]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/block-group.c
btrfs: remove lock protection for BLOCK_GROUP_FLAG_TO_COPY
[thirdparty/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
2ca0ec77 3#include <linux/list_sort.h>
784352fe 4#include "misc.h"
2e405ad8
JB
5#include "ctree.h"
6#include "block-group.h"
3eeb3226 7#include "space-info.h"
9f21246d
JB
8#include "disk-io.h"
9#include "free-space-cache.h"
10#include "free-space-tree.h"
e3e0520b
JB
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
4358d963
JB
14#include "sysfs.h"
15#include "tree-log.h"
77745c05 16#include "delalloc-space.h"
b0643e59 17#include "discard.h"
96a14336 18#include "raid56.h"
08e11a3d 19#include "zoned.h"
2e405ad8 20
878d7b67
JB
21/*
22 * Return target flags in extended format or 0 if restripe for this chunk_type
23 * is not in progress
24 *
25 * Should be called with balance_lock held
26 */
e11c0406 27static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
28{
29 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 u64 target = 0;
31
32 if (!bctl)
33 return 0;
34
35 if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 }
45
46 return target;
47}
48
49/*
50 * @flags: available profiles in extended format (see ctree.h)
51 *
52 * Return reduced profile in chunk format. If profile changing is in progress
53 * (either running or paused) picks the target profile (if it's already
54 * available), otherwise falls back to plain reducing.
55 */
56static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57{
58 u64 num_devices = fs_info->fs_devices->rw_devices;
59 u64 target;
60 u64 raid_type;
61 u64 allowed = 0;
62
63 /*
64 * See if restripe for this chunk_type is in progress, if so try to
65 * reduce to the target profile
66 */
67 spin_lock(&fs_info->balance_lock);
e11c0406 68 target = get_restripe_target(fs_info, flags);
878d7b67 69 if (target) {
162e0a16
JB
70 spin_unlock(&fs_info->balance_lock);
71 return extended_to_chunk(target);
878d7b67
JB
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96}
97
ef0a82da 98u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
99{
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116}
117
32da5386 118void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 119{
48aaeebe 120 refcount_inc(&cache->refs);
3cad1284
JB
121}
122
32da5386 123void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 124{
48aaeebe 125 if (refcount_dec_and_test(&cache->refs)) {
3cad1284 126 WARN_ON(cache->pinned > 0);
40cdc509
FM
127 /*
128 * If there was a failure to cleanup a log tree, very likely due
129 * to an IO failure on a writeback attempt of one or more of its
130 * extent buffers, we could not do proper (and cheap) unaccounting
131 * of their reserved space, so don't warn on reserved > 0 in that
132 * case.
133 */
134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 WARN_ON(cache->reserved > 0);
3cad1284 137
b0643e59
DZ
138 /*
139 * A block_group shouldn't be on the discard_list anymore.
140 * Remove the block_group from the discard_list to prevent us
141 * from causing a panic due to NULL pointer dereference.
142 */
143 if (WARN_ON(!list_empty(&cache->discard_list)))
144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 cache);
146
3cad1284
JB
147 /*
148 * If not empty, someone is still holding mutex of
149 * full_stripe_lock, which can only be released by caller.
150 * And it will definitely cause use-after-free when caller
151 * tries to release full stripe lock.
152 *
153 * No better way to resolve, but only to warn.
154 */
155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 kfree(cache->free_space_ctl);
dafc340d 157 kfree(cache->physical_map);
3cad1284
JB
158 kfree(cache);
159 }
160}
161
4358d963
JB
162/*
163 * This adds the block group to the fs_info rb tree for the block group cache
164 */
165static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 166 struct btrfs_block_group *block_group)
4358d963
JB
167{
168 struct rb_node **p;
169 struct rb_node *parent = NULL;
32da5386 170 struct btrfs_block_group *cache;
08dddb29 171 bool leftmost = true;
4358d963 172
9afc6649
QW
173 ASSERT(block_group->length != 0);
174
16b0c258 175 write_lock(&info->block_group_cache_lock);
08dddb29 176 p = &info->block_group_cache_tree.rb_root.rb_node;
4358d963
JB
177
178 while (*p) {
179 parent = *p;
32da5386 180 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 181 if (block_group->start < cache->start) {
4358d963 182 p = &(*p)->rb_left;
b3470b5d 183 } else if (block_group->start > cache->start) {
4358d963 184 p = &(*p)->rb_right;
08dddb29 185 leftmost = false;
4358d963 186 } else {
16b0c258 187 write_unlock(&info->block_group_cache_lock);
4358d963
JB
188 return -EEXIST;
189 }
190 }
191
192 rb_link_node(&block_group->cache_node, parent, p);
08dddb29
FM
193 rb_insert_color_cached(&block_group->cache_node,
194 &info->block_group_cache_tree, leftmost);
4358d963 195
16b0c258 196 write_unlock(&info->block_group_cache_lock);
4358d963
JB
197
198 return 0;
199}
200
2e405ad8
JB
201/*
202 * This will return the block group at or after bytenr if contains is 0, else
203 * it will return the block group that contains the bytenr
204 */
32da5386 205static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
206 struct btrfs_fs_info *info, u64 bytenr, int contains)
207{
32da5386 208 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
209 struct rb_node *n;
210 u64 end, start;
211
16b0c258 212 read_lock(&info->block_group_cache_lock);
08dddb29 213 n = info->block_group_cache_tree.rb_root.rb_node;
2e405ad8
JB
214
215 while (n) {
32da5386 216 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
217 end = cache->start + cache->length - 1;
218 start = cache->start;
2e405ad8
JB
219
220 if (bytenr < start) {
b3470b5d 221 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
222 ret = cache;
223 n = n->rb_left;
224 } else if (bytenr > start) {
225 if (contains && bytenr <= end) {
226 ret = cache;
227 break;
228 }
229 n = n->rb_right;
230 } else {
231 ret = cache;
232 break;
233 }
234 }
08dddb29 235 if (ret)
2e405ad8 236 btrfs_get_block_group(ret);
16b0c258 237 read_unlock(&info->block_group_cache_lock);
2e405ad8
JB
238
239 return ret;
240}
241
242/*
243 * Return the block group that starts at or after bytenr
244 */
32da5386 245struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
246 struct btrfs_fs_info *info, u64 bytenr)
247{
248 return block_group_cache_tree_search(info, bytenr, 0);
249}
250
251/*
252 * Return the block group that contains the given bytenr
253 */
32da5386 254struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
255 struct btrfs_fs_info *info, u64 bytenr)
256{
257 return block_group_cache_tree_search(info, bytenr, 1);
258}
259
32da5386
DS
260struct btrfs_block_group *btrfs_next_block_group(
261 struct btrfs_block_group *cache)
2e405ad8
JB
262{
263 struct btrfs_fs_info *fs_info = cache->fs_info;
264 struct rb_node *node;
265
16b0c258 266 read_lock(&fs_info->block_group_cache_lock);
2e405ad8
JB
267
268 /* If our block group was removed, we need a full search. */
269 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 270 const u64 next_bytenr = cache->start + cache->length;
2e405ad8 271
16b0c258 272 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8 273 btrfs_put_block_group(cache);
8b01f931 274 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
2e405ad8
JB
275 }
276 node = rb_next(&cache->cache_node);
277 btrfs_put_block_group(cache);
278 if (node) {
32da5386 279 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
280 btrfs_get_block_group(cache);
281 } else
282 cache = NULL;
16b0c258 283 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8
JB
284 return cache;
285}
3eeb3226 286
2306e83e
FM
287/**
288 * Check if we can do a NOCOW write for a given extent.
289 *
290 * @fs_info: The filesystem information object.
291 * @bytenr: Logical start address of the extent.
292 *
293 * Check if we can do a NOCOW write for the given extent, and increments the
294 * number of NOCOW writers in the block group that contains the extent, as long
295 * as the block group exists and it's currently not in read-only mode.
296 *
297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298 * is responsible for calling btrfs_dec_nocow_writers() later.
299 *
300 * Or NULL if we can not do a NOCOW write
301 */
302struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
303 u64 bytenr)
3eeb3226 304{
32da5386 305 struct btrfs_block_group *bg;
2306e83e 306 bool can_nocow = true;
3eeb3226
JB
307
308 bg = btrfs_lookup_block_group(fs_info, bytenr);
309 if (!bg)
2306e83e 310 return NULL;
3eeb3226
JB
311
312 spin_lock(&bg->lock);
313 if (bg->ro)
2306e83e 314 can_nocow = false;
3eeb3226
JB
315 else
316 atomic_inc(&bg->nocow_writers);
317 spin_unlock(&bg->lock);
318
2306e83e 319 if (!can_nocow) {
3eeb3226 320 btrfs_put_block_group(bg);
2306e83e
FM
321 return NULL;
322 }
3eeb3226 323
2306e83e
FM
324 /* No put on block group, done by btrfs_dec_nocow_writers(). */
325 return bg;
3eeb3226
JB
326}
327
2306e83e
FM
328/**
329 * Decrement the number of NOCOW writers in a block group.
330 *
331 * @bg: The block group.
332 *
333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334 * and on the block group returned by that call. Typically this is called after
335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
336 * relocation.
337 *
338 * After this call, the caller should not use the block group anymore. It it wants
339 * to use it, then it should get a reference on it before calling this function.
340 */
341void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
3eeb3226 342{
3eeb3226
JB
343 if (atomic_dec_and_test(&bg->nocow_writers))
344 wake_up_var(&bg->nocow_writers);
2306e83e
FM
345
346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
3eeb3226
JB
347 btrfs_put_block_group(bg);
348}
349
32da5386 350void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
351{
352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
353}
354
355void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
356 const u64 start)
357{
32da5386 358 struct btrfs_block_group *bg;
3eeb3226
JB
359
360 bg = btrfs_lookup_block_group(fs_info, start);
361 ASSERT(bg);
362 if (atomic_dec_and_test(&bg->reservations))
363 wake_up_var(&bg->reservations);
364 btrfs_put_block_group(bg);
365}
366
32da5386 367void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
368{
369 struct btrfs_space_info *space_info = bg->space_info;
370
371 ASSERT(bg->ro);
372
373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
374 return;
375
376 /*
377 * Our block group is read only but before we set it to read only,
378 * some task might have had allocated an extent from it already, but it
379 * has not yet created a respective ordered extent (and added it to a
380 * root's list of ordered extents).
381 * Therefore wait for any task currently allocating extents, since the
382 * block group's reservations counter is incremented while a read lock
383 * on the groups' semaphore is held and decremented after releasing
384 * the read access on that semaphore and creating the ordered extent.
385 */
386 down_write(&space_info->groups_sem);
387 up_write(&space_info->groups_sem);
388
389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
390}
9f21246d
JB
391
392struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 393 struct btrfs_block_group *cache)
9f21246d
JB
394{
395 struct btrfs_caching_control *ctl;
396
397 spin_lock(&cache->lock);
398 if (!cache->caching_ctl) {
399 spin_unlock(&cache->lock);
400 return NULL;
401 }
402
403 ctl = cache->caching_ctl;
404 refcount_inc(&ctl->count);
405 spin_unlock(&cache->lock);
406 return ctl;
407}
408
409void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
410{
411 if (refcount_dec_and_test(&ctl->count))
412 kfree(ctl);
413}
414
415/*
416 * When we wait for progress in the block group caching, its because our
417 * allocation attempt failed at least once. So, we must sleep and let some
418 * progress happen before we try again.
419 *
420 * This function will sleep at least once waiting for new free space to show
421 * up, and then it will check the block group free space numbers for our min
422 * num_bytes. Another option is to have it go ahead and look in the rbtree for
423 * a free extent of a given size, but this is a good start.
424 *
425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426 * any of the information in this block group.
