]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/aio.c
cifs: reschedule periodic query for server interfaces
[thirdparty/linux.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
e1bdd5f2 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
9c3060be 37#include <linux/eventfd.h>
cfb1e33e 38#include <linux/blkdev.h>
9d85cba7 39#include <linux/compat.h>
36bc08cc
GZ
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
723be6e3 42#include <linux/percpu-refcount.h>
71ad7490 43#include <linux/mount.h>
52db59df 44#include <linux/pseudo_fs.h>
1da177e4 45
7c0f6ba6 46#include <linux/uaccess.h>
a538e3ff 47#include <linux/nospec.h>
1da177e4 48
68d70d03
AV
49#include "internal.h"
50
f3a2752a
CH
51#define KIOCB_KEY 0
52
4e179bca
KO
53#define AIO_RING_MAGIC 0xa10a10a1
54#define AIO_RING_COMPAT_FEATURES 1
55#define AIO_RING_INCOMPAT_FEATURES 0
56struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
fa8a53c3
BL
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
4e179bca
KO
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
241cb28e 69 struct io_event io_events[];
4e179bca
KO
70}; /* 128 bytes + ring size */
71
a79d40e9
JA
72/*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76#define AIO_PLUG_THRESHOLD 2
77
4e179bca 78#define AIO_RING_PAGES 8
4e179bca 79
db446a08 80struct kioctx_table {
d0264c01
TH
81 struct rcu_head rcu;
82 unsigned nr;
db7fcc88 83 struct kioctx __rcu *table[] __counted_by(nr);
db446a08
BL
84};
85
e1bdd5f2
KO
86struct kioctx_cpu {
87 unsigned reqs_available;
88};
89
dc48e56d
JA
90struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93};
94
4e179bca 95struct kioctx {
723be6e3 96 struct percpu_ref users;
36f55889 97 atomic_t dead;
4e179bca 98
e34ecee2
KO
99 struct percpu_ref reqs;
100
4e179bca 101 unsigned long user_id;
4e179bca 102
e1bdd5f2
KO
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
3e845ce0
KO
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
58c85dc2 114 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
115 * aio_setup_ring())
116 */
4e179bca
KO
117 unsigned max_reqs;
118
58c85dc2
KO
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
4e179bca 121
58c85dc2
KO
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
f729863a 128 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 129
e02ba72a
AP
130 /*
131 * signals when all in-flight requests are done
132 */
dc48e56d 133 struct ctx_rq_wait *rq_wait;
e02ba72a 134
4e23bcae 135 struct {
34e83fc6
KO
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
141 *
142 * We batch accesses to it with a percpu version.
34e83fc6
KO
143 */
144 atomic_t reqs_available;
4e23bcae
KO
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
58c85dc2
KO
152 struct {
153 struct mutex ring_lock;
4e23bcae
KO
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
58c85dc2
KO
156
157 struct {
158 unsigned tail;
d856f32a 159 unsigned completed_events;
58c85dc2 160 spinlock_t completion_lock;
4e23bcae 161 } ____cacheline_aligned_in_smp;
58c85dc2
KO
162
163 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 164 struct file *aio_ring_file;
db446a08
BL
165
166 unsigned id;
4e179bca
KO
167};
168
84c4e1f8
LT
169/*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
a3c0d439 173struct fsync_iocb {
a3c0d439 174 struct file *file;
84c4e1f8 175 struct work_struct work;
a3c0d439 176 bool datasync;
530f32fc 177 struct cred *creds;
a3c0d439
CH
178};
179
bfe4037e
CH
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
bfe4037e 184 bool cancelled;
363bee27
EB
185 bool work_scheduled;
186 bool work_need_resched;
bfe4037e
CH
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
84c4e1f8
LT
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
04b2fa9f 197struct aio_kiocb {
54843f87 198 union {
84c4e1f8 199 struct file *ki_filp;
54843f87 200 struct kiocb rw;
a3c0d439 201 struct fsync_iocb fsync;
bfe4037e 202 struct poll_iocb poll;
54843f87 203 };
04b2fa9f
CH
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
a9339b78 208 struct io_event ki_res;
04b2fa9f
CH
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
9018ccc4 212 refcount_t ki_refcnt;
04b2fa9f
CH
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
1da177e4 221/*------ sysctl variables----*/
d55b5fda 222static DEFINE_SPINLOCK(aio_nr_lock);
86b12b6c
XN
223static unsigned long aio_nr; /* current system wide number of aio requests */
224static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4 225/*----end sysctl variables---*/
86b12b6c
XN
226#ifdef CONFIG_SYSCTL
227static struct ctl_table aio_sysctls[] = {
228 {
229 .procname = "aio-nr",
230 .data = &aio_nr,
231 .maxlen = sizeof(aio_nr),
232 .mode = 0444,
233 .proc_handler = proc_doulongvec_minmax,
234 },
235 {
236 .procname = "aio-max-nr",
237 .data = &aio_max_nr,
238 .maxlen = sizeof(aio_max_nr),
239 .mode = 0644,
240 .proc_handler = proc_doulongvec_minmax,
241 },
242 {}
243};
244
245static void __init aio_sysctl_init(void)
246{
247 register_sysctl_init("fs", aio_sysctls);
248}
249#else
250#define aio_sysctl_init() do { } while (0)
251#endif
1da177e4 252
e18b890b
CL
253static struct kmem_cache *kiocb_cachep;
254static struct kmem_cache *kioctx_cachep;
1da177e4 255
71ad7490
BL
256static struct vfsmount *aio_mnt;
257
258static const struct file_operations aio_ring_fops;
259static const struct address_space_operations aio_ctx_aops;
260
261static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262{
71ad7490 263 struct file *file;
71ad7490 264 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
265 if (IS_ERR(inode))
266 return ERR_CAST(inode);
71ad7490
BL
267
268 inode->i_mapping->a_ops = &aio_ctx_aops;
600f111e 269 inode->i_mapping->i_private_data = ctx;
71ad7490
BL
270 inode->i_size = PAGE_SIZE * nr_pages;
271
d93aa9d8
AV
272 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 O_RDWR, &aio_ring_fops);
c9c554f2 274 if (IS_ERR(file))
71ad7490 275 iput(inode);
71ad7490
BL
276 return file;
277}
278
52db59df 279static int aio_init_fs_context(struct fs_context *fc)
71ad7490 280{
52db59df
DH
281 if (!init_pseudo(fc, AIO_RING_MAGIC))
282 return -ENOMEM;
283 fc->s_iflags |= SB_I_NOEXEC;
284 return 0;
71ad7490
BL
285}
286
1da177e4
LT
287/* aio_setup
288 * Creates the slab caches used by the aio routines, panic on
289 * failure as this is done early during the boot sequence.
290 */
291static int __init aio_setup(void)
292{
71ad7490
BL
293 static struct file_system_type aio_fs = {
294 .name = "aio",
52db59df 295 .init_fs_context = aio_init_fs_context,
71ad7490
BL
296 .kill_sb = kill_anon_super,
297 };
298 aio_mnt = kern_mount(&aio_fs);
299 if (IS_ERR(aio_mnt))
300 panic("Failed to create aio fs mount.");
301
04b2fa9f 302 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 303 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86b12b6c 304 aio_sysctl_init();
1da177e4
LT
305 return 0;
306}
385773e0 307__initcall(aio_setup);
1da177e4 308
5e9ae2e5
BL
309static void put_aio_ring_file(struct kioctx *ctx)
310{
311 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
312 struct address_space *i_mapping;
313
5e9ae2e5 314 if (aio_ring_file) {
45063097 315 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
316
317 /* Prevent further access to the kioctx from migratepages */
45063097 318 i_mapping = aio_ring_file->f_mapping;
600f111e
MWO
319 spin_lock(&i_mapping->i_private_lock);
320 i_mapping->i_private_data = NULL;
5e9ae2e5 321 ctx->aio_ring_file = NULL;
600f111e 322 spin_unlock(&i_mapping->i_private_lock);
5e9ae2e5
BL
323
324 fput(aio_ring_file);
325 }
326}
327
1da177e4
LT
328static void aio_free_ring(struct kioctx *ctx)
329{
36bc08cc 330 int i;
1da177e4 331
fa8a53c3
BL
332 /* Disconnect the kiotx from the ring file. This prevents future
333 * accesses to the kioctx from page migration.
334 */
335 put_aio_ring_file(ctx);
336
36bc08cc 337 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 338 struct page *page;
36bc08cc
GZ
339 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 page_count(ctx->ring_pages[i]));
8e321fef
BL
341 page = ctx->ring_pages[i];
342 if (!page)
343 continue;
344 ctx->ring_pages[i] = NULL;
345 put_page(page);
36bc08cc 346 }
1da177e4 347
ddb8c45b 348 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 349 kfree(ctx->ring_pages);
ddb8c45b
SL
350 ctx->ring_pages = NULL;
351 }
36bc08cc
GZ
352}
353
14d07113 354static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 355{
5477e70a 356 struct file *file = vma->vm_file;
e4a0d3e7
PE
357 struct mm_struct *mm = vma->vm_mm;
358 struct kioctx_table *table;
b2edffdd 359 int i, res = -EINVAL;
e4a0d3e7
PE
360
361 spin_lock(&mm->ioctx_lock);
362 rcu_read_lock();
363 table = rcu_dereference(mm->ioctx_table);
81e9d6f8
SJ
364 if (!table)
365 goto out_unlock;
366
e4a0d3e7
PE
367 for (i = 0; i < table->nr; i++) {
368 struct kioctx *ctx;
369
d0264c01 370 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 371 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
372 if (!atomic_read(&ctx->dead)) {
373 ctx->user_id = ctx->mmap_base = vma->vm_start;
374 res = 0;
375 }
e4a0d3e7
PE
376 break;
377 }
378 }
379
81e9d6f8 380out_unlock:
e4a0d3e7
PE
381 rcu_read_unlock();
382 spin_unlock(&mm->ioctx_lock);
b2edffdd 383 return res;
e4a0d3e7
PE
384}
385
5477e70a
ON
386static const struct vm_operations_struct aio_ring_vm_ops = {
387 .mremap = aio_ring_mremap,
388#if IS_ENABLED(CONFIG_MMU)
389 .fault = filemap_fault,
390 .map_pages = filemap_map_pages,
391 .page_mkwrite = filemap_page_mkwrite,
392#endif
393};
394
395static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396{
1c71222e 397 vm_flags_set(vma, VM_DONTEXPAND);
5477e70a
ON
398 vma->vm_ops = &aio_ring_vm_ops;
399 return 0;
400}
401
36bc08cc
GZ
402static const struct file_operations aio_ring_fops = {
403 .mmap = aio_ring_mmap,
404};
405
0c45355f 406#if IS_ENABLED(CONFIG_MIGRATION)
3648951c
MWO
407static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 struct folio *src, enum migrate_mode mode)
36bc08cc 409{
5e9ae2e5 410 struct kioctx *ctx;
36bc08cc 411 unsigned long flags;
fa8a53c3 412 pgoff_t idx;
36bc08cc
GZ
413 int rc;
414
2916ecc0
JG
415 /*
416 * We cannot support the _NO_COPY case here, because copy needs to
417 * happen under the ctx->completion_lock. That does not work with the
418 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 */
420 if (mode == MIGRATE_SYNC_NO_COPY)
421 return -EINVAL;
422
8e321fef
BL
423 rc = 0;
424
600f111e
MWO
425 /* mapping->i_private_lock here protects against the kioctx teardown. */
426 spin_lock(&mapping->i_private_lock);
427 ctx = mapping->i_private_data;
fa8a53c3
BL
428 if (!ctx) {
429 rc = -EINVAL;
430 goto out;
431 }
432
433 /* The ring_lock mutex. The prevents aio_read_events() from writing
434 * to the ring's head, and prevents page migration from mucking in
435 * a partially initialized kiotx.
