;
c902760f
MT
1010 void *area;
1011 int fd;
c902760f
MT
1012 unsigned long hpagesize;
1013
1014 hpagesize = gethugepagesize(path);
1015 if (!hpagesize) {
9742bf26 1016 return NULL;
c902760f
MT
1017 }
1018
1019 if (memory < hpagesize) {
1020 return NULL;
1021 }
1022
1023 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1024 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1025 return NULL;
1026 }
1027
8ca761f6
PF
1028 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1029 sanitized_name = g_strdup(block->mr->name);
1030 for (c = sanitized_name; *c != '\0'; c++) {
1031 if (*c == '/')
1032 *c = '_';
1033 }
1034
1035 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1036 sanitized_name);
1037 g_free(sanitized_name);
c902760f
MT
1038
1039 fd = mkstemp(filename);
1040 if (fd < 0) {
9742bf26 1041 perror("unable to create backing store for hugepages");
e4ada482 1042 g_free(filename);
9742bf26 1043 return NULL;
c902760f
MT
1044 }
1045 unlink(filename);
e4ada482 1046 g_free(filename);
c902760f
MT
1047
1048 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1049
1050 /*
1051 * ftruncate is not supported by hugetlbfs in older
1052 * hosts, so don't bother bailing out on errors.
1053 * If anything goes wrong with it under other filesystems,
1054 * mmap will fail.
1055 */
1056 if (ftruncate(fd, memory))
9742bf26 1057 perror("ftruncate");
c902760f 1058
c902760f 1059 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
c902760f 1060 if (area == MAP_FAILED) {
9742bf26
YT
1061 perror("file_ram_alloc: can't mmap RAM pages");
1062 close(fd);
1063 return (NULL);
c902760f 1064 }
ef36fa14
MT
1065
1066 if (mem_prealloc) {
1067 int ret, i;
1068 struct sigaction act, oldact;
1069 sigset_t set, oldset;
1070
1071 memset(&act, 0, sizeof(act));
1072 act.sa_handler = &sigbus_handler;
1073 act.sa_flags = 0;
1074
1075 ret = sigaction(SIGBUS, &act, &oldact);
1076 if (ret) {
1077 perror("file_ram_alloc: failed to install signal handler");
1078 exit(1);
1079 }
1080
1081 /* unblock SIGBUS */
1082 sigemptyset(&set);
1083 sigaddset(&set, SIGBUS);
1084 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1085
1086 if (sigsetjmp(sigjump, 1)) {
1087 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1088 exit(1);
1089 }
1090
1091 /* MAP_POPULATE silently ignores failures */
2ba82852 1092 for (i = 0; i < (memory/hpagesize); i++) {
ef36fa14
MT
1093 memset(area + (hpagesize*i), 0, 1);
1094 }
1095
1096 ret = sigaction(SIGBUS, &oldact, NULL);
1097 if (ret) {
1098 perror("file_ram_alloc: failed to reinstall signal handler");
1099 exit(1);
1100 }
1101
1102 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1103 }
1104
04b16653 1105 block->fd = fd;
c902760f
MT
1106 return area;
1107}
e1e84ba0
MA
1108#else
1109static void *file_ram_alloc(RAMBlock *block,
1110 ram_addr_t memory,
1111 const char *path)
1112{
1113 fprintf(stderr, "-mem-path not supported on this host\n");
1114 exit(1);
1115}
c902760f
MT
1116#endif
1117
d17b5288 1118static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1119{
1120 RAMBlock *block, *next_block;
3e837b2c 1121 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1122
49cd9ac6
SH
1123 assert(size != 0); /* it would hand out same offset multiple times */
1124
a3161038 1125 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
1126 return 0;
1127
a3161038 1128 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 1129 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1130
1131 end = block->offset + block->length;
1132
a3161038 1133 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1134 if (next_block->offset >= end) {
1135 next = MIN(next, next_block->offset);
1136 }
1137 }
1138 if (next - end >= size && next - end < mingap) {
3e837b2c 1139 offset = end;
04b16653
AW
1140 mingap = next - end;
1141 }
1142 }
3e837b2c
AW
1143
1144 if (offset == RAM_ADDR_MAX) {
1145 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1146 (uint64_t)size);
1147 abort();
1148 }
1149
04b16653
AW
1150 return offset;
1151}
1152
652d7ec2 1153ram_addr_t last_ram_offset(void)
d17b5288
AW
1154{
1155 RAMBlock *block;
1156 ram_addr_t last = 0;
1157
a3161038 1158 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1159 last = MAX(last, block->offset + block->length);
1160
1161 return last;
1162}
1163
ddb97f1d
JB
1164static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1165{
1166 int ret;
ddb97f1d
JB
1167
1168 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1169 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1170 "dump-guest-core", true)) {
ddb97f1d
JB
1171 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1172 if (ret) {
1173 perror("qemu_madvise");
1174 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1175 "but dump_guest_core=off specified\n");
1176 }
1177 }
1178}
1179
c5705a77 1180void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1181{
1182 RAMBlock *new_block, *block;
1183
c5705a77 1184 new_block = NULL;
a3161038 1185 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1186 if (block->offset == addr) {
1187 new_block = block;
1188 break;
1189 }
1190 }
1191 assert(new_block);
1192 assert(!new_block->idstr[0]);
84b89d78 1193
09e5ab63
AL
1194 if (dev) {
1195 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1196 if (id) {
1197 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1198 g_free(id);
84b89d78
CM
1199 }
1200 }
1201 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1202
b2a8658e
UD
1203 /* This assumes the iothread lock is taken here too. */
1204 qemu_mutex_lock_ramlist();
a3161038 1205 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1206 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1207 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1208 new_block->idstr);
1209 abort();
1210 }
1211 }
b2a8658e 1212 qemu_mutex_unlock_ramlist();
c5705a77
AK
1213}
1214
8490fc78
LC
1215static int memory_try_enable_merging(void *addr, size_t len)
1216{
2ff3de68 1217 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1218 /* disabled by the user */
1219 return 0;
1220 }
1221
1222 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1223}
1224
c5705a77
AK
1225ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1226 MemoryRegion *mr)
1227{
abb26d63 1228 RAMBlock *block, *new_block;
2152f5ca
JQ
1229 ram_addr_t old_ram_size, new_ram_size;
1230
1231 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77
AK
1232
1233 size = TARGET_PAGE_ALIGN(size);
1234 new_block = g_malloc0(sizeof(*new_block));
3435f395 1235 new_block->fd = -1;
84b89d78 1236
b2a8658e
UD
1237 /* This assumes the iothread lock is taken here too. */
1238 qemu_mutex_lock_ramlist();
7c637366 1239 new_block->mr = mr;
432d268c 1240 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1241 if (host) {
1242 new_block->host = host;
cd19cfa2 1243 new_block->flags |= RAM_PREALLOC_MASK;
dfeaf2ab
MA
1244 } else if (xen_enabled()) {
1245 if (mem_path) {
1246 fprintf(stderr, "-mem-path not supported with Xen\n");
1247 exit(1);
1248 }
1249 xen_ram_alloc(new_block->offset, size, mr);
6977dfe6
YT
1250 } else {
1251 if (mem_path) {
e1e84ba0
MA
1252 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1253 /*
1254 * file_ram_alloc() needs to allocate just like
1255 * phys_mem_alloc, but we haven't bothered to provide
1256 * a hook there.