427 */
32da5386 428void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
429 u64 num_bytes)
430{
431 struct btrfs_caching_control *caching_ctl;
432
433 caching_ctl = btrfs_get_caching_control(cache);
434 if (!caching_ctl)
435 return;
436
32da5386 437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
438 (cache->free_space_ctl->free_space >= num_bytes));
439
440 btrfs_put_caching_control(caching_ctl);
441}
442
ced8ecf0
OS
443static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
444 struct btrfs_caching_control *caching_ctl)
445{
446 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
447 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
448}
449
450static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
451{
452 struct btrfs_caching_control *caching_ctl;
ced8ecf0 453 int ret;
9f21246d
JB
454
455 caching_ctl = btrfs_get_caching_control(cache);
456 if (!caching_ctl)
457 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
ced8ecf0 458 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
9f21246d
JB
459 btrfs_put_caching_control(caching_ctl);
460 return ret;
461}
462
463#ifdef CONFIG_BTRFS_DEBUG
32da5386 464static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
465{
466 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
467 u64 start = block_group->start;
468 u64 len = block_group->length;
9f21246d
JB
469 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
470 fs_info->nodesize : fs_info->sectorsize;
471 u64 step = chunk << 1;
472
473 while (len > chunk) {
474 btrfs_remove_free_space(block_group, start, chunk);
475 start += step;
476 if (len < step)
477 len = 0;
478 else
479 len -= step;
480 }
481}
482#endif
483
484/*
485 * This is only called by btrfs_cache_block_group, since we could have freed
486 * extents we need to check the pinned_extents for any extents that can't be
487 * used yet since their free space will be released as soon as the transaction
488 * commits.
489 */
32da5386 490u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
491{
492 struct btrfs_fs_info *info = block_group->fs_info;
493 u64 extent_start, extent_end, size, total_added = 0;
494 int ret;
495
496 while (start < end) {
fe119a6e 497 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
498 &extent_start, &extent_end,
499 EXTENT_DIRTY | EXTENT_UPTODATE,
500 NULL);
501 if (ret)
502 break;
503
504 if (extent_start <= start) {
505 start = extent_end + 1;
506 } else if (extent_start > start && extent_start < end) {
507 size = extent_start - start;
508 total_added += size;
b0643e59
DZ
509 ret = btrfs_add_free_space_async_trimmed(block_group,
510 start, size);
9f21246d
JB
511 BUG_ON(ret); /* -ENOMEM or logic error */
512 start = extent_end + 1;
513 } else {
514 break;
515 }
516 }
517
518 if (start < end) {
519 size = end - start;
520 total_added += size;
b0643e59
DZ
521 ret = btrfs_add_free_space_async_trimmed(block_group, start,
522 size);
9f21246d
JB
523 BUG_ON(ret); /* -ENOMEM or logic error */
524 }
525
526 return total_added;
527}
528
529static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
530{
32da5386 531 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d 532 struct btrfs_fs_info *fs_info = block_group->fs_info;
29cbcf40 533 struct btrfs_root *extent_root;
9f21246d
JB
534 struct btrfs_path *path;
535 struct extent_buffer *leaf;
536 struct btrfs_key key;
537 u64 total_found = 0;
538 u64 last = 0;
539 u32 nritems;
540 int ret;
541 bool wakeup = true;
542
543 path = btrfs_alloc_path();
544 if (!path)
545 return -ENOMEM;
546
b3470b5d 547 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
29cbcf40 548 extent_root = btrfs_extent_root(fs_info, last);
9f21246d
JB
549
550#ifdef CONFIG_BTRFS_DEBUG
551 /*
552 * If we're fragmenting we don't want to make anybody think we can
553 * allocate from this block group until we've had a chance to fragment
554 * the free space.
555 */
556 if (btrfs_should_fragment_free_space(block_group))
557 wakeup = false;
558#endif
559 /*
560 * We don't want to deadlock with somebody trying to allocate a new
561 * extent for the extent root while also trying to search the extent
562 * root to add free space. So we skip locking and search the commit
563 * root, since its read-only
564 */
565 path->skip_locking = 1;
566 path->search_commit_root = 1;
567 path->reada = READA_FORWARD;
568
569 key.objectid = last;
570 key.offset = 0;
571 key.type = BTRFS_EXTENT_ITEM_KEY;
572
573next:
574 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
575 if (ret < 0)
576 goto out;
577
578 leaf = path->nodes[0];
579 nritems = btrfs_header_nritems(leaf);
580
581 while (1) {
582 if (btrfs_fs_closing(fs_info) > 1) {
583 last = (u64)-1;
584 break;
585 }
586
587 if (path->slots[0] < nritems) {
588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 } else {
590 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
591 if (ret)
592 break;
593
594 if (need_resched() ||
595 rwsem_is_contended(&fs_info->commit_root_sem)) {
596 if (wakeup)
597 caching_ctl->progress = last;
598 btrfs_release_path(path);
599 up_read(&fs_info->commit_root_sem);
600 mutex_unlock(&caching_ctl->mutex);
601 cond_resched();
602 mutex_lock(&caching_ctl->mutex);
603 down_read(&fs_info->commit_root_sem);
604 goto next;
605 }
606
607 ret = btrfs_next_leaf(extent_root, path);
608 if (ret < 0)
609 goto out;
610 if (ret)
611 break;
612 leaf = path->nodes[0];
613 nritems = btrfs_header_nritems(leaf);
614 continue;
615 }
616
617 if (key.objectid < last) {
618 key.objectid = last;
619 key.offset = 0;
620 key.type = BTRFS_EXTENT_ITEM_KEY;
621
622 if (wakeup)
623 caching_ctl->progress = last;
624 btrfs_release_path(path);
625 goto next;
626 }
627
b3470b5d 628 if (key.objectid < block_group->start) {
9f21246d
JB
629 path->slots[0]++;
630 continue;
631 }
632
b3470b5d 633 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
634 break;
635
636 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
637 key.type == BTRFS_METADATA_ITEM_KEY) {
638 total_found += add_new_free_space(block_group, last,
639 key.objectid);
640 if (key.type == BTRFS_METADATA_ITEM_KEY)
641 last = key.objectid +
642 fs_info->nodesize;
643 else
644 last = key.objectid + key.offset;
645
646 if (total_found > CACHING_CTL_WAKE_UP) {
647 total_found = 0;
648 if (wakeup)
649 wake_up(&caching_ctl->wait);
650 }
651 }
652 path->slots[0]++;
653 }
654 ret = 0;
655
656 total_found += add_new_free_space(block_group, last,
b3470b5d 657 block_group->start + block_group->length);
9f21246d
JB
658 caching_ctl->progress = (u64)-1;
659
660out:
661 btrfs_free_path(path);
662 return ret;
663}
664
665static noinline void caching_thread(struct btrfs_work *work)
666{
32da5386 667 struct btrfs_block_group *block_group;
9f21246d
JB
668 struct btrfs_fs_info *fs_info;
669 struct btrfs_caching_control *caching_ctl;
670 int ret;
671
672 caching_ctl = container_of(work, struct btrfs_caching_control, work);
673 block_group = caching_ctl->block_group;
674 fs_info = block_group->fs_info;
675
676 mutex_lock(&caching_ctl->mutex);
677 down_read(&fs_info->commit_root_sem);
678
e747853c
JB
679 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
680 ret = load_free_space_cache(block_group);
681 if (ret == 1) {
682 ret = 0;
683 goto done;
684 }
685
686 /*
687 * We failed to load the space cache, set ourselves to
688 * CACHE_STARTED and carry on.
689 */
690 spin_lock(&block_group->lock);
691 block_group->cached = BTRFS_CACHE_STARTED;
692 spin_unlock(&block_group->lock);
693 wake_up(&caching_ctl->wait);
694 }
695
2f96e402
JB
696 /*
697 * If we are in the transaction that populated the free space tree we
698 * can't actually cache from the free space tree as our commit root and
699 * real root are the same, so we could change the contents of the blocks
700 * while caching. Instead do the slow caching in this case, and after
701 * the transaction has committed we will be safe.
702 */
703 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
704 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
705 ret = load_free_space_tree(caching_ctl);
706 else
707 ret = load_extent_tree_free(caching_ctl);
e747853c 708done:
9f21246d
JB
709 spin_lock(&block_group->lock);
710 block_group->caching_ctl = NULL;
711 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
712 spin_unlock(&block_group->lock);
713
714#ifdef CONFIG_BTRFS_DEBUG
715 if (btrfs_should_fragment_free_space(block_group)) {
716 u64 bytes_used;
717
718 spin_lock(&block_group->space_info->lock);
719 spin_lock(&block_group->lock);
b3470b5d 720 bytes_used = block_group->length - block_group->used;
9f21246d
JB
721 block_group->space_info->bytes_used += bytes_used >> 1;
722 spin_unlock(&block_group->lock);
723 spin_unlock(&block_group->space_info->lock);
e11c0406 724 fragment_free_space(block_group);
9f21246d
JB
725 }
726#endif
727
728 caching_ctl->progress = (u64)-1;
729
730 up_read(&fs_info->commit_root_sem);
731 btrfs_free_excluded_extents(block_group);
732 mutex_unlock(&caching_ctl->mutex);
733
734 wake_up(&caching_ctl->wait);
735
736 btrfs_put_caching_control(caching_ctl);
737 btrfs_put_block_group(block_group);
738}
739
ced8ecf0 740int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
9f21246d 741{
9f21246d 742 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 743 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
744 int ret = 0;
745
2eda5708
NA
746 /* Allocator for zoned filesystems does not use the cache at all */
747 if (btrfs_is_zoned(fs_info))
748 return 0;
749
9f21246d
JB
750 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
751 if (!caching_ctl)
752 return -ENOMEM;
753
754 INIT_LIST_HEAD(&caching_ctl->list);
755 mutex_init(&caching_ctl->mutex);
756 init_waitqueue_head(&caching_ctl->wait);
757 caching_ctl->block_group = cache;
b3470b5d 758 caching_ctl->progress = cache->start;
e747853c 759 refcount_set(&caching_ctl->count, 2);
a0cac0ec 760 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
761
762 spin_lock(&cache->lock);
9f21246d 763 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 764 kfree(caching_ctl);
e747853c
JB
765
766 caching_ctl = cache->caching_ctl;
767 if (caching_ctl)
768 refcount_inc(&caching_ctl->count);
769 spin_unlock(&cache->lock);
770 goto out;
9f21246d
JB
771 }
772 WARN_ON(cache->caching_ctl);
773 cache->caching_ctl = caching_ctl;
ced8ecf0 774 cache->cached = BTRFS_CACHE_STARTED;
3349b57f 775 set_bit(BLOCK_GROUP_FLAG_HAS_CACHING_CTL, &cache->runtime_flags);
9f21246d
JB
776 spin_unlock(&cache->lock);
777
16b0c258 778 write_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
779 refcount_inc(&caching_ctl->count);
780 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
16b0c258 781 write_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
782
783 btrfs_get_block_group(cache);
784
785 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c 786out:
ced8ecf0
OS
787 if (wait && caching_ctl)
788 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
e747853c
JB
789 if (caching_ctl)
790 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
791
792 return ret;
793}
e3e0520b
JB
794
795static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
796{
797 u64 extra_flags = chunk_to_extended(flags) &
798 BTRFS_EXTENDED_PROFILE_MASK;
799
800 write_seqlock(&fs_info->profiles_lock);
801 if (flags & BTRFS_BLOCK_GROUP_DATA)
802 fs_info->avail_data_alloc_bits &= ~extra_flags;
803 if (flags & BTRFS_BLOCK_GROUP_METADATA)
804 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
805 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
806 fs_info->avail_system_alloc_bits &= ~extra_flags;
807 write_sequnlock(&fs_info->profiles_lock);
808}
809
810/*
811 * Clear incompat bits for the following feature(s):
812 *
813 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
814 * in the whole filesystem
9c907446
DS
815 *
816 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
817 */
818static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
819{
9c907446
DS
820 bool found_raid56 = false;
821 bool found_raid1c34 = false;
822
823 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
824 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
825 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
826 struct list_head *head = &fs_info->space_info;
827 struct btrfs_space_info *sinfo;
828
829 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
830 down_read(&sinfo->groups_sem);
831 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 832 found_raid56 = true;
e3e0520b 833 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
834 found_raid56 = true;
835 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
836 found_raid1c34 = true;
837 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
838 found_raid1c34 = true;
e3e0520b 839 up_read(&sinfo->groups_sem);
e3e0520b 840 }
d8e6fd5c 841 if (!found_raid56)
9c907446 842 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 843 if (!found_raid1c34)
9c907446 844 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
845 }
846}
847
7357623a
QW
848static int remove_block_group_item(struct btrfs_trans_handle *trans,
849 struct btrfs_path *path,
850 struct btrfs_block_group *block_group)
851{
852 struct btrfs_fs_info *fs_info = trans->fs_info;
853 struct btrfs_root *root;
854 struct btrfs_key key;
855 int ret;
856
dfe8aec4 857 root = btrfs_block_group_root(fs_info);
7357623a
QW
858 key.objectid = block_group->start;
859 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
860 key.offset = block_group->length;
861
862 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
863 if (ret > 0)
864 ret = -ENOENT;
865 if (ret < 0)
866 return ret;
867
868 ret = btrfs_del_item(trans, root, path);
869 return ret;
870}
871
e3e0520b
JB
872int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
873 u64 group_start, struct extent_map *em)
874{
875 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 876 struct btrfs_path *path;
32da5386 877 struct btrfs_block_group *block_group;
e3e0520b 878 struct btrfs_free_cluster *cluster;
e3e0520b
JB
879 struct inode *inode;
880 struct kobject *kobj = NULL;
881 int ret;
882 int index;
883 int factor;
884 struct btrfs_caching_control *caching_ctl = NULL;
885 bool remove_em;
886 bool remove_rsv = false;
887
888 block_group = btrfs_lookup_block_group(fs_info, group_start);
889 BUG_ON(!block_group);
890 BUG_ON(!block_group->ro);
891
892 trace_btrfs_remove_block_group(block_group);
893 /*
894 * Free the reserved super bytes from this block group before
895 * remove it.
