]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/backref.c
btrfs: uninline some static inline helpers from backref.h
[thirdparty/linux.git] / fs / btrfs / backref.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a542ad1b
JS
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
a542ad1b
JS
4 */
5
f54de068 6#include <linux/mm.h>
afce772e 7#include <linux/rbtree.h>
00142756 8#include <trace/events/btrfs.h>
a542ad1b
JS
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
8da6d581
JS
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
b916a59a 15#include "locking.h"
1b60d2ec 16#include "misc.h"
f3a84ccd 17#include "tree-mod-log.h"
c7f13d42 18#include "fs.h"
07e81dc9 19#include "accessors.h"
a0231804 20#include "extent-tree.h"
67707479 21#include "relocation.h"
27137fac 22#include "tree-checker.h"
a542ad1b 23
877c1476
FM
24/* Just arbitrary numbers so we can be sure one of these happened. */
25#define BACKREF_FOUND_SHARED 6
26#define BACKREF_FOUND_NOT_SHARED 7
dc046b10 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
c7499a64 31 u64 num_bytes;
976b1908
JS
32 struct extent_inode_elem *next;
33};
34
88ffb665
FM
35static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 const struct btrfs_key *key,
73980bec
JM
37 const struct extent_buffer *eb,
38 const struct btrfs_file_extent_item *fi,
6ce6ba53 39 struct extent_inode_elem **eie)
976b1908 40{
c7499a64 41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
88ffb665 42 u64 offset = key->offset;
976b1908 43 struct extent_inode_elem *e;
88ffb665
FM
44 const u64 *root_ids;
45 int root_count;
46 bool cached;
976b1908 47
0cad8f14
FM
48 if (!ctx->ignore_extent_item_pos &&
49 !btrfs_file_extent_compression(eb, fi) &&
8ca15e05
JB
50 !btrfs_file_extent_encryption(eb, fi) &&
51 !btrfs_file_extent_other_encoding(eb, fi)) {
52 u64 data_offset;
976b1908 53
8ca15e05 54 data_offset = btrfs_file_extent_offset(eb, fi);
8ca15e05 55
88ffb665
FM
56 if (ctx->extent_item_pos < data_offset ||
57 ctx->extent_item_pos >= data_offset + data_len)
8ca15e05 58 return 1;
88ffb665 59 offset += ctx->extent_item_pos - data_offset;
8ca15e05 60 }
976b1908 61
88ffb665
FM
62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 goto add_inode_elem;
64
65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 &root_count);
67 if (!cached)
68 goto add_inode_elem;
69
70 for (int i = 0; i < root_count; i++) {
71 int ret;
72
73 ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 data_len, root_ids[i],
75 ctx->user_ctx);
76 if (ret)
77 return ret;
78 }
79
80add_inode_elem:
976b1908
JS
81 e = kmalloc(sizeof(*e), GFP_NOFS);
82 if (!e)
83 return -ENOMEM;
84
85 e->next = *eie;
86 e->inum = key->objectid;
88ffb665 87 e->offset = offset;
c7499a64 88 e->num_bytes = data_len;
976b1908
JS
89 *eie = e;
90
91 return 0;
92}
93
f05c4746
WS
94static void free_inode_elem_list(struct extent_inode_elem *eie)
95{
96 struct extent_inode_elem *eie_next;
97
98 for (; eie; eie = eie_next) {
99 eie_next = eie->next;
100 kfree(eie);
101 }
102}
103
88ffb665
FM
104static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 const struct extent_buffer *eb,
6ce6ba53 106 struct extent_inode_elem **eie)
976b1908
JS
107{
108 u64 disk_byte;
109 struct btrfs_key key;
110 struct btrfs_file_extent_item *fi;
111 int slot;
112 int nritems;
113 int extent_type;
114 int ret;
115
116 /*
117 * from the shared data ref, we only have the leaf but we need
118 * the key. thus, we must look into all items and see that we
119 * find one (some) with a reference to our extent item.
120 */
121 nritems = btrfs_header_nritems(eb);
122 for (slot = 0; slot < nritems; ++slot) {
123 btrfs_item_key_to_cpu(eb, &key, slot);
124 if (key.type != BTRFS_EXTENT_DATA_KEY)
125 continue;
126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 extent_type = btrfs_file_extent_type(eb, fi);
128 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 continue;
130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
88ffb665 132 if (disk_byte != ctx->bytenr)
976b1908
JS
133 continue;
134
88ffb665
FM
135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
976b1908
JS
137 return ret;
138 }
139
140 return 0;
141}
142
86d5f994 143struct preftree {
ecf160b4 144 struct rb_root_cached root;
6c336b21 145 unsigned int count;
86d5f994
EN
146};
147
ecf160b4 148#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
86d5f994
EN
149
150struct preftrees {
151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 struct preftree indirect_missing_keys;
154};
155
3ec4d323
EN
156/*
157 * Checks for a shared extent during backref search.
158 *
159 * The share_count tracks prelim_refs (direct and indirect) having a
160 * ref->count >0:
161 * - incremented when a ref->count transitions to >0
162 * - decremented when a ref->count transitions to <1
163 */
164struct share_check {
877c1476
FM
165 struct btrfs_backref_share_check_ctx *ctx;
166 struct btrfs_root *root;
3ec4d323 167 u64 inum;
73e339e6 168 u64 data_bytenr;
6976201f 169 u64 data_extent_gen;
73e339e6
FM
170 /*
171 * Counts number of inodes that refer to an extent (different inodes in
172 * the same root or different roots) that we could find. The sharedness
173 * check typically stops once this counter gets greater than 1, so it
174 * may not reflect the total number of inodes.
175 */
3ec4d323 176 int share_count;
73e339e6
FM
177 /*
178 * The number of times we found our inode refers to the data extent we
179 * are determining the sharedness. In other words, how many file extent
180 * items we could find for our inode that point to our target data
181 * extent. The value we get here after finishing the extent sharedness
182 * check may be smaller than reality, but if it ends up being greater
183 * than 1, then we know for sure the inode has multiple file extent
184 * items that point to our inode, and we can safely assume it's useful
185 * to cache the sharedness check result.
186 */
187 int self_ref_count;
4fc7b572 188 bool have_delayed_delete_refs;
3ec4d323
EN
189};
190
191static inline int extent_is_shared(struct share_check *sc)
192{
193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194}
195
b9e9a6cb
WS
196static struct kmem_cache *btrfs_prelim_ref_cache;
197
198int __init btrfs_prelim_ref_init(void)
199{
200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
e0c476b1 201 sizeof(struct prelim_ref),
b9e9a6cb 202 0,
fba4b697 203 SLAB_MEM_SPREAD,
b9e9a6cb
WS
204 NULL);
205 if (!btrfs_prelim_ref_cache)
206 return -ENOMEM;
207 return 0;
208}
209
e67c718b 210void __cold btrfs_prelim_ref_exit(void)
b9e9a6cb 211{
5598e900 212 kmem_cache_destroy(btrfs_prelim_ref_cache);
b9e9a6cb
WS
213}
214
86d5f994
EN
215static void free_pref(struct prelim_ref *ref)
216{
217 kmem_cache_free(btrfs_prelim_ref_cache, ref);
218}
219
220/*
221 * Return 0 when both refs are for the same block (and can be merged).
222 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
223 * indicates a 'higher' block.
224 */
225static int prelim_ref_compare(struct prelim_ref *ref1,
226 struct prelim_ref *ref2)
227{
228 if (ref1->level < ref2->level)
229 return -1;
230 if (ref1->level > ref2->level)
231 return 1;
232 if (ref1->root_id < ref2->root_id)
233 return -1;
234 if (ref1->root_id > ref2->root_id)
235 return 1;
236 if (ref1->key_for_search.type < ref2->key_for_search.type)
237 return -1;
238 if (ref1->key_for_search.type > ref2->key_for_search.type)
239 return 1;
240 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
241 return -1;
242 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
243 return 1;
244 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
245 return -1;
246 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
247 return 1;
248 if (ref1->parent < ref2->parent)
249 return -1;
250 if (ref1->parent > ref2->parent)
251 return 1;
252
253 return 0;
254}
255
ccc8dc75 256static void update_share_count(struct share_check *sc, int oldcount,
73e339e6 257 int newcount, struct prelim_ref *newref)
3ec4d323
EN
258{
259 if ((!sc) || (oldcount == 0 && newcount < 1))
260 return;
261
262 if (oldcount > 0 && newcount < 1)
263 sc->share_count--;
264 else if (oldcount < 1 && newcount > 0)
265 sc->share_count++;
73e339e6 266
877c1476 267 if (newref->root_id == sc->root->root_key.objectid &&
73e339e6
FM
268 newref->wanted_disk_byte == sc->data_bytenr &&
269 newref->key_for_search.objectid == sc->inum)
270 sc->self_ref_count += newref->count;
3ec4d323
EN
271}
272
86d5f994
EN
273/*
274 * Add @newref to the @root rbtree, merging identical refs.
275 *
3ec4d323 276 * Callers should assume that newref has been freed after calling.
86d5f994 277 */
00142756
JM
278static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
279 struct preftree *preftree,
3ec4d323
EN
280 struct prelim_ref *newref,
281 struct share_check *sc)
86d5f994 282{
ecf160b4 283 struct rb_root_cached *root;
86d5f994
EN
284 struct rb_node **p;
285 struct rb_node *parent = NULL;
286 struct prelim_ref *ref;
287 int result;
ecf160b4 288 bool leftmost = true;
86d5f994
EN
289
290 root = &preftree->root;
ecf160b4 291 p = &root->rb_root.rb_node;
86d5f994
EN
292
293 while (*p) {
294 parent = *p;
295 ref = rb_entry(parent, struct prelim_ref, rbnode);
296 result = prelim_ref_compare(ref, newref);
297 if (result < 0) {
298 p = &(*p)->rb_left;
299 } else if (result > 0) {
300 p = &(*p)->rb_right;
ecf160b4 301 leftmost = false;
86d5f994
EN
302 } else {
303 /* Identical refs, merge them and free @newref */
304 struct extent_inode_elem *eie = ref->inode_list;
305
306 while (eie && eie->next)
307 eie = eie->next;
308
309 if (!eie)
310 ref->inode_list = newref->inode_list;
311 else
312 eie->next = newref->inode_list;
00142756
JM
313 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
314 preftree->count);
3ec4d323
EN
315 /*
316 * A delayed ref can have newref->count < 0.
317 * The ref->count is updated to follow any
318 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
319 */
320 update_share_count(sc, ref->count,
73e339e6 321 ref->count + newref->count, newref);
86d5f994
EN
322 ref->count += newref->count;
323 free_pref(newref);
324 return;
325 }
326 }
327
73e339e6 328 update_share_count(sc, 0, newref->count, newref);
6c336b21 329 preftree->count++;
00142756 330 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
86d5f994 331 rb_link_node(&newref->rbnode, parent, p);
ecf160b4 332 rb_insert_color_cached(&newref->rbnode, root, leftmost);
86d5f994
EN
333}
334
335/*
336 * Release the entire tree. We don't care about internal consistency so
337 * just free everything and then reset the tree root.
338 */
339static void prelim_release(struct preftree *preftree)
340{
341 struct prelim_ref *ref, *next_ref;
342
ecf160b4 343 rbtree_postorder_for_each_entry_safe(ref, next_ref,
92876eec
FM
344 &preftree->root.rb_root, rbnode) {
345 free_inode_elem_list(ref->inode_list);
86d5f994 346 free_pref(ref);
92876eec 347 }
86d5f994 348
ecf160b4 349 preftree->root = RB_ROOT_CACHED;
6c336b21 350 preftree->count = 0;
86d5f994
EN
351}
352
d5c88b73
JS
353/*
354 * the rules for all callers of this function are:
355 * - obtaining the parent is the goal
356 * - if you add a key, you must know that it is a correct key
357 * - if you cannot add the parent or a correct key, then we will look into the
358 * block later to set a correct key
359 *
360 * delayed refs
361 * ============
362 * backref type | shared | indirect | shared | indirect
363 * information | tree | tree | data | data
364 * --------------------+--------+----------+--------+----------
365 * parent logical | y | - | - | -
366 * key to resolve | - | y | y | y
367 * tree block logical | - | - | - | -
368 * root for resolving | y | y | y | y
369 *
370 * - column 1: we've the parent -> done
371 * - column 2, 3, 4: we use the key to find the parent
372 *
373 * on disk refs (inline or keyed)
374 * ==============================
375 * backref type | shared | indirect | shared | indirect
376 * information | tree | tree | data | data
377 * --------------------+--------+----------+--------+----------
378 * parent logical | y | - | y | -
379 * key to resolve | - | - | - | y
380 * tree block logical | y | y | y | y
381 * root for resolving | - | y | y | y
382 *
383 * - column 1, 3: we've the parent -> done
384 * - column 2: we take the first key from the block to find the parent
e0c476b1 385 * (see add_missing_keys)
d5c88b73
JS
386 * - column 4: we use the key to find the parent
387 *
388 * additional information that's available but not required to find the parent
389 * block might help in merging entries to gain some speed.
390 */
00142756
JM
391static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
392 struct preftree *preftree, u64 root_id,
e0c476b1 393 const struct btrfs_key *key, int level, u64 parent,
3ec4d323
EN
394 u64 wanted_disk_byte, int count,
395 struct share_check *sc, gfp_t gfp_mask)
8da6d581 396{
e0c476b1 397 struct prelim_ref *ref;
8da6d581 398
48ec4736
LB
399 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
400 return 0;
401
b9e9a6cb 402 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
403 if (!ref)
404 return -ENOMEM;
405
406 ref->root_id = root_id;
7ac8b88e 407 if (key)
d5c88b73 408 ref->key_for_search = *key;
7ac8b88e 409 else
d5c88b73 410 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 411
3301958b 412 ref->inode_list = NULL;
8da6d581
JS
413 ref->level = level;
414 ref->count = count;
415 ref->parent = parent;
416 ref->wanted_disk_byte = wanted_disk_byte;
3ec4d323
EN
417 prelim_ref_insert(fs_info, preftree, ref, sc);
418 return extent_is_shared(sc);
8da6d581
JS
419}
420
86d5f994 421/* direct refs use root == 0, key == NULL */
00142756
JM
422static int add_direct_ref(const struct btrfs_fs_info *fs_info,
423 struct preftrees *preftrees, int level, u64 parent,
3ec4d323
EN
424 u64 wanted_disk_byte, int count,
425 struct share_check *sc, gfp_t gfp_mask)
86d5f994 426{
00142756 427 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
3ec4d323 428 parent, wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
429}
430
431/* indirect refs use parent == 0 */
00142756
JM
432static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
433 struct preftrees *preftrees, u64 root_id,
86d5f994 434 const struct btrfs_key *key, int level,
3ec4d323
EN
435 u64 wanted_disk_byte, int count,
436 struct share_check *sc, gfp_t gfp_mask)
86d5f994
EN
437{
438 struct preftree *tree = &preftrees->indirect;
439
440 if (!key)
441 tree = &preftrees->indirect_missing_keys;
00142756 442 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
3ec4d323 443 wanted_disk_byte, count, sc, gfp_mask);
86d5f994
EN
444}
445
ed58f2e6 446static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
447{
448 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
449 struct rb_node *parent = NULL;
450 struct prelim_ref *ref = NULL;
9c6c723f 451 struct prelim_ref target = {};
ed58f2e6 452 int result;
453
454 target.parent = bytenr;
455
456 while (*p) {
457 parent = *p;
458 ref = rb_entry(parent, struct prelim_ref, rbnode);
459 result = prelim_ref_compare(ref, &target);
460
461 if (result < 0)
462 p = &(*p)->rb_left;
463 else if (result > 0)
464 p = &(*p)->rb_right;
465 else
466 return 1;
467 }
468 return 0;
469}
470
a2c8d27e
FM
471static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
472 struct btrfs_root *root, struct btrfs_path *path,
ed58f2e6 473 struct ulist *parents,
474 struct preftrees *preftrees, struct prelim_ref *ref,
a2c8d27e 475 int level)
8da6d581 476{
69bca40d
AB
477 int ret = 0;
478 int slot;
479 struct extent_buffer *eb;
480 struct btrfs_key key;
7ef81ac8 481 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 482 struct btrfs_file_extent_item *fi;
ed8c4913 483 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 484 u64 disk_byte;
7ef81ac8
JB
485 u64 wanted_disk_byte = ref->wanted_disk_byte;
486 u64 count = 0;
7ac8b88e 487 u64 data_offset;
560840af 488 u8 type;
8da6d581 489
69bca40d
AB
490 if (level != 0) {
491 eb = path->nodes[level];
492 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
493 if (ret < 0)
494 return ret;
8da6d581 495 return 0;
69bca40d 496 }
8da6d581
JS
497
498 /*
ed58f2e6 499 * 1. We normally enter this function with the path already pointing to
500 * the first item to check. But sometimes, we may enter it with
501 * slot == nritems.
