]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - fs/aio.c
aio: implement IOCB_CMD_POLL
[thirdparty/kernel/stable.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
3d2d827f 30#include <linux/mmu_context.h>
e1bdd5f2 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/timer.h>
34#include <linux/aio.h>
35#include <linux/highmem.h>
36#include <linux/workqueue.h>
37#include <linux/security.h>
9c3060be 38#include <linux/eventfd.h>
cfb1e33e 39#include <linux/blkdev.h>
9d85cba7 40#include <linux/compat.h>
36bc08cc
GZ
41#include <linux/migrate.h>
42#include <linux/ramfs.h>
723be6e3 43#include <linux/percpu-refcount.h>
71ad7490 44#include <linux/mount.h>
1da177e4
LT
45
46#include <asm/kmap_types.h>
7c0f6ba6 47#include <linux/uaccess.h>
1da177e4 48
68d70d03
AV
49#include "internal.h"
50
f3a2752a
CH
51#define KIOCB_KEY 0
52
4e179bca
KO
53#define AIO_RING_MAGIC 0xa10a10a1
54#define AIO_RING_COMPAT_FEATURES 1
55#define AIO_RING_INCOMPAT_FEATURES 0
56struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
fa8a53c3
BL
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
4e179bca
KO
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
69 struct io_event io_events[0];
70}; /* 128 bytes + ring size */
71
72#define AIO_RING_PAGES 8
4e179bca 73
db446a08 74struct kioctx_table {
d0264c01
TH
75 struct rcu_head rcu;
76 unsigned nr;
77 struct kioctx __rcu *table[];
db446a08
BL
78};
79
e1bdd5f2
KO
80struct kioctx_cpu {
81 unsigned reqs_available;
82};
83
dc48e56d
JA
84struct ctx_rq_wait {
85 struct completion comp;
86 atomic_t count;
87};
88
4e179bca 89struct kioctx {
723be6e3 90 struct percpu_ref users;
36f55889 91 atomic_t dead;
4e179bca 92
e34ecee2
KO
93 struct percpu_ref reqs;
94
4e179bca 95 unsigned long user_id;
4e179bca 96
e1bdd5f2
KO
97 struct __percpu kioctx_cpu *cpu;
98
99 /*
100 * For percpu reqs_available, number of slots we move to/from global
101 * counter at a time:
102 */
103 unsigned req_batch;
3e845ce0
KO
104 /*
105 * This is what userspace passed to io_setup(), it's not used for
106 * anything but counting against the global max_reqs quota.
107 *
58c85dc2 108 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
109 * aio_setup_ring())
110 */
4e179bca
KO
111 unsigned max_reqs;
112
58c85dc2
KO
113 /* Size of ringbuffer, in units of struct io_event */
114 unsigned nr_events;
4e179bca 115
58c85dc2
KO
116 unsigned long mmap_base;
117 unsigned long mmap_size;
118
119 struct page **ring_pages;
120 long nr_pages;
121
f729863a 122 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 123
e02ba72a
AP
124 /*
125 * signals when all in-flight requests are done
126 */
dc48e56d 127 struct ctx_rq_wait *rq_wait;
e02ba72a 128
4e23bcae 129 struct {
34e83fc6
KO
130 /*
131 * This counts the number of available slots in the ringbuffer,
132 * so we avoid overflowing it: it's decremented (if positive)
133 * when allocating a kiocb and incremented when the resulting
134 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
135 *
136 * We batch accesses to it with a percpu version.
34e83fc6
KO
137 */
138 atomic_t reqs_available;
4e23bcae
KO
139 } ____cacheline_aligned_in_smp;
140
141 struct {
142 spinlock_t ctx_lock;
143 struct list_head active_reqs; /* used for cancellation */
144 } ____cacheline_aligned_in_smp;
145
58c85dc2
KO
146 struct {
147 struct mutex ring_lock;
4e23bcae
KO
148 wait_queue_head_t wait;
149 } ____cacheline_aligned_in_smp;
58c85dc2
KO
150
151 struct {
152 unsigned tail;
d856f32a 153 unsigned completed_events;
58c85dc2 154 spinlock_t completion_lock;
4e23bcae 155 } ____cacheline_aligned_in_smp;
58c85dc2
KO
156
157 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 158 struct file *aio_ring_file;
db446a08
BL
159
160 unsigned id;
4e179bca
KO
161};
162
a3c0d439
CH
163struct fsync_iocb {
164 struct work_struct work;
165 struct file *file;
166 bool datasync;
167};
168
bfe4037e
CH
169struct poll_iocb {
170 struct file *file;
171 struct wait_queue_head *head;
172 __poll_t events;
173 bool woken;
174 bool cancelled;
175 struct wait_queue_entry wait;
176 struct work_struct work;
177};
178
04b2fa9f 179struct aio_kiocb {
54843f87
CH
180 union {
181 struct kiocb rw;
a3c0d439 182 struct fsync_iocb fsync;
bfe4037e 183 struct poll_iocb poll;
54843f87 184 };
04b2fa9f
CH
185
186 struct kioctx *ki_ctx;
187 kiocb_cancel_fn *ki_cancel;
188
189 struct iocb __user *ki_user_iocb; /* user's aiocb */
190 __u64 ki_user_data; /* user's data for completion */
191
192 struct list_head ki_list; /* the aio core uses this
193 * for cancellation */
9018ccc4 194 refcount_t ki_refcnt;
04b2fa9f
CH
195
196 /*
197 * If the aio_resfd field of the userspace iocb is not zero,
198 * this is the underlying eventfd context to deliver events to.
199 */
200 struct eventfd_ctx *ki_eventfd;
201};
202
1da177e4 203/*------ sysctl variables----*/
d55b5fda
ZB
204static DEFINE_SPINLOCK(aio_nr_lock);
205unsigned long aio_nr; /* current system wide number of aio requests */
206unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
207/*----end sysctl variables---*/
208
e18b890b
CL
209static struct kmem_cache *kiocb_cachep;
210static struct kmem_cache *kioctx_cachep;
1da177e4 211
71ad7490
BL
212static struct vfsmount *aio_mnt;
213
214static const struct file_operations aio_ring_fops;
215static const struct address_space_operations aio_ctx_aops;
216
217static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
218{
219 struct qstr this = QSTR_INIT("[aio]", 5);
220 struct file *file;
221 struct path path;
222 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
223 if (IS_ERR(inode))
224 return ERR_CAST(inode);
71ad7490
BL
225
226 inode->i_mapping->a_ops = &aio_ctx_aops;
227 inode->i_mapping->private_data = ctx;
228 inode->i_size = PAGE_SIZE * nr_pages;
229
230 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
231 if (!path.dentry) {
232 iput(inode);
233 return ERR_PTR(-ENOMEM);
234 }
235 path.mnt = mntget(aio_mnt);
236
237 d_instantiate(path.dentry, inode);
238 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
239 if (IS_ERR(file)) {
240 path_put(&path);
241 return file;
242 }
243
244 file->f_flags = O_RDWR;
71ad7490
BL
245 return file;
246}
247
248static struct dentry *aio_mount(struct file_system_type *fs_type,
249 int flags, const char *dev_name, void *data)
250{
251 static const struct dentry_operations ops = {
252 .d_dname = simple_dname,
253 };
22f6b4d3
JH
254 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
255 AIO_RING_MAGIC);
256
257 if (!IS_ERR(root))
258 root->d_sb->s_iflags |= SB_I_NOEXEC;
259 return root;
71ad7490
BL
260}
261
1da177e4
LT
262/* aio_setup
263 * Creates the slab caches used by the aio routines, panic on
264 * failure as this is done early during the boot sequence.
265 */
266static int __init aio_setup(void)
267{
71ad7490
BL
268 static struct file_system_type aio_fs = {
269 .name = "aio",
270 .mount = aio_mount,
271 .kill_sb = kill_anon_super,
272 };
273 aio_mnt = kern_mount(&aio_fs);
274 if (IS_ERR(aio_mnt))
275 panic("Failed to create aio fs mount.");
276
04b2fa9f 277 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 278 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
279 return 0;
280}
385773e0 281__initcall(aio_setup);
1da177e4 282
5e9ae2e5
BL
283static void put_aio_ring_file(struct kioctx *ctx)
284{
285 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
286 struct address_space *i_mapping;
287
5e9ae2e5 288 if (aio_ring_file) {
45063097 289 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
290
291 /* Prevent further access to the kioctx from migratepages */
45063097 292 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
293 spin_lock(&i_mapping->private_lock);
294 i_mapping->private_data = NULL;
5e9ae2e5 295 ctx->aio_ring_file = NULL;
de04e769 296 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
297
298 fput(aio_ring_file);
299 }
300}
301
1da177e4
LT
302static void aio_free_ring(struct kioctx *ctx)
303{
36bc08cc 304 int i;
1da177e4 305
fa8a53c3
BL
306 /* Disconnect the kiotx from the ring file. This prevents future
307 * accesses to the kioctx from page migration.
