]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
memory: switch phys_page_set() to a recursive implementation
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
67d95c15
AK
60#define WANT_EXEC_OBSOLETE
61#include "exec-obsolete.h"
62
fd6ce8f6 63//#define DEBUG_TB_INVALIDATE
66e85a21 64//#define DEBUG_FLUSH
9fa3e853 65//#define DEBUG_TLB
67d3b957 66//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
67
68/* make various TB consistency checks */
5fafdf24
TS
69//#define DEBUG_TB_CHECK
70//#define DEBUG_TLB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
24ab68ac 110static uint8_t *code_gen_ptr;
fd6ce8f6 111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
74576198 114static int in_migration;
94a6b54f 115
85d59fef 116RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
117
118static MemoryRegion *system_memory;
309cb471 119static MemoryRegion *system_io;
62152b8a 120
0e0df1e2 121MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
de712f94 122static MemoryRegion io_mem_subpage_ram;
0e0df1e2 123
e2eef170 124#endif
9fa3e853 125
6a00d601
FB
126CPUState *first_cpu;
127/* current CPU in the current thread. It is only valid inside
128 cpu_exec() */
b3c4bbe5 129DEFINE_TLS(CPUState *,cpu_single_env);
2e70f6ef 130/* 0 = Do not count executed instructions.
bf20dc07 131 1 = Precise instruction counting.
2e70f6ef
PB
132 2 = Adaptive rate instruction counting. */
133int use_icount = 0;
6a00d601 134
54936004 135typedef struct PageDesc {
92e873b9 136 /* list of TBs intersecting this ram page */
fd6ce8f6 137 TranslationBlock *first_tb;
9fa3e853
FB
138 /* in order to optimize self modifying code, we count the number
139 of lookups we do to a given page to use a bitmap */
140 unsigned int code_write_count;
141 uint8_t *code_bitmap;
142#if defined(CONFIG_USER_ONLY)
143 unsigned long flags;
144#endif
54936004
FB
145} PageDesc;
146
41c1b1c9 147/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
148 while in user mode we want it to be based on virtual addresses. */
149#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
150#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
151# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152#else
5cd2c5b6 153# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 154#endif
bedb69ea 155#else
5cd2c5b6 156# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 157#endif
54936004 158
5cd2c5b6
RH
159/* Size of the L2 (and L3, etc) page tables. */
160#define L2_BITS 10
54936004
FB
161#define L2_SIZE (1 << L2_BITS)
162
3eef53df
AK
163#define P_L2_LEVELS \
164 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165
5cd2c5b6 166/* The bits remaining after N lower levels of page tables. */
5cd2c5b6
RH
167#define V_L1_BITS_REM \
168 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169
5cd2c5b6
RH
170#if V_L1_BITS_REM < 4
171#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172#else
173#define V_L1_BITS V_L1_BITS_REM
174#endif
175
5cd2c5b6
RH
176#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
5cd2c5b6
RH
178#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179
83fb7adf 180unsigned long qemu_real_host_page_size;
83fb7adf
FB
181unsigned long qemu_host_page_size;
182unsigned long qemu_host_page_mask;
54936004 183
5cd2c5b6
RH
184/* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186static void *l1_map[V_L1_SIZE];
54936004 187
e2eef170 188#if !defined(CONFIG_USER_ONLY)
4346ae3e
AK
189typedef struct PhysPageEntry PhysPageEntry;
190
5312bd8b
AK
191static MemoryRegionSection *phys_sections;
192static unsigned phys_sections_nb, phys_sections_nb_alloc;
193static uint16_t phys_section_unassigned;
194
4346ae3e
AK
195struct PhysPageEntry {
196 union {
5312bd8b 197 uint16_t leaf; /* index into phys_sections */
d6f2ea22 198 uint16_t node; /* index into phys_map_nodes */
4346ae3e
AK
199 } u;
200};
201
d6f2ea22
AK
202/* Simple allocator for PhysPageEntry nodes */
203static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
204static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
205
206#define PHYS_MAP_NODE_NIL ((uint16_t)~0)
207
5cd2c5b6 208/* This is a multi-level map on the physical address space.
06ef3525 209 The bottom level has pointers to MemoryRegionSections. */
d6f2ea22 210static PhysPageEntry phys_map = { .u.node = PHYS_MAP_NODE_NIL };
6d9a1304 211
e2eef170 212static void io_mem_init(void);
62152b8a 213static void memory_map_init(void);
e2eef170 214
33417e70 215/* io memory support */
a621f38d 216MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
511d2b14 217static char io_mem_used[IO_MEM_NB_ENTRIES];
1ec9b909 218static MemoryRegion io_mem_watch;
6658ffb8 219#endif
33417e70 220
34865134 221/* log support */
1e8b27ca
JR
222#ifdef WIN32
223static const char *logfilename = "qemu.log";
224#else
d9b630fd 225static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 226#endif
34865134
FB
227FILE *logfile;
228int loglevel;
e735b91c 229static int log_append = 0;
34865134 230
e3db7226 231/* statistics */
b3755a91 232#if !defined(CONFIG_USER_ONLY)
e3db7226 233static int tlb_flush_count;
b3755a91 234#endif
e3db7226
FB
235static int tb_flush_count;
236static int tb_phys_invalidate_count;
237
7cb69cae
FB
238#ifdef _WIN32
239static void map_exec(void *addr, long size)
240{
241 DWORD old_protect;
242 VirtualProtect(addr, size,
243 PAGE_EXECUTE_READWRITE, &old_protect);
244
245}
246#else
247static void map_exec(void *addr, long size)
248{
4369415f 249 unsigned long start, end, page_size;
7cb69cae 250
4369415f 251 page_size = getpagesize();
7cb69cae 252 start = (unsigned long)addr;
4369415f 253 start &= ~(page_size - 1);
7cb69cae
FB
254
255 end = (unsigned long)addr + size;
4369415f
FB
256 end += page_size - 1;
257 end &= ~(page_size - 1);
7cb69cae
FB
258
259 mprotect((void *)start, end - start,
260 PROT_READ | PROT_WRITE | PROT_EXEC);
261}
262#endif
263
b346ff46 264static void page_init(void)
54936004 265{
83fb7adf 266 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 267 TARGET_PAGE_SIZE */
c2b48b69
AL
268#ifdef _WIN32
269 {
270 SYSTEM_INFO system_info;
271
272 GetSystemInfo(&system_info);
273 qemu_real_host_page_size = system_info.dwPageSize;
274 }
275#else
276 qemu_real_host_page_size = getpagesize();
277#endif
83fb7adf
FB
278 if (qemu_host_page_size == 0)
279 qemu_host_page_size = qemu_real_host_page_size;
280 if (qemu_host_page_size < TARGET_PAGE_SIZE)
281 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 282 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 283
2e9a5713 284#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 285 {
f01576f1
JL
286#ifdef HAVE_KINFO_GETVMMAP
287 struct kinfo_vmentry *freep;
288 int i, cnt;
289
290 freep = kinfo_getvmmap(getpid(), &cnt);
291 if (freep) {
292 mmap_lock();
293 for (i = 0; i < cnt; i++) {
294 unsigned long startaddr, endaddr;
295
296 startaddr = freep[i].kve_start;
297 endaddr = freep[i].kve_end;
298 if (h2g_valid(startaddr)) {
299 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
300
301 if (h2g_valid(endaddr)) {
302 endaddr = h2g(endaddr);
fd436907 303 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
304 } else {
305#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
306 endaddr = ~0ul;
fd436907 307 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
308#endif
309 }
310 }
311 }
312 free(freep);
313 mmap_unlock();
314 }
315#else
50a9569b 316 FILE *f;
50a9569b 317
0776590d 318 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 319
fd436907 320 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 321 if (f) {
5cd2c5b6
RH
322 mmap_lock();
323
50a9569b 324 do {
5cd2c5b6
RH
325 unsigned long startaddr, endaddr;
326 int n;
327
328 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
329
330 if (n == 2 && h2g_valid(startaddr)) {
331 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
332
333 if (h2g_valid(endaddr)) {
334 endaddr = h2g(endaddr);
335 } else {
336 endaddr = ~0ul;
337 }
338 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
339 }
340 } while (!feof(f));
5cd2c5b6 341
50a9569b 342 fclose(f);
5cd2c5b6 343 mmap_unlock();
50a9569b 344 }
f01576f1 345#endif
50a9569b
AZ
346 }
347#endif
54936004
FB
348}
349
41c1b1c9 350static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 351{
41c1b1c9
PB
352 PageDesc *pd;
353 void **lp;
354 int i;
355
5cd2c5b6 356#if defined(CONFIG_USER_ONLY)
7267c094 357 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
358# define ALLOC(P, SIZE) \
359 do { \
360 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
361 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
362 } while (0)
363#else
364# define ALLOC(P, SIZE) \
7267c094 365 do { P = g_malloc0(SIZE); } while (0)
17e2377a 366#endif
434929bf 367
5cd2c5b6
RH
368 /* Level 1. Always allocated. */
369 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
370
371 /* Level 2..N-1. */
372 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
373 void **p = *lp;
374
375 if (p == NULL) {
376 if (!alloc) {
377 return NULL;
378 }
379 ALLOC(p, sizeof(void *) * L2_SIZE);
380 *lp = p;
17e2377a 381 }
5cd2c5b6
RH
382
383 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
384 }
385
386 pd = *lp;
387 if (pd == NULL) {
388 if (!alloc) {
389 return NULL;
390 }
391 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
392 *lp = pd;
54936004 393 }
5cd2c5b6
RH
394
395#undef ALLOC
5cd2c5b6
RH
396
397 return pd + (index & (L2_SIZE - 1));
54936004
FB
398}
399
41c1b1c9 400static inline PageDesc *page_find(tb_page_addr_t index)
54936004 401{
5cd2c5b6 402 return page_find_alloc(index, 0);
fd6ce8f6
FB
403}
404
6d9a1304 405#if !defined(CONFIG_USER_ONLY)
d6f2ea22 406
f7bf5461 407static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 408{
f7bf5461 409 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
410 typedef PhysPageEntry Node[L2_SIZE];
411 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
412 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
413 phys_map_nodes_nb + nodes);
d6f2ea22
AK
414 phys_map_nodes = g_renew(Node, phys_map_nodes,
415 phys_map_nodes_nb_alloc);
416 }
f7bf5461
AK
417}
418
419static uint16_t phys_map_node_alloc(void)
420{
421 unsigned i;
422 uint16_t ret;
423
424 ret = phys_map_nodes_nb++;
425 assert(ret != PHYS_MAP_NODE_NIL);
426 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22
AK
427 for (i = 0; i < L2_SIZE; ++i) {
428 phys_map_nodes[ret][i].u.node = PHYS_MAP_NODE_NIL;
429 }
f7bf5461 430 return ret;
d6f2ea22
AK
431}
432
433static void phys_map_nodes_reset(void)
434{
435 phys_map_nodes_nb = 0;
436}
437
92e873b9 438
f7bf5461
AK
439static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t index,
440 uint16_t leaf, int level)
441{
442 PhysPageEntry *p;
443 int i;
108c49b8 444
f7bf5461
AK
445 if (lp->u.node == PHYS_MAP_NODE_NIL) {
446 lp->u.node = phys_map_node_alloc();
447 p = phys_map_nodes[lp->u.node];
448 if (level == 0) {
449 for (i = 0; i < L2_SIZE; i++) {
450 p[i].u.leaf = phys_section_unassigned;
4346ae3e 451 }
67c4d23c 452 }
f7bf5461
AK
453 } else {
454 p = phys_map_nodes[lp->u.node];
92e873b9 455 }
f7bf5461
AK
456 lp = &p[(index >> (level * L2_BITS)) & (L2_SIZE - 1)];
457
458 if (level == 0) {
459 lp->u.leaf = leaf;
460 } else {
461 phys_page_set_level(lp, index, leaf, level - 1);
462 }
463}
464
465static void phys_page_set(target_phys_addr_t index, uint16_t leaf)
466{
467 phys_map_node_reserve(P_L2_LEVELS);
5cd2c5b6 468
f7bf5461 469 phys_page_set_level(&phys_map, index, leaf, P_L2_LEVELS - 1);
92e873b9
FB
470}
471
06ef3525 472static MemoryRegionSection phys_page_find(target_phys_addr_t index)
92e873b9 473{
31ab2b4a
AK
474 PhysPageEntry lp = phys_map;
475 PhysPageEntry *p;
476 int i;
06ef3525
AK
477 MemoryRegionSection section;
478 target_phys_addr_t delta;
31ab2b4a 479 uint16_t s_index = phys_section_unassigned;
f1f6e3b8 480
31ab2b4a
AK
481 for (i = P_L2_LEVELS - 1; i >= 0; i--) {
482 if (lp.u.node == PHYS_MAP_NODE_NIL) {
483 goto not_found;
484 }
485 p = phys_map_nodes[lp.u.node];
486 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 487 }
31ab2b4a
AK
488
489 s_index = lp.u.leaf;
490not_found:
06ef3525 491 section = phys_sections[s_index];
5312bd8b 492 index <<= TARGET_PAGE_BITS;
06ef3525
AK
493 assert(section.offset_within_address_space <= index
494 && index <= section.offset_within_address_space + section.size-1);
495 delta = index - section.offset_within_address_space;
496 section.offset_within_address_space += delta;
497 section.offset_within_region += delta;
498 section.size -= delta;
499 return section;
92e873b9
FB
500}
501
c227f099
AL
502static void tlb_protect_code(ram_addr_t ram_addr);
503static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 504 target_ulong vaddr);
c8a706fe
PB
505#define mmap_lock() do { } while(0)
506#define mmap_unlock() do { } while(0)
9fa3e853 507#endif
fd6ce8f6 508
4369415f
FB
509#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
510
511#if defined(CONFIG_USER_ONLY)
ccbb4d44 512/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
513 user mode. It will change when a dedicated libc will be used */
514#define USE_STATIC_CODE_GEN_BUFFER
515#endif
516
517#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
518static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
519 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
520#endif
521
8fcd3692 522static void code_gen_alloc(unsigned long tb_size)
26a5f13b 523{
4369415f
FB
524#ifdef USE_STATIC_CODE_GEN_BUFFER
525 code_gen_buffer = static_code_gen_buffer;
526 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
527 map_exec(code_gen_buffer, code_gen_buffer_size);
528#else
26a5f13b
FB
529 code_gen_buffer_size = tb_size;
530 if (code_gen_buffer_size == 0) {
4369415f 531#if defined(CONFIG_USER_ONLY)
4369415f
FB
532 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
533#else
ccbb4d44 534 /* XXX: needs adjustments */
94a6b54f 535 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 536#endif
26a5f13b
FB
537 }
538 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
539 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
540 /* The code gen buffer location may have constraints depending on
541 the host cpu and OS */
542#if defined(__linux__)
543 {
544 int flags;
141ac468
BS
545 void *start = NULL;
546
26a5f13b
FB
547 flags = MAP_PRIVATE | MAP_ANONYMOUS;
548#if defined(__x86_64__)
549 flags |= MAP_32BIT;
550 /* Cannot map more than that */
551 if (code_gen_buffer_size > (800 * 1024 * 1024))
552 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
553#elif defined(__sparc_v9__)
554 // Map the buffer below 2G, so we can use direct calls and branches
555 flags |= MAP_FIXED;
556 start = (void *) 0x60000000UL;
557 if (code_gen_buffer_size > (512 * 1024 * 1024))
558 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 559#elif defined(__arm__)
5c84bd90 560 /* Keep the buffer no bigger than 16MB to branch between blocks */
1cb0661e
AZ
561 if (code_gen_buffer_size > 16 * 1024 * 1024)
562 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
563#elif defined(__s390x__)
564 /* Map the buffer so that we can use direct calls and branches. */
565 /* We have a +- 4GB range on the branches; leave some slop. */
566 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
567 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
568 }
569 start = (void *)0x90000000UL;
26a5f13b 570#endif
141ac468
BS
571 code_gen_buffer = mmap(start, code_gen_buffer_size,
572 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
573 flags, -1, 0);
574 if (code_gen_buffer == MAP_FAILED) {
575 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
576 exit(1);
577 }
578 }
cbb608a5 579#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
580 || defined(__DragonFly__) || defined(__OpenBSD__) \
581 || defined(__NetBSD__)
06e67a82
AL
582 {
583 int flags;
584 void *addr = NULL;
585 flags = MAP_PRIVATE | MAP_ANONYMOUS;
586#if defined(__x86_64__)
587 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
588 * 0x40000000 is free */
589 flags |= MAP_FIXED;
590 addr = (void *)0x40000000;
591 /* Cannot map more than that */
592 if (code_gen_buffer_size > (800 * 1024 * 1024))
593 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
594#elif defined(__sparc_v9__)
595 // Map the buffer below 2G, so we can use direct calls and branches
596 flags |= MAP_FIXED;
597 addr = (void *) 0x60000000UL;
598 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
599 code_gen_buffer_size = (512 * 1024 * 1024);
600 }
06e67a82
AL
601#endif
602 code_gen_buffer = mmap(addr, code_gen_buffer_size,
603 PROT_WRITE | PROT_READ | PROT_EXEC,
604 flags, -1, 0);
605 if (code_gen_buffer == MAP_FAILED) {
606 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
607 exit(1);
608 }
609 }
26a5f13b 610#else
7267c094 611 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
612 map_exec(code_gen_buffer, code_gen_buffer_size);
613#endif
4369415f 614#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 615 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
616 code_gen_buffer_max_size = code_gen_buffer_size -
617 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 618 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 619 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
620}
621
622/* Must be called before using the QEMU cpus. 'tb_size' is the size
623 (in bytes) allocated to the translation buffer. Zero means default
624 size. */
d5ab9713 625void tcg_exec_init(unsigned long tb_size)
26a5f13b 626{
26a5f13b
FB
627 cpu_gen_init();
628 code_gen_alloc(tb_size);
629 code_gen_ptr = code_gen_buffer;
4369415f 630 page_init();
9002ec79
RH
631#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
632 /* There's no guest base to take into account, so go ahead and
633 initialize the prologue now. */
634 tcg_prologue_init(&tcg_ctx);
635#endif
26a5f13b
FB
636}
637
d5ab9713
JK
638bool tcg_enabled(void)
639{
640 return code_gen_buffer != NULL;
641}
642
643void cpu_exec_init_all(void)
644{
645#if !defined(CONFIG_USER_ONLY)
646 memory_map_init();
647 io_mem_init();
648#endif
649}
650
9656f324
PB
651#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
652
e59fb374 653static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
654{
655 CPUState *env = opaque;
9656f324 656
3098dba0
AJ
657 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
658 version_id is increased. */
659 env->interrupt_request &= ~0x01;
9656f324
PB
660 tlb_flush(env, 1);
661
662 return 0;
663}
e7f4eff7
JQ
664
665static const VMStateDescription vmstate_cpu_common = {
666 .name = "cpu_common",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .minimum_version_id_old = 1,
e7f4eff7
JQ
670 .post_load = cpu_common_post_load,
671 .fields = (VMStateField []) {
672 VMSTATE_UINT32(halted, CPUState),
673 VMSTATE_UINT32(interrupt_request, CPUState),
674 VMSTATE_END_OF_LIST()
675 }
676};
9656f324
PB
677#endif
678
950f1472
GC
679CPUState *qemu_get_cpu(int cpu)
680{
681 CPUState *env = first_cpu;
682
683 while (env) {
684 if (env->cpu_index == cpu)
685 break;
686 env = env->next_cpu;
687 }
688
689 return env;
690}
691
6a00d601 692void cpu_exec_init(CPUState *env)
fd6ce8f6 693{
6a00d601
FB
694 CPUState **penv;
695 int cpu_index;
696
c2764719
PB
697#if defined(CONFIG_USER_ONLY)
698 cpu_list_lock();
699#endif
6a00d601
FB
700 env->next_cpu = NULL;
701 penv = &first_cpu;
702 cpu_index = 0;
703 while (*penv != NULL) {
1e9fa730 704 penv = &(*penv)->next_cpu;
6a00d601
FB
705 cpu_index++;
706 }
707 env->cpu_index = cpu_index;
268a362c 708 env->numa_node = 0;
72cf2d4f
BS
709 QTAILQ_INIT(&env->breakpoints);
710 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
711#ifndef CONFIG_USER_ONLY
712 env->thread_id = qemu_get_thread_id();
713#endif
6a00d601 714 *penv = env;
c2764719
PB
715#if defined(CONFIG_USER_ONLY)
716 cpu_list_unlock();
717#endif
b3c7724c 718#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
719 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
720 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
721 cpu_save, cpu_load, env);
722#endif
fd6ce8f6
FB
723}
724
d1a1eb74
TG
725/* Allocate a new translation block. Flush the translation buffer if
726 too many translation blocks or too much generated code. */
727static TranslationBlock *tb_alloc(target_ulong pc)
728{
729 TranslationBlock *tb;
730
731 if (nb_tbs >= code_gen_max_blocks ||
732 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
733 return NULL;
734 tb = &tbs[nb_tbs++];
735 tb->pc = pc;
736 tb->cflags = 0;
737 return tb;
738}
739
740void tb_free(TranslationBlock *tb)
741{
742 /* In practice this is mostly used for single use temporary TB
743 Ignore the hard cases and just back up if this TB happens to
744 be the last one generated. */
745 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
746 code_gen_ptr = tb->tc_ptr;
747 nb_tbs--;
748 }
749}
750
9fa3e853
FB
751static inline void invalidate_page_bitmap(PageDesc *p)
752{
753 if (p->code_bitmap) {
7267c094 754 g_free(p->code_bitmap);
9fa3e853
FB
755 p->code_bitmap = NULL;
756 }
757 p->code_write_count = 0;
758}
759
5cd2c5b6
RH
760/* Set to NULL all the 'first_tb' fields in all PageDescs. */
761
762static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 763{
5cd2c5b6 764 int i;
fd6ce8f6 765
5cd2c5b6
RH
766 if (*lp == NULL) {
767 return;
768 }
769 if (level == 0) {
770 PageDesc *pd = *lp;
7296abac 771 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
772 pd[i].first_tb = NULL;
773 invalidate_page_bitmap(pd + i);
fd6ce8f6 774 }
5cd2c5b6
RH
775 } else {
776 void **pp = *lp;
7296abac 777 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
778 page_flush_tb_1 (level - 1, pp + i);
779 }
780 }
781}
782
783static void page_flush_tb(void)
784{
785 int i;
786 for (i = 0; i < V_L1_SIZE; i++) {
787 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
788 }
789}
790
791/* flush all the translation blocks */
d4e8164f 792/* XXX: tb_flush is currently not thread safe */
6a00d601 793void tb_flush(CPUState *env1)
fd6ce8f6 794{
6a00d601 795 CPUState *env;
0124311e 796#if defined(DEBUG_FLUSH)
ab3d1727
BS
797 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
798 (unsigned long)(code_gen_ptr - code_gen_buffer),
799 nb_tbs, nb_tbs > 0 ?
