]> git.ipfire.org Git - people/arne_f/kernel.git/blame - fs/aio.c
Merge ../aio-fixes
[people/arne_f/kernel.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
caf4167a
KO
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/syscalls.h>
b9d128f1 20#include <linux/backing-dev.h>
027445c3 21#include <linux/uio.h>
1da177e4 22
1da177e4
LT
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
3d2d827f 28#include <linux/mmu_context.h>
e1bdd5f2 29#include <linux/percpu.h>
1da177e4
LT
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
9c3060be 36#include <linux/eventfd.h>
cfb1e33e 37#include <linux/blkdev.h>
9d85cba7 38#include <linux/compat.h>
36bc08cc
GZ
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
723be6e3 41#include <linux/percpu-refcount.h>
71ad7490 42#include <linux/mount.h>
1da177e4
LT
43
44#include <asm/kmap_types.h>
45#include <asm/uaccess.h>
1da177e4 46
68d70d03
AV
47#include "internal.h"
48
4e179bca
KO
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
fa8a53c3
BL
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
4e179bca
KO
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
4e179bca 69
db446a08
BL
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74};
75
e1bdd5f2
KO
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
4e179bca 80struct kioctx {
723be6e3 81 struct percpu_ref users;
36f55889 82 atomic_t dead;
4e179bca 83
e34ecee2
KO
84 struct percpu_ref reqs;
85
4e179bca 86 unsigned long user_id;
4e179bca 87
e1bdd5f2
KO
88 struct __percpu kioctx_cpu *cpu;
89
90 /*
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
93 */
94 unsigned req_batch;
3e845ce0
KO
95 /*
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
98 *
58c85dc2 99 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
100 * aio_setup_ring())
101 */
4e179bca
KO
102 unsigned max_reqs;
103
58c85dc2
KO
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
4e179bca 106
58c85dc2
KO
107 unsigned long mmap_base;
108 unsigned long mmap_size;
109
110 struct page **ring_pages;
111 long nr_pages;
112
723be6e3 113 struct work_struct free_work;
4e23bcae 114
e02ba72a
AP
115 /*
116 * signals when all in-flight requests are done
117 */
118 struct completion *requests_done;
119
4e23bcae 120 struct {
34e83fc6
KO
121 /*
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
126 *
127 * We batch accesses to it with a percpu version.
34e83fc6
KO
128 */
129 atomic_t reqs_available;
4e23bcae
KO
130 } ____cacheline_aligned_in_smp;
131
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
136
58c85dc2
KO
137 struct {
138 struct mutex ring_lock;
4e23bcae
KO
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
58c85dc2
KO
141
142 struct {
143 unsigned tail;
144 spinlock_t completion_lock;
4e23bcae 145 } ____cacheline_aligned_in_smp;
58c85dc2
KO
146
147 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 148 struct file *aio_ring_file;
db446a08
BL
149
150 unsigned id;
4e179bca
KO
151};
152
1da177e4 153/*------ sysctl variables----*/
d55b5fda
ZB
154static DEFINE_SPINLOCK(aio_nr_lock);
155unsigned long aio_nr; /* current system wide number of aio requests */
156unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
157/*----end sysctl variables---*/
158
e18b890b
CL
159static struct kmem_cache *kiocb_cachep;
160static struct kmem_cache *kioctx_cachep;
1da177e4 161
71ad7490
BL
162static struct vfsmount *aio_mnt;
163
164static const struct file_operations aio_ring_fops;
165static const struct address_space_operations aio_ctx_aops;
166
167static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
168{
169 struct qstr this = QSTR_INIT("[aio]", 5);
170 struct file *file;
171 struct path path;
172 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
173 if (IS_ERR(inode))
174 return ERR_CAST(inode);
71ad7490
BL
175
176 inode->i_mapping->a_ops = &aio_ctx_aops;
177 inode->i_mapping->private_data = ctx;
178 inode->i_size = PAGE_SIZE * nr_pages;
179
180 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
181 if (!path.dentry) {
182 iput(inode);
183 return ERR_PTR(-ENOMEM);
184 }
185 path.mnt = mntget(aio_mnt);
186
187 d_instantiate(path.dentry, inode);
188 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
189 if (IS_ERR(file)) {
190 path_put(&path);
191 return file;
192 }
193
194 file->f_flags = O_RDWR;
195 file->private_data = ctx;
196 return file;
197}
198
199static struct dentry *aio_mount(struct file_system_type *fs_type,
200 int flags, const char *dev_name, void *data)
201{
202 static const struct dentry_operations ops = {
203 .d_dname = simple_dname,
204 };
205 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
206}
207
1da177e4
LT
208/* aio_setup
209 * Creates the slab caches used by the aio routines, panic on
210 * failure as this is done early during the boot sequence.
211 */
212static int __init aio_setup(void)
213{
71ad7490
BL
214 static struct file_system_type aio_fs = {
215 .name = "aio",
216 .mount = aio_mount,
217 .kill_sb = kill_anon_super,
218 };
219 aio_mnt = kern_mount(&aio_fs);
220 if (IS_ERR(aio_mnt))
221 panic("Failed to create aio fs mount.");
222
0a31bd5f
CL
223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4 225
caf4167a 226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
1da177e4
LT
227
228 return 0;
229}
385773e0 230__initcall(aio_setup);
1da177e4 231
5e9ae2e5
BL
232static void put_aio_ring_file(struct kioctx *ctx)
233{
234 struct file *aio_ring_file = ctx->aio_ring_file;
235 if (aio_ring_file) {
236 truncate_setsize(aio_ring_file->f_inode, 0);
237
238 /* Prevent further access to the kioctx from migratepages */
239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 ctx->aio_ring_file = NULL;
242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243
244 fput(aio_ring_file);
245 }
246}
247
1da177e4
LT
248static void aio_free_ring(struct kioctx *ctx)
249{
36bc08cc 250 int i;
1da177e4 251
fa8a53c3
BL
252 /* Disconnect the kiotx from the ring file. This prevents future
253 * accesses to the kioctx from page migration.
254 */
255 put_aio_ring_file(ctx);
256
36bc08cc 257 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 258 struct page *page;
36bc08cc
GZ
259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 page_count(ctx->ring_pages[i]));
8e321fef
BL
261 page = ctx->ring_pages[i];
262 if (!page)
263 continue;
264 ctx->ring_pages[i] = NULL;
265 put_page(page);
36bc08cc 266 }
1da177e4 267
ddb8c45b 268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 269 kfree(ctx->ring_pages);
ddb8c45b
SL
270 ctx->ring_pages = NULL;
271 }
36bc08cc
GZ
272}
273
274static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275{
276 vma->vm_ops = &generic_file_vm_ops;
277 return 0;
278}
279
280static const struct file_operations aio_ring_fops = {
281 .mmap = aio_ring_mmap,
282};
283
284static int aio_set_page_dirty(struct page *page)
285{
286 return 0;
287}
288
0c45355f 289#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
290static int aio_migratepage(struct address_space *mapping, struct page *new,
291 struct page *old, enum migrate_mode mode)
292{
5e9ae2e5 293 struct kioctx *ctx;
36bc08cc 294 unsigned long flags;
fa8a53c3 295 pgoff_t idx;
36bc08cc
GZ
296 int rc;
297
8e321fef
BL
298 rc = 0;
299
fa8a53c3 300 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
301 spin_lock(&mapping->private_lock);
302 ctx = mapping->private_data;
fa8a53c3
BL
303 if (!ctx) {
304 rc = -EINVAL;
305 goto out;
306 }
307
308 /* The ring_lock mutex. The prevents aio_read_events() from writing
309 * to the ring's head, and prevents page migration from mucking in
310 * a partially initialized kiotx.