436 */
437 if (!mutex_trylock(&ctx->ring_lock)) {
438 rc = -EAGAIN;
439 goto out;
440 }
441
3648951c 442 idx = src->index;
fa8a53c3 443 if (idx < (pgoff_t)ctx->nr_pages) {
3648951c
MWO
444 /* Make sure the old folio hasn't already been changed */
445 if (ctx->ring_pages[idx] != &src->page)
fa8a53c3 446 rc = -EAGAIN;
8e321fef
BL
447 } else
448 rc = -EINVAL;
8e321fef
BL
449
450 if (rc != 0)
fa8a53c3 451 goto out_unlock;
8e321fef 452
36bc08cc 453 /* Writeback must be complete */
3648951c
MWO
454 BUG_ON(folio_test_writeback(src));
455 folio_get(dst);
36bc08cc 456
3648951c 457 rc = folio_migrate_mapping(mapping, dst, src, 1);
36bc08cc 458 if (rc != MIGRATEPAGE_SUCCESS) {
3648951c 459 folio_put(dst);
fa8a53c3 460 goto out_unlock;
36bc08cc
GZ
461 }
462
fa8a53c3 463 /* Take completion_lock to prevent other writes to the ring buffer
3648951c 464 * while the old folio is copied to the new. This prevents new
fa8a53c3 465 * events from being lost.
5e9ae2e5 466 */
fa8a53c3 467 spin_lock_irqsave(&ctx->completion_lock, flags);
3648951c
MWO
468 folio_migrate_copy(dst, src);
469 BUG_ON(ctx->ring_pages[idx] != &src->page);
470 ctx->ring_pages[idx] = &dst->page;
fa8a53c3 471 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 472
3648951c
MWO
473 /* The old folio is no longer accessible. */
474 folio_put(src);
8e321fef 475
fa8a53c3
BL
476out_unlock:
477 mutex_unlock(&ctx->ring_lock);
478out:
600f111e 479 spin_unlock(&mapping->i_private_lock);
36bc08cc 480 return rc;
1da177e4 481}
3648951c
MWO
482#else
483#define aio_migrate_folio NULL
0c45355f 484#endif
1da177e4 485
36bc08cc 486static const struct address_space_operations aio_ctx_aops = {
46de8b97 487 .dirty_folio = noop_dirty_folio,
3648951c 488 .migrate_folio = aio_migrate_folio,
36bc08cc
GZ
489};
490
2a8a9867 491static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
492{
493 struct aio_ring *ring;
41003a7b 494 struct mm_struct *mm = current->mm;
3dc9acb6 495 unsigned long size, unused;
1da177e4 496 int nr_pages;
36bc08cc
GZ
497 int i;
498 struct file *file;
1da177e4
LT
499
500 /* Compensate for the ring buffer's head/tail overlap entry */
501 nr_events += 2; /* 1 is required, 2 for good luck */
502
503 size = sizeof(struct aio_ring);
504 size += sizeof(struct io_event) * nr_events;
1da177e4 505
36bc08cc 506 nr_pages = PFN_UP(size);
1da177e4
LT
507 if (nr_pages < 0)
508 return -EINVAL;
509
71ad7490 510 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
511 if (IS_ERR(file)) {
512 ctx->aio_ring_file = NULL;
fa8a53c3 513 return -ENOMEM;
36bc08cc
GZ
514 }
515
3dc9acb6
LT
516 ctx->aio_ring_file = file;
517 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 / sizeof(struct io_event);
519
520 ctx->ring_pages = ctx->internal_pages;
521 if (nr_pages > AIO_RING_PAGES) {
522 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
523 GFP_KERNEL);
524 if (!ctx->ring_pages) {
525 put_aio_ring_file(ctx);
526 return -ENOMEM;
527 }
528 }
529
36bc08cc
GZ
530 for (i = 0; i < nr_pages; i++) {
531 struct page *page;
45063097 532 page = find_or_create_page(file->f_mapping,
5c075c5b 533 i, GFP_USER | __GFP_ZERO);
36bc08cc
GZ
534 if (!page)
535 break;
536 pr_debug("pid(%d) page[%d]->count=%d\n",
537 current->pid, i, page_count(page));
538 SetPageUptodate(page);
36bc08cc 539 unlock_page(page);
3dc9acb6
LT
540
541 ctx->ring_pages[i] = page;
36bc08cc 542 }
3dc9acb6 543 ctx->nr_pages = i;
1da177e4 544
3dc9acb6
LT
545 if (unlikely(i != nr_pages)) {
546 aio_free_ring(ctx);
fa8a53c3 547 return -ENOMEM;
1da177e4
LT
548 }
549
58c85dc2
KO
550 ctx->mmap_size = nr_pages * PAGE_SIZE;
551 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 552
d8ed45c5 553 if (mmap_write_lock_killable(mm)) {
013373e8
MH
554 ctx->mmap_size = 0;
555 aio_free_ring(ctx);
556 return -EINTR;
557 }
558
45e55300
PC
559 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
560 PROT_READ | PROT_WRITE,
592b5fad 561 MAP_SHARED, 0, 0, &unused, NULL);
d8ed45c5 562 mmap_write_unlock(mm);
58c85dc2 563 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 564 ctx->mmap_size = 0;
1da177e4 565 aio_free_ring(ctx);
fa8a53c3 566 return -ENOMEM;
1da177e4
LT
567 }
568
58c85dc2 569 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 570
58c85dc2
KO
571 ctx->user_id = ctx->mmap_base;
572 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 573
5c075c5b 574 ring = page_address(ctx->ring_pages[0]);
1da177e4 575 ring->nr = nr_events; /* user copy */
db446a08 576 ring->id = ~0U;
1da177e4
LT
577 ring->head = ring->tail = 0;
578 ring->magic = AIO_RING_MAGIC;
579 ring->compat_features = AIO_RING_COMPAT_FEATURES;
580 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
581 ring->header_length = sizeof(struct aio_ring);
58c85dc2 582 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
583
584 return 0;
585}
586
1da177e4
LT
587#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
588#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
589#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
590
04b2fa9f 591void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 592{
54843f87 593 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
594 struct kioctx *ctx = req->ki_ctx;
595 unsigned long flags;
596
75321b50
CH
597 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
598 return;
0460fef2 599
75321b50
CH
600 spin_lock_irqsave(&ctx->ctx_lock, flags);
601 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 602 req->ki_cancel = cancel;
0460fef2
KO
603 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
604}
605EXPORT_SYMBOL(kiocb_set_cancel_fn);
606
a6d7cff4
TH
607/*
608 * free_ioctx() should be RCU delayed to synchronize against the RCU
609 * protected lookup_ioctx() and also needs process context to call
f729863a 610 * aio_free_ring(). Use rcu_work.
a6d7cff4 611 */
e34ecee2 612static void free_ioctx(struct work_struct *work)
36f55889 613{
f729863a
TH
614 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
615 free_rwork);
e34ecee2 616 pr_debug("freeing %p\n", ctx);
e1bdd5f2 617
e34ecee2 618 aio_free_ring(ctx);
e1bdd5f2 619 free_percpu(ctx->cpu);
9a1049da
TH
620 percpu_ref_exit(&ctx->reqs);
621 percpu_ref_exit(&ctx->users);
36f55889
KO
622 kmem_cache_free(kioctx_cachep, ctx);
623}
624
e34ecee2
KO
625static void free_ioctx_reqs(struct percpu_ref *ref)
626{
627 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
628
e02ba72a 629 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
630 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
631 complete(&ctx->rq_wait->comp);
e02ba72a 632
a6d7cff4 633 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
634 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
635 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
636}
637
36f55889
KO
638/*
639 * When this function runs, the kioctx has been removed from the "hash table"
640 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
641 * now it's safe to cancel any that need to be.
642 */
e34ecee2 643static void free_ioctx_users(struct percpu_ref *ref)
36f55889 644{
e34ecee2 645 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 646 struct aio_kiocb *req;
36f55889
KO
647
648 spin_lock_irq(&ctx->ctx_lock);
649
650 while (!list_empty(&ctx->active_reqs)) {
651 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 652 struct aio_kiocb, ki_list);
888933f8 653 req->ki_cancel(&req->rw);
4faa9996 654 list_del_init(&req->ki_list);
36f55889
KO
655 }
656
657 spin_unlock_irq(&ctx->ctx_lock);
658
e34ecee2
KO
659 percpu_ref_kill(&ctx->reqs);
660 percpu_ref_put(&ctx->reqs);
36f55889
KO
661}
662
db446a08
BL
663static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
664{
665 unsigned i, new_nr;
666 struct kioctx_table *table, *old;
667 struct aio_ring *ring;
668
669 spin_lock(&mm->ioctx_lock);
855ef0de 670 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
671
672 while (1) {
673 if (table)
674 for (i = 0; i < table->nr; i++)
d0264c01 675 if (!rcu_access_pointer(table->table[i])) {
db446a08 676 ctx->id = i;
d0264c01 677 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
678 spin_unlock(&mm->ioctx_lock);
679
fa8a53c3
BL
680 /* While kioctx setup is in progress,
681 * we are protected from page migration
682 * changes ring_pages by ->ring_lock.