502 * 2. We are searching for normal backref but bytenr of this leaf
503 * matches shared data backref
cfc0eed0 504 * 3. The leaf owner is not equal to the root we are searching
505 *
ed58f2e6 506 * For these cases, go to the next leaf before we continue.
8da6d581 507 */
ed58f2e6 508 eb = path->nodes[0];
509 if (path->slots[0] >= btrfs_header_nritems(eb) ||
cfc0eed0 510 is_shared_data_backref(preftrees, eb->start) ||
511 ref->root_id != btrfs_header_owner(eb)) {
a2c8d27e 512 if (ctx->time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
513 ret = btrfs_next_leaf(root, path);
514 else
a2c8d27e 515 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
21633fc6 516 }
8da6d581 517
b25b0b87 518 while (!ret && count < ref->count) {
8da6d581 519 eb = path->nodes[0];
69bca40d
AB
520 slot = path->slots[0];
521
522 btrfs_item_key_to_cpu(eb, &key, slot);
523
524 if (key.objectid != key_for_search->objectid ||
525 key.type != BTRFS_EXTENT_DATA_KEY)
526 break;
527
ed58f2e6 528 /*
529 * We are searching for normal backref but bytenr of this leaf
cfc0eed0 530 * matches shared data backref, OR
531 * the leaf owner is not equal to the root we are searching for
ed58f2e6 532 */
cfc0eed0 533 if (slot == 0 &&
534 (is_shared_data_backref(preftrees, eb->start) ||
535 ref->root_id != btrfs_header_owner(eb))) {
a2c8d27e 536 if (ctx->time_seq == BTRFS_SEQ_LAST)
ed58f2e6 537 ret = btrfs_next_leaf(root, path);
538 else
a2c8d27e 539 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
ed58f2e6 540 continue;
541 }
69bca40d 542 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
560840af
BB
543 type = btrfs_file_extent_type(eb, fi);
544 if (type == BTRFS_FILE_EXTENT_INLINE)
545 goto next;
69bca40d 546 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
7ac8b88e 547 data_offset = btrfs_file_extent_offset(eb, fi);
69bca40d
AB
548
549 if (disk_byte == wanted_disk_byte) {
550 eie = NULL;
ed8c4913 551 old = NULL;
7ac8b88e 552 if (ref->key_for_search.offset == key.offset - data_offset)
553 count++;
554 else
555 goto next;
0cad8f14 556 if (!ctx->skip_inode_ref_list) {
88ffb665
FM
557 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
558 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
559 ret < 0)
69bca40d
AB
560 break;
561 }
ed8c4913
JB
562 if (ret > 0)
563 goto next;
4eb1f66d
TI
564 ret = ulist_add_merge_ptr(parents, eb->start,
565 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
566 if (ret < 0)
567 break;
0cad8f14 568 if (!ret && !ctx->skip_inode_ref_list) {
ed8c4913
JB
569 while (old->next)
570 old = old->next;
571 old->next = eie;
69bca40d 572 }
f05c4746 573 eie = NULL;
8da6d581 574 }
ed8c4913 575next:
a2c8d27e 576 if (ctx->time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
577 ret = btrfs_next_item(root, path);
578 else
a2c8d27e 579 ret = btrfs_next_old_item(root, path, ctx->time_seq);
8da6d581
JS
580 }
581
88ffb665 582 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
f05c4746 583 free_inode_elem_list(eie);
88ffb665
FM
584 else if (ret > 0)
585 ret = 0;
586
69bca40d 587 return ret;
8da6d581
JS
588}
589
590/*
591 * resolve an indirect backref in the form (root_id, key, level)
592 * to a logical address
593 */
a2c8d27e
FM
594static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
595 struct btrfs_path *path,
ed58f2e6 596 struct preftrees *preftrees,
a2c8d27e 597 struct prelim_ref *ref, struct ulist *parents)
8da6d581 598{
8da6d581 599 struct btrfs_root *root;
8da6d581
JS
600 struct extent_buffer *eb;
601 int ret = 0;
602 int root_level;
603 int level = ref->level;
7ac8b88e 604 struct btrfs_key search_key = ref->key_for_search;
8da6d581 605
49d11bea
JB
606 /*
607 * If we're search_commit_root we could possibly be holding locks on
608 * other tree nodes. This happens when qgroups does backref walks when
609 * adding new delayed refs. To deal with this we need to look in cache
610 * for the root, and if we don't find it then we need to search the
611 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
612 * here.
613 */
614 if (path->search_commit_root)
a2c8d27e 615 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
49d11bea 616 else
a2c8d27e 617 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
8da6d581
JS
618 if (IS_ERR(root)) {
619 ret = PTR_ERR(root);
9326f76f
JB
620 goto out_free;
621 }
622
39dba873
JB
623 if (!path->search_commit_root &&
624 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
625 ret = -ENOENT;
626 goto out;
627 }
628
a2c8d27e 629 if (btrfs_is_testing(ctx->fs_info)) {
d9ee522b
JB
630 ret = -ENOENT;
631 goto out;
632 }
633
9e351cc8
JB
634 if (path->search_commit_root)
635 root_level = btrfs_header_level(root->commit_root);
a2c8d27e 636 else if (ctx->time_seq == BTRFS_SEQ_LAST)
21633fc6 637 root_level = btrfs_header_level(root->node);
9e351cc8 638 else
a2c8d27e 639 root_level = btrfs_old_root_level(root, ctx->time_seq);
8da6d581 640
c75e8394 641 if (root_level + 1 == level)
8da6d581
JS
642 goto out;
643
7ac8b88e 644 /*
645 * We can often find data backrefs with an offset that is too large
646 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
647 * subtracting a file's offset with the data offset of its
648 * corresponding extent data item. This can happen for example in the
649 * clone ioctl.
650 *
651 * So if we detect such case we set the search key's offset to zero to
652 * make sure we will find the matching file extent item at
653 * add_all_parents(), otherwise we will miss it because the offset
654 * taken form the backref is much larger then the offset of the file
655 * extent item. This can make us scan a very large number of file
656 * extent items, but at least it will not make us miss any.
657 *
658 * This is an ugly workaround for a behaviour that should have never
659 * existed, but it does and a fix for the clone ioctl would touch a lot
660 * of places, cause backwards incompatibility and would not fix the
661 * problem for extents cloned with older kernels.
662 */
663 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
664 search_key.offset >= LLONG_MAX)
665 search_key.offset = 0;
8da6d581 666 path->lowest_level = level;
a2c8d27e 667 if (ctx->time_seq == BTRFS_SEQ_LAST)
7ac8b88e 668 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
21633fc6 669 else
a2c8d27e 670 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
538f72cd 671
a2c8d27e 672 btrfs_debug(ctx->fs_info,
ab8d0fc4 673 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
c1c9ff7c
GU
674 ref->root_id, level, ref->count, ret,
675 ref->key_for_search.objectid, ref->key_for_search.type,
676 ref->key_for_search.offset);
8da6d581
JS
677 if (ret < 0)
678 goto out;
679
680 eb = path->nodes[level];
9345457f 681 while (!eb) {
fae7f21c 682 if (WARN_ON(!level)) {
9345457f
JS
683 ret = 1;
684 goto out;
685 }
686 level--;
687 eb = path->nodes[level];
8da6d581
JS
688 }
689
a2c8d27e 690 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
8da6d581 691out:
00246528 692 btrfs_put_root(root);
9326f76f 693out_free:
da61d31a
JB
694 path->lowest_level = 0;
695 btrfs_release_path(path);
8da6d581
JS
696 return ret;
697}
698
4dae077a
JM
699static struct extent_inode_elem *
700unode_aux_to_inode_list(struct ulist_node *node)
701{
702 if (!node)
703 return NULL;
704 return (struct extent_inode_elem *)(uintptr_t)node->aux;
705}
706
5614dc3a
FM
707static void free_leaf_list(struct ulist *ulist)
708{
709 struct ulist_node *node;
710 struct ulist_iterator uiter;
711
712 ULIST_ITER_INIT(&uiter);
713 while ((node = ulist_next(ulist, &uiter)))
714 free_inode_elem_list(unode_aux_to_inode_list(node));
715
716 ulist_free(ulist);
717}
718
8da6d581 719/*
52042d8e 720 * We maintain three separate rbtrees: one for direct refs, one for
86d5f994
EN
721 * indirect refs which have a key, and one for indirect refs which do not
722 * have a key. Each tree does merge on insertion.
723 *
724 * Once all of the references are located, we iterate over the tree of
725 * indirect refs with missing keys. An appropriate key is located and
726 * the ref is moved onto the tree for indirect refs. After all missing
727 * keys are thus located, we iterate over the indirect ref tree, resolve
728 * each reference, and then insert the resolved reference onto the
729 * direct tree (merging there too).
730 *
731 * New backrefs (i.e., for parent nodes) are added to the appropriate
732 * rbtree as they are encountered. The new backrefs are subsequently
733 * resolved as above.
8da6d581 734 */
a2c8d27e
FM
735static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
736 struct btrfs_path *path,
86d5f994 737 struct preftrees *preftrees,
6ce6ba53 738 struct share_check *sc)
8da6d581
JS
739{
740 int err;
741 int ret = 0;
8da6d581
JS
742 struct ulist *parents;
743 struct ulist_node *node;
cd1b413c 744 struct ulist_iterator uiter;
86d5f994 745 struct rb_node *rnode;
8da6d581
JS
746
747 parents = ulist_alloc(GFP_NOFS);
748 if (!parents)
749 return -ENOMEM;
750
751 /*
86d5f994
EN
752 * We could trade memory usage for performance here by iterating
753 * the tree, allocating new refs for each insertion, and then
754 * freeing the entire indirect tree when we're done. In some test
755 * cases, the tree can grow quite large (~200k objects).
8da6d581 756 */
ecf160b4 757 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
86d5f994
EN
758 struct prelim_ref *ref;
759
760 ref = rb_entry(rnode, struct prelim_ref, rbnode);
761 if (WARN(ref->parent,
762 "BUG: direct ref found in indirect tree")) {
763 ret = -EINVAL;
764 goto out;
765 }
766
ecf160b4 767 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
6c336b21 768 preftrees->indirect.count--;
86d5f994
EN
769
770 if (ref->count == 0) {
771 free_pref(ref);
8da6d581 772 continue;
86d5f994
EN
773 }
774
877c1476 775 if (sc && ref->root_id != sc->root->root_key.objectid) {
86d5f994 776 free_pref(ref);
dc046b10
JB
777 ret = BACKREF_FOUND_SHARED;
778 goto out;
779 }
a2c8d27e 780 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
95def2ed
WS
781 /*
782 * we can only tolerate ENOENT,otherwise,we should catch error
783 * and return directly.
784 */
785 if (err == -ENOENT) {
a2c8d27e 786 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
3ec4d323 787 NULL);
8da6d581 788 continue;
95def2ed 789 } else if (err) {
86d5f994 790 free_pref(ref);
95def2ed
WS
791 ret = err;
792 goto out;
793 }
8da6d581
JS
794
795 /* we put the first parent into the ref at hand */
cd1b413c
JS
796 ULIST_ITER_INIT(&uiter);
797 node = ulist_next(parents, &uiter);
8da6d581 798 ref->parent = node ? node->val : 0;
4dae077a 799 ref->inode_list = unode_aux_to_inode_list(node);
8da6d581 800
86d5f994 801 /* Add a prelim_ref(s) for any other parent(s). */
cd1b413c 802 while ((node = ulist_next(parents, &uiter))) {
86d5f994
EN
803 struct prelim_ref *new_ref;
804
b9e9a6cb
WS
805 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
806 GFP_NOFS);
8da6d581 807 if (!new_ref) {
86d5f994 808 free_pref(ref);
8da6d581 809 ret = -ENOMEM;
e36902d4 810 goto out;
8da6d581
JS
811 }
812 memcpy(new_ref, ref, sizeof(*ref));
813 new_ref->parent = node->val;
4dae077a 814 new_ref->inode_list = unode_aux_to_inode_list(node);
a2c8d27e 815 prelim_ref_insert(ctx->fs_info, &preftrees->direct,
3ec4d323 816 new_ref, NULL);
8da6d581 817 }
86d5f994 818
3ec4d323 819 /*
52042d8e 820 * Now it's a direct ref, put it in the direct tree. We must
3ec4d323
EN
821 * do this last because the ref could be merged/freed here.
822 */
a2c8d27e 823 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
86d5f994 824
8da6d581 825 ulist_reinit(parents);
9dd14fd6 826 cond_resched();
8da6d581 827 }
e36902d4 828out:
5614dc3a
FM
829 /*
830 * We may have inode lists attached to refs in the parents ulist, so we
831 * must free them before freeing the ulist and its refs.
832 */
833 free_leaf_list(parents);
8da6d581
JS
834 return ret;
835}
836
d5c88b73
JS
837/*
838 * read tree blocks and add keys where required.
839 */
e0c476b1 840static int add_missing_keys(struct btrfs_fs_info *fs_info,
38e3eebf 841 struct preftrees *preftrees, bool lock)
d5c88b73 842{
e0c476b1 843 struct prelim_ref *ref;
d5c88b73 844 struct extent_buffer *eb;
86d5f994
EN
845 struct preftree *tree = &preftrees->indirect_missing_keys;
846 struct rb_node *node;
d5c88b73 847
ecf160b4 848 while ((node = rb_first_cached(&tree->root))) {
789d6a3a
QW
849 struct btrfs_tree_parent_check check = { 0 };
850
86d5f994 851 ref = rb_entry(node, struct prelim_ref, rbnode);
ecf160b4 852 rb_erase_cached(node, &tree->root);
86d5f994
EN
853
854 BUG_ON(ref->parent); /* should not be a direct ref */
855 BUG_ON(ref->key_for_search.type);
d5c88b73 856 BUG_ON(!ref->wanted_disk_byte);
86d5f994 857
789d6a3a
QW
858 check.level = ref->level - 1;
859 check.owner_root = ref->root_id;
860
861 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
64c043de 862 if (IS_ERR(eb)) {
86d5f994 863 free_pref(ref);
64c043de 864 return PTR_ERR(eb);
4eb150d6
QW
865 }
866 if (!extent_buffer_uptodate(eb)) {
86d5f994 867 free_pref(ref);
416bc658
JB
868 free_extent_buffer(eb);
869 return -EIO;
870 }
4eb150d6 871
38e3eebf
JB
872 if (lock)
873 btrfs_tree_read_lock(eb);
d5c88b73
JS
874 if (btrfs_header_level(eb) == 0)
875 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
876 else
877 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
38e3eebf
JB
878 if (lock)
879 btrfs_tree_read_unlock(eb);
d5c88b73 880 free_extent_buffer(eb);
3ec4d323 881 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
9dd14fd6 882 cond_resched();
d5c88b73
JS
883 }
884 return 0;
885}
886
8da6d581
JS
887/*
888 * add all currently queued delayed refs from this head whose seq nr is
889 * smaller or equal that seq to the list
890 */
00142756
JM
891static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
892 struct btrfs_delayed_ref_head *head, u64 seq,
b25b0b87 893 struct preftrees *preftrees, struct share_check *sc)
8da6d581 894{
c6fc2454 895 struct btrfs_delayed_ref_node *node;
d5c88b73 896 struct btrfs_key key;
0e0adbcf 897 struct rb_node *n;
01747e92 898 int count;
b1375d64 899 int ret = 0;
8da6d581 900
d7df2c79 901 spin_lock(&head->lock);
e3d03965 902 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
0e0adbcf
JB
903 node = rb_entry(n, struct btrfs_delayed_ref_node,
904 ref_node);
8da6d581
JS
905 if (node->seq > seq)
906 continue;
907
908 switch (node->action) {
909 case BTRFS_ADD_DELAYED_EXTENT:
910 case BTRFS_UPDATE_DELAYED_HEAD:
911 WARN_ON(1);
912 continue;
913 case BTRFS_ADD_DELAYED_REF:
01747e92 914 count = node->ref_mod;
8da6d581
JS
915 break;
916 case BTRFS_DROP_DELAYED_REF:
01747e92 917 count = node->ref_mod * -1;
8da6d581
JS
918 break;
919 default:
290342f6 920 BUG();
8da6d581
JS
921 }
922 switch (node->type) {
923 case BTRFS_TREE_BLOCK_REF_KEY: {
86d5f994 924 /* NORMAL INDIRECT METADATA backref */
8da6d581 925 struct btrfs_delayed_tree_ref *ref;
943553ef
FM
926 struct btrfs_key *key_ptr = NULL;
927
928 if (head->extent_op && head->extent_op->update_key) {
929 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
930 key_ptr = &key;
931 }
8da6d581
JS
932
933 ref = btrfs_delayed_node_to_tree_ref(node);
00142756 934 ret = add_indirect_ref(fs_info, preftrees, ref->root,
943553ef 935 key_ptr, ref->level + 1,
01747e92
EN
936 node->bytenr, count, sc,
937 GFP_ATOMIC);
8da6d581
JS
938 break;
939 }
940 case BTRFS_SHARED_BLOCK_REF_KEY: {
86d5f994 941 /* SHARED DIRECT METADATA backref */
8da6d581
JS
942 struct btrfs_delayed_tree_ref *ref;
943
944 ref = btrfs_delayed_node_to_tree_ref(node);
86d5f994 945
01747e92
EN
946 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
947 ref->parent, node->bytenr, count,
3ec4d323 948 sc, GFP_ATOMIC);
8da6d581
JS
949 break;
950 }
951 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 952 /* NORMAL INDIRECT DATA backref */
8da6d581 953 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
954 ref = btrfs_delayed_node_to_data_ref(node);
955
956 key.objectid = ref->objectid;
957 key.type = BTRFS_EXTENT_DATA_KEY;
958 key.offset = ref->offset;
dc046b10
JB
959
960 /*
4fc7b572
FM
961 * If we have a share check context and a reference for
962 * another inode, we can't exit immediately. This is
963 * because even if this is a BTRFS_ADD_DELAYED_REF
964 * reference we may find next a BTRFS_DROP_DELAYED_REF
965 * which cancels out this ADD reference.