311 */
312 if (!mutex_trylock(&ctx->ring_lock)) {
313 rc = -EAGAIN;
314 goto out;
315 }
316
317 idx = old->index;
318 if (idx < (pgoff_t)ctx->nr_pages) {
319 /* Make sure the old page hasn't already been changed */
320 if (ctx->ring_pages[idx] != old)
321 rc = -EAGAIN;
8e321fef
BL
322 } else
323 rc = -EINVAL;
8e321fef
BL
324
325 if (rc != 0)
fa8a53c3 326 goto out_unlock;
8e321fef 327
36bc08cc
GZ
328 /* Writeback must be complete */
329 BUG_ON(PageWriteback(old));
8e321fef 330 get_page(new);
36bc08cc 331
8e321fef 332 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 333 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 334 put_page(new);
fa8a53c3 335 goto out_unlock;
36bc08cc
GZ
336 }
337
fa8a53c3
BL
338 /* Take completion_lock to prevent other writes to the ring buffer
339 * while the old page is copied to the new. This prevents new
340 * events from being lost.
5e9ae2e5 341 */
fa8a53c3
BL
342 spin_lock_irqsave(&ctx->completion_lock, flags);
343 migrate_page_copy(new, old);
344 BUG_ON(ctx->ring_pages[idx] != old);
345 ctx->ring_pages[idx] = new;
346 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 347
fa8a53c3
BL
348 /* The old page is no longer accessible. */
349 put_page(old);
8e321fef 350
fa8a53c3
BL
351out_unlock:
352 mutex_unlock(&ctx->ring_lock);
353out:
354 spin_unlock(&mapping->private_lock);
36bc08cc 355 return rc;
1da177e4 356}
0c45355f 357#endif
1da177e4 358
36bc08cc
GZ
359static const struct address_space_operations aio_ctx_aops = {
360 .set_page_dirty = aio_set_page_dirty,
0c45355f 361#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 362 .migratepage = aio_migratepage,
0c45355f 363#endif
36bc08cc
GZ
364};
365
1da177e4
LT
366static int aio_setup_ring(struct kioctx *ctx)
367{
368 struct aio_ring *ring;
1da177e4 369 unsigned nr_events = ctx->max_reqs;
41003a7b 370 struct mm_struct *mm = current->mm;
3dc9acb6 371 unsigned long size, unused;
1da177e4 372 int nr_pages;
36bc08cc
GZ
373 int i;
374 struct file *file;
1da177e4
LT
375
376 /* Compensate for the ring buffer's head/tail overlap entry */
377 nr_events += 2; /* 1 is required, 2 for good luck */
378
379 size = sizeof(struct aio_ring);
380 size += sizeof(struct io_event) * nr_events;
1da177e4 381
36bc08cc 382 nr_pages = PFN_UP(size);
1da177e4
LT
383 if (nr_pages < 0)
384 return -EINVAL;
385
71ad7490 386 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
387 if (IS_ERR(file)) {
388 ctx->aio_ring_file = NULL;
fa8a53c3 389 return -ENOMEM;
36bc08cc
GZ
390 }
391
3dc9acb6
LT
392 ctx->aio_ring_file = file;
393 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
394 / sizeof(struct io_event);
395
396 ctx->ring_pages = ctx->internal_pages;
397 if (nr_pages > AIO_RING_PAGES) {
398 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
399 GFP_KERNEL);
400 if (!ctx->ring_pages) {
401 put_aio_ring_file(ctx);
402 return -ENOMEM;
403 }
404 }
405
36bc08cc
GZ
406 for (i = 0; i < nr_pages; i++) {
407 struct page *page;
408 page = find_or_create_page(file->f_inode->i_mapping,
409 i, GFP_HIGHUSER | __GFP_ZERO);
410 if (!page)
411 break;
412 pr_debug("pid(%d) page[%d]->count=%d\n",
413 current->pid, i, page_count(page));
414 SetPageUptodate(page);
415 SetPageDirty(page);
416 unlock_page(page);
3dc9acb6
LT
417
418 ctx->ring_pages[i] = page;
36bc08cc 419 }
3dc9acb6 420 ctx->nr_pages = i;
1da177e4 421
3dc9acb6
LT
422 if (unlikely(i != nr_pages)) {
423 aio_free_ring(ctx);
fa8a53c3 424 return -ENOMEM;
1da177e4
LT
425 }
426
58c85dc2
KO
427 ctx->mmap_size = nr_pages * PAGE_SIZE;
428 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 429
41003a7b 430 down_write(&mm->mmap_sem);
36bc08cc
GZ
431 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
432 PROT_READ | PROT_WRITE,
3dc9acb6
LT
433 MAP_SHARED, 0, &unused);
434 up_write(&mm->mmap_sem);
58c85dc2 435 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 436 ctx->mmap_size = 0;
1da177e4 437 aio_free_ring(ctx);
fa8a53c3 438 return -ENOMEM;
1da177e4
LT
439 }
440
58c85dc2 441 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 442
58c85dc2
KO
443 ctx->user_id = ctx->mmap_base;
444 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 445
58c85dc2 446 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 447 ring->nr = nr_events; /* user copy */
db446a08 448 ring->id = ~0U;
1da177e4
LT
449 ring->head = ring->tail = 0;
450 ring->magic = AIO_RING_MAGIC;
451 ring->compat_features = AIO_RING_COMPAT_FEATURES;
452 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
453 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 454 kunmap_atomic(ring);
58c85dc2 455 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
456
457 return 0;
458}
459
1da177e4
LT
460#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
461#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
462#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
463
0460fef2
KO
464void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
465{
466 struct kioctx *ctx = req->ki_ctx;
467 unsigned long flags;
468
469 spin_lock_irqsave(&ctx->ctx_lock, flags);
470
471 if (!req->ki_list.next)
472 list_add(&req->ki_list, &ctx->active_reqs);
473
474 req->ki_cancel = cancel;
475
476 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
477}
478EXPORT_SYMBOL(kiocb_set_cancel_fn);
479
d52a8f9e 480static int kiocb_cancel(struct kiocb *kiocb)
906b973c 481{
0460fef2 482 kiocb_cancel_fn *old, *cancel;
906b973c 483
0460fef2
KO
484 /*
485 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
486 * actually has a cancel function, hence the cmpxchg()
487 */
488
489 cancel = ACCESS_ONCE(kiocb->ki_cancel);
490 do {
491 if (!cancel || cancel == KIOCB_CANCELLED)
57282d8f 492 return -EINVAL;
906b973c 493
0460fef2
KO
494 old = cancel;
495 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
496 } while (cancel != old);
906b973c 497
57282d8f 498 return cancel(kiocb);
906b973c
KO
499}
500
e34ecee2 501static void free_ioctx(struct work_struct *work)
36f55889 502{
e34ecee2 503 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
e1bdd5f2 504
e34ecee2 505 pr_debug("freeing %p\n", ctx);
e1bdd5f2 506
e34ecee2 507 aio_free_ring(ctx);
e1bdd5f2 508 free_percpu(ctx->cpu);
36f55889
KO
509 kmem_cache_free(kioctx_cachep, ctx);
510}
511
e34ecee2
KO
512static void free_ioctx_reqs(struct percpu_ref *ref)
513{
514 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
515
e02ba72a
AP
516 /* At this point we know that there are no any in-flight requests */
517 if (ctx->requests_done)
518 complete(ctx->requests_done);
519
e34ecee2
KO
520 INIT_WORK(&ctx->free_work, free_ioctx);
521 schedule_work(&ctx->free_work);
522}
523
36f55889
KO
524/*
525 * When this function runs, the kioctx has been removed from the "hash table"
526 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
527 * now it's safe to cancel any that need to be.