896 */
897 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
898 btrfs_free_ref_tree_range(fs_info, block_group->start,
899 block_group->length);
e3e0520b 900
e3e0520b
JB
901 index = btrfs_bg_flags_to_raid_index(block_group->flags);
902 factor = btrfs_bg_type_to_factor(block_group->flags);
903
904 /* make sure this block group isn't part of an allocation cluster */
905 cluster = &fs_info->data_alloc_cluster;
906 spin_lock(&cluster->refill_lock);
907 btrfs_return_cluster_to_free_space(block_group, cluster);
908 spin_unlock(&cluster->refill_lock);
909
910 /*
911 * make sure this block group isn't part of a metadata
912 * allocation cluster
913 */
914 cluster = &fs_info->meta_alloc_cluster;
915 spin_lock(&cluster->refill_lock);
916 btrfs_return_cluster_to_free_space(block_group, cluster);
917 spin_unlock(&cluster->refill_lock);
918
40ab3be1 919 btrfs_clear_treelog_bg(block_group);
c2707a25 920 btrfs_clear_data_reloc_bg(block_group);
40ab3be1 921
e3e0520b
JB
922 path = btrfs_alloc_path();
923 if (!path) {
924 ret = -ENOMEM;
9fecd132 925 goto out;
e3e0520b
JB
926 }
927
928 /*
929 * get the inode first so any iput calls done for the io_list
930 * aren't the final iput (no unlinks allowed now)
931 */
932 inode = lookup_free_space_inode(block_group, path);
933
934 mutex_lock(&trans->transaction->cache_write_mutex);
935 /*
936 * Make sure our free space cache IO is done before removing the
937 * free space inode
938 */
939 spin_lock(&trans->transaction->dirty_bgs_lock);
940 if (!list_empty(&block_group->io_list)) {
941 list_del_init(&block_group->io_list);
942
943 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
944
945 spin_unlock(&trans->transaction->dirty_bgs_lock);
946 btrfs_wait_cache_io(trans, block_group, path);
947 btrfs_put_block_group(block_group);
948 spin_lock(&trans->transaction->dirty_bgs_lock);
949 }
950
951 if (!list_empty(&block_group->dirty_list)) {
952 list_del_init(&block_group->dirty_list);
953 remove_rsv = true;
954 btrfs_put_block_group(block_group);
955 }
956 spin_unlock(&trans->transaction->dirty_bgs_lock);
957 mutex_unlock(&trans->transaction->cache_write_mutex);
958
36b216c8
BB
959 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
960 if (ret)
9fecd132 961 goto out;
e3e0520b 962
16b0c258 963 write_lock(&fs_info->block_group_cache_lock);
08dddb29
FM
964 rb_erase_cached(&block_group->cache_node,
965 &fs_info->block_group_cache_tree);
e3e0520b
JB
966 RB_CLEAR_NODE(&block_group->cache_node);
967
9fecd132
FM
968 /* Once for the block groups rbtree */
969 btrfs_put_block_group(block_group);
970
16b0c258 971 write_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
972
973 down_write(&block_group->space_info->groups_sem);
974 /*
975 * we must use list_del_init so people can check to see if they
976 * are still on the list after taking the semaphore
977 */
978 list_del_init(&block_group->list);
979 if (list_empty(&block_group->space_info->block_groups[index])) {
980 kobj = block_group->space_info->block_group_kobjs[index];
981 block_group->space_info->block_group_kobjs[index] = NULL;
982 clear_avail_alloc_bits(fs_info, block_group->flags);
983 }
984 up_write(&block_group->space_info->groups_sem);
985 clear_incompat_bg_bits(fs_info, block_group->flags);
986 if (kobj) {
987 kobject_del(kobj);
988 kobject_put(kobj);
989 }
990
3349b57f
JB
991
992 if (test_bit(BLOCK_GROUP_FLAG_HAS_CACHING_CTL, &block_group->runtime_flags))
e3e0520b
JB
993 caching_ctl = btrfs_get_caching_control(block_group);
994 if (block_group->cached == BTRFS_CACHE_STARTED)
995 btrfs_wait_block_group_cache_done(block_group);
3349b57f 996 if (test_bit(BLOCK_GROUP_FLAG_HAS_CACHING_CTL, &block_group->runtime_flags)) {
16b0c258 997 write_lock(&fs_info->block_group_cache_lock);
e3e0520b
JB
998 if (!caching_ctl) {
999 struct btrfs_caching_control *ctl;
1000
1001 list_for_each_entry(ctl,
1002 &fs_info->caching_block_groups, list)
1003 if (ctl->block_group == block_group) {
1004 caching_ctl = ctl;
1005 refcount_inc(&caching_ctl->count);
1006 break;
1007 }
1008 }
1009 if (caching_ctl)
1010 list_del_init(&caching_ctl->list);
16b0c258 1011 write_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
1012 if (caching_ctl) {
1013 /* Once for the caching bgs list and once for us. */
1014 btrfs_put_caching_control(caching_ctl);
1015 btrfs_put_caching_control(caching_ctl);
1016 }
1017 }
1018
1019 spin_lock(&trans->transaction->dirty_bgs_lock);
1020 WARN_ON(!list_empty(&block_group->dirty_list));
1021 WARN_ON(!list_empty(&block_group->io_list));
1022 spin_unlock(&trans->transaction->dirty_bgs_lock);
1023
1024 btrfs_remove_free_space_cache(block_group);
1025
1026 spin_lock(&block_group->space_info->lock);
1027 list_del_init(&block_group->ro_list);
1028
1029 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1030 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1031 < block_group->length);
e3e0520b 1032 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1033 < block_group->length - block_group->zone_unusable);
1034 WARN_ON(block_group->space_info->bytes_zone_unusable
1035 < block_group->zone_unusable);
e3e0520b 1036 WARN_ON(block_group->space_info->disk_total
b3470b5d 1037 < block_group->length * factor);
3349b57f
JB
1038 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1039 &block_group->runtime_flags) &&
6a921de5
NA
1040 block_group->space_info->active_total_bytes
1041 < block_group->length);
e3e0520b 1042 }
b3470b5d 1043 block_group->space_info->total_bytes -= block_group->length;
3349b57f 1044 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
6a921de5 1045 block_group->space_info->active_total_bytes -= block_group->length;
169e0da9
NA
1046 block_group->space_info->bytes_readonly -=
1047 (block_group->length - block_group->zone_unusable);
1048 block_group->space_info->bytes_zone_unusable -=
1049 block_group->zone_unusable;
b3470b5d 1050 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1051
1052 spin_unlock(&block_group->space_info->lock);
1053
ffcb9d44
FM
1054 /*
1055 * Remove the free space for the block group from the free space tree
1056 * and the block group's item from the extent tree before marking the
1057 * block group as removed. This is to prevent races with tasks that
1058 * freeze and unfreeze a block group, this task and another task
1059 * allocating a new block group - the unfreeze task ends up removing
1060 * the block group's extent map before the task calling this function
1061 * deletes the block group item from the extent tree, allowing for
1062 * another task to attempt to create another block group with the same
1063 * item key (and failing with -EEXIST and a transaction abort).
1064 */
1065 ret = remove_block_group_free_space(trans, block_group);
1066 if (ret)
1067 goto out;
1068
1069 ret = remove_block_group_item(trans, path, block_group);
1070 if (ret < 0)
1071 goto out;
1072
e3e0520b 1073 spin_lock(&block_group->lock);
3349b57f
JB
1074 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1075
e3e0520b 1076 /*
6b7304af
FM
1077 * At this point trimming or scrub can't start on this block group,
1078 * because we removed the block group from the rbtree
1079 * fs_info->block_group_cache_tree so no one can't find it anymore and
1080 * even if someone already got this block group before we removed it
1081 * from the rbtree, they have already incremented block_group->frozen -
1082 * if they didn't, for the trimming case they won't find any free space
1083 * entries because we already removed them all when we called
1084 * btrfs_remove_free_space_cache().
e3e0520b
JB
1085 *
1086 * And we must not remove the extent map from the fs_info->mapping_tree
1087 * to prevent the same logical address range and physical device space
6b7304af
FM
1088 * ranges from being reused for a new block group. This is needed to
1089 * avoid races with trimming and scrub.
1090 *
1091 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1092 * completely transactionless, so while it is trimming a range the
1093 * currently running transaction might finish and a new one start,
1094 * allowing for new block groups to be created that can reuse the same
1095 * physical device locations unless we take this special care.
1096 *
1097 * There may also be an implicit trim operation if the file system
1098 * is mounted with -odiscard. The same protections must remain
1099 * in place until the extents have been discarded completely when
1100 * the transaction commit has completed.
1101 */
6b7304af 1102 remove_em = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1103 spin_unlock(&block_group->lock);
1104
e3e0520b
JB
1105 if (remove_em) {
1106 struct extent_map_tree *em_tree;
1107
1108 em_tree = &fs_info->mapping_tree;
1109 write_lock(&em_tree->lock);
1110 remove_extent_mapping(em_tree, em);
1111 write_unlock(&em_tree->lock);
1112 /* once for the tree */
1113 free_extent_map(em);
1114 }
f6033c5e 1115
9fecd132 1116out:
f6033c5e
XY
1117 /* Once for the lookup reference */
1118 btrfs_put_block_group(block_group);
e3e0520b
JB
1119 if (remove_rsv)
1120 btrfs_delayed_refs_rsv_release(fs_info, 1);
1121 btrfs_free_path(path);
1122 return ret;
1123}
1124
1125struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1126 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1127{
dfe8aec4 1128 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3e0520b
JB
1129 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1130 struct extent_map *em;
1131 struct map_lookup *map;
1132 unsigned int num_items;
1133
1134 read_lock(&em_tree->lock);
1135 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1136 read_unlock(&em_tree->lock);
1137 ASSERT(em && em->start == chunk_offset);
1138
1139 /*
1140 * We need to reserve 3 + N units from the metadata space info in order
1141 * to remove a block group (done at btrfs_remove_chunk() and at
1142 * btrfs_remove_block_group()), which are used for:
1143 *
1144 * 1 unit for adding the free space inode's orphan (located in the tree
1145 * of tree roots).
1146 * 1 unit for deleting the block group item (located in the extent
1147 * tree).
1148 * 1 unit for deleting the free space item (located in tree of tree
1149 * roots).