1257 */
1258 fprintf(stderr,
1259 "-mem-path not supported with this accelerator\n");
1260 exit(1);
1261 }
6977dfe6 1262 new_block->host = file_ram_alloc(new_block, size, mem_path);
0628c182
MA
1263 }
1264 if (!new_block->host) {
91138037 1265 new_block->host = phys_mem_alloc(size);
39228250
MA
1266 if (!new_block->host) {
1267 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1268 new_block->mr->name, strerror(errno));
1269 exit(1);
1270 }
8490fc78 1271 memory_try_enable_merging(new_block->host, size);
6977dfe6 1272 }
c902760f 1273 }
94a6b54f
PB
1274 new_block->length = size;
1275
abb26d63
PB
1276 /* Keep the list sorted from biggest to smallest block. */
1277 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1278 if (block->length < new_block->length) {
1279 break;
1280 }
1281 }
1282 if (block) {
1283 QTAILQ_INSERT_BEFORE(block, new_block, next);
1284 } else {
1285 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1286 }
0d6d3c87 1287 ram_list.mru_block = NULL;
94a6b54f 1288
f798b07f 1289 ram_list.version++;
b2a8658e 1290 qemu_mutex_unlock_ramlist();
f798b07f 1291
2152f5ca
JQ
1292 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1293
1294 if (new_ram_size > old_ram_size) {
1ab4c8ce
JQ
1295 int i;
1296 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1297 ram_list.dirty_memory[i] =
1298 bitmap_zero_extend(ram_list.dirty_memory[i],
1299 old_ram_size, new_ram_size);
1300 }
2152f5ca 1301 }
75218e7f 1302 cpu_physical_memory_set_dirty_range(new_block->offset, size);
94a6b54f 1303
ddb97f1d 1304 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1305 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
3e469dbf 1306 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
ddb97f1d 1307
6f0437e8
JK
1308 if (kvm_enabled())
1309 kvm_setup_guest_memory(new_block->host, size);
1310
94a6b54f
PB
1311 return new_block->offset;
1312}
e9a1ab19 1313
c5705a77 1314ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1315{
c5705a77 1316 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1317}
1318
1f2e98b6
AW
1319void qemu_ram_free_from_ptr(ram_addr_t addr)
1320{
1321 RAMBlock *block;
1322
b2a8658e
UD
1323 /* This assumes the iothread lock is taken here too. */
1324 qemu_mutex_lock_ramlist();
a3161038 1325 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1326 if (addr == block->offset) {
a3161038 1327 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1328 ram_list.mru_block = NULL;
f798b07f 1329 ram_list.version++;
7267c094 1330 g_free(block);
b2a8658e 1331 break;
1f2e98b6
AW
1332 }
1333 }
b2a8658e 1334 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1335}
1336
c227f099 1337void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1338{
04b16653
AW
1339 RAMBlock *block;
1340
b2a8658e
UD
1341 /* This assumes the iothread lock is taken here too. */
1342 qemu_mutex_lock_ramlist();
a3161038 1343 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1344 if (addr == block->offset) {
a3161038 1345 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1346 ram_list.mru_block = NULL;
f798b07f 1347 ram_list.version++;
cd19cfa2
HY
1348 if (block->flags & RAM_PREALLOC_MASK) {
1349 ;
dfeaf2ab
MA
1350 } else if (xen_enabled()) {
1351 xen_invalidate_map_cache_entry(block->host);
089f3f76 1352#ifndef _WIN32
3435f395
MA
1353 } else if (block->fd >= 0) {
1354 munmap(block->host, block->length);
1355 close(block->fd);
089f3f76 1356#endif
04b16653 1357 } else {
dfeaf2ab 1358 qemu_anon_ram_free(block->host, block->length);
04b16653 1359 }
7267c094 1360 g_free(block);
b2a8658e 1361 break;
04b16653
AW
1362 }
1363 }
b2a8658e 1364 qemu_mutex_unlock_ramlist();
04b16653 1365
e9a1ab19
FB
1366}
1367
cd19cfa2
HY
1368#ifndef _WIN32
1369void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1370{
1371 RAMBlock *block;
1372 ram_addr_t offset;
1373 int flags;
1374 void *area, *vaddr;
1375
a3161038 1376 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1377 offset = addr - block->offset;
1378 if (offset < block->length) {
1379 vaddr = block->host + offset;
1380 if (block->flags & RAM_PREALLOC_MASK) {
1381 ;
dfeaf2ab
MA
1382 } else if (xen_enabled()) {
1383 abort();
cd19cfa2
HY
1384 } else {
1385 flags = MAP_FIXED;
1386 munmap(vaddr, length);
3435f395 1387 if (block->fd >= 0) {
cd19cfa2 1388#ifdef MAP_POPULATE
3435f395
MA
1389 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1390 MAP_PRIVATE;
fd28aa13 1391#else
3435f395 1392 flags |= MAP_PRIVATE;
cd19cfa2 1393#endif
3435f395
MA
1394 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1395 flags, block->fd, offset);
cd19cfa2 1396 } else {
2eb9fbaa
MA
1397 /*
1398 * Remap needs to match alloc. Accelerators that
1399 * set phys_mem_alloc never remap. If they did,
1400 * we'd need a remap hook here.
1401 */
1402 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1403
cd19cfa2
HY
1404 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1405 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1406 flags, -1, 0);
cd19cfa2
HY
1407 }
1408 if (area != vaddr) {
f15fbc4b
AP
1409 fprintf(stderr, "Could not remap addr: "
1410 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1411 length, addr);
1412 exit(1);
1413 }
8490fc78 1414 memory_try_enable_merging(vaddr, length);
ddb97f1d 1415 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1416 }
1417 return;
1418 }
1419 }
1420}
1421#endif /* !_WIN32 */
1422
1b5ec234
PB
1423/* Return a host pointer to ram allocated with qemu_ram_alloc.
1424 With the exception of the softmmu code in this file, this should
1425 only be used for local memory (e.g. video ram) that the device owns,
1426 and knows it isn't going to access beyond the end of the block.
1427
1428 It should not be used for general purpose DMA.
1429 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1430 */
1431void *qemu_get_ram_ptr(ram_addr_t addr)
1432{
1433 RAMBlock *block = qemu_get_ram_block(addr);
1434
0d6d3c87
PB
1435 if (xen_enabled()) {
1436 /* We need to check if the requested address is in the RAM
1437 * because we don't want to map the entire memory in QEMU.
1438 * In that case just map until the end of the page.