528 */
e34ecee2 529static void free_ioctx_users(struct percpu_ref *ref)
36f55889 530{
e34ecee2 531 struct kioctx *ctx = container_of(ref, struct kioctx, users);
36f55889
KO
532 struct kiocb *req;
533
534 spin_lock_irq(&ctx->ctx_lock);
535
536 while (!list_empty(&ctx->active_reqs)) {
537 req = list_first_entry(&ctx->active_reqs,
538 struct kiocb, ki_list);
539
540 list_del_init(&req->ki_list);
d52a8f9e 541 kiocb_cancel(req);
36f55889
KO
542 }
543
544 spin_unlock_irq(&ctx->ctx_lock);
545
e34ecee2
KO
546 percpu_ref_kill(&ctx->reqs);
547 percpu_ref_put(&ctx->reqs);
36f55889
KO
548}
549
db446a08
BL
550static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
551{
552 unsigned i, new_nr;
553 struct kioctx_table *table, *old;
554 struct aio_ring *ring;
555
556 spin_lock(&mm->ioctx_lock);
855ef0de 557 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
558
559 while (1) {
560 if (table)
561 for (i = 0; i < table->nr; i++)
562 if (!table->table[i]) {
563 ctx->id = i;
564 table->table[i] = ctx;
565 spin_unlock(&mm->ioctx_lock);
566
fa8a53c3
BL
567 /* While kioctx setup is in progress,
568 * we are protected from page migration
569 * changes ring_pages by ->ring_lock.
570 */
db446a08
BL
571 ring = kmap_atomic(ctx->ring_pages[0]);
572 ring->id = ctx->id;
573 kunmap_atomic(ring);
574 return 0;
575 }
576
577 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
578 spin_unlock(&mm->ioctx_lock);
579
580 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
581 new_nr, GFP_KERNEL);
582 if (!table)
583 return -ENOMEM;
584
585 table->nr = new_nr;
586
587 spin_lock(&mm->ioctx_lock);
855ef0de 588 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
589
590 if (!old) {
591 rcu_assign_pointer(mm->ioctx_table, table);
592 } else if (table->nr > old->nr) {
593 memcpy(table->table, old->table,
594 old->nr * sizeof(struct kioctx *));
595
596 rcu_assign_pointer(mm->ioctx_table, table);
597 kfree_rcu(old, rcu);
598 } else {
599 kfree(table);
600 table = old;
601 }
602 }
603}
604
e34ecee2
KO
605static void aio_nr_sub(unsigned nr)
606{
607 spin_lock(&aio_nr_lock);
608 if (WARN_ON(aio_nr - nr > aio_nr))
609 aio_nr = 0;
610 else
611 aio_nr -= nr;
612 spin_unlock(&aio_nr_lock);
613}
614
1da177e4
LT
615/* ioctx_alloc
616 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
617 */
618static struct kioctx *ioctx_alloc(unsigned nr_events)
619{
41003a7b 620 struct mm_struct *mm = current->mm;
1da177e4 621 struct kioctx *ctx;
e23754f8 622 int err = -ENOMEM;
1da177e4 623
e1bdd5f2
KO
624 /*
625 * We keep track of the number of available ringbuffer slots, to prevent
626 * overflow (reqs_available), and we also use percpu counters for this.
627 *
628 * So since up to half the slots might be on other cpu's percpu counters
629 * and unavailable, double nr_events so userspace sees what they
630 * expected: additionally, we move req_batch slots to/from percpu
631 * counters at a time, so make sure that isn't 0:
632 */
633 nr_events = max(nr_events, num_possible_cpus() * 4);
634 nr_events *= 2;
635
1da177e4
LT
636 /* Prevent overflows */
637 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
638 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
639 pr_debug("ENOMEM: nr_events too high\n");
640 return ERR_PTR(-EINVAL);
641 }
642
4cd81c3d 643 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
1da177e4
LT
644 return ERR_PTR(-EAGAIN);
645
c3762229 646 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
647 if (!ctx)
648 return ERR_PTR(-ENOMEM);
649
1da177e4 650 ctx->max_reqs = nr_events;
1da177e4 651
1da177e4 652 spin_lock_init(&ctx->ctx_lock);
0460fef2 653 spin_lock_init(&ctx->completion_lock);
58c85dc2 654 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
655 /* Protect against page migration throughout kiotx setup by keeping
656 * the ring_lock mutex held until setup is complete. */
657 mutex_lock(&ctx->ring_lock);
1da177e4
LT
658 init_waitqueue_head(&ctx->wait);
659
660 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 661
fa8a53c3
BL
662 if (percpu_ref_init(&ctx->users, free_ioctx_users))
663 goto err;
664
665 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
666 goto err;
667
e1bdd5f2
KO
668 ctx->cpu = alloc_percpu(struct kioctx_cpu);
669 if (!ctx->cpu)
e34ecee2 670 goto err;
1da177e4 671
fa8a53c3
BL
672 err = aio_setup_ring(ctx);
673 if (err < 0)
e34ecee2 674 goto err;
e1bdd5f2 675
34e83fc6 676 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 677 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
678 if (ctx->req_batch < 1)
679 ctx->req_batch = 1;
34e83fc6 680
1da177e4 681 /* limit the number of system wide aios */
9fa1cb39 682 spin_lock(&aio_nr_lock);
4cd81c3d 683 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
2dd542b7 684 aio_nr + nr_events < aio_nr) {
9fa1cb39 685 spin_unlock(&aio_nr_lock);
e34ecee2 686 err = -EAGAIN;
d1b94327 687 goto err_ctx;
2dd542b7
AV
688 }
689 aio_nr += ctx->max_reqs;
9fa1cb39 690 spin_unlock(&aio_nr_lock);
1da177e4 691
1881686f
BL
692 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
693 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 694
da90382c
BL
695 err = ioctx_add_table(ctx, mm);
696 if (err)
e34ecee2 697 goto err_cleanup;
da90382c 698
fa8a53c3
BL
699 /* Release the ring_lock mutex now that all setup is complete. */
700 mutex_unlock(&ctx->ring_lock);
701
caf4167a 702 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 703 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
704 return ctx;
705
e34ecee2
KO
706err_cleanup:
707 aio_nr_sub(ctx->max_reqs);
d1b94327
GZ
708err_ctx:
709 aio_free_ring(ctx);
e34ecee2 710err:
fa8a53c3 711 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 712 free_percpu(ctx->cpu);
e34ecee2 713 free_percpu(ctx->reqs.pcpu_count);
723be6e3 714 free_percpu(ctx->users.pcpu_count);
1da177e4 715 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 716 pr_debug("error allocating ioctx %d\n", err);
e23754f8 717 return ERR_PTR(err);
1da177e4
LT
718}
719
36f55889
KO
720/* kill_ioctx
721 * Cancels all outstanding aio requests on an aio context. Used
722 * when the processes owning a context have all exited to encourage
723 * the rapid destruction of the kioctx.