1150 * N units for deleting N device extent items corresponding to each
1151 * stripe (located in the device tree).
1152 *
1153 * In order to remove a block group we also need to reserve units in the
1154 * system space info in order to update the chunk tree (update one or
1155 * more device items and remove one chunk item), but this is done at
1156 * btrfs_remove_chunk() through a call to check_system_chunk().
1157 */
1158 map = em->map_lookup;
1159 num_items = 3 + map->num_stripes;
1160 free_extent_map(em);
1161
dfe8aec4 1162 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
e3e0520b
JB
1163}
1164
26ce2095
JB
1165/*
1166 * Mark block group @cache read-only, so later write won't happen to block
1167 * group @cache.
1168 *
1169 * If @force is not set, this function will only mark the block group readonly
1170 * if we have enough free space (1M) in other metadata/system block groups.
1171 * If @force is not set, this function will mark the block group readonly
1172 * without checking free space.
1173 *
1174 * NOTE: This function doesn't care if other block groups can contain all the
1175 * data in this block group. That check should be done by relocation routine,
1176 * not this function.
1177 */
32da5386 1178static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1179{
1180 struct btrfs_space_info *sinfo = cache->space_info;
1181 u64 num_bytes;
26ce2095
JB
1182 int ret = -ENOSPC;
1183
26ce2095
JB
1184 spin_lock(&sinfo->lock);
1185 spin_lock(&cache->lock);
1186
195a49ea
FM
1187 if (cache->swap_extents) {
1188 ret = -ETXTBSY;
1189 goto out;
1190 }
1191
26ce2095
JB
1192 if (cache->ro) {
1193 cache->ro++;
1194 ret = 0;
1195 goto out;
1196 }
1197
b3470b5d 1198 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1199 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1200
1201 /*
a30a3d20
JB
1202 * Data never overcommits, even in mixed mode, so do just the straight
1203 * check of left over space in how much we have allocated.
26ce2095 1204 */
a30a3d20
JB
1205 if (force) {
1206 ret = 0;
1207 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1208 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1209
1210 /*
1211 * Here we make sure if we mark this bg RO, we still have enough
1212 * free space as buffer.
1213 */
1214 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1215 ret = 0;
1216 } else {
1217 /*
1218 * We overcommit metadata, so we need to do the
1219 * btrfs_can_overcommit check here, and we need to pass in
1220 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1221 * leeway to allow us to mark this block group as read only.
1222 */
1223 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1224 BTRFS_RESERVE_NO_FLUSH))
1225 ret = 0;
1226 }
1227
1228 if (!ret) {
26ce2095 1229 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1230 if (btrfs_is_zoned(cache->fs_info)) {
1231 /* Migrate zone_unusable bytes to readonly */
1232 sinfo->bytes_readonly += cache->zone_unusable;
1233 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1234 cache->zone_unusable = 0;
1235 }
26ce2095
JB
1236 cache->ro++;
1237 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1238 }
1239out:
1240 spin_unlock(&cache->lock);
1241 spin_unlock(&sinfo->lock);
1242 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1243 btrfs_info(cache->fs_info,
b3470b5d 1244 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1245 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1246 }
1247 return ret;
1248}
1249
fe119a6e
NB
1250static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1251 struct btrfs_block_group *bg)
45bb5d6a
NB
1252{
1253 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1254 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1255 const u64 start = bg->start;
1256 const u64 end = start + bg->length - 1;
1257 int ret;
1258
fe119a6e
NB
1259 spin_lock(&fs_info->trans_lock);
1260 if (trans->transaction->list.prev != &fs_info->trans_list) {
1261 prev_trans = list_last_entry(&trans->transaction->list,
1262 struct btrfs_transaction, list);
1263 refcount_inc(&prev_trans->use_count);
1264 }
1265 spin_unlock(&fs_info->trans_lock);
1266
45bb5d6a
NB
1267 /*
1268 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1269 * btrfs_finish_extent_commit(). If we are at transaction N, another
1270 * task might be running finish_extent_commit() for the previous
1271 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1272 * group in pinned_extents before we were able to clear the whole block
1273 * group range from pinned_extents. This means that task can lookup for
1274 * the block group after we unpinned it from pinned_extents and removed
1275 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1276 */
1277 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1278 if (prev_trans) {
1279 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1280 EXTENT_DIRTY);
1281 if (ret)
534cf531 1282 goto out;
fe119a6e 1283 }
45bb5d6a 1284
fe119a6e 1285 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1286 EXTENT_DIRTY);
534cf531 1287out:
45bb5d6a 1288 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1289 if (prev_trans)
1290 btrfs_put_transaction(prev_trans);
45bb5d6a 1291
534cf531 1292 return ret == 0;
45bb5d6a
NB
1293}
1294
e3e0520b
JB
1295/*
1296 * Process the unused_bgs list and remove any that don't have any allocated
1297 * space inside of them.
1298 */
1299void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1300{
32da5386 1301 struct btrfs_block_group *block_group;
e3e0520b
JB
1302 struct btrfs_space_info *space_info;
1303 struct btrfs_trans_handle *trans;
6e80d4f8 1304 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1305 int ret = 0;
1306
1307 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1308 return;
1309
2f12741f
JB
1310 if (btrfs_fs_closing(fs_info))
1311 return;
1312
ddfd08cb
JB
1313 /*
1314 * Long running balances can keep us blocked here for eternity, so
1315 * simply skip deletion if we're unable to get the mutex.
1316 */
f3372065 1317 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
ddfd08cb
JB
1318 return;
1319
e3e0520b
JB
1320 spin_lock(&fs_info->unused_bgs_lock);
1321 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1322 int trimming;
1323
1324 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1325 struct btrfs_block_group,
e3e0520b
JB
1326 bg_list);
1327 list_del_init(&block_group->bg_list);
1328
1329 space_info = block_group->space_info;
1330
1331 if (ret || btrfs_mixed_space_info(space_info)) {
1332 btrfs_put_block_group(block_group);
1333 continue;
1334 }
1335 spin_unlock(&fs_info->unused_bgs_lock);
1336
b0643e59
DZ
1337 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1338
e3e0520b
JB
1339 /* Don't want to race with allocators so take the groups_sem */
1340 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1341
1342 /*
1343 * Async discard moves the final block group discard to be prior
1344 * to the unused_bgs code path. Therefore, if it's not fully
1345 * trimmed, punt it back to the async discard lists.
1346 */
1347 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1348 !btrfs_is_free_space_trimmed(block_group)) {
1349 trace_btrfs_skip_unused_block_group(block_group);
1350 up_write(&space_info->groups_sem);
1351 /* Requeue if we failed because of async discard */
1352 btrfs_discard_queue_work(&fs_info->discard_ctl,
1353 block_group);
1354 goto next;
1355 }
1356
e3e0520b
JB
1357 spin_lock(&block_group->lock);
1358 if (block_group->reserved || block_group->pinned ||
bf38be65 1359 block_group->used || block_group->ro ||
e3e0520b
JB
1360 list_is_singular(&block_group->list)) {
1361 /*
1362 * We want to bail if we made new allocations or have
1363 * outstanding allocations in this block group. We do
1364 * the ro check in case balance is currently acting on
1365 * this block group.
1366 */
1367 trace_btrfs_skip_unused_block_group(block_group);
1368 spin_unlock(&block_group->lock);
1369 up_write(&space_info->groups_sem);
1370 goto next;
1371 }
1372 spin_unlock(&block_group->lock);
1373
1374 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1375 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1376 up_write(&space_info->groups_sem);
1377 if (ret < 0) {
1378 ret = 0;
1379 goto next;
1380 }
1381
74e91b12
NA
1382 ret = btrfs_zone_finish(block_group);
1383 if (ret < 0) {
1384 btrfs_dec_block_group_ro(block_group);
1385 if (ret == -EAGAIN)
1386 ret = 0;
1387 goto next;
1388 }
1389
e3e0520b
JB
1390 /*
1391 * Want to do this before we do anything else so we can recover
1392 * properly if we fail to join the transaction.
1393 */
1394 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1395 block_group->start);
e3e0520b
JB
1396 if (IS_ERR(trans)) {
1397 btrfs_dec_block_group_ro(block_group);
1398 ret = PTR_ERR(trans);
1399 goto next;
1400 }
1401
1402 /*
1403 * We could have pending pinned extents for this block group,
1404 * just delete them, we don't care about them anymore.
1405 */
534cf531
FM
1406 if (!clean_pinned_extents(trans, block_group)) {
1407 btrfs_dec_block_group_ro(block_group);
e3e0520b 1408 goto end_trans;
534cf531 1409 }
e3e0520b 1410
b0643e59
DZ
1411 /*
1412 * At this point, the block_group is read only and should fail
1413 * new allocations. However, btrfs_finish_extent_commit() can
1414 * cause this block_group to be placed back on the discard
1415 * lists because now the block_group isn't fully discarded.
1416 * Bail here and try again later after discarding everything.
1417 */
1418 spin_lock(&fs_info->discard_ctl.lock);
1419 if (!list_empty(&block_group->discard_list)) {
1420 spin_unlock(&fs_info->discard_ctl.lock);
1421 btrfs_dec_block_group_ro(block_group);
1422 btrfs_discard_queue_work(&fs_info->discard_ctl,
1423 block_group);
1424 goto end_trans;
1425 }
1426 spin_unlock(&fs_info->discard_ctl.lock);
1427
e3e0520b
JB
1428 /* Reset pinned so btrfs_put_block_group doesn't complain */
1429 spin_lock(&space_info->lock);
1430 spin_lock(&block_group->lock);
1431
1432 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1433 -block_group->pinned);
1434 space_info->bytes_readonly += block_group->pinned;
e3e0520b
JB
1435 block_group->pinned = 0;
1436
1437 spin_unlock(&block_group->lock);
1438 spin_unlock(&space_info->lock);
1439
6e80d4f8
DZ
1440 /*
1441 * The normal path here is an unused block group is passed here,
1442 * then trimming is handled in the transaction commit path.
1443 * Async discard interposes before this to do the trimming
1444 * before coming down the unused block group path as trimming
1445 * will no longer be done later in the transaction commit path.
1446 */
1447 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1448 goto flip_async;
1449
dcba6e48
NA
1450 /*
1451 * DISCARD can flip during remount. On zoned filesystems, we
1452 * need to reset sequential-required zones.
1453 */
1454 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1455 btrfs_is_zoned(fs_info);
e3e0520b
JB
1456
1457 /* Implicit trim during transaction commit. */
1458 if (trimming)
6b7304af 1459 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1460
1461 /*
1462 * Btrfs_remove_chunk will abort the transaction if things go
1463 * horribly wrong.
1464 */
b3470b5d 1465 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1466
1467 if (ret) {
1468 if (trimming)
6b7304af 1469 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1470 goto end_trans;
1471 }
1472
1473 /*
1474 * If we're not mounted with -odiscard, we can just forget
1475 * about this block group. Otherwise we'll need to wait
1476 * until transaction commit to do the actual discard.
1477 */
1478 if (trimming) {
1479 spin_lock(&fs_info->unused_bgs_lock);
1480 /*
1481 * A concurrent scrub might have added us to the list
1482 * fs_info->unused_bgs, so use a list_move operation
1483 * to add the block group to the deleted_bgs list.
1484 */
1485 list_move(&block_group->bg_list,
1486 &trans->transaction->deleted_bgs);
1487 spin_unlock(&fs_info->unused_bgs_lock);
1488 btrfs_get_block_group(block_group);
1489 }
1490end_trans:
1491 btrfs_end_transaction(trans);
1492next:
e3e0520b
JB
1493 btrfs_put_block_group(block_group);
1494 spin_lock(&fs_info->unused_bgs_lock);
1495 }
1496 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1497 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1498 return;
1499
1500flip_async:
1501 btrfs_end_transaction(trans);
f3372065 1502 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1503 btrfs_put_block_group(block_group);
1504 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1505}
1506
32da5386 1507void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1508{
1509 struct btrfs_fs_info *fs_info = bg->fs_info;
1510
1511 spin_lock(&fs_info->unused_bgs_lock);
1512 if (list_empty(&bg->bg_list)) {
1513 btrfs_get_block_group(bg);
1514 trace_btrfs_add_unused_block_group(bg);
1515 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1516 }
1517 spin_unlock(&fs_info->unused_bgs_lock);
1518}
4358d963 1519
2ca0ec77
JT
1520/*
1521 * We want block groups with a low number of used bytes to be in the beginning
1522 * of the list, so they will get reclaimed first.