800 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 801#endif
26a5f13b 802 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
803 cpu_abort(env1, "Internal error: code buffer overflow\n");
804
fd6ce8f6 805 nb_tbs = 0;
3b46e624 806
6a00d601
FB
807 for(env = first_cpu; env != NULL; env = env->next_cpu) {
808 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
809 }
9fa3e853 810
8a8a608f 811 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 812 page_flush_tb();
9fa3e853 813
fd6ce8f6 814 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
815 /* XXX: flush processor icache at this point if cache flush is
816 expensive */
e3db7226 817 tb_flush_count++;
fd6ce8f6
FB
818}
819
820#ifdef DEBUG_TB_CHECK
821
bc98a7ef 822static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
823{
824 TranslationBlock *tb;
825 int i;
826 address &= TARGET_PAGE_MASK;
99773bd4
PB
827 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
828 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
829 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
830 address >= tb->pc + tb->size)) {
0bf9e31a
BS
831 printf("ERROR invalidate: address=" TARGET_FMT_lx
832 " PC=%08lx size=%04x\n",
99773bd4 833 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
834 }
835 }
836 }
837}
838
839/* verify that all the pages have correct rights for code */
840static void tb_page_check(void)
841{
842 TranslationBlock *tb;
843 int i, flags1, flags2;
3b46e624 844
99773bd4
PB
845 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
846 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
847 flags1 = page_get_flags(tb->pc);
848 flags2 = page_get_flags(tb->pc + tb->size - 1);
849 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
850 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 851 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
852 }
853 }
854 }
855}
856
857#endif
858
859/* invalidate one TB */
860static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
861 int next_offset)
862{
863 TranslationBlock *tb1;
864 for(;;) {
865 tb1 = *ptb;
866 if (tb1 == tb) {
867 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
868 break;
869 }
870 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
871 }
872}
873
9fa3e853
FB
874static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
875{
876 TranslationBlock *tb1;
877 unsigned int n1;
878
879 for(;;) {
880 tb1 = *ptb;
881 n1 = (long)tb1 & 3;
882 tb1 = (TranslationBlock *)((long)tb1 & ~3);
883 if (tb1 == tb) {
884 *ptb = tb1->page_next[n1];
885 break;
886 }
887 ptb = &tb1->page_next[n1];
888 }
889}
890
d4e8164f
FB
891static inline void tb_jmp_remove(TranslationBlock *tb, int n)
892{
893 TranslationBlock *tb1, **ptb;
894 unsigned int n1;
895
896 ptb = &tb->jmp_next[n];
897 tb1 = *ptb;
898 if (tb1) {
899 /* find tb(n) in circular list */
900 for(;;) {
901 tb1 = *ptb;
902 n1 = (long)tb1 & 3;
903 tb1 = (TranslationBlock *)((long)tb1 & ~3);
904 if (n1 == n && tb1 == tb)
905 break;
906 if (n1 == 2) {
907 ptb = &tb1->jmp_first;
908 } else {
909 ptb = &tb1->jmp_next[n1];
910 }
911 }
912 /* now we can suppress tb(n) from the list */
913 *ptb = tb->jmp_next[n];
914
915 tb->jmp_next[n] = NULL;
916 }
917}
918
919/* reset the jump entry 'n' of a TB so that it is not chained to
920 another TB */
921static inline void tb_reset_jump(TranslationBlock *tb, int n)
922{
923 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
924}
925
41c1b1c9 926void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 927{
6a00d601 928 CPUState *env;
8a40a180 929 PageDesc *p;
d4e8164f 930 unsigned int h, n1;
41c1b1c9 931 tb_page_addr_t phys_pc;
8a40a180 932 TranslationBlock *tb1, *tb2;
3b46e624 933
8a40a180
FB
934 /* remove the TB from the hash list */
935 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
936 h = tb_phys_hash_func(phys_pc);
5fafdf24 937 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
938 offsetof(TranslationBlock, phys_hash_next));
939
940 /* remove the TB from the page list */
941 if (tb->page_addr[0] != page_addr) {
942 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
943 tb_page_remove(&p->first_tb, tb);
944 invalidate_page_bitmap(p);
945 }
946 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
947 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
948 tb_page_remove(&p->first_tb, tb);
949 invalidate_page_bitmap(p);
950 }
951
36bdbe54 952 tb_invalidated_flag = 1;
59817ccb 953
fd6ce8f6 954 /* remove the TB from the hash list */
8a40a180 955 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
956 for(env = first_cpu; env != NULL; env = env->next_cpu) {
957 if (env->tb_jmp_cache[h] == tb)
958 env->tb_jmp_cache[h] = NULL;
959 }
d4e8164f
FB
960
961 /* suppress this TB from the two jump lists */
962 tb_jmp_remove(tb, 0);
963 tb_jmp_remove(tb, 1);
964
965 /* suppress any remaining jumps to this TB */
966 tb1 = tb->jmp_first;
967 for(;;) {
968 n1 = (long)tb1 & 3;
969 if (n1 == 2)
970 break;
971 tb1 = (TranslationBlock *)((long)tb1 & ~3);
972 tb2 = tb1->jmp_next[n1];
973 tb_reset_jump(tb1, n1);
974 tb1->jmp_next[n1] = NULL;
975 tb1 = tb2;
976 }
977 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 978
e3db7226 979 tb_phys_invalidate_count++;
9fa3e853
FB
980}
981
982static inline void set_bits(uint8_t *tab, int start, int len)
983{
984 int end, mask, end1;
985
986 end = start + len;
987 tab += start >> 3;
988 mask = 0xff << (start & 7);
989 if ((start & ~7) == (end & ~7)) {
990 if (start < end) {
991 mask &= ~(0xff << (end & 7));
992 *tab |= mask;
993 }
994 } else {
995 *tab++ |= mask;
996 start = (start + 8) & ~7;
997 end1 = end & ~7;
998 while (start < end1) {
999 *tab++ = 0xff;
1000 start += 8;
1001 }
1002 if (start < end) {
1003 mask = ~(0xff << (end & 7));
1004 *tab |= mask;
1005 }
1006 }
1007}
1008
1009static void build_page_bitmap(PageDesc *p)
1010{
1011 int n, tb_start, tb_end;
1012 TranslationBlock *tb;
3b46e624 1013
7267c094 1014 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
1015
1016 tb = p->first_tb;
1017 while (tb != NULL) {
1018 n = (long)tb & 3;
1019 tb = (TranslationBlock *)((long)tb & ~3);
1020 /* NOTE: this is subtle as a TB may span two physical pages */
1021 if (n == 0) {
1022 /* NOTE: tb_end may be after the end of the page, but
1023 it is not a problem */
1024 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1025 tb_end = tb_start + tb->size;
1026 if (tb_end > TARGET_PAGE_SIZE)
1027 tb_end = TARGET_PAGE_SIZE;
1028 } else {
1029 tb_start = 0;
1030 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1031 }
1032 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1033 tb = tb->page_next[n];
1034 }
1035}
1036
2e70f6ef
PB
1037TranslationBlock *tb_gen_code(CPUState *env,
1038 target_ulong pc, target_ulong cs_base,
1039 int flags, int cflags)
d720b93d
FB
1040{
1041 TranslationBlock *tb;
1042 uint8_t *tc_ptr;
41c1b1c9
PB
1043 tb_page_addr_t phys_pc, phys_page2;
1044 target_ulong virt_page2;
d720b93d
FB
1045 int code_gen_size;
1046
41c1b1c9 1047 phys_pc = get_page_addr_code(env, pc);
c27004ec 1048 tb = tb_alloc(pc);
d720b93d
FB
1049 if (!tb) {
1050 /* flush must be done */
1051 tb_flush(env);
1052 /* cannot fail at this point */
c27004ec 1053 tb = tb_alloc(pc);
2e70f6ef
PB
1054 /* Don't forget to invalidate previous TB info. */
1055 tb_invalidated_flag = 1;
d720b93d
FB
1056 }
1057 tc_ptr = code_gen_ptr;
1058 tb->tc_ptr = tc_ptr;
1059 tb->cs_base = cs_base;
1060 tb->flags = flags;
1061 tb->cflags = cflags;
d07bde88 1062 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1063 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1064
d720b93d 1065 /* check next page if needed */
c27004ec 1066 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1067 phys_page2 = -1;
c27004ec 1068 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1069 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1070 }
41c1b1c9 1071 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1072 return tb;
d720b93d 1073}
3b46e624 1074
9fa3e853
FB
1075/* invalidate all TBs which intersect with the target physical page
1076 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1077 the same physical page. 'is_cpu_write_access' should be true if called
1078 from a real cpu write access: the virtual CPU will exit the current
1079 TB if code is modified inside this TB. */
41c1b1c9 1080void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1081 int is_cpu_write_access)
1082{
6b917547 1083 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1084 CPUState *env = cpu_single_env;
41c1b1c9 1085 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1086 PageDesc *p;
1087 int n;
1088#ifdef TARGET_HAS_PRECISE_SMC
1089 int current_tb_not_found = is_cpu_write_access;
1090 TranslationBlock *current_tb = NULL;
1091 int current_tb_modified = 0;
1092 target_ulong current_pc = 0;
1093 target_ulong current_cs_base = 0;
1094 int current_flags = 0;
1095#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1096
1097 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1098 if (!p)
9fa3e853 1099 return;
5fafdf24 1100 if (!p->code_bitmap &&
d720b93d
FB
1101 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1102 is_cpu_write_access) {
9fa3e853
FB
1103 /* build code bitmap */
1104 build_page_bitmap(p);
1105 }
1106
1107 /* we remove all the TBs in the range [start, end[ */
1108 /* XXX: see if in some cases it could be faster to invalidate all the code */
1109 tb = p->first_tb;
1110 while (tb != NULL) {
1111 n = (long)tb & 3;
1112 tb = (TranslationBlock *)((long)tb & ~3);
1113 tb_next = tb->page_next[n];
1114 /* NOTE: this is subtle as a TB may span two physical pages */
1115 if (n == 0) {
1116 /* NOTE: tb_end may be after the end of the page, but
1117 it is not a problem */
1118 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1119 tb_end = tb_start + tb->size;
1120 } else {
1121 tb_start = tb->page_addr[1];
1122 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1123 }
1124 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1125#ifdef TARGET_HAS_PRECISE_SMC
1126 if (current_tb_not_found) {
1127 current_tb_not_found = 0;
1128 current_tb = NULL;
2e70f6ef 1129 if (env->mem_io_pc) {
d720b93d 1130 /* now we have a real cpu fault */
2e70f6ef 1131 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1132 }
1133 }
1134 if (current_tb == tb &&
2e70f6ef 1135 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1136 /* If we are modifying the current TB, we must stop
1137 its execution. We could be more precise by checking
1138 that the modification is after the current PC, but it
1139 would require a specialized function to partially
1140 restore the CPU state */
3b46e624 1141
d720b93d 1142 current_tb_modified = 1;
618ba8e6 1143 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1144 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1145 &current_flags);
d720b93d
FB
1146 }
1147#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1148 /* we need to do that to handle the case where a signal
1149 occurs while doing tb_phys_invalidate() */
1150 saved_tb = NULL;
1151 if (env) {
1152 saved_tb = env->current_tb;
1153 env->current_tb = NULL;
1154 }
9fa3e853 1155 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1156 if (env) {
1157 env->current_tb = saved_tb;
1158 if (env->interrupt_request && env->current_tb)
1159 cpu_interrupt(env, env->interrupt_request);
1160 }
9fa3e853
FB
1161 }
1162 tb = tb_next;
1163 }
1164#if !defined(CONFIG_USER_ONLY)
1165 /* if no code remaining, no need to continue to use slow writes */
1166 if (!p->first_tb) {
1167 invalidate_page_bitmap(p);
d720b93d 1168 if (is_cpu_write_access) {
2e70f6ef 1169 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1170 }
1171 }
1172#endif
1173#ifdef TARGET_HAS_PRECISE_SMC
1174 if (current_tb_modified) {
1175 /* we generate a block containing just the instruction
1176 modifying the memory. It will ensure that it cannot modify
1177 itself */
ea1c1802 1178 env->current_tb = NULL;
2e70f6ef 1179 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1180 cpu_resume_from_signal(env, NULL);
9fa3e853 1181 }
fd6ce8f6 1182#endif
9fa3e853 1183}
fd6ce8f6 1184
9fa3e853 1185/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1186static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1187{
1188 PageDesc *p;
1189 int offset, b;
59817ccb 1190#if 0
a4193c8a 1191 if (1) {
93fcfe39
AL
1192 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1193 cpu_single_env->mem_io_vaddr, len,
1194 cpu_single_env->eip,
1195 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1196 }
1197#endif
9fa3e853 1198 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1199 if (!p)
9fa3e853
FB
1200 return;
1201 if (p->code_bitmap) {
1202 offset = start & ~TARGET_PAGE_MASK;
1203 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1204 if (b & ((1 << len) - 1))
1205 goto do_invalidate;
1206 } else {
1207 do_invalidate:
d720b93d 1208 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1209 }
1210}
1211
9fa3e853 1212#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1213static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1214 unsigned long pc, void *puc)
9fa3e853 1215{
6b917547 1216 TranslationBlock *tb;
9fa3e853 1217 PageDesc *p;
6b917547 1218 int n;
d720b93d 1219#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1220 TranslationBlock *current_tb = NULL;
d720b93d 1221 CPUState *env = cpu_single_env;
6b917547
AL
1222 int current_tb_modified = 0;
1223 target_ulong current_pc = 0;
1224 target_ulong current_cs_base = 0;
1225 int current_flags = 0;
d720b93d 1226#endif
9fa3e853
FB
1227
1228 addr &= TARGET_PAGE_MASK;
1229 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1230 if (!p)
9fa3e853
FB
1231 return;
1232 tb = p->first_tb;
d720b93d
FB
1233#ifdef TARGET_HAS_PRECISE_SMC
1234 if (tb && pc != 0) {
1235 current_tb = tb_find_pc(pc);
1236 }
1237#endif
9fa3e853
FB
1238 while (tb != NULL) {
1239 n = (long)tb & 3;
1240 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1241#ifdef TARGET_HAS_PRECISE_SMC
1242 if (current_tb == tb &&
2e70f6ef 1243 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1244 /* If we are modifying the current TB, we must stop
1245 its execution. We could be more precise by checking
1246 that the modification is after the current PC, but it
1247 would require a specialized function to partially
1248 restore the CPU state */
3b46e624 1249
d720b93d 1250 current_tb_modified = 1;
618ba8e6 1251 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1252 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1253 &current_flags);
d720b93d
FB
1254 }
1255#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1256 tb_phys_invalidate(tb, addr);
1257 tb = tb->page_next[n];
1258 }
fd6ce8f6 1259 p->first_tb = NULL;
d720b93d
FB
1260#ifdef TARGET_HAS_PRECISE_SMC
1261 if (current_tb_modified) {
1262 /* we generate a block containing just the instruction
1263 modifying the memory. It will ensure that it cannot modify
1264 itself */
ea1c1802 1265 env->current_tb = NULL;
2e70f6ef 1266 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1267 cpu_resume_from_signal(env, puc);
1268 }
1269#endif
fd6ce8f6 1270}
9fa3e853 1271#endif
fd6ce8f6
FB
1272
1273/* add the tb in the target page and protect it if necessary */
5fafdf24 1274static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1275 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1276{
1277 PageDesc *p;
4429ab44
JQ
1278#ifndef CONFIG_USER_ONLY
1279 bool page_already_protected;
1280#endif
9fa3e853
FB
1281
1282 tb->page_addr[n] = page_addr;
5cd2c5b6 1283 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1284 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1285#ifndef CONFIG_USER_ONLY
1286 page_already_protected = p->first_tb != NULL;
1287#endif
9fa3e853
FB
1288 p->first_tb = (TranslationBlock *)((long)tb | n);
1289 invalidate_page_bitmap(p);
fd6ce8f6 1290
107db443 1291#if defined(TARGET_HAS_SMC) || 1
d720b93d 1292
9fa3e853 1293#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1294 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1295 target_ulong addr;
1296 PageDesc *p2;
9fa3e853
FB
1297 int prot;
1298
fd6ce8f6
FB
1299 /* force the host page as non writable (writes will have a
1300 page fault + mprotect overhead) */
53a5960a 1301 page_addr &= qemu_host_page_mask;
fd6ce8f6 1302 prot = 0;
53a5960a
PB