724 */
fb2d4483 725static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
e02ba72a 726 struct completion *requests_done)
36f55889 727{
fa88b6f8 728 struct kioctx_table *table;
db446a08 729
fa88b6f8
BL
730 if (atomic_xchg(&ctx->dead, 1))
731 return -EINVAL;
db446a08 732
db446a08 733
fa88b6f8 734 spin_lock(&mm->ioctx_lock);
855ef0de 735 table = rcu_dereference_raw(mm->ioctx_table);
fa88b6f8
BL
736 WARN_ON(ctx != table->table[ctx->id]);
737 table->table[ctx->id] = NULL;
fa88b6f8 738 spin_unlock(&mm->ioctx_lock);
4fcc712f 739
fa88b6f8
BL
740 /* percpu_ref_kill() will do the necessary call_rcu() */
741 wake_up_all(&ctx->wait);
4fcc712f 742
fa88b6f8
BL
743 /*
744 * It'd be more correct to do this in free_ioctx(), after all
745 * the outstanding kiocbs have finished - but by then io_destroy
746 * has already returned, so io_setup() could potentially return
747 * -EAGAIN with no ioctxs actually in use (as far as userspace
748 * could tell).
749 */
750 aio_nr_sub(ctx->max_reqs);
4fcc712f 751
fa88b6f8
BL
752 if (ctx->mmap_size)
753 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 754
fa88b6f8
BL
755 ctx->requests_done = requests_done;
756 percpu_ref_kill(&ctx->users);
757 return 0;
1da177e4
LT
758}
759
760/* wait_on_sync_kiocb:
761 * Waits on the given sync kiocb to complete.
762 */
57282d8f 763ssize_t wait_on_sync_kiocb(struct kiocb *req)
1da177e4 764{
57282d8f 765 while (!req->ki_ctx) {
1da177e4 766 set_current_state(TASK_UNINTERRUPTIBLE);
57282d8f 767 if (req->ki_ctx)
1da177e4 768 break;
41d10da3 769 io_schedule();
1da177e4
LT
770 }
771 __set_current_state(TASK_RUNNING);
57282d8f 772 return req->ki_user_data;
1da177e4 773}
385773e0 774EXPORT_SYMBOL(wait_on_sync_kiocb);
1da177e4 775
36f55889
KO
776/*
777 * exit_aio: called when the last user of mm goes away. At this point, there is
778 * no way for any new requests to be submited or any of the io_* syscalls to be
779 * called on the context.
780 *
781 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
782 * them.
1da177e4 783 */
fc9b52cd 784void exit_aio(struct mm_struct *mm)
1da177e4 785{
4b70ac5f
ON
786 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
787 int i;
db446a08 788
4b70ac5f
ON
789 if (!table)
790 return;
db446a08 791
4b70ac5f
ON
792 for (i = 0; i < table->nr; ++i) {
793 struct kioctx *ctx = table->table[i];
abf137dd 794
4b70ac5f
ON
795 if (!ctx)
796 continue;
936af157 797 /*
4b70ac5f
ON
798 * We don't need to bother with munmap() here - exit_mmap(mm)
799 * is coming and it'll unmap everything. And we simply can't,
800 * this is not necessarily our ->mm.
801 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
802 * that it needs to unmap the area, just set it to 0.
936af157 803 */
58c85dc2 804 ctx->mmap_size = 0;
e02ba72a 805 kill_ioctx(mm, ctx, NULL);
1da177e4 806 }
4b70ac5f
ON
807
808 RCU_INIT_POINTER(mm->ioctx_table, NULL);
809 kfree(table);
1da177e4
LT
810}
811
e1bdd5f2
KO
812static void put_reqs_available(struct kioctx *ctx, unsigned nr)
813{
814 struct kioctx_cpu *kcpu;
263782c1 815 unsigned long flags;
e1bdd5f2
KO
816
817 preempt_disable();
818 kcpu = this_cpu_ptr(ctx->cpu);
819
263782c1 820 local_irq_save(flags);
e1bdd5f2 821 kcpu->reqs_available += nr;
263782c1 822
e1bdd5f2
KO
823 while (kcpu->reqs_available >= ctx->req_batch * 2) {
824 kcpu->reqs_available -= ctx->req_batch;
825 atomic_add(ctx->req_batch, &ctx->reqs_available);
826 }
827
263782c1 828 local_irq_restore(flags);
e1bdd5f2
KO
829 preempt_enable();
830}
831
832static bool get_reqs_available(struct kioctx *ctx)
833{
834 struct kioctx_cpu *kcpu;
835 bool ret = false;
263782c1 836 unsigned long flags;
e1bdd5f2
KO
837
838 preempt_disable();
839 kcpu = this_cpu_ptr(ctx->cpu);
840
263782c1 841 local_irq_save(flags);
e1bdd5f2
KO
842 if (!kcpu->reqs_available) {
843 int old, avail = atomic_read(&ctx->reqs_available);
844
845 do {
846 if (avail < ctx->req_batch)
847 goto out;
848
849 old = avail;
850 avail = atomic_cmpxchg(&ctx->reqs_available,
851 avail, avail - ctx->req_batch);
852 } while (avail != old);
853
854 kcpu->reqs_available += ctx->req_batch;
855 }
856
857 ret = true;
858 kcpu->reqs_available--;
859out:
263782c1 860 local_irq_restore(flags);
e1bdd5f2
KO
861 preempt_enable();
862 return ret;
863}
864
1da177e4 865/* aio_get_req
57282d8f
KO
866 * Allocate a slot for an aio request.
867 * Returns NULL if no requests are free.