1523 */
1524static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1525 const struct list_head *b)
1526{
1527 const struct btrfs_block_group *bg1, *bg2;
1528
1529 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1530 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1531
1532 return bg1->used > bg2->used;
1533}
1534
3687fcb0
JT
1535static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1536{
1537 if (btrfs_is_zoned(fs_info))
1538 return btrfs_zoned_should_reclaim(fs_info);
1539 return true;
1540}
1541
18bb8bbf
JT
1542void btrfs_reclaim_bgs_work(struct work_struct *work)
1543{
1544 struct btrfs_fs_info *fs_info =
1545 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1546 struct btrfs_block_group *bg;
1547 struct btrfs_space_info *space_info;
18bb8bbf
JT
1548
1549 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1550 return;
1551
2f12741f
JB
1552 if (btrfs_fs_closing(fs_info))
1553 return;
1554
3687fcb0
JT
1555 if (!btrfs_should_reclaim(fs_info))
1556 return;
1557
ca5e4ea0
NA
1558 sb_start_write(fs_info->sb);
1559
1560 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1561 sb_end_write(fs_info->sb);
18bb8bbf 1562 return;
ca5e4ea0 1563 }
18bb8bbf 1564
9cc0b837
JT
1565 /*
1566 * Long running balances can keep us blocked here for eternity, so
1567 * simply skip reclaim if we're unable to get the mutex.
1568 */
1569 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1570 btrfs_exclop_finish(fs_info);
ca5e4ea0 1571 sb_end_write(fs_info->sb);
9cc0b837
JT
1572 return;
1573 }
1574
18bb8bbf 1575 spin_lock(&fs_info->unused_bgs_lock);
2ca0ec77
JT
1576 /*
1577 * Sort happens under lock because we can't simply splice it and sort.
1578 * The block groups might still be in use and reachable via bg_list,
1579 * and their presence in the reclaim_bgs list must be preserved.
1580 */
1581 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
18bb8bbf 1582 while (!list_empty(&fs_info->reclaim_bgs)) {
5f93e776 1583 u64 zone_unusable;
1cea5cf0
FM
1584 int ret = 0;
1585
18bb8bbf
JT
1586 bg = list_first_entry(&fs_info->reclaim_bgs,
1587 struct btrfs_block_group,
1588 bg_list);
1589 list_del_init(&bg->bg_list);
1590
1591 space_info = bg->space_info;
1592 spin_unlock(&fs_info->unused_bgs_lock);
1593
1594 /* Don't race with allocators so take the groups_sem */
1595 down_write(&space_info->groups_sem);
1596
1597 spin_lock(&bg->lock);
1598 if (bg->reserved || bg->pinned || bg->ro) {
1599 /*
1600 * We want to bail if we made new allocations or have
1601 * outstanding allocations in this block group. We do
1602 * the ro check in case balance is currently acting on
1603 * this block group.
1604 */
1605 spin_unlock(&bg->lock);
1606 up_write(&space_info->groups_sem);
1607 goto next;
1608 }
1609 spin_unlock(&bg->lock);
1610
1611 /* Get out fast, in case we're unmounting the filesystem */
1612 if (btrfs_fs_closing(fs_info)) {
1613 up_write(&space_info->groups_sem);
1614 goto next;
1615 }
1616
5f93e776
JT
1617 /*
1618 * Cache the zone_unusable value before turning the block group
1619 * to read only. As soon as the blog group is read only it's
1620 * zone_unusable value gets moved to the block group's read-only
1621 * bytes and isn't available for calculations anymore.
1622 */
1623 zone_unusable = bg->zone_unusable;
18bb8bbf
JT
1624 ret = inc_block_group_ro(bg, 0);
1625 up_write(&space_info->groups_sem);
1626 if (ret < 0)
1627 goto next;
1628
5f93e776
JT
1629 btrfs_info(fs_info,
1630 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1631 bg->start, div_u64(bg->used * 100, bg->length),
1632 div64_u64(zone_unusable * 100, bg->length));
18bb8bbf
JT
1633 trace_btrfs_reclaim_block_group(bg);
1634 ret = btrfs_relocate_chunk(fs_info, bg->start);
74944c87
JB
1635 if (ret) {
1636 btrfs_dec_block_group_ro(bg);
18bb8bbf
JT
1637 btrfs_err(fs_info, "error relocating chunk %llu",
1638 bg->start);
74944c87 1639 }
18bb8bbf
JT
1640
1641next:
d96b3424 1642 btrfs_put_block_group(bg);
18bb8bbf
JT
1643 spin_lock(&fs_info->unused_bgs_lock);
1644 }
1645 spin_unlock(&fs_info->unused_bgs_lock);
1646 mutex_unlock(&fs_info->reclaim_bgs_lock);
1647 btrfs_exclop_finish(fs_info);
ca5e4ea0 1648 sb_end_write(fs_info->sb);
18bb8bbf
JT
1649}
1650
1651void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1652{
1653 spin_lock(&fs_info->unused_bgs_lock);
1654 if (!list_empty(&fs_info->reclaim_bgs))
1655 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1656 spin_unlock(&fs_info->unused_bgs_lock);
1657}
1658
1659void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1660{
1661 struct btrfs_fs_info *fs_info = bg->fs_info;
1662
1663 spin_lock(&fs_info->unused_bgs_lock);
1664 if (list_empty(&bg->bg_list)) {
1665 btrfs_get_block_group(bg);
1666 trace_btrfs_add_reclaim_block_group(bg);
1667 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1668 }
1669 spin_unlock(&fs_info->unused_bgs_lock);
1670}
1671
e3ba67a1
JT
1672static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1673 struct btrfs_path *path)
1674{
1675 struct extent_map_tree *em_tree;
1676 struct extent_map *em;
1677 struct btrfs_block_group_item bg;
1678 struct extent_buffer *leaf;
1679 int slot;
1680 u64 flags;
1681 int ret = 0;
1682
1683 slot = path->slots[0];
1684 leaf = path->nodes[0];
1685
1686 em_tree = &fs_info->mapping_tree;
1687 read_lock(&em_tree->lock);
1688 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1689 read_unlock(&em_tree->lock);
1690 if (!em) {
1691 btrfs_err(fs_info,
1692 "logical %llu len %llu found bg but no related chunk",
1693 key->objectid, key->offset);
1694 return -ENOENT;
1695 }
1696
1697 if (em->start != key->objectid || em->len != key->offset) {
1698 btrfs_err(fs_info,
1699 "block group %llu len %llu mismatch with chunk %llu len %llu",
1700 key->objectid, key->offset, em->start, em->len);
1701 ret = -EUCLEAN;
1702 goto out_free_em;
1703 }
1704
1705 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1706 sizeof(bg));
1707 flags = btrfs_stack_block_group_flags(&bg) &
1708 BTRFS_BLOCK_GROUP_TYPE_MASK;
1709
1710 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1711 btrfs_err(fs_info,
1712"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1713 key->objectid, key->offset, flags,
1714 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1715 ret = -EUCLEAN;
1716 }
1717
1718out_free_em:
1719 free_extent_map(em);
1720 return ret;
1721}
1722
4358d963
JB
1723static int find_first_block_group(struct btrfs_fs_info *fs_info,
1724 struct btrfs_path *path,
1725 struct btrfs_key *key)
1726{
dfe8aec4 1727 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3ba67a1 1728 int ret;
4358d963 1729 struct btrfs_key found_key;
4358d963 1730
36dfbbe2 1731 btrfs_for_each_slot(root, key, &found_key, path, ret) {
4358d963
JB
1732 if (found_key.objectid >= key->objectid &&
1733 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
36dfbbe2 1734 return read_bg_from_eb(fs_info, &found_key, path);
4358d963 1735 }
4358d963 1736 }
4358d963
JB
1737 return ret;
1738}
1739
1740static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1741{
1742 u64 extra_flags = chunk_to_extended(flags) &
1743 BTRFS_EXTENDED_PROFILE_MASK;
1744
1745 write_seqlock(&fs_info->profiles_lock);
1746 if (flags & BTRFS_BLOCK_GROUP_DATA)
1747 fs_info->avail_data_alloc_bits |= extra_flags;
1748 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1749 fs_info->avail_metadata_alloc_bits |= extra_flags;
1750 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1751 fs_info->avail_system_alloc_bits |= extra_flags;
1752 write_sequnlock(&fs_info->profiles_lock);
1753}
1754
96a14336 1755/**
9ee9b979
NB
1756 * Map a physical disk address to a list of logical addresses
1757 *
1758 * @fs_info: the filesystem
96a14336 1759 * @chunk_start: logical address of block group
138082f3 1760 * @bdev: physical device to resolve, can be NULL to indicate any device
96a14336
NB
1761 * @physical: physical address to map to logical addresses
1762 * @logical: return array of logical addresses which map to @physical
1763 * @naddrs: length of @logical
1764 * @stripe_len: size of IO stripe for the given block group
1765 *
1766 * Maps a particular @physical disk address to a list of @logical addresses.
1767 * Used primarily to exclude those portions of a block group that contain super
1768 * block copies.