966 *
967 * If this is a DROP reference and there was no previous
968 * ADD reference, then we need to signal that when we
969 * process references from the extent tree (through
970 * add_inline_refs() and add_keyed_refs()), we should
971 * not exit early if we find a reference for another
972 * inode, because one of the delayed DROP references
973 * may cancel that reference in the extent tree.
dc046b10 974 */
4fc7b572
FM
975 if (sc && count < 0)
976 sc->have_delayed_delete_refs = true;
dc046b10 977
00142756 978 ret = add_indirect_ref(fs_info, preftrees, ref->root,
01747e92
EN
979 &key, 0, node->bytenr, count, sc,
980 GFP_ATOMIC);
8da6d581
JS
981 break;
982 }
983 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 984 /* SHARED DIRECT FULL backref */
8da6d581 985 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
986
987 ref = btrfs_delayed_node_to_data_ref(node);
86d5f994 988
01747e92
EN
989 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
990 node->bytenr, count, sc,
991 GFP_ATOMIC);
8da6d581
JS
992 break;
993 }
994 default:
995 WARN_ON(1);
996 }
3ec4d323
EN
997 /*
998 * We must ignore BACKREF_FOUND_SHARED until all delayed
999 * refs have been checked.
1000 */
1001 if (ret && (ret != BACKREF_FOUND_SHARED))
d7df2c79 1002 break;
8da6d581 1003 }
3ec4d323
EN
1004 if (!ret)
1005 ret = extent_is_shared(sc);
4fc7b572 1006
d7df2c79
JB
1007 spin_unlock(&head->lock);
1008 return ret;
8da6d581
JS
1009}
1010
1011/*
1012 * add all inline backrefs for bytenr to the list
3ec4d323
EN
1013 *
1014 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1015 */
f73853c7
FM
1016static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1017 struct btrfs_path *path,
86d5f994 1018 int *info_level, struct preftrees *preftrees,
b25b0b87 1019 struct share_check *sc)
8da6d581 1020{
b1375d64 1021 int ret = 0;
8da6d581
JS
1022 int slot;
1023 struct extent_buffer *leaf;
1024 struct btrfs_key key;
261c84b6 1025 struct btrfs_key found_key;
8da6d581
JS
1026 unsigned long ptr;
1027 unsigned long end;
1028 struct btrfs_extent_item *ei;
1029 u64 flags;
1030 u64 item_size;
1031
1032 /*
1033 * enumerate all inline refs
1034 */
1035 leaf = path->nodes[0];
dadcaf78 1036 slot = path->slots[0];
8da6d581 1037
3212fa14 1038 item_size = btrfs_item_size(leaf, slot);
8da6d581 1039 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
f73853c7
FM
1040
1041 if (ctx->check_extent_item) {
1042 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1043 if (ret)
1044 return ret;
1045 }
1046
8da6d581 1047 flags = btrfs_extent_flags(leaf, ei);
261c84b6 1048 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
1049
1050 ptr = (unsigned long)(ei + 1);
1051 end = (unsigned long)ei + item_size;
1052
261c84b6
JB
1053 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1054 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 1055 struct btrfs_tree_block_info *info;
8da6d581
JS
1056
1057 info = (struct btrfs_tree_block_info *)ptr;
1058 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
1059 ptr += sizeof(struct btrfs_tree_block_info);
1060 BUG_ON(ptr > end);
261c84b6
JB
1061 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1062 *info_level = found_key.offset;
8da6d581
JS
1063 } else {
1064 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1065 }
1066
1067 while (ptr < end) {
1068 struct btrfs_extent_inline_ref *iref;
1069 u64 offset;
1070 int type;
1071
1072 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1073 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1074 BTRFS_REF_TYPE_ANY);
1075 if (type == BTRFS_REF_TYPE_INVALID)
af431dcb 1076 return -EUCLEAN;
3de28d57 1077
8da6d581
JS
1078 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1079
1080 switch (type) {
1081 case BTRFS_SHARED_BLOCK_REF_KEY:
f73853c7 1082 ret = add_direct_ref(ctx->fs_info, preftrees,
00142756 1083 *info_level + 1, offset,
f73853c7 1084 ctx->bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1085 break;
1086 case BTRFS_SHARED_DATA_REF_KEY: {
1087 struct btrfs_shared_data_ref *sdref;
1088 int count;
1089
1090 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1091 count = btrfs_shared_data_ref_count(leaf, sdref);
86d5f994 1092
f73853c7
FM
1093 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1094 ctx->bytenr, count, sc, GFP_NOFS);
8da6d581
JS
1095 break;
1096 }
1097 case BTRFS_TREE_BLOCK_REF_KEY:
f73853c7 1098 ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
00142756 1099 NULL, *info_level + 1,
f73853c7 1100 ctx->bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1101 break;
1102 case BTRFS_EXTENT_DATA_REF_KEY: {
1103 struct btrfs_extent_data_ref *dref;
1104 int count;
1105 u64 root;
1106
1107 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1108 count = btrfs_extent_data_ref_count(leaf, dref);
1109 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1110 dref);
1111 key.type = BTRFS_EXTENT_DATA_KEY;
1112 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1113
a0a5472a 1114 if (sc && key.objectid != sc->inum &&
4fc7b572 1115 !sc->have_delayed_delete_refs) {
dc046b10
JB
1116 ret = BACKREF_FOUND_SHARED;
1117 break;
1118 }
1119
8da6d581 1120 root = btrfs_extent_data_ref_root(leaf, dref);
86d5f994 1121
adf02418
FM
1122 if (!ctx->skip_data_ref ||
1123 !ctx->skip_data_ref(root, key.objectid, key.offset,
1124 ctx->user_ctx))
1125 ret = add_indirect_ref(ctx->fs_info, preftrees,
1126 root, &key, 0, ctx->bytenr,
1127 count, sc, GFP_NOFS);
8da6d581
JS
1128 break;
1129 }
d9a620f7
BB
1130 case BTRFS_EXTENT_OWNER_REF_KEY:
1131 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1132 break;
8da6d581
JS
1133 default:
1134 WARN_ON(1);
1135 }
1149ab6b
WS
1136 if (ret)
1137 return ret;
8da6d581
JS
1138 ptr += btrfs_extent_inline_ref_size(type);
1139 }
1140
1141 return 0;
1142}
1143
1144/*
1145 * add all non-inline backrefs for bytenr to the list
3ec4d323
EN
1146 *
1147 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
8da6d581 1148 */
adf02418
FM
1149static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1150 struct btrfs_root *extent_root,
1151 struct btrfs_path *path,
86d5f994 1152 int info_level, struct preftrees *preftrees,
3ec4d323 1153 struct share_check *sc)
8da6d581 1154{
98cc4222 1155 struct btrfs_fs_info *fs_info = extent_root->fs_info;
8da6d581
JS
1156 int ret;
1157 int slot;
1158 struct extent_buffer *leaf;
1159 struct btrfs_key key;
1160
1161 while (1) {
1162 ret = btrfs_next_item(extent_root, path);
1163 if (ret < 0)
1164 break;
1165 if (ret) {
1166 ret = 0;
1167 break;
1168 }
1169
1170 slot = path->slots[0];
1171 leaf = path->nodes[0];
1172 btrfs_item_key_to_cpu(leaf, &key, slot);
1173
adf02418 1174 if (key.objectid != ctx->bytenr)
8da6d581
JS
1175 break;
1176 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1177 continue;
1178 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1179 break;
1180
1181 switch (key.type) {
1182 case BTRFS_SHARED_BLOCK_REF_KEY:
86d5f994 1183 /* SHARED DIRECT METADATA backref */
00142756
JM
1184 ret = add_direct_ref(fs_info, preftrees,
1185 info_level + 1, key.offset,
adf02418 1186 ctx->bytenr, 1, NULL, GFP_NOFS);
8da6d581
JS
1187 break;
1188 case BTRFS_SHARED_DATA_REF_KEY: {
86d5f994 1189 /* SHARED DIRECT FULL backref */
8da6d581
JS
1190 struct btrfs_shared_data_ref *sdref;
1191 int count;
1192
1193 sdref = btrfs_item_ptr(leaf, slot,
1194 struct btrfs_shared_data_ref);
1195 count = btrfs_shared_data_ref_count(leaf, sdref);
00142756 1196 ret = add_direct_ref(fs_info, preftrees, 0,
adf02418 1197 key.offset, ctx->bytenr, count,
3ec4d323 1198 sc, GFP_NOFS);
8da6d581
JS
1199 break;
1200 }
1201 case BTRFS_TREE_BLOCK_REF_KEY:
86d5f994 1202 /* NORMAL INDIRECT METADATA backref */
00142756 1203 ret = add_indirect_ref(fs_info, preftrees, key.offset,
adf02418 1204 NULL, info_level + 1, ctx->bytenr,
3ec4d323 1205 1, NULL, GFP_NOFS);
8da6d581
JS
1206 break;
1207 case BTRFS_EXTENT_DATA_REF_KEY: {
86d5f994 1208 /* NORMAL INDIRECT DATA backref */
8da6d581
JS
1209 struct btrfs_extent_data_ref *dref;
1210 int count;
1211 u64 root;
1212
1213 dref = btrfs_item_ptr(leaf, slot,
1214 struct btrfs_extent_data_ref);
1215 count = btrfs_extent_data_ref_count(leaf, dref);
1216 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1217 dref);
1218 key.type = BTRFS_EXTENT_DATA_KEY;
1219 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10 1220
a0a5472a 1221 if (sc && key.objectid != sc->inum &&
4fc7b572 1222 !sc->have_delayed_delete_refs) {
dc046b10
JB
1223 ret = BACKREF_FOUND_SHARED;
1224 break;
1225 }
1226
8da6d581 1227 root = btrfs_extent_data_ref_root(leaf, dref);
adf02418
FM
1228
1229 if (!ctx->skip_data_ref ||
1230 !ctx->skip_data_ref(root, key.objectid, key.offset,
1231 ctx->user_ctx))
1232 ret = add_indirect_ref(fs_info, preftrees, root,
1233 &key, 0, ctx->bytenr,
1234 count, sc, GFP_NOFS);
8da6d581
JS
1235 break;
1236 }
1237 default:
1238 WARN_ON(1);
1239 }
1149ab6b
WS
1240 if (ret)
1241 return ret;
1242
8da6d581
JS
1243 }
1244
1245 return ret;
1246}
1247
583f4ac5
FM
1248/*
1249 * The caller has joined a transaction or is holding a read lock on the
1250 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1251 * snapshot field changing while updating or checking the cache.
1252 */
1253static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1254 struct btrfs_root *root,
1255 u64 bytenr, int level, bool *is_shared)
1256{
4e4488d4 1257 const struct btrfs_fs_info *fs_info = root->fs_info;
583f4ac5
FM
1258 struct btrfs_backref_shared_cache_entry *entry;
1259
4e4488d4
FM
1260 if (!current->journal_info)
1261 lockdep_assert_held(&fs_info->commit_root_sem);
1262
583f4ac5
FM
1263 if (!ctx->use_path_cache)
1264 return false;
1265
1266 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1267 return false;
1268
1269 /*
1270 * Level -1 is used for the data extent, which is not reliable to cache
1271 * because its reference count can increase or decrease without us
1272 * realizing. We cache results only for extent buffers that lead from
1273 * the root node down to the leaf with the file extent item.
1274 */
1275 ASSERT(level >= 0);
1276
1277 entry = &ctx->path_cache_entries[level];
1278
1279 /* Unused cache entry or being used for some other extent buffer. */
1280 if (entry->bytenr != bytenr)
1281 return false;
1282
1283 /*
1284 * We cached a false result, but the last snapshot generation of the
1285 * root changed, so we now have a snapshot. Don't trust the result.
1286 */
1287 if (!entry->is_shared &&
1288 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1289 return false;
1290
1291 /*
1292 * If we cached a true result and the last generation used for dropping
1293 * a root changed, we can not trust the result, because the dropped root
1294 * could be a snapshot sharing this extent buffer.
1295 */
1296 if (entry->is_shared &&
4e4488d4 1297 entry->gen != btrfs_get_last_root_drop_gen(fs_info))
583f4ac5
FM
1298 return false;
1299
1300 *is_shared = entry->is_shared;
1301 /*
1302 * If the node at this level is shared, than all nodes below are also
1303 * shared. Currently some of the nodes below may be marked as not shared
1304 * because we have just switched from one leaf to another, and switched
1305 * also other nodes above the leaf and below the current level, so mark
1306 * them as shared.
1307 */
1308 if (*is_shared) {
1309 for (int i = 0; i < level; i++) {
1310 ctx->path_cache_entries[i].is_shared = true;
1311 ctx->path_cache_entries[i].gen = entry->gen;
1312 }
1313 }
1314
1315 return true;
1316}
1317
1318/*
1319 * The caller has joined a transaction or is holding a read lock on the
1320 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1321 * snapshot field changing while updating or checking the cache.
1322 */
1323static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1324 struct btrfs_root *root,
1325 u64 bytenr, int level, bool is_shared)
1326{
4e4488d4 1327 const struct btrfs_fs_info *fs_info = root->fs_info;
583f4ac5
FM
1328 struct btrfs_backref_shared_cache_entry *entry;
1329 u64 gen;
1330
4e4488d4
FM
1331 if (!current->journal_info)
1332 lockdep_assert_held(&fs_info->commit_root_sem);
1333
583f4ac5
FM
1334 if (!ctx->use_path_cache)
1335 return;
1336
1337 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1338 return;
1339
1340 /*
1341 * Level -1 is used for the data extent, which is not reliable to cache
1342 * because its reference count can increase or decrease without us
1343 * realizing. We cache results only for extent buffers that lead from
1344 * the root node down to the leaf with the file extent item.
1345 */
1346 ASSERT(level >= 0);
1347
1348 if (is_shared)
4e4488d4 1349 gen = btrfs_get_last_root_drop_gen(fs_info);
583f4ac5
FM
1350 else
1351 gen = btrfs_root_last_snapshot(&root->root_item);
1352
1353 entry = &ctx->path_cache_entries[level];
1354 entry->bytenr = bytenr;
1355 entry->is_shared = is_shared;
1356 entry->gen = gen;
1357
1358 /*
1359 * If we found an extent buffer is shared, set the cache result for all
1360 * extent buffers below it to true. As nodes in the path are COWed,
1361 * their sharedness is moved to their children, and if a leaf is COWed,
1362 * then the sharedness of a data extent becomes direct, the refcount of
1363 * data extent is increased in the extent item at the extent tree.
1364 */
1365 if (is_shared) {
1366 for (int i = 0; i < level; i++) {
1367 entry = &ctx->path_cache_entries[i];
1368 entry->is_shared = is_shared;
1369 entry->gen = gen;
1370 }
1371 }
1372}
1373
8da6d581
JS
1374/*
1375 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1376 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1377 * indirect refs to their parent bytenr.
1378 * When roots are found, they're added to the roots list
1379 *
a2c8d27e
FM
1380 * @ctx: Backref walking context object, must be not NULL.
1381 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1382 * shared extent is detected.
3ec4d323
EN
1383 *
1384 * Otherwise this returns 0 for success and <0 for an error.