1439 */
1440 if (block->offset == 0) {
1441 return xen_map_cache(addr, 0, 0);
1442 } else if (block->host == NULL) {
1443 block->host =
1444 xen_map_cache(block->offset, block->length, 1);
1445 }
1446 }
1447 return block->host + (addr - block->offset);
dc828ca1
PB
1448}
1449
38bee5dc
SS
1450/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1451 * but takes a size argument */
cb85f7ab 1452static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1453{
8ab934f9
SS
1454 if (*size == 0) {
1455 return NULL;
1456 }
868bb33f 1457 if (xen_enabled()) {
e41d7c69 1458 return xen_map_cache(addr, *size, 1);
868bb33f 1459 } else {
38bee5dc
SS
1460 RAMBlock *block;
1461
a3161038 1462 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1463 if (addr - block->offset < block->length) {
1464 if (addr - block->offset + *size > block->length)
1465 *size = block->length - addr + block->offset;
1466 return block->host + (addr - block->offset);
1467 }
1468 }
1469
1470 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1471 abort();
38bee5dc
SS
1472 }
1473}
1474
7443b437
PB
1475/* Some of the softmmu routines need to translate from a host pointer
1476 (typically a TLB entry) back to a ram offset. */
1b5ec234 1477MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1478{
94a6b54f
PB
1479 RAMBlock *block;
1480 uint8_t *host = ptr;
1481
868bb33f 1482 if (xen_enabled()) {
e41d7c69 1483 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1484 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1485 }
1486
23887b79
PB
1487 block = ram_list.mru_block;
1488 if (block && block->host && host - block->host < block->length) {
1489 goto found;
1490 }
1491
a3161038 1492 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1493 /* This case append when the block is not mapped. */
1494 if (block->host == NULL) {
1495 continue;
1496 }
f471a17e 1497 if (host - block->host < block->length) {
23887b79 1498 goto found;
f471a17e 1499 }
94a6b54f 1500 }
432d268c 1501
1b5ec234 1502 return NULL;
23887b79
PB
1503
1504found:
1505 *ram_addr = block->offset + (host - block->host);
1b5ec234 1506 return block->mr;
e890261f 1507}
f471a17e 1508
a8170e5e 1509static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1510 uint64_t val, unsigned size)
9fa3e853 1511{
52159192 1512 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1513 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1514 }
0e0df1e2
AK
1515 switch (size) {
1516 case 1:
1517 stb_p(qemu_get_ram_ptr(ram_addr), val);
1518 break;
1519 case 2:
1520 stw_p(qemu_get_ram_ptr(ram_addr), val);
1521 break;
1522 case 4:
1523 stl_p(qemu_get_ram_ptr(ram_addr), val);
1524 break;
1525 default:
1526 abort();
3a7d929e 1527 }
52159192
JQ
1528 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1529 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
f23db169
FB
1530 /* we remove the notdirty callback only if the code has been
1531 flushed */
a2cd8c85 1532 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44
AF
1533 CPUArchState *env = current_cpu->env_ptr;
1534 tlb_set_dirty(env, env->mem_io_vaddr);
1535 }
9fa3e853
FB
1536}
1537
b018ddf6
PB
1538static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1539 unsigned size, bool is_write)
1540{
1541 return is_write;
1542}
1543
0e0df1e2 1544static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1545 .write = notdirty_mem_write,
b018ddf6 1546 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1547 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1548};
1549
0f459d16 1550/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1551static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1552{
4917cf44 1553 CPUArchState *env = current_cpu->env_ptr;
06d55cc1 1554 target_ulong pc, cs_base;
0f459d16 1555 target_ulong vaddr;
a1d1bb31 1556 CPUWatchpoint *wp;
06d55cc1 1557 int cpu_flags;
0f459d16 1558
06d55cc1
AL
1559 if (env->watchpoint_hit) {
1560 /* We re-entered the check after replacing the TB. Now raise
1561 * the debug interrupt so that is will trigger after the
1562 * current instruction. */
c3affe56 1563 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1564 return;
1565 }
2e70f6ef 1566 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1567 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1568 if ((vaddr == (wp->vaddr & len_mask) ||
1569 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1570 wp->flags |= BP_WATCHPOINT_HIT;
1571 if (!env->watchpoint_hit) {
1572 env->watchpoint_hit = wp;
5a316526 1573 tb_check_watchpoint(env);
6e140f28
AL
1574 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1575 env->exception_index = EXCP_DEBUG;
488d6577 1576 cpu_loop_exit(env);
6e140f28
AL
1577 } else {
1578 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1579 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1580 cpu_resume_from_signal(env, NULL);
6e140f28 1581 }
06d55cc1 1582 }
6e140f28
AL
1583 } else {
1584 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1585 }
1586 }
1587}
1588
6658ffb8
PB
1589/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1590 so these check for a hit then pass through to the normal out-of-line
1591 phys routines. */
a8170e5e 1592static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1593 unsigned size)
6658ffb8 1594{
1ec9b909
AK
1595 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1596 switch (size) {
1597 case 1: return ldub_phys(addr);
1598 case 2: return lduw_phys(addr);
1599 case 4: return ldl_phys(addr);
1600 default: abort();
1601 }
6658ffb8
PB
1602}
1603
a8170e5e 1604static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1605 uint64_t val, unsigned size)
6658ffb8 1606{
1ec9b909
AK
1607 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1608 switch (size) {
67364150
MF
1609 case 1:
1610 stb_phys(addr, val);
1611 break;
1612 case 2:
1613 stw_phys(addr, val);
1614 break;
1615 case 4:
1616 stl_phys(addr, val);
1617 break;
1ec9b909
AK
1618 default: abort();
1619 }
6658ffb8
PB
1620}
1621
1ec9b909
AK
1622static const MemoryRegionOps watch_mem_ops = {
1623 .read = watch_mem_read,
1624 .write = watch_mem_write,
1625 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1626};
6658ffb8 1627
a8170e5e 1628static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1629 unsigned len)
db7b5426 1630{
acc9d80b
JK
1631 subpage_t *subpage = opaque;
1632 uint8_t buf[4];
791af8c8 1633
db7b5426 1634#if defined(DEBUG_SUBPAGE)
016e9d62 1635 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 1636 subpage, len, addr);
db7b5426 1637#endif
acc9d80b
JK
1638 address_space_read(subpage->as, addr + subpage->base, buf, len);
1639 switch (len) {
1640 case 1:
1641 return ldub_p(buf);
1642 case 2:
1643 return lduw_p(buf);
1644 case 4:
1645 return ldl_p(buf);
1646 default:
1647 abort();
1648 }
db7b5426
BS
1649}
1650
a8170e5e 1651static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1652 uint64_t value, unsigned len)
db7b5426 1653{
acc9d80b
JK
1654 subpage_t *subpage = opaque;
1655 uint8_t buf[4];
1656
db7b5426 1657#if defined(DEBUG_SUBPAGE)
016e9d62 1658 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
1659 " value %"PRIx64"\n",
1660 __func__, subpage, len, addr, value);
db7b5426 1661#endif
acc9d80b
JK
1662 switch (len) {
1663 case 1:
1664 stb_p(buf, value);
1665 break;
1666 case 2:
1667 stw_p(buf, value);
1668 break;
1669 case 4:
1670 stl_p(buf, value);
1671 break;