683 */
5c075c5b 684 ring = page_address(ctx->ring_pages[0]);
db446a08 685 ring->id = ctx->id;
db446a08
BL
686 return 0;
687 }
688
689 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
690 spin_unlock(&mm->ioctx_lock);
691
6446c4fb 692 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
db446a08
BL
693 if (!table)
694 return -ENOMEM;
695
696 table->nr = new_nr;
697
698 spin_lock(&mm->ioctx_lock);
855ef0de 699 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
700
701 if (!old) {
702 rcu_assign_pointer(mm->ioctx_table, table);
703 } else if (table->nr > old->nr) {
704 memcpy(table->table, old->table,
705 old->nr * sizeof(struct kioctx *));
706
707 rcu_assign_pointer(mm->ioctx_table, table);
708 kfree_rcu(old, rcu);
709 } else {
710 kfree(table);
711 table = old;
712 }
713 }
714}
715
e34ecee2
KO
716static void aio_nr_sub(unsigned nr)
717{
718 spin_lock(&aio_nr_lock);
719 if (WARN_ON(aio_nr - nr > aio_nr))
720 aio_nr = 0;
721 else
722 aio_nr -= nr;
723 spin_unlock(&aio_nr_lock);
724}
725
1da177e4
LT
726/* ioctx_alloc
727 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
728 */
729static struct kioctx *ioctx_alloc(unsigned nr_events)
730{
41003a7b 731 struct mm_struct *mm = current->mm;
1da177e4 732 struct kioctx *ctx;
e23754f8 733 int err = -ENOMEM;
1da177e4 734
2a8a9867
MFO
735 /*
736 * Store the original nr_events -- what userspace passed to io_setup(),
737 * for counting against the global limit -- before it changes.
738 */
739 unsigned int max_reqs = nr_events;
740
e1bdd5f2
KO
741 /*
742 * We keep track of the number of available ringbuffer slots, to prevent
743 * overflow (reqs_available), and we also use percpu counters for this.
744 *
745 * So since up to half the slots might be on other cpu's percpu counters
746 * and unavailable, double nr_events so userspace sees what they
747 * expected: additionally, we move req_batch slots to/from percpu
748 * counters at a time, so make sure that isn't 0:
749 */
750 nr_events = max(nr_events, num_possible_cpus() * 4);
751 nr_events *= 2;
752
1da177e4 753 /* Prevent overflows */
08397acd 754 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
755 pr_debug("ENOMEM: nr_events too high\n");
756 return ERR_PTR(-EINVAL);
757 }
758
2a8a9867 759 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
760 return ERR_PTR(-EAGAIN);
761
c3762229 762 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
763 if (!ctx)
764 return ERR_PTR(-ENOMEM);
765
2a8a9867 766 ctx->max_reqs = max_reqs;
1da177e4 767
1da177e4 768 spin_lock_init(&ctx->ctx_lock);
0460fef2 769 spin_lock_init(&ctx->completion_lock);
58c85dc2 770 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
771 /* Protect against page migration throughout kiotx setup by keeping
772 * the ring_lock mutex held until setup is complete. */
773 mutex_lock(&ctx->ring_lock);
1da177e4
LT
774 init_waitqueue_head(&ctx->wait);
775
776 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 777
2aad2a86 778 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
779 goto err;
780
2aad2a86 781 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
782 goto err;
783
e1bdd5f2
KO
784 ctx->cpu = alloc_percpu(struct kioctx_cpu);
785 if (!ctx->cpu)
e34ecee2 786 goto err;
1da177e4 787
2a8a9867 788 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 789 if (err < 0)
e34ecee2 790 goto err;
e1bdd5f2 791
34e83fc6 792 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 793 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
794 if (ctx->req_batch < 1)
795 ctx->req_batch = 1;
34e83fc6 796
1da177e4 797 /* limit the number of system wide aios */
9fa1cb39 798 spin_lock(&aio_nr_lock);
2a8a9867
MFO
799 if (aio_nr + ctx->max_reqs > aio_max_nr ||
800 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 801 spin_unlock(&aio_nr_lock);
e34ecee2 802 err = -EAGAIN;
d1b94327 803 goto err_ctx;
2dd542b7
AV
804 }
805 aio_nr += ctx->max_reqs;
9fa1cb39 806 spin_unlock(&aio_nr_lock);
1da177e4 807
1881686f
BL
808 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
809 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 810
da90382c
BL
811 err = ioctx_add_table(ctx, mm);
812 if (err)
e34ecee2 813 goto err_cleanup;
da90382c 814
fa8a53c3
BL
815 /* Release the ring_lock mutex now that all setup is complete. */
816 mutex_unlock(&ctx->ring_lock);
817
caf4167a 818 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 819 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
820 return ctx;
821
e34ecee2
KO
822err_cleanup:
823 aio_nr_sub(ctx->max_reqs);
d1b94327 824err_ctx:
deeb8525
AV
825 atomic_set(&ctx->dead, 1);
826 if (ctx->mmap_size)
827 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 828 aio_free_ring(ctx);
e34ecee2 829err:
fa8a53c3 830 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 831 free_percpu(ctx->cpu);
9a1049da
TH
832 percpu_ref_exit(&ctx->reqs);
833 percpu_ref_exit(&ctx->users);
1da177e4 834 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 835 pr_debug("error allocating ioctx %d\n", err);
e23754f8 836 return ERR_PTR(err);
1da177e4
LT
837}
838
36f55889
KO
839/* kill_ioctx
840 * Cancels all outstanding aio requests on an aio context. Used
841 * when the processes owning a context have all exited to encourage
842 * the rapid destruction of the kioctx.
843 */
fb2d4483 844static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 845 struct ctx_rq_wait *wait)
36f55889 846{
fa88b6f8 847 struct kioctx_table *table;
db446a08 848
b2edffdd
AV
849 spin_lock(&mm->ioctx_lock);
850 if (atomic_xchg(&ctx->dead, 1)) {
851 spin_unlock(&mm->ioctx_lock);
fa88b6f8 852 return -EINVAL;
b2edffdd 853 }
db446a08 854
855ef0de 855 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
856 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
857 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 858 spin_unlock(&mm->ioctx_lock);
4fcc712f 859
a6d7cff4 860 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 861 wake_up_all(&ctx->wait);
4fcc712f 862
fa88b6f8
BL
863 /*
864 * It'd be more correct to do this in free_ioctx(), after all
865 * the outstanding kiocbs have finished - but by then io_destroy
866 * has already returned, so io_setup() could potentially return
867 * -EAGAIN with no ioctxs actually in use (as far as userspace
868 * could tell).
869 */
870 aio_nr_sub(ctx->max_reqs);
4fcc712f 871
fa88b6f8
BL
872 if (ctx->mmap_size)
873 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 874
dc48e56d 875 ctx->rq_wait = wait;
fa88b6f8
BL
876 percpu_ref_kill(&ctx->users);
877 return 0;
1da177e4
LT
878}
879
36f55889
KO
880/*
881 * exit_aio: called when the last user of mm goes away. At this point, there is
882 * no way for any new requests to be submited or any of the io_* syscalls to be
883 * called on the context.
884 *
885 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
886 * them.
1da177e4 887 */
fc9b52cd 888void exit_aio(struct mm_struct *mm)
1da177e4 889{
4b70ac5f 890 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
891 struct ctx_rq_wait wait;
892 int i, skipped;
db446a08 893
4b70ac5f
ON
894 if (!table)
895 return;
db446a08 896
dc48e56d
JA
897 atomic_set(&wait.count, table->nr);
898 init_completion(&wait.comp);
899
900 skipped = 0;
4b70ac5f 901 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
902 struct kioctx *ctx =
903 rcu_dereference_protected(table->table[i], true);
abf137dd 904
dc48e56d
JA
905 if (!ctx) {
906 skipped++;
4b70ac5f 907 continue;
dc48e56d
JA
908 }
909
936af157 910 /*
4b70ac5f
ON
911 * We don't need to bother with munmap() here - exit_mmap(mm)
912 * is coming and it'll unmap everything. And we simply can't,
913 * this is not necessarily our ->mm.
914 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
915 * that it needs to unmap the area, just set it to 0.
936af157 916 */
58c85dc2 917 ctx->mmap_size = 0;
dc48e56d
JA
918 kill_ioctx(mm, ctx, &wait);
919 }
36f55889 920
dc48e56d 921 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 922 /* Wait until all IO for the context are done. */
dc48e56d 923 wait_for_completion(&wait.comp);
1da177e4 924 }
4b70ac5f
ON
925
926 RCU_INIT_POINTER(mm->ioctx_table, NULL);
927 kfree(table);
1da177e4
LT
928}
929
e1bdd5f2
KO
930static void put_reqs_available(struct kioctx *ctx, unsigned nr)
931{
932 struct kioctx_cpu *kcpu;
263782c1 933 unsigned long flags;
e1bdd5f2 934
263782c1 935 local_irq_save(flags);
be6fb451 936 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 937 kcpu->reqs_available += nr;
263782c1 938
e1bdd5f2
KO
939 while (kcpu->reqs_available >= ctx->req_batch * 2) {
940 kcpu->reqs_available -= ctx->req_batch;
941 atomic_add(ctx->req_batch, &ctx->reqs_available);
942 }
943
263782c1 944 local_irq_restore(flags);
e1bdd5f2
KO
945}
946
432c7997 947static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
948{
949 struct kioctx_cpu *kcpu;
950 bool ret = false;
263782c1 951 unsigned long flags;
e1bdd5f2 952
263782c1 953 local_irq_save(flags);
be6fb451 954 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 955 if (!kcpu->reqs_available) {
38ace0d5 956 int avail = atomic_read(&ctx->reqs_available);
e1bdd5f2
KO
957
958 do {
959 if (avail < ctx->req_batch)
960 goto out;
38ace0d5
UB
961 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
962 &avail, avail - ctx->req_batch));
e1bdd5f2
KO
963
964 kcpu->reqs_available += ctx->req_batch;
965 }
966
967 ret = true;
968 kcpu->reqs_available--;
969out:
263782c1 970 local_irq_restore(flags);
e1bdd5f2
KO
971 return ret;
972}
973
d856f32a
BL
974/* refill_reqs_available
975 * Updates the reqs_available reference counts used for tracking the
976 * number of free slots in the completion ring. This can be called
977 * from aio_complete() (to optimistically update reqs_available) or
978 * from aio_get_req() (the we're out of events case). It must be
979 * called holding ctx->completion_lock.