1303 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1304 addr += TARGET_PAGE_SIZE) {
1305
1306 p2 = page_find (addr >> TARGET_PAGE_BITS);
1307 if (!p2)
1308 continue;
1309 prot |= p2->flags;
1310 p2->flags &= ~PAGE_WRITE;
53a5960a 1311 }
5fafdf24 1312 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1313 (prot & PAGE_BITS) & ~PAGE_WRITE);
1314#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1315 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1316 page_addr);
fd6ce8f6 1317#endif
fd6ce8f6 1318 }
9fa3e853
FB
1319#else
1320 /* if some code is already present, then the pages are already
1321 protected. So we handle the case where only the first TB is
1322 allocated in a physical page */
4429ab44 1323 if (!page_already_protected) {
6a00d601 1324 tlb_protect_code(page_addr);
9fa3e853
FB
1325 }
1326#endif
d720b93d
FB
1327
1328#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1329}
1330
9fa3e853
FB
1331/* add a new TB and link it to the physical page tables. phys_page2 is
1332 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1333void tb_link_page(TranslationBlock *tb,
1334 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1335{
9fa3e853
FB
1336 unsigned int h;
1337 TranslationBlock **ptb;
1338
c8a706fe
PB
1339 /* Grab the mmap lock to stop another thread invalidating this TB
1340 before we are done. */
1341 mmap_lock();
9fa3e853
FB
1342 /* add in the physical hash table */
1343 h = tb_phys_hash_func(phys_pc);
1344 ptb = &tb_phys_hash[h];
1345 tb->phys_hash_next = *ptb;
1346 *ptb = tb;
fd6ce8f6
FB
1347
1348 /* add in the page list */
9fa3e853
FB
1349 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1350 if (phys_page2 != -1)
1351 tb_alloc_page(tb, 1, phys_page2);
1352 else
1353 tb->page_addr[1] = -1;
9fa3e853 1354
d4e8164f
FB
1355 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1356 tb->jmp_next[0] = NULL;
1357 tb->jmp_next[1] = NULL;
1358
1359 /* init original jump addresses */
1360 if (tb->tb_next_offset[0] != 0xffff)
1361 tb_reset_jump(tb, 0);
1362 if (tb->tb_next_offset[1] != 0xffff)
1363 tb_reset_jump(tb, 1);
8a40a180
FB
1364
1365#ifdef DEBUG_TB_CHECK
1366 tb_page_check();
1367#endif
c8a706fe 1368 mmap_unlock();
fd6ce8f6
FB
1369}
1370
9fa3e853
FB
1371/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1372 tb[1].tc_ptr. Return NULL if not found */
1373TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1374{
9fa3e853
FB
1375 int m_min, m_max, m;
1376 unsigned long v;
1377 TranslationBlock *tb;
a513fe19
FB
1378
1379 if (nb_tbs <= 0)
1380 return NULL;
1381 if (tc_ptr < (unsigned long)code_gen_buffer ||
1382 tc_ptr >= (unsigned long)code_gen_ptr)
1383 return NULL;
1384 /* binary search (cf Knuth) */
1385 m_min = 0;
1386 m_max = nb_tbs - 1;
1387 while (m_min <= m_max) {
1388 m = (m_min + m_max) >> 1;
1389 tb = &tbs[m];
1390 v = (unsigned long)tb->tc_ptr;
1391 if (v == tc_ptr)
1392 return tb;
1393 else if (tc_ptr < v) {
1394 m_max = m - 1;
1395 } else {
1396 m_min = m + 1;
1397 }
5fafdf24 1398 }
a513fe19
FB
1399 return &tbs[m_max];
1400}
7501267e 1401
ea041c0e
FB
1402static void tb_reset_jump_recursive(TranslationBlock *tb);
1403
1404static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1405{
1406 TranslationBlock *tb1, *tb_next, **ptb;
1407 unsigned int n1;
1408
1409 tb1 = tb->jmp_next[n];
1410 if (tb1 != NULL) {
1411 /* find head of list */
1412 for(;;) {
1413 n1 = (long)tb1 & 3;
1414 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1415 if (n1 == 2)
1416 break;
1417 tb1 = tb1->jmp_next[n1];
1418 }
1419 /* we are now sure now that tb jumps to tb1 */
1420 tb_next = tb1;
1421
1422 /* remove tb from the jmp_first list */
1423 ptb = &tb_next->jmp_first;
1424 for(;;) {
1425 tb1 = *ptb;
1426 n1 = (long)tb1 & 3;
1427 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1428 if (n1 == n && tb1 == tb)
1429 break;
1430 ptb = &tb1->jmp_next[n1];
1431 }
1432 *ptb = tb->jmp_next[n];
1433 tb->jmp_next[n] = NULL;
3b46e624 1434
ea041c0e
FB
1435 /* suppress the jump to next tb in generated code */
1436 tb_reset_jump(tb, n);
1437
0124311e 1438 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1439 tb_reset_jump_recursive(tb_next);
1440 }
1441}
1442
1443static void tb_reset_jump_recursive(TranslationBlock *tb)
1444{
1445 tb_reset_jump_recursive2(tb, 0);
1446 tb_reset_jump_recursive2(tb, 1);
1447}
1448
1fddef4b 1449#if defined(TARGET_HAS_ICE)
94df27fd
PB
1450#if defined(CONFIG_USER_ONLY)
1451static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1452{
1453 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1454}
1455#else
d720b93d
FB
1456static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1457{
c227f099 1458 target_phys_addr_t addr;
c227f099 1459 ram_addr_t ram_addr;
06ef3525 1460 MemoryRegionSection section;
d720b93d 1461
c2f07f81 1462 addr = cpu_get_phys_page_debug(env, pc);
06ef3525
AK
1463 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1464 if (!(memory_region_is_ram(section.mr)
1465 || (section.mr->rom_device && section.mr->readable))) {
1466 return;
1467 }
1468 ram_addr = (memory_region_get_ram_addr(section.mr)
1469 + section.offset_within_region) & TARGET_PAGE_MASK;
1470 ram_addr |= (pc & ~TARGET_PAGE_MASK);
706cd4b5 1471 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1472}
c27004ec 1473#endif
94df27fd 1474#endif /* TARGET_HAS_ICE */
d720b93d 1475
c527ee8f
PB
1476#if defined(CONFIG_USER_ONLY)
1477void cpu_watchpoint_remove_all(CPUState *env, int mask)
1478
1479{
1480}
1481
1482int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1483 int flags, CPUWatchpoint **watchpoint)
1484{
1485 return -ENOSYS;
1486}
1487#else
6658ffb8 1488/* Add a watchpoint. */
a1d1bb31
AL
1489int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1490 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1491{
b4051334 1492 target_ulong len_mask = ~(len - 1);
c0ce998e 1493 CPUWatchpoint *wp;
6658ffb8 1494
b4051334
AL
1495 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1496 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1497 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1498 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1499 return -EINVAL;
1500 }
7267c094 1501 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1502
1503 wp->vaddr = addr;
b4051334 1504 wp->len_mask = len_mask;
a1d1bb31
AL
1505 wp->flags = flags;
1506
2dc9f411 1507 /* keep all GDB-injected watchpoints in front */
c0ce998e 1508 if (flags & BP_GDB)
72cf2d4f 1509 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1510 else
72cf2d4f 1511 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1512
6658ffb8 1513 tlb_flush_page(env, addr);
a1d1bb31
AL
1514
1515 if (watchpoint)
1516 *watchpoint = wp;
1517 return 0;
6658ffb8
PB
1518}
1519
a1d1bb31
AL
1520/* Remove a specific watchpoint. */
1521int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1522 int flags)
6658ffb8 1523{
b4051334 1524 target_ulong len_mask = ~(len - 1);
a1d1bb31 1525 CPUWatchpoint *wp;
6658ffb8 1526
72cf2d4f 1527 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1528 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1529 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1530 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1531 return 0;
1532 }
1533 }
a1d1bb31 1534 return -ENOENT;
6658ffb8
PB
1535}
1536
a1d1bb31
AL
1537/* Remove a specific watchpoint by reference. */
1538void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1539{
72cf2d4f 1540 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1541
a1d1bb31
AL
1542 tlb_flush_page(env, watchpoint->vaddr);
1543
7267c094 1544 g_free(watchpoint);
a1d1bb31
AL
1545}
1546
1547/* Remove all matching watchpoints. */
1548void cpu_watchpoint_remove_all(CPUState *env, int mask)
1549{
c0ce998e 1550 CPUWatchpoint *wp, *next;
a1d1bb31 1551
72cf2d4f 1552 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1553 if (wp->flags & mask)
1554 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1555 }
7d03f82f 1556}
c527ee8f 1557#endif
7d03f82f 1558
a1d1bb31
AL
1559/* Add a breakpoint. */
1560int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1561 CPUBreakpoint **breakpoint)
4c3a88a2 1562{
1fddef4b 1563#if defined(TARGET_HAS_ICE)
c0ce998e 1564 CPUBreakpoint *bp;
3b46e624 1565
7267c094 1566 bp = g_malloc(sizeof(*bp));
4c3a88a2 1567
a1d1bb31
AL
1568 bp->pc = pc;
1569 bp->flags = flags;
1570
2dc9f411 1571 /* keep all GDB-injected breakpoints in front */
c0ce998e 1572 if (flags & BP_GDB)
72cf2d4f 1573 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1574 else
72cf2d4f 1575 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1576
d720b93d 1577 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1578
1579 if (breakpoint)
1580 *breakpoint = bp;
4c3a88a2
FB
1581 return 0;
1582#else
a1d1bb31 1583 return -ENOSYS;
4c3a88a2
FB
1584#endif
1585}
1586
a1d1bb31
AL
1587/* Remove a specific breakpoint. */
1588int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1589{
7d03f82f 1590#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1591 CPUBreakpoint *bp;
1592
72cf2d4f 1593 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1594 if (bp->pc == pc && bp->flags == flags) {
1595 cpu_breakpoint_remove_by_ref(env, bp);
1596 return 0;
1597 }
7d03f82f 1598 }
a1d1bb31
AL
1599 return -ENOENT;
1600#else
1601 return -ENOSYS;
7d03f82f
EI
1602#endif
1603}
1604
a1d1bb31
AL
1605/* Remove a specific breakpoint by reference. */
1606void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1607{
1fddef4b 1608#if defined(TARGET_HAS_ICE)
72cf2d4f 1609 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1610
a1d1bb31
AL
1611 breakpoint_invalidate(env, breakpoint->pc);
1612
7267c094 1613 g_free(breakpoint);
a1d1bb31
AL
1614#endif
1615}
1616
1617/* Remove all matching breakpoints. */
1618void cpu_breakpoint_remove_all(CPUState *env, int mask)
1619{
1620#if defined(TARGET_HAS_ICE)
c0ce998e 1621 CPUBreakpoint *bp, *next;
a1d1bb31 1622
72cf2d4f 1623 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1624 if (bp->flags & mask)
1625 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1626 }
4c3a88a2
FB
1627#endif
1628}
1629
c33a346e
FB
1630/* enable or disable single step mode. EXCP_DEBUG is returned by the
1631 CPU loop after each instruction */
1632void cpu_single_step(CPUState *env, int enabled)
1633{
1fddef4b 1634#if defined(TARGET_HAS_ICE)
c33a346e
FB
1635 if (env->singlestep_enabled != enabled) {
1636 env->singlestep_enabled = enabled;
e22a25c9
AL
1637 if (kvm_enabled())
1638 kvm_update_guest_debug(env, 0);
1639 else {
ccbb4d44 1640 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1641 /* XXX: only flush what is necessary */
1642 tb_flush(env);
1643 }
c33a346e
FB
1644 }
1645#endif
1646}
1647
34865134
FB
1648/* enable or disable low levels log */
1649void cpu_set_log(int log_flags)
1650{
1651 loglevel = log_flags;
1652 if (loglevel && !logfile) {
11fcfab4 1653 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1654 if (!logfile) {
1655 perror(logfilename);
1656 _exit(1);
1657 }
9fa3e853
FB
1658#if !defined(CONFIG_SOFTMMU)
1659 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1660 {
b55266b5 1661 static char logfile_buf[4096];
9fa3e853
FB
1662 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1663 }
daf767b1
SW
1664#elif defined(_WIN32)
1665 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1666 setvbuf(logfile, NULL, _IONBF, 0);
1667#else
34865134 1668 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1669#endif
e735b91c
PB
1670 log_append = 1;
1671 }
1672 if (!loglevel && logfile) {
1673 fclose(logfile);
1674 logfile = NULL;
34865134
FB
1675 }
1676}
1677
1678void cpu_set_log_filename(const char *filename)
1679{
1680 logfilename = strdup(filename);
e735b91c
PB
1681 if (logfile) {
1682 fclose(logfile);
1683 logfile = NULL;
1684 }
1685 cpu_set_log(loglevel);
34865134 1686}
c33a346e 1687
3098dba0 1688static void cpu_unlink_tb(CPUState *env)
ea041c0e 1689{
3098dba0
AJ
1690 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1691 problem and hope the cpu will stop of its own accord. For userspace
1692 emulation this often isn't actually as bad as it sounds. Often
1693 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1694 TranslationBlock *tb;
c227f099 1695 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1696
cab1b4bd 1697 spin_lock(&interrupt_lock);
3098dba0
AJ
1698 tb = env->current_tb;
1699 /* if the cpu is currently executing code, we must unlink it and
1700 all the potentially executing TB */
f76cfe56 1701 if (tb) {
3098dba0
AJ
1702 env->current_tb = NULL;
1703 tb_reset_jump_recursive(tb);
be214e6c 1704 }
cab1b4bd 1705 spin_unlock(&interrupt_lock);
3098dba0
AJ
1706}
1707
97ffbd8d 1708#ifndef CONFIG_USER_ONLY
3098dba0 1709/* mask must never be zero, except for A20 change call */
ec6959d0 1710static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1711{
1712 int old_mask;
be214e6c 1713
2e70f6ef 1714 old_mask = env->interrupt_request;
68a79315 1715 env->interrupt_request |= mask;
3098dba0 1716
8edac960
AL
1717 /*
1718 * If called from iothread context, wake the target cpu in
1719 * case its halted.
1720 */
b7680cb6 1721 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1722 qemu_cpu_kick(env);
1723 return;
1724 }
8edac960 1725
2e70f6ef 1726 if (use_icount) {
266910c4 1727 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1728 if (!can_do_io(env)
be214e6c 1729 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1730 cpu_abort(env, "Raised interrupt while not in I/O function");
1731 }
2e70f6ef 1732 } else {
3098dba0 1733 cpu_unlink_tb(env);
ea041c0e
FB
1734 }
1735}
1736
ec6959d0
JK
1737CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1738
97ffbd8d
JK
1739#else /* CONFIG_USER_ONLY */
1740
1741void cpu_interrupt(CPUState *env, int mask)
1742{
1743 env->interrupt_request |= mask;
1744 cpu_unlink_tb(env);
1745}
1746#endif /* CONFIG_USER_ONLY */
1747
b54ad049
FB
1748void cpu_reset_interrupt(CPUState *env, int mask)
1749{
1750 env->interrupt_request &= ~mask;
1751}
1752
3098dba0
AJ
1753void cpu_exit(CPUState *env)
1754{
1755 env->exit_request = 1;
1756 cpu_unlink_tb(env);
1757}
1758
c7cd6a37 1759const CPULogItem cpu_log_items[] = {
5fafdf24 1760 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1761 "show generated host assembly code for each compiled TB" },
1762 { CPU_LOG_TB_IN_ASM, "in_asm",
1763 "show target assembly code for each compiled TB" },
5fafdf24 1764 { CPU_LOG_TB_OP, "op",
57fec1fe 1765 "show micro ops for each compiled TB" },
f193c797 1766 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1767 "show micro ops "
1768#ifdef TARGET_I386
1769 "before eflags optimization and "
f193c797 1770#endif
e01a1157 1771 "after liveness analysis" },
f193c797
FB
1772 { CPU_LOG_INT, "int",
1773 "show interrupts/exceptions in short format" },
1774 { CPU_LOG_EXEC, "exec",
1775 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1776 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1777 "show CPU state before block translation" },
f193c797
FB
1778#ifdef TARGET_I386
1779 { CPU_LOG_PCALL, "pcall",
1780 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1781 { CPU_LOG_RESET, "cpu_reset",
1782 "show CPU state before CPU resets" },
f193c797 1783#endif
8e3a9fd2 1784#ifdef DEBUG_IOPORT
fd872598
FB
1785 { CPU_LOG_IOPORT, "ioport",
1786 "show all i/o ports accesses" },
8e3a9fd2 1787#endif
f193c797
FB
1788 { 0, NULL, NULL },
1789};
1790
1791static int cmp1(const char *s1, int n, const char *s2)
1792{
1793 if (strlen(s2) != n)
1794 return 0;
1795 return memcmp(s1, s2, n) == 0;
1796}
3b46e624 1797
f193c797
FB
1798/* takes a comma separated list of log masks. Return 0 if error. */
1799int cpu_str_to_log_mask(const char *str)
1800{
c7cd6a37 1801 const CPULogItem *item;
f193c797
FB
1802 int mask;
1803 const char *p, *p1;
1804
1805 p = str;
1806 mask = 0;
1807 for(;;) {
1808 p1 = strchr(p, ',');
1809 if (!p1)
1810 p1 = p + strlen(p);
9742bf26
YT
1811 if(cmp1(p,p1-p,"all")) {
1812 for(item = cpu_log_items; item->mask != 0; item++) {
1813 mask |= item->mask;
1814 }
1815 } else {
1816 for(item = cpu_log_items; item->mask != 0; item++) {
1817 if (cmp1(p, p1 - p, item->name))
1818 goto found;
1819 }
1820 return 0;
f193c797 1821 }
f193c797
FB
1822 found:
1823 mask |= item->mask;
1824 if (*p1 != ',')
1825 break;
1826 p = p1 + 1;
1827 }
1828 return mask;
1829}
ea041c0e 1830
7501267e
FB
1831void cpu_abort(CPUState *env, const char *fmt, ...)