1672 default:
1673 abort();
1674 }
1675 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1676}
1677
c353e4cc 1678static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 1679 unsigned len, bool is_write)
c353e4cc 1680{
acc9d80b 1681 subpage_t *subpage = opaque;
c353e4cc 1682#if defined(DEBUG_SUBPAGE)
016e9d62 1683 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 1684 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1685#endif
1686
acc9d80b 1687 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 1688 len, is_write);
c353e4cc
PB
1689}
1690
70c68e44
AK
1691static const MemoryRegionOps subpage_ops = {
1692 .read = subpage_read,
1693 .write = subpage_write,
c353e4cc 1694 .valid.accepts = subpage_accepts,
70c68e44 1695 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1696};
1697
c227f099 1698static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1699 uint16_t section)
db7b5426
BS
1700{
1701 int idx, eidx;
1702
1703 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1704 return -1;
1705 idx = SUBPAGE_IDX(start);
1706 eidx = SUBPAGE_IDX(end);
1707#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1708 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1709 __func__, mmio, start, end, idx, eidx, section);
db7b5426 1710#endif
db7b5426 1711 for (; idx <= eidx; idx++) {
5312bd8b 1712 mmio->sub_section[idx] = section;
db7b5426
BS
1713 }
1714
1715 return 0;
1716}
1717
acc9d80b 1718static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1719{
c227f099 1720 subpage_t *mmio;
db7b5426 1721
7267c094 1722 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1723
acc9d80b 1724 mmio->as = as;
1eec614b 1725 mmio->base = base;
2c9b15ca 1726 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1727 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1728 mmio->iomem.subpage = true;
db7b5426 1729#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1730 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1731 mmio, base, TARGET_PAGE_SIZE);
db7b5426 1732#endif
b41aac4f 1733 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1734
1735 return mmio;
1736}
1737
53cb28cb 1738static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
5312bd8b
AK
1739{
1740 MemoryRegionSection section = {
3be91e86 1741 .address_space = &address_space_memory,
5312bd8b
AK
1742 .mr = mr,
1743 .offset_within_address_space = 0,
1744 .offset_within_region = 0,
052e87b0 1745 .size = int128_2_64(),
5312bd8b
AK
1746 };
1747
53cb28cb 1748 return phys_section_add(map, &section);
5312bd8b
AK
1749}
1750
77717094 1751MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
aa102231 1752{
77717094 1753 return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1754}
1755
e9179ce1
AK
1756static void io_mem_init(void)
1757{
2c9b15ca
PB
1758 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1759 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1760 "unassigned", UINT64_MAX);
2c9b15ca 1761 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1762 "notdirty", UINT64_MAX);
2c9b15ca 1763 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1764 "watch", UINT64_MAX);
e9179ce1
AK
1765}
1766
ac1970fb 1767static void mem_begin(MemoryListener *listener)
00752703
PB
1768{
1769 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
1770 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1771 uint16_t n;
1772
1773 n = dummy_section(&d->map, &io_mem_unassigned);
1774 assert(n == PHYS_SECTION_UNASSIGNED);
1775 n = dummy_section(&d->map, &io_mem_notdirty);
1776 assert(n == PHYS_SECTION_NOTDIRTY);
1777 n = dummy_section(&d->map, &io_mem_rom);
1778 assert(n == PHYS_SECTION_ROM);
1779 n = dummy_section(&d->map, &io_mem_watch);
1780 assert(n == PHYS_SECTION_WATCH);
00752703 1781
9736e55b 1782 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
1783 d->as = as;
1784 as->next_dispatch = d;
1785}
1786
1787static void mem_commit(MemoryListener *listener)
ac1970fb 1788{
89ae337a 1789 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1790 AddressSpaceDispatch *cur = as->dispatch;
1791 AddressSpaceDispatch *next = as->next_dispatch;
1792
53cb28cb 1793 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 1794
0475d94f 1795 as->dispatch = next;
b41aac4f 1796
53cb28cb
MA
1797 if (cur) {
1798 phys_sections_free(&cur->map);
1799 g_free(cur);
1800 }
9affd6fc
PB
1801}
1802
1d71148e 1803static void tcg_commit(MemoryListener *listener)
50c1e149 1804{
182735ef 1805 CPUState *cpu;
117712c3
AK
1806
1807 /* since each CPU stores ram addresses in its TLB cache, we must
1808 reset the modified entries */
1809 /* XXX: slow ! */
bdc44640 1810 CPU_FOREACH(cpu) {
182735ef
AF
1811 CPUArchState *env = cpu->env_ptr;
1812
117712c3
AK
1813 tlb_flush(env, 1);
1814 }
50c1e149
AK
1815}
1816
93632747
AK
1817static void core_log_global_start(MemoryListener *listener)
1818{
981fdf23 1819 cpu_physical_memory_set_dirty_tracking(true);
93632747
AK
1820}
1821
1822static void core_log_global_stop(MemoryListener *listener)
1823{
981fdf23 1824 cpu_physical_memory_set_dirty_tracking(false);
93632747
AK
1825}
1826
93632747 1827static MemoryListener core_memory_listener = {
93632747
AK
1828 .log_global_start = core_log_global_start,
1829 .log_global_stop = core_log_global_stop,
ac1970fb 1830 .priority = 1,
93632747
AK
1831};
1832
1d71148e
AK
1833static MemoryListener tcg_memory_listener = {
1834 .commit = tcg_commit,
1835};
1836
ac1970fb
AK
1837void address_space_init_dispatch(AddressSpace *as)
1838{
00752703 1839 as->dispatch = NULL;
89ae337a 1840 as->dispatch_listener = (MemoryListener) {
ac1970fb 1841 .begin = mem_begin,
00752703 1842 .commit = mem_commit,
ac1970fb
AK
1843 .region_add = mem_add,
1844 .region_nop = mem_add,
1845 .priority = 0,
1846 };
89ae337a 1847 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1848}
1849
83f3c251
AK
1850void address_space_destroy_dispatch(AddressSpace *as)
1851{
1852 AddressSpaceDispatch *d = as->dispatch;
1853
89ae337a 1854 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1855 g_free(d);
1856 as->dispatch = NULL;
1857}
1858
62152b8a
AK
1859static void memory_map_init(void)
1860{
7267c094 1861 system_memory = g_malloc(sizeof(*system_memory));
03f49957 1862
57271d63 1863 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 1864 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1865
7267c094 1866 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
1867 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1868 65536);
7dca8043 1869 address_space_init(&address_space_io, system_io, "I/O");
93632747 1870
f6790af6 1871 memory_listener_register(&core_memory_listener, &address_space_memory);
2641689a
LG
1872 if (tcg_enabled()) {
1873 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1874 }
62152b8a
AK
1875}
1876
1877MemoryRegion *get_system_memory(void)
1878{
1879 return system_memory;
1880}
1881
309cb471
AK
1882MemoryRegion *get_system_io(void)
1883{
1884 return system_io;
1885}
1886
e2eef170
PB
1887#endif /* !defined(CONFIG_USER_ONLY) */
1888
13eb76e0
FB
1889/* physical memory access (slow version, mainly for debug) */
1890#if defined(CONFIG_USER_ONLY)
f17ec444 1891int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1892 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1893{
1894 int l, flags;
1895 target_ulong page;
53a5960a 1896 void * p;
13eb76e0
FB
1897
1898 while (len > 0) {
1899 page = addr & TARGET_PAGE_MASK;