1769 */
96a14336 1770int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
138082f3
NA
1771 struct block_device *bdev, u64 physical, u64 **logical,
1772 int *naddrs, int *stripe_len)
96a14336
NB
1773{
1774 struct extent_map *em;
1775 struct map_lookup *map;
1776 u64 *buf;
1777 u64 bytenr;
1776ad17
NB
1778 u64 data_stripe_length;
1779 u64 io_stripe_size;
1780 int i, nr = 0;
1781 int ret = 0;
96a14336
NB
1782
1783 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1784 if (IS_ERR(em))
1785 return -EIO;
1786
1787 map = em->map_lookup;
9e22b925 1788 data_stripe_length = em->orig_block_len;
1776ad17 1789 io_stripe_size = map->stripe_len;
138082f3 1790 chunk_start = em->start;
96a14336 1791
9e22b925
NB
1792 /* For RAID5/6 adjust to a full IO stripe length */
1793 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776ad17 1794 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1795
1796 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1797 if (!buf) {
1798 ret = -ENOMEM;
1799 goto out;
1800 }
96a14336
NB
1801
1802 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1803 bool already_inserted = false;
1804 u64 stripe_nr;
138082f3 1805 u64 offset;
1776ad17
NB
1806 int j;
1807
1808 if (!in_range(physical, map->stripes[i].physical,
1809 data_stripe_length))
96a14336
NB
1810 continue;
1811
138082f3
NA
1812 if (bdev && map->stripes[i].dev->bdev != bdev)
1813 continue;
1814
96a14336 1815 stripe_nr = physical - map->stripes[i].physical;
138082f3 1816 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
96a14336 1817
ac067734
DS
1818 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1819 BTRFS_BLOCK_GROUP_RAID10)) {
96a14336
NB
1820 stripe_nr = stripe_nr * map->num_stripes + i;
1821 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
96a14336
NB
1822 }
1823 /*
1824 * The remaining case would be for RAID56, multiply by
1825 * nr_data_stripes(). Alternatively, just use rmap_len below
1826 * instead of map->stripe_len
1827 */
1828
138082f3 1829 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
1830
1831 /* Ensure we don't add duplicate addresses */
96a14336 1832 for (j = 0; j < nr; j++) {
1776ad17
NB
1833 if (buf[j] == bytenr) {
1834 already_inserted = true;
96a14336 1835 break;
1776ad17 1836 }
96a14336 1837 }
1776ad17
NB
1838
1839 if (!already_inserted)
96a14336 1840 buf[nr++] = bytenr;
96a14336
NB
1841 }
1842
1843 *logical = buf;
1844 *naddrs = nr;
1776ad17
NB
1845 *stripe_len = io_stripe_size;
1846out:
96a14336 1847 free_extent_map(em);
1776ad17 1848 return ret;
96a14336
NB
1849}
1850
32da5386 1851static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1852{
1853 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 1854 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
1855 u64 bytenr;
1856 u64 *logical;
1857 int stripe_len;
1858 int i, nr, ret;
1859
b3470b5d
DS
1860 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1861 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1862 cache->bytes_super += stripe_len;
b3470b5d 1863 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1864 stripe_len);
1865 if (ret)
1866 return ret;
1867 }
1868
1869 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1870 bytenr = btrfs_sb_offset(i);
138082f3 1871 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
4358d963
JB
1872 bytenr, &logical, &nr, &stripe_len);
1873 if (ret)
1874 return ret;
1875
12659251
NA
1876 /* Shouldn't have super stripes in sequential zones */
1877 if (zoned && nr) {
1878 btrfs_err(fs_info,
1879 "zoned: block group %llu must not contain super block",
1880 cache->start);
1881 return -EUCLEAN;
1882 }
1883
4358d963 1884 while (nr--) {
96f9b0f2
NB
1885 u64 len = min_t(u64, stripe_len,
1886 cache->start + cache->length - logical[nr]);
4358d963
JB
1887
1888 cache->bytes_super += len;
96f9b0f2
NB
1889 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1890 len);
4358d963
JB
1891 if (ret) {
1892 kfree(logical);
1893 return ret;
1894 }
1895 }
1896
1897 kfree(logical);
1898 }
1899 return 0;
1900}
1901
32da5386 1902static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 1903 struct btrfs_fs_info *fs_info, u64 start)
4358d963 1904{
32da5386 1905 struct btrfs_block_group *cache;
4358d963
JB
1906
1907 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1908 if (!cache)
1909 return NULL;
1910
1911 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1912 GFP_NOFS);
1913 if (!cache->free_space_ctl) {
1914 kfree(cache);
1915 return NULL;
1916 }
1917
b3470b5d 1918 cache->start = start;
4358d963
JB
1919
1920 cache->fs_info = fs_info;
1921 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 1922
6e80d4f8
DZ
1923 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1924
48aaeebe 1925 refcount_set(&cache->refs, 1);
4358d963
JB
1926 spin_lock_init(&cache->lock);
1927 init_rwsem(&cache->data_rwsem);
1928 INIT_LIST_HEAD(&cache->list);
1929 INIT_LIST_HEAD(&cache->cluster_list);
1930 INIT_LIST_HEAD(&cache->bg_list);
1931 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1932 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1933 INIT_LIST_HEAD(&cache->dirty_list);
1934 INIT_LIST_HEAD(&cache->io_list);
afba2bc0 1935 INIT_LIST_HEAD(&cache->active_bg_list);
cd79909b 1936 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 1937 atomic_set(&cache->frozen, 0);
4358d963
JB
1938 mutex_init(&cache->free_space_lock);
1939 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1940
1941 return cache;
1942}
1943
1944/*
1945 * Iterate all chunks and verify that each of them has the corresponding block
1946 * group
1947 */
1948static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1949{
1950 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1951 struct extent_map *em;
32da5386 1952 struct btrfs_block_group *bg;
4358d963
JB
1953 u64 start = 0;
1954 int ret = 0;
1955
1956 while (1) {
1957 read_lock(&map_tree->lock);
1958 /*
1959 * lookup_extent_mapping will return the first extent map
1960 * intersecting the range, so setting @len to 1 is enough to
1961 * get the first chunk.
1962 */
1963 em = lookup_extent_mapping(map_tree, start, 1);
1964 read_unlock(&map_tree->lock);
1965 if (!em)
1966 break;
1967
1968 bg = btrfs_lookup_block_group(fs_info, em->start);
1969 if (!bg) {
1970 btrfs_err(fs_info,
1971 "chunk start=%llu len=%llu doesn't have corresponding block group",
1972 em->start, em->len);
1973 ret = -EUCLEAN;
1974 free_extent_map(em);
1975 break;
1976 }
b3470b5d 1977 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
1978 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1979 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1980 btrfs_err(fs_info,
1981"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1982 em->start, em->len,
1983 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 1984 bg->start, bg->length,
4358d963
JB
1985 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1986 ret = -EUCLEAN;
1987 free_extent_map(em);
1988 btrfs_put_block_group(bg);
1989 break;
1990 }
1991 start = em->start + em->len;
1992 free_extent_map(em);
1993 btrfs_put_block_group(bg);
1994 }
1995 return ret;
1996}
1997
ffb9e0f0 1998static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 1999 struct btrfs_block_group_item *bgi,
d49a2ddb 2000 const struct btrfs_key *key,
ffb9e0f0
QW
2001 int need_clear)
2002{
32da5386 2003 struct btrfs_block_group *cache;
ffb9e0f0 2004 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
2005 int ret;
2006
d49a2ddb 2007 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 2008
9afc6649 2009 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
2010 if (!cache)
2011 return -ENOMEM;
2012
4afd2fe8
JT
2013 cache->length = key->offset;
2014 cache->used = btrfs_stack_block_group_used(bgi);
2015 cache->flags = btrfs_stack_block_group_flags(bgi);
f7238e50 2016 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
9afc6649 2017
e3e39c72
MPS
2018 set_free_space_tree_thresholds(cache);
2019
ffb9e0f0
QW
2020 if (need_clear) {
2021 /*
2022 * When we mount with old space cache, we need to
2023 * set BTRFS_DC_CLEAR and set dirty flag.
2024 *
2025 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2026 * truncate the old free space cache inode and
2027 * setup a new one.
2028 * b) Setting 'dirty flag' makes sure that we flush
2029 * the new space cache info onto disk.
2030 */
2031 if (btrfs_test_opt(info, SPACE_CACHE))
2032 cache->disk_cache_state = BTRFS_DC_CLEAR;
2033 }
ffb9e0f0
QW
2034 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2035 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2036 btrfs_err(info,
2037"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2038 cache->start);
2039 ret = -EINVAL;
2040 goto error;
2041 }
2042
a94794d5 2043 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
2044 if (ret) {
2045 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2046 cache->start);
2047 goto error;
2048 }
2049
ffb9e0f0
QW
2050 /*
2051 * We need to exclude the super stripes now so that the space info has
2052 * super bytes accounted for, otherwise we'll think we have more space
2053 * than we actually do.
2054 */
2055 ret = exclude_super_stripes(cache);
2056 if (ret) {
2057 /* We may have excluded something, so call this just in case. */
2058 btrfs_free_excluded_extents(cache);
2059 goto error;
2060 }
2061
2062 /*
169e0da9
NA
2063 * For zoned filesystem, space after the allocation offset is the only
2064 * free space for a block group. So, we don't need any caching work.
2065 * btrfs_calc_zone_unusable() will set the amount of free space and
2066 * zone_unusable space.
2067 *
2068 * For regular filesystem, check for two cases, either we are full, and
2069 * therefore don't need to bother with the caching work since we won't
2070 * find any space, or we are empty, and we can just add all the space
2071 * in and be done with it. This saves us _a_lot_ of time, particularly
2072 * in the full case.
ffb9e0f0 2073 */
169e0da9
NA
2074 if (btrfs_is_zoned(info)) {
2075 btrfs_calc_zone_unusable(cache);
c46c4247
NA
2076 /* Should not have any excluded extents. Just in case, though. */
2077 btrfs_free_excluded_extents(cache);
169e0da9 2078 } else if (cache->length == cache->used) {
ffb9e0f0
QW
2079 cache->last_byte_to_unpin = (u64)-1;
2080 cache->cached = BTRFS_CACHE_FINISHED;
2081 btrfs_free_excluded_extents(cache);
2082 } else if (cache->used == 0) {
2083 cache->last_byte_to_unpin = (u64)-1;
2084 cache->cached = BTRFS_CACHE_FINISHED;
9afc6649
QW
2085 add_new_free_space(cache, cache->start,
2086 cache->start + cache->length);
ffb9e0f0
QW
2087 btrfs_free_excluded_extents(cache);
2088 }
2089
2090 ret = btrfs_add_block_group_cache(info, cache);
2091 if (ret) {
2092 btrfs_remove_free_space_cache(cache);
2093 goto error;
2094 }
2095 trace_btrfs_add_block_group(info, cache, 0);
723de71d 2096 btrfs_add_bg_to_space_info(info, cache);
ffb9e0f0
QW
2097
2098 set_avail_alloc_bits(info, cache->flags);
a09f23c3
AJ
2099 if (btrfs_chunk_writeable(info, cache->start)) {
2100 if (cache->used == 0) {
2101 ASSERT(list_empty(&cache->bg_list));
2102 if (btrfs_test_opt(info, DISCARD_ASYNC))
2103 btrfs_discard_queue_work(&info->discard_ctl, cache);
2104 else
2105 btrfs_mark_bg_unused(cache);
2106 }
2107 } else {
ffb9e0f0 2108 inc_block_group_ro(cache, 1);
ffb9e0f0 2109 }
a09f23c3 2110
ffb9e0f0
QW
2111 return 0;
2112error:
2113 btrfs_put_block_group(cache);
2114 return ret;
2115}
2116
42437a63
JB
2117static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2118{
2119 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
42437a63
JB
2120 struct rb_node *node;
2121 int ret = 0;
2122
2123 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2124 struct extent_map *em;
2125 struct map_lookup *map;
2126 struct btrfs_block_group *bg;
2127
2128 em = rb_entry(node, struct extent_map, rb_node);
2129 map = em->map_lookup;
2130 bg = btrfs_create_block_group_cache(fs_info, em->start);
2131 if (!bg) {
2132 ret = -ENOMEM;
2133 break;
2134 }
2135
2136 /* Fill dummy cache as FULL */
2137 bg->length = em->len;
2138 bg->flags = map->type;
2139 bg->last_byte_to_unpin = (u64)-1;
2140 bg->cached = BTRFS_CACHE_FINISHED;
2141 bg->used = em->len;
2142 bg->flags = map->type;
2143 ret = btrfs_add_block_group_cache(fs_info, bg);
2b29726c
QW
2144 /*
2145 * We may have some valid block group cache added already, in
2146 * that case we skip to the next one.
2147 */
2148 if (ret == -EEXIST) {
2149 ret = 0;
2150 btrfs_put_block_group(bg);
2151 continue;
2152 }
2153
42437a63
JB
2154 if (ret) {
2155 btrfs_remove_free_space_cache(bg);
2156 btrfs_put_block_group(bg);
2157 break;
2158 }
2b29726c 2159
723de71d 2160 btrfs_add_bg_to_space_info(fs_info, bg);
42437a63
JB
2161
2162 set_avail_alloc_bits(fs_info, bg->flags);
2163 }
2164 if (!ret)
2165 btrfs_init_global_block_rsv(fs_info);
2166 return ret;
2167}
2168
4358d963
JB
2169int btrfs_read_block_groups(struct btrfs_fs_info *info)
2170{
dfe8aec4 2171 struct btrfs_root *root = btrfs_block_group_root(info);
4358d963
JB
2172 struct btrfs_path *path;
2173 int ret;
32da5386 2174 struct btrfs_block_group *cache;
4358d963
JB
2175 struct btrfs_space_info *space_info;
2176 struct btrfs_key key;
4358d963
JB
2177 int need_clear = 0;
2178 u64 cache_gen;
4358d963 2179
dfe8aec4 2180 if (!root)
42437a63
JB
2181 return fill_dummy_bgs(info);
2182
4358d963
JB
2183 key.objectid = 0;
2184 key.offset = 0;
2185 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2186 path = btrfs_alloc_path();
2187 if (!path)
2188 return -ENOMEM;
4358d963
JB
2189
2190 cache_gen = btrfs_super_cache_generation(info->super_copy);
2191 if (btrfs_test_opt(info, SPACE_CACHE) &&
2192 btrfs_super_generation(info->super_copy) != cache_gen)
2193 need_clear = 1;
2194 if (btrfs_test_opt(info, CLEAR_CACHE))
2195 need_clear = 1;
2196
2197 while (1) {
4afd2fe8
JT
2198 struct btrfs_block_group_item bgi;
2199 struct extent_buffer *leaf;
2200 int slot;
2201
4358d963
JB
2202 ret = find_first_block_group(info, path, &key);
2203 if (ret > 0)
2204 break;
2205 if (ret != 0)
2206 goto error;
2207
4afd2fe8
JT
2208 leaf = path->nodes[0];
2209 slot = path->slots[0];
2210
2211 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2212 sizeof(bgi));
2213
2214 btrfs_item_key_to_cpu(leaf, &key, slot);
2215 btrfs_release_path(path);
2216 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2217 if (ret < 0)
4358d963 2218 goto error;
ffb9e0f0
QW
2219 key.objectid += key.offset;
2220 key.offset = 0;
4358d963 2221 }
7837fa88 2222 btrfs_release_path(path);
4358d963 2223
72804905 2224 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2225 int i;
2226
2227 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2228 if (list_empty(&space_info->block_groups[i]))
2229 continue;
2230 cache = list_first_entry(&space_info->block_groups[i],
2231 struct btrfs_block_group,
2232 list);
2233 btrfs_sysfs_add_block_group_type(cache);
2234 }
2235
4358d963
JB
2236 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2237 (BTRFS_BLOCK_GROUP_RAID10 |
2238 BTRFS_BLOCK_GROUP_RAID1_MASK |
2239 BTRFS_BLOCK_GROUP_RAID56_MASK |
2240 BTRFS_BLOCK_GROUP_DUP)))
2241 continue;
2242 /*
2243 * Avoid allocating from un-mirrored block group if there are
2244 * mirrored block groups.