1832{
1833 va_list ap;
493ae1f0 1834 va_list ap2;
7501267e
FB
1835
1836 va_start(ap, fmt);
493ae1f0 1837 va_copy(ap2, ap);
7501267e
FB
1838 fprintf(stderr, "qemu: fatal: ");
1839 vfprintf(stderr, fmt, ap);
1840 fprintf(stderr, "\n");
1841#ifdef TARGET_I386
7fe48483
FB
1842 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1843#else
1844 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1845#endif
93fcfe39
AL
1846 if (qemu_log_enabled()) {
1847 qemu_log("qemu: fatal: ");
1848 qemu_log_vprintf(fmt, ap2);
1849 qemu_log("\n");
f9373291 1850#ifdef TARGET_I386
93fcfe39 1851 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1852#else
93fcfe39 1853 log_cpu_state(env, 0);
f9373291 1854#endif
31b1a7b4 1855 qemu_log_flush();
93fcfe39 1856 qemu_log_close();
924edcae 1857 }
493ae1f0 1858 va_end(ap2);
f9373291 1859 va_end(ap);
fd052bf6
RV
1860#if defined(CONFIG_USER_ONLY)
1861 {
1862 struct sigaction act;
1863 sigfillset(&act.sa_mask);
1864 act.sa_handler = SIG_DFL;
1865 sigaction(SIGABRT, &act, NULL);
1866 }
1867#endif
7501267e
FB
1868 abort();
1869}
1870
c5be9f08
TS
1871CPUState *cpu_copy(CPUState *env)
1872{
01ba9816 1873 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1874 CPUState *next_cpu = new_env->next_cpu;
1875 int cpu_index = new_env->cpu_index;
5a38f081
AL
1876#if defined(TARGET_HAS_ICE)
1877 CPUBreakpoint *bp;
1878 CPUWatchpoint *wp;
1879#endif
1880
c5be9f08 1881 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1882
1883 /* Preserve chaining and index. */
c5be9f08
TS
1884 new_env->next_cpu = next_cpu;
1885 new_env->cpu_index = cpu_index;
5a38f081
AL
1886
1887 /* Clone all break/watchpoints.
1888 Note: Once we support ptrace with hw-debug register access, make sure
1889 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1890 QTAILQ_INIT(&env->breakpoints);
1891 QTAILQ_INIT(&env->watchpoints);
5a38f081 1892#if defined(TARGET_HAS_ICE)
72cf2d4f 1893 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1894 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1895 }
72cf2d4f 1896 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1897 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1898 wp->flags, NULL);
1899 }
1900#endif
1901
c5be9f08
TS
1902 return new_env;
1903}
1904
0124311e
FB
1905#if !defined(CONFIG_USER_ONLY)
1906
5c751e99
EI
1907static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1908{
1909 unsigned int i;
1910
1911 /* Discard jump cache entries for any tb which might potentially
1912 overlap the flushed page. */
1913 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1914 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1915 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1916
1917 i = tb_jmp_cache_hash_page(addr);
1918 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1919 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1920}
1921
08738984
IK
1922static CPUTLBEntry s_cputlb_empty_entry = {
1923 .addr_read = -1,
1924 .addr_write = -1,
1925 .addr_code = -1,
1926 .addend = -1,
1927};
1928
771124e1
PM
1929/* NOTE:
1930 * If flush_global is true (the usual case), flush all tlb entries.
1931 * If flush_global is false, flush (at least) all tlb entries not
1932 * marked global.
1933 *
1934 * Since QEMU doesn't currently implement a global/not-global flag
1935 * for tlb entries, at the moment tlb_flush() will also flush all
1936 * tlb entries in the flush_global == false case. This is OK because
1937 * CPU architectures generally permit an implementation to drop
1938 * entries from the TLB at any time, so flushing more entries than
1939 * required is only an efficiency issue, not a correctness issue.
1940 */
ee8b7021 1941void tlb_flush(CPUState *env, int flush_global)
33417e70 1942{
33417e70 1943 int i;
0124311e 1944
9fa3e853
FB
1945#if defined(DEBUG_TLB)
1946 printf("tlb_flush:\n");
1947#endif
0124311e
FB
1948 /* must reset current TB so that interrupts cannot modify the
1949 links while we are modifying them */
1950 env->current_tb = NULL;
1951
33417e70 1952 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1953 int mmu_idx;
1954 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1955 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1956 }
33417e70 1957 }
9fa3e853 1958
8a40a180 1959 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1960
d4c430a8
PB
1961 env->tlb_flush_addr = -1;
1962 env->tlb_flush_mask = 0;
e3db7226 1963 tlb_flush_count++;
33417e70
FB
1964}
1965
274da6b2 1966static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1967{
5fafdf24 1968 if (addr == (tlb_entry->addr_read &
84b7b8e7 1969 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1970 addr == (tlb_entry->addr_write &
84b7b8e7 1971 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1972 addr == (tlb_entry->addr_code &
84b7b8e7 1973 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1974 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1975 }
61382a50
FB
1976}
1977
2e12669a 1978void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1979{
8a40a180 1980 int i;
cfde4bd9 1981 int mmu_idx;
0124311e 1982
9fa3e853 1983#if defined(DEBUG_TLB)
108c49b8 1984 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1985#endif
d4c430a8
PB
1986 /* Check if we need to flush due to large pages. */
1987 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1988#if defined(DEBUG_TLB)
1989 printf("tlb_flush_page: forced full flush ("
1990 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1991 env->tlb_flush_addr, env->tlb_flush_mask);
1992#endif
1993 tlb_flush(env, 1);
1994 return;
1995 }
0124311e
FB
1996 /* must reset current TB so that interrupts cannot modify the
1997 links while we are modifying them */
1998 env->current_tb = NULL;
61382a50
FB
1999
2000 addr &= TARGET_PAGE_MASK;
2001 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2002 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2003 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2004
5c751e99 2005 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2006}
2007
9fa3e853
FB
2008/* update the TLBs so that writes to code in the virtual page 'addr'
2009 can be detected */
c227f099 2010static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2011{
5fafdf24 2012 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2013 ram_addr + TARGET_PAGE_SIZE,
2014 CODE_DIRTY_FLAG);
9fa3e853
FB
2015}
2016
9fa3e853 2017/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2018 tested for self modifying code */
c227f099 2019static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2020 target_ulong vaddr)
9fa3e853 2021{
f7c11b53 2022 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2023}
2024
5fafdf24 2025static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2026 unsigned long start, unsigned long length)
2027{
2028 unsigned long addr;
0e0df1e2 2029 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
84b7b8e7 2030 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2031 if ((addr - start) < length) {
0f459d16 2032 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2033 }
2034 }
2035}
2036
5579c7f3 2037/* Note: start and end must be within the same ram block. */
c227f099 2038void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2039 int dirty_flags)
1ccde1cb
FB
2040{
2041 CPUState *env;
4f2ac237 2042 unsigned long length, start1;
f7c11b53 2043 int i;
1ccde1cb
FB
2044
2045 start &= TARGET_PAGE_MASK;
2046 end = TARGET_PAGE_ALIGN(end);
2047
2048 length = end - start;
2049 if (length == 0)
2050 return;
f7c11b53 2051 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2052
1ccde1cb
FB
2053 /* we modify the TLB cache so that the dirty bit will be set again
2054 when accessing the range */
b2e0a138 2055 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 2056 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 2057 address comparisons below. */
b2e0a138 2058 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2059 != (end - 1) - start) {
2060 abort();
2061 }
2062
6a00d601 2063 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2064 int mmu_idx;
2065 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2066 for(i = 0; i < CPU_TLB_SIZE; i++)
2067 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2068 start1, length);
2069 }
6a00d601 2070 }
1ccde1cb
FB
2071}
2072
74576198
AL
2073int cpu_physical_memory_set_dirty_tracking(int enable)
2074{
f6f3fbca 2075 int ret = 0;
74576198 2076 in_migration = enable;
f6f3fbca 2077 return ret;
74576198
AL
2078}
2079
3a7d929e
FB
2080static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2081{
c227f099 2082 ram_addr_t ram_addr;
5579c7f3 2083 void *p;
3a7d929e 2084
0e0df1e2 2085 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
5579c7f3
PB
2086 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2087 + tlb_entry->addend);
e890261f 2088 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2089 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2090 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2091 }
2092 }
2093}
2094
2095/* update the TLB according to the current state of the dirty bits */
2096void cpu_tlb_update_dirty(CPUState *env)
2097{
2098 int i;
cfde4bd9
IY
2099 int mmu_idx;
2100 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2101 for(i = 0; i < CPU_TLB_SIZE; i++)
2102 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2103 }
3a7d929e
FB
2104}
2105
0f459d16 2106static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2107{
0f459d16
PB
2108 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2109 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2110}
2111
0f459d16
PB
2112/* update the TLB corresponding to virtual page vaddr
2113 so that it is no longer dirty */
2114static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2115{
1ccde1cb 2116 int i;
cfde4bd9 2117 int mmu_idx;
1ccde1cb 2118
0f459d16 2119 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2120 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2121 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2122 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2123}
2124
d4c430a8
PB
2125/* Our TLB does not support large pages, so remember the area covered by
2126 large pages and trigger a full TLB flush if these are invalidated. */
2127static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2128 target_ulong size)
2129{
2130 target_ulong mask = ~(size - 1);
2131
2132 if (env->tlb_flush_addr == (target_ulong)-1) {
2133 env->tlb_flush_addr = vaddr & mask;
2134 env->tlb_flush_mask = mask;
2135 return;
2136 }
2137 /* Extend the existing region to include the new page.
2138 This is a compromise between unnecessary flushes and the cost
2139 of maintaining a full variable size TLB. */
2140 mask &= env->tlb_flush_mask;
2141 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2142 mask <<= 1;
2143 }
2144 env->tlb_flush_addr &= mask;
2145 env->tlb_flush_mask = mask;
2146}
2147
06ef3525 2148static bool is_ram_rom(MemoryRegionSection *s)
1d393fa2 2149{
06ef3525 2150 return memory_region_is_ram(s->mr);
1d393fa2
AK
2151}
2152
06ef3525 2153static bool is_romd(MemoryRegionSection *s)
75c578dc 2154{
06ef3525 2155 MemoryRegion *mr = s->mr;
75c578dc 2156
75c578dc
AK
2157 return mr->rom_device && mr->readable;
2158}
2159
06ef3525 2160static bool is_ram_rom_romd(MemoryRegionSection *s)
1d393fa2 2161{
06ef3525 2162 return is_ram_rom(s) || is_romd(s);
1d393fa2
AK
2163}
2164
d4c430a8
PB
2165/* Add a new TLB entry. At most one entry for a given virtual address
2166 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2167 supplied size is only used by tlb_flush_page. */
2168void tlb_set_page(CPUState *env, target_ulong vaddr,
2169 target_phys_addr_t paddr, int prot,
2170 int mmu_idx, target_ulong size)
9fa3e853 2171{
06ef3525 2172 MemoryRegionSection section;
9fa3e853 2173 unsigned int index;
4f2ac237 2174 target_ulong address;
0f459d16 2175 target_ulong code_address;
355b1943 2176 unsigned long addend;
84b7b8e7 2177 CPUTLBEntry *te;
a1d1bb31 2178 CPUWatchpoint *wp;
c227f099 2179 target_phys_addr_t iotlb;
9fa3e853 2180
d4c430a8
PB
2181 assert(size >= TARGET_PAGE_SIZE);
2182 if (size != TARGET_PAGE_SIZE) {
2183 tlb_add_large_page(env, vaddr, size);
2184 }
06ef3525 2185 section = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853 2186#if defined(DEBUG_TLB)
7fd3f494
SW
2187 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2188 " prot=%x idx=%d pd=0x%08lx\n",
2189 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2190#endif
2191
0f459d16 2192 address = vaddr;
06ef3525 2193 if (!is_ram_rom_romd(&section)) {
0f459d16
PB
2194 /* IO memory case (romd handled later) */
2195 address |= TLB_MMIO;
2196 }
06ef3525
AK
2197 if (is_ram_rom_romd(&section)) {
2198 addend = (unsigned long)(memory_region_get_ram_ptr(section.mr)
2199 + section.offset_within_region);
2200 } else {
2201 addend = 0;
2202 }
2203 if (is_ram_rom(&section)) {
0f459d16 2204 /* Normal RAM. */
06ef3525
AK
2205 iotlb = (memory_region_get_ram_addr(section.mr)
2206 + section.offset_within_region) & TARGET_PAGE_MASK;
2207 if (!section.readonly)
0e0df1e2 2208 iotlb |= io_mem_notdirty.ram_addr;
0f459d16 2209 else
0e0df1e2 2210 iotlb |= io_mem_rom.ram_addr;
0f459d16 2211 } else {
ccbb4d44 2212 /* IO handlers are currently passed a physical address.
0f459d16
PB
2213 It would be nice to pass an offset from the base address
2214 of that region. This would avoid having to special case RAM,
2215 and avoid full address decoding in every device.
2216 We can't use the high bits of pd for this because
2217 IO_MEM_ROMD uses these as a ram address. */
06ef3525
AK
2218 iotlb = memory_region_get_ram_addr(section.mr) & ~TARGET_PAGE_MASK;
2219 iotlb += section.offset_within_region;
0f459d16
PB
2220 }
2221
2222 code_address = address;
2223 /* Make accesses to pages with watchpoints go via the
2224 watchpoint trap routines. */
72cf2d4f 2225 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2226 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2227 /* Avoid trapping reads of pages with a write breakpoint. */
2228 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1ec9b909 2229 iotlb = io_mem_watch.ram_addr + paddr;
bf298f83
JK
2230 address |= TLB_MMIO;
2231 break;
2232 }
6658ffb8 2233 }
0f459d16 2234 }
d79acba4 2235
0f459d16
PB
2236 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2237 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2238 te = &env->tlb_table[mmu_idx][index];
2239 te->addend = addend - vaddr;
2240 if (prot & PAGE_READ) {
2241 te->addr_read = address;
2242 } else {
2243 te->addr_read = -1;
2244 }
5c751e99 2245
0f459d16
PB
2246 if (prot & PAGE_EXEC) {
2247 te->addr_code = code_address;
2248 } else {
2249 te->addr_code = -1;
2250 }
2251 if (prot & PAGE_WRITE) {
06ef3525
AK
2252 if ((memory_region_is_ram(section.mr) && section.readonly)
2253 || is_romd(&section)) {
0f459d16
PB
2254 /* Write access calls the I/O callback. */
2255 te->addr_write = address | TLB_MMIO;
06ef3525
AK
2256 } else if (memory_region_is_ram(section.mr)
2257 && !cpu_physical_memory_is_dirty(
2258 section.mr->ram_addr
2259 + section.offset_within_region)) {
0f459d16 2260 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2261 } else {
0f459d16 2262 te->addr_write = address;
9fa3e853 2263 }
0f459d16
PB
2264 } else {
2265 te->addr_write = -1;
9fa3e853 2266 }
9fa3e853
FB
2267}
2268
0124311e
FB
2269#else
2270
ee8b7021 2271void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2272{
2273}
2274
2e12669a 2275void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2276{
2277}
2278
edf8e2af
MW
2279/*
2280 * Walks guest process memory "regions" one by one
2281 * and calls callback function 'fn' for each region.
2282 */
5cd2c5b6
RH
2283
2284struct walk_memory_regions_data
2285{
2286 walk_memory_regions_fn fn;
2287 void *priv;
2288 unsigned long start;
2289 int prot;
2290};
2291
2292static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2293 abi_ulong end, int new_prot)
5cd2c5b6
RH
2294{
2295 if (data->start != -1ul) {
2296 int rc = data->fn(data->priv, data->start, end, data->prot);
2297 if (rc != 0) {
2298 return rc;
2299 }
2300 }
2301
2302 data->start = (new_prot ? end : -1ul);
2303 data->prot = new_prot;
2304
2305 return 0;
2306}
2307
2308static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2309 abi_ulong base, int level, void **lp)
5cd2c5b6 2310{
b480d9b7 2311 abi_ulong pa;
5cd2c5b6
RH
2312 int i, rc;
2313
2314 if (*lp == NULL) {
2315 return walk_memory_regions_end(data, base, 0);
2316 }
2317
2318 if (level == 0) {
2319 PageDesc *pd = *lp;
7296abac 2320 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2321 int prot = pd[i].flags;
2322
2323 pa = base | (i << TARGET_PAGE_BITS);
2324 if (prot != data->prot) {
2325 rc = walk_memory_regions_end(data, pa, prot);
2326 if (rc != 0) {
2327 return rc;
9fa3e853 2328 }
9fa3e853 2329 }
5cd2c5b6
RH
2330 }
2331 } else {
2332 void **pp = *lp;
7296abac 2333 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2334 pa = base | ((abi_ulong)i <<
2335 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2336 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2337 if (rc != 0) {
2338 return rc;
2339 }
2340 }
2341 }
2342
2343 return 0;
2344}
2345
2346int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2347{
2348 struct walk_memory_regions_data data;
2349 unsigned long i;
2350
2351 data.fn = fn;
2352 data.priv = priv;
2353 data.start = -1ul;
2354 data.prot = 0;
2355
2356 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2357 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2358 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2359 if (rc != 0) {
2360 return rc;
9fa3e853 2361 }
33417e70 2362 }
5cd2c5b6
RH
2363
2364 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2365}
2366
b480d9b7
PB
2367static int dump_region(void *priv, abi_ulong start,
2368 abi_ulong end, unsigned long prot)
edf8e2af
MW
2369{
2370 FILE *f = (FILE *)priv;
2371
b480d9b7
PB
2372 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2373 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2374 start, end, end - start,
2375 ((prot & PAGE_READ) ? 'r' : '-'),
2376 ((prot & PAGE_WRITE) ? 'w' : '-'),
2377 ((prot & PAGE_EXEC) ? 'x' : '-'));
2378
2379 return (0);
2380}
2381
2382/* dump memory mappings */
2383void page_dump(FILE *f)
2384{
2385 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2386 "start", "end", "size", "prot");
2387 walk_memory_regions(f, dump_region);
33417e70
FB
2388}
2389
53a5960a 2390int page_get_flags(target_ulong address)
33417e70 2391{
9fa3e853
FB
2392 PageDesc *p;
2393
2394 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2395 if (!p)
9fa3e853
FB
2396 return 0;
2397 return p->flags;
2398}
2399
376a7909
RH
2400/* Modify the flags of a page and invalidate the code if necessary.
