]> git.ipfire.org Git - thirdparty/qemu.git/blame - fpu/softfloat-specialize.inc.c
hw/arm/boot: Set NSACR.{CP11, CP10} in dummy SMC setup routine
[thirdparty/qemu.git] / fpu / softfloat-specialize.inc.c
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
16017c48
PM
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
8d725fac 16 */
158142c2 17
a7d1ac78
PM
18/*
19===============================================================================
158142c2 20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
a7d1ac78 21Arithmetic Package, Release 2a.
158142c2
FB
22
23Written by John R. Hauser. This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704. Funding was partially provided by the
26National Science Foundation under grant MIP-9311980. The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek. More information
a7d1ac78 30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
158142c2
FB
31arithmetic/SoftFloat.html'.
32
a7d1ac78
PM
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
158142c2
FB
38
39Derivative works are acceptable, even for commercial purposes, so long as
a7d1ac78
PM
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
158142c2 43
a7d1ac78
PM
44===============================================================================
45*/
158142c2 46
16017c48
PM
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
213ff4e6
MF
82/* Define for architectures which deviate from IEEE in not supporting
83 * signaling NaNs (so all NaNs are treated as quiet).
84 */
03385dfd 85#if defined(TARGET_XTENSA)
213ff4e6
MF
86#define NO_SIGNALING_NANS 1
87#endif
88
03385dfd
RH
89/* Define how the architecture discriminates signaling NaNs.
90 * This done with the most significant bit of the fraction.
91 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
92 * the msb must be zero. MIPS is (so far) unique in supporting both the
93 * 2008 revision and backward compatibility with their original choice.
94 * Thus for MIPS we must make the choice at runtime.
95 */
96static inline flag snan_bit_is_one(float_status *status)
97{
98#if defined(TARGET_MIPS)
99 return status->snan_bit_is_one;
100#elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
101 return 1;
102#else
103 return 0;
104#endif
105}
106
298b468e
RH
107/*----------------------------------------------------------------------------
108| For the deconstructed floating-point with fraction FRAC, return true
109| if the fraction represents a signalling NaN; otherwise false.
110*----------------------------------------------------------------------------*/
111
112static bool parts_is_snan_frac(uint64_t frac, float_status *status)
113{
114#ifdef NO_SIGNALING_NANS
115 return false;
116#else
117 flag msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
03385dfd 118 return msb == snan_bit_is_one(status);
298b468e
RH
119#endif
120}
121
f7e598e2
RH
122/*----------------------------------------------------------------------------
123| The pattern for a default generated deconstructed floating-point NaN.
124*----------------------------------------------------------------------------*/
125
126static FloatParts parts_default_nan(float_status *status)
127{
128 bool sign = 0;
129 uint64_t frac;
130
131#if defined(TARGET_SPARC) || defined(TARGET_M68K)
8fb3d902 132 /* !snan_bit_is_one, set all bits */
f7e598e2 133 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
8fb3d902
RH
134#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
135 || defined(TARGET_MICROBLAZE)
136 /* !snan_bit_is_one, set sign and msb */
f7e598e2 137 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
8fb3d902 138 sign = 1;
f7e598e2 139#elif defined(TARGET_HPPA)
8fb3d902 140 /* snan_bit_is_one, set msb-1. */
f7e598e2
RH
141 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
142#else
8fb3d902
RH
143 /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
144 * S390, SH4, TriCore, and Xtensa. I cannot find documentation
145 * for Unicore32; the choice from the original commit is unchanged.
146 * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
147 * do not have floating-point.
148 */
03385dfd 149 if (snan_bit_is_one(status)) {
8fb3d902 150 /* set all bits other than msb */
f7e598e2
RH
151 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
152 } else {
8fb3d902 153 /* set msb */
f7e598e2 154 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
f7e598e2
RH
155 }
156#endif
157
158 return (FloatParts) {
159 .cls = float_class_qnan,
160 .sign = sign,
161 .exp = INT_MAX,
162 .frac = frac
163 };
164}
165
0bcfbcbe
RH
166/*----------------------------------------------------------------------------
167| Returns a quiet NaN from a signalling NaN for the deconstructed
168| floating-point parts.
169*----------------------------------------------------------------------------*/
170
171static FloatParts parts_silence_nan(FloatParts a, float_status *status)
172{
173#ifdef NO_SIGNALING_NANS
174 g_assert_not_reached();
175#elif defined(TARGET_HPPA)
176 a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
177 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
178#else
03385dfd 179 if (snan_bit_is_one(status)) {
0bcfbcbe
RH
180 return parts_default_nan(status);
181 } else {
182 a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
183 }
184#endif
185 a.cls = float_class_qnan;
186 return a;
187}
188
789ec7ce
PB
189/*----------------------------------------------------------------------------
190| The pattern for a default generated extended double-precision NaN.