1da177e4 868 */
a1c8eae7 869static inline struct kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 870{
a1c8eae7
KO
871 struct kiocb *req;
872
e1bdd5f2 873 if (!get_reqs_available(ctx))
a1c8eae7
KO
874 return NULL;
875
0460fef2 876 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 877 if (unlikely(!req))
a1c8eae7 878 goto out_put;
1da177e4 879
e34ecee2
KO
880 percpu_ref_get(&ctx->reqs);
881
1da177e4 882 req->ki_ctx = ctx;
080d676d 883 return req;
a1c8eae7 884out_put:
e1bdd5f2 885 put_reqs_available(ctx, 1);
a1c8eae7 886 return NULL;
1da177e4
LT
887}
888
11599eba 889static void kiocb_free(struct kiocb *req)
1da177e4 890{
1d98ebfc
KO
891 if (req->ki_filp)
892 fput(req->ki_filp);
13389010
DL
893 if (req->ki_eventfd != NULL)
894 eventfd_ctx_put(req->ki_eventfd);
1da177e4 895 kmem_cache_free(kiocb_cachep, req);
1da177e4
LT
896}
897
d5470b59 898static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 899{
db446a08 900 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 901 struct mm_struct *mm = current->mm;
65c24491 902 struct kioctx *ctx, *ret = NULL;
db446a08
BL
903 struct kioctx_table *table;
904 unsigned id;
905
906 if (get_user(id, &ring->id))
907 return NULL;
1da177e4 908
abf137dd 909 rcu_read_lock();
db446a08 910 table = rcu_dereference(mm->ioctx_table);
abf137dd 911
db446a08
BL
912 if (!table || id >= table->nr)
913 goto out;
1da177e4 914
db446a08 915 ctx = table->table[id];
f30d704f 916 if (ctx && ctx->user_id == ctx_id) {
db446a08
BL
917 percpu_ref_get(&ctx->users);
918 ret = ctx;
919 }
920out:
abf137dd 921 rcu_read_unlock();
65c24491 922 return ret;
1da177e4
LT
923}
924
1da177e4
LT
925/* aio_complete
926 * Called when the io request on the given iocb is complete.
1da177e4 927 */
2d68449e 928void aio_complete(struct kiocb *iocb, long res, long res2)
1da177e4
LT
929{
930 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 931 struct aio_ring *ring;
21b40200 932 struct io_event *ev_page, *event;
1da177e4 933 unsigned long flags;
21b40200 934 unsigned tail, pos;
1da177e4 935
20dcae32
ZB
936 /*
937 * Special case handling for sync iocbs:
938 * - events go directly into the iocb for fast handling
939 * - the sync task with the iocb in its stack holds the single iocb
940 * ref, no other paths have a way to get another ref
941 * - the sync task helpfully left a reference to itself in the iocb
1da177e4
LT
942 */
943 if (is_sync_kiocb(iocb)) {
1da177e4 944 iocb->ki_user_data = res;
57282d8f
KO
945 smp_wmb();
946 iocb->ki_ctx = ERR_PTR(-EXDEV);
1da177e4 947 wake_up_process(iocb->ki_obj.tsk);
2d68449e 948 return;
1da177e4
LT
949 }
950
0460fef2
KO
951 if (iocb->ki_list.next) {
952 unsigned long flags;
953
954 spin_lock_irqsave(&ctx->ctx_lock, flags);
955 list_del(&iocb->ki_list);
956 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
957 }
11599eba 958
0460fef2
KO
959 /*
960 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 961 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
962 * pointer since we might be called from irq context.
963 */
964 spin_lock_irqsave(&ctx->completion_lock, flags);
965
58c85dc2 966 tail = ctx->tail;
21b40200
KO
967 pos = tail + AIO_EVENTS_OFFSET;
968
58c85dc2 969 if (++tail >= ctx->nr_events)
4bf69b2a 970 tail = 0;
1da177e4 971
58c85dc2 972 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
973 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
974
1da177e4
LT
975 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
976 event->data = iocb->ki_user_data;
977 event->res = res;
978 event->res2 = res2;
979
21b40200 980 kunmap_atomic(ev_page);
58c85dc2 981 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
982
983 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
caf4167a
KO
984 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
985 res, res2);
1da177e4
LT
986
987 /* after flagging the request as done, we
988 * must never even look at it again
989 */
990 smp_wmb(); /* make event visible before updating tail */
991
58c85dc2 992 ctx->tail = tail;
1da177e4 993
58c85dc2 994 ring = kmap_atomic(ctx->ring_pages[0]);
21b40200 995 ring->tail = tail;
e8e3c3d6 996 kunmap_atomic(ring);
58c85dc2 997 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 998
0460fef2
KO
999 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1000
21b40200 1001 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1002
1003 /*
1004 * Check if the user asked us to deliver the result through an
1005 * eventfd. The eventfd_signal() function is safe to be called
1006 * from IRQ context.
1007 */
87c3a86e 1008 if (iocb->ki_eventfd != NULL)
8d1c98b0
DL
1009 eventfd_signal(iocb->ki_eventfd, 1);
1010
1da177e4 1011 /* everything turned out well, dispose of the aiocb. */
57282d8f 1012 kiocb_free(iocb);
f8567a38 1013 put_reqs_available(ctx, 1);
1da177e4 1014
6cb2a210
QB
1015 /*
1016 * We have to order our ring_info tail store above and test
1017 * of the wait list below outside the wait lock. This is
1018 * like in wake_up_bit() where clearing a bit has to be
1019 * ordered with the unlocked test.