980 */
981static void refill_reqs_available(struct kioctx *ctx, unsigned head,
982 unsigned tail)
983{
984 unsigned events_in_ring, completed;
985
986 /* Clamp head since userland can write to it. */
987 head %= ctx->nr_events;
988 if (head <= tail)
989 events_in_ring = tail - head;
990 else
991 events_in_ring = ctx->nr_events - (head - tail);
992
993 completed = ctx->completed_events;
994 if (events_in_ring < completed)
995 completed -= events_in_ring;
996 else
997 completed = 0;
998
999 if (!completed)
1000 return;
1001
1002 ctx->completed_events -= completed;
1003 put_reqs_available(ctx, completed);
1004}
1005
1006/* user_refill_reqs_available
1007 * Called to refill reqs_available when aio_get_req() encounters an
1008 * out of space in the completion ring.
1009 */
1010static void user_refill_reqs_available(struct kioctx *ctx)
1011{
1012 spin_lock_irq(&ctx->completion_lock);
1013 if (ctx->completed_events) {
1014 struct aio_ring *ring;
1015 unsigned head;
1016
1017 /* Access of ring->head may race with aio_read_events_ring()
1018 * here, but that's okay since whether we read the old version
1019 * or the new version, and either will be valid. The important
1020 * part is that head cannot pass tail since we prevent
1021 * aio_complete() from updating tail by holding
1022 * ctx->completion_lock. Even if head is invalid, the check
1023 * against ctx->completed_events below will make sure we do the
1024 * safe/right thing.
1025 */
5c075c5b 1026 ring = page_address(ctx->ring_pages[0]);
d856f32a 1027 head = ring->head;
d856f32a
BL
1028
1029 refill_reqs_available(ctx, head, ctx->tail);
1030 }
1031
1032 spin_unlock_irq(&ctx->completion_lock);
1033}
1034
432c7997
CH
1035static bool get_reqs_available(struct kioctx *ctx)
1036{
1037 if (__get_reqs_available(ctx))
1038 return true;
1039 user_refill_reqs_available(ctx);
1040 return __get_reqs_available(ctx);
1041}
1042
1da177e4 1043/* aio_get_req
57282d8f
KO
1044 * Allocate a slot for an aio request.
1045 * Returns NULL if no requests are free.
b53119f1
LT
1046 *
1047 * The refcount is initialized to 2 - one for the async op completion,
1048 * one for the synchronous code that does this.
1da177e4 1049 */
04b2fa9f 1050static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1051{
04b2fa9f 1052 struct aio_kiocb *req;
a1c8eae7 1053
2bc4ca9b 1054 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1055 if (unlikely(!req))
432c7997 1056 return NULL;
1da177e4 1057
fa0ca2ae 1058 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1059 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1060 return NULL;
1061 }
1062
e34ecee2 1063 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1064 req->ki_ctx = ctx;
75321b50 1065 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1066 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1067 req->ki_eventfd = NULL;
080d676d 1068 return req;
1da177e4
LT
1069}
1070
d5470b59 1071static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1072{
db446a08 1073 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1074 struct mm_struct *mm = current->mm;
65c24491 1075 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1076 struct kioctx_table *table;
1077 unsigned id;
1078
1079 if (get_user(id, &ring->id))
1080 return NULL;
1da177e4 1081
abf137dd 1082 rcu_read_lock();
db446a08 1083 table = rcu_dereference(mm->ioctx_table);
abf137dd 1084
db446a08
BL
1085 if (!table || id >= table->nr)
1086 goto out;
1da177e4 1087
a538e3ff 1088 id = array_index_nospec(id, table->nr);
d0264c01 1089 ctx = rcu_dereference(table->table[id]);
f30d704f 1090 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1091 if (percpu_ref_tryget_live(&ctx->users))
1092 ret = ctx;
db446a08
BL
1093 }
1094out:
abf137dd 1095 rcu_read_unlock();
65c24491 1096 return ret;
1da177e4
LT
1097}
1098
b53119f1
LT
1099static inline void iocb_destroy(struct aio_kiocb *iocb)
1100{
74259703
AV
1101 if (iocb->ki_eventfd)
1102 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1103 if (iocb->ki_filp)
1104 fput(iocb->ki_filp);
1105 percpu_ref_put(&iocb->ki_ctx->reqs);
1106 kmem_cache_free(kiocb_cachep, iocb);
1107}
1108
71eb6b6b
KO
1109struct aio_waiter {
1110 struct wait_queue_entry w;
1111 size_t min_nr;
1112};
1113
1da177e4
LT
1114/* aio_complete
1115 * Called when the io request on the given iocb is complete.
1da177e4 1116 */
2bb874c0 1117static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1118{
1119 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1120 struct aio_ring *ring;
21b40200 1121 struct io_event *ev_page, *event;
71eb6b6b 1122 unsigned tail, pos, head, avail;
1da177e4 1123 unsigned long flags;
1da177e4 1124
0460fef2
KO
1125 /*
1126 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1127 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1128 * pointer since we might be called from irq context.
1129 */
1130 spin_lock_irqsave(&ctx->completion_lock, flags);
1131
58c85dc2 1132 tail = ctx->tail;
21b40200
KO
1133 pos = tail + AIO_EVENTS_OFFSET;
1134
58c85dc2 1135 if (++tail >= ctx->nr_events)
4bf69b2a 1136 tail = 0;
1da177e4 1137
5c075c5b 1138 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1139 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1140
a9339b78 1141 *event = iocb->ki_res;
1da177e4 1142
58c85dc2 1143 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1144
a9339b78
AV
1145 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1146 (void __user *)(unsigned long)iocb->ki_res.obj,
1147 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1148
1149 /* after flagging the request as done, we
1150 * must never even look at it again
1151 */
1152 smp_wmb(); /* make event visible before updating tail */
1153
58c85dc2 1154 ctx->tail = tail;
1da177e4 1155
5c075c5b 1156 ring = page_address(ctx->ring_pages[0]);
d856f32a 1157 head = ring->head;
21b40200 1158 ring->tail = tail;
58c85dc2 1159 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1160
d856f32a
BL
1161 ctx->completed_events++;
1162 if (ctx->completed_events > 1)
1163 refill_reqs_available(ctx, head, tail);
71eb6b6b
KO
1164
1165 avail = tail > head
1166 ? tail - head
1167 : tail + ctx->nr_events - head;
0460fef2
KO
1168 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1169
21b40200 1170 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1171
1172 /*
1173 * Check if the user asked us to deliver the result through an
1174 * eventfd. The eventfd_signal() function is safe to be called
1175 * from IRQ context.
1176 */
74259703 1177 if (iocb->ki_eventfd)
3652117f 1178 eventfd_signal(iocb->ki_eventfd);
8d1c98b0 1179
6cb2a210
QB
1180 /*
1181 * We have to order our ring_info tail store above and test
1182 * of the wait list below outside the wait lock. This is
1183 * like in wake_up_bit() where clearing a bit has to be
1184 * ordered with the unlocked test.
1185 */
1186 smp_mb();
1187
71eb6b6b
KO
1188 if (waitqueue_active(&ctx->wait)) {
1189 struct aio_waiter *curr, *next;
1190 unsigned long flags;
1191
1192 spin_lock_irqsave(&ctx->wait.lock, flags);
1193 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1194 if (avail >= curr->min_nr) {
1195 list_del_init_careful(&curr->w.entry);
1196 wake_up_process(curr->w.private);
1197 }
1198 spin_unlock_irqrestore(&ctx->wait.lock, flags);
1199 }
2bb874c0
AV
1200}
1201
1202static inline void iocb_put(struct aio_kiocb *iocb)
1203{
1204 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1205 aio_complete(iocb);
1206 iocb_destroy(iocb);
1207 }
1da177e4
LT
1208}
1209
2be4e7de 1210/* aio_read_events_ring
a31ad380
KO
1211 * Pull an event off of the ioctx's event ring. Returns the number of
1212 * events fetched
1da177e4 1213 */
a31ad380
KO
1214static long aio_read_events_ring(struct kioctx *ctx,
1215 struct io_event __user *event, long nr)
1da177e4 1216{
1da177e4 1217 struct aio_ring *ring;
5ffac122 1218 unsigned head, tail, pos;
a31ad380
KO
1219 long ret = 0;
1220 int copy_ret;
1221
9c9ce763
DC
1222 /*
1223 * The mutex can block and wake us up and that will cause
1224 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1225 * and repeat. This should be rare enough that it doesn't cause
1226 * peformance issues. See the comment in read_events() for more detail.
1227 */
1228 sched_annotate_sleep();
58c85dc2 1229 mutex_lock(&ctx->ring_lock);
1da177e4 1230
fa8a53c3 1231 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
5c075c5b 1232 ring = page_address(ctx->ring_pages[0]);
a31ad380 1233 head = ring->head;
5ffac122 1234 tail = ring->tail;
a31ad380 1235
2ff396be
JM
1236 /*
1237 * Ensure that once we've read the current tail pointer, that
1238 * we also see the events that were stored up to the tail.