308 */
309 put_aio_ring_file(ctx);
310
36bc08cc 311 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 312 struct page *page;
36bc08cc
GZ
313 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
314 page_count(ctx->ring_pages[i]));
8e321fef
BL
315 page = ctx->ring_pages[i];
316 if (!page)
317 continue;
318 ctx->ring_pages[i] = NULL;
319 put_page(page);
36bc08cc 320 }
1da177e4 321
ddb8c45b 322 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 323 kfree(ctx->ring_pages);
ddb8c45b
SL
324 ctx->ring_pages = NULL;
325 }
36bc08cc
GZ
326}
327
5477e70a 328static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 329{
5477e70a 330 struct file *file = vma->vm_file;
e4a0d3e7
PE
331 struct mm_struct *mm = vma->vm_mm;
332 struct kioctx_table *table;
b2edffdd 333 int i, res = -EINVAL;
e4a0d3e7
PE
334
335 spin_lock(&mm->ioctx_lock);
336 rcu_read_lock();
337 table = rcu_dereference(mm->ioctx_table);
338 for (i = 0; i < table->nr; i++) {
339 struct kioctx *ctx;
340
d0264c01 341 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 342 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
343 if (!atomic_read(&ctx->dead)) {
344 ctx->user_id = ctx->mmap_base = vma->vm_start;
345 res = 0;
346 }
e4a0d3e7
PE
347 break;
348 }
349 }
350
351 rcu_read_unlock();
352 spin_unlock(&mm->ioctx_lock);
b2edffdd 353 return res;
e4a0d3e7
PE
354}
355
5477e70a
ON
356static const struct vm_operations_struct aio_ring_vm_ops = {
357 .mremap = aio_ring_mremap,
358#if IS_ENABLED(CONFIG_MMU)
359 .fault = filemap_fault,
360 .map_pages = filemap_map_pages,
361 .page_mkwrite = filemap_page_mkwrite,
362#endif
363};
364
365static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
366{
367 vma->vm_flags |= VM_DONTEXPAND;
368 vma->vm_ops = &aio_ring_vm_ops;
369 return 0;
370}
371
36bc08cc
GZ
372static const struct file_operations aio_ring_fops = {
373 .mmap = aio_ring_mmap,
374};
375
0c45355f 376#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
377static int aio_migratepage(struct address_space *mapping, struct page *new,
378 struct page *old, enum migrate_mode mode)
379{
5e9ae2e5 380 struct kioctx *ctx;
36bc08cc 381 unsigned long flags;
fa8a53c3 382 pgoff_t idx;
36bc08cc
GZ
383 int rc;
384
2916ecc0
JG
385 /*
386 * We cannot support the _NO_COPY case here, because copy needs to
387 * happen under the ctx->completion_lock. That does not work with the
388 * migration workflow of MIGRATE_SYNC_NO_COPY.
389 */
390 if (mode == MIGRATE_SYNC_NO_COPY)
391 return -EINVAL;
392
8e321fef
BL
393 rc = 0;
394
fa8a53c3 395 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
396 spin_lock(&mapping->private_lock);
397 ctx = mapping->private_data;
fa8a53c3
BL
398 if (!ctx) {
399 rc = -EINVAL;
400 goto out;
401 }
402
403 /* The ring_lock mutex. The prevents aio_read_events() from writing
404 * to the ring's head, and prevents page migration from mucking in
405 * a partially initialized kiotx.
406 */
407 if (!mutex_trylock(&ctx->ring_lock)) {
408 rc = -EAGAIN;
409 goto out;
410 }
411
412 idx = old->index;
413 if (idx < (pgoff_t)ctx->nr_pages) {
414 /* Make sure the old page hasn't already been changed */
415 if (ctx->ring_pages[idx] != old)
416 rc = -EAGAIN;
8e321fef
BL
417 } else
418 rc = -EINVAL;
8e321fef
BL
419
420 if (rc != 0)
fa8a53c3 421 goto out_unlock;
8e321fef 422
36bc08cc
GZ
423 /* Writeback must be complete */
424 BUG_ON(PageWriteback(old));
8e321fef 425 get_page(new);
36bc08cc 426
8e321fef 427 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 428 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 429 put_page(new);
fa8a53c3 430 goto out_unlock;
36bc08cc
GZ
431 }
432
fa8a53c3
BL
433 /* Take completion_lock to prevent other writes to the ring buffer
434 * while the old page is copied to the new. This prevents new
435 * events from being lost.
5e9ae2e5 436 */
fa8a53c3
BL
437 spin_lock_irqsave(&ctx->completion_lock, flags);
438 migrate_page_copy(new, old);
439 BUG_ON(ctx->ring_pages[idx] != old);
440 ctx->ring_pages[idx] = new;
441 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 442
fa8a53c3
BL
443 /* The old page is no longer accessible. */
444 put_page(old);
8e321fef 445
fa8a53c3
BL
446out_unlock:
447 mutex_unlock(&ctx->ring_lock);
448out:
449 spin_unlock(&mapping->private_lock);
36bc08cc 450 return rc;
1da177e4 451}
0c45355f 452#endif
1da177e4 453
36bc08cc 454static const struct address_space_operations aio_ctx_aops = {
835f252c 455 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 456#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 457 .migratepage = aio_migratepage,
0c45355f 458#endif
36bc08cc
GZ
459};
460
2a8a9867 461static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
462{
463 struct aio_ring *ring;
41003a7b 464 struct mm_struct *mm = current->mm;
3dc9acb6 465 unsigned long size, unused;
1da177e4 466 int nr_pages;
36bc08cc
GZ
467 int i;
468 struct file *file;
1da177e4
LT
469
470 /* Compensate for the ring buffer's head/tail overlap entry */
471 nr_events += 2; /* 1 is required, 2 for good luck */
472
473 size = sizeof(struct aio_ring);
474 size += sizeof(struct io_event) * nr_events;
1da177e4 475
36bc08cc 476 nr_pages = PFN_UP(size);
1da177e4
LT
477 if (nr_pages < 0)
478 return -EINVAL;
479
71ad7490 480 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
481 if (IS_ERR(file)) {
482 ctx->aio_ring_file = NULL;
fa8a53c3 483 return -ENOMEM;
36bc08cc
GZ
484 }
485
3dc9acb6
LT
486 ctx->aio_ring_file = file;
487 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
488 / sizeof(struct io_event);
489
490 ctx->ring_pages = ctx->internal_pages;
491 if (nr_pages > AIO_RING_PAGES) {
492 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
493 GFP_KERNEL);
494 if (!ctx->ring_pages) {
495 put_aio_ring_file(ctx);
496 return -ENOMEM;
497 }
498 }
499
36bc08cc
GZ
500 for (i = 0; i < nr_pages; i++) {
501 struct page *page;
45063097 502 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
503 i, GFP_HIGHUSER | __GFP_ZERO);
504 if (!page)
505 break;
506 pr_debug("pid(%d) page[%d]->count=%d\n",
507 current->pid, i, page_count(page));
508 SetPageUptodate(page);
36bc08cc 509 unlock_page(page);
3dc9acb6
LT
510
511 ctx->ring_pages[i] = page;
36bc08cc 512 }
3dc9acb6 513 ctx->nr_pages = i;
1da177e4 514
3dc9acb6
LT
515 if (unlikely(i != nr_pages)) {
516 aio_free_ring(ctx);
fa8a53c3 517 return -ENOMEM;
1da177e4
LT
518 }
519
58c85dc2
KO
520 ctx->mmap_size = nr_pages * PAGE_SIZE;
521 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 522
013373e8
MH
523 if (down_write_killable(&mm->mmap_sem)) {
524 ctx->mmap_size = 0;
525 aio_free_ring(ctx);
526 return -EINTR;
527 }
528
36bc08cc
GZ
529 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
530 PROT_READ | PROT_WRITE,
897ab3e0 531 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 532 up_write(&mm->mmap_sem);
58c85dc2 533 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 534 ctx->mmap_size = 0;
1da177e4 535 aio_free_ring(ctx);
fa8a53c3 536 return -ENOMEM;
1da177e4
LT
537 }
538
58c85dc2 539 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 540
58c85dc2
KO
541 ctx->user_id = ctx->mmap_base;
542 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 543
58c85dc2 544 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 545 ring->nr = nr_events; /* user copy */
db446a08 546 ring->id = ~0U;
1da177e4
LT
547 ring->head = ring->tail = 0;
548 ring->magic = AIO_RING_MAGIC;
549 ring->compat_features = AIO_RING_COMPAT_FEATURES;
550 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
551 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 552 kunmap_atomic(ring);
58c85dc2 553 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
554
555 return 0;
556}
557
1da177e4
LT
558#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
559#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
560#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
561
04b2fa9f 562void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 563{
54843f87 564 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
565 struct kioctx *ctx = req->ki_ctx;
566 unsigned long flags;
567
75321b50
CH
568 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
569 return;
0460fef2 570
75321b50
CH
571 spin_lock_irqsave(&ctx->ctx_lock, flags);
572 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 573 req->ki_cancel = cancel;
0460fef2
KO
574 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
575}
576EXPORT_SYMBOL(kiocb_set_cancel_fn);
577
a6d7cff4
TH
578/*
579 * free_ioctx() should be RCU delayed to synchronize against the RCU
580 * protected lookup_ioctx() and also needs process context to call
f729863a 581 * aio_free_ring(). Use rcu_work.
a6d7cff4 582 */
e34ecee2 583static void free_ioctx(struct work_struct *work)
36f55889 584{
f729863a
TH
585 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
586 free_rwork);
e34ecee2 587 pr_debug("freeing %p\n", ctx);
e1bdd5f2 588
e34ecee2 589 aio_free_ring(ctx);
e1bdd5f2 590 free_percpu(ctx->cpu);
9a1049da
TH
591 percpu_ref_exit(&ctx->reqs);
592 percpu_ref_exit(&ctx->users);
36f55889
KO
593 kmem_cache_free(kioctx_cachep, ctx);
594}
595
e34ecee2
KO
596static void free_ioctx_reqs(struct percpu_ref *ref)
597{
598 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
599
e02ba72a 600 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
601 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
602 complete(&ctx->rq_wait->comp);
e02ba72a 603
a6d7cff4 604 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
605 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
606 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
607}
608
36f55889
KO
609/*
610 * When this function runs, the kioctx has been removed from the "hash table"
611 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
612 * now it's safe to cancel any that need to be.