2401 The flag PAGE_WRITE_ORG is positioned automatically depending
2402 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2403void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2404{
376a7909
RH
2405 target_ulong addr, len;
2406
2407 /* This function should never be called with addresses outside the
2408 guest address space. If this assert fires, it probably indicates
2409 a missing call to h2g_valid. */
b480d9b7
PB
2410#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2411 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2412#endif
2413 assert(start < end);
9fa3e853
FB
2414
2415 start = start & TARGET_PAGE_MASK;
2416 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2417
2418 if (flags & PAGE_WRITE) {
9fa3e853 2419 flags |= PAGE_WRITE_ORG;
376a7909
RH
2420 }
2421
2422 for (addr = start, len = end - start;
2423 len != 0;
2424 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2425 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2426
2427 /* If the write protection bit is set, then we invalidate
2428 the code inside. */
5fafdf24 2429 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2430 (flags & PAGE_WRITE) &&
2431 p->first_tb) {
d720b93d 2432 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2433 }
2434 p->flags = flags;
2435 }
33417e70
FB
2436}
2437
3d97b40b
TS
2438int page_check_range(target_ulong start, target_ulong len, int flags)
2439{
2440 PageDesc *p;
2441 target_ulong end;
2442 target_ulong addr;
2443
376a7909
RH
2444 /* This function should never be called with addresses outside the
2445 guest address space. If this assert fires, it probably indicates
2446 a missing call to h2g_valid. */
338e9e6c
BS
2447#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2448 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2449#endif
2450
3e0650a9
RH
2451 if (len == 0) {
2452 return 0;
2453 }
376a7909
RH
2454 if (start + len - 1 < start) {
2455 /* We've wrapped around. */
55f280c9 2456 return -1;
376a7909 2457 }
55f280c9 2458
3d97b40b
TS
2459 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2460 start = start & TARGET_PAGE_MASK;
2461
376a7909
RH
2462 for (addr = start, len = end - start;
2463 len != 0;
2464 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2465 p = page_find(addr >> TARGET_PAGE_BITS);
2466 if( !p )
2467 return -1;
2468 if( !(p->flags & PAGE_VALID) )
2469 return -1;
2470
dae3270c 2471 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2472 return -1;
dae3270c
FB
2473 if (flags & PAGE_WRITE) {
2474 if (!(p->flags & PAGE_WRITE_ORG))
2475 return -1;
2476 /* unprotect the page if it was put read-only because it
2477 contains translated code */
2478 if (!(p->flags & PAGE_WRITE)) {
2479 if (!page_unprotect(addr, 0, NULL))
2480 return -1;
2481 }
2482 return 0;
2483 }
3d97b40b
TS
2484 }
2485 return 0;
2486}
2487
9fa3e853 2488/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2489 page. Return TRUE if the fault was successfully handled. */
53a5960a 2490int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2491{
45d679d6
AJ
2492 unsigned int prot;
2493 PageDesc *p;
53a5960a 2494 target_ulong host_start, host_end, addr;
9fa3e853 2495
c8a706fe
PB
2496 /* Technically this isn't safe inside a signal handler. However we
2497 know this only ever happens in a synchronous SEGV handler, so in
2498 practice it seems to be ok. */
2499 mmap_lock();
2500
45d679d6
AJ
2501 p = page_find(address >> TARGET_PAGE_BITS);
2502 if (!p) {
c8a706fe 2503 mmap_unlock();
9fa3e853 2504 return 0;
c8a706fe 2505 }
45d679d6 2506
9fa3e853
FB
2507 /* if the page was really writable, then we change its
2508 protection back to writable */
45d679d6
AJ
2509 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2510 host_start = address & qemu_host_page_mask;
2511 host_end = host_start + qemu_host_page_size;
2512
2513 prot = 0;
2514 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2515 p = page_find(addr >> TARGET_PAGE_BITS);
2516 p->flags |= PAGE_WRITE;
2517 prot |= p->flags;
2518
9fa3e853
FB
2519 /* and since the content will be modified, we must invalidate
2520 the corresponding translated code. */
45d679d6 2521 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2522#ifdef DEBUG_TB_CHECK
45d679d6 2523 tb_invalidate_check(addr);
9fa3e853 2524#endif
9fa3e853 2525 }
45d679d6
AJ
2526 mprotect((void *)g2h(host_start), qemu_host_page_size,
2527 prot & PAGE_BITS);
2528
2529 mmap_unlock();
2530 return 1;
9fa3e853 2531 }
c8a706fe 2532 mmap_unlock();
9fa3e853
FB
2533 return 0;
2534}
2535
6a00d601
FB
2536static inline void tlb_set_dirty(CPUState *env,
2537 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2538{
2539}
9fa3e853
FB
2540#endif /* defined(CONFIG_USER_ONLY) */
2541
e2eef170 2542#if !defined(CONFIG_USER_ONLY)
8da3ff18 2543
c04b2b78
PB
2544#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2545typedef struct subpage_t {
70c68e44 2546 MemoryRegion iomem;
c04b2b78 2547 target_phys_addr_t base;
5312bd8b 2548 uint16_t sub_section[TARGET_PAGE_SIZE];
c04b2b78
PB
2549} subpage_t;
2550
c227f099 2551static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2552 uint16_t section);
0f0cb164 2553static subpage_t *subpage_init(target_phys_addr_t base);
5312bd8b 2554static void destroy_page_desc(uint16_t section_index)
54688b1e 2555{
5312bd8b
AK
2556 MemoryRegionSection *section = &phys_sections[section_index];
2557 MemoryRegion *mr = section->mr;
54688b1e
AK
2558
2559 if (mr->subpage) {
2560 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2561 memory_region_destroy(&subpage->iomem);
2562 g_free(subpage);
2563 }
2564}
2565
4346ae3e 2566static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
54688b1e
AK
2567{
2568 unsigned i;
d6f2ea22 2569 PhysPageEntry *p;
54688b1e 2570
d6f2ea22 2571 if (lp->u.node == PHYS_MAP_NODE_NIL) {
54688b1e
AK
2572 return;
2573 }
2574
d6f2ea22 2575 p = phys_map_nodes[lp->u.node];
4346ae3e
AK
2576 for (i = 0; i < L2_SIZE; ++i) {
2577 if (level > 0) {
54688b1e 2578 destroy_l2_mapping(&p[i], level - 1);
4346ae3e
AK
2579 } else {
2580 destroy_page_desc(p[i].u.leaf);
54688b1e 2581 }
54688b1e 2582 }
d6f2ea22 2583 lp->u.node = PHYS_MAP_NODE_NIL;
54688b1e
AK
2584}
2585
2586static void destroy_all_mappings(void)
2587{
3eef53df 2588 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
d6f2ea22 2589 phys_map_nodes_reset();
54688b1e
AK
2590}
2591
5312bd8b
AK
2592static uint16_t phys_section_add(MemoryRegionSection *section)
2593{
2594 if (phys_sections_nb == phys_sections_nb_alloc) {
2595 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2596 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2597 phys_sections_nb_alloc);
2598 }
2599 phys_sections[phys_sections_nb] = *section;
2600 return phys_sections_nb++;
2601}
2602
2603static void phys_sections_clear(void)
2604{
2605 phys_sections_nb = 0;
2606}
2607
8f2498f9
MT
2608/* register physical memory.
2609 For RAM, 'size' must be a multiple of the target page size.
2610 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2611 io memory page. The address used when calling the IO function is
2612 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2613 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2614 before calculating this offset. This should not be a problem unless
2615 the low bits of start_addr and region_offset differ. */
0f0cb164
AK
2616static void register_subpage(MemoryRegionSection *section)
2617{
2618 subpage_t *subpage;
2619 target_phys_addr_t base = section->offset_within_address_space
2620 & TARGET_PAGE_MASK;
2621 MemoryRegionSection existing = phys_page_find(base >> TARGET_PAGE_BITS);
2622 MemoryRegionSection subsection = {
2623 .offset_within_address_space = base,
2624 .size = TARGET_PAGE_SIZE,
2625 };
0f0cb164
AK
2626 target_phys_addr_t start, end;
2627
2628 assert(existing.mr->subpage || existing.mr == &io_mem_unassigned);
2629
2630 if (!(existing.mr->subpage)) {
2631 subpage = subpage_init(base);
2632 subsection.mr = &subpage->iomem;
a3918432 2633 phys_page_set(base >> TARGET_PAGE_BITS, phys_section_add(&subsection));
0f0cb164
AK
2634 } else {
2635 subpage = container_of(existing.mr, subpage_t, iomem);
2636 }
2637 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2638 end = start + section->size;
2639 subpage_register(subpage, start, end, phys_section_add(section));
2640}
2641
2642
2643static void register_multipage(MemoryRegionSection *section)
33417e70 2644{
dd81124b
AK
2645 target_phys_addr_t start_addr = section->offset_within_address_space;
2646 ram_addr_t size = section->size;
c227f099 2647 target_phys_addr_t addr, end_addr;
5312bd8b 2648 uint16_t section_index = phys_section_add(section);
dd81124b 2649
3b8e6a2d 2650 assert(size);
f6f3fbca 2651
c227f099 2652 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2653
2654 addr = start_addr;
2655 do {
a3918432 2656 phys_page_set(addr >> TARGET_PAGE_BITS, section_index);
3b8e6a2d
EI
2657 addr += TARGET_PAGE_SIZE;
2658 } while (addr != end_addr);
33417e70
FB
2659}
2660
0f0cb164
AK
2661void cpu_register_physical_memory_log(MemoryRegionSection *section,
2662 bool readonly)
2663{
2664 MemoryRegionSection now = *section, remain = *section;
2665
2666 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2667 || (now.size < TARGET_PAGE_SIZE)) {
2668 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2669 - now.offset_within_address_space,
2670 now.size);
2671 register_subpage(&now);
2672 remain.size -= now.size;
2673 remain.offset_within_address_space += now.size;
2674 remain.offset_within_region += now.size;
2675 }
2676 now = remain;
2677 now.size &= TARGET_PAGE_MASK;
2678 if (now.size) {
2679 register_multipage(&now);
2680 remain.size -= now.size;
2681 remain.offset_within_address_space += now.size;
2682 remain.offset_within_region += now.size;
2683 }
2684 now = remain;
2685 if (now.size) {
2686 register_subpage(&now);
2687 }
2688}
2689
2690
c227f099 2691void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2692{
2693 if (kvm_enabled())
2694 kvm_coalesce_mmio_region(addr, size);
2695}
2696
c227f099 2697void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2698{
2699 if (kvm_enabled())
2700 kvm_uncoalesce_mmio_region(addr, size);
2701}
2702
62a2744c
SY
2703void qemu_flush_coalesced_mmio_buffer(void)
2704{
2705 if (kvm_enabled())
2706 kvm_flush_coalesced_mmio_buffer();
2707}
2708
c902760f
MT
2709#if defined(__linux__) && !defined(TARGET_S390X)
2710
2711#include <sys/vfs.h>
2712
2713#define HUGETLBFS_MAGIC 0x958458f6
2714
2715static long gethugepagesize(const char *path)
2716{
2717 struct statfs fs;
2718 int ret;
2719
2720 do {
9742bf26 2721 ret = statfs(path, &fs);
c902760f
MT
2722 } while (ret != 0 && errno == EINTR);
2723
2724 if (ret != 0) {
9742bf26
YT
2725 perror(path);
2726 return 0;
c902760f
MT
2727 }
2728
2729 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2730 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2731
2732 return fs.f_bsize;
2733}
2734
04b16653
AW
2735static void *file_ram_alloc(RAMBlock *block,
2736 ram_addr_t memory,
2737 const char *path)
c902760f
MT
2738{
2739 char *filename;
2740 void *area;
2741 int fd;
2742#ifdef MAP_POPULATE
2743 int flags;
2744#endif
2745 unsigned long hpagesize;
2746
2747 hpagesize = gethugepagesize(path);
2748 if (!hpagesize) {
9742bf26 2749 return NULL;
c902760f
MT
2750 }
2751
2752 if (memory < hpagesize) {
2753 return NULL;
2754 }
2755
2756 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2757 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2758 return NULL;
2759 }
2760
2761 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2762 return NULL;
c902760f
MT
2763 }
2764
2765 fd = mkstemp(filename);
2766 if (fd < 0) {
9742bf26
YT
2767 perror("unable to create backing store for hugepages");
2768 free(filename);
2769 return NULL;
c902760f
MT
2770 }
2771 unlink(filename);
2772 free(filename);
2773
2774 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2775
2776 /*
2777 * ftruncate is not supported by hugetlbfs in older
2778 * hosts, so don't bother bailing out on errors.
2779 * If anything goes wrong with it under other filesystems,
2780 * mmap will fail.
2781 */
2782 if (ftruncate(fd, memory))
9742bf26 2783 perror("ftruncate");
c902760f
MT
2784
2785#ifdef MAP_POPULATE
2786 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2787 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2788 * to sidestep this quirk.
2789 */
2790 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2791 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2792#else
2793 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2794#endif
2795 if (area == MAP_FAILED) {
9742bf26
YT
2796 perror("file_ram_alloc: can't mmap RAM pages");
2797 close(fd);
2798 return (NULL);
c902760f 2799 }
04b16653 2800 block->fd = fd;
c902760f
MT
2801 return area;
2802}
2803#endif
2804
d17b5288 2805static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2806{
2807 RAMBlock *block, *next_block;
3e837b2c 2808 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2809
2810 if (QLIST_EMPTY(&ram_list.blocks))
2811 return 0;
2812
2813 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2814 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2815
2816 end = block->offset + block->length;
2817
2818 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2819 if (next_block->offset >= end) {
2820 next = MIN(next, next_block->offset);
2821 }
2822 }
2823 if (next - end >= size && next - end < mingap) {
3e837b2c 2824 offset = end;
04b16653
AW
2825 mingap = next - end;
2826 }
2827 }
3e837b2c
AW
2828
2829 if (offset == RAM_ADDR_MAX) {
2830 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2831 (uint64_t)size);
2832 abort();
2833 }
2834
04b16653
AW
2835 return offset;
2836}
2837
2838static ram_addr_t last_ram_offset(void)
d17b5288
AW
2839{
2840 RAMBlock *block;
2841 ram_addr_t last = 0;
2842
2843 QLIST_FOREACH(block, &ram_list.blocks, next)
2844 last = MAX(last, block->offset + block->length);
2845
2846 return last;
2847}
2848
c5705a77 2849void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
2850{
2851 RAMBlock *new_block, *block;
2852
c5705a77
AK
2853 new_block = NULL;
2854 QLIST_FOREACH(block, &ram_list.blocks, next) {
2855 if (block->offset == addr) {
2856 new_block = block;
2857 break;
2858 }
2859 }
2860 assert(new_block);
2861 assert(!new_block->idstr[0]);
84b89d78
CM
2862
2863 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2864 char *id = dev->parent_bus->info->get_dev_path(dev);
2865 if (id) {
2866 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2867 g_free(id);
84b89d78
CM
2868 }
2869 }
2870 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2871
2872 QLIST_FOREACH(block, &ram_list.blocks, next) {
c5705a77 2873 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2874 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2875 new_block->idstr);
2876 abort();
2877 }
2878 }
c5705a77
AK
2879}
2880
2881ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2882 MemoryRegion *mr)
2883{
2884 RAMBlock *new_block;
2885
2886 size = TARGET_PAGE_ALIGN(size);
2887 new_block = g_malloc0(sizeof(*new_block));
84b89d78 2888
7c637366 2889 new_block->mr = mr;
432d268c 2890 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2891 if (host) {
2892 new_block->host = host;
cd19cfa2 2893 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2894 } else {
2895 if (mem_path) {
c902760f 2896#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2897 new_block->host = file_ram_alloc(new_block, size, mem_path);
2898 if (!new_block->host) {
2899 new_block->host = qemu_vmalloc(size);
e78815a5 2900 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2901 }
c902760f 2902#else
6977dfe6
YT
2903 fprintf(stderr, "-mem-path option unsupported\n");
2904 exit(1);
c902760f 2905#endif
6977dfe6 2906 } else {
6b02494d 2907#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2908 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2909 an system defined value, which is at least 256GB. Larger systems
2910 have larger values. We put the guest between the end of data
2911 segment (system break) and this value. We use 32GB as a base to
2912 have enough room for the system break to grow. */
2913 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2914 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2915 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2916 if (new_block->host == MAP_FAILED) {
2917 fprintf(stderr, "Allocating RAM failed\n");
2918 abort();
2919 }
6b02494d 2920#else
868bb33f 2921 if (xen_enabled()) {
fce537d4 2922 xen_ram_alloc(new_block->offset, size, mr);
432d268c
JN
2923 } else {
2924 new_block->host = qemu_vmalloc(size);
2925 }
6b02494d 2926#endif
e78815a5 2927 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2928 }
c902760f 2929 }
94a6b54f
PB
2930 new_block->length = size;
2931
f471a17e 2932 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2933
7267c094 2934 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2935 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2936 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2937 0xff, size >> TARGET_PAGE_BITS);
2938
6f0437e8
JK
2939 if (kvm_enabled())
2940 kvm_setup_guest_memory(new_block->host, size);
2941
94a6b54f
PB
2942 return new_block->offset;
2943}
e9a1ab19 2944
c5705a77 2945ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 2946{
c5705a77 2947 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
2948}
2949
1f2e98b6
AW
2950void qemu_ram_free_from_ptr(ram_addr_t addr)
2951{
2952 RAMBlock *block;
2953
2954 QLIST_FOREACH(block, &ram_list.blocks, next) {
2955 if (addr == block->offset) {
2956 QLIST_REMOVE(block, next);
7267c094 2957 g_free(block);
1f2e98b6
AW
2958 return;
2959 }
2960 }
2961}
2962
c227f099 2963void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2964{
04b16653
AW
2965 RAMBlock *block;
2966
2967 QLIST_FOREACH(block, &ram_list.blocks, next) {
2968 if (addr == block->offset) {
2969 QLIST_REMOVE(block, next);
cd19cfa2
HY
2970 if (block->flags & RAM_PREALLOC_MASK) {
2971 ;
2972 } else if (mem_path) {
04b16653
AW
2973#if defined (__linux__) && !defined(TARGET_S390X)
2974 if (block->fd) {
2975 munmap(block->host, block->length);
2976 close(block->fd);
2977 } else {
2978 qemu_vfree(block->host);
2979 }
fd28aa13
JK
2980#else
2981 abort();
04b16653
AW
2982#endif
2983 } else {
2984#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2985 munmap(block->host, block->length);
2986#else
868bb33f 2987 if (xen_enabled()) {
e41d7c69 2988 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
2989 } else {
2990 qemu_vfree(block->host);
2991 }
04b16653
AW
2992#endif
2993 }
7267c094 2994 g_free(block);
04b16653
AW
2995 return;
2996 }
2997 }
2998
e9a1ab19
FB
2999}
3000
cd19cfa2
HY
3001#ifndef _WIN32
3002void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3003{
3004 RAMBlock *block;
3005 ram_addr_t offset;
3006 int flags;
3007 void *area, *vaddr;
3008
3009 QLIST_FOREACH(block, &ram_list.blocks, next) {
3010 offset = addr - block->offset;
3011 if (offset < block->length) {
3012 vaddr = block->host + offset;
3013 if (block->flags & RAM_PREALLOC_MASK) {
3014 ;
3015 } else {
3016 flags = MAP_FIXED;
3017 munmap(vaddr, length);
3018 if (mem_path) {
3019#if defined(__linux__) && !defined(TARGET_S390X)
3020 if (block->fd) {
3021#ifdef MAP_POPULATE
3022 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3023 MAP_PRIVATE;
3024#else
3025 flags |= MAP_PRIVATE;
3026#endif
3027 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3028 flags, block->fd, offset);
3029 } else {
3030 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3031 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3032 flags, -1, 0);
3033 }
fd28aa13
JK
3034#else
3035 abort();
cd19cfa2
HY
3036#endif
3037 } else {
3038#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3039 flags |= MAP_SHARED | MAP_ANONYMOUS;
3040 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3041 flags, -1, 0);
3042#else
3043 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3044 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3045 flags, -1, 0);
3046#endif
3047 }
3048 if (area != vaddr) {
f15fbc4b
AP
3049 fprintf(stderr, "Could not remap addr: "
3050 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
3051 length, addr);
3052 exit(1);
3053 }
3054 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3055 }
3056 return;
3057 }
3058 }
3059}
3060#endif /* !_WIN32 */
3061
dc828ca1 3062/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3063 With the exception of the softmmu code in this file, this should
3064 only be used for local memory (e.g. video ram) that the device owns,
3065 and knows it isn't going to access beyond the end of the block.