1020 */
1021 smp_mb();
1022
1da177e4
LT
1023 if (waitqueue_active(&ctx->wait))
1024 wake_up(&ctx->wait);
1025
e34ecee2 1026 percpu_ref_put(&ctx->reqs);
1da177e4 1027}
385773e0 1028EXPORT_SYMBOL(aio_complete);
1da177e4 1029
a31ad380
KO
1030/* aio_read_events
1031 * Pull an event off of the ioctx's event ring. Returns the number of
1032 * events fetched
1da177e4 1033 */
a31ad380
KO
1034static long aio_read_events_ring(struct kioctx *ctx,
1035 struct io_event __user *event, long nr)
1da177e4 1036{
1da177e4 1037 struct aio_ring *ring;
5ffac122 1038 unsigned head, tail, pos;
a31ad380
KO
1039 long ret = 0;
1040 int copy_ret;
1041
58c85dc2 1042 mutex_lock(&ctx->ring_lock);
1da177e4 1043
fa8a53c3 1044 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1045 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1046 head = ring->head;
5ffac122 1047 tail = ring->tail;
a31ad380
KO
1048 kunmap_atomic(ring);
1049
5ffac122 1050 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1051
5ffac122 1052 if (head == tail)
1da177e4
LT
1053 goto out;
1054
edfbbf38
BL
1055 head %= ctx->nr_events;
1056 tail %= ctx->nr_events;
1057
a31ad380
KO
1058 while (ret < nr) {
1059 long avail;
1060 struct io_event *ev;
1061 struct page *page;
1062
5ffac122
KO
1063 avail = (head <= tail ? tail : ctx->nr_events) - head;
1064 if (head == tail)
a31ad380
KO
1065 break;
1066
1067 avail = min(avail, nr - ret);
1068 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1069 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1070
1071 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1072 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1073 pos %= AIO_EVENTS_PER_PAGE;
1074
1075 ev = kmap(page);
1076 copy_ret = copy_to_user(event + ret, ev + pos,
1077 sizeof(*ev) * avail);
1078 kunmap(page);
1079
1080 if (unlikely(copy_ret)) {
1081 ret = -EFAULT;
1082 goto out;
1083 }
1084
1085 ret += avail;
1086 head += avail;
58c85dc2 1087 head %= ctx->nr_events;
1da177e4 1088 }
1da177e4 1089
58c85dc2 1090 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1091 ring->head = head;
91d80a84 1092 kunmap_atomic(ring);
58c85dc2 1093 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1094
5ffac122 1095 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1096out:
58c85dc2 1097 mutex_unlock(&ctx->ring_lock);
a31ad380 1098
1da177e4
LT
1099 return ret;
1100}
1101
a31ad380
KO
1102static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1103 struct io_event __user *event, long *i)
1da177e4 1104{
a31ad380 1105 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1106
a31ad380
KO
1107 if (ret > 0)
1108 *i += ret;
1da177e4 1109
a31ad380
KO
1110 if (unlikely(atomic_read(&ctx->dead)))
1111 ret = -EINVAL;
1da177e4 1112
a31ad380
KO
1113 if (!*i)
1114 *i = ret;
1da177e4 1115
a31ad380 1116 return ret < 0 || *i >= min_nr;
1da177e4
LT
1117}
1118
a31ad380 1119static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4
LT
1120 struct io_event __user *event,
1121 struct timespec __user *timeout)
1122{
a31ad380
KO
1123 ktime_t until = { .tv64 = KTIME_MAX };
1124 long ret = 0;
1da177e4 1125
1da177e4
LT
1126 if (timeout) {
1127 struct timespec ts;
a31ad380 1128
1da177e4 1129 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
a31ad380 1130 return -EFAULT;
1da177e4 1131
a31ad380 1132 until = timespec_to_ktime(ts);
1da177e4
LT
1133 }
1134
a31ad380
KO
1135 /*
1136 * Note that aio_read_events() is being called as the conditional - i.e.
1137 * we're calling it after prepare_to_wait() has set task state to
1138 * TASK_INTERRUPTIBLE.
1139 *
1140 * But aio_read_events() can block, and if it blocks it's going to flip
1141 * the task state back to TASK_RUNNING.
1142 *
1143 * This should be ok, provided it doesn't flip the state back to
1144 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1145 * will only happen if the mutex_lock() call blocks, and we then find
1146 * the ringbuffer empty. So in practice we should be ok, but it's
1147 * something to be aware of when touching this code.
1148 */
1149 wait_event_interruptible_hrtimeout(ctx->wait,
1150 aio_read_events(ctx, min_nr, nr, event, &ret), until);
1da177e4 1151
a31ad380
KO
1152 if (!ret && signal_pending(current))
1153 ret = -EINTR;
1da177e4 1154
a31ad380 1155 return ret;
1da177e4
LT
1156}
1157
1da177e4
LT
1158/* sys_io_setup:
1159 * Create an aio_context capable of receiving at least nr_events.
1160 * ctxp must not point to an aio_context that already exists, and
1161 * must be initialized to 0 prior to the call. On successful
1162 * creation of the aio_context, *ctxp is filled in with the resulting
1163 * handle. May fail with -EINVAL if *ctxp is not initialized,
1164 * if the specified nr_events exceeds internal limits. May fail
1165 * with -EAGAIN if the specified nr_events exceeds the user's limit
1166 * of available events. May fail with -ENOMEM if insufficient kernel
1167 * resources are available. May fail with -EFAULT if an invalid
1168 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1169 * implemented.
1170 */
002c8976 1171SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1172{
1173 struct kioctx *ioctx = NULL;
1174 unsigned long ctx;
1175 long ret;
1176
1177 ret = get_user(ctx, ctxp);
1178 if (unlikely(ret))
1179 goto out;
1180
1181 ret = -EINVAL;
d55b5fda
ZB
1182 if (unlikely(ctx || nr_events == 0)) {
1183 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1184 ctx, nr_events);
1da177e4
LT
1185 goto out;
1186 }
1187
1188 ioctx = ioctx_alloc(nr_events);
1189 ret = PTR_ERR(ioctx);
1190 if (!IS_ERR(ioctx)) {
1191 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1192 if (ret)
e02ba72a 1193 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1194 percpu_ref_put(&ioctx->users);
1da177e4
LT
1195 }
1196
1197out:
1198 return ret;
1199}
1200
1201/* sys_io_destroy:
1202 * Destroy the aio_context specified. May cancel any outstanding
1203 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1204 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1205 * is invalid.
1206 */
002c8976 1207SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1208{
1209 struct kioctx *ioctx = lookup_ioctx(ctx);
1210 if (likely(NULL != ioctx)) {
e02ba72a
AP
1211 struct completion requests_done =
1212 COMPLETION_INITIALIZER_ONSTACK(requests_done);
fb2d4483 1213 int ret;
e02ba72a
AP
1214
1215 /* Pass requests_done to kill_ioctx() where it can be set
1216 * in a thread-safe way. If we try to set it here then we have
1217 * a race condition if two io_destroy() called simultaneously.
1218 */
fb2d4483 1219 ret = kill_ioctx(current->mm, ioctx, &requests_done);
723be6e3 1220 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1221
1222 /* Wait until all IO for the context are done. Otherwise kernel
1223 * keep using user-space buffers even if user thinks the context
1224 * is destroyed.
1225 */
fb2d4483
BL
1226 if (!ret)
1227 wait_for_completion(&requests_done);
e02ba72a 1228
fb2d4483 1229 return ret;
1da177e4
LT
1230 }
1231 pr_debug("EINVAL: io_destroy: invalid context id\n");
1232 return -EINVAL;
1233}
1234
41ef4eb8
KO
1235typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1236 unsigned long, loff_t);
293bc982 1237typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
41ef4eb8 1238
8bc92afc
KO
1239static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1240 int rw, char __user *buf,
1241 unsigned long *nr_segs,
1242 struct iovec **iovec,
1243 bool compat)
eed4e51f
BP
1244{
1245 ssize_t ret;
1246
8bc92afc 1247 *nr_segs = kiocb->ki_nbytes;
41ef4eb8 1248
9d85cba7
JM
1249#ifdef CONFIG_COMPAT
1250 if (compat)
41ef4eb8 1251 ret = compat_rw_copy_check_uvector(rw,
8bc92afc
KO
1252 (struct compat_iovec __user *)buf,
1253 *nr_segs, 1, *iovec, iovec);
9d85cba7
JM
1254 else
1255#endif
41ef4eb8 1256 ret = rw_copy_check_uvector(rw,
8bc92afc
KO
1257 (struct iovec __user *)buf,
1258 *nr_segs, 1, *iovec, iovec);
eed4e51f 1259 if (ret < 0)
41ef4eb8 1260 return ret;
a70b52ec 1261
41ef4eb8 1262 /* ki_nbytes now reflect bytes instead of segs */
eed4e51f 1263 kiocb->ki_nbytes = ret;
41ef4eb8 1264 return 0;
eed4e51f
BP
1265}
1266
8bc92afc
KO
1267static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1268 int rw, char __user *buf,
1269 unsigned long *nr_segs,
1270 struct iovec *iovec)
eed4e51f 1271{
8bc92afc 1272 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
41ef4eb8 1273 return -EFAULT;
a70b52ec 1274
8bc92afc
KO
1275 iovec->iov_base = buf;
1276 iovec->iov_len = kiocb->ki_nbytes;
1277 *nr_segs = 1;
eed4e51f
BP
1278 return 0;
1279}
1280
1da177e4
LT
1281/*
1282 * aio_setup_iocb:
1283 * Performs the initial checks and aio retry method
1284 * setup for the kiocb at the time of io submission.