613 */
e34ecee2 614static void free_ioctx_users(struct percpu_ref *ref)
36f55889 615{
e34ecee2 616 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 617 struct aio_kiocb *req;
36f55889
KO
618
619 spin_lock_irq(&ctx->ctx_lock);
620
621 while (!list_empty(&ctx->active_reqs)) {
622 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 623 struct aio_kiocb, ki_list);
888933f8 624 req->ki_cancel(&req->rw);
4faa9996 625 list_del_init(&req->ki_list);
36f55889
KO
626 }
627
628 spin_unlock_irq(&ctx->ctx_lock);
629
e34ecee2
KO
630 percpu_ref_kill(&ctx->reqs);
631 percpu_ref_put(&ctx->reqs);
36f55889
KO
632}
633
db446a08
BL
634static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
635{
636 unsigned i, new_nr;
637 struct kioctx_table *table, *old;
638 struct aio_ring *ring;
639
640 spin_lock(&mm->ioctx_lock);
855ef0de 641 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
642
643 while (1) {
644 if (table)
645 for (i = 0; i < table->nr; i++)
d0264c01 646 if (!rcu_access_pointer(table->table[i])) {
db446a08 647 ctx->id = i;
d0264c01 648 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
649 spin_unlock(&mm->ioctx_lock);
650
fa8a53c3
BL
651 /* While kioctx setup is in progress,
652 * we are protected from page migration
653 * changes ring_pages by ->ring_lock.
654 */
db446a08
BL
655 ring = kmap_atomic(ctx->ring_pages[0]);
656 ring->id = ctx->id;
657 kunmap_atomic(ring);
658 return 0;
659 }
660
661 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
662 spin_unlock(&mm->ioctx_lock);
663
664 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
665 new_nr, GFP_KERNEL);
666 if (!table)
667 return -ENOMEM;
668
669 table->nr = new_nr;
670
671 spin_lock(&mm->ioctx_lock);
855ef0de 672 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
673
674 if (!old) {
675 rcu_assign_pointer(mm->ioctx_table, table);
676 } else if (table->nr > old->nr) {
677 memcpy(table->table, old->table,
678 old->nr * sizeof(struct kioctx *));
679
680 rcu_assign_pointer(mm->ioctx_table, table);
681 kfree_rcu(old, rcu);
682 } else {
683 kfree(table);
684 table = old;
685 }
686 }
687}
688
e34ecee2
KO
689static void aio_nr_sub(unsigned nr)
690{
691 spin_lock(&aio_nr_lock);
692 if (WARN_ON(aio_nr - nr > aio_nr))
693 aio_nr = 0;
694 else
695 aio_nr -= nr;
696 spin_unlock(&aio_nr_lock);
697}
698
1da177e4
LT
699/* ioctx_alloc
700 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
701 */
702static struct kioctx *ioctx_alloc(unsigned nr_events)
703{
41003a7b 704 struct mm_struct *mm = current->mm;
1da177e4 705 struct kioctx *ctx;
e23754f8 706 int err = -ENOMEM;
1da177e4 707
2a8a9867
MFO
708 /*
709 * Store the original nr_events -- what userspace passed to io_setup(),
710 * for counting against the global limit -- before it changes.
711 */
712 unsigned int max_reqs = nr_events;
713
e1bdd5f2
KO
714 /*
715 * We keep track of the number of available ringbuffer slots, to prevent
716 * overflow (reqs_available), and we also use percpu counters for this.
717 *
718 * So since up to half the slots might be on other cpu's percpu counters
719 * and unavailable, double nr_events so userspace sees what they
720 * expected: additionally, we move req_batch slots to/from percpu
721 * counters at a time, so make sure that isn't 0:
722 */
723 nr_events = max(nr_events, num_possible_cpus() * 4);
724 nr_events *= 2;
725
1da177e4 726 /* Prevent overflows */
08397acd 727 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
728 pr_debug("ENOMEM: nr_events too high\n");
729 return ERR_PTR(-EINVAL);
730 }
731
2a8a9867 732 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
733 return ERR_PTR(-EAGAIN);
734
c3762229 735 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
736 if (!ctx)
737 return ERR_PTR(-ENOMEM);
738
2a8a9867 739 ctx->max_reqs = max_reqs;
1da177e4 740
1da177e4 741 spin_lock_init(&ctx->ctx_lock);
0460fef2 742 spin_lock_init(&ctx->completion_lock);
58c85dc2 743 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
744 /* Protect against page migration throughout kiotx setup by keeping
745 * the ring_lock mutex held until setup is complete. */
746 mutex_lock(&ctx->ring_lock);
1da177e4
LT
747 init_waitqueue_head(&ctx->wait);
748
749 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 750
2aad2a86 751 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
752 goto err;
753
2aad2a86 754 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
755 goto err;
756
e1bdd5f2
KO
757 ctx->cpu = alloc_percpu(struct kioctx_cpu);
758 if (!ctx->cpu)
e34ecee2 759 goto err;
1da177e4 760
2a8a9867 761 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 762 if (err < 0)
e34ecee2 763 goto err;
e1bdd5f2 764
34e83fc6 765 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 766 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
767 if (ctx->req_batch < 1)
768 ctx->req_batch = 1;
34e83fc6 769
1da177e4 770 /* limit the number of system wide aios */
9fa1cb39 771 spin_lock(&aio_nr_lock);
2a8a9867
MFO
772 if (aio_nr + ctx->max_reqs > aio_max_nr ||
773 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 774 spin_unlock(&aio_nr_lock);
e34ecee2 775 err = -EAGAIN;
d1b94327 776 goto err_ctx;
2dd542b7
AV
777 }
778 aio_nr += ctx->max_reqs;
9fa1cb39 779 spin_unlock(&aio_nr_lock);
1da177e4 780
1881686f
BL
781 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
782 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 783
da90382c
BL
784 err = ioctx_add_table(ctx, mm);
785 if (err)
e34ecee2 786 goto err_cleanup;
da90382c 787
fa8a53c3
BL
788 /* Release the ring_lock mutex now that all setup is complete. */
789 mutex_unlock(&ctx->ring_lock);
790
caf4167a 791 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 792 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
793 return ctx;
794
e34ecee2
KO
795err_cleanup:
796 aio_nr_sub(ctx->max_reqs);
d1b94327 797err_ctx:
deeb8525
AV
798 atomic_set(&ctx->dead, 1);
799 if (ctx->mmap_size)
800 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 801 aio_free_ring(ctx);
e34ecee2 802err:
fa8a53c3 803 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 804 free_percpu(ctx->cpu);
9a1049da
TH
805 percpu_ref_exit(&ctx->reqs);
806 percpu_ref_exit(&ctx->users);
1da177e4 807 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 808 pr_debug("error allocating ioctx %d\n", err);
e23754f8 809 return ERR_PTR(err);
1da177e4
LT
810}
811
36f55889
KO
812/* kill_ioctx
813 * Cancels all outstanding aio requests on an aio context. Used
814 * when the processes owning a context have all exited to encourage
815 * the rapid destruction of the kioctx.
816 */
fb2d4483 817static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 818 struct ctx_rq_wait *wait)
36f55889 819{
fa88b6f8 820 struct kioctx_table *table;
db446a08 821
b2edffdd
AV
822 spin_lock(&mm->ioctx_lock);
823 if (atomic_xchg(&ctx->dead, 1)) {
824 spin_unlock(&mm->ioctx_lock);
fa88b6f8 825 return -EINVAL;
b2edffdd 826 }
db446a08 827
855ef0de 828 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
829 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
830 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 831 spin_unlock(&mm->ioctx_lock);
4fcc712f 832
a6d7cff4 833 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 834 wake_up_all(&ctx->wait);
4fcc712f 835
fa88b6f8
BL
836 /*
837 * It'd be more correct to do this in free_ioctx(), after all
838 * the outstanding kiocbs have finished - but by then io_destroy
839 * has already returned, so io_setup() could potentially return
840 * -EAGAIN with no ioctxs actually in use (as far as userspace
841 * could tell).