3066
3067 It should not be used for general purpose DMA.
3068 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3069 */
c227f099 3070void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3071{
94a6b54f
PB
3072 RAMBlock *block;
3073
f471a17e
AW
3074 QLIST_FOREACH(block, &ram_list.blocks, next) {
3075 if (addr - block->offset < block->length) {
7d82af38
VP
3076 /* Move this entry to to start of the list. */
3077 if (block != QLIST_FIRST(&ram_list.blocks)) {
3078 QLIST_REMOVE(block, next);
3079 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3080 }
868bb33f 3081 if (xen_enabled()) {
432d268c
JN
3082 /* We need to check if the requested address is in the RAM
3083 * because we don't want to map the entire memory in QEMU.
712c2b41 3084 * In that case just map until the end of the page.
432d268c
JN
3085 */
3086 if (block->offset == 0) {
e41d7c69 3087 return xen_map_cache(addr, 0, 0);
432d268c 3088 } else if (block->host == NULL) {
e41d7c69
JK
3089 block->host =
3090 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3091 }
3092 }
f471a17e
AW
3093 return block->host + (addr - block->offset);
3094 }
94a6b54f 3095 }
f471a17e
AW
3096
3097 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3098 abort();
3099
3100 return NULL;
dc828ca1
PB
3101}
3102
b2e0a138
MT
3103/* Return a host pointer to ram allocated with qemu_ram_alloc.
3104 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3105 */
3106void *qemu_safe_ram_ptr(ram_addr_t addr)
3107{
3108 RAMBlock *block;
3109
3110 QLIST_FOREACH(block, &ram_list.blocks, next) {
3111 if (addr - block->offset < block->length) {
868bb33f 3112 if (xen_enabled()) {
432d268c
JN
3113 /* We need to check if the requested address is in the RAM
3114 * because we don't want to map the entire memory in QEMU.
712c2b41 3115 * In that case just map until the end of the page.
432d268c
JN
3116 */
3117 if (block->offset == 0) {
e41d7c69 3118 return xen_map_cache(addr, 0, 0);
432d268c 3119 } else if (block->host == NULL) {
e41d7c69
JK
3120 block->host =
3121 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3122 }
3123 }
b2e0a138
MT
3124 return block->host + (addr - block->offset);
3125 }
3126 }
3127
3128 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3129 abort();
3130
3131 return NULL;
3132}
3133
38bee5dc
SS
3134/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3135 * but takes a size argument */
8ab934f9 3136void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3137{
8ab934f9
SS
3138 if (*size == 0) {
3139 return NULL;
3140 }
868bb33f 3141 if (xen_enabled()) {
e41d7c69 3142 return xen_map_cache(addr, *size, 1);
868bb33f 3143 } else {
38bee5dc
SS
3144 RAMBlock *block;
3145
3146 QLIST_FOREACH(block, &ram_list.blocks, next) {
3147 if (addr - block->offset < block->length) {
3148 if (addr - block->offset + *size > block->length)
3149 *size = block->length - addr + block->offset;
3150 return block->host + (addr - block->offset);
3151 }
3152 }
3153
3154 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3155 abort();
38bee5dc
SS
3156 }
3157}
3158
050a0ddf
AP
3159void qemu_put_ram_ptr(void *addr)
3160{
3161 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3162}
3163
e890261f 3164int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3165{
94a6b54f
PB
3166 RAMBlock *block;
3167 uint8_t *host = ptr;
3168
868bb33f 3169 if (xen_enabled()) {
e41d7c69 3170 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3171 return 0;
3172 }
3173
f471a17e 3174 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3175 /* This case append when the block is not mapped. */
3176 if (block->host == NULL) {
3177 continue;
3178 }
f471a17e 3179 if (host - block->host < block->length) {
e890261f
MT
3180 *ram_addr = block->offset + (host - block->host);
3181 return 0;
f471a17e 3182 }
94a6b54f 3183 }
432d268c 3184
e890261f
MT
3185 return -1;
3186}
f471a17e 3187
e890261f
MT
3188/* Some of the softmmu routines need to translate from a host pointer
3189 (typically a TLB entry) back to a ram offset. */
3190ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3191{
3192 ram_addr_t ram_addr;
f471a17e 3193
e890261f
MT
3194 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3195 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3196 abort();
3197 }
3198 return ram_addr;
5579c7f3
PB
3199}
3200
0e0df1e2
AK
3201static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3202 unsigned size)
e18231a3
BS
3203{
3204#ifdef DEBUG_UNASSIGNED
3205 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3206#endif
5b450407 3207#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 3208 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
e18231a3
BS
3209#endif
3210 return 0;
3211}
3212
0e0df1e2
AK
3213static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3214 uint64_t val, unsigned size)
e18231a3
BS
3215{
3216#ifdef DEBUG_UNASSIGNED
0e0df1e2 3217 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
e18231a3 3218#endif
5b450407 3219#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 3220 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
67d3b957 3221#endif
33417e70
FB
3222}
3223
0e0df1e2
AK
3224static const MemoryRegionOps unassigned_mem_ops = {
3225 .read = unassigned_mem_read,
3226 .write = unassigned_mem_write,
3227 .endianness = DEVICE_NATIVE_ENDIAN,
3228};
e18231a3 3229
0e0df1e2
AK
3230static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3231 unsigned size)
e18231a3 3232{
0e0df1e2 3233 abort();
e18231a3
BS
3234}
3235
0e0df1e2
AK
3236static void error_mem_write(void *opaque, target_phys_addr_t addr,
3237 uint64_t value, unsigned size)
e18231a3 3238{
0e0df1e2 3239 abort();
33417e70
FB
3240}
3241
0e0df1e2
AK
3242static const MemoryRegionOps error_mem_ops = {
3243 .read = error_mem_read,
3244 .write = error_mem_write,
3245 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
3246};
3247
0e0df1e2
AK
3248static const MemoryRegionOps rom_mem_ops = {
3249 .read = error_mem_read,
3250 .write = unassigned_mem_write,
3251 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
3252};
3253
0e0df1e2
AK
3254static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3255 uint64_t val, unsigned size)
9fa3e853 3256{
3a7d929e 3257 int dirty_flags;
f7c11b53 3258 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3259 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3260#if !defined(CONFIG_USER_ONLY)
0e0df1e2 3261 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 3262 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3263#endif
3a7d929e 3264 }
0e0df1e2
AK
3265 switch (size) {
3266 case 1:
3267 stb_p(qemu_get_ram_ptr(ram_addr), val);
3268 break;
3269 case 2:
3270 stw_p(qemu_get_ram_ptr(ram_addr), val);
3271 break;
3272 case 4:
3273 stl_p(qemu_get_ram_ptr(ram_addr), val);
3274 break;
3275 default:
3276 abort();
3a7d929e 3277 }
f23db169 3278 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3279 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3280 /* we remove the notdirty callback only if the code has been
3281 flushed */
3282 if (dirty_flags == 0xff)
2e70f6ef 3283 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3284}
3285
0e0df1e2
AK
3286static const MemoryRegionOps notdirty_mem_ops = {
3287 .read = error_mem_read,
3288 .write = notdirty_mem_write,
3289 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
3290};
3291
0f459d16 3292/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3293static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3294{
3295 CPUState *env = cpu_single_env;
06d55cc1
AL
3296 target_ulong pc, cs_base;
3297 TranslationBlock *tb;
0f459d16 3298 target_ulong vaddr;
a1d1bb31 3299 CPUWatchpoint *wp;
06d55cc1 3300 int cpu_flags;
0f459d16 3301
06d55cc1
AL
3302 if (env->watchpoint_hit) {
3303 /* We re-entered the check after replacing the TB. Now raise
3304 * the debug interrupt so that is will trigger after the
3305 * current instruction. */
3306 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3307 return;
3308 }
2e70f6ef 3309 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3310 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3311 if ((vaddr == (wp->vaddr & len_mask) ||
3312 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3313 wp->flags |= BP_WATCHPOINT_HIT;
3314 if (!env->watchpoint_hit) {
3315 env->watchpoint_hit = wp;
3316 tb = tb_find_pc(env->mem_io_pc);
3317 if (!tb) {
3318 cpu_abort(env, "check_watchpoint: could not find TB for "
3319 "pc=%p", (void *)env->mem_io_pc);
3320 }
618ba8e6 3321 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3322 tb_phys_invalidate(tb, -1);
3323 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3324 env->exception_index = EXCP_DEBUG;
3325 } else {
3326 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3327 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3328 }
3329 cpu_resume_from_signal(env, NULL);
06d55cc1 3330 }
6e140f28
AL
3331 } else {
3332 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3333 }
3334 }
3335}
3336
6658ffb8
PB
3337/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3338 so these check for a hit then pass through to the normal out-of-line
3339 phys routines. */
1ec9b909
AK
3340static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
3341 unsigned size)
6658ffb8 3342{
1ec9b909
AK
3343 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
3344 switch (size) {
3345 case 1: return ldub_phys(addr);
3346 case 2: return lduw_phys(addr);
3347 case 4: return ldl_phys(addr);
3348 default: abort();
3349 }
6658ffb8
PB
3350}
3351
1ec9b909
AK
3352static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3353 uint64_t val, unsigned size)
6658ffb8 3354{
1ec9b909
AK
3355 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3356 switch (size) {
3357 case 1: stb_phys(addr, val);
3358 case 2: stw_phys(addr, val);
3359 case 4: stl_phys(addr, val);
3360 default: abort();
3361 }
6658ffb8
PB
3362}
3363
1ec9b909
AK
3364static const MemoryRegionOps watch_mem_ops = {
3365 .read = watch_mem_read,
3366 .write = watch_mem_write,
3367 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 3368};
6658ffb8 3369
70c68e44
AK
3370static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3371 unsigned len)
db7b5426 3372{
70c68e44 3373 subpage_t *mmio = opaque;
f6405247 3374 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3375 MemoryRegionSection *section;
db7b5426
BS
3376#if defined(DEBUG_SUBPAGE)
3377 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3378 mmio, len, addr, idx);
3379#endif
db7b5426 3380
5312bd8b
AK
3381 section = &phys_sections[mmio->sub_section[idx]];
3382 addr += mmio->base;
3383 addr -= section->offset_within_address_space;
3384 addr += section->offset_within_region;
3385 return io_mem_read(section->mr->ram_addr, addr, len);
db7b5426
BS
3386}
3387
70c68e44
AK
3388static void subpage_write(void *opaque, target_phys_addr_t addr,
3389 uint64_t value, unsigned len)
db7b5426 3390{
70c68e44 3391 subpage_t *mmio = opaque;
f6405247 3392 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3393 MemoryRegionSection *section;
db7b5426 3394#if defined(DEBUG_SUBPAGE)
70c68e44
AK
3395 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3396 " idx %d value %"PRIx64"\n",
f6405247 3397 __func__, mmio, len, addr, idx, value);
db7b5426 3398#endif
f6405247 3399
5312bd8b
AK
3400 section = &phys_sections[mmio->sub_section[idx]];
3401 addr += mmio->base;
3402 addr -= section->offset_within_address_space;
3403 addr += section->offset_within_region;
3404 io_mem_write(section->mr->ram_addr, addr, value, len);
db7b5426
BS
3405}
3406
70c68e44
AK
3407static const MemoryRegionOps subpage_ops = {
3408 .read = subpage_read,
3409 .write = subpage_write,
3410 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3411};
3412
de712f94
AK
3413static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3414 unsigned size)
56384e8b
AF
3415{
3416 ram_addr_t raddr = addr;
3417 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3418 switch (size) {
3419 case 1: return ldub_p(ptr);
3420 case 2: return lduw_p(ptr);
3421 case 4: return ldl_p(ptr);
3422 default: abort();
3423 }
56384e8b
AF
3424}
3425
de712f94
AK
3426static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3427 uint64_t value, unsigned size)
56384e8b
AF
3428{
3429 ram_addr_t raddr = addr;
3430 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3431 switch (size) {
3432 case 1: return stb_p(ptr, value);
3433 case 2: return stw_p(ptr, value);
3434 case 4: return stl_p(ptr, value);
3435 default: abort();
3436 }
56384e8b
AF
3437}
3438
de712f94
AK
3439static const MemoryRegionOps subpage_ram_ops = {
3440 .read = subpage_ram_read,
3441 .write = subpage_ram_write,
3442 .endianness = DEVICE_NATIVE_ENDIAN,
56384e8b
AF
3443};
3444
c227f099 3445static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3446 uint16_t section)
db7b5426
BS
3447{
3448 int idx, eidx;
3449
3450 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3451 return -1;
3452 idx = SUBPAGE_IDX(start);
3453 eidx = SUBPAGE_IDX(end);
3454#if defined(DEBUG_SUBPAGE)
0bf9e31a 3455 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3456 mmio, start, end, idx, eidx, memory);
3457#endif
5312bd8b
AK
3458 if (memory_region_is_ram(phys_sections[section].mr)) {
3459 MemoryRegionSection new_section = phys_sections[section];
3460 new_section.mr = &io_mem_subpage_ram;
3461 section = phys_section_add(&new_section);
56384e8b 3462 }
db7b5426 3463 for (; idx <= eidx; idx++) {
5312bd8b 3464 mmio->sub_section[idx] = section;
db7b5426
BS
3465 }
3466
3467 return 0;
3468}
3469
0f0cb164 3470static subpage_t *subpage_init(target_phys_addr_t base)
db7b5426 3471{
c227f099 3472 subpage_t *mmio;
db7b5426 3473
7267c094 3474 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3475
3476 mmio->base = base;
70c68e44
AK
3477 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3478 "subpage", TARGET_PAGE_SIZE);
b3b00c78 3479 mmio->iomem.subpage = true;
db7b5426 3480#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3481 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3482 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3483#endif
0f0cb164 3484 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
3485
3486 return mmio;
3487}
3488
88715657
AL
3489static int get_free_io_mem_idx(void)
3490{
3491 int i;
3492
3493 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3494 if (!io_mem_used[i]) {
3495 io_mem_used[i] = 1;
3496 return i;
3497 }
c6703b47 3498 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3499 return -1;
3500}
3501
33417e70
FB
3502/* mem_read and mem_write are arrays of functions containing the
3503 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3504 2). Functions can be omitted with a NULL function pointer.