191*----------------------------------------------------------------------------*/
af39bc8c
AM
192floatx80 floatx80_default_nan(float_status *status)
193{
194 floatx80 r;
0218a16e
RH
195
196 /* None of the targets that have snan_bit_is_one use floatx80. */
197 assert(!snan_bit_is_one(status));
e5b0cbe8 198#if defined(TARGET_M68K)
f7e81a94 199 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
e5b0cbe8
LV
200 r.high = 0x7FFF;
201#else
0218a16e 202 /* X86 */
f7e81a94 203 r.low = UINT64_C(0xC000000000000000);
0218a16e 204 r.high = 0xFFFF;
e5b0cbe8 205#endif
af39bc8c
AM
206 return r;
207}
789ec7ce 208
0f605c88
LV
209/*----------------------------------------------------------------------------
210| The pattern for a default generated extended double-precision inf.
211*----------------------------------------------------------------------------*/
212
213#define floatx80_infinity_high 0x7FFF
214#if defined(TARGET_M68K)
f7e81a94 215#define floatx80_infinity_low UINT64_C(0x0000000000000000)
0f605c88 216#else
f7e81a94 217#define floatx80_infinity_low UINT64_C(0x8000000000000000)
0f605c88
LV
218#endif
219
220const floatx80 floatx80_infinity
221 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
222
158142c2
FB
223/*----------------------------------------------------------------------------
224| Raises the exceptions specified by `flags'. Floating-point traps can be
225| defined here if desired. It is currently not possible for such a trap
226| to substitute a result value. If traps are not implemented, this routine
227| should be simply `float_exception_flags |= flags;'.
228*----------------------------------------------------------------------------*/
229
dfd60767 230void float_raise(uint8_t flags, float_status *status)
158142c2 231{
a2f2d288 232 status->float_exception_flags |= flags;
158142c2
FB
233}
234
235/*----------------------------------------------------------------------------
236| Internal canonical NaN format.
237*----------------------------------------------------------------------------*/
238typedef struct {
239 flag sign;
bb98fe42 240 uint64_t high, low;
158142c2
FB
241} commonNaNT;
242
bb4d4bb3
PM
243/*----------------------------------------------------------------------------
244| Returns 1 if the half-precision floating-point value `a' is a quiet
245| NaN; otherwise returns 0.
246*----------------------------------------------------------------------------*/
247
af39bc8c 248int float16_is_quiet_nan(float16 a_, float_status *status)
bb4d4bb3 249{
bca52234
RH
250#ifdef NO_SIGNALING_NANS
251 return float16_is_any_nan(a_);
252#else
bb4d4bb3 253 uint16_t a = float16_val(a_);
03385dfd 254 if (snan_bit_is_one(status)) {
af39bc8c
AM
255 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
256 } else {
257 return ((a & ~0x8000) >= 0x7C80);
258 }
bca52234 259#endif
bb4d4bb3
PM
260}
261
262/*----------------------------------------------------------------------------
263| Returns 1 if the half-precision floating-point value `a' is a signaling
264| NaN; otherwise returns 0.
265*----------------------------------------------------------------------------*/
266
af39bc8c 267int float16_is_signaling_nan(float16 a_, float_status *status)
bb4d4bb3 268{
bca52234
RH
269#ifdef NO_SIGNALING_NANS
270 return 0;
271#else
bb4d4bb3 272 uint16_t a = float16_val(a_);
03385dfd 273 if (snan_bit_is_one(status)) {
af39bc8c
AM
274 return ((a & ~0x8000) >= 0x7C80);
275 } else {
276 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
277 }
213ff4e6 278#endif
bca52234 279}
bb4d4bb3 280
158142c2 281/*----------------------------------------------------------------------------
5a6932d5
TS
282| Returns 1 if the single-precision floating-point value `a' is a quiet
283| NaN; otherwise returns 0.
158142c2
FB
284*----------------------------------------------------------------------------*/
285
af39bc8c 286int float32_is_quiet_nan(float32 a_, float_status *status)
158142c2 287{
bca52234
RH
288#ifdef NO_SIGNALING_NANS
289 return float32_is_any_nan(a_);
290#else
f090c9d4 291 uint32_t a = float32_val(a_);
03385dfd 292 if (snan_bit_is_one(status)) {
af39bc8c
AM
293 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
294 } else {
295 return ((uint32_t)(a << 1) >= 0xFF800000);
296 }
bca52234 297#endif
158142c2
FB
298}
299
300/*----------------------------------------------------------------------------
301| Returns 1 if the single-precision floating-point value `a' is a signaling
302| NaN; otherwise returns 0.
303*----------------------------------------------------------------------------*/
304
af39bc8c 305int float32_is_signaling_nan(float32 a_, float_status *status)
158142c2 306{
bca52234
RH
307#ifdef NO_SIGNALING_NANS
308 return 0;
309#else
f090c9d4 310 uint32_t a = float32_val(a_);
03385dfd 311 if (snan_bit_is_one(status)) {
af39bc8c
AM
312 return ((uint32_t)(a << 1) >= 0xFF800000);
313 } else {
314 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
315 }
213ff4e6 316#endif
bca52234 317}
158142c2
FB
318
319/*----------------------------------------------------------------------------
320| Returns the result of converting the single-precision floating-point NaN
321| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
322| exception is raised.