842 */
843 aio_nr_sub(ctx->max_reqs);
4fcc712f 844
fa88b6f8
BL
845 if (ctx->mmap_size)
846 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 847
dc48e56d 848 ctx->rq_wait = wait;
fa88b6f8
BL
849 percpu_ref_kill(&ctx->users);
850 return 0;
1da177e4
LT
851}
852
36f55889
KO
853/*
854 * exit_aio: called when the last user of mm goes away. At this point, there is
855 * no way for any new requests to be submited or any of the io_* syscalls to be
856 * called on the context.
857 *
858 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
859 * them.
1da177e4 860 */
fc9b52cd 861void exit_aio(struct mm_struct *mm)
1da177e4 862{
4b70ac5f 863 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
864 struct ctx_rq_wait wait;
865 int i, skipped;
db446a08 866
4b70ac5f
ON
867 if (!table)
868 return;
db446a08 869
dc48e56d
JA
870 atomic_set(&wait.count, table->nr);
871 init_completion(&wait.comp);
872
873 skipped = 0;
4b70ac5f 874 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
875 struct kioctx *ctx =
876 rcu_dereference_protected(table->table[i], true);
abf137dd 877
dc48e56d
JA
878 if (!ctx) {
879 skipped++;
4b70ac5f 880 continue;
dc48e56d
JA
881 }
882
936af157 883 /*
4b70ac5f
ON
884 * We don't need to bother with munmap() here - exit_mmap(mm)
885 * is coming and it'll unmap everything. And we simply can't,
886 * this is not necessarily our ->mm.
887 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
888 * that it needs to unmap the area, just set it to 0.
936af157 889 */
58c85dc2 890 ctx->mmap_size = 0;
dc48e56d
JA
891 kill_ioctx(mm, ctx, &wait);
892 }
36f55889 893
dc48e56d 894 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 895 /* Wait until all IO for the context are done. */
dc48e56d 896 wait_for_completion(&wait.comp);
1da177e4 897 }
4b70ac5f
ON
898
899 RCU_INIT_POINTER(mm->ioctx_table, NULL);
900 kfree(table);
1da177e4
LT
901}
902
e1bdd5f2
KO
903static void put_reqs_available(struct kioctx *ctx, unsigned nr)
904{
905 struct kioctx_cpu *kcpu;
263782c1 906 unsigned long flags;
e1bdd5f2 907
263782c1 908 local_irq_save(flags);
be6fb451 909 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 910 kcpu->reqs_available += nr;
263782c1 911
e1bdd5f2
KO
912 while (kcpu->reqs_available >= ctx->req_batch * 2) {
913 kcpu->reqs_available -= ctx->req_batch;
914 atomic_add(ctx->req_batch, &ctx->reqs_available);
915 }
916
263782c1 917 local_irq_restore(flags);
e1bdd5f2
KO
918}
919
920static bool get_reqs_available(struct kioctx *ctx)
921{
922 struct kioctx_cpu *kcpu;
923 bool ret = false;
263782c1 924 unsigned long flags;
e1bdd5f2 925
263782c1 926 local_irq_save(flags);
be6fb451 927 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
928 if (!kcpu->reqs_available) {
929 int old, avail = atomic_read(&ctx->reqs_available);
930
931 do {
932 if (avail < ctx->req_batch)
933 goto out;
934
935 old = avail;
936 avail = atomic_cmpxchg(&ctx->reqs_available,
937 avail, avail - ctx->req_batch);
938 } while (avail != old);
939
940 kcpu->reqs_available += ctx->req_batch;
941 }
942
943 ret = true;
944 kcpu->reqs_available--;
945out:
263782c1 946 local_irq_restore(flags);
e1bdd5f2
KO
947 return ret;
948}
949
d856f32a
BL
950/* refill_reqs_available
951 * Updates the reqs_available reference counts used for tracking the
952 * number of free slots in the completion ring. This can be called
953 * from aio_complete() (to optimistically update reqs_available) or
954 * from aio_get_req() (the we're out of events case). It must be
955 * called holding ctx->completion_lock.
956 */
957static void refill_reqs_available(struct kioctx *ctx, unsigned head,
958 unsigned tail)
959{
960 unsigned events_in_ring, completed;
961
962 /* Clamp head since userland can write to it. */
963 head %= ctx->nr_events;
964 if (head <= tail)
965 events_in_ring = tail - head;
966 else
967 events_in_ring = ctx->nr_events - (head - tail);
968
969 completed = ctx->completed_events;
970 if (events_in_ring < completed)
971 completed -= events_in_ring;
972 else
973 completed = 0;
974
975 if (!completed)
976 return;
977
978 ctx->completed_events -= completed;
979 put_reqs_available(ctx, completed);
980}
981
982/* user_refill_reqs_available
983 * Called to refill reqs_available when aio_get_req() encounters an
984 * out of space in the completion ring.
985 */
986static void user_refill_reqs_available(struct kioctx *ctx)
987{
988 spin_lock_irq(&ctx->completion_lock);
989 if (ctx->completed_events) {
990 struct aio_ring *ring;
991 unsigned head;
992
993 /* Access of ring->head may race with aio_read_events_ring()
994 * here, but that's okay since whether we read the old version
995 * or the new version, and either will be valid. The important
996 * part is that head cannot pass tail since we prevent
997 * aio_complete() from updating tail by holding
998 * ctx->completion_lock. Even if head is invalid, the check
999 * against ctx->completed_events below will make sure we do the
1000 * safe/right thing.
1001 */
1002 ring = kmap_atomic(ctx->ring_pages[0]);
1003 head = ring->head;
1004 kunmap_atomic(ring);
1005
1006 refill_reqs_available(ctx, head, ctx->tail);
1007 }
1008
1009 spin_unlock_irq(&ctx->completion_lock);
1010}
1011
1da177e4 1012/* aio_get_req
57282d8f
KO
1013 * Allocate a slot for an aio request.
1014 * Returns NULL if no requests are free.
1da177e4 1015 */
04b2fa9f 1016static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1017{
04b2fa9f 1018 struct aio_kiocb *req;
a1c8eae7 1019
d856f32a
BL
1020 if (!get_reqs_available(ctx)) {
1021 user_refill_reqs_available(ctx);
1022 if (!get_reqs_available(ctx))
1023 return NULL;
1024 }
a1c8eae7 1025
0460fef2 1026 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 1027 if (unlikely(!req))
a1c8eae7 1028 goto out_put;
1da177e4 1029
e34ecee2 1030 percpu_ref_get(&ctx->reqs);
75321b50 1031 INIT_LIST_HEAD(&req->ki_list);
9018ccc4 1032 refcount_set(&req->ki_refcnt, 0);
1da177e4 1033 req->ki_ctx = ctx;
080d676d 1034 return req;
a1c8eae7 1035out_put:
e1bdd5f2 1036 put_reqs_available(ctx, 1);
a1c8eae7 1037 return NULL;
1da177e4
LT
1038}
1039
d5470b59 1040static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1041{
db446a08 1042 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1043 struct mm_struct *mm = current->mm;
65c24491 1044 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1045 struct kioctx_table *table;
1046 unsigned id;
1047
1048 if (get_user(id, &ring->id))
1049 return NULL;
1da177e4 1050
abf137dd 1051 rcu_read_lock();
db446a08 1052 table = rcu_dereference(mm->ioctx_table);
abf137dd 1053
db446a08
BL
1054 if (!table || id >= table->nr)
1055 goto out;
1da177e4 1056
d0264c01 1057 ctx = rcu_dereference(table->table[id]);
f30d704f 1058 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1059 if (percpu_ref_tryget_live(&ctx->users))
1060 ret = ctx;
db446a08
BL
1061 }
1062out:
abf137dd 1063 rcu_read_unlock();
65c24491 1064 return ret;
1da177e4
LT
1065}
1066
9018ccc4
CH
1067static inline void iocb_put(struct aio_kiocb *iocb)
1068{
1069 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1070 refcount_dec_and_test(&iocb->ki_refcnt)) {
1071 percpu_ref_put(&iocb->ki_ctx->reqs);
1072 kmem_cache_free(kiocb_cachep, iocb);
1073 }
1074}
1075
1da177e4
LT
1076/* aio_complete
1077 * Called when the io request on the given iocb is complete.
1da177e4 1078 */
54843f87 1079static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1da177e4
LT
1080{
1081 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1082 struct aio_ring *ring;
21b40200 1083 struct io_event *ev_page, *event;
d856f32a 1084 unsigned tail, pos, head;
1da177e4 1085 unsigned long flags;
1da177e4 1086
0460fef2
KO
1087 /*
1088 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1089 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1090 * pointer since we might be called from irq context.