1900 l = (page + TARGET_PAGE_SIZE) - addr;
1901 if (l > len)
1902 l = len;
1903 flags = page_get_flags(page);
1904 if (!(flags & PAGE_VALID))
a68fe89c 1905 return -1;
13eb76e0
FB
1906 if (is_write) {
1907 if (!(flags & PAGE_WRITE))
a68fe89c 1908 return -1;
579a97f7 1909 /* XXX: this code should not depend on lock_user */
72fb7daa 1910 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1911 return -1;
72fb7daa
AJ
1912 memcpy(p, buf, l);
1913 unlock_user(p, addr, l);
13eb76e0
FB
1914 } else {
1915 if (!(flags & PAGE_READ))
a68fe89c 1916 return -1;
579a97f7 1917 /* XXX: this code should not depend on lock_user */
72fb7daa 1918 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1919 return -1;
72fb7daa 1920 memcpy(buf, p, l);
5b257578 1921 unlock_user(p, addr, 0);
13eb76e0
FB
1922 }
1923 len -= l;
1924 buf += l;
1925 addr += l;
1926 }
a68fe89c 1927 return 0;
13eb76e0 1928}
8df1cd07 1929
13eb76e0 1930#else
51d7a9eb 1931
a8170e5e
AK
1932static void invalidate_and_set_dirty(hwaddr addr,
1933 hwaddr length)
51d7a9eb 1934{
a2cd8c85 1935 if (cpu_physical_memory_is_clean(addr)) {
51d7a9eb
AP
1936 /* invalidate code */
1937 tb_invalidate_phys_page_range(addr, addr + length, 0);
1938 /* set dirty bit */
52159192
JQ
1939 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1940 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
51d7a9eb 1941 }
e226939d 1942 xen_modified_memory(addr, length);
51d7a9eb
AP
1943}
1944
23326164 1945static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1946{
e1622f4b 1947 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1948
1949 /* Regions are assumed to support 1-4 byte accesses unless
1950 otherwise specified. */
23326164
RH
1951 if (access_size_max == 0) {
1952 access_size_max = 4;
1953 }
1954
1955 /* Bound the maximum access by the alignment of the address. */
1956 if (!mr->ops->impl.unaligned) {
1957 unsigned align_size_max = addr & -addr;
1958 if (align_size_max != 0 && align_size_max < access_size_max) {
1959 access_size_max = align_size_max;
1960 }
82f2563f 1961 }
23326164
RH
1962
1963 /* Don't attempt accesses larger than the maximum. */
1964 if (l > access_size_max) {
1965 l = access_size_max;
82f2563f 1966 }
098178f2
PB
1967 if (l & (l - 1)) {
1968 l = 1 << (qemu_fls(l) - 1);
1969 }
23326164
RH
1970
1971 return l;
82f2563f
PB
1972}
1973
fd8aaa76 1974bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1975 int len, bool is_write)
13eb76e0 1976{
149f54b5 1977 hwaddr l;
13eb76e0 1978 uint8_t *ptr;
791af8c8 1979 uint64_t val;
149f54b5 1980 hwaddr addr1;
5c8a00ce 1981 MemoryRegion *mr;
fd8aaa76 1982 bool error = false;
3b46e624 1983
13eb76e0 1984 while (len > 0) {
149f54b5 1985 l = len;
5c8a00ce 1986 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1987
13eb76e0 1988 if (is_write) {
5c8a00ce
PB
1989 if (!memory_access_is_direct(mr, is_write)) {
1990 l = memory_access_size(mr, l, addr1);
4917cf44 1991 /* XXX: could force current_cpu to NULL to avoid
6a00d601 1992 potential bugs */
23326164
RH
1993 switch (l) {
1994 case 8:
1995 /* 64 bit write access */
1996 val = ldq_p(buf);
1997 error |= io_mem_write(mr, addr1, val, 8);
1998 break;
1999 case 4:
1c213d19 2000 /* 32 bit write access */
c27004ec 2001 val = ldl_p(buf);
5c8a00ce 2002 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
2003 break;
2004 case 2:
1c213d19 2005 /* 16 bit write access */
c27004ec 2006 val = lduw_p(buf);
5c8a00ce 2007 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
2008 break;
2009 case 1:
1c213d19 2010 /* 8 bit write access */
c27004ec 2011 val = ldub_p(buf);
5c8a00ce 2012 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
2013 break;
2014 default:
2015 abort();
13eb76e0 2016 }
2bbfa05d 2017 } else {
5c8a00ce 2018 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2019 /* RAM case */
5579c7f3 2020 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2021 memcpy(ptr, buf, l);
51d7a9eb 2022 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
2023 }
2024 } else {
5c8a00ce 2025 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2026 /* I/O case */
5c8a00ce 2027 l = memory_access_size(mr, l, addr1);
23326164
RH
2028 switch (l) {
2029 case 8:
2030 /* 64 bit read access */
2031 error |= io_mem_read(mr, addr1, &val, 8);
2032 stq_p(buf, val);
2033 break;
2034 case 4:
13eb76e0 2035 /* 32 bit read access */
5c8a00ce 2036 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2037 stl_p(buf, val);
23326164
RH
2038 break;
2039 case 2:
13eb76e0 2040 /* 16 bit read access */
5c8a00ce 2041 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2042 stw_p(buf, val);
23326164
RH
2043 break;
2044 case 1:
1c213d19 2045 /* 8 bit read access */
5c8a00ce 2046 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2047 stb_p(buf, val);
23326164
RH
2048 break;
2049 default:
2050 abort();
13eb76e0
FB
2051 }
2052 } else {
2053 /* RAM case */
5c8a00ce 2054 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2055 memcpy(buf, ptr, l);
13eb76e0
FB
2056 }
2057 }
2058 len -= l;
2059 buf += l;
2060 addr += l;
2061 }
fd8aaa76
PB
2062
2063 return error;
13eb76e0 2064}
8df1cd07 2065
fd8aaa76 2066bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2067 const uint8_t *buf, int len)
2068{
fd8aaa76 2069 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2070}
2071
fd8aaa76 2072bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2073{
fd8aaa76 2074 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2075}
2076
2077
a8170e5e 2078void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2079 int len, int is_write)
2080{
fd8aaa76 2081 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2082}
2083
582b55a9
AG
2084enum write_rom_type {
2085 WRITE_DATA,
2086 FLUSH_CACHE,
2087};
2088
2089static inline void cpu_physical_memory_write_rom_internal(
2090 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2091{
149f54b5 2092 hwaddr l;
d0ecd2aa 2093 uint8_t *ptr;
149f54b5 2094 hwaddr addr1;
5c8a00ce 2095 MemoryRegion *mr;
3b46e624 2096
d0ecd2aa 2097 while (len > 0) {
149f54b5 2098 l = len;
5c8a00ce
PB
2099 mr = address_space_translate(&address_space_memory,
2100 addr, &addr1, &l, true);
3b46e624 2101
5c8a00ce
PB
2102 if (!(memory_region_is_ram(mr) ||
2103 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2104 /* do nothing */
2105 } else {
5c8a00ce 2106 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2107 /* ROM/RAM case */
5579c7f3 2108 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2109 switch (type) {
2110 case WRITE_DATA:
2111 memcpy(ptr, buf, l);
2112 invalidate_and_set_dirty(addr1, l);
2113 break;
2114 case FLUSH_CACHE:
2115 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2116 break;
2117 }
d0ecd2aa
FB
2118 }
2119 len -= l;
2120 buf += l;
2121 addr += l;
2122 }
2123}
2124
582b55a9
AG
2125/* used for ROM loading : can write in RAM and ROM */
2126void cpu_physical_memory_write_rom(hwaddr addr,
2127 const uint8_t *buf, int len)
2128{
2129 cpu_physical_memory_write_rom_internal(addr, buf, len, WRITE_DATA);
2130}
2131
2132void cpu_flush_icache_range(hwaddr start, int len)
2133{
2134 /*
2135 * This function should do the same thing as an icache flush that was
2136 * triggered from within the guest. For TCG we are always cache coherent,
2137 * so there is no need to flush anything. For KVM / Xen we need to flush
2138 * the host's instruction cache at least.