323*----------------------------------------------------------------------------*/
324
e5a41ffa 325static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
158142c2
FB
326{
327 commonNaNT z;
328
af39bc8c 329 if (float32_is_signaling_nan(a, status)) {
ff32e16e
PM
330 float_raise(float_flag_invalid, status);
331 }
a59eaea6 332 z.sign = float32_val(a) >> 31;
158142c2 333 z.low = 0;
a59eaea6 334 z.high = ((uint64_t)float32_val(a)) << 41;
158142c2 335 return z;
158142c2
FB
336}
337
338/*----------------------------------------------------------------------------
339| Returns the result of converting the canonical NaN `a' to the single-
340| precision floating-point format.
341*----------------------------------------------------------------------------*/
342
e5a41ffa 343static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
158142c2 344{
a59eaea6 345 uint32_t mantissa = a.high >> 41;
bcd4d9af 346
a2f2d288 347 if (status->default_nan_mode) {
af39bc8c 348 return float32_default_nan(status);
bcd4d9af
CL
349 }
350
af39bc8c 351 if (mantissa) {
85016c98 352 return make_float32(
a59eaea6 353 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
af39bc8c
AM
354 } else {
355 return float32_default_nan(status);
356 }
158142c2
FB
357}
358
354f211b
PM
359/*----------------------------------------------------------------------------
360| Select which NaN to propagate for a two-input operation.
361| IEEE754 doesn't specify all the details of this, so the
362| algorithm is target-specific.
363| The routine is passed various bits of information about the
364| two NaNs and should return 0 to select NaN a and 1 for NaN b.
365| Note that signalling NaNs are always squashed to quiet NaNs
4885312f 366| by the caller, by calling floatXX_silence_nan() before
1f398e08 367| returning them.
354f211b
PM
368|
369| aIsLargerSignificand is only valid if both a and b are NaNs
370| of some kind, and is true if a has the larger significand,
371| or if both a and b have the same significand but a is
372| positive but b is negative. It is only needed for the x87
373| tie-break rule.
374*----------------------------------------------------------------------------*/
375
4f251cfd 376static int pickNaN(FloatClass a_cls, FloatClass b_cls,
13894527 377 flag aIsLargerSignificand)
011da610 378{
4f251cfd 379#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
13894527
AB
380 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
381 * the first of:
011da610
PM
382 * 1. A if it is signaling
383 * 2. B if it is signaling
384 * 3. A (quiet)
385 * 4. B (quiet)
386 * A signaling NaN is always quietened before returning it.
387 */
084d19ba
AJ
388 /* According to MIPS specifications, if one of the two operands is
389 * a sNaN, a new qNaN has to be generated. This is done in
4885312f 390 * floatXX_silence_nan(). For qNaN inputs the specifications
084d19ba
AJ
391 * says: "When possible, this QNaN result is one of the operand QNaN
392 * values." In practice it seems that most implementations choose
393 * the first operand if both operands are qNaN. In short this gives
394 * the following rules:
395 * 1. A if it is signaling
396 * 2. B if it is signaling
397 * 3. A (quiet)
398 * 4. B (quiet)
399 * A signaling NaN is always silenced before returning it.
400 */
4f251cfd 401 if (is_snan(a_cls)) {
084d19ba 402 return 0;
4f251cfd 403 } else if (is_snan(b_cls)) {
084d19ba 404 return 1;
4f251cfd 405 } else if (is_qnan(a_cls)) {
084d19ba
AJ
406 return 0;
407 } else {
408 return 1;
409 }
4f251cfd 410#elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K)
e024e881
AJ
411 /* PowerPC propagation rules:
412 * 1. A if it sNaN or qNaN
413 * 2. B if it sNaN or qNaN
414 * A signaling NaN is always silenced before returning it.
415 */
e5b0cbe8
LV
416 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
417 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
418 * If either operand, but not both operands, of an operation is a
419 * nonsignaling NaN, then that NaN is returned as the result. If both
420 * operands are nonsignaling NaNs, then the destination operand
421 * nonsignaling NaN is returned as the result.
422 * If either operand to an operation is a signaling NaN (SNaN), then the
423 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
424 * is set in the FPCR ENABLE byte, then the exception is taken and the
425 * destination is not modified. If the SNaN exception enable bit is not
426 * set, setting the SNaN bit in the operand to a one converts the SNaN to
427 * a nonsignaling NaN. The operation then continues as described in the
428 * preceding paragraph for nonsignaling NaNs.