1091 */
1092 spin_lock_irqsave(&ctx->completion_lock, flags);
1093
58c85dc2 1094 tail = ctx->tail;
21b40200
KO
1095 pos = tail + AIO_EVENTS_OFFSET;
1096
58c85dc2 1097 if (++tail >= ctx->nr_events)
4bf69b2a 1098 tail = 0;
1da177e4 1099
58c85dc2 1100 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1101 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1102
04b2fa9f 1103 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1da177e4
LT
1104 event->data = iocb->ki_user_data;
1105 event->res = res;
1106 event->res2 = res2;
1107
21b40200 1108 kunmap_atomic(ev_page);
58c85dc2 1109 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1110
1111 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
04b2fa9f 1112 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
caf4167a 1113 res, res2);
1da177e4
LT
1114
1115 /* after flagging the request as done, we
1116 * must never even look at it again
1117 */
1118 smp_wmb(); /* make event visible before updating tail */
1119
58c85dc2 1120 ctx->tail = tail;
1da177e4 1121
58c85dc2 1122 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1123 head = ring->head;
21b40200 1124 ring->tail = tail;
e8e3c3d6 1125 kunmap_atomic(ring);
58c85dc2 1126 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1127
d856f32a
BL
1128 ctx->completed_events++;
1129 if (ctx->completed_events > 1)
1130 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1131 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1132
21b40200 1133 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1134
1135 /*
1136 * Check if the user asked us to deliver the result through an
1137 * eventfd. The eventfd_signal() function is safe to be called
1138 * from IRQ context.
1139 */
54843f87 1140 if (iocb->ki_eventfd) {
8d1c98b0 1141 eventfd_signal(iocb->ki_eventfd, 1);
54843f87
CH
1142 eventfd_ctx_put(iocb->ki_eventfd);
1143 }
8d1c98b0 1144
6cb2a210
QB
1145 /*
1146 * We have to order our ring_info tail store above and test
1147 * of the wait list below outside the wait lock. This is
1148 * like in wake_up_bit() where clearing a bit has to be
1149 * ordered with the unlocked test.
1150 */
1151 smp_mb();
1152
1da177e4
LT
1153 if (waitqueue_active(&ctx->wait))
1154 wake_up(&ctx->wait);
9018ccc4 1155 iocb_put(iocb);
1da177e4
LT
1156}
1157
2be4e7de 1158/* aio_read_events_ring
a31ad380
KO
1159 * Pull an event off of the ioctx's event ring. Returns the number of
1160 * events fetched
1da177e4 1161 */
a31ad380
KO
1162static long aio_read_events_ring(struct kioctx *ctx,
1163 struct io_event __user *event, long nr)
1da177e4 1164{
1da177e4 1165 struct aio_ring *ring;
5ffac122 1166 unsigned head, tail, pos;
a31ad380
KO
1167 long ret = 0;
1168 int copy_ret;
1169
9c9ce763
DC
1170 /*
1171 * The mutex can block and wake us up and that will cause
1172 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1173 * and repeat. This should be rare enough that it doesn't cause
1174 * peformance issues. See the comment in read_events() for more detail.
1175 */
1176 sched_annotate_sleep();
58c85dc2 1177 mutex_lock(&ctx->ring_lock);
1da177e4 1178
fa8a53c3 1179 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1180 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1181 head = ring->head;
5ffac122 1182 tail = ring->tail;
a31ad380
KO
1183 kunmap_atomic(ring);
1184
2ff396be
JM
1185 /*
1186 * Ensure that once we've read the current tail pointer, that
1187 * we also see the events that were stored up to the tail.
1188 */
1189 smp_rmb();
1190
5ffac122 1191 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1192
5ffac122 1193 if (head == tail)
1da177e4
LT
1194 goto out;
1195
edfbbf38
BL
1196 head %= ctx->nr_events;
1197 tail %= ctx->nr_events;
1198
a31ad380
KO
1199 while (ret < nr) {
1200 long avail;
1201 struct io_event *ev;
1202 struct page *page;
1203
5ffac122
KO
1204 avail = (head <= tail ? tail : ctx->nr_events) - head;
1205 if (head == tail)
a31ad380
KO
1206 break;
1207
a31ad380 1208 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1209 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1210 pos %= AIO_EVENTS_PER_PAGE;
1211
d2988bd4
AV
1212 avail = min(avail, nr - ret);
1213 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1214
a31ad380
KO
1215 ev = kmap(page);
1216 copy_ret = copy_to_user(event + ret, ev + pos,
1217 sizeof(*ev) * avail);
1218 kunmap(page);
1219
1220 if (unlikely(copy_ret)) {
1221 ret = -EFAULT;
1222 goto out;
1223 }
1224
1225 ret += avail;
1226 head += avail;
58c85dc2 1227 head %= ctx->nr_events;
1da177e4 1228 }
1da177e4 1229
58c85dc2 1230 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1231 ring->head = head;
91d80a84 1232 kunmap_atomic(ring);
58c85dc2 1233 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1234
5ffac122 1235 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1236out:
58c85dc2 1237 mutex_unlock(&ctx->ring_lock);
a31ad380 1238
1da177e4
LT
1239 return ret;
1240}
1241
a31ad380
KO
1242static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1243 struct io_event __user *event, long *i)
1da177e4 1244{
a31ad380 1245 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1246
a31ad380
KO
1247 if (ret > 0)
1248 *i += ret;
1da177e4 1249
a31ad380
KO
1250 if (unlikely(atomic_read(&ctx->dead)))
1251 ret = -EINVAL;
1da177e4 1252
a31ad380
KO
1253 if (!*i)
1254 *i = ret;
1da177e4 1255
a31ad380 1256 return ret < 0 || *i >= min_nr;
1da177e4
LT
1257}
1258
a31ad380 1259static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1260 struct io_event __user *event,
fa2e62a5 1261 ktime_t until)
1da177e4 1262{
a31ad380 1263 long ret = 0;
1da177e4 1264
a31ad380
KO
1265 /*
1266 * Note that aio_read_events() is being called as the conditional - i.e.
1267 * we're calling it after prepare_to_wait() has set task state to
1268 * TASK_INTERRUPTIBLE.
1269 *
1270 * But aio_read_events() can block, and if it blocks it's going to flip
1271 * the task state back to TASK_RUNNING.
1272 *
1273 * This should be ok, provided it doesn't flip the state back to
1274 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1275 * will only happen if the mutex_lock() call blocks, and we then find
1276 * the ringbuffer empty. So in practice we should be ok, but it's
1277 * something to be aware of when touching this code.
1278 */
2456e855 1279 if (until == 0)
5f785de5
FZ
1280 aio_read_events(ctx, min_nr, nr, event, &ret);
1281 else
1282 wait_event_interruptible_hrtimeout(ctx->wait,
1283 aio_read_events(ctx, min_nr, nr, event, &ret),
1284 until);
a31ad380 1285 return ret;
1da177e4
LT
1286}
1287
1da177e4
LT
1288/* sys_io_setup:
1289 * Create an aio_context capable of receiving at least nr_events.
1290 * ctxp must not point to an aio_context that already exists, and
1291 * must be initialized to 0 prior to the call. On successful
1292 * creation of the aio_context, *ctxp is filled in with the resulting
1293 * handle. May fail with -EINVAL if *ctxp is not initialized,
1294 * if the specified nr_events exceeds internal limits. May fail
1295 * with -EAGAIN if the specified nr_events exceeds the user's limit
1296 * of available events. May fail with -ENOMEM if insufficient kernel
1297 * resources are available. May fail with -EFAULT if an invalid
1298 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1299 * implemented.
1300 */
002c8976 1301SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1302{
1303 struct kioctx *ioctx = NULL;
1304 unsigned long ctx;
1305 long ret;
1306
1307 ret = get_user(ctx, ctxp);
1308 if (unlikely(ret))
1309 goto out;
1310
1311 ret = -EINVAL;
d55b5fda 1312 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1313 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1314 ctx, nr_events);
1da177e4
LT
1315 goto out;
1316 }
1317
1318 ioctx = ioctx_alloc(nr_events);
1319 ret = PTR_ERR(ioctx);
1320 if (!IS_ERR(ioctx)) {
1321 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1322 if (ret)
e02ba72a 1323 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1324 percpu_ref_put(&ioctx->users);
1da177e4
LT
1325 }
1326
1327out:
1328 return ret;
1329}
1330
c00d2c7e
AV
1331#ifdef CONFIG_COMPAT
1332COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1333{
1334 struct kioctx *ioctx = NULL;
1335 unsigned long ctx;
1336 long ret;
1337
1338 ret = get_user(ctx, ctx32p);
1339 if (unlikely(ret))
1340 goto out;
1341
1342 ret = -EINVAL;
1343 if (unlikely(ctx || nr_events == 0)) {
1344 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1345 ctx, nr_events);
1346 goto out;
1347 }
1348
1349 ioctx = ioctx_alloc(nr_events);
1350 ret = PTR_ERR(ioctx);
1351 if (!IS_ERR(ioctx)) {
1352 /* truncating is ok because it's a user address */
1353 ret = put_user((u32)ioctx->user_id, ctx32p);
1354 if (ret)
1355 kill_ioctx(current->mm, ioctx, NULL);
1356 percpu_ref_put(&ioctx->users);
1357 }
1358
1359out:
1360 return ret;
1361}
1362#endif
1363
1da177e4
LT
1364/* sys_io_destroy:
1365 * Destroy the aio_context specified. May cancel any outstanding
1366 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1367 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1368 * is invalid.