3ee89922 3505 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3506 modified. If it is zero, a new io zone is allocated. The return
3507 value can be used with cpu_register_physical_memory(). (-1) is
3508 returned if error. */
a621f38d 3509static int cpu_register_io_memory_fixed(int io_index, MemoryRegion *mr)
33417e70 3510{
33417e70 3511 if (io_index <= 0) {
88715657
AL
3512 io_index = get_free_io_mem_idx();
3513 if (io_index == -1)
3514 return io_index;
33417e70
FB
3515 } else {
3516 if (io_index >= IO_MEM_NB_ENTRIES)
3517 return -1;
3518 }
b5ff1b31 3519
a621f38d 3520 io_mem_region[io_index] = mr;
f6405247 3521
11c7ef0c 3522 return io_index;
33417e70 3523}
61382a50 3524
a621f38d 3525int cpu_register_io_memory(MemoryRegion *mr)
1eed09cb 3526{
a621f38d 3527 return cpu_register_io_memory_fixed(0, mr);
1eed09cb
AK
3528}
3529
11c7ef0c 3530void cpu_unregister_io_memory(int io_index)
88715657 3531{
a621f38d 3532 io_mem_region[io_index] = NULL;
88715657
AL
3533 io_mem_used[io_index] = 0;
3534}
3535
5312bd8b
AK
3536static uint16_t dummy_section(MemoryRegion *mr)
3537{
3538 MemoryRegionSection section = {
3539 .mr = mr,
3540 .offset_within_address_space = 0,
3541 .offset_within_region = 0,
3542 .size = UINT64_MAX,
3543 };
3544
3545 return phys_section_add(&section);
3546}
3547
e9179ce1
AK
3548static void io_mem_init(void)
3549{
3550 int i;
3551
0e0df1e2
AK
3552 /* Must be first: */
3553 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3554 assert(io_mem_ram.ram_addr == 0);
3555 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3556 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3557 "unassigned", UINT64_MAX);
3558 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3559 "notdirty", UINT64_MAX);
de712f94
AK
3560 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3561 "subpage-ram", UINT64_MAX);
e9179ce1
AK
3562 for (i=0; i<5; i++)
3563 io_mem_used[i] = 1;
3564
1ec9b909
AK
3565 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3566 "watch", UINT64_MAX);
e9179ce1
AK
3567}
3568
50c1e149
AK
3569static void core_begin(MemoryListener *listener)
3570{
54688b1e 3571 destroy_all_mappings();
5312bd8b 3572 phys_sections_clear();
d6f2ea22 3573 phys_map.u.node = PHYS_MAP_NODE_NIL;
5312bd8b 3574 phys_section_unassigned = dummy_section(&io_mem_unassigned);
50c1e149
AK
3575}
3576
3577static void core_commit(MemoryListener *listener)
3578{
117712c3
AK
3579 CPUState *env;
3580
3581 /* since each CPU stores ram addresses in its TLB cache, we must
3582 reset the modified entries */
3583 /* XXX: slow ! */
3584 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3585 tlb_flush(env, 1);
3586 }
50c1e149
AK
3587}
3588
93632747
AK
3589static void core_region_add(MemoryListener *listener,
3590 MemoryRegionSection *section)
3591{
4855d41a 3592 cpu_register_physical_memory_log(section, section->readonly);
93632747
AK
3593}
3594
3595static void core_region_del(MemoryListener *listener,
3596 MemoryRegionSection *section)
3597{
93632747
AK
3598}
3599
50c1e149
AK
3600static void core_region_nop(MemoryListener *listener,
3601 MemoryRegionSection *section)
3602{
54688b1e 3603 cpu_register_physical_memory_log(section, section->readonly);
50c1e149
AK
3604}
3605
93632747
AK
3606static void core_log_start(MemoryListener *listener,
3607 MemoryRegionSection *section)
3608{
3609}
3610
3611static void core_log_stop(MemoryListener *listener,
3612 MemoryRegionSection *section)
3613{
3614}
3615
3616static void core_log_sync(MemoryListener *listener,
3617 MemoryRegionSection *section)
3618{
3619}
3620
3621static void core_log_global_start(MemoryListener *listener)
3622{
3623 cpu_physical_memory_set_dirty_tracking(1);
3624}
3625
3626static void core_log_global_stop(MemoryListener *listener)
3627{
3628 cpu_physical_memory_set_dirty_tracking(0);
3629}
3630
3631static void core_eventfd_add(MemoryListener *listener,
3632 MemoryRegionSection *section,
3633 bool match_data, uint64_t data, int fd)
3634{
3635}
3636
3637static void core_eventfd_del(MemoryListener *listener,
3638 MemoryRegionSection *section,
3639 bool match_data, uint64_t data, int fd)
3640{
3641}
3642
50c1e149
AK
3643static void io_begin(MemoryListener *listener)
3644{
3645}
3646
3647static void io_commit(MemoryListener *listener)
3648{
3649}
3650
4855d41a
AK
3651static void io_region_add(MemoryListener *listener,
3652 MemoryRegionSection *section)
3653{
3654 iorange_init(&section->mr->iorange, &memory_region_iorange_ops,
3655 section->offset_within_address_space, section->size);
3656 ioport_register(&section->mr->iorange);
3657}
3658
3659static void io_region_del(MemoryListener *listener,
3660 MemoryRegionSection *section)
3661{
3662 isa_unassign_ioport(section->offset_within_address_space, section->size);
3663}
3664
50c1e149
AK
3665static void io_region_nop(MemoryListener *listener,
3666 MemoryRegionSection *section)
3667{
3668}
3669
4855d41a
AK
3670static void io_log_start(MemoryListener *listener,
3671 MemoryRegionSection *section)
3672{
3673}
3674
3675static void io_log_stop(MemoryListener *listener,
3676 MemoryRegionSection *section)
3677{
3678}
3679
3680static void io_log_sync(MemoryListener *listener,
3681 MemoryRegionSection *section)
3682{
3683}
3684
3685static void io_log_global_start(MemoryListener *listener)
3686{
3687}
3688
3689static void io_log_global_stop(MemoryListener *listener)
3690{
3691}
3692
3693static void io_eventfd_add(MemoryListener *listener,
3694 MemoryRegionSection *section,
3695 bool match_data, uint64_t data, int fd)
3696{
3697}
3698
3699static void io_eventfd_del(MemoryListener *listener,
3700 MemoryRegionSection *section,
3701 bool match_data, uint64_t data, int fd)
3702{
3703}
3704
93632747 3705static MemoryListener core_memory_listener = {
50c1e149
AK
3706 .begin = core_begin,
3707 .commit = core_commit,
93632747
AK
3708 .region_add = core_region_add,
3709 .region_del = core_region_del,
50c1e149 3710 .region_nop = core_region_nop,
93632747
AK
3711 .log_start = core_log_start,
3712 .log_stop = core_log_stop,
3713 .log_sync = core_log_sync,
3714 .log_global_start = core_log_global_start,
3715 .log_global_stop = core_log_global_stop,
3716 .eventfd_add = core_eventfd_add,
3717 .eventfd_del = core_eventfd_del,
3718 .priority = 0,
3719};
3720
4855d41a 3721static MemoryListener io_memory_listener = {
50c1e149
AK
3722 .begin = io_begin,
3723 .commit = io_commit,
4855d41a
AK
3724 .region_add = io_region_add,
3725 .region_del = io_region_del,
50c1e149 3726 .region_nop = io_region_nop,
4855d41a
AK
3727 .log_start = io_log_start,
3728 .log_stop = io_log_stop,
3729 .log_sync = io_log_sync,
3730 .log_global_start = io_log_global_start,
3731 .log_global_stop = io_log_global_stop,
3732 .eventfd_add = io_eventfd_add,
3733 .eventfd_del = io_eventfd_del,
3734 .priority = 0,
3735};
3736
62152b8a
AK
3737static void memory_map_init(void)
3738{
7267c094 3739 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3740 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3741 set_system_memory_map(system_memory);
309cb471 3742
7267c094 3743 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3744 memory_region_init(system_io, "io", 65536);
3745 set_system_io_map(system_io);
93632747 3746
4855d41a
AK
3747 memory_listener_register(&core_memory_listener, system_memory);
3748 memory_listener_register(&io_memory_listener, system_io);
62152b8a
AK
3749}
3750
3751MemoryRegion *get_system_memory(void)
3752{
3753 return system_memory;
3754}
3755
309cb471
AK
3756MemoryRegion *get_system_io(void)
3757{
3758 return system_io;
3759}
3760
e2eef170
PB
3761#endif /* !defined(CONFIG_USER_ONLY) */
3762
13eb76e0
FB
3763/* physical memory access (slow version, mainly for debug) */
3764#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3765int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3766 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3767{
3768 int l, flags;
3769 target_ulong page;
53a5960a 3770 void * p;
13eb76e0
FB
3771
3772 while (len > 0) {
3773 page = addr & TARGET_PAGE_MASK;
3774 l = (page + TARGET_PAGE_SIZE) - addr;
3775 if (l > len)
3776 l = len;
3777 flags = page_get_flags(page);
3778 if (!(flags & PAGE_VALID))
a68fe89c 3779 return -1;
13eb76e0
FB
3780 if (is_write) {
3781 if (!(flags & PAGE_WRITE))
a68fe89c 3782 return -1;
579a97f7 3783 /* XXX: this code should not depend on lock_user */
72fb7daa 3784 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3785 return -1;
72fb7daa
AJ
3786 memcpy(p, buf, l);
3787 unlock_user(p, addr, l);
13eb76e0
FB
3788 } else {
3789 if (!(flags & PAGE_READ))
a68fe89c 3790 return -1;
579a97f7 3791 /* XXX: this code should not depend on lock_user */
72fb7daa 3792 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3793 return -1;
72fb7daa 3794 memcpy(buf, p, l);
5b257578 3795 unlock_user(p, addr, 0);
13eb76e0
FB
3796 }
3797 len -= l;
3798 buf += l;
3799 addr += l;
3800 }
a68fe89c 3801 return 0;
13eb76e0 3802}
8df1cd07 3803
13eb76e0 3804#else
c227f099 3805void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3806 int len, int is_write)
3807{
3808 int l, io_index;
3809 uint8_t *ptr;
3810 uint32_t val;
c227f099 3811 target_phys_addr_t page;
06ef3525 3812 MemoryRegionSection section;
3b46e624 3813
13eb76e0
FB
3814 while (len > 0) {
3815 page = addr & TARGET_PAGE_MASK;
3816 l = (page + TARGET_PAGE_SIZE) - addr;
3817 if (l > len)
3818 l = len;
06ef3525 3819 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3820
13eb76e0 3821 if (is_write) {
06ef3525 3822 if (!memory_region_is_ram(section.mr)) {
f1f6e3b8 3823 target_phys_addr_t addr1;
06ef3525
AK
3824 io_index = memory_region_get_ram_addr(section.mr)
3825 & (IO_MEM_NB_ENTRIES - 1);
3826 addr1 = (addr & ~TARGET_PAGE_MASK)
3827 + section.offset_within_region;
6a00d601
FB
3828 /* XXX: could force cpu_single_env to NULL to avoid
3829 potential bugs */
6c2934db 3830 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3831 /* 32 bit write access */
c27004ec 3832 val = ldl_p(buf);
acbbec5d 3833 io_mem_write(io_index, addr1, val, 4);
13eb76e0 3834 l = 4;
6c2934db 3835 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3836 /* 16 bit write access */
c27004ec 3837 val = lduw_p(buf);
acbbec5d 3838 io_mem_write(io_index, addr1, val, 2);
13eb76e0
FB
3839 l = 2;
3840 } else {
1c213d19 3841 /* 8 bit write access */
c27004ec 3842 val = ldub_p(buf);
acbbec5d 3843 io_mem_write(io_index, addr1, val, 1);
13eb76e0
FB
3844 l = 1;
3845 }
06ef3525 3846 } else if (!section.readonly) {
8ca5692d 3847 ram_addr_t addr1;
06ef3525
AK
3848 addr1 = (memory_region_get_ram_addr(section.mr)
3849 + section.offset_within_region)
3850 | (addr & ~TARGET_PAGE_MASK);
13eb76e0 3851 /* RAM case */
5579c7f3 3852 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3853 memcpy(ptr, buf, l);
3a7d929e
FB
3854 if (!cpu_physical_memory_is_dirty(addr1)) {
3855 /* invalidate code */
3856 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3857 /* set dirty bit */
f7c11b53
YT
3858 cpu_physical_memory_set_dirty_flags(
3859 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3860 }
050a0ddf 3861 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3862 }
3863 } else {
06ef3525 3864 if (!is_ram_rom_romd(&section)) {
f1f6e3b8 3865 target_phys_addr_t addr1;
13eb76e0 3866 /* I/O case */
06ef3525
AK
3867 io_index = memory_region_get_ram_addr(section.mr)
3868 & (IO_MEM_NB_ENTRIES - 1);
3869 addr1 = (addr & ~TARGET_PAGE_MASK)
3870 + section.offset_within_region;
6c2934db 3871 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3872 /* 32 bit read access */
acbbec5d 3873 val = io_mem_read(io_index, addr1, 4);
c27004ec 3874 stl_p(buf, val);
13eb76e0 3875 l = 4;
6c2934db 3876 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3877 /* 16 bit read access */
acbbec5d 3878 val = io_mem_read(io_index, addr1, 2);
c27004ec 3879 stw_p(buf, val);
13eb76e0
FB
3880 l = 2;
3881 } else {
1c213d19 3882 /* 8 bit read access */
acbbec5d 3883 val = io_mem_read(io_index, addr1, 1);
c27004ec 3884 stb_p(buf, val);
13eb76e0
FB
3885 l = 1;
3886 }
3887 } else {
3888 /* RAM case */
06ef3525
AK
3889 ptr = qemu_get_ram_ptr(section.mr->ram_addr
3890 + section.offset_within_region);
050a0ddf
AP
3891 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3892 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3893 }
3894 }
3895 len -= l;
3896 buf += l;
3897 addr += l;
3898 }
3899}
8df1cd07 3900
d0ecd2aa 3901/* used for ROM loading : can write in RAM and ROM */
c227f099 3902void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3903 const uint8_t *buf, int len)
3904{
3905 int l;
3906 uint8_t *ptr;
c227f099 3907 target_phys_addr_t page;
06ef3525 3908 MemoryRegionSection section;
3b46e624 3909
d0ecd2aa
FB
3910 while (len > 0) {
3911 page = addr & TARGET_PAGE_MASK;
3912 l = (page + TARGET_PAGE_SIZE) - addr;
3913 if (l > len)
3914 l = len;
06ef3525 3915 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3916
06ef3525 3917 if (!is_ram_rom_romd(&section)) {
d0ecd2aa
FB
3918 /* do nothing */
3919 } else {
3920 unsigned long addr1;
06ef3525
AK
3921 addr1 = (memory_region_get_ram_addr(section.mr)
3922 + section.offset_within_region)
3923 + (addr & ~TARGET_PAGE_MASK);
d0ecd2aa 3924 /* ROM/RAM case */
5579c7f3 3925 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3926 memcpy(ptr, buf, l);
050a0ddf 3927 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3928 }
3929 len -= l;
3930 buf += l;
3931 addr += l;
3932 }
3933}
3934
6d16c2f8
AL
3935typedef struct {
3936 void *buffer;
c227f099
AL
3937 target_phys_addr_t addr;
3938 target_phys_addr_t len;
6d16c2f8
AL
3939} BounceBuffer;
3940
3941static BounceBuffer bounce;
3942
ba223c29
AL
3943typedef struct MapClient {
3944 void *opaque;
3945 void (*callback)(void *opaque);
72cf2d4f 3946 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3947} MapClient;
3948
72cf2d4f
BS
3949static QLIST_HEAD(map_client_list, MapClient) map_client_list
3950 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3951
3952void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3953{
7267c094 3954 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
3955
3956 client->opaque = opaque;
3957 client->callback = callback;
72cf2d4f 3958 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3959 return client;
3960}
3961
3962void cpu_unregister_map_client(void *_client)
3963{
3964 MapClient *client = (MapClient *)_client;
3965
72cf2d4f 3966 QLIST_REMOVE(client, link);
7267c094 3967 g_free(client);
ba223c29
AL
3968}
3969
3970static void cpu_notify_map_clients(void)
3971{
3972 MapClient *client;
3973
72cf2d4f
BS
3974 while (!QLIST_EMPTY(&map_client_list)) {
3975 client = QLIST_FIRST(&map_client_list);
ba223c29 3976 client->callback(client->opaque);
34d5e948 3977 cpu_unregister_map_client(client);
ba223c29
AL
3978 }
3979}
3980
6d16c2f8
AL
3981/* Map a physical memory region into a host virtual address.
3982 * May map a subset of the requested range, given by and returned in *plen.
3983 * May return NULL if resources needed to perform the mapping are exhausted.
3984 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3985 * Use cpu_register_map_client() to know when retrying the map operation is
3986 * likely to succeed.
6d16c2f8 3987 */
c227f099
AL
3988void *cpu_physical_memory_map(target_phys_addr_t addr,
3989 target_phys_addr_t *plen,
6d16c2f8
AL
3990 int is_write)
3991{
c227f099 3992 target_phys_addr_t len = *plen;
38bee5dc 3993 target_phys_addr_t todo = 0;
6d16c2f8 3994 int l;
c227f099 3995 target_phys_addr_t page;
06ef3525 3996 MemoryRegionSection section;
f15fbc4b 3997 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
3998 ram_addr_t rlen;
3999 void *ret;
6d16c2f8
AL
4000
4001 while (len > 0) {
4002 page = addr & TARGET_PAGE_MASK;
4003 l = (page + TARGET_PAGE_SIZE) - addr;
4004 if (l > len)
4005 l = len;
06ef3525 4006 section = phys_page_find(page >> TARGET_PAGE_BITS);
6d16c2f8 4007
06ef3525 4008 if (!(memory_region_is_ram(section.mr) && !section.readonly)) {
38bee5dc 4009 if (todo || bounce.buffer) {
6d16c2f8
AL
4010 break;
4011 }
4012 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4013 bounce.addr = addr;
4014 bounce.len = l;
4015 if (!is_write) {
54f7b4a3 4016 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 4017 }
38bee5dc
SS
4018
4019 *plen = l;
4020 return bounce.buffer;
6d16c2f8 4021 }
8ab934f9 4022 if (!todo) {
06ef3525
AK
4023 raddr = memory_region_get_ram_addr(section.mr)
4024 + section.offset_within_region
4025 + (addr & ~TARGET_PAGE_MASK);
8ab934f9 4026 }
6d16c2f8
AL
4027
4028 len -= l;
4029 addr += l;
38bee5dc 4030 todo += l;
6d16c2f8 4031 }
8ab934f9
SS
4032 rlen = todo;
4033 ret = qemu_ram_ptr_length(raddr, &rlen);
4034 *plen = rlen;
4035 return ret;
6d16c2f8
AL
4036}
4037
4038/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4039 * Will also mark the memory as dirty if is_write == 1. access_len gives
4040 * the amount of memory that was actually read or written by the caller.
4041 */
c227f099
AL
4042void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4043 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4044{
4045 if (buffer != bounce.buffer) {
4046 if (is_write) {
e890261f 4047 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4048 while (access_len) {
4049 unsigned l;
4050 l = TARGET_PAGE_SIZE;
4051 if (l > access_len)
4052 l = access_len;
4053 if (!cpu_physical_memory_is_dirty(addr1)) {
4054 /* invalidate code */
4055 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4056 /* set dirty bit */
f7c11b53
YT
4057 cpu_physical_memory_set_dirty_flags(
4058 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4059 }
4060 addr1 += l;
4061 access_len -= l;
4062 }
4063 }
868bb33f 4064 if (xen_enabled()) {
e41d7c69 4065 xen_invalidate_map_cache_entry(buffer);
050a0ddf 4066 }
6d16c2f8
AL
4067 return;
4068 }
4069 if (is_write) {
4070 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4071 }
f8a83245 4072 qemu_vfree(bounce.buffer);
6d16c2f8 4073 bounce.buffer = NULL;
ba223c29 4074 cpu_notify_map_clients();
6d16c2f8 4075}
d0ecd2aa 4076
8df1cd07 4077/* warning: addr must be aligned */
1e78bcc1
AG
4078static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4079 enum device_endian endian)
8df1cd07
FB
4080{
4081 int io_index;
4082 uint8_t *ptr;
4083 uint32_t val;
06ef3525 4084 MemoryRegionSection section;
8df1cd07 4085
06ef3525 4086 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4087
06ef3525 4088 if (!is_ram_rom_romd(&section)) {
8df1cd07 4089 /* I/O case */
06ef3525
AK
4090 io_index = memory_region_get_ram_addr(section.mr)
4091 & (IO_MEM_NB_ENTRIES - 1);
4092 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
acbbec5d 4093 val = io_mem_read(io_index, addr, 4);
1e78bcc1
AG
4094#if defined(TARGET_WORDS_BIGENDIAN)
4095 if (endian == DEVICE_LITTLE_ENDIAN) {
4096 val = bswap32(val);
4097 }
4098#else
4099 if (endian == DEVICE_BIG_ENDIAN) {
4100 val = bswap32(val);
4101 }
4102#endif
8df1cd07
FB
4103 } else {
4104 /* RAM case */
06ef3525
AK
4105 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
4106 & TARGET_PAGE_MASK)
4107 + section.offset_within_region) +
8df1cd07 4108 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4109 switch (endian) {
4110 case DEVICE_LITTLE_ENDIAN:
4111 val = ldl_le_p(ptr);
4112 break;
4113 case DEVICE_BIG_ENDIAN:
4114 val = ldl_be_p(ptr);
4115 break;
4116 default:
4117 val = ldl_p(ptr);
4118 break;
4119 }
8df1cd07
FB
4120 }
4121 return val;
4122}
4123
1e78bcc1
AG
4124uint32_t ldl_phys(target_phys_addr_t addr)
4125{
4126 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4127}
4128
4129uint32_t ldl_le_phys(target_phys_addr_t addr)
4130{
4131 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4132}
4133
4134uint32_t ldl_be_phys(target_phys_addr_t addr)
4135{
4136 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4137}
4138
84b7b8e7 4139/* warning: addr must be aligned */
1e78bcc1
AG
4140static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4141 enum device_endian endian)
84b7b8e7
FB
4142{
4143 int io_index;
4144 uint8_t *ptr;
4145 uint64_t val;
06ef3525 4146 MemoryRegionSection section;
84b7b8e7 4147
06ef3525 4148 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4149
06ef3525 4150 if (!is_ram_rom_romd(&section)) {
84b7b8e7 4151 /* I/O case */
06ef3525
AK
4152 io_index = memory_region_get_ram_addr(section.mr)
4153 & (IO_MEM_NB_ENTRIES - 1);
4154 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
1e78bcc1
AG
4155
4156 /* XXX This is broken when device endian != cpu endian.