429 */
4f251cfd
RH
430 if (is_nan(a_cls)) {
431 return 0;
e5b0cbe8 432 } else {
4f251cfd 433 return 1;
e5b0cbe8 434 }
011da610 435#else
354f211b
PM
436 /* This implements x87 NaN propagation rules:
437 * SNaN + QNaN => return the QNaN
438 * two SNaNs => return the one with the larger significand, silenced
439 * two QNaNs => return the one with the larger significand
440 * SNaN and a non-NaN => return the SNaN, silenced
441 * QNaN and a non-NaN => return the QNaN
442 *
443 * If we get down to comparing significands and they are the same,
444 * return the NaN with the positive sign bit (if any).
445 */
4f251cfd
RH
446 if (is_snan(a_cls)) {
447 if (is_snan(b_cls)) {
354f211b
PM
448 return aIsLargerSignificand ? 0 : 1;
449 }
4f251cfd
RH
450 return is_qnan(b_cls) ? 1 : 0;
451 } else if (is_qnan(a_cls)) {
452 if (is_snan(b_cls) || !is_qnan(b_cls)) {
354f211b 453 return 0;
a59eaea6 454 } else {
354f211b
PM
455 return aIsLargerSignificand ? 0 : 1;
456 }
457 } else {
458 return 1;
459 }
011da610 460#endif
4f251cfd 461}
354f211b 462
369be8f6
PM
463/*----------------------------------------------------------------------------
464| Select which NaN to propagate for a three-input operation.
465| For the moment we assume that no CPU needs the 'larger significand'
466| information.
467| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
468*----------------------------------------------------------------------------*/
3bd2dec1
RH
469static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
470 bool infzero, float_status *status)
369be8f6 471{
3bd2dec1 472#if defined(TARGET_ARM)
369be8f6
PM
473 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
474 * the default NaN
475 */
3bd2dec1 476 if (infzero && is_qnan(c_cls)) {
ff32e16e 477 float_raise(float_flag_invalid, status);
369be8f6
PM
478 return 3;
479 }
480
481 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
482 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
483 */
3bd2dec1 484 if (is_snan(c_cls)) {
369be8f6 485 return 2;
3bd2dec1 486 } else if (is_snan(a_cls)) {
369be8f6 487 return 0;
3bd2dec1 488 } else if (is_snan(b_cls)) {
369be8f6 489 return 1;
3bd2dec1 490 } else if (is_qnan(c_cls)) {
369be8f6 491 return 2;
3bd2dec1 492 } else if (is_qnan(a_cls)) {
369be8f6
PM
493 return 0;
494 } else {
495 return 1;
496 }
bbc1dede 497#elif defined(TARGET_MIPS)
03385dfd 498 if (snan_bit_is_one(status)) {
7ca96e1a
MM
499 /*
500 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
501 * case sets InvalidOp and returns the default NaN
502 */
503 if (infzero) {
504 float_raise(float_flag_invalid, status);
505 return 3;
506 }
c27644f0 507 /* Prefer sNaN over qNaN, in the a, b, c order. */
3bd2dec1 508 if (is_snan(a_cls)) {
c27644f0 509 return 0;
3bd2dec1 510 } else if (is_snan(b_cls)) {
c27644f0 511 return 1;
3bd2dec1 512 } else if (is_snan(c_cls)) {
c27644f0 513 return 2;
3bd2dec1 514 } else if (is_qnan(a_cls)) {
c27644f0 515 return 0;
3bd2dec1 516 } else if (is_qnan(b_cls)) {
c27644f0
AM
517 return 1;
518 } else {
519 return 2;
520 }
bbc1dede 521 } else {
7ca96e1a
MM
522 /*
523 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
524 * case sets InvalidOp and returns the input value 'c'
525 */
526 if (infzero) {
527 float_raise(float_flag_invalid, status);
528 return 2;
529 }
c27644f0 530 /* Prefer sNaN over qNaN, in the c, a, b order. */
3bd2dec1 531 if (is_snan(c_cls)) {
c27644f0 532 return 2;
3bd2dec1 533 } else if (is_snan(a_cls)) {
c27644f0 534 return 0;
3bd2dec1 535 } else if (is_snan(b_cls)) {
c27644f0 536 return 1;
3bd2dec1 537 } else if (is_qnan(c_cls)) {
c27644f0 538 return 2;
3bd2dec1 539 } else if (is_qnan(a_cls)) {
c27644f0
AM
540 return 0;
541 } else {
542 return 1;
543 }
bbc1dede 544 }
369be8f6 545#elif defined(TARGET_PPC)
369be8f6
PM
546 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
547 * to return an input NaN if we have one (ie c) rather than generating
548 * a default NaN
549 */
550 if (infzero) {
ff32e16e 551 float_raise(float_flag_invalid, status);
369be8f6
PM
552 return 2;
553 }
554
555 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
556 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
557 */
3bd2dec1 558 if (is_nan(a_cls)) {
369be8f6 559 return 0;
3bd2dec1 560 } else if (is_nan(c_cls)) {
369be8f6
PM
561 return 2;
562 } else {
563 return 1;
564 }
369be8f6 565#else
3bd2dec1
RH
566 /* A default implementation: prefer a to b to c.