1369 */
002c8976 1370SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1371{
1372 struct kioctx *ioctx = lookup_ioctx(ctx);
1373 if (likely(NULL != ioctx)) {
dc48e56d 1374 struct ctx_rq_wait wait;
fb2d4483 1375 int ret;
e02ba72a 1376
dc48e56d
JA
1377 init_completion(&wait.comp);
1378 atomic_set(&wait.count, 1);
1379
e02ba72a
AP
1380 /* Pass requests_done to kill_ioctx() where it can be set
1381 * in a thread-safe way. If we try to set it here then we have
1382 * a race condition if two io_destroy() called simultaneously.
1383 */
dc48e56d 1384 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1385 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1386
1387 /* Wait until all IO for the context are done. Otherwise kernel
1388 * keep using user-space buffers even if user thinks the context
1389 * is destroyed.
1390 */
fb2d4483 1391 if (!ret)
dc48e56d 1392 wait_for_completion(&wait.comp);
e02ba72a 1393
fb2d4483 1394 return ret;
1da177e4 1395 }
acd88d4e 1396 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1397 return -EINVAL;
1398}
1399
3c96c7f4
AV
1400static void aio_remove_iocb(struct aio_kiocb *iocb)
1401{
1402 struct kioctx *ctx = iocb->ki_ctx;
1403 unsigned long flags;
1404
1405 spin_lock_irqsave(&ctx->ctx_lock, flags);
1406 list_del(&iocb->ki_list);
1407 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1408}
1409
54843f87
CH
1410static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1411{
1412 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1413
3c96c7f4
AV
1414 if (!list_empty_careful(&iocb->ki_list))
1415 aio_remove_iocb(iocb);
1416
54843f87
CH
1417 if (kiocb->ki_flags & IOCB_WRITE) {
1418 struct inode *inode = file_inode(kiocb->ki_filp);
1419
1420 /*
1421 * Tell lockdep we inherited freeze protection from submission
1422 * thread.
1423 */
1424 if (S_ISREG(inode->i_mode))
1425 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1426 file_end_write(kiocb->ki_filp);
1427 }
1428
1429 fput(kiocb->ki_filp);
1430 aio_complete(iocb, res, res2);
1431}
1432
1433static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1434{
1435 int ret;
1436
1437 req->ki_filp = fget(iocb->aio_fildes);
1438 if (unlikely(!req->ki_filp))
1439 return -EBADF;
1440 req->ki_complete = aio_complete_rw;
1441 req->ki_pos = iocb->aio_offset;
1442 req->ki_flags = iocb_flags(req->ki_filp);
1443 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1444 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1445 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1446 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1447 /*
1448 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1449 * aio_reqprio is interpreted as an I/O scheduling
1450 * class and priority.
1451 */
1452 ret = ioprio_check_cap(iocb->aio_reqprio);
1453 if (ret) {
9a6d9a62
AM
1454 pr_debug("aio ioprio check cap error: %d\n", ret);
1455 return ret;
d9a08a9e
AM
1456 }
1457
1458 req->ki_ioprio = iocb->aio_reqprio;
1459 } else
1460 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1461
54843f87
CH
1462 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1463 if (unlikely(ret))
1464 fput(req->ki_filp);
1465 return ret;
1466}
1467
89319d31
CH
1468static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1469 bool vectored, bool compat, struct iov_iter *iter)
eed4e51f 1470{
89319d31
CH
1471 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1472 size_t len = iocb->aio_nbytes;
1473
1474 if (!vectored) {
1475 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1476 *iovec = NULL;
1477 return ret;
1478 }
9d85cba7
JM
1479#ifdef CONFIG_COMPAT
1480 if (compat)
89319d31
CH
1481 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1482 iter);
9d85cba7 1483#endif
89319d31 1484 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1485}
1486
9061d14a 1487static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1488{
1489 switch (ret) {
1490 case -EIOCBQUEUED:
9061d14a 1491 break;
89319d31
CH
1492 case -ERESTARTSYS:
1493 case -ERESTARTNOINTR:
1494 case -ERESTARTNOHAND:
1495 case -ERESTART_RESTARTBLOCK:
1496 /*
1497 * There's no easy way to restart the syscall since other AIO's
1498 * may be already running. Just fail this IO with EINTR.
1499 */
1500 ret = -EINTR;
1501 /*FALLTHRU*/
1502 default:
54843f87 1503 aio_complete_rw(req, ret, 0);
89319d31
CH
1504 }
1505}
1506
1507static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1508 bool compat)
1da177e4 1509{
00fefb9c 1510 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1511 struct iov_iter iter;
54843f87 1512 struct file *file;
89319d31 1513 ssize_t ret;
1da177e4 1514
54843f87
CH
1515 ret = aio_prep_rw(req, iocb);
1516 if (ret)
1517 return ret;
1518 file = req->ki_filp;
1519
1520 ret = -EBADF;
89319d31 1521 if (unlikely(!(file->f_mode & FMODE_READ)))
54843f87
CH
1522 goto out_fput;
1523 ret = -EINVAL;
89319d31 1524 if (unlikely(!file->f_op->read_iter))
54843f87 1525 goto out_fput;
73a7075e 1526
89319d31
CH
1527 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1528 if (ret)
54843f87 1529 goto out_fput;
89319d31
CH
1530 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1531 if (!ret)
9061d14a 1532 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31 1533 kfree(iovec);
54843f87 1534out_fput:
9061d14a 1535 if (unlikely(ret))
54843f87 1536 fput(file);
89319d31
CH
1537 return ret;
1538}
73a7075e 1539
89319d31
CH
1540static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1541 bool compat)
1542{
89319d31
CH
1543 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1544 struct iov_iter iter;
54843f87 1545 struct file *file;
89319d31 1546 ssize_t ret;
41ef4eb8 1547
54843f87
CH
1548 ret = aio_prep_rw(req, iocb);
1549 if (ret)
1550 return ret;
1551 file = req->ki_filp;
1552
1553 ret = -EBADF;
89319d31 1554 if (unlikely(!(file->f_mode & FMODE_WRITE)))
54843f87
CH
1555 goto out_fput;
1556 ret = -EINVAL;
89319d31 1557 if (unlikely(!file->f_op->write_iter))
54843f87 1558 goto out_fput;
1da177e4 1559
89319d31
CH
1560 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1561 if (ret)
54843f87 1562 goto out_fput;
89319d31
CH
1563 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1564 if (!ret) {
70fe2f48 1565 /*
92ce4728 1566 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1567 * which will be released by another thread in
1568 * aio_complete_rw(). Fool lockdep by telling it the lock got
1569 * released so that it doesn't complain about the held lock when
1570 * we return to userspace.
70fe2f48 1571 */
92ce4728
CH
1572 if (S_ISREG(file_inode(file)->i_mode)) {
1573 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1574 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1575 }
1576 req->ki_flags |= IOCB_WRITE;
9061d14a 1577 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1578 }
89319d31 1579 kfree(iovec);
54843f87 1580out_fput:
9061d14a 1581 if (unlikely(ret))
54843f87 1582 fput(file);
89319d31 1583 return ret;
1da177e4
LT
1584}
1585
a3c0d439
CH
1586static void aio_fsync_work(struct work_struct *work)
1587{
1588 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1589 int ret;
1590
1591 ret = vfs_fsync(req->file, req->datasync);
1592 fput(req->file);
1593 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1594}
1595
1596static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1597{
1598 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599 iocb->aio_rw_flags))
1600 return -EINVAL;
a11e1d43 1601
a3c0d439
CH
1602 req->file = fget(iocb->aio_fildes);
1603 if (unlikely(!req->file))
1604 return -EBADF;
1605 if (unlikely(!req->file->f_op->fsync)) {
1606 fput(req->file);
1607 return -EINVAL;
1608 }
1609
1610 req->datasync = datasync;
1611 INIT_WORK(&req->work, aio_fsync_work);
1612 schedule_work(&req->work);
9061d14a 1613 return 0;
a3c0d439
CH
1614}
1615
bfe4037e
CH
1616static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1617{
1618 struct file *file = iocb->poll.file;
1619
1620 aio_complete(iocb, mangle_poll(mask), 0);
1621 fput(file);
1622}
1623
1624static void aio_poll_complete_work(struct work_struct *work)
1625{
1626 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1627 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1628 struct poll_table_struct pt = { ._key = req->events };
1629 struct kioctx *ctx = iocb->ki_ctx;
1630 __poll_t mask = 0;
1631
1632 if (!READ_ONCE(req->cancelled))
1633 mask = vfs_poll(req->file, &pt) & req->events;
1634
1635 /*
1636 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1637 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1638 * synchronize with them. In the cancellation case the list_del_init
1639 * itself is not actually needed, but harmless so we keep it in to
1640 * avoid further branches in the fast path.