1385 *
8da6d581
JS
1386 * FIXME some caching might speed things up
1387 */
a2c8d27e 1388static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
6ce6ba53 1389 struct share_check *sc)
8da6d581 1390{
a2c8d27e 1391 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
8da6d581
JS
1392 struct btrfs_key key;
1393 struct btrfs_path *path;
8da6d581 1394 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 1395 struct btrfs_delayed_ref_head *head;
8da6d581
JS
1396 int info_level = 0;
1397 int ret;
e0c476b1 1398 struct prelim_ref *ref;
86d5f994 1399 struct rb_node *node;
f05c4746 1400 struct extent_inode_elem *eie = NULL;
86d5f994
EN
1401 struct preftrees preftrees = {
1402 .direct = PREFTREE_INIT,
1403 .indirect = PREFTREE_INIT,
1404 .indirect_missing_keys = PREFTREE_INIT
1405 };
8da6d581 1406
56f5c199
FM
1407 /* Roots ulist is not needed when using a sharedness check context. */
1408 if (sc)
a2c8d27e 1409 ASSERT(ctx->roots == NULL);
56f5c199 1410
a2c8d27e 1411 key.objectid = ctx->bytenr;
8da6d581 1412 key.offset = (u64)-1;
a2c8d27e 1413 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
261c84b6
JB
1414 key.type = BTRFS_METADATA_ITEM_KEY;
1415 else
1416 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
1417
1418 path = btrfs_alloc_path();
1419 if (!path)
1420 return -ENOMEM;
a2c8d27e 1421 if (!ctx->trans) {
da61d31a 1422 path->search_commit_root = 1;
e84752d4
WS
1423 path->skip_locking = 1;
1424 }
8da6d581 1425
a2c8d27e 1426 if (ctx->time_seq == BTRFS_SEQ_LAST)
21633fc6
QW
1427 path->skip_locking = 1;
1428
8da6d581 1429again:
d3b01064
LZ
1430 head = NULL;
1431
98cc4222 1432 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8da6d581
JS
1433 if (ret < 0)
1434 goto out;
fcba0120 1435 if (ret == 0) {
5b957989
DS
1436 /*
1437 * Key with offset -1 found, there would have to exist an extent
1438 * item with such offset, but this is out of the valid range.
1439 */
fcba0120
JB
1440 ret = -EUCLEAN;
1441 goto out;
1442 }
8da6d581 1443
a2c8d27e
FM
1444 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1445 ctx->time_seq != BTRFS_SEQ_LAST) {
7a3ae2f8 1446 /*
9665ebd5
JB
1447 * We have a specific time_seq we care about and trans which
1448 * means we have the path lock, we need to grab the ref head and
1449 * lock it so we have a consistent view of the refs at the given
1450 * time.
7a3ae2f8 1451 */
a2c8d27e 1452 delayed_refs = &ctx->trans->transaction->delayed_refs;
7a3ae2f8 1453 spin_lock(&delayed_refs->lock);
a2c8d27e 1454 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr);
7a3ae2f8
JS
1455 if (head) {
1456 if (!mutex_trylock(&head->mutex)) {
d278850e 1457 refcount_inc(&head->refs);
7a3ae2f8
JS
1458 spin_unlock(&delayed_refs->lock);
1459
1460 btrfs_release_path(path);
1461
1462 /*
1463 * Mutex was contended, block until it's
1464 * released and try again
1465 */
1466 mutex_lock(&head->mutex);
1467 mutex_unlock(&head->mutex);
d278850e 1468 btrfs_put_delayed_ref_head(head);
7a3ae2f8
JS
1469 goto again;
1470 }
d7df2c79 1471 spin_unlock(&delayed_refs->lock);
a2c8d27e 1472 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
b25b0b87 1473 &preftrees, sc);
155725c9 1474 mutex_unlock(&head->mutex);
d7df2c79 1475 if (ret)
7a3ae2f8 1476 goto out;
d7df2c79
JB
1477 } else {
1478 spin_unlock(&delayed_refs->lock);
d3b01064 1479 }
8da6d581 1480 }
8da6d581
JS
1481
1482 if (path->slots[0]) {
1483 struct extent_buffer *leaf;
1484 int slot;
1485
dadcaf78 1486 path->slots[0]--;
8da6d581 1487 leaf = path->nodes[0];
dadcaf78 1488 slot = path->slots[0];
8da6d581 1489 btrfs_item_key_to_cpu(leaf, &key, slot);
a2c8d27e 1490 if (key.objectid == ctx->bytenr &&
261c84b6
JB
1491 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1492 key.type == BTRFS_METADATA_ITEM_KEY)) {
f73853c7
FM
1493 ret = add_inline_refs(ctx, path, &info_level,
1494 &preftrees, sc);
8da6d581
JS
1495 if (ret)
1496 goto out;
adf02418 1497 ret = add_keyed_refs(ctx, root, path, info_level,
3ec4d323 1498 &preftrees, sc);
8da6d581
JS
1499 if (ret)
1500 goto out;
1501 }
1502 }
8da6d581 1503
56f5c199
FM
1504 /*
1505 * If we have a share context and we reached here, it means the extent
1506 * is not directly shared (no multiple reference items for it),
1507 * otherwise we would have exited earlier with a return value of
1508 * BACKREF_FOUND_SHARED after processing delayed references or while
1509 * processing inline or keyed references from the extent tree.
1510 * The extent may however be indirectly shared through shared subtrees
1511 * as a result from creating snapshots, so we determine below what is
1512 * its parent node, in case we are dealing with a metadata extent, or
1513 * what's the leaf (or leaves), from a fs tree, that has a file extent
1514 * item pointing to it in case we are dealing with a data extent.
1515 */
1516 ASSERT(extent_is_shared(sc) == 0);
1517
877c1476
FM
1518 /*
1519 * If we are here for a data extent and we have a share_check structure
1520 * it means the data extent is not directly shared (does not have
1521 * multiple reference items), so we have to check if a path in the fs
1522 * tree (going from the root node down to the leaf that has the file
1523 * extent item pointing to the data extent) is shared, that is, if any
1524 * of the extent buffers in the path is referenced by other trees.
1525 */
a2c8d27e 1526 if (sc && ctx->bytenr == sc->data_bytenr) {
6976201f
FM
1527 /*
1528 * If our data extent is from a generation more recent than the
1529 * last generation used to snapshot the root, then we know that
1530 * it can not be shared through subtrees, so we can skip
1531 * resolving indirect references, there's no point in
1532 * determining the extent buffers for the path from the fs tree
1533 * root node down to the leaf that has the file extent item that
1534 * points to the data extent.
1535 */
1536 if (sc->data_extent_gen >
1537 btrfs_root_last_snapshot(&sc->root->root_item)) {
1538 ret = BACKREF_FOUND_NOT_SHARED;
1539 goto out;
1540 }
1541
877c1476
FM
1542 /*
1543 * If we are only determining if a data extent is shared or not
1544 * and the corresponding file extent item is located in the same
1545 * leaf as the previous file extent item, we can skip resolving
1546 * indirect references for a data extent, since the fs tree path
1547 * is the same (same leaf, so same path). We skip as long as the
1548 * cached result for the leaf is valid and only if there's only
1549 * one file extent item pointing to the data extent, because in
1550 * the case of multiple file extent items, they may be located
1551 * in different leaves and therefore we have multiple paths.
1552 */
1553 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1554 sc->self_ref_count == 1) {
1555 bool cached;
1556 bool is_shared;
1557
1558 cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1559 sc->ctx->curr_leaf_bytenr,
1560 0, &is_shared);
1561 if (cached) {
1562 if (is_shared)
1563 ret = BACKREF_FOUND_SHARED;
1564 else
1565 ret = BACKREF_FOUND_NOT_SHARED;
1566 goto out;
1567 }
1568 }
1569 }
1570
86d5f994 1571 btrfs_release_path(path);
8da6d581 1572
a2c8d27e 1573 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
d5c88b73
JS
1574 if (ret)
1575 goto out;
1576
ecf160b4 1577 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
8da6d581 1578
a2c8d27e 1579 ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
8da6d581
JS
1580 if (ret)
1581 goto out;
1582
ecf160b4 1583 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
8da6d581 1584
86d5f994
EN
1585 /*
1586 * This walks the tree of merged and resolved refs. Tree blocks are
1587 * read in as needed. Unique entries are added to the ulist, and
1588 * the list of found roots is updated.
1589 *
1590 * We release the entire tree in one go before returning.
1591 */
ecf160b4 1592 node = rb_first_cached(&preftrees.direct.root);
86d5f994
EN
1593 while (node) {
1594 ref = rb_entry(node, struct prelim_ref, rbnode);
1595 node = rb_next(&ref->rbnode);
c8195a7b
ZB
1596 /*
1597 * ref->count < 0 can happen here if there are delayed
1598 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1599 * prelim_ref_insert() relies on this when merging
1600 * identical refs to keep the overall count correct.
1601 * prelim_ref_insert() will merge only those refs
1602 * which compare identically. Any refs having
1603 * e.g. different offsets would not be merged,
1604 * and would retain their original ref->count < 0.
1605 */
a2c8d27e 1606 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
8da6d581 1607 /* no parent == root of tree */
a2c8d27e 1608 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1609 if (ret < 0)
1610 goto out;
8da6d581
JS
1611 }
1612 if (ref->count && ref->parent) {
0cad8f14 1613 if (!ctx->skip_inode_ref_list && !ref->inode_list &&
a2c8d27e 1614 ref->level == 0) {
789d6a3a 1615 struct btrfs_tree_parent_check check = { 0 };
976b1908 1616 struct extent_buffer *eb;
707e8a07 1617
789d6a3a
QW
1618 check.level = ref->level;
1619
1620 eb = read_tree_block(ctx->fs_info, ref->parent,
1621 &check);
64c043de
LB
1622 if (IS_ERR(eb)) {
1623 ret = PTR_ERR(eb);
1624 goto out;
4eb150d6
QW
1625 }
1626 if (!extent_buffer_uptodate(eb)) {
416bc658 1627 free_extent_buffer(eb);
c16c2e2e
WS
1628 ret = -EIO;
1629 goto out;
416bc658 1630 }
38e3eebf 1631
ac5887c8 1632 if (!path->skip_locking)
38e3eebf 1633 btrfs_tree_read_lock(eb);
88ffb665 1634 ret = find_extent_in_eb(ctx, eb, &eie);
38e3eebf 1635 if (!path->skip_locking)
ac5887c8 1636 btrfs_tree_read_unlock(eb);
976b1908 1637 free_extent_buffer(eb);
88ffb665
FM
1638 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1639 ret < 0)
f5929cd8
FDBM
1640 goto out;
1641 ref->inode_list = eie;
92876eec
FM
1642 /*
1643 * We transferred the list ownership to the ref,
1644 * so set to NULL to avoid a double free in case
1645 * an error happens after this.
1646 */
1647 eie = NULL;
976b1908 1648 }
a2c8d27e 1649 ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
4eb1f66d
TI
1650 ref->inode_list,
1651 (void **)&eie, GFP_NOFS);
f1723939
WS
1652 if (ret < 0)
1653 goto out;
0cad8f14 1654 if (!ret && !ctx->skip_inode_ref_list) {
3301958b 1655 /*
9f05c09d
JB
1656 * We've recorded that parent, so we must extend
1657 * its inode list here.
1658 *
1659 * However if there was corruption we may not
1660 * have found an eie, return an error in this
1661 * case.
3301958b 1662 */
9f05c09d
JB
1663 ASSERT(eie);
1664 if (!eie) {
1665 ret = -EUCLEAN;
1666 goto out;
1667 }
3301958b
JS
1668 while (eie->next)
1669 eie = eie->next;
1670 eie->next = ref->inode_list;
1671 }
f05c4746 1672 eie = NULL;
92876eec
FM
1673 /*
1674 * We have transferred the inode list ownership from
1675 * this ref to the ref we added to the 'refs' ulist.
1676 * So set this ref's inode list to NULL to avoid
1677 * use-after-free when our caller uses it or double
1678 * frees in case an error happens before we return.
1679 */
1680 ref->inode_list = NULL;
8da6d581 1681 }
9dd14fd6 1682 cond_resched();
8da6d581
JS
1683 }
1684
1685out:
8da6d581 1686 btrfs_free_path(path);
86d5f994
EN
1687
1688 prelim_release(&preftrees.direct);
1689 prelim_release(&preftrees.indirect);
1690 prelim_release(&preftrees.indirect_missing_keys);
1691
88ffb665 1692 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
f05c4746 1693 free_inode_elem_list(eie);
8da6d581
JS
1694 return ret;
1695}
1696
1697/*
a2c8d27e
FM
1698 * Finds all leaves with a reference to the specified combination of
1699 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1700 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1701 * function. The caller should free the ulist with free_leaf_list() if
1702 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1703 * enough.
8da6d581 1704 *
a2c8d27e 1705 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
8da6d581 1706 */
a2c8d27e 1707int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
8da6d581 1708{
8da6d581
JS
1709 int ret;
1710
a2c8d27e
FM
1711 ASSERT(ctx->refs == NULL);
1712
1713 ctx->refs = ulist_alloc(GFP_NOFS);
1714 if (!ctx->refs)
8da6d581 1715 return -ENOMEM;
8da6d581 1716
a2c8d27e 1717 ret = find_parent_nodes(ctx, NULL);
88ffb665
FM
1718 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1719 (ret < 0 && ret != -ENOENT)) {
a2c8d27e
FM
1720 free_leaf_list(ctx->refs);
1721 ctx->refs = NULL;
8da6d581
JS
1722 return ret;
1723 }
1724
1725 return 0;
1726}
1727
1728/*
a2c8d27e 1729 * Walk all backrefs for a given extent to find all roots that reference this
8da6d581
JS
1730 * extent. Walking a backref means finding all extents that reference this
1731 * extent and in turn walk the backrefs of those, too. Naturally this is a
1732 * recursive process, but here it is implemented in an iterative fashion: We
1733 * find all referencing extents for the extent in question and put them on a
1734 * list. In turn, we find all referencing extents for those, further appending
1735 * to the list. The way we iterate the list allows adding more elements after
1736 * the current while iterating. The process stops when we reach the end of the
a2c8d27e
FM
1737 * list.
1738 *
1baea6f1
FM
1739 * Found roots are added to @ctx->roots, which is allocated by this function if
1740 * it points to NULL, in which case the caller is responsible for freeing it
1741 * after it's not needed anymore.
1742 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1743 * ulist to do temporary work, and frees it before returning.
8da6d581 1744 *
1baea6f1 1745 * Returns 0 on success, < 0 on error.
8da6d581 1746 */
a2c8d27e 1747static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
8da6d581 1748{
a2c8d27e 1749 const u64 orig_bytenr = ctx->bytenr;
0cad8f14 1750 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1baea6f1 1751 bool roots_ulist_allocated = false;
cd1b413c 1752 struct ulist_iterator uiter;
a2c8d27e
FM
1753 int ret = 0;
1754
1755 ASSERT(ctx->refs == NULL);
8da6d581 1756
a2c8d27e
FM
1757 ctx->refs = ulist_alloc(GFP_NOFS);
1758 if (!ctx->refs)
8da6d581 1759 return -ENOMEM;
a2c8d27e 1760
a2c8d27e 1761 if (!ctx->roots) {
1baea6f1
FM
1762 ctx->roots = ulist_alloc(GFP_NOFS);
1763 if (!ctx->roots) {
1764 ulist_free(ctx->refs);
1765 ctx->refs = NULL;
1766 return -ENOMEM;
1767 }
1768 roots_ulist_allocated = true;
8da6d581
JS
1769 }
1770
0cad8f14 1771 ctx->skip_inode_ref_list = true;
a2c8d27e 1772
cd1b413c 1773 ULIST_ITER_INIT(&uiter);
8da6d581 1774 while (1) {
a2c8d27e
FM
1775 struct ulist_node *node;
1776
1777 ret = find_parent_nodes(ctx, NULL);
8da6d581 1778 if (ret < 0 && ret != -ENOENT) {
1baea6f1
FM
1779 if (roots_ulist_allocated) {
1780 ulist_free(ctx->roots);
1781 ctx->roots = NULL;
1782 }
a2c8d27e 1783 break;
8da6d581 1784 }
a2c8d27e
FM
1785 ret = 0;
1786 node = ulist_next(ctx->refs, &uiter);
8da6d581
JS
1787 if (!node)
1788 break;
a2c8d27e 1789 ctx->bytenr = node->val;
bca1a290 1790 cond_resched();
8da6d581
JS
1791 }
1792
a2c8d27e
FM
1793 ulist_free(ctx->refs);
1794 ctx->refs = NULL;
1795 ctx->bytenr = orig_bytenr;
0cad8f14 1796 ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
a2c8d27e
FM
1797
1798 return ret;
8da6d581
JS
1799}
1800
a2c8d27e 1801int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
c7bcbb21 1802 bool skip_commit_root_sem)
9e351cc8
JB
1803{
1804 int ret;
1805
a2c8d27e
FM
1806 if (!ctx->trans && !skip_commit_root_sem)
1807 down_read(&ctx->fs_info->commit_root_sem);
1808 ret = btrfs_find_all_roots_safe(ctx);
1809 if (!ctx->trans && !skip_commit_root_sem)
1810 up_read(&ctx->fs_info->commit_root_sem);
9e351cc8
JB
1811 return ret;
1812}
1813
84a7949d
FM
1814struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1815{
1816 struct btrfs_backref_share_check_ctx *ctx;
1817
1818 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1819 if (!ctx)
1820 return NULL;
1821
1822 ulist_init(&ctx->refs);
84a7949d
FM
1823
1824 return ctx;
1825}
1826
1827void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1828{
1829 if (!ctx)
1830 return;
1831
1832 ulist_release(&ctx->refs);
84a7949d
FM
1833 kfree(ctx);
1834}
1835
8eedadda
FM
1836/*
1837 * Check if a data extent is shared or not.