567 * This is unlikely to actually match any real implementation.
568 */
569 if (is_nan(a_cls)) {
369be8f6 570 return 0;
3bd2dec1 571 } else if (is_nan(b_cls)) {
369be8f6
PM
572 return 1;
573 } else {
574 return 2;
575 }
369be8f6 576#endif
3bd2dec1 577}
369be8f6 578
158142c2
FB
579/*----------------------------------------------------------------------------
580| Takes two single-precision floating-point values `a' and `b', one of which
581| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
582| signaling NaN, the invalid exception is raised.
583*----------------------------------------------------------------------------*/
584
e5a41ffa 585static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
158142c2 586{
d735d695 587 flag aIsLargerSignificand;
bb98fe42 588 uint32_t av, bv;
4f251cfd
RH
589 FloatClass a_cls, b_cls;
590
591 /* This is not complete, but is good enough for pickNaN. */
592 a_cls = (!float32_is_any_nan(a)
593 ? float_class_normal
594 : float32_is_signaling_nan(a, status)
595 ? float_class_snan
596 : float_class_qnan);
597 b_cls = (!float32_is_any_nan(b)
598 ? float_class_normal
599 : float32_is_signaling_nan(b, status)
600 ? float_class_snan
601 : float_class_qnan);
158142c2 602
f090c9d4
PB
603 av = float32_val(a);
604 bv = float32_val(b);
1f398e08 605
4f251cfd 606 if (is_snan(a_cls) || is_snan(b_cls)) {
ff32e16e
PM
607 float_raise(float_flag_invalid, status);
608 }
354f211b 609
af39bc8c
AM
610 if (status->default_nan_mode) {
611 return float32_default_nan(status);
612 }
10201602 613
a59eaea6 614 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
354f211b 615 aIsLargerSignificand = 0;
a59eaea6 616 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
354f211b
PM
617 aIsLargerSignificand = 1;
618 } else {
619 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 620 }
354f211b 621
4f251cfd
RH
622 if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
623 if (is_snan(b_cls)) {
4885312f
RH
624 return float32_silence_nan(b, status);
625 }
626 return b;
354f211b 627 } else {
4f251cfd 628 if (is_snan(a_cls)) {
4885312f
RH
629 return float32_silence_nan(a, status);
630 }
631 return a;
158142c2 632 }
158142c2
FB
633}
634
158142c2 635/*----------------------------------------------------------------------------
5a6932d5
TS
636| Returns 1 if the double-precision floating-point value `a' is a quiet
637| NaN; otherwise returns 0.
158142c2
FB
638*----------------------------------------------------------------------------*/
639
af39bc8c 640int float64_is_quiet_nan(float64 a_, float_status *status)
158142c2 641{
bca52234
RH
642#ifdef NO_SIGNALING_NANS
643 return float64_is_any_nan(a_);
644#else
bb98fe42 645 uint64_t a = float64_val(a_);
03385dfd 646 if (snan_bit_is_one(status)) {
af39bc8c
AM
647 return (((a >> 51) & 0xFFF) == 0xFFE)
648 && (a & 0x0007FFFFFFFFFFFFULL);
649 } else {
650 return ((a << 1) >= 0xFFF0000000000000ULL);
651 }
bca52234 652#endif
158142c2
FB
653}
654
655/*----------------------------------------------------------------------------
656| Returns 1 if the double-precision floating-point value `a' is a signaling
657| NaN; otherwise returns 0.
658*----------------------------------------------------------------------------*/
659
af39bc8c 660int float64_is_signaling_nan(float64 a_, float_status *status)
158142c2 661{
bca52234
RH
662#ifdef NO_SIGNALING_NANS
663 return 0;
664#else
bb98fe42 665 uint64_t a = float64_val(a_);
03385dfd 666 if (snan_bit_is_one(status)) {
af39bc8c
AM
667 return ((a << 1) >= 0xFFF0000000000000ULL);
668 } else {
669 return (((a >> 51) & 0xFFF) == 0xFFE)
f7e81a94 670 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
af39bc8c 671 }
213ff4e6 672#endif
bca52234 673}
158142c2
FB
674
675/*----------------------------------------------------------------------------
676| Returns the result of converting the double-precision floating-point NaN
677| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
678| exception is raised.
679*----------------------------------------------------------------------------*/
680
e5a41ffa 681static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
158142c2
FB
682{
683 commonNaNT z;
684
af39bc8c 685 if (float64_is_signaling_nan(a, status)) {
ff32e16e
PM
686 float_raise(float_flag_invalid, status);
687 }
a59eaea6 688 z.sign = float64_val(a) >> 63;
158142c2 689 z.low = 0;
a59eaea6 690 z.high = float64_val(a) << 12;
158142c2 691 return z;
158142c2
FB
692}
693
694/*----------------------------------------------------------------------------
695| Returns the result of converting the canonical NaN `a' to the double-
696| precision floating-point format.