1641 */
1642 spin_lock_irq(&ctx->ctx_lock);
1643 if (!mask && !READ_ONCE(req->cancelled)) {
1644 add_wait_queue(req->head, &req->wait);
1645 spin_unlock_irq(&ctx->ctx_lock);
1646 return;
1647 }
1648 list_del_init(&iocb->ki_list);
1649 spin_unlock_irq(&ctx->ctx_lock);
1650
1651 aio_poll_complete(iocb, mask);
1652}
1653
1654/* assumes we are called with irqs disabled */
1655static int aio_poll_cancel(struct kiocb *iocb)
1656{
1657 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1658 struct poll_iocb *req = &aiocb->poll;
1659
1660 spin_lock(&req->head->lock);
1661 WRITE_ONCE(req->cancelled, true);
1662 if (!list_empty(&req->wait.entry)) {
1663 list_del_init(&req->wait.entry);
1664 schedule_work(&aiocb->poll.work);
1665 }
1666 spin_unlock(&req->head->lock);
1667
1668 return 0;
1669}
1670
1671static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1672 void *key)
1673{
1674 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1675 __poll_t mask = key_to_poll(key);
1676
1677 req->woken = true;
1678
1679 /* for instances that support it check for an event match first: */
1680 if (mask && !(mask & req->events))
1681 return 0;
1682
1683 list_del_init(&req->wait.entry);
1684 schedule_work(&req->work);
1685 return 1;
1686}
1687
1688struct aio_poll_table {
1689 struct poll_table_struct pt;
1690 struct aio_kiocb *iocb;
1691 int error;
1692};
1693
1694static void
1695aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1696 struct poll_table_struct *p)
1697{
1698 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1699
1700 /* multiple wait queues per file are not supported */
1701 if (unlikely(pt->iocb->poll.head)) {
1702 pt->error = -EINVAL;
1703 return;
1704 }
1705
1706 pt->error = 0;
1707 pt->iocb->poll.head = head;
1708 add_wait_queue(head, &pt->iocb->poll.wait);
1709}
1710
1711static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1712{
1713 struct kioctx *ctx = aiocb->ki_ctx;
1714 struct poll_iocb *req = &aiocb->poll;
1715 struct aio_poll_table apt;
1716 __poll_t mask;
1717
1718 /* reject any unknown events outside the normal event mask. */
1719 if ((u16)iocb->aio_buf != iocb->aio_buf)
1720 return -EINVAL;
1721 /* reject fields that are not defined for poll */
1722 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1723 return -EINVAL;
1724
1725 INIT_WORK(&req->work, aio_poll_complete_work);
1726 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1727 req->file = fget(iocb->aio_fildes);
1728 if (unlikely(!req->file))
1729 return -EBADF;
1730
1731 apt.pt._qproc = aio_poll_queue_proc;
1732 apt.pt._key = req->events;
1733 apt.iocb = aiocb;
1734 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1735
1736 /* initialized the list so that we can do list_empty checks */
1737 INIT_LIST_HEAD(&req->wait.entry);
1738 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1739
1740 /* one for removal from waitqueue, one for this function */
1741 refcount_set(&aiocb->ki_refcnt, 2);
1742
1743 mask = vfs_poll(req->file, &apt.pt) & req->events;
1744 if (unlikely(!req->head)) {
1745 /* we did not manage to set up a waitqueue, done */
1746 goto out;
1747 }
1748
1749 spin_lock_irq(&ctx->ctx_lock);
1750 spin_lock(&req->head->lock);
1751 if (req->woken) {
1752 /* wake_up context handles the rest */
1753 mask = 0;
1754 apt.error = 0;
1755 } else if (mask || apt.error) {
1756 /* if we get an error or a mask we are done */
1757 WARN_ON_ONCE(list_empty(&req->wait.entry));
1758 list_del_init(&req->wait.entry);
1759 } else {
1760 /* actually waiting for an event */
1761 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1762 aiocb->ki_cancel = aio_poll_cancel;
1763 }
1764 spin_unlock(&req->head->lock);
1765 spin_unlock_irq(&ctx->ctx_lock);
1766
1767out:
1768 if (unlikely(apt.error)) {
1769 fput(req->file);
1770 return apt.error;
1771 }
1772
1773 if (mask)
1774 aio_poll_complete(aiocb, mask);
1775 iocb_put(aiocb);
1776 return 0;
1777}
1778
d5470b59 1779static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
95af8496 1780 bool compat)
1da177e4 1781{
04b2fa9f 1782 struct aio_kiocb *req;
95af8496 1783 struct iocb iocb;
1da177e4
LT
1784 ssize_t ret;
1785
95af8496
AV
1786 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1787 return -EFAULT;
1788
1da177e4 1789 /* enforce forwards compatibility on users */
95af8496 1790 if (unlikely(iocb.aio_reserved2)) {
caf4167a 1791 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1792 return -EINVAL;
1793 }
1794
1795 /* prevent overflows */
1796 if (unlikely(
95af8496
AV
1797 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1798 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1799 ((ssize_t)iocb.aio_nbytes < 0)
1da177e4 1800 )) {
acd88d4e 1801 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1802 return -EINVAL;
1803 }
1804
41ef4eb8 1805 req = aio_get_req(ctx);
1d98ebfc 1806 if (unlikely(!req))
1da177e4 1807 return -EAGAIN;
1d98ebfc 1808
95af8496 1809 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
9c3060be
DL
1810 /*
1811 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1812 * instance of the file* now. The file descriptor must be
1813 * an eventfd() fd, and will be signaled for each completed
1814 * event using the eventfd_signal() function.
1815 */
95af8496 1816 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
801678c5 1817 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1818 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1819 req->ki_eventfd = NULL;
9c3060be
DL
1820 goto out_put_req;
1821 }
9830f4be
GR
1822 }
1823
8a660890 1824 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1825 if (unlikely(ret)) {
caf4167a 1826 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1827 goto out_put_req;
1828 }
1829
04b2fa9f 1830 req->ki_user_iocb = user_iocb;
95af8496 1831 req->ki_user_data = iocb.aio_data;
1da177e4 1832
95af8496 1833 switch (iocb.aio_lio_opcode) {
89319d31 1834 case IOCB_CMD_PREAD:
95af8496 1835 ret = aio_read(&req->rw, &iocb, false, compat);
89319d31
CH
1836 break;
1837 case IOCB_CMD_PWRITE:
95af8496 1838 ret = aio_write(&req->rw, &iocb, false, compat);
89319d31
CH
1839 break;
1840 case IOCB_CMD_PREADV:
95af8496 1841 ret = aio_read(&req->rw, &iocb, true, compat);
89319d31
CH
1842 break;
1843 case IOCB_CMD_PWRITEV:
95af8496 1844 ret = aio_write(&req->rw, &iocb, true, compat);
89319d31 1845 break;
a3c0d439 1846 case IOCB_CMD_FSYNC:
95af8496 1847 ret = aio_fsync(&req->fsync, &iocb, false);
a3c0d439
CH
1848 break;
1849 case IOCB_CMD_FDSYNC:
95af8496 1850 ret = aio_fsync(&req->fsync, &iocb, true);
ac060cba 1851 break;
bfe4037e
CH
1852 case IOCB_CMD_POLL:
1853 ret = aio_poll(req, &iocb);
1854 break;
89319d31 1855 default:
95af8496 1856 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
89319d31
CH
1857 ret = -EINVAL;
1858 break;
1859 }
41003a7b 1860
92ce4728 1861 /*
9061d14a
AV
1862 * If ret is 0, we'd either done aio_complete() ourselves or have
1863 * arranged for that to be done asynchronously. Anything non-zero
1864 * means that we need to destroy req ourselves.
92ce4728 1865 */
9061d14a 1866 if (ret)
89319d31 1867 goto out_put_req;
1da177e4 1868 return 0;
1da177e4 1869out_put_req:
e1bdd5f2 1870 put_reqs_available(ctx, 1);
e34ecee2 1871 percpu_ref_put(&ctx->reqs);
54843f87
CH
1872 if (req->ki_eventfd)
1873 eventfd_ctx_put(req->ki_eventfd);
1874 kmem_cache_free(kiocb_cachep, req);
1da177e4
LT
1875 return ret;
1876}
1877
67ba049f
AV
1878/* sys_io_submit:
1879 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1880 * the number of iocbs queued. May return -EINVAL if the aio_context
1881 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1882 * *iocbpp[0] is not properly initialized, if the operation specified
1883 * is invalid for the file descriptor in the iocb. May fail with
1884 * -EFAULT if any of the data structures point to invalid data. May
1885 * fail with -EBADF if the file descriptor specified in the first
1886 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1887 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1888 * fail with -ENOSYS if not implemented.