6e353e3b 1838 *
ceb707da 1839 * @inode: The inode whose extent we are checking.
b8f164e3
FM
1840 * @bytenr: Logical bytenr of the extent we are checking.
1841 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1842 * not known.
61dbb952 1843 * @ctx: A backref sharedness check context.
2c2ed5aa 1844 *
8eedadda 1845 * btrfs_is_data_extent_shared uses the backref walking code but will short
2c2ed5aa
MF
1846 * circuit as soon as it finds a root or inode that doesn't match the
1847 * one passed in. This provides a significant performance benefit for
1848 * callers (such as fiemap) which want to know whether the extent is
1849 * shared but do not need a ref count.
1850 *
03628cdb
FM
1851 * This attempts to attach to the running transaction in order to account for
1852 * delayed refs, but continues on even when no running transaction exists.
bb739cf0 1853 *
2c2ed5aa
MF
1854 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1855 */
ceb707da 1856int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
b8f164e3 1857 u64 extent_gen,
61dbb952 1858 struct btrfs_backref_share_check_ctx *ctx)
dc046b10 1859{
a2c8d27e 1860 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
ceb707da 1861 struct btrfs_root *root = inode->root;
bb739cf0
EN
1862 struct btrfs_fs_info *fs_info = root->fs_info;
1863 struct btrfs_trans_handle *trans;
dc046b10
JB
1864 struct ulist_iterator uiter;
1865 struct ulist_node *node;
f3a84ccd 1866 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
dc046b10 1867 int ret = 0;
3ec4d323 1868 struct share_check shared = {
877c1476
FM
1869 .ctx = ctx,
1870 .root = root,
ceb707da 1871 .inum = btrfs_ino(inode),
73e339e6 1872 .data_bytenr = bytenr,
6976201f 1873 .data_extent_gen = extent_gen,
3ec4d323 1874 .share_count = 0,
73e339e6 1875 .self_ref_count = 0,
4fc7b572 1876 .have_delayed_delete_refs = false,
3ec4d323 1877 };
12a824dc 1878 int level;
e2fd8306
FM
1879 bool leaf_cached;
1880 bool leaf_is_shared;
dc046b10 1881
73e339e6
FM
1882 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1883 if (ctx->prev_extents_cache[i].bytenr == bytenr)
1884 return ctx->prev_extents_cache[i].is_shared;
1885 }
1886
84a7949d 1887 ulist_init(&ctx->refs);
dc046b10 1888
a6d155d2 1889 trans = btrfs_join_transaction_nostart(root);
bb739cf0 1890 if (IS_ERR(trans)) {
03628cdb
FM
1891 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1892 ret = PTR_ERR(trans);
1893 goto out;
1894 }
bb739cf0 1895 trans = NULL;
dc046b10 1896 down_read(&fs_info->commit_root_sem);
bb739cf0
EN
1897 } else {
1898 btrfs_get_tree_mod_seq(fs_info, &elem);
a2c8d27e 1899 walk_ctx.time_seq = elem.seq;
bb739cf0
EN
1900 }
1901
e2fd8306
FM
1902 ctx->use_path_cache = true;
1903
1904 /*
1905 * We may have previously determined that the current leaf is shared.
1906 * If it is, then we have a data extent that is shared due to a shared
1907 * subtree (caused by snapshotting) and we don't need to check for data
1908 * backrefs. If the leaf is not shared, then we must do backref walking
1909 * to determine if the data extent is shared through reflinks.
1910 */
1911 leaf_cached = lookup_backref_shared_cache(ctx, root,
1912 ctx->curr_leaf_bytenr, 0,
1913 &leaf_is_shared);
1914 if (leaf_cached && leaf_is_shared) {
1915 ret = 1;
1916 goto out_trans;
1917 }
1918
0cad8f14 1919 walk_ctx.skip_inode_ref_list = true;
a2c8d27e
FM
1920 walk_ctx.trans = trans;
1921 walk_ctx.fs_info = fs_info;
1922 walk_ctx.refs = &ctx->refs;
1923
12a824dc
FM
1924 /* -1 means we are in the bytenr of the data extent. */
1925 level = -1;
dc046b10
JB
1926 ULIST_ITER_INIT(&uiter);
1927 while (1) {
2280d425 1928 const unsigned long prev_ref_count = ctx->refs.nnodes;
12a824dc 1929
a2c8d27e
FM
1930 walk_ctx.bytenr = bytenr;
1931 ret = find_parent_nodes(&walk_ctx, &shared);
877c1476
FM
1932 if (ret == BACKREF_FOUND_SHARED ||
1933 ret == BACKREF_FOUND_NOT_SHARED) {
1934 /* If shared must return 1, otherwise return 0. */
1935 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
12a824dc 1936 if (level >= 0)
61dbb952 1937 store_backref_shared_cache(ctx, root, bytenr,
877c1476 1938 level, ret == 1);
dc046b10
JB
1939 break;
1940 }
1941 if (ret < 0 && ret != -ENOENT)
1942 break;
2c2ed5aa 1943 ret = 0;
b8f164e3 1944
63c84b46 1945 /*
2280d425
FM
1946 * More than one extent buffer (bytenr) may have been added to
1947 * the ctx->refs ulist, in which case we have to check multiple
1948 * tree paths in case the first one is not shared, so we can not
1949 * use the path cache which is made for a single path. Multiple
1950 * extent buffers at the current level happen when:
1951 *
1952 * 1) level -1, the data extent: If our data extent was not
1953 * directly shared (without multiple reference items), then
1954 * it might have a single reference item with a count > 1 for
1955 * the same offset, which means there are 2 (or more) file
1956 * extent items that point to the data extent - this happens
1957 * when a file extent item needs to be split and then one
1958 * item gets moved to another leaf due to a b+tree leaf split
1959 * when inserting some item. In this case the file extent
1960 * items may be located in different leaves and therefore
1961 * some of the leaves may be referenced through shared
1962 * subtrees while others are not. Since our extent buffer
1963 * cache only works for a single path (by far the most common
1964 * case and simpler to deal with), we can not use it if we
1965 * have multiple leaves (which implies multiple paths).
1966 *
1967 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1968 * and indirect references on a b+tree node/leaf, so we have
1969 * to check multiple paths, and the extent buffer (the
1970 * current bytenr) may be shared or not. One example is
1971 * during relocation as we may get a shared tree block ref
1972 * (direct ref) and a non-shared tree block ref (indirect
1973 * ref) for the same node/leaf.
63c84b46 1974 */
2280d425 1975 if ((ctx->refs.nnodes - prev_ref_count) > 1)
61dbb952 1976 ctx->use_path_cache = false;
63c84b46 1977
12a824dc 1978 if (level >= 0)
61dbb952 1979 store_backref_shared_cache(ctx, root, bytenr,
12a824dc 1980 level, false);
84a7949d 1981 node = ulist_next(&ctx->refs, &uiter);
dc046b10
JB
1982 if (!node)
1983 break;
1984 bytenr = node->val;
2280d425
FM
1985 if (ctx->use_path_cache) {
1986 bool is_shared;
1987 bool cached;
1988
1989 level++;
1990 cached = lookup_backref_shared_cache(ctx, root, bytenr,
1991 level, &is_shared);
1992 if (cached) {
1993 ret = (is_shared ? 1 : 0);
1994 break;
1995 }
12a824dc 1996 }
18bf591b 1997 shared.share_count = 0;
4fc7b572 1998 shared.have_delayed_delete_refs = false;
dc046b10
JB
1999 cond_resched();
2000 }
bb739cf0 2001
2280d425
FM
2002 /*
2003 * If the path cache is disabled, then it means at some tree level we
2004 * got multiple parents due to a mix of direct and indirect backrefs or
2005 * multiple leaves with file extent items pointing to the same data
2006 * extent. We have to invalidate the cache and cache only the sharedness
2007 * result for the levels where we got only one node/reference.
2008 */
2009 if (!ctx->use_path_cache) {
2010 int i = 0;
2011
2012 level--;
2013 if (ret >= 0 && level >= 0) {
2014 bytenr = ctx->path_cache_entries[level].bytenr;
2015 ctx->use_path_cache = true;
2016 store_backref_shared_cache(ctx, root, bytenr, level, ret);
2017 i = level + 1;
2018 }
2019
2020 for ( ; i < BTRFS_MAX_LEVEL; i++)
2021 ctx->path_cache_entries[i].bytenr = 0;
2022 }
2023
73e339e6
FM
2024 /*
2025 * Cache the sharedness result for the data extent if we know our inode
2026 * has more than 1 file extent item that refers to the data extent.
2027 */
2028 if (ret >= 0 && shared.self_ref_count > 1) {
2029 int slot = ctx->prev_extents_cache_slot;
2030
2031 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2032 ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2033
2034 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2035 ctx->prev_extents_cache_slot = slot;
2036 }
2037
e2fd8306 2038out_trans:
bb739cf0 2039 if (trans) {
dc046b10 2040 btrfs_put_tree_mod_seq(fs_info, &elem);
bb739cf0
EN
2041 btrfs_end_transaction(trans);
2042 } else {
dc046b10 2043 up_read(&fs_info->commit_root_sem);
bb739cf0 2044 }
03628cdb 2045out:
84a7949d 2046 ulist_release(&ctx->refs);
877c1476
FM
2047 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2048
dc046b10
JB
2049 return ret;
2050}
2051
f186373f
MF
2052int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2053 u64 start_off, struct btrfs_path *path,
2054 struct btrfs_inode_extref **ret_extref,
2055 u64 *found_off)
2056{
2057 int ret, slot;
2058 struct btrfs_key key;
2059 struct btrfs_key found_key;
2060 struct btrfs_inode_extref *extref;
73980bec 2061 const struct extent_buffer *leaf;
f186373f
MF
2062 unsigned long ptr;
2063
2064 key.objectid = inode_objectid;
962a298f 2065 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
2066 key.offset = start_off;
2067
2068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2069 if (ret < 0)
2070 return ret;
2071
2072 while (1) {
2073 leaf = path->nodes[0];
2074 slot = path->slots[0];
2075 if (slot >= btrfs_header_nritems(leaf)) {
2076 /*
2077 * If the item at offset is not found,
2078 * btrfs_search_slot will point us to the slot
2079 * where it should be inserted. In our case
2080 * that will be the slot directly before the
2081 * next INODE_REF_KEY_V2 item. In the case
2082 * that we're pointing to the last slot in a
2083 * leaf, we must move one leaf over.
2084 */
2085 ret = btrfs_next_leaf(root, path);
2086 if (ret) {
2087 if (ret >= 1)
2088 ret = -ENOENT;
2089 break;
2090 }
2091 continue;
2092 }
2093
2094 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2095
2096 /*
2097 * Check that we're still looking at an extended ref key for
2098 * this particular objectid. If we have different
2099 * objectid or type then there are no more to be found
2100 * in the tree and we can exit.
2101 */
2102 ret = -ENOENT;
2103 if (found_key.objectid != inode_objectid)
2104 break;
962a298f 2105 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
2106 break;
2107
2108 ret = 0;
2109 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2110 extref = (struct btrfs_inode_extref *)ptr;
2111 *ret_extref = extref;
2112 if (found_off)
2113 *found_off = found_key.offset;
2114 break;
2115 }
2116
2117 return ret;
2118}
2119
48a3b636
ES
2120/*
2121 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2122 * Elements of the path are separated by '/' and the path is guaranteed to be
2123 * 0-terminated. the path is only given within the current file system.
2124 * Therefore, it never starts with a '/'. the caller is responsible to provide
2125 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2126 * the start point of the resulting string is returned. this pointer is within
2127 * dest, normally.
2128 * in case the path buffer would overflow, the pointer is decremented further
2129 * as if output was written to the buffer, though no more output is actually
2130 * generated. that way, the caller can determine how much space would be
2131 * required for the path to fit into the buffer. in that case, the returned
2132 * value will be smaller than dest. callers must check this!
2133 */
96b5bd77
JS
2134char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2135 u32 name_len, unsigned long name_off,
2136 struct extent_buffer *eb_in, u64 parent,
2137 char *dest, u32 size)
a542ad1b 2138{
a542ad1b
JS
2139 int slot;
2140 u64 next_inum;
2141 int ret;
661bec6b 2142 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
2143 struct extent_buffer *eb = eb_in;
2144 struct btrfs_key found_key;
d24bec3a 2145 struct btrfs_inode_ref *iref;
a542ad1b
JS
2146
2147 if (bytes_left >= 0)
2148 dest[bytes_left] = '\0';
2149
2150 while (1) {
d24bec3a 2151 bytes_left -= name_len;
a542ad1b
JS
2152 if (bytes_left >= 0)
2153 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 2154 name_off, name_len);
b916a59a 2155 if (eb != eb_in) {
0c0fe3b0 2156 if (!path->skip_locking)
ac5887c8 2157 btrfs_tree_read_unlock(eb);
a542ad1b 2158 free_extent_buffer(eb);
b916a59a 2159 }
c234a24d
DS
2160 ret = btrfs_find_item(fs_root, path, parent, 0,
2161 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
2162 if (ret > 0)
2163 ret = -ENOENT;
a542ad1b
JS
2164 if (ret)
2165 break;
d24bec3a 2166
a542ad1b
JS
2167 next_inum = found_key.offset;
2168
2169 /* regular exit ahead */
2170 if (parent == next_inum)
2171 break;
2172
2173 slot = path->slots[0];
2174 eb = path->nodes[0];
2175 /* make sure we can use eb after releasing the path */
b916a59a 2176 if (eb != eb_in) {
0c0fe3b0
FM
2177 path->nodes[0] = NULL;
2178 path->locks[0] = 0;
b916a59a 2179 }
a542ad1b 2180 btrfs_release_path(path);
a542ad1b 2181 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
2182
2183 name_len = btrfs_inode_ref_name_len(eb, iref);
2184 name_off = (unsigned long)(iref + 1);
2185
a542ad1b
JS
2186 parent = next_inum;
2187 --bytes_left;
2188 if (bytes_left >= 0)
2189 dest[bytes_left] = '/';
2190 }
2191
2192 btrfs_release_path(path);
2193
2194 if (ret)
2195 return ERR_PTR(ret);
2196
2197 return dest + bytes_left;
2198}
2199
2200/*
2201 * this makes the path point to (logical EXTENT_ITEM *)
2202 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2203 * tree blocks and <0 on error.
2204 */
2205int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
2206 struct btrfs_path *path, struct btrfs_key *found_key,
2207 u64 *flags_ret)
a542ad1b 2208{
29cbcf40 2209 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
a542ad1b
JS
2210 int ret;
2211 u64 flags;
261c84b6 2212 u64 size = 0;
a542ad1b 2213 u32 item_size;
73980bec 2214 const struct extent_buffer *eb;
a542ad1b
JS
2215 struct btrfs_extent_item *ei;
2216 struct btrfs_key key;
2217
261c84b6
JB
2218 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2219 key.type = BTRFS_METADATA_ITEM_KEY;
2220 else
2221 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
2222 key.objectid = logical;
2223 key.offset = (u64)-1;
2224
29cbcf40 2225 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a542ad1b
JS
2226 if (ret < 0)
2227 return ret;
11dcc86e
DS
2228 if (ret == 0) {
2229 /*
2230 * Key with offset -1 found, there would have to exist an extent
2231 * item with such offset, but this is out of the valid range.
2232 */
2233 return -EUCLEAN;
2234 }
a542ad1b 2235
29cbcf40 2236 ret = btrfs_previous_extent_item(extent_root, path, 0);
850a8cdf
WS
2237 if (ret) {
2238 if (ret > 0)
2239 ret = -ENOENT;
2240 return ret;
580f0a67 2241 }
850a8cdf 2242 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 2243 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
da17066c 2244 size = fs_info->nodesize;
261c84b6
JB
2245 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2246 size = found_key->offset;
2247
580f0a67 2248 if (found_key->objectid > logical ||
261c84b6 2249 found_key->objectid + size <= logical) {
ab8d0fc4
JM
2250 btrfs_debug(fs_info,
2251 "logical %llu is not within any extent", logical);
a542ad1b 2252 return -ENOENT;
4692cf58 2253 }
a542ad1b
JS
2254
2255 eb = path->nodes[0];
3212fa14 2256 item_size = btrfs_item_size(eb, path->slots[0]);
a542ad1b
JS
2257
2258 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2259 flags = btrfs_extent_flags(eb, ei);
2260
ab8d0fc4
JM
2261 btrfs_debug(fs_info,
2262 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
c1c9ff7c
GU
2263 logical, logical - found_key->objectid, found_key->objectid,
2264 found_key->offset, flags, item_size);
69917e43
LB
2265
2266 WARN_ON(!flags_ret);
2267 if (flags_ret) {
2268 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2269 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2270 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2271 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2272 else
290342f6 2273 BUG();
69917e43
LB
2274 return 0;
2275 }
a542ad1b
JS
2276
2277 return -EIO;
2278}
2279
2280/*
2281 * helper function to iterate extent inline refs. ptr must point to a 0 value
2282 * for the first call and may be modified. it is used to track state.