2139 */
2140 if (tcg_enabled()) {
2141 return;
2142 }
2143
2144 cpu_physical_memory_write_rom_internal(start, NULL, len, FLUSH_CACHE);
2145}
2146
6d16c2f8 2147typedef struct {
d3e71559 2148 MemoryRegion *mr;
6d16c2f8 2149 void *buffer;
a8170e5e
AK
2150 hwaddr addr;
2151 hwaddr len;
6d16c2f8
AL
2152} BounceBuffer;
2153
2154static BounceBuffer bounce;
2155
ba223c29
AL
2156typedef struct MapClient {
2157 void *opaque;
2158 void (*callback)(void *opaque);
72cf2d4f 2159 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2160} MapClient;
2161
72cf2d4f
BS
2162static QLIST_HEAD(map_client_list, MapClient) map_client_list
2163 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2164
2165void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2166{
7267c094 2167 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2168
2169 client->opaque = opaque;
2170 client->callback = callback;
72cf2d4f 2171 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2172 return client;
2173}
2174
8b9c99d9 2175static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2176{
2177 MapClient *client = (MapClient *)_client;
2178
72cf2d4f 2179 QLIST_REMOVE(client, link);
7267c094 2180 g_free(client);
ba223c29
AL
2181}
2182
2183static void cpu_notify_map_clients(void)
2184{
2185 MapClient *client;
2186
72cf2d4f
BS
2187 while (!QLIST_EMPTY(&map_client_list)) {
2188 client = QLIST_FIRST(&map_client_list);
ba223c29 2189 client->callback(client->opaque);
34d5e948 2190 cpu_unregister_map_client(client);
ba223c29
AL
2191 }
2192}
2193
51644ab7
PB
2194bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2195{
5c8a00ce 2196 MemoryRegion *mr;
51644ab7
PB
2197 hwaddr l, xlat;
2198
2199 while (len > 0) {
2200 l = len;
5c8a00ce
PB
2201 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2202 if (!memory_access_is_direct(mr, is_write)) {
2203 l = memory_access_size(mr, l, addr);
2204 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2205 return false;
2206 }
2207 }
2208
2209 len -= l;
2210 addr += l;
2211 }
2212 return true;
2213}
2214
6d16c2f8
AL
2215/* Map a physical memory region into a host virtual address.
2216 * May map a subset of the requested range, given by and returned in *plen.
2217 * May return NULL if resources needed to perform the mapping are exhausted.
2218 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2219 * Use cpu_register_map_client() to know when retrying the map operation is
2220 * likely to succeed.
6d16c2f8 2221 */
ac1970fb 2222void *address_space_map(AddressSpace *as,
a8170e5e
AK
2223 hwaddr addr,
2224 hwaddr *plen,
ac1970fb 2225 bool is_write)
6d16c2f8 2226{
a8170e5e 2227 hwaddr len = *plen;
e3127ae0
PB
2228 hwaddr done = 0;
2229 hwaddr l, xlat, base;
2230 MemoryRegion *mr, *this_mr;
2231 ram_addr_t raddr;
6d16c2f8 2232
e3127ae0
PB
2233 if (len == 0) {
2234 return NULL;
2235 }
38bee5dc 2236
e3127ae0
PB
2237 l = len;
2238 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2239 if (!memory_access_is_direct(mr, is_write)) {
2240 if (bounce.buffer) {
2241 return NULL;
6d16c2f8 2242 }
e85d9db5
KW
2243 /* Avoid unbounded allocations */
2244 l = MIN(l, TARGET_PAGE_SIZE);
2245 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2246 bounce.addr = addr;
2247 bounce.len = l;
d3e71559
PB
2248
2249 memory_region_ref(mr);
2250 bounce.mr = mr;
e3127ae0
PB
2251 if (!is_write) {
2252 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2253 }
6d16c2f8 2254
e3127ae0
PB
2255 *plen = l;
2256 return bounce.buffer;
2257 }
2258
2259 base = xlat;
2260 raddr = memory_region_get_ram_addr(mr);
2261
2262 for (;;) {
6d16c2f8
AL
2263 len -= l;
2264 addr += l;
e3127ae0
PB
2265 done += l;
2266 if (len == 0) {
2267 break;
2268 }
2269
2270 l = len;
2271 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2272 if (this_mr != mr || xlat != base + done) {
2273 break;
2274 }
6d16c2f8 2275 }
e3127ae0 2276
d3e71559 2277 memory_region_ref(mr);
e3127ae0
PB
2278 *plen = done;
2279 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2280}
2281
ac1970fb 2282/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2283 * Will also mark the memory as dirty if is_write == 1. access_len gives
2284 * the amount of memory that was actually read or written by the caller.