1889 */
1890SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1891 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1892{
1893 struct kioctx *ctx;
1894 long ret = 0;
080d676d 1895 int i = 0;
9f5b9425 1896 struct blk_plug plug;
1da177e4
LT
1897
1898 if (unlikely(nr < 0))
1899 return -EINVAL;
1900
1da177e4
LT
1901 ctx = lookup_ioctx(ctx_id);
1902 if (unlikely(!ctx)) {
caf4167a 1903 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1904 return -EINVAL;
1905 }
1906
1da92779
AV
1907 if (nr > ctx->nr_events)
1908 nr = ctx->nr_events;
1909
9f5b9425 1910 blk_start_plug(&plug);
67ba049f 1911 for (i = 0; i < nr; i++) {
1da177e4 1912 struct iocb __user *user_iocb;
1da177e4 1913
67ba049f 1914 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1915 ret = -EFAULT;
1916 break;
1917 }
1918
67ba049f 1919 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1920 if (ret)
1921 break;
1922 }
9f5b9425 1923 blk_finish_plug(&plug);
1da177e4 1924
723be6e3 1925 percpu_ref_put(&ctx->users);
1da177e4
LT
1926 return i ? i : ret;
1927}
1928
c00d2c7e 1929#ifdef CONFIG_COMPAT
c00d2c7e 1930COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1931 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1932{
67ba049f
AV
1933 struct kioctx *ctx;
1934 long ret = 0;
1935 int i = 0;
1936 struct blk_plug plug;
c00d2c7e
AV
1937
1938 if (unlikely(nr < 0))
1939 return -EINVAL;
1940
67ba049f
AV
1941 ctx = lookup_ioctx(ctx_id);
1942 if (unlikely(!ctx)) {
1943 pr_debug("EINVAL: invalid context id\n");
1944 return -EINVAL;
1945 }
1946
1da92779
AV
1947 if (nr > ctx->nr_events)
1948 nr = ctx->nr_events;
1949
67ba049f
AV
1950 blk_start_plug(&plug);
1951 for (i = 0; i < nr; i++) {
1952 compat_uptr_t user_iocb;
1953
1954 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1955 ret = -EFAULT;
1956 break;
1957 }
1958
1959 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1960 if (ret)
1961 break;
1962 }
1963 blk_finish_plug(&plug);
1964
1965 percpu_ref_put(&ctx->users);
1966 return i ? i : ret;
c00d2c7e
AV
1967}
1968#endif
1969
1da177e4
LT
1970/* lookup_kiocb
1971 * Finds a given iocb for cancellation.
1da177e4 1972 */
04b2fa9f 1973static struct aio_kiocb *
f3a2752a 1974lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1da177e4 1975{
04b2fa9f 1976 struct aio_kiocb *kiocb;
d00689af
ZB
1977
1978 assert_spin_locked(&ctx->ctx_lock);
1979
1da177e4 1980 /* TODO: use a hash or array, this sucks. */
04b2fa9f
CH
1981 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1982 if (kiocb->ki_user_iocb == iocb)
1da177e4
LT
1983 return kiocb;
1984 }
1985 return NULL;
1986}
1987
1988/* sys_io_cancel:
1989 * Attempts to cancel an iocb previously passed to io_submit. If
1990 * the operation is successfully cancelled, the resulting event is
1991 * copied into the memory pointed to by result without being placed
1992 * into the completion queue and 0 is returned. May fail with
1993 * -EFAULT if any of the data structures pointed to are invalid.
1994 * May fail with -EINVAL if aio_context specified by ctx_id is
1995 * invalid. May fail with -EAGAIN if the iocb specified was not
1996 * cancelled. Will fail with -ENOSYS if not implemented.
1997 */
002c8976
HC
1998SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1999 struct io_event __user *, result)
1da177e4 2000{
1da177e4 2001 struct kioctx *ctx;
04b2fa9f 2002 struct aio_kiocb *kiocb;
888933f8 2003 int ret = -EINVAL;
1da177e4 2004 u32 key;
1da177e4 2005
f3a2752a 2006 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2007 return -EFAULT;
f3a2752a
CH
2008 if (unlikely(key != KIOCB_KEY))
2009 return -EINVAL;
1da177e4
LT
2010
2011 ctx = lookup_ioctx(ctx_id);
2012 if (unlikely(!ctx))
2013 return -EINVAL;
2014
2015 spin_lock_irq(&ctx->ctx_lock);
f3a2752a 2016 kiocb = lookup_kiocb(ctx, iocb);
888933f8
CH
2017 if (kiocb) {
2018 ret = kiocb->ki_cancel(&kiocb->rw);
2019 list_del_init(&kiocb->ki_list);
2020 }
1da177e4
LT
2021 spin_unlock_irq(&ctx->ctx_lock);
2022
906b973c 2023 if (!ret) {
bec68faa
KO
2024 /*
2025 * The result argument is no longer used - the io_event is
2026 * always delivered via the ring buffer. -EINPROGRESS indicates
2027 * cancellation is progress:
906b973c 2028 */
bec68faa 2029 ret = -EINPROGRESS;
906b973c 2030 }
1da177e4 2031
723be6e3 2032 percpu_ref_put(&ctx->users);
1da177e4
LT
2033
2034 return ret;
2035}
2036
fa2e62a5
DD
2037static long do_io_getevents(aio_context_t ctx_id,
2038 long min_nr,
2039 long nr,
2040 struct io_event __user *events,
2041 struct timespec64 *ts)
2042{
2043 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2044 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2045 long ret = -EINVAL;
2046
2047 if (likely(ioctx)) {
2048 if (likely(min_nr <= nr && min_nr >= 0))
2049 ret = read_events(ioctx, min_nr, nr, events, until);
2050 percpu_ref_put(&ioctx->users);
2051 }
2052
2053 return ret;
2054}
2055
1da177e4
LT
2056/* io_getevents:
2057 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2058 * the completion queue for the aio_context specified by ctx_id. If
2059 * it succeeds, the number of read events is returned. May fail with
2060 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2061 * out of range, if timeout is out of range. May fail with -EFAULT
2062 * if any of the memory specified is invalid. May return 0 or
2063 * < min_nr if the timeout specified by timeout has elapsed
2064 * before sufficient events are available, where timeout == NULL
2065 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2066 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2067 */
002c8976
HC
2068SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2069 long, min_nr,
2070 long, nr,
2071 struct io_event __user *, events,
2072 struct timespec __user *, timeout)
1da177e4 2073{
fa2e62a5 2074 struct timespec64 ts;
7a074e96
CH
2075 int ret;
2076
2077 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2078 return -EFAULT;
2079
2080 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2081 if (!ret && signal_pending(current))
2082 ret = -EINTR;
2083 return ret;
2084}
1da177e4 2085
9ba546c0
CH
2086struct __aio_sigset {
2087 const sigset_t __user *sigmask;
2088 size_t sigsetsize;
2089};
2090
7a074e96
CH
2091SYSCALL_DEFINE6(io_pgetevents,
2092 aio_context_t, ctx_id,
2093 long, min_nr,
2094 long, nr,
2095 struct io_event __user *, events,
2096 struct timespec __user *, timeout,
2097 const struct __aio_sigset __user *, usig)
2098{
2099 struct __aio_sigset ksig = { NULL, };
2100 sigset_t ksigmask, sigsaved;
2101 struct timespec64 ts;
2102 int ret;
2103
2104 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2105 return -EFAULT;
2106
2107 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2108 return -EFAULT;
2109
2110 if (ksig.sigmask) {
2111 if (ksig.sigsetsize != sizeof(sigset_t))
2112 return -EINVAL;
2113 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
fa2e62a5 2114 return -EFAULT;
7a074e96
CH
2115 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2116 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2117 }
2118
2119 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2120 if (signal_pending(current)) {
2121 if (ksig.sigmask) {
2122 current->saved_sigmask = sigsaved;
2123 set_restore_sigmask();
2124 }
2125
2126 if (!ret)
2127 ret = -ERESTARTNOHAND;
2128 } else {
2129 if (ksig.sigmask)
2130 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1da177e4 2131 }
fa2e62a5 2132
7a074e96 2133 return ret;
1da177e4 2134}
c00d2c7e
AV
2135
2136#ifdef CONFIG_COMPAT
2137COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2138 compat_long_t, min_nr,
2139 compat_long_t, nr,
2140 struct io_event __user *, events,
2141 struct compat_timespec __user *, timeout)
2142{
fa2e62a5 2143 struct timespec64 t;
7a074e96
CH
2144 int ret;
2145
2146 if (timeout && compat_get_timespec64(&t, timeout))
2147 return -EFAULT;
2148
2149 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2150 if (!ret && signal_pending(current))
2151 ret = -EINTR;
2152 return ret;
2153}
2154
c00d2c7e 2155
7a074e96
CH
2156struct __compat_aio_sigset {
2157 compat_sigset_t __user *sigmask;
2158 compat_size_t sigsetsize;
2159};
2160
2161COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2162 compat_aio_context_t, ctx_id,
2163 compat_long_t, min_nr,
2164 compat_long_t, nr,
2165 struct io_event __user *, events,
2166 struct compat_timespec __user *, timeout,
2167 const struct __compat_aio_sigset __user *, usig)
2168{
2169 struct __compat_aio_sigset ksig = { NULL, };
2170 sigset_t ksigmask, sigsaved;
2171 struct timespec64 t;
2172 int ret;
2173
2174 if (timeout && compat_get_timespec64(&t, timeout))
2175 return -EFAULT;
2176
2177 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2178 return -EFAULT;
2179
2180 if (ksig.sigmask) {
2181 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2182 return -EINVAL;
2183 if (get_compat_sigset(&ksigmask, ksig.sigmask))
c00d2c7e 2184 return -EFAULT;
7a074e96
CH
2185 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2186 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2187 }
c00d2c7e 2188
7a074e96
CH
2189 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2190 if (signal_pending(current)) {
2191 if (ksig.sigmask) {
2192 current->saved_sigmask = sigsaved;
2193 set_restore_sigmask();
2194 }
2195 if (!ret)
2196 ret = -ERESTARTNOHAND;
2197 } else {
2198 if (ksig.sigmask)
2199 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
c00d2c7e 2200 }
fa2e62a5 2201
7a074e96 2202 return ret;
c00d2c7e
AV
2203}
2204#endif