2245 */
2246 list_for_each_entry(cache,
2247 &space_info->block_groups[BTRFS_RAID_RAID0],
2248 list)
e11c0406 2249 inc_block_group_ro(cache, 1);
4358d963
JB
2250 list_for_each_entry(cache,
2251 &space_info->block_groups[BTRFS_RAID_SINGLE],
2252 list)
e11c0406 2253 inc_block_group_ro(cache, 1);
4358d963
JB
2254 }
2255
2256 btrfs_init_global_block_rsv(info);
2257 ret = check_chunk_block_group_mappings(info);
2258error:
2259 btrfs_free_path(path);
2b29726c
QW
2260 /*
2261 * We've hit some error while reading the extent tree, and have
2262 * rescue=ibadroots mount option.
2263 * Try to fill the tree using dummy block groups so that the user can
2264 * continue to mount and grab their data.
2265 */
2266 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2267 ret = fill_dummy_bgs(info);
4358d963
JB
2268 return ret;
2269}
2270
79bd3712
FM
2271/*
2272 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2273 * allocation.
2274 *
2275 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2276 * phases.
2277 */
97f4728a
QW
2278static int insert_block_group_item(struct btrfs_trans_handle *trans,
2279 struct btrfs_block_group *block_group)
2280{
2281 struct btrfs_fs_info *fs_info = trans->fs_info;
2282 struct btrfs_block_group_item bgi;
dfe8aec4 2283 struct btrfs_root *root = btrfs_block_group_root(fs_info);
97f4728a
QW
2284 struct btrfs_key key;
2285
2286 spin_lock(&block_group->lock);
2287 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2288 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2289 block_group->global_root_id);
97f4728a
QW
2290 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2291 key.objectid = block_group->start;
2292 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2293 key.offset = block_group->length;
2294 spin_unlock(&block_group->lock);
2295
97f4728a
QW
2296 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2297}
2298
2eadb9e7
NB
2299static int insert_dev_extent(struct btrfs_trans_handle *trans,
2300 struct btrfs_device *device, u64 chunk_offset,
2301 u64 start, u64 num_bytes)
2302{
2303 struct btrfs_fs_info *fs_info = device->fs_info;
2304 struct btrfs_root *root = fs_info->dev_root;
2305 struct btrfs_path *path;
2306 struct btrfs_dev_extent *extent;
2307 struct extent_buffer *leaf;
2308 struct btrfs_key key;
2309 int ret;
2310
2311 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2312 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2313 path = btrfs_alloc_path();
2314 if (!path)
2315 return -ENOMEM;
2316
2317 key.objectid = device->devid;
2318 key.type = BTRFS_DEV_EXTENT_KEY;
2319 key.offset = start;
2320 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2321 if (ret)
2322 goto out;
2323
2324 leaf = path->nodes[0];
2325 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2326 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2327 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2328 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2329 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2330
2331 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2332 btrfs_mark_buffer_dirty(leaf);
2333out:
2334 btrfs_free_path(path);
2335 return ret;
2336}
2337
2338/*
2339 * This function belongs to phase 2.
2340 *
2341 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2342 * phases.
2343 */
2344static int insert_dev_extents(struct btrfs_trans_handle *trans,
2345 u64 chunk_offset, u64 chunk_size)
2346{
2347 struct btrfs_fs_info *fs_info = trans->fs_info;
2348 struct btrfs_device *device;
2349 struct extent_map *em;
2350 struct map_lookup *map;
2351 u64 dev_offset;
2352 u64 stripe_size;
2353 int i;
2354 int ret = 0;
2355
2356 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2357 if (IS_ERR(em))
2358 return PTR_ERR(em);
2359
2360 map = em->map_lookup;
2361 stripe_size = em->orig_block_len;
2362
2363 /*
2364 * Take the device list mutex to prevent races with the final phase of
2365 * a device replace operation that replaces the device object associated
2366 * with the map's stripes, because the device object's id can change
2367 * at any time during that final phase of the device replace operation
2368 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2369 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2370 * resulting in persisting a device extent item with such ID.
2371 */
2372 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2373 for (i = 0; i < map->num_stripes; i++) {
2374 device = map->stripes[i].dev;
2375 dev_offset = map->stripes[i].physical;
2376
2377 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2378 stripe_size);
2379 if (ret)
2380 break;
2381 }
2382 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2383
2384 free_extent_map(em);
2385 return ret;
2386}
2387
79bd3712
FM
2388/*
2389 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2390 * chunk allocation.
2391 *
2392 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2393 * phases.
2394 */
4358d963
JB
2395void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2396{
2397 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2398 struct btrfs_block_group *block_group;
4358d963
JB
2399 int ret = 0;
2400
4358d963 2401 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2402 int index;
2403
4358d963 2404 block_group = list_first_entry(&trans->new_bgs,
32da5386 2405 struct btrfs_block_group,
4358d963
JB
2406 bg_list);
2407 if (ret)
2408 goto next;
2409
49ea112d
JB
2410 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2411
97f4728a 2412 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2413 if (ret)
2414 btrfs_abort_transaction(trans, ret);
3349b57f
JB
2415 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2416 &block_group->runtime_flags)) {
79bd3712
FM
2417 mutex_lock(&fs_info->chunk_mutex);
2418 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2419 mutex_unlock(&fs_info->chunk_mutex);
2420 if (ret)
2421 btrfs_abort_transaction(trans, ret);
2422 }
2eadb9e7
NB
2423 ret = insert_dev_extents(trans, block_group->start,
2424 block_group->length);
4358d963
JB
2425 if (ret)
2426 btrfs_abort_transaction(trans, ret);
2427 add_block_group_free_space(trans, block_group);
49ea112d
JB
2428
2429 /*
2430 * If we restriped during balance, we may have added a new raid
2431 * type, so now add the sysfs entries when it is safe to do so.
2432 * We don't have to worry about locking here as it's handled in
2433 * btrfs_sysfs_add_block_group_type.
2434 */
2435 if (block_group->space_info->block_group_kobjs[index] == NULL)
2436 btrfs_sysfs_add_block_group_type(block_group);
2437
4358d963
JB
2438 /* Already aborted the transaction if it failed. */
2439next:
2440 btrfs_delayed_refs_rsv_release(fs_info, 1);
2441 list_del_init(&block_group->bg_list);
2442 }
2443 btrfs_trans_release_chunk_metadata(trans);
2444}
2445
f7238e50
JB
2446/*
2447 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2448 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2449 */
2450static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2451{
2452 u64 div = SZ_1G;
2453 u64 index;
2454
2455 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2456 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2457
2458 /* If we have a smaller fs index based on 128MiB. */
2459 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2460 div = SZ_128M;
2461
2462 offset = div64_u64(offset, div);
2463 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2464 return index;
2465}
2466
79bd3712
FM
2467struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2468 u64 bytes_used, u64 type,
2469 u64 chunk_offset, u64 size)
4358d963
JB
2470{
2471 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2472 struct btrfs_block_group *cache;
4358d963
JB
2473 int ret;
2474
2475 btrfs_set_log_full_commit(trans);
2476
9afc6649 2477 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963 2478 if (!cache)
79bd3712 2479 return ERR_PTR(-ENOMEM);
4358d963 2480
9afc6649 2481 cache->length = size;
e3e39c72 2482 set_free_space_tree_thresholds(cache);
bf38be65 2483 cache->used = bytes_used;
4358d963
JB
2484 cache->flags = type;
2485 cache->last_byte_to_unpin = (u64)-1;
2486 cache->cached = BTRFS_CACHE_FINISHED;
f7238e50
JB
2487 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2488
997e3e2e
BB
2489 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2490 cache->needs_free_space = 1;
08e11a3d 2491
a94794d5 2492 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2493 if (ret) {
2494 btrfs_put_block_group(cache);
79bd3712 2495 return ERR_PTR(ret);
08e11a3d
NA
2496 }
2497
4358d963
JB
2498 ret = exclude_super_stripes(cache);
2499 if (ret) {
2500 /* We may have excluded something, so call this just in case */
2501 btrfs_free_excluded_extents(cache);
2502 btrfs_put_block_group(cache);
79bd3712 2503 return ERR_PTR(ret);
4358d963
JB
2504 }
2505
2506 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2507
2508 btrfs_free_excluded_extents(cache);
2509
4358d963
JB
2510 /*
2511 * Ensure the corresponding space_info object is created and
2512 * assigned to our block group. We want our bg to be added to the rbtree
2513 * with its ->space_info set.
2514 */
2515 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2516 ASSERT(cache->space_info);
2517
2518 ret = btrfs_add_block_group_cache(fs_info, cache);
2519 if (ret) {
2520 btrfs_remove_free_space_cache(cache);
2521 btrfs_put_block_group(cache);
79bd3712 2522 return ERR_PTR(ret);
4358d963
JB
2523 }
2524
2525 /*
2526 * Now that our block group has its ->space_info set and is inserted in
2527 * the rbtree, update the space info's counters.
2528 */
2529 trace_btrfs_add_block_group(fs_info, cache, 1);
723de71d 2530 btrfs_add_bg_to_space_info(fs_info, cache);
4358d963
JB
2531 btrfs_update_global_block_rsv(fs_info);
2532
9d4b0a12
JB
2533#ifdef CONFIG_BTRFS_DEBUG
2534 if (btrfs_should_fragment_free_space(cache)) {
2535 u64 new_bytes_used = size - bytes_used;
2536
2537 cache->space_info->bytes_used += new_bytes_used >> 1;
2538 fragment_free_space(cache);
2539 }
2540#endif
4358d963
JB
2541
2542 list_add_tail(&cache->bg_list, &trans->new_bgs);
2543 trans->delayed_ref_updates++;
2544 btrfs_update_delayed_refs_rsv(trans);
2545
2546 set_avail_alloc_bits(fs_info, type);
79bd3712 2547 return cache;
4358d963 2548}
26ce2095 2549
b12de528
QW
2550/*
2551 * Mark one block group RO, can be called several times for the same block
2552 * group.
2553 *
2554 * @cache: the destination block group
2555 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2556 * ensure we still have some free space after marking this
2557 * block group RO.
2558 */
2559int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2560 bool do_chunk_alloc)
26ce2095
JB
2561{
2562 struct btrfs_fs_info *fs_info = cache->fs_info;
2563 struct btrfs_trans_handle *trans;
dfe8aec4 2564 struct btrfs_root *root = btrfs_block_group_root(fs_info);
26ce2095
JB
2565 u64 alloc_flags;
2566 int ret;
b6e9f16c 2567 bool dirty_bg_running;
26ce2095 2568
2d192fc4
QW
2569 /*
2570 * This can only happen when we are doing read-only scrub on read-only
2571 * mount.