2285 */
a8170e5e
AK
2286void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2287 int is_write, hwaddr access_len)
6d16c2f8
AL
2288{
2289 if (buffer != bounce.buffer) {
d3e71559
PB
2290 MemoryRegion *mr;
2291 ram_addr_t addr1;
2292
2293 mr = qemu_ram_addr_from_host(buffer, &addr1);
2294 assert(mr != NULL);
6d16c2f8 2295 if (is_write) {
6d16c2f8
AL
2296 while (access_len) {
2297 unsigned l;
2298 l = TARGET_PAGE_SIZE;
2299 if (l > access_len)
2300 l = access_len;
51d7a9eb 2301 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2302 addr1 += l;
2303 access_len -= l;
2304 }
2305 }
868bb33f 2306 if (xen_enabled()) {
e41d7c69 2307 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2308 }
d3e71559 2309 memory_region_unref(mr);
6d16c2f8
AL
2310 return;
2311 }
2312 if (is_write) {
ac1970fb 2313 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2314 }
f8a83245 2315 qemu_vfree(bounce.buffer);
6d16c2f8 2316 bounce.buffer = NULL;
d3e71559 2317 memory_region_unref(bounce.mr);
ba223c29 2318 cpu_notify_map_clients();
6d16c2f8 2319}
d0ecd2aa 2320
a8170e5e
AK
2321void *cpu_physical_memory_map(hwaddr addr,
2322 hwaddr *plen,
ac1970fb
AK
2323 int is_write)
2324{
2325 return address_space_map(&address_space_memory, addr, plen, is_write);
2326}
2327
a8170e5e
AK
2328void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2329 int is_write, hwaddr access_len)
ac1970fb
AK
2330{
2331 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2332}
2333
8df1cd07 2334/* warning: addr must be aligned */
a8170e5e 2335static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2336 enum device_endian endian)
8df1cd07 2337{
8df1cd07 2338 uint8_t *ptr;
791af8c8 2339 uint64_t val;
5c8a00ce 2340 MemoryRegion *mr;
149f54b5
PB
2341 hwaddr l = 4;
2342 hwaddr addr1;
8df1cd07 2343
5c8a00ce
PB
2344 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2345 false);
2346 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2347 /* I/O case */
5c8a00ce 2348 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2349#if defined(TARGET_WORDS_BIGENDIAN)
2350 if (endian == DEVICE_LITTLE_ENDIAN) {
2351 val = bswap32(val);
2352 }
2353#else
2354 if (endian == DEVICE_BIG_ENDIAN) {
2355 val = bswap32(val);
2356 }
2357#endif
8df1cd07
FB
2358 } else {
2359 /* RAM case */
5c8a00ce 2360 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2361 & TARGET_PAGE_MASK)
149f54b5 2362 + addr1);
1e78bcc1
AG
2363 switch (endian) {
2364 case DEVICE_LITTLE_ENDIAN:
2365 val = ldl_le_p(ptr);
2366 break;
2367 case DEVICE_BIG_ENDIAN:
2368 val = ldl_be_p(ptr);
2369 break;
2370 default:
2371 val = ldl_p(ptr);
2372 break;
2373 }
8df1cd07
FB
2374 }
2375 return val;
2376}
2377
a8170e5e 2378uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2379{
2380 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2381}
2382
a8170e5e 2383uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2384{
2385 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2386}
2387
a8170e5e 2388uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2389{
2390 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2391}
2392
84b7b8e7 2393/* warning: addr must be aligned */
a8170e5e 2394static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2395 enum device_endian endian)
84b7b8e7 2396{
84b7b8e7
FB
2397 uint8_t *ptr;
2398 uint64_t val;
5c8a00ce 2399 MemoryRegion *mr;
149f54b5
PB
2400 hwaddr l = 8;
2401 hwaddr addr1;
84b7b8e7 2402
5c8a00ce
PB
2403 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2404 false);
2405 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2406 /* I/O case */
5c8a00ce 2407 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2408#if defined(TARGET_WORDS_BIGENDIAN)
2409 if (endian == DEVICE_LITTLE_ENDIAN) {
2410 val = bswap64(val);
2411 }
2412#else
2413 if (endian == DEVICE_BIG_ENDIAN) {
2414 val = bswap64(val);
2415 }
84b7b8e7
FB
2416#endif
2417 } else {
2418 /* RAM case */
5c8a00ce 2419 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2420 & TARGET_PAGE_MASK)
149f54b5 2421 + addr1);
1e78bcc1
AG
2422 switch (endian) {
2423 case DEVICE_LITTLE_ENDIAN:
2424 val = ldq_le_p(ptr);
2425 break;
2426 case DEVICE_BIG_ENDIAN:
2427 val = ldq_be_p(ptr);
2428 break;
2429 default:
2430 val = ldq_p(ptr);
2431 break;
2432 }
84b7b8e7
FB
2433 }
2434 return val;
2435}
2436
a8170e5e 2437uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2438{
2439 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2440}
2441
a8170e5e 2442uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2443{
2444 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2445}
2446
a8170e5e 2447uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2448{
2449 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2450}
2451
aab33094 2452/* XXX: optimize */
a8170e5e 2453uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2454{
2455 uint8_t val;
2456 cpu_physical_memory_read(addr, &val, 1);
2457 return val;
2458}
2459
733f0b02 2460/* warning: addr must be aligned */
a8170e5e 2461static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2462 enum device_endian endian)
aab33094 2463{
733f0b02
MT
2464 uint8_t *ptr;
2465 uint64_t val;
5c8a00ce 2466 MemoryRegion *mr;
149f54b5
PB
2467 hwaddr l = 2;
2468 hwaddr addr1;
733f0b02 2469
5c8a00ce
PB
2470 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2471 false);
2472 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2473 /* I/O case */
5c8a00ce 2474 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2475#if defined(TARGET_WORDS_BIGENDIAN)
2476 if (endian == DEVICE_LITTLE_ENDIAN) {
2477 val = bswap16(val);
2478 }
2479#else
2480 if (endian == DEVICE_BIG_ENDIAN) {
2481 val = bswap16(val);
2482 }
2483#endif
733f0b02
MT
2484 } else {
2485 /* RAM case */
5c8a00ce 2486 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2487 & TARGET_PAGE_MASK)
149f54b5 2488 + addr1);
1e78bcc1
AG
2489 switch (endian) {
2490 case DEVICE_LITTLE_ENDIAN:
2491 val = lduw_le_p(ptr);
2492 break;
2493 case DEVICE_BIG_ENDIAN:
2494 val = lduw_be_p(ptr);
2495 break;
2496 default:
2497 val = lduw_p(ptr);
2498 break;
2499 }
733f0b02
MT
2500 }
2501 return val;
aab33094
FB
2502}
2503
a8170e5e 2504uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2505{
2506 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2507}
2508
a8170e5e 2509uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2510{
2511 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2512}
2513
a8170e5e 2514uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2515{
2516 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2517}
2518
8df1cd07
FB
2519/* warning: addr must be aligned. The ram page is not masked as dirty
2520 and the code inside is not invalidated. It is useful if the dirty
2521 bits are used to track modified PTEs */
a8170e5e 2522void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2523{
8df1cd07 2524 uint8_t *ptr;