2283 * if more refs exist, 0 is returned and the next call to
e0c476b1 2284 * get_extent_inline_ref must pass the modified ptr parameter to get the
a542ad1b
JS
2285 * next ref. after the last ref was processed, 1 is returned.
2286 * returns <0 on error
2287 */
e0c476b1
JM
2288static int get_extent_inline_ref(unsigned long *ptr,
2289 const struct extent_buffer *eb,
2290 const struct btrfs_key *key,
2291 const struct btrfs_extent_item *ei,
2292 u32 item_size,
2293 struct btrfs_extent_inline_ref **out_eiref,
2294 int *out_type)
a542ad1b
JS
2295{
2296 unsigned long end;
2297 u64 flags;
2298 struct btrfs_tree_block_info *info;
2299
2300 if (!*ptr) {
2301 /* first call */
2302 flags = btrfs_extent_flags(eb, ei);
2303 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
2304 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2305 /* a skinny metadata extent */
2306 *out_eiref =
2307 (struct btrfs_extent_inline_ref *)(ei + 1);
2308 } else {
2309 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2310 info = (struct btrfs_tree_block_info *)(ei + 1);
2311 *out_eiref =
2312 (struct btrfs_extent_inline_ref *)(info + 1);
2313 }
a542ad1b
JS
2314 } else {
2315 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2316 }
2317 *ptr = (unsigned long)*out_eiref;
cd857dd6 2318 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
2319 return -ENOENT;
2320 }
2321
2322 end = (unsigned long)ei + item_size;
6eda71d0 2323 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
3de28d57
LB
2324 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2325 BTRFS_REF_TYPE_ANY);
2326 if (*out_type == BTRFS_REF_TYPE_INVALID)
af431dcb 2327 return -EUCLEAN;
a542ad1b
JS
2328
2329 *ptr += btrfs_extent_inline_ref_size(*out_type);
2330 WARN_ON(*ptr > end);
2331 if (*ptr == end)
2332 return 1; /* last */
2333
2334 return 0;
2335}
2336
2337/*
2338 * reads the tree block backref for an extent. tree level and root are returned
2339 * through out_level and out_root. ptr must point to a 0 value for the first
e0c476b1 2340 * call and may be modified (see get_extent_inline_ref comment).
a542ad1b
JS
2341 * returns 0 if data was provided, 1 if there was no more data to provide or
2342 * <0 on error.
2343 */
2344int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
2345 struct btrfs_key *key, struct btrfs_extent_item *ei,
2346 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
2347{
2348 int ret;
2349 int type;
a542ad1b
JS
2350 struct btrfs_extent_inline_ref *eiref;
2351
2352 if (*ptr == (unsigned long)-1)
2353 return 1;
2354
2355 while (1) {
e0c476b1 2356 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
6eda71d0 2357 &eiref, &type);
a542ad1b
JS
2358 if (ret < 0)
2359 return ret;
2360
2361 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2362 type == BTRFS_SHARED_BLOCK_REF_KEY)
2363 break;
2364
2365 if (ret == 1)
2366 return 1;
2367 }
2368
2369 /* we can treat both ref types equally here */
a542ad1b 2370 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
2371
2372 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2373 struct btrfs_tree_block_info *info;
2374
2375 info = (struct btrfs_tree_block_info *)(ei + 1);
2376 *out_level = btrfs_tree_block_level(eb, info);
2377 } else {
2378 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2379 *out_level = (u8)key->offset;
2380 }
a542ad1b
JS
2381
2382 if (ret == 1)
2383 *ptr = (unsigned long)-1;
2384
2385 return 0;
2386}
2387
ab8d0fc4
JM
2388static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2389 struct extent_inode_elem *inode_list,
2390 u64 root, u64 extent_item_objectid,
2391 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 2392{
976b1908 2393 struct extent_inode_elem *eie;
4692cf58 2394 int ret = 0;
4692cf58 2395
976b1908 2396 for (eie = inode_list; eie; eie = eie->next) {
ab8d0fc4
JM
2397 btrfs_debug(fs_info,
2398 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2399 extent_item_objectid, eie->inum,
2400 eie->offset, root);
c7499a64 2401 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
4692cf58 2402 if (ret) {
ab8d0fc4
JM
2403 btrfs_debug(fs_info,
2404 "stopping iteration for %llu due to ret=%d",
2405 extent_item_objectid, ret);
4692cf58
JS
2406 break;
2407 }
a542ad1b
JS
2408 }
2409
a542ad1b
JS
2410 return ret;
2411}
2412
2413/*
2414 * calls iterate() for every inode that references the extent identified by
4692cf58 2415 * the given parameters.
a542ad1b
JS
2416 * when the iterator function returns a non-zero value, iteration stops.
2417 */
a2c8d27e
FM
2418int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2419 bool search_commit_root,
2420 iterate_extent_inodes_t *iterate, void *user_ctx)
a542ad1b 2421{
a542ad1b 2422 int ret;
a2c8d27e
FM
2423 struct ulist *refs;
2424 struct ulist_node *ref_node;
f3a84ccd 2425 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
cd1b413c 2426 struct ulist_iterator ref_uiter;
a542ad1b 2427
a2c8d27e
FM
2428 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2429 ctx->bytenr);
2430
2431 ASSERT(ctx->trans == NULL);
1baea6f1
FM
2432 ASSERT(ctx->roots == NULL);
2433
da61d31a 2434 if (!search_commit_root) {
a2c8d27e
FM
2435 struct btrfs_trans_handle *trans;
2436
2437 trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
bfc61c36
FM
2438 if (IS_ERR(trans)) {
2439 if (PTR_ERR(trans) != -ENOENT &&
66d04209 2440 PTR_ERR(trans) != -EROFS)
bfc61c36
FM
2441 return PTR_ERR(trans);
2442 trans = NULL;
2443 }
a2c8d27e 2444 ctx->trans = trans;
bfc61c36
FM
2445 }
2446
a2c8d27e
FM
2447 if (ctx->trans) {
2448 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2449 ctx->time_seq = seq_elem.seq;
2450 } else {
2451 down_read(&ctx->fs_info->commit_root_sem);
2452 }
a542ad1b 2453
a2c8d27e 2454 ret = btrfs_find_all_leafs(ctx);
4692cf58
JS
2455 if (ret)
2456 goto out;
a2c8d27e
FM
2457 refs = ctx->refs;
2458 ctx->refs = NULL;
a542ad1b 2459
cd1b413c
JS
2460 ULIST_ITER_INIT(&ref_uiter);
2461 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
66d04209 2462 const u64 leaf_bytenr = ref_node->val;
a2c8d27e
FM
2463 struct ulist_node *root_node;
2464 struct ulist_iterator root_uiter;
66d04209
FM
2465 struct extent_inode_elem *inode_list;
2466
2467 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2468
2469 if (ctx->cache_lookup) {
2470 const u64 *root_ids;
2471 int root_count;
2472 bool cached;
2473
2474 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2475 &root_ids, &root_count);
2476 if (cached) {
2477 for (int i = 0; i < root_count; i++) {
2478 ret = iterate_leaf_refs(ctx->fs_info,
2479 inode_list,
2480 root_ids[i],
2481 leaf_bytenr,
2482 iterate,
2483 user_ctx);
2484 if (ret)
2485 break;
2486 }
2487 continue;
2488 }
2489 }
2490
2491 if (!ctx->roots) {
2492 ctx->roots = ulist_alloc(GFP_NOFS);
2493 if (!ctx->roots) {
2494 ret = -ENOMEM;
2495 break;
2496 }
2497 }
a2c8d27e 2498
66d04209 2499 ctx->bytenr = leaf_bytenr;
a2c8d27e 2500 ret = btrfs_find_all_roots_safe(ctx);
4692cf58
JS
2501 if (ret)
2502 break;
a2c8d27e 2503
66d04209
FM
2504 if (ctx->cache_store)
2505 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2506
cd1b413c 2507 ULIST_ITER_INIT(&root_uiter);
a2c8d27e
FM
2508 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2509 btrfs_debug(ctx->fs_info,
ab8d0fc4
JM
2510 "root %llu references leaf %llu, data list %#llx",
2511 root_node->val, ref_node->val,
2512 ref_node->aux);
66d04209 2513 ret = iterate_leaf_refs(ctx->fs_info, inode_list,
a2c8d27e
FM
2514 root_node->val, ctx->bytenr,
2515 iterate, user_ctx);
4692cf58 2516 }
1baea6f1 2517 ulist_reinit(ctx->roots);
a542ad1b
JS
2518 }
2519
976b1908 2520 free_leaf_list(refs);
4692cf58 2521out:
a2c8d27e
FM
2522 if (ctx->trans) {
2523 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2524 btrfs_end_transaction(ctx->trans);
2525 ctx->trans = NULL;
9e351cc8 2526 } else {
a2c8d27e 2527 up_read(&ctx->fs_info->commit_root_sem);
7a3ae2f8
JS
2528 }
2529
1baea6f1
FM
2530 ulist_free(ctx->roots);
2531 ctx->roots = NULL;
2532
88ffb665
FM
2533 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2534 ret = 0;
2535
a542ad1b
JS
2536 return ret;
2537}
2538
c7499a64 2539static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
e3059ec0
DS
2540{
2541 struct btrfs_data_container *inodes = ctx;
2542 const size_t c = 3 * sizeof(u64);
2543
2544 if (inodes->bytes_left >= c) {
2545 inodes->bytes_left -= c;
2546 inodes->val[inodes->elem_cnt] = inum;
2547 inodes->val[inodes->elem_cnt + 1] = offset;
2548 inodes->val[inodes->elem_cnt + 2] = root;
2549 inodes->elem_cnt += 3;
2550 } else {
2551 inodes->bytes_missing += c - inodes->bytes_left;
2552 inodes->bytes_left = 0;
2553 inodes->elem_missed += 3;
2554 }
2555
2556 return 0;
2557}
2558
a542ad1b
JS
2559int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2560 struct btrfs_path *path,
e3059ec0 2561 void *ctx, bool ignore_offset)
a542ad1b 2562{
a2c8d27e 2563 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
a542ad1b 2564 int ret;
69917e43 2565 u64 flags = 0;
a542ad1b 2566 struct btrfs_key found_key;
7a3ae2f8 2567 int search_commit_root = path->search_commit_root;
a542ad1b 2568
69917e43 2569 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 2570 btrfs_release_path(path);
a542ad1b
JS
2571 if (ret < 0)
2572 return ret;
69917e43 2573 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 2574 return -EINVAL;
a542ad1b 2575
a2c8d27e 2576 walk_ctx.bytenr = found_key.objectid;
6ce6ba53 2577 if (ignore_offset)
a2c8d27e 2578 walk_ctx.ignore_extent_item_pos = true;
6ce6ba53 2579 else
a2c8d27e
FM
2580 walk_ctx.extent_item_pos = logical - found_key.objectid;
2581 walk_ctx.fs_info = fs_info;
6ce6ba53 2582
a2c8d27e
FM
2583 return iterate_extent_inodes(&walk_ctx, search_commit_root,
2584 build_ino_list, ctx);
a542ad1b
JS
2585}
2586
ad6240f6 2587static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2588 struct extent_buffer *eb, struct inode_fs_paths *ipath);
d24bec3a 2589
875d1daa 2590static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
a542ad1b 2591{
aefc1eb1 2592 int ret = 0;
a542ad1b
JS
2593 int slot;
2594 u32 cur;
2595 u32 len;
2596 u32 name_len;
2597 u64 parent = 0;
2598 int found = 0;
875d1daa
DS
2599 struct btrfs_root *fs_root = ipath->fs_root;
2600 struct btrfs_path *path = ipath->btrfs_path;
a542ad1b 2601 struct extent_buffer *eb;
a542ad1b
JS
2602 struct btrfs_inode_ref *iref;
2603 struct btrfs_key found_key;
2604
aefc1eb1 2605 while (!ret) {
c234a24d
DS
2606 ret = btrfs_find_item(fs_root, path, inum,
2607 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2608 &found_key);
2609
a542ad1b
JS
2610 if (ret < 0)
2611 break;
2612 if (ret) {
2613 ret = found ? 0 : -ENOENT;
2614 break;
2615 }
2616 ++found;
2617
2618 parent = found_key.offset;
2619 slot = path->slots[0];
3fe81ce2
FDBM
2620 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2621 if (!eb) {
2622 ret = -ENOMEM;
2623 break;
2624 }
a542ad1b
JS
2625 btrfs_release_path(path);
2626
a542ad1b
JS
2627 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2628
3212fa14 2629 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
a542ad1b
JS
2630 name_len = btrfs_inode_ref_name_len(eb, iref);
2631 /* path must be released before calling iterate()! */
ab8d0fc4
JM
2632 btrfs_debug(fs_root->fs_info,
2633 "following ref at offset %u for inode %llu in tree %llu",
4fd786e6
MT
2634 cur, found_key.objectid,
2635 fs_root->root_key.objectid);
ad6240f6 2636 ret = inode_to_path(parent, name_len,
875d1daa 2637 (unsigned long)(iref + 1), eb, ipath);
aefc1eb1 2638 if (ret)
a542ad1b 2639 break;
a542ad1b
JS
2640 len = sizeof(*iref) + name_len;
2641 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2642 }
2643 free_extent_buffer(eb);
2644 }
2645
2646 btrfs_release_path(path);
2647
2648 return ret;
2649}
2650
875d1daa 2651static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
d24bec3a
MF
2652{
2653 int ret;
2654 int slot;
2655 u64 offset = 0;
2656 u64 parent;
2657 int found = 0;
875d1daa
DS
2658 struct btrfs_root *fs_root = ipath->fs_root;
2659 struct btrfs_path *path = ipath->btrfs_path;
d24bec3a
MF
2660 struct extent_buffer *eb;
2661 struct btrfs_inode_extref *extref;
d24bec3a
MF
2662 u32 item_size;
2663 u32 cur_offset;
2664 unsigned long ptr;
2665
2666 while (1) {
2667 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2668 &offset);
2669 if (ret < 0)
2670 break;
2671 if (ret) {
2672 ret = found ? 0 : -ENOENT;
2673 break;
2674 }
2675 ++found;
2676
2677 slot = path->slots[0];
3fe81ce2
FDBM
2678 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2679 if (!eb) {
2680 ret = -ENOMEM;
2681 break;
2682 }
d24bec3a
MF
2683 btrfs_release_path(path);
2684
3212fa14 2685 item_size = btrfs_item_size(eb, slot);
2849a854 2686 ptr = btrfs_item_ptr_offset(eb, slot);
d24bec3a
MF
2687 cur_offset = 0;
2688
2689 while (cur_offset < item_size) {
2690 u32 name_len;
2691
2692 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2693 parent = btrfs_inode_extref_parent(eb, extref);
2694 name_len = btrfs_inode_extref_name_len(eb, extref);
ad6240f6 2695 ret = inode_to_path(parent, name_len,
875d1daa 2696 (unsigned long)&extref->name, eb, ipath);
d24bec3a
MF
2697 if (ret)
2698 break;
2699
2849a854 2700 cur_offset += btrfs_inode_extref_name_len(eb, extref);
d24bec3a
MF
2701 cur_offset += sizeof(*extref);
2702 }
d24bec3a
MF
2703 free_extent_buffer(eb);
2704
2705 offset++;
2706 }
2707
2708 btrfs_release_path(path);
2709
2710 return ret;
2711}
2712
a542ad1b
JS
2713/*
2714 * returns 0 if the path could be dumped (probably truncated)
2715 * returns <0 in case of an error
2716 */
d24bec3a 2717static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
875d1daa 2718 struct extent_buffer *eb, struct inode_fs_paths *ipath)
a542ad1b 2719{
a542ad1b
JS
2720 char *fspath;
2721 char *fspath_min;
2722 int i = ipath->fspath->elem_cnt;
2723 const int s_ptr = sizeof(char *);
2724 u32 bytes_left;
2725
2726 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2727 ipath->fspath->bytes_left - s_ptr : 0;
2728
740c3d22 2729 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
2730 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2731 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
2732 if (IS_ERR(fspath))
2733 return PTR_ERR(fspath);
2734
2735 if (fspath > fspath_min) {
745c4d8e 2736 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
2737 ++ipath->fspath->elem_cnt;
2738 ipath->fspath->bytes_left = fspath - fspath_min;
2739 } else {
2740 ++ipath->fspath->elem_missed;
2741 ipath->fspath->bytes_missing += fspath_min - fspath;
2742 ipath->fspath->bytes_left = 0;
2743 }
2744
2745 return 0;
2746}
2747
2748/*
2749 * this dumps all file system paths to the inode into the ipath struct, provided
2750 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 2751 * from ipath->fspath->val[i].
a542ad1b 2752 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 2753 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
01327610 2754 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
a542ad1b
JS
2755 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2756 * have been needed to return all paths.