1239 */
1240 smp_rmb();
1241
5ffac122 1242 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1243
5ffac122 1244 if (head == tail)
1da177e4
LT
1245 goto out;
1246
edfbbf38
BL
1247 head %= ctx->nr_events;
1248 tail %= ctx->nr_events;
1249
a31ad380
KO
1250 while (ret < nr) {
1251 long avail;
1252 struct io_event *ev;
1253 struct page *page;
1254
5ffac122
KO
1255 avail = (head <= tail ? tail : ctx->nr_events) - head;
1256 if (head == tail)
a31ad380
KO
1257 break;
1258
a31ad380 1259 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1260 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1261 pos %= AIO_EVENTS_PER_PAGE;
1262
d2988bd4
AV
1263 avail = min(avail, nr - ret);
1264 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1265
5c075c5b 1266 ev = page_address(page);
a31ad380
KO
1267 copy_ret = copy_to_user(event + ret, ev + pos,
1268 sizeof(*ev) * avail);
a31ad380
KO
1269
1270 if (unlikely(copy_ret)) {
1271 ret = -EFAULT;
1272 goto out;
1273 }
1274
1275 ret += avail;
1276 head += avail;
58c85dc2 1277 head %= ctx->nr_events;
1da177e4 1278 }
1da177e4 1279
5c075c5b 1280 ring = page_address(ctx->ring_pages[0]);
a31ad380 1281 ring->head = head;
58c85dc2 1282 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1283
5ffac122 1284 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1285out:
58c85dc2 1286 mutex_unlock(&ctx->ring_lock);
a31ad380 1287
1da177e4
LT
1288 return ret;
1289}
1290
a31ad380
KO
1291static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1292 struct io_event __user *event, long *i)
1da177e4 1293{
a31ad380 1294 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1295
a31ad380
KO
1296 if (ret > 0)
1297 *i += ret;
1da177e4 1298
a31ad380
KO
1299 if (unlikely(atomic_read(&ctx->dead)))
1300 ret = -EINVAL;
1da177e4 1301
a31ad380
KO
1302 if (!*i)
1303 *i = ret;
1da177e4 1304
a31ad380 1305 return ret < 0 || *i >= min_nr;
1da177e4
LT
1306}
1307
a31ad380 1308static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1309 struct io_event __user *event,
fa2e62a5 1310 ktime_t until)
1da177e4 1311{
71eb6b6b
KO
1312 struct hrtimer_sleeper t;
1313 struct aio_waiter w;
1314 long ret = 0, ret2 = 0;
1da177e4 1315
a31ad380
KO
1316 /*
1317 * Note that aio_read_events() is being called as the conditional - i.e.
1318 * we're calling it after prepare_to_wait() has set task state to
1319 * TASK_INTERRUPTIBLE.
1320 *
1321 * But aio_read_events() can block, and if it blocks it's going to flip
1322 * the task state back to TASK_RUNNING.
1323 *
1324 * This should be ok, provided it doesn't flip the state back to
1325 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1326 * will only happen if the mutex_lock() call blocks, and we then find
1327 * the ringbuffer empty. So in practice we should be ok, but it's
1328 * something to be aware of when touching this code.
1329 */
71eb6b6b
KO
1330 aio_read_events(ctx, min_nr, nr, event, &ret);
1331 if (until == 0 || ret < 0 || ret >= min_nr)
1332 return ret;
1333
1334 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1335 if (until != KTIME_MAX) {
1336 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1337 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1338 }
1339
1340 init_wait(&w.w);
1341
1342 while (1) {
1343 unsigned long nr_got = ret;
1344
1345 w.min_nr = min_nr - ret;
1346
1347 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1348 if (!ret2 && !t.task)
1349 ret2 = -ETIME;
1350
1351 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1352 break;
1353
1354 if (nr_got == ret)
1355 schedule();
1356 }
1357
1358 finish_wait(&ctx->wait, &w.w);
1359 hrtimer_cancel(&t.timer);
1360 destroy_hrtimer_on_stack(&t.timer);
1361
a31ad380 1362 return ret;
1da177e4
LT
1363}
1364
1da177e4
LT
1365/* sys_io_setup:
1366 * Create an aio_context capable of receiving at least nr_events.
1367 * ctxp must not point to an aio_context that already exists, and
1368 * must be initialized to 0 prior to the call. On successful
1369 * creation of the aio_context, *ctxp is filled in with the resulting
1370 * handle. May fail with -EINVAL if *ctxp is not initialized,
1371 * if the specified nr_events exceeds internal limits. May fail
1372 * with -EAGAIN if the specified nr_events exceeds the user's limit
1373 * of available events. May fail with -ENOMEM if insufficient kernel
1374 * resources are available. May fail with -EFAULT if an invalid
1375 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1376 * implemented.
1377 */
002c8976 1378SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1379{
1380 struct kioctx *ioctx = NULL;
1381 unsigned long ctx;
1382 long ret;
1383
1384 ret = get_user(ctx, ctxp);
1385 if (unlikely(ret))
1386 goto out;
1387
1388 ret = -EINVAL;
d55b5fda 1389 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1390 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1391 ctx, nr_events);
1da177e4
LT
1392 goto out;
1393 }
1394
1395 ioctx = ioctx_alloc(nr_events);
1396 ret = PTR_ERR(ioctx);
1397 if (!IS_ERR(ioctx)) {
1398 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1399 if (ret)
e02ba72a 1400 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1401 percpu_ref_put(&ioctx->users);
1da177e4
LT
1402 }
1403
1404out:
1405 return ret;
1406}
1407
c00d2c7e
AV
1408#ifdef CONFIG_COMPAT
1409COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1410{
1411 struct kioctx *ioctx = NULL;
1412 unsigned long ctx;
1413 long ret;
1414
1415 ret = get_user(ctx, ctx32p);
1416 if (unlikely(ret))
1417 goto out;
1418
1419 ret = -EINVAL;
1420 if (unlikely(ctx || nr_events == 0)) {
1421 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1422 ctx, nr_events);
1423 goto out;
1424 }
1425
1426 ioctx = ioctx_alloc(nr_events);
1427 ret = PTR_ERR(ioctx);
1428 if (!IS_ERR(ioctx)) {
1429 /* truncating is ok because it's a user address */
1430 ret = put_user((u32)ioctx->user_id, ctx32p);
1431 if (ret)
1432 kill_ioctx(current->mm, ioctx, NULL);
1433 percpu_ref_put(&ioctx->users);
1434 }
1435
1436out:
1437 return ret;
1438}
1439#endif
1440
1da177e4
LT
1441/* sys_io_destroy:
1442 * Destroy the aio_context specified. May cancel any outstanding
1443 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1444 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1445 * is invalid.
1446 */
002c8976 1447SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1448{
1449 struct kioctx *ioctx = lookup_ioctx(ctx);
1450 if (likely(NULL != ioctx)) {
dc48e56d 1451 struct ctx_rq_wait wait;
fb2d4483 1452 int ret;
e02ba72a 1453
dc48e56d
JA
1454 init_completion(&wait.comp);
1455 atomic_set(&wait.count, 1);
1456
e02ba72a
AP
1457 /* Pass requests_done to kill_ioctx() where it can be set
1458 * in a thread-safe way. If we try to set it here then we have
1459 * a race condition if two io_destroy() called simultaneously.
1460 */
dc48e56d 1461 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1462 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1463
1464 /* Wait until all IO for the context are done. Otherwise kernel
1465 * keep using user-space buffers even if user thinks the context
1466 * is destroyed.
1467 */
fb2d4483 1468 if (!ret)
dc48e56d 1469 wait_for_completion(&wait.comp);
e02ba72a 1470
fb2d4483 1471 return ret;
1da177e4 1472 }
acd88d4e 1473 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1474 return -EINVAL;
1475}
1476
3c96c7f4
AV
1477static void aio_remove_iocb(struct aio_kiocb *iocb)
1478{
1479 struct kioctx *ctx = iocb->ki_ctx;
1480 unsigned long flags;
1481
1482 spin_lock_irqsave(&ctx->ctx_lock, flags);
1483 list_del(&iocb->ki_list);
1484 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1485}
1486
6b19b766 1487static void aio_complete_rw(struct kiocb *kiocb, long res)
54843f87
CH
1488{
1489 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1490
3c96c7f4
AV
1491 if (!list_empty_careful(&iocb->ki_list))
1492 aio_remove_iocb(iocb);
1493
54843f87
CH
1494 if (kiocb->ki_flags & IOCB_WRITE) {
1495 struct inode *inode = file_inode(kiocb->ki_filp);
1496
54843f87 1497 if (S_ISREG(inode->i_mode))
8c3cfa80 1498 kiocb_end_write(kiocb);
54843f87
CH
1499 }
1500
2bb874c0 1501 iocb->ki_res.res = res;
6b19b766 1502 iocb->ki_res.res2 = 0;
2bb874c0 1503 iocb_put(iocb);
54843f87
CH
1504}
1505
88a6f18b 1506static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1507{
1508 int ret;
1509
54843f87 1510 req->ki_complete = aio_complete_rw;
ec51f8ee 1511 req->private = NULL;
54843f87 1512 req->ki_pos = iocb->aio_offset;
164f4064 1513 req->ki_flags = req->ki_filp->f_iocb_flags;
54843f87
CH
1514 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1515 req->ki_flags |= IOCB_EVENTFD;
d9a08a9e
AM
1516 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1517 /*
1518 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1519 * aio_reqprio is interpreted as an I/O scheduling
1520 * class and priority.
1521 */
1522 ret = ioprio_check_cap(iocb->aio_reqprio);
1523 if (ret) {
9a6d9a62 1524 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1525 return ret;
d9a08a9e
AM
1526 }
1527
1528 req->ki_ioprio = iocb->aio_reqprio;
1529 } else
76dc8913 1530 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1531
54843f87
CH
1532 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1533 if (unlikely(ret))
84c4e1f8 1534 return ret;
154989e4
CH
1535
1536 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1537 return 0;
54843f87
CH
1538}
1539
87e5e6da
JA
1540static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1541 struct iovec **iovec, bool vectored, bool compat,
1542 struct iov_iter *iter)
eed4e51f 1543{
89319d31
CH
1544 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1545 size_t len = iocb->aio_nbytes;
1546
1547 if (!vectored) {
9fd7874c 1548 ssize_t ret = import_ubuf(rw, buf, len, iter);
89319d31
CH
1549 *iovec = NULL;
1550 return ret;
1551 }
89cd35c5
CH
1552
1553 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
eed4e51f
BP
1554}
1555
9061d14a 1556static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1557{
1558 switch (ret) {
1559 case -EIOCBQUEUED:
9061d14a 1560 break;
89319d31
CH
1561 case -ERESTARTSYS:
1562 case -ERESTARTNOINTR:
1563 case -ERESTARTNOHAND:
1564 case -ERESTART_RESTARTBLOCK:
1565 /*
1566 * There's no easy way to restart the syscall since other AIO's
1567 * may be already running. Just fail this IO with EINTR.