697*----------------------------------------------------------------------------*/
698
e5a41ffa 699static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
158142c2 700{
a59eaea6 701 uint64_t mantissa = a.high >> 12;
85016c98 702
a2f2d288 703 if (status->default_nan_mode) {
af39bc8c 704 return float64_default_nan(status);
bcd4d9af
CL
705 }
706
af39bc8c 707 if (mantissa) {
85016c98 708 return make_float64(
a59eaea6 709 (((uint64_t) a.sign) << 63)
f7e81a94 710 | UINT64_C(0x7FF0000000000000)
a59eaea6 711 | (a.high >> 12));
af39bc8c
AM
712 } else {
713 return float64_default_nan(status);
714 }
158142c2
FB
715}
716
717/*----------------------------------------------------------------------------
718| Takes two double-precision floating-point values `a' and `b', one of which
719| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
720| signaling NaN, the invalid exception is raised.
721*----------------------------------------------------------------------------*/
722
e5a41ffa 723static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
158142c2 724{
d735d695 725 flag aIsLargerSignificand;
bb98fe42 726 uint64_t av, bv;
4f251cfd
RH
727 FloatClass a_cls, b_cls;
728
729 /* This is not complete, but is good enough for pickNaN. */
730 a_cls = (!float64_is_any_nan(a)
731 ? float_class_normal
732 : float64_is_signaling_nan(a, status)
733 ? float_class_snan
734 : float_class_qnan);
735 b_cls = (!float64_is_any_nan(b)
736 ? float_class_normal
737 : float64_is_signaling_nan(b, status)
738 ? float_class_snan
739 : float_class_qnan);
158142c2 740
f090c9d4
PB
741 av = float64_val(a);
742 bv = float64_val(b);
1f398e08 743
4f251cfd 744 if (is_snan(a_cls) || is_snan(b_cls)) {
ff32e16e
PM
745 float_raise(float_flag_invalid, status);
746 }
354f211b 747
af39bc8c
AM
748 if (status->default_nan_mode) {
749 return float64_default_nan(status);
750 }
10201602 751
a59eaea6 752 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
354f211b 753 aIsLargerSignificand = 0;
a59eaea6 754 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
354f211b
PM
755 aIsLargerSignificand = 1;
756 } else {
757 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 758 }
354f211b 759
4f251cfd
RH
760 if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
761 if (is_snan(b_cls)) {
4885312f
RH
762 return float64_silence_nan(b, status);
763 }
764 return b;
354f211b 765 } else {
4f251cfd 766 if (is_snan(a_cls)) {
4885312f
RH
767 return float64_silence_nan(a, status);
768 }
769 return a;
158142c2 770 }
158142c2
FB
771}
772
158142c2
FB
773/*----------------------------------------------------------------------------
774| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
775| quiet NaN; otherwise returns 0. This slightly differs from the same
776| function for other types as floatx80 has an explicit bit.
158142c2
FB
777*----------------------------------------------------------------------------*/
778
af39bc8c 779int floatx80_is_quiet_nan(floatx80 a, float_status *status)
158142c2 780{
bca52234
RH
781#ifdef NO_SIGNALING_NANS
782 return floatx80_is_any_nan(a);
783#else
03385dfd 784 if (snan_bit_is_one(status)) {
af39bc8c 785 uint64_t aLow;
158142c2 786
af39bc8c
AM
787 aLow = a.low & ~0x4000000000000000ULL;
788 return ((a.high & 0x7FFF) == 0x7FFF)
789 && (aLow << 1)
790 && (a.low == aLow);
791 } else {
792 return ((a.high & 0x7FFF) == 0x7FFF)
f7e81a94 793 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
af39bc8c 794 }
bca52234 795#endif
158142c2
FB
796}
797
798/*----------------------------------------------------------------------------
799| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
800| signaling NaN; otherwise returns 0. This slightly differs from the same
801| function for other types as floatx80 has an explicit bit.
158142c2
FB
802*----------------------------------------------------------------------------*/
803
af39bc8c 804int floatx80_is_signaling_nan(floatx80 a, float_status *status)
158142c2 805{
bca52234
RH
806#ifdef NO_SIGNALING_NANS
807 return 0;
808#else
03385dfd 809 if (snan_bit_is_one(status)) {
af39bc8c
AM
810 return ((a.high & 0x7FFF) == 0x7FFF)
811 && ((a.low << 1) >= 0x8000000000000000ULL);
812 } else {
813 uint64_t aLow;
158142c2 814
f7e81a94 815 aLow = a.low & ~UINT64_C(0x4000000000000000);
af39bc8c
AM
816 return ((a.high & 0x7FFF) == 0x7FFF)
817 && (uint64_t)(aLow << 1)
818 && (a.low == aLow);
819 }
213ff4e6 820#endif
bca52234 821}
158142c2 822
d619bb98
RH
823/*----------------------------------------------------------------------------
824| Returns a quiet NaN from a signalling NaN for the extended double-precision
825| floating point value `a'.