2757 */
2758int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2759{
ad6240f6
DS
2760 int ret;
2761 int found_refs = 0;
2762
875d1daa 2763 ret = iterate_inode_refs(inum, ipath);
ad6240f6
DS
2764 if (!ret)
2765 ++found_refs;
2766 else if (ret != -ENOENT)
2767 return ret;
2768
875d1daa 2769 ret = iterate_inode_extrefs(inum, ipath);
ad6240f6
DS
2770 if (ret == -ENOENT && found_refs)
2771 return 0;
2772
2773 return ret;
a542ad1b
JS
2774}
2775
a542ad1b
JS
2776struct btrfs_data_container *init_data_container(u32 total_bytes)
2777{
2778 struct btrfs_data_container *data;
2779 size_t alloc_bytes;
2780
2781 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
f54de068 2782 data = kvmalloc(alloc_bytes, GFP_KERNEL);
a542ad1b
JS
2783 if (!data)
2784 return ERR_PTR(-ENOMEM);
2785
2786 if (total_bytes >= sizeof(*data)) {
2787 data->bytes_left = total_bytes - sizeof(*data);
2788 data->bytes_missing = 0;
2789 } else {
2790 data->bytes_missing = sizeof(*data) - total_bytes;
2791 data->bytes_left = 0;
2792 }
2793
2794 data->elem_cnt = 0;
2795 data->elem_missed = 0;
2796
2797 return data;
2798}
2799
2800/*
2801 * allocates space to return multiple file system paths for an inode.
2802 * total_bytes to allocate are passed, note that space usable for actual path
2803 * information will be total_bytes - sizeof(struct inode_fs_paths).
2804 * the returned pointer must be freed with free_ipath() in the end.
2805 */
2806struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2807 struct btrfs_path *path)
2808{
2809 struct inode_fs_paths *ifp;
2810 struct btrfs_data_container *fspath;
2811
2812 fspath = init_data_container(total_bytes);
2813 if (IS_ERR(fspath))
afc6961f 2814 return ERR_CAST(fspath);
a542ad1b 2815
f54de068 2816 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
a542ad1b 2817 if (!ifp) {
f54de068 2818 kvfree(fspath);
a542ad1b
JS
2819 return ERR_PTR(-ENOMEM);
2820 }
2821
2822 ifp->btrfs_path = path;
2823 ifp->fspath = fspath;
2824 ifp->fs_root = fs_root;
2825
2826 return ifp;
2827}
2828
2829void free_ipath(struct inode_fs_paths *ipath)
2830{
4735fb28
JJ
2831 if (!ipath)
2832 return;
f54de068 2833 kvfree(ipath->fspath);
a542ad1b
JS
2834 kfree(ipath);
2835}
a37f232b 2836
d68194b2 2837struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
a37f232b
QW
2838{
2839 struct btrfs_backref_iter *ret;
2840
d68194b2 2841 ret = kzalloc(sizeof(*ret), GFP_NOFS);
a37f232b
QW
2842 if (!ret)
2843 return NULL;
2844
2845 ret->path = btrfs_alloc_path();
c15c2ec0 2846 if (!ret->path) {
a37f232b
QW
2847 kfree(ret);
2848 return NULL;
2849 }
2850
2851 /* Current backref iterator only supports iteration in commit root */
2852 ret->path->search_commit_root = 1;
2853 ret->path->skip_locking = 1;
2854 ret->fs_info = fs_info;
2855
2856 return ret;
2857}
2858
2aa756ec
DS
2859static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2860{
2861 iter->bytenr = 0;
2862 iter->item_ptr = 0;
2863 iter->cur_ptr = 0;
2864 iter->end_ptr = 0;
2865 btrfs_release_path(iter->path);
2866 memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2867}
2868
a37f232b
QW
2869int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2870{
2871 struct btrfs_fs_info *fs_info = iter->fs_info;
29cbcf40 2872 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
a37f232b
QW
2873 struct btrfs_path *path = iter->path;
2874 struct btrfs_extent_item *ei;
2875 struct btrfs_key key;
2876 int ret;
2877
2878 key.objectid = bytenr;
2879 key.type = BTRFS_METADATA_ITEM_KEY;
2880 key.offset = (u64)-1;
2881 iter->bytenr = bytenr;
2882
29cbcf40 2883 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
a37f232b
QW
2884 if (ret < 0)
2885 return ret;
2886 if (ret == 0) {
11dcc86e
DS
2887 /*
2888 * Key with offset -1 found, there would have to exist an extent
2889 * item with such offset, but this is out of the valid range.
2890 */
a37f232b
QW
2891 ret = -EUCLEAN;
2892 goto release;
2893 }
2894 if (path->slots[0] == 0) {
2895 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2896 ret = -EUCLEAN;
2897 goto release;
2898 }
2899 path->slots[0]--;
2900
2901 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2902 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2903 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2904 ret = -ENOENT;
2905 goto release;
2906 }
2907 memcpy(&iter->cur_key, &key, sizeof(key));
2908 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2909 path->slots[0]);
2910 iter->end_ptr = (u32)(iter->item_ptr +
3212fa14 2911 btrfs_item_size(path->nodes[0], path->slots[0]));
a37f232b
QW
2912 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2913 struct btrfs_extent_item);
2914
2915 /*
2916 * Only support iteration on tree backref yet.
2917 *
2918 * This is an extra precaution for non skinny-metadata, where
2919 * EXTENT_ITEM is also used for tree blocks, that we can only use
2920 * extent flags to determine if it's a tree block.
2921 */
2922 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2923 ret = -ENOTSUPP;
2924 goto release;
2925 }
2926 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2927
2928 /* If there is no inline backref, go search for keyed backref */
2929 if (iter->cur_ptr >= iter->end_ptr) {
29cbcf40 2930 ret = btrfs_next_item(extent_root, path);
a37f232b
QW
2931
2932 /* No inline nor keyed ref */
2933 if (ret > 0) {
2934 ret = -ENOENT;
2935 goto release;
2936 }
2937 if (ret < 0)
2938 goto release;
2939
2940 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2941 path->slots[0]);
2942 if (iter->cur_key.objectid != bytenr ||
2943 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2944 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2945 ret = -ENOENT;
2946 goto release;
2947 }
2948 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2949 path->slots[0]);
2950 iter->item_ptr = iter->cur_ptr;
3212fa14 2951 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
a37f232b
QW
2952 path->nodes[0], path->slots[0]));
2953 }
2954
2955 return 0;
2956release:
2957 btrfs_backref_iter_release(iter);
2958 return ret;
2959}
c39c2ddc 2960
2aa756ec
DS
2961static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2962{
2963 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2964 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2965 return true;
2966 return false;
2967}
2968
c39c2ddc
QW
2969/*
2970 * Go to the next backref item of current bytenr, can be either inlined or
2971 * keyed.
2972 *
2973 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2974 *
2975 * Return 0 if we get next backref without problem.
2976 * Return >0 if there is no extra backref for this bytenr.
2977 * Return <0 if there is something wrong happened.
2978 */
2979int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2980{
ef923440 2981 struct extent_buffer *eb = iter->path->nodes[0];
29cbcf40 2982 struct btrfs_root *extent_root;
c39c2ddc
QW
2983 struct btrfs_path *path = iter->path;
2984 struct btrfs_extent_inline_ref *iref;
2985 int ret;
2986 u32 size;
2987
2988 if (btrfs_backref_iter_is_inline_ref(iter)) {
2989 /* We're still inside the inline refs */
2990 ASSERT(iter->cur_ptr < iter->end_ptr);
2991
2992 if (btrfs_backref_has_tree_block_info(iter)) {
2993 /* First tree block info */
2994 size = sizeof(struct btrfs_tree_block_info);
2995 } else {
2996 /* Use inline ref type to determine the size */
2997 int type;
2998
2999 iref = (struct btrfs_extent_inline_ref *)
3000 ((unsigned long)iter->cur_ptr);
3001 type = btrfs_extent_inline_ref_type(eb, iref);
3002
3003 size = btrfs_extent_inline_ref_size(type);
3004 }
3005 iter->cur_ptr += size;
3006 if (iter->cur_ptr < iter->end_ptr)
3007 return 0;
3008
3009 /* All inline items iterated, fall through */
3010 }
3011
3012 /* We're at keyed items, there is no inline item, go to the next one */
29cbcf40
JB
3013 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
3014 ret = btrfs_next_item(extent_root, iter->path);
c39c2ddc
QW
3015 if (ret)
3016 return ret;
3017
3018 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
3019 if (iter->cur_key.objectid != iter->bytenr ||
3020 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3021 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3022 return 1;
3023 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3024 path->slots[0]);
3025 iter->cur_ptr = iter->item_ptr;
3212fa14 3026 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
c39c2ddc
QW
3027 path->slots[0]);
3028 return 0;
3029}
584fb121
QW
3030
3031void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
c71d3c69 3032 struct btrfs_backref_cache *cache, bool is_reloc)
584fb121
QW
3033{
3034 int i;
3035
3036 cache->rb_root = RB_ROOT;
3037 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3038 INIT_LIST_HEAD(&cache->pending[i]);
3039 INIT_LIST_HEAD(&cache->changed);
3040 INIT_LIST_HEAD(&cache->detached);
3041 INIT_LIST_HEAD(&cache->leaves);
3042 INIT_LIST_HEAD(&cache->pending_edge);
3043 INIT_LIST_HEAD(&cache->useless_node);
3044 cache->fs_info = fs_info;
3045 cache->is_reloc = is_reloc;
3046}
b1818dab
QW
3047
3048struct btrfs_backref_node *btrfs_backref_alloc_node(
3049 struct btrfs_backref_cache *cache, u64 bytenr, int level)
3050{
3051 struct btrfs_backref_node *node;
3052
3053 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3054 node = kzalloc(sizeof(*node), GFP_NOFS);
3055 if (!node)
3056 return node;
3057
3058 INIT_LIST_HEAD(&node->list);
3059 INIT_LIST_HEAD(&node->upper);
3060 INIT_LIST_HEAD(&node->lower);
3061 RB_CLEAR_NODE(&node->rb_node);
3062 cache->nr_nodes++;
3063 node->level = level;
3064 node->bytenr = bytenr;
3065
3066 return node;
3067}
47254d07 3068
2aa756ec
DS
3069void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3070 struct btrfs_backref_node *node)
3071{
3072 if (node) {
3073 ASSERT(list_empty(&node->list));
3074 ASSERT(list_empty(&node->lower));
3075 ASSERT(node->eb == NULL);
3076 cache->nr_nodes--;
3077 btrfs_put_root(node->root);
3078 kfree(node);
3079 }
3080}
3081
47254d07
QW
3082struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3083 struct btrfs_backref_cache *cache)
3084{
3085 struct btrfs_backref_edge *edge;
3086
3087 edge = kzalloc(sizeof(*edge), GFP_NOFS);
3088 if (edge)
3089 cache->nr_edges++;
3090 return edge;
3091}
023acb07 3092
2aa756ec
DS
3093void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3094 struct btrfs_backref_edge *edge)
3095{
3096 if (edge) {
3097 cache->nr_edges--;
3098 kfree(edge);
3099 }
3100}
3101
3102void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3103{
3104 if (node->locked) {
3105 btrfs_tree_unlock(node->eb);
3106 node->locked = 0;
3107 }
3108}
3109
3110void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3111{
3112 if (node->eb) {
3113 btrfs_backref_unlock_node_buffer(node);
3114 free_extent_buffer(node->eb);
3115 node->eb = NULL;
3116 }
3117}
3118
3119/*
3120 * Drop the backref node from cache without cleaning up its children
3121 * edges.
3122 *
3123 * This can only be called on node without parent edges.
3124 * The children edges are still kept as is.
3125 */
3126void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3127 struct btrfs_backref_node *node)
3128{
3129 ASSERT(list_empty(&node->upper));
3130
3131 btrfs_backref_drop_node_buffer(node);
3132 list_del_init(&node->list);
3133 list_del_init(&node->lower);
3134 if (!RB_EMPTY_NODE(&node->rb_node))
3135 rb_erase(&node->rb_node, &tree->rb_root);
3136 btrfs_backref_free_node(tree, node);
3137}
3138
023acb07
QW
3139/*
3140 * Drop the backref node from cache, also cleaning up all its
3141 * upper edges and any uncached nodes in the path.
3142 *
3143 * This cleanup happens bottom up, thus the node should either
3144 * be the lowest node in the cache or a detached node.
3145 */
3146void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3147 struct btrfs_backref_node *node)
3148{
3149 struct btrfs_backref_node *upper;
3150 struct btrfs_backref_edge *edge;
3151
3152 if (!node)
3153 return;
3154
3155 BUG_ON(!node->lowest && !node->detached);
3156 while (!list_empty(&node->upper)) {
3157 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
3158 list[LOWER]);
3159 upper = edge->node[UPPER];
3160 list_del(&edge->list[LOWER]);
3161 list_del(&edge->list[UPPER]);
3162 btrfs_backref_free_edge(cache, edge);
3163
023acb07
QW
3164 /*
3165 * Add the node to leaf node list if no other child block
3166 * cached.
3167 */
3168 if (list_empty(&upper->lower)) {
3169 list_add_tail(&upper->lower, &cache->leaves);
3170 upper->lowest = 1;
3171 }
3172 }
3173
3174 btrfs_backref_drop_node(cache, node);
3175}
13fe1bdb
QW
3176
3177/*
3178 * Release all nodes/edges from current cache
3179 */
3180void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3181{
3182 struct btrfs_backref_node *node;
3183 int i;
3184
3185 while (!list_empty(&cache->detached)) {
3186 node = list_entry(cache->detached.next,
3187 struct btrfs_backref_node, list);
3188 btrfs_backref_cleanup_node(cache, node);
3189 }
3190
3191 while (!list_empty(&cache->leaves)) {
3192 node = list_entry(cache->leaves.next,
3193 struct btrfs_backref_node, lower);
3194 btrfs_backref_cleanup_node(cache, node);
3195 }
3196
3197 cache->last_trans = 0;
3198
3199 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3200 ASSERT(list_empty(&cache->pending[i]));
3201 ASSERT(list_empty(&cache->pending_edge));
3202 ASSERT(list_empty(&cache->useless_node));
3203 ASSERT(list_empty(&cache->changed));
3204 ASSERT(list_empty(&cache->detached));
3205 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
3206 ASSERT(!cache->nr_nodes);
3207 ASSERT(!cache->nr_edges);
3208}
1b60d2ec 3209
2aa756ec
DS
3210void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3211 struct btrfs_backref_node *lower,
3212 struct btrfs_backref_node *upper,
3213 int link_which)
3214{
3215 ASSERT(upper && lower && upper->level == lower->level + 1);
3216 edge->node[LOWER] = lower;
3217 edge->node[UPPER] = upper;
3218 if (link_which & LINK_LOWER)
3219 list_add_tail(&edge->list[LOWER], &lower->upper);
3220 if (link_which & LINK_UPPER)
3221 list_add_tail(&edge->list[UPPER], &upper->lower);
3222}
1b60d2ec
QW
3223/*
3224 * Handle direct tree backref
3225 *
3226 * Direct tree backref means, the backref item shows its parent bytenr
3227 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3228 *
3229 * @ref_key: The converted backref key.
3230 * For keyed backref, it's the item key.
3231 * For inlined backref, objectid is the bytenr,
3232 * type is btrfs_inline_ref_type, offset is
3233 * btrfs_inline_ref_offset.
3234 */
3235static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3236 struct btrfs_key *ref_key,
3237 struct btrfs_backref_node *cur)
3238{
3239 struct btrfs_backref_edge *edge;
3240 struct btrfs_backref_node *upper;
3241 struct rb_node *rb_node;
3242
3243 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3244
3245 /* Only reloc root uses backref pointing to itself */
3246 if (ref_key->objectid == ref_key->offset) {
3247 struct btrfs_root *root;
3248
3249 cur->is_reloc_root = 1;
3250 /* Only reloc backref cache cares about a specific root */
3251 if (cache->is_reloc) {
3252 root = find_reloc_root(cache->fs_info, cur->bytenr);
f78743fb 3253 if (!root)
1b60d2ec
QW
3254 return -ENOENT;
3255 cur->root = root;
3256 } else {
3257 /*
3258 * For generic purpose backref cache, reloc root node
3259 * is useless.