5c8a00ce 2525 MemoryRegion *mr;
149f54b5
PB
2526 hwaddr l = 4;
2527 hwaddr addr1;
8df1cd07 2528
5c8a00ce
PB
2529 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2530 true);
2531 if (l < 4 || !memory_access_is_direct(mr, true)) {
2532 io_mem_write(mr, addr1, val, 4);
8df1cd07 2533 } else {
5c8a00ce 2534 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2535 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2536 stl_p(ptr, val);
74576198
AL
2537
2538 if (unlikely(in_migration)) {
a2cd8c85 2539 if (cpu_physical_memory_is_clean(addr1)) {
74576198
AL
2540 /* invalidate code */
2541 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2542 /* set dirty bit */
52159192
JQ
2543 cpu_physical_memory_set_dirty_flag(addr1,
2544 DIRTY_MEMORY_MIGRATION);
2545 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
74576198
AL
2546 }
2547 }
8df1cd07
FB
2548 }
2549}
2550
2551/* warning: addr must be aligned */
a8170e5e 2552static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2553 enum device_endian endian)
8df1cd07 2554{
8df1cd07 2555 uint8_t *ptr;
5c8a00ce 2556 MemoryRegion *mr;
149f54b5
PB
2557 hwaddr l = 4;
2558 hwaddr addr1;
8df1cd07 2559
5c8a00ce
PB
2560 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2561 true);
2562 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2563#if defined(TARGET_WORDS_BIGENDIAN)
2564 if (endian == DEVICE_LITTLE_ENDIAN) {
2565 val = bswap32(val);
2566 }
2567#else
2568 if (endian == DEVICE_BIG_ENDIAN) {
2569 val = bswap32(val);
2570 }
2571#endif
5c8a00ce 2572 io_mem_write(mr, addr1, val, 4);
8df1cd07 2573 } else {
8df1cd07 2574 /* RAM case */
5c8a00ce 2575 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2576 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2577 switch (endian) {
2578 case DEVICE_LITTLE_ENDIAN:
2579 stl_le_p(ptr, val);
2580 break;
2581 case DEVICE_BIG_ENDIAN:
2582 stl_be_p(ptr, val);
2583 break;
2584 default:
2585 stl_p(ptr, val);
2586 break;
2587 }
51d7a9eb 2588 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2589 }
2590}
2591
a8170e5e 2592void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2593{
2594 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2595}
2596
a8170e5e 2597void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2598{
2599 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2600}
2601
a8170e5e 2602void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2603{
2604 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2605}
2606
aab33094 2607/* XXX: optimize */
a8170e5e 2608void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2609{
2610 uint8_t v = val;
2611 cpu_physical_memory_write(addr, &v, 1);
2612}
2613
733f0b02 2614/* warning: addr must be aligned */
a8170e5e 2615static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2616 enum device_endian endian)
aab33094 2617{
733f0b02 2618 uint8_t *ptr;
5c8a00ce 2619 MemoryRegion *mr;
149f54b5
PB
2620 hwaddr l = 2;
2621 hwaddr addr1;
733f0b02 2622
5c8a00ce
PB
2623 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2624 true);
2625 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2626#if defined(TARGET_WORDS_BIGENDIAN)
2627 if (endian == DEVICE_LITTLE_ENDIAN) {
2628 val = bswap16(val);
2629 }
2630#else
2631 if (endian == DEVICE_BIG_ENDIAN) {
2632 val = bswap16(val);
2633 }
2634#endif
5c8a00ce 2635 io_mem_write(mr, addr1, val, 2);
733f0b02 2636 } else {
733f0b02 2637 /* RAM case */
5c8a00ce 2638 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2639 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2640 switch (endian) {
2641 case DEVICE_LITTLE_ENDIAN:
2642 stw_le_p(ptr, val);
2643 break;
2644 case DEVICE_BIG_ENDIAN:
2645 stw_be_p(ptr, val);
2646 break;
2647 default:
2648 stw_p(ptr, val);
2649 break;
2650 }
51d7a9eb 2651 invalidate_and_set_dirty(addr1, 2);
733f0b02 2652 }
aab33094
FB
2653}
2654
a8170e5e 2655void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2656{
2657 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2658}
2659
a8170e5e 2660void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2661{
2662 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2663}
2664
a8170e5e 2665void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2666{
2667 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2668}
2669
aab33094 2670/* XXX: optimize */
a8170e5e 2671void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2672{
2673 val = tswap64(val);
71d2b725 2674 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2675}
2676
a8170e5e 2677void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2678{
2679 val = cpu_to_le64(val);
2680 cpu_physical_memory_write(addr, &val, 8);
2681}
2682
a8170e5e 2683void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2684{
2685 val = cpu_to_be64(val);
2686 cpu_physical_memory_write(addr, &val, 8);
2687}
2688
5e2972fd 2689/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2690int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2691 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2692{
2693 int l;
a8170e5e 2694 hwaddr phys_addr;
9b3c35e0 2695 target_ulong page;
13eb76e0
FB
2696
2697 while (len > 0) {
2698 page = addr & TARGET_PAGE_MASK;
f17ec444 2699 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2700 /* if no physical page mapped, return an error */
2701 if (phys_addr == -1)
2702 return -1;
2703 l = (page + TARGET_PAGE_SIZE) - addr;
2704 if (l > len)
2705 l = len;
5e2972fd 2706 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2707 if (is_write)
2708 cpu_physical_memory_write_rom(phys_addr, buf, l);
2709 else
5e2972fd 2710 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2711 len -= l;
2712 buf += l;
2713 addr += l;
2714 }
2715 return 0;
2716}
a68fe89c 2717#endif
13eb76e0 2718
8e4a424b
BS
2719#if !defined(CONFIG_USER_ONLY)
2720
2721/*
2722 * A helper function for the _utterly broken_ virtio device model to find out if
2723 * it's running on a big endian machine. Don't do this at home kids!
2724 */
2725bool virtio_is_big_endian(void);
2726bool virtio_is_big_endian(void)
2727{
2728#if defined(TARGET_WORDS_BIGENDIAN)
2729 return true;
2730#else
2731 return false;
2732#endif
2733}
2734
2735#endif
2736
76f35538 2737#ifndef CONFIG_USER_ONLY
a8170e5e 2738bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2739{
5c8a00ce 2740 MemoryRegion*mr;
149f54b5 2741 hwaddr l = 1;
76f35538 2742
5c8a00ce
PB
2743 mr = address_space_translate(&address_space_memory,
2744 phys_addr, &phys_addr, &l, false);
76f35538 2745
5c8a00ce
PB
2746 return !(memory_region_is_ram(mr) ||
2747 memory_region_is_romd(mr));
76f35538 2748}
bd2fa51f
MH
2749
2750void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2751{
2752 RAMBlock *block;
2753
2754 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2755 func(block->host, block->offset, block->length, opaque);
2756 }
2757}
ec3f8c99 2758#endif