826*----------------------------------------------------------------------------*/
827
828floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
829{
377ed926
RH
830 /* None of the targets that have snan_bit_is_one use floatx80. */
831 assert(!snan_bit_is_one(status));
f7e81a94 832 a.low |= UINT64_C(0xC000000000000000);
377ed926 833 return a;
d619bb98
RH
834}
835
158142c2
FB
836/*----------------------------------------------------------------------------
837| Returns the result of converting the extended double-precision floating-
838| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
839| invalid exception is raised.
840*----------------------------------------------------------------------------*/
841
e5a41ffa 842static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
158142c2 843{
af39bc8c 844 floatx80 dflt;
158142c2
FB
845 commonNaNT z;
846
af39bc8c 847 if (floatx80_is_signaling_nan(a, status)) {
ff32e16e
PM
848 float_raise(float_flag_invalid, status);
849 }
a59eaea6 850 if (a.low >> 63) {
e2f42204
AJ
851 z.sign = a.high >> 15;
852 z.low = 0;
853 z.high = a.low << 1;
854 } else {
af39bc8c
AM
855 dflt = floatx80_default_nan(status);
856 z.sign = dflt.high >> 15;
e2f42204 857 z.low = 0;
af39bc8c 858 z.high = dflt.low << 1;
e2f42204 859 }
158142c2 860 return z;
158142c2
FB
861}
862
863/*----------------------------------------------------------------------------
864| Returns the result of converting the canonical NaN `a' to the extended
865| double-precision floating-point format.
866*----------------------------------------------------------------------------*/
867
e5a41ffa 868static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
158142c2
FB
869{
870 floatx80 z;
871
a2f2d288 872 if (status->default_nan_mode) {
af39bc8c 873 return floatx80_default_nan(status);
bcd4d9af
CL
874 }
875
e2f42204 876 if (a.high >> 1) {
f7e81a94 877 z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
a59eaea6 878 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
e2f42204 879 } else {
af39bc8c 880 z = floatx80_default_nan(status);
e2f42204 881 }
158142c2 882 return z;
158142c2
FB
883}
884
885/*----------------------------------------------------------------------------
886| Takes two extended double-precision floating-point values `a' and `b', one
887| of which is a NaN, and returns the appropriate NaN result. If either `a' or
888| `b' is a signaling NaN, the invalid exception is raised.
889*----------------------------------------------------------------------------*/
890
88857aca 891floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
158142c2 892{
d735d695 893 flag aIsLargerSignificand;
4f251cfd
RH
894 FloatClass a_cls, b_cls;
895
896 /* This is not complete, but is good enough for pickNaN. */
897 a_cls = (!floatx80_is_any_nan(a)
898 ? float_class_normal
899 : floatx80_is_signaling_nan(a, status)
900 ? float_class_snan
901 : float_class_qnan);
902 b_cls = (!floatx80_is_any_nan(b)
903 ? float_class_normal
904 : floatx80_is_signaling_nan(b, status)
905 ? float_class_snan
906 : float_class_qnan);
907
908 if (is_snan(a_cls) || is_snan(b_cls)) {
ff32e16e
PM
909 float_raise(float_flag_invalid, status);
910 }
354f211b 911
a2f2d288 912 if (status->default_nan_mode) {
af39bc8c 913 return floatx80_default_nan(status);
10201602
AJ
914 }
915
354f211b
PM
916 if (a.low < b.low) {
917 aIsLargerSignificand = 0;
918 } else if (b.low < a.low) {
919 aIsLargerSignificand = 1;
920 } else {
921 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 922 }
354f211b 923
4f251cfd
RH
924 if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
925 if (is_snan(b_cls)) {
4885312f
RH
926 return floatx80_silence_nan(b, status);
927 }
928 return b;
354f211b 929 } else {
4f251cfd 930 if (is_snan(a_cls)) {
4885312f
RH
931 return floatx80_silence_nan(a, status);
932 }
933 return a;
158142c2 934 }
158142c2
FB
935}
936
158142c2 937/*----------------------------------------------------------------------------
5a6932d5
TS
938| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
939| NaN; otherwise returns 0.
158142c2
FB
940*----------------------------------------------------------------------------*/
941
af39bc8c 942int float128_is_quiet_nan(float128 a, float_status *status)
158142c2 943{
bca52234
RH
944#ifdef NO_SIGNALING_NANS
945 return float128_is_any_nan(a);
946#else
03385dfd 947 if (snan_bit_is_one(status)) {
af39bc8c
AM
948 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
949 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
950 } else {
951 return ((a.high << 1) >= 0xFFFF000000000000ULL)
952 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
953 }
bca52234 954#endif
158142c2
FB
955}
956
957/*----------------------------------------------------------------------------
958| Returns 1 if the quadruple-precision floating-point value `a' is a
959| signaling NaN; otherwise returns 0.