3260 */
3261 list_add(&cur->list, &cache->useless_node);
3262 }
3263 return 0;
3264 }
3265
3266 edge = btrfs_backref_alloc_edge(cache);
3267 if (!edge)
3268 return -ENOMEM;
3269
3270 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3271 if (!rb_node) {
3272 /* Parent node not yet cached */
3273 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3274 cur->level + 1);
3275 if (!upper) {
3276 btrfs_backref_free_edge(cache, edge);
3277 return -ENOMEM;
3278 }
3279
3280 /*
3281 * Backrefs for the upper level block isn't cached, add the
3282 * block to pending list
3283 */
3284 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3285 } else {
3286 /* Parent node already cached */
3287 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3288 ASSERT(upper->checked);
3289 INIT_LIST_HEAD(&edge->list[UPPER]);
3290 }
3291 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
3292 return 0;
3293}
3294
3295/*
3296 * Handle indirect tree backref
3297 *
3298 * Indirect tree backref means, we only know which tree the node belongs to.
3299 * We still need to do a tree search to find out the parents. This is for
3300 * TREE_BLOCK_REF backref (keyed or inlined).
3301 *
eb96e221 3302 * @trans: Transaction handle.
1b60d2ec
QW
3303 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
3304 * @tree_key: The first key of this tree block.
1a9fd417 3305 * @path: A clean (released) path, to avoid allocating path every time
1b60d2ec
QW
3306 * the function get called.
3307 */
eb96e221
FM
3308static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3309 struct btrfs_backref_cache *cache,
1b60d2ec
QW
3310 struct btrfs_path *path,
3311 struct btrfs_key *ref_key,
3312 struct btrfs_key *tree_key,
3313 struct btrfs_backref_node *cur)
3314{
3315 struct btrfs_fs_info *fs_info = cache->fs_info;
3316 struct btrfs_backref_node *upper;
3317 struct btrfs_backref_node *lower;
3318 struct btrfs_backref_edge *edge;
3319 struct extent_buffer *eb;
3320 struct btrfs_root *root;
1b60d2ec
QW
3321 struct rb_node *rb_node;
3322 int level;
3323 bool need_check = true;
3324 int ret;
3325
56e9357a 3326 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
1b60d2ec
QW
3327 if (IS_ERR(root))
3328 return PTR_ERR(root);
92a7cc42 3329 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
3330 cur->cowonly = 1;
3331
3332 if (btrfs_root_level(&root->root_item) == cur->level) {
3333 /* Tree root */
3334 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
876de781
QW
3335 /*
3336 * For reloc backref cache, we may ignore reloc root. But for
3337 * general purpose backref cache, we can't rely on
3338 * btrfs_should_ignore_reloc_root() as it may conflict with
3339 * current running relocation and lead to missing root.
3340 *
3341 * For general purpose backref cache, reloc root detection is
3342 * completely relying on direct backref (key->offset is parent
3343 * bytenr), thus only do such check for reloc cache.
3344 */
3345 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
1b60d2ec
QW
3346 btrfs_put_root(root);
3347 list_add(&cur->list, &cache->useless_node);
3348 } else {
3349 cur->root = root;
3350 }
3351 return 0;
3352 }
3353
3354 level = cur->level + 1;
3355
3356 /* Search the tree to find parent blocks referring to the block */
3357 path->search_commit_root = 1;
3358 path->skip_locking = 1;
3359 path->lowest_level = level;
3360 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3361 path->lowest_level = 0;
3362 if (ret < 0) {
3363 btrfs_put_root(root);
3364 return ret;
3365 }
3366 if (ret > 0 && path->slots[level] > 0)
3367 path->slots[level]--;
3368
3369 eb = path->nodes[level];
3370 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3371 btrfs_err(fs_info,
3372"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3373 cur->bytenr, level - 1, root->root_key.objectid,
3374 tree_key->objectid, tree_key->type, tree_key->offset);
3375 btrfs_put_root(root);
3376 ret = -ENOENT;
3377 goto out;
3378 }
3379 lower = cur;
3380
3381 /* Add all nodes and edges in the path */
3382 for (; level < BTRFS_MAX_LEVEL; level++) {
3383 if (!path->nodes[level]) {
3384 ASSERT(btrfs_root_bytenr(&root->root_item) ==
3385 lower->bytenr);
876de781
QW
3386 /* Same as previous should_ignore_reloc_root() call */
3387 if (btrfs_should_ignore_reloc_root(root) &&
3388 cache->is_reloc) {
1b60d2ec
QW
3389 btrfs_put_root(root);
3390 list_add(&lower->list, &cache->useless_node);
3391 } else {
3392 lower->root = root;
3393 }
3394 break;
3395 }
3396
3397 edge = btrfs_backref_alloc_edge(cache);
3398 if (!edge) {
3399 btrfs_put_root(root);
3400 ret = -ENOMEM;
3401 goto out;
3402 }
3403
3404 eb = path->nodes[level];
3405 rb_node = rb_simple_search(&cache->rb_root, eb->start);
3406 if (!rb_node) {
3407 upper = btrfs_backref_alloc_node(cache, eb->start,
3408 lower->level + 1);
3409 if (!upper) {
3410 btrfs_put_root(root);
3411 btrfs_backref_free_edge(cache, edge);
3412 ret = -ENOMEM;
3413 goto out;
3414 }
3415 upper->owner = btrfs_header_owner(eb);
92a7cc42 3416 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
1b60d2ec
QW
3417 upper->cowonly = 1;
3418
3419 /*
3420 * If we know the block isn't shared we can avoid
3421 * checking its backrefs.
3422 */
eb96e221 3423 if (btrfs_block_can_be_shared(trans, root, eb))
1b60d2ec
QW
3424 upper->checked = 0;
3425 else
3426 upper->checked = 1;
3427
3428 /*
3429 * Add the block to pending list if we need to check its
3430 * backrefs, we only do this once while walking up a
3431 * tree as we will catch anything else later on.
3432 */
3433 if (!upper->checked && need_check) {
3434 need_check = false;
3435 list_add_tail(&edge->list[UPPER],
3436 &cache->pending_edge);
3437 } else {
3438 if (upper->checked)
3439 need_check = true;
3440 INIT_LIST_HEAD(&edge->list[UPPER]);
3441 }
3442 } else {
3443 upper = rb_entry(rb_node, struct btrfs_backref_node,
3444 rb_node);
3445 ASSERT(upper->checked);
3446 INIT_LIST_HEAD(&edge->list[UPPER]);
3447 if (!upper->owner)
3448 upper->owner = btrfs_header_owner(eb);
3449 }
3450 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
3451
3452 if (rb_node) {
3453 btrfs_put_root(root);
3454 break;
3455 }
3456 lower = upper;
3457 upper = NULL;
3458 }
3459out:
3460 btrfs_release_path(path);
3461 return ret;
3462}
3463
3464/*
3465 * Add backref node @cur into @cache.
3466 *
3467 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3468 * links aren't yet bi-directional. Needs to finish such links.
fc997ed0 3469 * Use btrfs_backref_finish_upper_links() to finish such linkage.
1b60d2ec 3470 *
eb96e221 3471 * @trans: Transaction handle.
1b60d2ec
QW
3472 * @path: Released path for indirect tree backref lookup
3473 * @iter: Released backref iter for extent tree search
3474 * @node_key: The first key of the tree block
3475 */
eb96e221
FM
3476int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3477 struct btrfs_backref_cache *cache,
1b60d2ec
QW
3478 struct btrfs_path *path,
3479 struct btrfs_backref_iter *iter,
3480 struct btrfs_key *node_key,
3481 struct btrfs_backref_node *cur)
3482{
1b60d2ec
QW
3483 struct btrfs_backref_edge *edge;
3484 struct btrfs_backref_node *exist;
3485 int ret;
3486
3487 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3488 if (ret < 0)
3489 return ret;
3490 /*
3491 * We skip the first btrfs_tree_block_info, as we don't use the key
3492 * stored in it, but fetch it from the tree block
3493 */
3494 if (btrfs_backref_has_tree_block_info(iter)) {
3495 ret = btrfs_backref_iter_next(iter);
3496 if (ret < 0)
3497 goto out;
3498 /* No extra backref? This means the tree block is corrupted */
3499 if (ret > 0) {
3500 ret = -EUCLEAN;
3501 goto out;
3502 }
3503 }
3504 WARN_ON(cur->checked);
3505 if (!list_empty(&cur->upper)) {
3506 /*
3507 * The backref was added previously when processing backref of
3508 * type BTRFS_TREE_BLOCK_REF_KEY
3509 */
3510 ASSERT(list_is_singular(&cur->upper));
3511 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
3512 list[LOWER]);
3513 ASSERT(list_empty(&edge->list[UPPER]));
3514 exist = edge->node[UPPER];
3515 /*
3516 * Add the upper level block to pending list if we need check
3517 * its backrefs
3518 */
3519 if (!exist->checked)
3520 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3521 } else {
3522 exist = NULL;
3523 }
3524
3525 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3526 struct extent_buffer *eb;
3527 struct btrfs_key key;
3528 int type;
3529
3530 cond_resched();
ef923440 3531 eb = iter->path->nodes[0];
1b60d2ec
QW
3532
3533 key.objectid = iter->bytenr;
3534 if (btrfs_backref_iter_is_inline_ref(iter)) {
3535 struct btrfs_extent_inline_ref *iref;
3536
3537 /* Update key for inline backref */
3538 iref = (struct btrfs_extent_inline_ref *)
3539 ((unsigned long)iter->cur_ptr);
3540 type = btrfs_get_extent_inline_ref_type(eb, iref,
3541 BTRFS_REF_TYPE_BLOCK);
3542 if (type == BTRFS_REF_TYPE_INVALID) {
3543 ret = -EUCLEAN;
3544 goto out;
3545 }
3546 key.type = type;
3547 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3548 } else {
3549 key.type = iter->cur_key.type;
3550 key.offset = iter->cur_key.offset;
3551 }
3552
3553 /*
3554 * Parent node found and matches current inline ref, no need to
3555 * rebuild this node for this inline ref
3556 */
3557 if (exist &&
3558 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3559 exist->owner == key.offset) ||
3560 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3561 exist->bytenr == key.offset))) {
3562 exist = NULL;
3563 continue;
3564 }
3565
3566 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3567 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3568 ret = handle_direct_tree_backref(cache, &key, cur);
3569 if (ret < 0)
3570 goto out;
182741d2
QW
3571 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3572 /*
3573 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3574 * offset means the root objectid. We need to search
3575 * the tree to get its parent bytenr.
3576 */
eb96e221
FM
3577 ret = handle_indirect_tree_backref(trans, cache, path,
3578 &key, node_key, cur);
182741d2
QW
3579 if (ret < 0)
3580 goto out;
1b60d2ec 3581 }
1b60d2ec 3582 /*
182741d2
QW
3583 * Unrecognized tree backref items (if it can pass tree-checker)
3584 * would be ignored.
1b60d2ec 3585 */
1b60d2ec
QW
3586 }
3587 ret = 0;
3588 cur->checked = 1;
3589 WARN_ON(exist);
3590out:
3591 btrfs_backref_iter_release(iter);
3592 return ret;
3593}
fc997ed0
QW
3594
3595/*
3596 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3597 */
3598int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3599 struct btrfs_backref_node *start)
3600{
3601 struct list_head *useless_node = &cache->useless_node;
3602 struct btrfs_backref_edge *edge;
3603 struct rb_node *rb_node;
3604 LIST_HEAD(pending_edge);
3605
3606 ASSERT(start->checked);
3607
3608 /* Insert this node to cache if it's not COW-only */
3609 if (!start->cowonly) {
3610 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3611 &start->rb_node);
3612 if (rb_node)
3613 btrfs_backref_panic(cache->fs_info, start->bytenr,
3614 -EEXIST);
3615 list_add_tail(&start->lower, &cache->leaves);
3616 }
3617
3618 /*
3619 * Use breadth first search to iterate all related edges.
3620 *
3621 * The starting points are all the edges of this node
3622 */
3623 list_for_each_entry(edge, &start->upper, list[LOWER])
3624 list_add_tail(&edge->list[UPPER], &pending_edge);
3625
3626 while (!list_empty(&pending_edge)) {
3627 struct btrfs_backref_node *upper;
3628 struct btrfs_backref_node *lower;
fc997ed0
QW
3629
3630 edge = list_first_entry(&pending_edge,
3631 struct btrfs_backref_edge, list[UPPER]);
3632 list_del_init(&edge->list[UPPER]);
3633 upper = edge->node[UPPER];
3634 lower = edge->node[LOWER];
3635
3636 /* Parent is detached, no need to keep any edges */
3637 if (upper->detached) {
3638 list_del(&edge->list[LOWER]);
3639 btrfs_backref_free_edge(cache, edge);
3640
3641 /* Lower node is orphan, queue for cleanup */
3642 if (list_empty(&lower->upper))
3643 list_add(&lower->list, useless_node);
3644 continue;
3645 }
3646
3647 /*
3648 * All new nodes added in current build_backref_tree() haven't
3649 * been linked to the cache rb tree.
3650 * So if we have upper->rb_node populated, this means a cache
3651 * hit. We only need to link the edge, as @upper and all its
3652 * parents have already been linked.
3653 */
3654 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3655 if (upper->lowest) {
3656 list_del_init(&upper->lower);
3657 upper->lowest = 0;
3658 }
3659
3660 list_add_tail(&edge->list[UPPER], &upper->lower);
3661 continue;
3662 }
3663
3664 /* Sanity check, we shouldn't have any unchecked nodes */
3665 if (!upper->checked) {
3666 ASSERT(0);
3667 return -EUCLEAN;
3668 }
3669
3670 /* Sanity check, COW-only node has non-COW-only parent */
3671 if (start->cowonly != upper->cowonly) {
3672 ASSERT(0);
3673 return -EUCLEAN;
3674 }
3675
3676 /* Only cache non-COW-only (subvolume trees) tree blocks */
3677 if (!upper->cowonly) {
3678 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3679 &upper->rb_node);
3680 if (rb_node) {
3681 btrfs_backref_panic(cache->fs_info,
3682 upper->bytenr, -EEXIST);
3683 return -EUCLEAN;
3684 }
3685 }
3686
3687 list_add_tail(&edge->list[UPPER], &upper->lower);
3688
3689 /*
3690 * Also queue all the parent edges of this uncached node
3691 * to finish the upper linkage
3692 */
3693 list_for_each_entry(edge, &upper->upper, list[LOWER])
3694 list_add_tail(&edge->list[UPPER], &pending_edge);
3695 }
3696 return 0;
3697}
1b23ea18
QW
3698
3699void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3700 struct btrfs_backref_node *node)
3701{
3702 struct btrfs_backref_node *lower;
3703 struct btrfs_backref_node *upper;
3704 struct btrfs_backref_edge *edge;
3705
3706 while (!list_empty(&cache->useless_node)) {
3707 lower = list_first_entry(&cache->useless_node,
3708 struct btrfs_backref_node, list);
3709 list_del_init(&lower->list);
3710 }
3711 while (!list_empty(&cache->pending_edge)) {
3712 edge = list_first_entry(&cache->pending_edge,
3713 struct btrfs_backref_edge, list[UPPER]);
3714 list_del(&edge->list[UPPER]);
3715 list_del(&edge->list[LOWER]);
3716 lower = edge->node[LOWER];
3717 upper = edge->node[UPPER];
3718 btrfs_backref_free_edge(cache, edge);
3719
3720 /*
3721 * Lower is no longer linked to any upper backref nodes and
3722 * isn't in the cache, we can free it ourselves.
3723 */
3724 if (list_empty(&lower->upper) &&
3725 RB_EMPTY_NODE(&lower->rb_node))
3726 list_add(&lower->list, &cache->useless_node);
3727
3728 if (!RB_EMPTY_NODE(&upper->rb_node))
3729 continue;
3730
3731 /* Add this guy's upper edges to the list to process */
3732 list_for_each_entry(edge, &upper->upper, list[LOWER])
3733 list_add_tail(&edge->list[UPPER],
3734 &cache->pending_edge);
3735 if (list_empty(&upper->upper))
3736 list_add(&upper->list, &cache->useless_node);
3737 }
3738
3739 while (!list_empty(&cache->useless_node)) {
3740 lower = list_first_entry(&cache->useless_node,
3741 struct btrfs_backref_node, list);
3742 list_del_init(&lower->list);
3743 if (lower == node)
3744 node = NULL;
49ecc679 3745 btrfs_backref_drop_node(cache, lower);
1b23ea18
QW
3746 }
3747
3748 btrfs_backref_cleanup_node(cache, node);
3749 ASSERT(list_empty(&cache->useless_node) &&
3750 list_empty(&cache->pending_edge));
3751}