1568 */
1569 ret = -EINTR;
df561f66 1570 fallthrough;
89319d31 1571 default:
6b19b766 1572 req->ki_complete(req, ret);
89319d31
CH
1573 }
1574}
1575
958c13ce 1576static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1577 bool vectored, bool compat)
1da177e4 1578{
00fefb9c 1579 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1580 struct iov_iter iter;
54843f87 1581 struct file *file;
958c13ce 1582 int ret;
1da177e4 1583
54843f87
CH
1584 ret = aio_prep_rw(req, iocb);
1585 if (ret)
1586 return ret;
1587 file = req->ki_filp;
89319d31 1588 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1589 return -EBADF;
89319d31 1590 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1591 return -EINVAL;
73a7075e 1592
de4eda9d 1593 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1594 if (ret < 0)
84c4e1f8 1595 return ret;
89319d31
CH
1596 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1597 if (!ret)
9061d14a 1598 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1599 kfree(iovec);
1600 return ret;
1601}
73a7075e 1602
958c13ce 1603static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1604 bool vectored, bool compat)
89319d31 1605{
89319d31
CH
1606 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1607 struct iov_iter iter;
54843f87 1608 struct file *file;
958c13ce 1609 int ret;
41ef4eb8 1610
54843f87
CH
1611 ret = aio_prep_rw(req, iocb);
1612 if (ret)
1613 return ret;
1614 file = req->ki_filp;
1615
89319d31 1616 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1617 return -EBADF;
89319d31 1618 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1619 return -EINVAL;
1da177e4 1620
de4eda9d 1621 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1622 if (ret < 0)
84c4e1f8 1623 return ret;
89319d31
CH
1624 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1625 if (!ret) {
8c3cfa80
AG
1626 if (S_ISREG(file_inode(file)->i_mode))
1627 kiocb_start_write(req);
92ce4728 1628 req->ki_flags |= IOCB_WRITE;
9061d14a 1629 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1630 }
89319d31
CH
1631 kfree(iovec);
1632 return ret;
1da177e4
LT
1633}
1634
a3c0d439
CH
1635static void aio_fsync_work(struct work_struct *work)
1636{
2bb874c0 1637 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
530f32fc 1638 const struct cred *old_cred = override_creds(iocb->fsync.creds);
a3c0d439 1639
2bb874c0 1640 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
530f32fc
MS
1641 revert_creds(old_cred);
1642 put_cred(iocb->fsync.creds);
2bb874c0 1643 iocb_put(iocb);
a3c0d439
CH
1644}
1645
88a6f18b
JA
1646static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1647 bool datasync)
a3c0d439
CH
1648{
1649 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1650 iocb->aio_rw_flags))
1651 return -EINVAL;
a11e1d43 1652
84c4e1f8 1653 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1654 return -EINVAL;
a3c0d439 1655
530f32fc
MS
1656 req->creds = prepare_creds();
1657 if (!req->creds)
1658 return -ENOMEM;
1659
a3c0d439
CH
1660 req->datasync = datasync;
1661 INIT_WORK(&req->work, aio_fsync_work);
1662 schedule_work(&req->work);
9061d14a 1663 return 0;
a3c0d439
CH
1664}
1665
01d7a356
JA
1666static void aio_poll_put_work(struct work_struct *work)
1667{
1668 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1669 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1670
1671 iocb_put(iocb);
1672}
1673
50252e4b
EB
1674/*
1675 * Safely lock the waitqueue which the request is on, synchronizing with the
1676 * case where the ->poll() provider decides to free its waitqueue early.
1677 *
1678 * Returns true on success, meaning that req->head->lock was locked, req->wait
1679 * is on req->head, and an RCU read lock was taken. Returns false if the
1680 * request was already removed from its waitqueue (which might no longer exist).
1681 */
1682static bool poll_iocb_lock_wq(struct poll_iocb *req)
1683{
1684 wait_queue_head_t *head;
1685
1686 /*
1687 * While we hold the waitqueue lock and the waitqueue is nonempty,
1688 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1689 * lock in the first place can race with the waitqueue being freed.
1690 *
1691 * We solve this as eventpoll does: by taking advantage of the fact that
1692 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1693 * we enter rcu_read_lock() and see that the pointer to the queue is
1694 * non-NULL, we can then lock it without the memory being freed out from
1695 * under us, then check whether the request is still on the queue.
1696 *
1697 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1698 * case the caller deletes the entry from the queue, leaving it empty.
1699 * In that case, only RCU prevents the queue memory from being freed.
1700 */
1701 rcu_read_lock();
1702 head = smp_load_acquire(&req->head);
1703 if (head) {
1704 spin_lock(&head->lock);
1705 if (!list_empty(&req->wait.entry))
1706 return true;
1707 spin_unlock(&head->lock);
1708 }
1709 rcu_read_unlock();
1710 return false;
1711}
1712
1713static void poll_iocb_unlock_wq(struct poll_iocb *req)
1714{
1715 spin_unlock(&req->head->lock);
1716 rcu_read_unlock();
1717}
1718
bfe4037e
CH
1719static void aio_poll_complete_work(struct work_struct *work)
1720{
1721 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1722 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1723 struct poll_table_struct pt = { ._key = req->events };
1724 struct kioctx *ctx = iocb->ki_ctx;
1725 __poll_t mask = 0;
1726
1727 if (!READ_ONCE(req->cancelled))
1728 mask = vfs_poll(req->file, &pt) & req->events;
1729
1730 /*
1731 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1732 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1733 * synchronize with them. In the cancellation case the list_del_init
1734 * itself is not actually needed, but harmless so we keep it in to
1735 * avoid further branches in the fast path.
1736 */
1737 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1738 if (poll_iocb_lock_wq(req)) {
1739 if (!mask && !READ_ONCE(req->cancelled)) {
1740 /*
1741 * The request isn't actually ready to be completed yet.
1742 * Reschedule completion if another wakeup came in.
1743 */
1744 if (req->work_need_resched) {
1745 schedule_work(&req->work);
1746 req->work_need_resched = false;
1747 } else {
1748 req->work_scheduled = false;
1749 }
1750 poll_iocb_unlock_wq(req);
1751 spin_unlock_irq(&ctx->ctx_lock);
1752 return;
363bee27 1753 }
50252e4b
EB
1754 list_del_init(&req->wait.entry);
1755 poll_iocb_unlock_wq(req);
1756 } /* else, POLLFREE has freed the waitqueue, so we must complete */
bfe4037e 1757 list_del_init(&iocb->ki_list);
af5c72b1 1758 iocb->ki_res.res = mangle_poll(mask);
bfe4037e
CH
1759 spin_unlock_irq(&ctx->ctx_lock);
1760
af5c72b1 1761 iocb_put(iocb);
bfe4037e
CH
1762}
1763
1764/* assumes we are called with irqs disabled */
1765static int aio_poll_cancel(struct kiocb *iocb)
1766{
1767 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1768 struct poll_iocb *req = &aiocb->poll;
1769
50252e4b
EB
1770 if (poll_iocb_lock_wq(req)) {
1771 WRITE_ONCE(req->cancelled, true);
1772 if (!req->work_scheduled) {
1773 schedule_work(&aiocb->poll.work);
1774 req->work_scheduled = true;
1775 }
1776 poll_iocb_unlock_wq(req);
1777 } /* else, the request was force-cancelled by POLLFREE already */
bfe4037e
CH
1778
1779 return 0;
1780}
1781
1782static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1783 void *key)
1784{
1785 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1786 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1787 __poll_t mask = key_to_poll(key);
d3d6a18d 1788 unsigned long flags;
bfe4037e 1789
bfe4037e 1790 /* for instances that support it check for an event match first: */
af5c72b1
AV
1791 if (mask && !(mask & req->events))
1792 return 0;
e8693bcf 1793
363bee27
EB
1794 /*
1795 * Complete the request inline if possible. This requires that three
1796 * conditions be met:
1797 * 1. An event mask must have been passed. If a plain wakeup was done
1798 * instead, then mask == 0 and we have to call vfs_poll() to get
1799 * the events, so inline completion isn't possible.
1800 * 2. The completion work must not have already been scheduled.
1801 * 3. ctx_lock must not be busy. We have to use trylock because we
1802 * already hold the waitqueue lock, so this inverts the normal
1803 * locking order. Use irqsave/irqrestore because not all
1804 * filesystems (e.g. fuse) call this function with IRQs disabled,
1805 * yet IRQs have to be disabled before ctx_lock is obtained.
1806 */
1807 if (mask && !req->work_scheduled &&
1808 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
01d7a356
JA
1809 struct kioctx *ctx = iocb->ki_ctx;
1810
363bee27 1811 list_del_init(&req->wait.entry);
af5c72b1
AV
1812 list_del(&iocb->ki_list);
1813 iocb->ki_res.res = mangle_poll(mask);
4b374986 1814 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
01d7a356
JA
1815 iocb = NULL;
1816 INIT_WORK(&req->work, aio_poll_put_work);
1817 schedule_work(&req->work);
1818 }
1819 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1820 if (iocb)
1821 iocb_put(iocb);
af5c72b1 1822 } else {
363bee27
EB
1823 /*
1824 * Schedule the completion work if needed. If it was already
1825 * scheduled, record that another wakeup came in.
1826 *
1827 * Don't remove the request from the waitqueue here, as it might
1828 * not actually be complete yet (we won't know until vfs_poll()
50252e4b
EB
1829 * is called), and we must not miss any wakeups. POLLFREE is an
1830 * exception to this; see below.
363bee27
EB
1831 */
1832 if (req->work_scheduled) {
1833 req->work_need_resched = true;
1834 } else {
1835 schedule_work(&req->work);
1836 req->work_scheduled = true;
1837 }
50252e4b
EB
1838
1839 /*
1840 * If the waitqueue is being freed early but we can't complete
1841 * the request inline, we have to tear down the request as best
1842 * we can. That means immediately removing the request from its
1843 * waitqueue and preventing all further accesses to the
1844 * waitqueue via the request. We also need to schedule the
1845 * completion work (done above). Also mark the request as
1846 * cancelled, to potentially skip an unneeded call to ->poll().