960*----------------------------------------------------------------------------*/
961
af39bc8c 962int float128_is_signaling_nan(float128 a, float_status *status)
158142c2 963{
bca52234
RH
964#ifdef NO_SIGNALING_NANS
965 return 0;
966#else
03385dfd 967 if (snan_bit_is_one(status)) {
af39bc8c
AM
968 return ((a.high << 1) >= 0xFFFF000000000000ULL)
969 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
970 } else {
971 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
f7e81a94 972 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
af39bc8c 973 }
213ff4e6 974#endif
bca52234 975}
158142c2 976
d619bb98
RH
977/*----------------------------------------------------------------------------
978| Returns a quiet NaN from a signalling NaN for the quadruple-precision
979| floating point value `a'.
980*----------------------------------------------------------------------------*/
981
982float128 float128_silence_nan(float128 a, float_status *status)
983{
984#ifdef NO_SIGNALING_NANS
985 g_assert_not_reached();
986#else
03385dfd 987 if (snan_bit_is_one(status)) {
d619bb98
RH
988 return float128_default_nan(status);
989 } else {
f7e81a94 990 a.high |= UINT64_C(0x0000800000000000);
d619bb98
RH
991 return a;
992 }
993#endif
994}
995
158142c2
FB
996/*----------------------------------------------------------------------------
997| Returns the result of converting the quadruple-precision floating-point NaN
998| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
999| exception is raised.
1000*----------------------------------------------------------------------------*/
1001
e5a41ffa 1002static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
158142c2
FB
1003{
1004 commonNaNT z;
1005
af39bc8c 1006 if (float128_is_signaling_nan(a, status)) {
ff32e16e
PM
1007 float_raise(float_flag_invalid, status);
1008 }
a59eaea6
AM
1009 z.sign = a.high >> 63;
1010 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
158142c2 1011 return z;
158142c2
FB
1012}
1013
1014/*----------------------------------------------------------------------------
1015| Returns the result of converting the canonical NaN `a' to the quadruple-
1016| precision floating-point format.
1017*----------------------------------------------------------------------------*/
1018
e5a41ffa 1019static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
158142c2
FB
1020{
1021 float128 z;
1022
a2f2d288 1023 if (status->default_nan_mode) {
af39bc8c 1024 return float128_default_nan(status);
bcd4d9af
CL
1025 }
1026
a59eaea6 1027 shift128Right(a.high, a.low, 16, &z.high, &z.low);
f7e81a94 1028 z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
158142c2 1029 return z;
158142c2
FB
1030}
1031
1032/*----------------------------------------------------------------------------
1033| Takes two quadruple-precision floating-point values `a' and `b', one of
1034| which is a NaN, and returns the appropriate NaN result. If either `a' or
1035| `b' is a signaling NaN, the invalid exception is raised.
1036*----------------------------------------------------------------------------*/
1037
e5a41ffa
PM
1038static float128 propagateFloat128NaN(float128 a, float128 b,
1039 float_status *status)
158142c2 1040{
d735d695 1041 flag aIsLargerSignificand;
4f251cfd
RH
1042 FloatClass a_cls, b_cls;
1043
1044 /* This is not complete, but is good enough for pickNaN. */
1045 a_cls = (!float128_is_any_nan(a)
1046 ? float_class_normal
1047 : float128_is_signaling_nan(a, status)
1048 ? float_class_snan
1049 : float_class_qnan);
1050 b_cls = (!float128_is_any_nan(b)
1051 ? float_class_normal
1052 : float128_is_signaling_nan(b, status)
1053 ? float_class_snan
1054 : float_class_qnan);
1055
1056 if (is_snan(a_cls) || is_snan(b_cls)) {
ff32e16e
PM
1057 float_raise(float_flag_invalid, status);
1058 }
354f211b 1059
a2f2d288 1060 if (status->default_nan_mode) {
af39bc8c 1061 return float128_default_nan(status);
10201602
AJ
1062 }
1063
a59eaea6 1064 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
354f211b 1065 aIsLargerSignificand = 0;
a59eaea6 1066 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
354f211b
PM
1067 aIsLargerSignificand = 1;
1068 } else {
1069 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 1070 }
354f211b 1071
4f251cfd
RH
1072 if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
1073 if (is_snan(b_cls)) {
4885312f
RH
1074 return float128_silence_nan(b, status);
1075 }
1076 return b;
354f211b 1077 } else {
4f251cfd 1078 if (is_snan(a_cls)) {
4885312f
RH
1079 return float128_silence_nan(a, status);
1080 }
1081 return a;
158142c2 1082 }
158142c2 1083}