1285 */
8bc92afc
KO
1286static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1287 char __user *buf, bool compat)
1da177e4 1288{
41ef4eb8
KO
1289 struct file *file = req->ki_filp;
1290 ssize_t ret;
8bc92afc 1291 unsigned long nr_segs;
41ef4eb8
KO
1292 int rw;
1293 fmode_t mode;
1294 aio_rw_op *rw_op;
293bc982 1295 rw_iter_op *iter_op;
8bc92afc 1296 struct iovec inline_vec, *iovec = &inline_vec;
293bc982 1297 struct iov_iter iter;
1da177e4 1298
8bc92afc 1299 switch (opcode) {
1da177e4 1300 case IOCB_CMD_PREAD:
eed4e51f 1301 case IOCB_CMD_PREADV:
41ef4eb8
KO
1302 mode = FMODE_READ;
1303 rw = READ;
1304 rw_op = file->f_op->aio_read;
293bc982 1305 iter_op = file->f_op->read_iter;
41ef4eb8
KO
1306 goto rw_common;
1307
1308 case IOCB_CMD_PWRITE:
eed4e51f 1309 case IOCB_CMD_PWRITEV:
41ef4eb8
KO
1310 mode = FMODE_WRITE;
1311 rw = WRITE;
1312 rw_op = file->f_op->aio_write;
293bc982 1313 iter_op = file->f_op->write_iter;
41ef4eb8
KO
1314 goto rw_common;
1315rw_common:
1316 if (unlikely(!(file->f_mode & mode)))
1317 return -EBADF;
1318
293bc982 1319 if (!rw_op && !iter_op)
41ef4eb8
KO
1320 return -EINVAL;
1321
8bc92afc
KO
1322 ret = (opcode == IOCB_CMD_PREADV ||
1323 opcode == IOCB_CMD_PWRITEV)
1324 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1325 &iovec, compat)
1326 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1327 iovec);
754320d6
LY
1328 if (!ret)
1329 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
8bc92afc
KO
1330 if (ret < 0) {
1331 if (iovec != &inline_vec)
1332 kfree(iovec);
41ef4eb8 1333 return ret;
8bc92afc 1334 }
41ef4eb8
KO
1335
1336 req->ki_nbytes = ret;
41ef4eb8 1337
73a7075e
KO
1338 /* XXX: move/kill - rw_verify_area()? */
1339 /* This matches the pread()/pwrite() logic */
1340 if (req->ki_pos < 0) {
1341 ret = -EINVAL;
1342 break;
1343 }
1344
1345 if (rw == WRITE)
1346 file_start_write(file);
1347
293bc982
AV
1348 if (iter_op) {
1349 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1350 ret = iter_op(req, &iter);
1351 } else {
1352 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1353 }
73a7075e
KO
1354
1355 if (rw == WRITE)
1356 file_end_write(file);
1da177e4 1357 break;
41ef4eb8 1358
1da177e4 1359 case IOCB_CMD_FDSYNC:
41ef4eb8
KO
1360 if (!file->f_op->aio_fsync)
1361 return -EINVAL;
1362
1363 ret = file->f_op->aio_fsync(req, 1);
1da177e4 1364 break;
41ef4eb8 1365
1da177e4 1366 case IOCB_CMD_FSYNC:
41ef4eb8
KO
1367 if (!file->f_op->aio_fsync)
1368 return -EINVAL;
1369
1370 ret = file->f_op->aio_fsync(req, 0);
1da177e4 1371 break;
41ef4eb8 1372
1da177e4 1373 default:
caf4167a 1374 pr_debug("EINVAL: no operation provided\n");
41ef4eb8 1375 return -EINVAL;
1da177e4
LT
1376 }
1377
8bc92afc
KO
1378 if (iovec != &inline_vec)
1379 kfree(iovec);
1380
41ef4eb8
KO
1381 if (ret != -EIOCBQUEUED) {
1382 /*
1383 * There's no easy way to restart the syscall since other AIO's
1384 * may be already running. Just fail this IO with EINTR.
1385 */
1386 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1387 ret == -ERESTARTNOHAND ||
1388 ret == -ERESTART_RESTARTBLOCK))
1389 ret = -EINTR;
1390 aio_complete(req, ret, 0);
1391 }
1da177e4
LT
1392
1393 return 0;
1394}
1395
d5470b59 1396static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
a1c8eae7 1397 struct iocb *iocb, bool compat)
1da177e4
LT
1398{
1399 struct kiocb *req;
1da177e4
LT
1400 ssize_t ret;
1401
1402 /* enforce forwards compatibility on users */
9c3060be 1403 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
caf4167a 1404 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1405 return -EINVAL;
1406 }
1407
1408 /* prevent overflows */
1409 if (unlikely(
1410 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1411 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1412 ((ssize_t)iocb->aio_nbytes < 0)
1413 )) {
1414 pr_debug("EINVAL: io_submit: overflow check\n");
1415 return -EINVAL;
1416 }
1417
41ef4eb8 1418 req = aio_get_req(ctx);
1d98ebfc 1419 if (unlikely(!req))
1da177e4 1420 return -EAGAIN;
1d98ebfc
KO
1421
1422 req->ki_filp = fget(iocb->aio_fildes);
1423 if (unlikely(!req->ki_filp)) {
1424 ret = -EBADF;
1425 goto out_put_req;
1da177e4 1426 }
1d98ebfc 1427
9c3060be
DL
1428 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1429 /*
1430 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1431 * instance of the file* now. The file descriptor must be
1432 * an eventfd() fd, and will be signaled for each completed
1433 * event using the eventfd_signal() function.