1847 */
1848 if (mask & POLLFREE) {
1849 WRITE_ONCE(req->cancelled, true);
1850 list_del_init(&req->wait.entry);
1851
1852 /*
1853 * Careful: this *must* be the last step, since as soon
1854 * as req->head is NULL'ed out, the request can be
1855 * completed and freed, since aio_poll_complete_work()
1856 * will no longer need to take the waitqueue lock.
1857 */
1858 smp_store_release(&req->head, NULL);
1859 }
e8693bcf 1860 }
bfe4037e
CH
1861 return 1;
1862}
1863
1864struct aio_poll_table {
1865 struct poll_table_struct pt;
1866 struct aio_kiocb *iocb;
50252e4b 1867 bool queued;
bfe4037e
CH
1868 int error;
1869};
1870
1871static void
1872aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1873 struct poll_table_struct *p)
1874{
1875 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1876
1877 /* multiple wait queues per file are not supported */
50252e4b 1878 if (unlikely(pt->queued)) {
bfe4037e
CH
1879 pt->error = -EINVAL;
1880 return;
1881 }
1882
50252e4b 1883 pt->queued = true;
bfe4037e
CH
1884 pt->error = 0;
1885 pt->iocb->poll.head = head;
1886 add_wait_queue(head, &pt->iocb->poll.wait);
1887}
1888
958c13ce 1889static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1890{
1891 struct kioctx *ctx = aiocb->ki_ctx;
1892 struct poll_iocb *req = &aiocb->poll;
1893 struct aio_poll_table apt;
af5c72b1 1894 bool cancel = false;
bfe4037e
CH
1895 __poll_t mask;
1896
1897 /* reject any unknown events outside the normal event mask. */
1898 if ((u16)iocb->aio_buf != iocb->aio_buf)
1899 return -EINVAL;
1900 /* reject fields that are not defined for poll */
1901 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1902 return -EINVAL;
1903
1904 INIT_WORK(&req->work, aio_poll_complete_work);
1905 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1906
2bc4ca9b 1907 req->head = NULL;
2bc4ca9b 1908 req->cancelled = false;
363bee27
EB
1909 req->work_scheduled = false;
1910 req->work_need_resched = false;
2bc4ca9b 1911
bfe4037e
CH
1912 apt.pt._qproc = aio_poll_queue_proc;
1913 apt.pt._key = req->events;
1914 apt.iocb = aiocb;
50252e4b 1915 apt.queued = false;
bfe4037e
CH
1916 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1917
1918 /* initialized the list so that we can do list_empty checks */
1919 INIT_LIST_HEAD(&req->wait.entry);
1920 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1921
bfe4037e 1922 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1923 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1924 if (likely(apt.queued)) {
1925 bool on_queue = poll_iocb_lock_wq(req);
1926
1927 if (!on_queue || req->work_scheduled) {
363bee27
EB
1928 /*
1929 * aio_poll_wake() already either scheduled the async
1930 * completion work, or completed the request inline.
1931 */
1932 if (apt.error) /* unsupported case: multiple queues */
af5c72b1
AV
1933 cancel = true;
1934 apt.error = 0;
1935 mask = 0;
1936 }
1937 if (mask || apt.error) {
363bee27 1938 /* Steal to complete synchronously. */
af5c72b1
AV
1939 list_del_init(&req->wait.entry);
1940 } else if (cancel) {
363bee27 1941 /* Cancel if possible (may be too late though). */
af5c72b1 1942 WRITE_ONCE(req->cancelled, true);
50252e4b 1943 } else if (on_queue) {
363bee27
EB
1944 /*
1945 * Actually waiting for an event, so add the request to
1946 * active_reqs so that it can be cancelled if needed.
1947 */
af5c72b1
AV
1948 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1949 aiocb->ki_cancel = aio_poll_cancel;
1950 }
50252e4b
EB
1951 if (on_queue)
1952 poll_iocb_unlock_wq(req);
af5c72b1
AV
1953 }
1954 if (mask) { /* no async, we'd stolen it */
1955 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1956 apt.error = 0;
bfe4037e 1957 }
bfe4037e 1958 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1959 if (mask)
af5c72b1
AV
1960 iocb_put(aiocb);
1961 return apt.error;
bfe4037e
CH
1962}
1963
88a6f18b 1964static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1965 struct iocb __user *user_iocb, struct aio_kiocb *req,
1966 bool compat)
1da177e4 1967{
84c4e1f8 1968 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1969 if (unlikely(!req->ki_filp))
7316b49c 1970 return -EBADF;
84c4e1f8 1971
88a6f18b 1972 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1973 struct eventfd_ctx *eventfd;
9c3060be
DL
1974 /*
1975 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1976 * instance of the file* now. The file descriptor must be
1977 * an eventfd() fd, and will be signaled for each completed
1978 * event using the eventfd_signal() function.
1979 */
74259703 1980 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1981 if (IS_ERR(eventfd))
18bfb9c6 1982 return PTR_ERR(eventfd);
7316b49c 1983
74259703 1984 req->ki_eventfd = eventfd;
9830f4be
GR
1985 }
1986
7316b49c 1987 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1988 pr_debug("EFAULT: aio_key\n");
7316b49c 1989 return -EFAULT;
1da177e4
LT
1990 }
1991
a9339b78
AV
1992 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1993 req->ki_res.data = iocb->aio_data;
1994 req->ki_res.res = 0;
1995 req->ki_res.res2 = 0;
1da177e4 1996
88a6f18b 1997 switch (iocb->aio_lio_opcode) {
89319d31 1998 case IOCB_CMD_PREAD:
7316b49c 1999 return aio_read(&req->rw, iocb, false, compat);
89319d31 2000 case IOCB_CMD_PWRITE:
7316b49c 2001 return aio_write(&req->rw, iocb, false, compat);
89319d31 2002 case IOCB_CMD_PREADV:
7316b49c 2003 return aio_read(&req->rw, iocb, true, compat);
89319d31 2004 case IOCB_CMD_PWRITEV:
7316b49c 2005 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 2006 case IOCB_CMD_FSYNC:
7316b49c 2007 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 2008 case IOCB_CMD_FDSYNC:
7316b49c 2009 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 2010 case IOCB_CMD_POLL:
7316b49c 2011 return aio_poll(req, iocb);
89319d31 2012 default:
88a6f18b 2013 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 2014 return -EINVAL;
89319d31 2015 }
1da177e4
LT
2016}
2017
88a6f18b
JA
2018static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2019 bool compat)
2020{
7316b49c 2021 struct aio_kiocb *req;
88a6f18b 2022 struct iocb iocb;
7316b49c 2023 int err;
88a6f18b
JA
2024
2025 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2026 return -EFAULT;
2027
7316b49c
AV
2028 /* enforce forwards compatibility on users */
2029 if (unlikely(iocb.aio_reserved2)) {
2030 pr_debug("EINVAL: reserve field set\n");
2031 return -EINVAL;
2032 }
2033
2034 /* prevent overflows */
2035 if (unlikely(
2036 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2037 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2038 ((ssize_t)iocb.aio_nbytes < 0)
2039 )) {
2040 pr_debug("EINVAL: overflow check\n");
2041 return -EINVAL;
2042 }
2043
2044 req = aio_get_req(ctx);
2045 if (unlikely(!req))
2046 return -EAGAIN;
2047
2048 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2049
2050 /* Done with the synchronous reference */
2051 iocb_put(req);
2052
2053 /*
2054 * If err is 0, we'd either done aio_complete() ourselves or have
2055 * arranged for that to be done asynchronously. Anything non-zero
2056 * means that we need to destroy req ourselves.
2057 */
2058 if (unlikely(err)) {
2059 iocb_destroy(req);
2060 put_reqs_available(ctx, 1);
2061 }
2062 return err;
88a6f18b
JA
2063}
2064
67ba049f
AV
2065/* sys_io_submit:
2066 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2067 * the number of iocbs queued. May return -EINVAL if the aio_context
2068 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2069 * *iocbpp[0] is not properly initialized, if the operation specified
2070 * is invalid for the file descriptor in the iocb. May fail with
2071 * -EFAULT if any of the data structures point to invalid data. May
2072 * fail with -EBADF if the file descriptor specified in the first
2073 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2074 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2075 * fail with -ENOSYS if not implemented.
2076 */
2077SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2078 struct iocb __user * __user *, iocbpp)
1da177e4
LT
2079{
2080 struct kioctx *ctx;
2081 long ret = 0;
080d676d 2082 int i = 0;
9f5b9425 2083 struct blk_plug plug;
1da177e4
LT
2084
2085 if (unlikely(nr < 0))
2086 return -EINVAL;
2087
1da177e4
LT
2088 ctx = lookup_ioctx(ctx_id);
2089 if (unlikely(!ctx)) {
caf4167a 2090 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
2091 return -EINVAL;
2092 }
2093
1da92779
AV
2094 if (nr > ctx->nr_events)
2095 nr = ctx->nr_events;
2096
a79d40e9
JA
2097 if (nr > AIO_PLUG_THRESHOLD)
2098 blk_start_plug(&plug);
67ba049f 2099 for (i = 0; i < nr; i++) {
1da177e4 2100 struct iocb __user *user_iocb;
1da177e4 2101
67ba049f 2102 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
2103 ret = -EFAULT;
2104 break;
2105 }
2106
67ba049f 2107 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
2108 if (ret)
2109 break;
2110 }
a79d40e9
JA
2111 if (nr > AIO_PLUG_THRESHOLD)
2112 blk_finish_plug(&plug);
1da177e4 2113
723be6e3 2114 percpu_ref_put(&ctx->users);
1da177e4
LT
2115 return i ? i : ret;
2116}
2117
c00d2c7e 2118#ifdef CONFIG_COMPAT
c00d2c7e 2119COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 2120 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 2121{
67ba049f
AV
2122 struct kioctx *ctx;
2123 long ret = 0;
2124 int i = 0;
2125 struct blk_plug plug;
c00d2c7e
AV
2126
2127 if (unlikely(nr < 0))
2128 return -EINVAL;
2129
67ba049f
AV
2130 ctx = lookup_ioctx(ctx_id);
2131 if (unlikely(!ctx)) {
2132 pr_debug("EINVAL: invalid context id\n");
2133 return -EINVAL;
2134 }
2135
1da92779
AV
2136 if (nr > ctx->nr_events)
2137 nr = ctx->nr_events;
2138
a79d40e9
JA
2139 if (nr > AIO_PLUG_THRESHOLD)
2140 blk_start_plug(&plug);
67ba049f
AV
2141 for (i = 0; i < nr; i++) {
2142 compat_uptr_t user_iocb;
2143
2144 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2145 ret = -EFAULT;
2146 break;
2147 }
2148
2149 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2150 if (ret)
2151 break;
2152 }
a79d40e9
JA
2153 if (nr > AIO_PLUG_THRESHOLD)
2154 blk_finish_plug(&plug);
67ba049f
AV
2155
2156 percpu_ref_put(&ctx->users);
2157 return i ? i : ret;
c00d2c7e
AV
2158}
2159#endif
2160
1da177e4
LT
2161/* sys_io_cancel:
2162 * Attempts to cancel an iocb previously passed to io_submit. If
2163 * the operation is successfully cancelled, the resulting event is
2164 * copied into the memory pointed to by result without being placed
2165 * into the completion queue and 0 is returned. May fail with
2166 * -EFAULT if any of the data structures pointed to are invalid.