4157 Fix and add "endian" variable check */
84b7b8e7 4158#ifdef TARGET_WORDS_BIGENDIAN
acbbec5d
AK
4159 val = io_mem_read(io_index, addr, 4) << 32;
4160 val |= io_mem_read(io_index, addr + 4, 4);
84b7b8e7 4161#else
acbbec5d
AK
4162 val = io_mem_read(io_index, addr, 4);
4163 val |= io_mem_read(io_index, addr + 4, 4) << 32;
84b7b8e7
FB
4164#endif
4165 } else {
4166 /* RAM case */
06ef3525
AK
4167 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
4168 & TARGET_PAGE_MASK)
4169 + section.offset_within_region)
4170 + (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4171 switch (endian) {
4172 case DEVICE_LITTLE_ENDIAN:
4173 val = ldq_le_p(ptr);
4174 break;
4175 case DEVICE_BIG_ENDIAN:
4176 val = ldq_be_p(ptr);
4177 break;
4178 default:
4179 val = ldq_p(ptr);
4180 break;
4181 }
84b7b8e7
FB
4182 }
4183 return val;
4184}
4185
1e78bcc1
AG
4186uint64_t ldq_phys(target_phys_addr_t addr)
4187{
4188 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4189}
4190
4191uint64_t ldq_le_phys(target_phys_addr_t addr)
4192{
4193 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4194}
4195
4196uint64_t ldq_be_phys(target_phys_addr_t addr)
4197{
4198 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4199}
4200
aab33094 4201/* XXX: optimize */
c227f099 4202uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4203{
4204 uint8_t val;
4205 cpu_physical_memory_read(addr, &val, 1);
4206 return val;
4207}
4208
733f0b02 4209/* warning: addr must be aligned */
1e78bcc1
AG
4210static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4211 enum device_endian endian)
aab33094 4212{
733f0b02
MT
4213 int io_index;
4214 uint8_t *ptr;
4215 uint64_t val;
06ef3525 4216 MemoryRegionSection section;
733f0b02 4217
06ef3525 4218 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 4219
06ef3525 4220 if (!is_ram_rom_romd(&section)) {
733f0b02 4221 /* I/O case */
06ef3525
AK
4222 io_index = memory_region_get_ram_addr(section.mr)
4223 & (IO_MEM_NB_ENTRIES - 1);
4224 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
acbbec5d 4225 val = io_mem_read(io_index, addr, 2);
1e78bcc1
AG
4226#if defined(TARGET_WORDS_BIGENDIAN)
4227 if (endian == DEVICE_LITTLE_ENDIAN) {
4228 val = bswap16(val);
4229 }
4230#else
4231 if (endian == DEVICE_BIG_ENDIAN) {
4232 val = bswap16(val);
4233 }
4234#endif
733f0b02
MT
4235 } else {
4236 /* RAM case */
06ef3525
AK
4237 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
4238 & TARGET_PAGE_MASK)
4239 + section.offset_within_region)
4240 + (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4241 switch (endian) {
4242 case DEVICE_LITTLE_ENDIAN:
4243 val = lduw_le_p(ptr);
4244 break;
4245 case DEVICE_BIG_ENDIAN:
4246 val = lduw_be_p(ptr);
4247 break;
4248 default:
4249 val = lduw_p(ptr);
4250 break;
4251 }
733f0b02
MT
4252 }
4253 return val;
aab33094
FB
4254}
4255
1e78bcc1
AG
4256uint32_t lduw_phys(target_phys_addr_t addr)
4257{
4258 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4259}
4260
4261uint32_t lduw_le_phys(target_phys_addr_t addr)
4262{
4263 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4264}
4265
4266uint32_t lduw_be_phys(target_phys_addr_t addr)
4267{
4268 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4269}
4270
8df1cd07
FB
4271/* warning: addr must be aligned. The ram page is not masked as dirty
4272 and the code inside is not invalidated. It is useful if the dirty
4273 bits are used to track modified PTEs */
c227f099 4274void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4275{
4276 int io_index;
4277 uint8_t *ptr;
06ef3525 4278 MemoryRegionSection section;
8df1cd07 4279
06ef3525 4280 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4281
06ef3525
AK
4282 if (!memory_region_is_ram(section.mr) || section.readonly) {
4283 if (memory_region_is_ram(section.mr)) {
4284 io_index = io_mem_rom.ram_addr;
4285 } else {
4286 io_index = memory_region_get_ram_addr(section.mr);
4287 }
4288 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
acbbec5d 4289 io_mem_write(io_index, addr, val, 4);
8df1cd07 4290 } else {
06ef3525
AK
4291 unsigned long addr1 = (memory_region_get_ram_addr(section.mr)
4292 & TARGET_PAGE_MASK)
4293 + section.offset_within_region
4294 + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4295 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4296 stl_p(ptr, val);
74576198
AL
4297
4298 if (unlikely(in_migration)) {
4299 if (!cpu_physical_memory_is_dirty(addr1)) {
4300 /* invalidate code */
4301 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4302 /* set dirty bit */
f7c11b53
YT
4303 cpu_physical_memory_set_dirty_flags(
4304 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4305 }
4306 }
8df1cd07
FB
4307 }
4308}
4309
c227f099 4310void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4311{
4312 int io_index;
4313 uint8_t *ptr;
06ef3525 4314 MemoryRegionSection section;
bc98a7ef 4315
06ef3525 4316 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4317
06ef3525
AK
4318 if (!memory_region_is_ram(section.mr) || section.readonly) {
4319 if (memory_region_is_ram(section.mr)) {
4320 io_index = io_mem_rom.ram_addr;
4321 } else {
4322 io_index = memory_region_get_ram_addr(section.mr)
4323 & (IO_MEM_NB_ENTRIES - 1);
4324 }
4325 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
bc98a7ef 4326#ifdef TARGET_WORDS_BIGENDIAN
acbbec5d
AK
4327 io_mem_write(io_index, addr, val >> 32, 4);
4328 io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
bc98a7ef 4329#else
acbbec5d
AK
4330 io_mem_write(io_index, addr, (uint32_t)val, 4);
4331 io_mem_write(io_index, addr + 4, val >> 32, 4);
bc98a7ef
JM
4332#endif
4333 } else {
06ef3525
AK
4334 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
4335 & TARGET_PAGE_MASK)
4336 + section.offset_within_region)
4337 + (addr & ~TARGET_PAGE_MASK);
bc98a7ef
JM
4338 stq_p(ptr, val);
4339 }
4340}
4341
8df1cd07 4342/* warning: addr must be aligned */
1e78bcc1
AG
4343static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4344 enum device_endian endian)
8df1cd07
FB
4345{
4346 int io_index;
4347 uint8_t *ptr;
06ef3525 4348 MemoryRegionSection section;
8df1cd07 4349
06ef3525 4350 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 4351
06ef3525
AK
4352 if (!memory_region_is_ram(section.mr) || section.readonly) {
4353 if (memory_region_is_ram(section.mr)) {
4354 io_index = io_mem_rom.ram_addr;
4355 } else {
4356 io_index = memory_region_get_ram_addr(section.mr)
4357 & (IO_MEM_NB_ENTRIES - 1);
4358 }
4359 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
1e78bcc1
AG
4360#if defined(TARGET_WORDS_BIGENDIAN)
4361 if (endian == DEVICE_LITTLE_ENDIAN) {
4362 val = bswap32(val);
4363 }
4364#else
4365 if (endian == DEVICE_BIG_ENDIAN) {
4366 val = bswap32(val);
4367 }
4368#endif
acbbec5d 4369 io_mem_write(io_index, addr, val, 4);
8df1cd07
FB
4370 } else {
4371 unsigned long addr1;
06ef3525
AK
4372 addr1 = (memory_region_get_ram_addr(section.mr) & TARGET_PAGE_MASK)
4373 + section.offset_within_region
4374 + (addr & ~TARGET_PAGE_MASK);
8df1cd07 4375 /* RAM case */
5579c7f3 4376 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4377 switch (endian) {
4378 case DEVICE_LITTLE_ENDIAN:
4379 stl_le_p(ptr, val);
4380 break;
4381 case DEVICE_BIG_ENDIAN:
4382 stl_be_p(ptr, val);
4383 break;
4384 default:
4385 stl_p(ptr, val);
4386 break;
4387 }
3a7d929e
FB
4388 if (!cpu_physical_memory_is_dirty(addr1)) {
4389 /* invalidate code */
4390 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4391 /* set dirty bit */
f7c11b53
YT
4392 cpu_physical_memory_set_dirty_flags(addr1,
4393 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4394 }
8df1cd07
FB
4395 }
4396}
4397
1e78bcc1
AG
4398void stl_phys(target_phys_addr_t addr, uint32_t val)
4399{
4400 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4401}
4402
4403void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4404{
4405 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4406}
4407
4408void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4409{
4410 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4411}
4412
aab33094 4413/* XXX: optimize */
c227f099 4414void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4415{
4416 uint8_t v = val;
4417 cpu_physical_memory_write(addr, &v, 1);
4418}
4419
733f0b02 4420/* warning: addr must be aligned */
1e78bcc1
AG
4421static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4422 enum device_endian endian)
aab33094 4423{
733f0b02
MT
4424 int io_index;
4425 uint8_t *ptr;
06ef3525 4426 MemoryRegionSection section;
733f0b02 4427
06ef3525 4428 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 4429
06ef3525
AK
4430 if (!memory_region_is_ram(section.mr) || section.readonly) {
4431 if (memory_region_is_ram(section.mr)) {
4432 io_index = io_mem_rom.ram_addr;
4433 } else {
4434 io_index = memory_region_get_ram_addr(section.mr)
4435 & (IO_MEM_NB_ENTRIES - 1);
4436 }
4437 addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
1e78bcc1
AG
4438#if defined(TARGET_WORDS_BIGENDIAN)
4439 if (endian == DEVICE_LITTLE_ENDIAN) {
4440 val = bswap16(val);
4441 }
4442#else
4443 if (endian == DEVICE_BIG_ENDIAN) {
4444 val = bswap16(val);
4445 }
4446#endif
acbbec5d 4447 io_mem_write(io_index, addr, val, 2);
733f0b02
MT
4448 } else {
4449 unsigned long addr1;
06ef3525
AK
4450 addr1 = (memory_region_get_ram_addr(section.mr) & TARGET_PAGE_MASK)
4451 + section.offset_within_region + (addr & ~TARGET_PAGE_MASK);
733f0b02
MT
4452 /* RAM case */
4453 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4454 switch (endian) {
4455 case DEVICE_LITTLE_ENDIAN:
4456 stw_le_p(ptr, val);
4457 break;
4458 case DEVICE_BIG_ENDIAN:
4459 stw_be_p(ptr, val);
4460 break;
4461 default:
4462 stw_p(ptr, val);
4463 break;
4464 }
733f0b02
MT
4465 if (!cpu_physical_memory_is_dirty(addr1)) {
4466 /* invalidate code */
4467 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4468 /* set dirty bit */
4469 cpu_physical_memory_set_dirty_flags(addr1,
4470 (0xff & ~CODE_DIRTY_FLAG));
4471 }
4472 }
aab33094
FB
4473}
4474
1e78bcc1
AG
4475void stw_phys(target_phys_addr_t addr, uint32_t val)
4476{
4477 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4478}
4479
4480void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4481{
4482 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4483}
4484
4485void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4486{
4487 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4488}
4489
aab33094 4490/* XXX: optimize */
c227f099 4491void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4492{
4493 val = tswap64(val);
71d2b725 4494 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4495}
4496
1e78bcc1
AG
4497void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4498{
4499 val = cpu_to_le64(val);
4500 cpu_physical_memory_write(addr, &val, 8);
4501}
4502
4503void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4504{
4505 val = cpu_to_be64(val);
4506 cpu_physical_memory_write(addr, &val, 8);
4507}
4508
5e2972fd 4509/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4510int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4511 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4512{
4513 int l;
c227f099 4514 target_phys_addr_t phys_addr;
9b3c35e0 4515 target_ulong page;
13eb76e0
FB
4516
4517 while (len > 0) {
4518 page = addr & TARGET_PAGE_MASK;
4519 phys_addr = cpu_get_phys_page_debug(env, page);
4520 /* if no physical page mapped, return an error */
4521 if (phys_addr == -1)
4522 return -1;
4523 l = (page + TARGET_PAGE_SIZE) - addr;
4524 if (l > len)
4525 l = len;
5e2972fd 4526 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4527 if (is_write)
4528 cpu_physical_memory_write_rom(phys_addr, buf, l);
4529 else
5e2972fd 4530 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4531 len -= l;
4532 buf += l;
4533 addr += l;
4534 }
4535 return 0;
4536}
a68fe89c 4537#endif
13eb76e0 4538
2e70f6ef
PB
4539/* in deterministic execution mode, instructions doing device I/Os
4540 must be at the end of the TB */
4541void cpu_io_recompile(CPUState *env, void *retaddr)
4542{
4543 TranslationBlock *tb;
4544 uint32_t n, cflags;
4545 target_ulong pc, cs_base;
4546 uint64_t flags;
4547
4548 tb = tb_find_pc((unsigned long)retaddr);
4549 if (!tb) {
4550 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4551 retaddr);
4552 }
4553 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4554 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4555 /* Calculate how many instructions had been executed before the fault
bf20dc07 4556 occurred. */
2e70f6ef
PB
4557 n = n - env->icount_decr.u16.low;
4558 /* Generate a new TB ending on the I/O insn. */
4559 n++;
4560 /* On MIPS and SH, delay slot instructions can only be restarted if
4561 they were already the first instruction in the TB. If this is not
bf20dc07 4562 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4563 branch. */
4564#if defined(TARGET_MIPS)
4565 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4566 env->active_tc.PC -= 4;
4567 env->icount_decr.u16.low++;
4568 env->hflags &= ~MIPS_HFLAG_BMASK;
4569 }
4570#elif defined(TARGET_SH4)
4571 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4572 && n > 1) {
4573 env->pc -= 2;
4574 env->icount_decr.u16.low++;
4575 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4576 }
4577#endif
4578 /* This should never happen. */
4579 if (n > CF_COUNT_MASK)
4580 cpu_abort(env, "TB too big during recompile");
4581
4582 cflags = n | CF_LAST_IO;
4583 pc = tb->pc;
4584 cs_base = tb->cs_base;
4585 flags = tb->flags;
4586 tb_phys_invalidate(tb, -1);
4587 /* FIXME: In theory this could raise an exception. In practice
4588 we have already translated the block once so it's probably ok. */
4589 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4590 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4591 the first in the TB) then we end up generating a whole new TB and
4592 repeating the fault, which is horribly inefficient.
4593 Better would be to execute just this insn uncached, or generate a
4594 second new TB. */
4595 cpu_resume_from_signal(env, NULL);
4596}
4597
b3755a91
PB
4598#if !defined(CONFIG_USER_ONLY)
4599
055403b2 4600void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4601{
4602 int i, target_code_size, max_target_code_size;
4603 int direct_jmp_count, direct_jmp2_count, cross_page;
4604 TranslationBlock *tb;
3b46e624 4605
e3db7226
FB
4606 target_code_size = 0;
4607 max_target_code_size = 0;
4608 cross_page = 0;
4609 direct_jmp_count = 0;
4610 direct_jmp2_count = 0;
4611 for(i = 0; i < nb_tbs; i++) {
4612 tb = &tbs[i];
4613 target_code_size += tb->size;
4614 if (tb->size > max_target_code_size)
4615 max_target_code_size = tb->size;
4616 if (tb->page_addr[1] != -1)
4617 cross_page++;
4618 if (tb->tb_next_offset[0] != 0xffff) {
4619 direct_jmp_count++;
4620 if (tb->tb_next_offset[1] != 0xffff) {
4621 direct_jmp2_count++;
4622 }
4623 }
4624 }
4625 /* XXX: avoid using doubles ? */
57fec1fe 4626 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4627 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4628 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4629 cpu_fprintf(f, "TB count %d/%d\n",
4630 nb_tbs, code_gen_max_blocks);
5fafdf24 4631 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4632 nb_tbs ? target_code_size / nb_tbs : 0,
4633 max_target_code_size);
055403b2 4634 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4635 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4636 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4637 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4638 cross_page,
e3db7226
FB
4639 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4640 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4641 direct_jmp_count,
e3db7226
FB
4642 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4643 direct_jmp2_count,
4644 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4645 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4646 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4647 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4648 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4649 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4650}
4651
d39e8222
AK
4652/* NOTE: this function can trigger an exception */
4653/* NOTE2: the returned address is not exactly the physical address: it
4654 is the offset relative to phys_ram_base */
4655tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
4656{
4657 int mmu_idx, page_index, pd;
4658 void *p;
4659
4660 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4661 mmu_idx = cpu_mmu_index(env1);
4662 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4663 (addr & TARGET_PAGE_MASK))) {
4664 ldub_code(addr);
4665 }
4666 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
0e0df1e2 4667 if (pd != io_mem_ram.ram_addr && pd != io_mem_rom.ram_addr
06ef3525 4668 && !io_mem_region[pd]->rom_device) {
d39e8222
AK
4669#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4670 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4671#else
4672 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4673#endif
4674 }
4675 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4676 return qemu_ram_addr_from_host_nofail(p);
4677}
4678
82afa586
BH
4679/*
4680 * A helper function for the _utterly broken_ virtio device model to find out if
4681 * it's running on a big endian machine. Don't do this at home kids!
4682 */
4683bool virtio_is_big_endian(void);
4684bool virtio_is_big_endian(void)
4685{
4686#if defined(TARGET_WORDS_BIGENDIAN)
4687 return true;
4688#else
4689 return false;
4690#endif
4691}
4692
61382a50 4693#define MMUSUFFIX _cmmu
3917149d 4694#undef GETPC
61382a50
FB
4695#define GETPC() NULL
4696#define env cpu_single_env
b769d8fe 4697#define SOFTMMU_CODE_ACCESS
61382a50
FB
4698
4699#define SHIFT 0
4700#include "softmmu_template.h"
4701
4702#define SHIFT 1
4703#include "softmmu_template.h"
4704
4705#define SHIFT 2
4706#include "softmmu_template.h"
4707
4708#define SHIFT 3
4709#include "softmmu_template.h"
4710
4711#undef env
4712
4713#endif