1434 */
13389010 1435 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
801678c5 1436 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1437 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1438 req->ki_eventfd = NULL;
9c3060be
DL
1439 goto out_put_req;
1440 }
1441 }
1da177e4 1442
8a660890 1443 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1444 if (unlikely(ret)) {
caf4167a 1445 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1446 goto out_put_req;
1447 }
1448
1449 req->ki_obj.user = user_iocb;
1450 req->ki_user_data = iocb->aio_data;
1451 req->ki_pos = iocb->aio_offset;
73a7075e 1452 req->ki_nbytes = iocb->aio_nbytes;
1da177e4 1453
8bc92afc
KO
1454 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1455 (char __user *)(unsigned long)iocb->aio_buf,
1456 compat);
41003a7b 1457 if (ret)
7137c6bd 1458 goto out_put_req;
41003a7b 1459
1da177e4 1460 return 0;
1da177e4 1461out_put_req:
e1bdd5f2 1462 put_reqs_available(ctx, 1);
e34ecee2 1463 percpu_ref_put(&ctx->reqs);
57282d8f 1464 kiocb_free(req);
1da177e4
LT
1465 return ret;
1466}
1467
9d85cba7
JM
1468long do_io_submit(aio_context_t ctx_id, long nr,
1469 struct iocb __user *__user *iocbpp, bool compat)
1da177e4
LT
1470{
1471 struct kioctx *ctx;
1472 long ret = 0;
080d676d 1473 int i = 0;
9f5b9425 1474 struct blk_plug plug;
1da177e4
LT
1475
1476 if (unlikely(nr < 0))
1477 return -EINVAL;
1478
75e1c70f
JM
1479 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1480 nr = LONG_MAX/sizeof(*iocbpp);
1481
1da177e4
LT
1482 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1483 return -EFAULT;
1484
1485 ctx = lookup_ioctx(ctx_id);
1486 if (unlikely(!ctx)) {
caf4167a 1487 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1488 return -EINVAL;
1489 }
1490
9f5b9425
SL
1491 blk_start_plug(&plug);
1492
1da177e4
LT
1493 /*
1494 * AKPM: should this return a partial result if some of the IOs were
1495 * successfully submitted?
1496 */
1497 for (i=0; i<nr; i++) {
1498 struct iocb __user *user_iocb;
1499 struct iocb tmp;
1500
1501 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1502 ret = -EFAULT;
1503 break;
1504 }
1505
1506 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1507 ret = -EFAULT;
1508 break;
1509 }
1510
a1c8eae7 1511 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1da177e4
LT
1512 if (ret)
1513 break;
1514 }
9f5b9425 1515 blk_finish_plug(&plug);
1da177e4 1516
723be6e3 1517 percpu_ref_put(&ctx->users);
1da177e4
LT
1518 return i ? i : ret;
1519}
1520
9d85cba7
JM
1521/* sys_io_submit:
1522 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1523 * the number of iocbs queued. May return -EINVAL if the aio_context
1524 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1525 * *iocbpp[0] is not properly initialized, if the operation specified
1526 * is invalid for the file descriptor in the iocb. May fail with
1527 * -EFAULT if any of the data structures point to invalid data. May
1528 * fail with -EBADF if the file descriptor specified in the first
1529 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1530 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1531 * fail with -ENOSYS if not implemented.
1532 */
1533SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1534 struct iocb __user * __user *, iocbpp)
1535{
1536 return do_io_submit(ctx_id, nr, iocbpp, 0);
1537}
1538
1da177e4
LT
1539/* lookup_kiocb
1540 * Finds a given iocb for cancellation.
1da177e4 1541 */
25ee7e38
AB
1542static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1543 u32 key)
1da177e4
LT
1544{
1545 struct list_head *pos;
d00689af
ZB
1546
1547 assert_spin_locked(&ctx->ctx_lock);
1548
8a660890
KO
1549 if (key != KIOCB_KEY)
1550 return NULL;
1551
1da177e4
LT
1552 /* TODO: use a hash or array, this sucks. */
1553 list_for_each(pos, &ctx->active_reqs) {
1554 struct kiocb *kiocb = list_kiocb(pos);
8a660890 1555 if (kiocb->ki_obj.user == iocb)
1da177e4
LT
1556 return kiocb;
1557 }
1558 return NULL;
1559}
1560
1561/* sys_io_cancel:
1562 * Attempts to cancel an iocb previously passed to io_submit. If
1563 * the operation is successfully cancelled, the resulting event is
1564 * copied into the memory pointed to by result without being placed
1565 * into the completion queue and 0 is returned. May fail with
1566 * -EFAULT if any of the data structures pointed to are invalid.
1567 * May fail with -EINVAL if aio_context specified by ctx_id is
1568 * invalid. May fail with -EAGAIN if the iocb specified was not
1569 * cancelled. Will fail with -ENOSYS if not implemented.
1570 */
002c8976
HC
1571SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1572 struct io_event __user *, result)
1da177e4 1573{
1da177e4
LT
1574 struct kioctx *ctx;
1575 struct kiocb *kiocb;
1576 u32 key;
1577 int ret;
1578
1579 ret = get_user(key, &iocb->aio_key);
1580 if (unlikely(ret))
1581 return -EFAULT;
1582
1583 ctx = lookup_ioctx(ctx_id);
1584 if (unlikely(!ctx))
1585 return -EINVAL;
1586
1587 spin_lock_irq(&ctx->ctx_lock);
906b973c 1588
1da177e4 1589 kiocb = lookup_kiocb(ctx, iocb, key);
906b973c 1590 if (kiocb)
d52a8f9e 1591 ret = kiocb_cancel(kiocb);
906b973c
KO
1592 else
1593 ret = -EINVAL;
1594
1da177e4
LT
1595 spin_unlock_irq(&ctx->ctx_lock);
1596
906b973c 1597 if (!ret) {
bec68faa
KO
1598 /*
1599 * The result argument is no longer used - the io_event is
1600 * always delivered via the ring buffer. -EINPROGRESS indicates
1601 * cancellation is progress:
906b973c 1602 */
bec68faa 1603 ret = -EINPROGRESS;
906b973c 1604 }
1da177e4 1605
723be6e3 1606 percpu_ref_put(&ctx->users);
1da177e4
LT
1607
1608 return ret;
1609}
1610
1611/* io_getevents:
1612 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
1613 * the completion queue for the aio_context specified by ctx_id. If
1614 * it succeeds, the number of read events is returned. May fail with
1615 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1616 * out of range, if timeout is out of range. May fail with -EFAULT
1617 * if any of the memory specified is invalid. May return 0 or
1618 * < min_nr if the timeout specified by timeout has elapsed
1619 * before sufficient events are available, where timeout == NULL
1620 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 1621 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 1622 */
002c8976
HC
1623SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1624 long, min_nr,
1625 long, nr,
1626 struct io_event __user *, events,
1627 struct timespec __user *, timeout)
1da177e4
LT
1628{
1629 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1630 long ret = -EINVAL;
1631
1632 if (likely(ioctx)) {
2e410255 1633 if (likely(min_nr <= nr && min_nr >= 0))
1da177e4 1634 ret = read_events(ioctx, min_nr, nr, events, timeout);
723be6e3 1635 percpu_ref_put(&ioctx->users);
1da177e4 1636 }
1da177e4
LT
1637 return ret;
1638}