2167 * May fail with -EINVAL if aio_context specified by ctx_id is
2168 * invalid. May fail with -EAGAIN if the iocb specified was not
2169 * cancelled. Will fail with -ENOSYS if not implemented.
2170 */
002c8976
HC
2171SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2172 struct io_event __user *, result)
1da177e4 2173{
1da177e4 2174 struct kioctx *ctx;
04b2fa9f 2175 struct aio_kiocb *kiocb;
888933f8 2176 int ret = -EINVAL;
1da177e4 2177 u32 key;
a9339b78 2178 u64 obj = (u64)(unsigned long)iocb;
1da177e4 2179
f3a2752a 2180 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2181 return -EFAULT;
f3a2752a
CH
2182 if (unlikely(key != KIOCB_KEY))
2183 return -EINVAL;
1da177e4
LT
2184
2185 ctx = lookup_ioctx(ctx_id);
2186 if (unlikely(!ctx))
2187 return -EINVAL;
2188
2189 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2190 /* TODO: use a hash or array, this sucks. */
2191 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2192 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2193 ret = kiocb->ki_cancel(&kiocb->rw);
2194 list_del_init(&kiocb->ki_list);
2195 break;
2196 }
888933f8 2197 }
1da177e4
LT
2198 spin_unlock_irq(&ctx->ctx_lock);
2199
906b973c 2200 if (!ret) {
bec68faa
KO
2201 /*
2202 * The result argument is no longer used - the io_event is
2203 * always delivered via the ring buffer. -EINPROGRESS indicates
2204 * cancellation is progress:
906b973c 2205 */
bec68faa 2206 ret = -EINPROGRESS;
906b973c 2207 }
1da177e4 2208
723be6e3 2209 percpu_ref_put(&ctx->users);
1da177e4
LT
2210
2211 return ret;
2212}
2213
fa2e62a5
DD
2214static long do_io_getevents(aio_context_t ctx_id,
2215 long min_nr,
2216 long nr,
2217 struct io_event __user *events,
2218 struct timespec64 *ts)
2219{
2220 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2221 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2222 long ret = -EINVAL;
2223
2224 if (likely(ioctx)) {
2225 if (likely(min_nr <= nr && min_nr >= 0))
2226 ret = read_events(ioctx, min_nr, nr, events, until);
2227 percpu_ref_put(&ioctx->users);
2228 }
2229
2230 return ret;
2231}
2232
1da177e4
LT
2233/* io_getevents:
2234 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2235 * the completion queue for the aio_context specified by ctx_id. If
2236 * it succeeds, the number of read events is returned. May fail with
2237 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2238 * out of range, if timeout is out of range. May fail with -EFAULT
2239 * if any of the memory specified is invalid. May return 0 or
2240 * < min_nr if the timeout specified by timeout has elapsed
2241 * before sufficient events are available, where timeout == NULL
2242 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2243 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2244 */
3ca47e95 2245#ifdef CONFIG_64BIT
7a35397f 2246
002c8976
HC
2247SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2248 long, min_nr,
2249 long, nr,
2250 struct io_event __user *, events,
7a35397f 2251 struct __kernel_timespec __user *, timeout)
1da177e4 2252{
fa2e62a5 2253 struct timespec64 ts;
7a074e96
CH
2254 int ret;
2255
2256 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2257 return -EFAULT;
2258
2259 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2260 if (!ret && signal_pending(current))
2261 ret = -EINTR;
2262 return ret;
2263}
1da177e4 2264
7a35397f
DD
2265#endif
2266
9ba546c0
CH
2267struct __aio_sigset {
2268 const sigset_t __user *sigmask;
2269 size_t sigsetsize;
2270};
2271
7a074e96
CH
2272SYSCALL_DEFINE6(io_pgetevents,
2273 aio_context_t, ctx_id,
2274 long, min_nr,
2275 long, nr,
2276 struct io_event __user *, events,
7a35397f 2277 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2278 const struct __aio_sigset __user *, usig)
2279{
2280 struct __aio_sigset ksig = { NULL, };
7a074e96 2281 struct timespec64 ts;
97abc889 2282 bool interrupted;
7a074e96
CH
2283 int ret;
2284
2285 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2286 return -EFAULT;
2287
2288 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2289 return -EFAULT;
2290
b772434b 2291 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2292 if (ret)
2293 return ret;
7a074e96
CH
2294
2295 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2296
2297 interrupted = signal_pending(current);
b772434b 2298 restore_saved_sigmask_unless(interrupted);
97abc889 2299 if (interrupted && !ret)
7a35397f 2300 ret = -ERESTARTNOHAND;
7a074e96 2301
7a35397f
DD
2302 return ret;
2303}
2304
2305#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2306
2307SYSCALL_DEFINE6(io_pgetevents_time32,
2308 aio_context_t, ctx_id,
2309 long, min_nr,
2310 long, nr,
2311 struct io_event __user *, events,
2312 struct old_timespec32 __user *, timeout,
2313 const struct __aio_sigset __user *, usig)
2314{
2315 struct __aio_sigset ksig = { NULL, };
7a35397f 2316 struct timespec64 ts;
97abc889 2317 bool interrupted;
7a35397f
DD
2318 int ret;
2319
2320 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2321 return -EFAULT;
2322
2323 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2324 return -EFAULT;
2325
ded653cc 2326
b772434b 2327 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2328 if (ret)
2329 return ret;
7a074e96
CH
2330
2331 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2332
2333 interrupted = signal_pending(current);
b772434b 2334 restore_saved_sigmask_unless(interrupted);
97abc889 2335 if (interrupted && !ret)
854a6ed5 2336 ret = -ERESTARTNOHAND;
fa2e62a5 2337
7a074e96 2338 return ret;
1da177e4 2339}
c00d2c7e 2340
7a35397f
DD
2341#endif
2342
2343#if defined(CONFIG_COMPAT_32BIT_TIME)
2344
8dabe724
AB
2345SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2346 __s32, min_nr,
2347 __s32, nr,
2348 struct io_event __user *, events,
2349 struct old_timespec32 __user *, timeout)
c00d2c7e 2350{
fa2e62a5 2351 struct timespec64 t;
7a074e96
CH
2352 int ret;
2353
9afc5eee 2354 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2355 return -EFAULT;
2356
2357 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2358 if (!ret && signal_pending(current))
2359 ret = -EINTR;
2360 return ret;
2361}
2362
7a35397f
DD
2363#endif
2364
2365#ifdef CONFIG_COMPAT
c00d2c7e 2366
7a074e96 2367struct __compat_aio_sigset {
97eba80f 2368 compat_uptr_t sigmask;
7a074e96
CH
2369 compat_size_t sigsetsize;
2370};
2371
7a35397f
DD
2372#if defined(CONFIG_COMPAT_32BIT_TIME)
2373
7a074e96
CH
2374COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2375 compat_aio_context_t, ctx_id,
2376 compat_long_t, min_nr,
2377 compat_long_t, nr,
2378 struct io_event __user *, events,
9afc5eee 2379 struct old_timespec32 __user *, timeout,
7a074e96
CH
2380 const struct __compat_aio_sigset __user *, usig)
2381{
97eba80f 2382 struct __compat_aio_sigset ksig = { 0, };
7a074e96 2383 struct timespec64 t;
97abc889 2384 bool interrupted;
7a074e96
CH
2385 int ret;
2386
9afc5eee 2387 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2388 return -EFAULT;
2389
2390 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2391 return -EFAULT;
2392
97eba80f 2393 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
ded653cc
DD
2394 if (ret)
2395 return ret;
c00d2c7e 2396
7a074e96 2397 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2398
2399 interrupted = signal_pending(current);
b772434b 2400 restore_saved_sigmask_unless(interrupted);
97abc889 2401 if (interrupted && !ret)
854a6ed5 2402 ret = -ERESTARTNOHAND;
fa2e62a5 2403
7a074e96 2404 return ret;
c00d2c7e 2405}
7a35397f
DD
2406
2407#endif
2408
2409COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2410 compat_aio_context_t, ctx_id,
2411 compat_long_t, min_nr,
2412 compat_long_t, nr,
2413 struct io_event __user *, events,
2414 struct __kernel_timespec __user *, timeout,
2415 const struct __compat_aio_sigset __user *, usig)
2416{
97eba80f 2417 struct __compat_aio_sigset ksig = { 0, };
7a35397f 2418 struct timespec64 t;
97abc889 2419 bool interrupted;
7a35397f
DD
2420 int ret;
2421
2422 if (timeout && get_timespec64(&t, timeout))
2423 return -EFAULT;
2424
2425 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2426 return -EFAULT;
2427
97eba80f 2428 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
7a35397f
DD
2429 if (ret)
2430 return ret;
2431
2432 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2433
2434 interrupted = signal_pending(current);
b772434b 2435 restore_saved_sigmask_unless(interrupted);
97abc889 2436 if (interrupted && !ret)
7a35397f 2437 ret = -ERESTARTNOHAND;
fa2e62a5 2438
7a074e96 2439 return ret;
c00d2c7e
AV
2440}
2441#endif