2572 * In that case we should not start a new transaction on read-only fs.
2573 * Thus here we skip all chunk allocations.
2574 */
2575 if (sb_rdonly(fs_info->sb)) {
2576 mutex_lock(&fs_info->ro_block_group_mutex);
2577 ret = inc_block_group_ro(cache, 0);
2578 mutex_unlock(&fs_info->ro_block_group_mutex);
2579 return ret;
2580 }
2581
b6e9f16c 2582 do {
dfe8aec4 2583 trans = btrfs_join_transaction(root);
b6e9f16c
NB
2584 if (IS_ERR(trans))
2585 return PTR_ERR(trans);
26ce2095 2586
b6e9f16c 2587 dirty_bg_running = false;
26ce2095 2588
b6e9f16c
NB
2589 /*
2590 * We're not allowed to set block groups readonly after the dirty
2591 * block group cache has started writing. If it already started,
2592 * back off and let this transaction commit.
2593 */
2594 mutex_lock(&fs_info->ro_block_group_mutex);
2595 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2596 u64 transid = trans->transid;
26ce2095 2597
b6e9f16c
NB
2598 mutex_unlock(&fs_info->ro_block_group_mutex);
2599 btrfs_end_transaction(trans);
2600
2601 ret = btrfs_wait_for_commit(fs_info, transid);
2602 if (ret)
2603 return ret;
2604 dirty_bg_running = true;
2605 }
2606 } while (dirty_bg_running);
26ce2095 2607
b12de528 2608 if (do_chunk_alloc) {
26ce2095 2609 /*
b12de528
QW
2610 * If we are changing raid levels, try to allocate a
2611 * corresponding block group with the new raid level.
26ce2095 2612 */
349e120e 2613 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2614 if (alloc_flags != cache->flags) {
2615 ret = btrfs_chunk_alloc(trans, alloc_flags,
2616 CHUNK_ALLOC_FORCE);
2617 /*
2618 * ENOSPC is allowed here, we may have enough space
2619 * already allocated at the new raid level to carry on
2620 */
2621 if (ret == -ENOSPC)
2622 ret = 0;
2623 if (ret < 0)
2624 goto out;
2625 }
26ce2095
JB
2626 }
2627
a7a63acc 2628 ret = inc_block_group_ro(cache, 0);
195a49ea 2629 if (!do_chunk_alloc || ret == -ETXTBSY)
b12de528 2630 goto unlock_out;
26ce2095
JB
2631 if (!ret)
2632 goto out;
2633 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2634 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2635 if (ret < 0)
2636 goto out;
b6a98021
NA
2637 /*
2638 * We have allocated a new chunk. We also need to activate that chunk to
2639 * grant metadata tickets for zoned filesystem.
2640 */
2641 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2642 if (ret < 0)
2643 goto out;
2644
e11c0406 2645 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
2646 if (ret == -ETXTBSY)
2647 goto unlock_out;
26ce2095
JB
2648out:
2649 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 2650 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
2651 mutex_lock(&fs_info->chunk_mutex);
2652 check_system_chunk(trans, alloc_flags);
2653 mutex_unlock(&fs_info->chunk_mutex);
2654 }
b12de528 2655unlock_out:
26ce2095
JB
2656 mutex_unlock(&fs_info->ro_block_group_mutex);
2657
2658 btrfs_end_transaction(trans);
2659 return ret;
2660}
2661
32da5386 2662void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2663{
2664 struct btrfs_space_info *sinfo = cache->space_info;
2665 u64 num_bytes;
2666
2667 BUG_ON(!cache->ro);
2668
2669 spin_lock(&sinfo->lock);
2670 spin_lock(&cache->lock);
2671 if (!--cache->ro) {
169e0da9
NA
2672 if (btrfs_is_zoned(cache->fs_info)) {
2673 /* Migrate zone_unusable bytes back */
98173255
NA
2674 cache->zone_unusable =
2675 (cache->alloc_offset - cache->used) +
2676 (cache->length - cache->zone_capacity);
169e0da9
NA
2677 sinfo->bytes_zone_unusable += cache->zone_unusable;
2678 sinfo->bytes_readonly -= cache->zone_unusable;
2679 }
f9f28e5b
NA
2680 num_bytes = cache->length - cache->reserved -
2681 cache->pinned - cache->bytes_super -
2682 cache->zone_unusable - cache->used;
2683 sinfo->bytes_readonly -= num_bytes;
26ce2095
JB
2684 list_del_init(&cache->ro_list);
2685 }
2686 spin_unlock(&cache->lock);
2687 spin_unlock(&sinfo->lock);
2688}
77745c05 2689
3be4d8ef
QW
2690static int update_block_group_item(struct btrfs_trans_handle *trans,
2691 struct btrfs_path *path,
2692 struct btrfs_block_group *cache)
77745c05
JB
2693{
2694 struct btrfs_fs_info *fs_info = trans->fs_info;
2695 int ret;
dfe8aec4 2696 struct btrfs_root *root = btrfs_block_group_root(fs_info);
77745c05
JB
2697 unsigned long bi;
2698 struct extent_buffer *leaf;
bf38be65 2699 struct btrfs_block_group_item bgi;
b3470b5d
DS
2700 struct btrfs_key key;
2701
2702 key.objectid = cache->start;
2703 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2704 key.offset = cache->length;
77745c05 2705
3be4d8ef 2706 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
2707 if (ret) {
2708 if (ret > 0)
2709 ret = -ENOENT;
2710 goto fail;
2711 }
2712
2713 leaf = path->nodes[0];
2714 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2715 btrfs_set_stack_block_group_used(&bgi, cache->used);
2716 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2717 cache->global_root_id);
de0dc456 2718 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2719 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2720 btrfs_mark_buffer_dirty(leaf);
2721fail:
2722 btrfs_release_path(path);
2723 return ret;
2724
2725}
2726
32da5386 2727static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2728 struct btrfs_trans_handle *trans,
2729 struct btrfs_path *path)
2730{
2731 struct btrfs_fs_info *fs_info = block_group->fs_info;
2732 struct btrfs_root *root = fs_info->tree_root;
2733 struct inode *inode = NULL;
2734 struct extent_changeset *data_reserved = NULL;
2735 u64 alloc_hint = 0;
2736 int dcs = BTRFS_DC_ERROR;
0044ae11 2737 u64 cache_size = 0;
77745c05
JB
2738 int retries = 0;
2739 int ret = 0;
2740
af456a2c
BB
2741 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2742 return 0;
2743
77745c05
JB
2744 /*
2745 * If this block group is smaller than 100 megs don't bother caching the
2746 * block group.
2747 */
b3470b5d 2748 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2749 spin_lock(&block_group->lock);
2750 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2751 spin_unlock(&block_group->lock);
2752 return 0;
2753 }
2754
bf31f87f 2755 if (TRANS_ABORTED(trans))
77745c05
JB
2756 return 0;
2757again:
2758 inode = lookup_free_space_inode(block_group, path);
2759 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2760 ret = PTR_ERR(inode);
2761 btrfs_release_path(path);
2762 goto out;
2763 }
2764
2765 if (IS_ERR(inode)) {
2766 BUG_ON(retries);
2767 retries++;
2768
2769 if (block_group->ro)
2770 goto out_free;
2771
2772 ret = create_free_space_inode(trans, block_group, path);
2773 if (ret)
2774 goto out_free;
2775 goto again;
2776 }
2777
2778 /*
2779 * We want to set the generation to 0, that way if anything goes wrong
2780 * from here on out we know not to trust this cache when we load up next
2781 * time.
2782 */
2783 BTRFS_I(inode)->generation = 0;
9a56fcd1 2784 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
77745c05
JB
2785 if (ret) {
2786 /*
2787 * So theoretically we could recover from this, simply set the
2788 * super cache generation to 0 so we know to invalidate the
2789 * cache, but then we'd have to keep track of the block groups
2790 * that fail this way so we know we _have_ to reset this cache
2791 * before the next commit or risk reading stale cache. So to
2792 * limit our exposure to horrible edge cases lets just abort the
2793 * transaction, this only happens in really bad situations
2794 * anyway.
2795 */
2796 btrfs_abort_transaction(trans, ret);
2797 goto out_put;
2798 }
2799 WARN_ON(ret);
2800
2801 /* We've already setup this transaction, go ahead and exit */
2802 if (block_group->cache_generation == trans->transid &&
2803 i_size_read(inode)) {
2804 dcs = BTRFS_DC_SETUP;
2805 goto out_put;
2806 }
2807
2808 if (i_size_read(inode) > 0) {
2809 ret = btrfs_check_trunc_cache_free_space(fs_info,
2810 &fs_info->global_block_rsv);
2811 if (ret)
2812 goto out_put;
2813
2814 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2815 if (ret)
2816 goto out_put;
2817 }
2818
2819 spin_lock(&block_group->lock);
2820 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2821 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2822 /*
2823 * don't bother trying to write stuff out _if_
2824 * a) we're not cached,
2825 * b) we're with nospace_cache mount option,
2826 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2827 */
2828 dcs = BTRFS_DC_WRITTEN;
2829 spin_unlock(&block_group->lock);
2830 goto out_put;
2831 }
2832 spin_unlock(&block_group->lock);
2833
2834 /*
2835 * We hit an ENOSPC when setting up the cache in this transaction, just
2836 * skip doing the setup, we've already cleared the cache so we're safe.
2837 */
2838 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2839 ret = -ENOSPC;
2840 goto out_put;
2841 }
2842
2843 /*
2844 * Try to preallocate enough space based on how big the block group is.
2845 * Keep in mind this has to include any pinned space which could end up
2846 * taking up quite a bit since it's not folded into the other space
2847 * cache.
2848 */
0044ae11
QW
2849 cache_size = div_u64(block_group->length, SZ_256M);
2850 if (!cache_size)
2851 cache_size = 1;
77745c05 2852
0044ae11
QW
2853 cache_size *= 16;
2854 cache_size *= fs_info->sectorsize;
77745c05 2855
36ea6f3e 2856 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
0044ae11 2857 cache_size);
77745c05
JB
2858 if (ret)
2859 goto out_put;
2860
0044ae11
QW
2861 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2862 cache_size, cache_size,
77745c05
JB
2863 &alloc_hint);
2864 /*
2865 * Our cache requires contiguous chunks so that we don't modify a bunch
2866 * of metadata or split extents when writing the cache out, which means
2867 * we can enospc if we are heavily fragmented in addition to just normal
2868 * out of space conditions. So if we hit this just skip setting up any
2869 * other block groups for this transaction, maybe we'll unpin enough
2870 * space the next time around.
2871 */
2872 if (!ret)
2873 dcs = BTRFS_DC_SETUP;
2874 else if (ret == -ENOSPC)
2875 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2876
2877out_put:
2878 iput(inode);
2879out_free:
2880 btrfs_release_path(path);
2881out:
2882 spin_lock(&block_group->lock);
2883 if (!ret && dcs == BTRFS_DC_SETUP)
2884 block_group->cache_generation = trans->transid;
2885 block_group->disk_cache_state = dcs;
2886 spin_unlock(&block_group->lock);
2887
2888 extent_changeset_free(data_reserved);
2889 return ret;
2890}
2891
2892int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2893{
2894 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2895 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2896 struct btrfs_transaction *cur_trans = trans->transaction;
2897 struct btrfs_path *path;
2898
2899 if (list_empty(&cur_trans->dirty_bgs) ||
2900 !btrfs_test_opt(fs_info, SPACE_CACHE))
2901 return 0;
2902
2903 path = btrfs_alloc_path();
2904 if (!path)
2905 return -ENOMEM;
2906
2907 /* Could add new block groups, use _safe just in case */
2908 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2909 dirty_list) {
2910 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2911 cache_save_setup(cache, trans, path);
2912 }
2913
2914 btrfs_free_path(path);
2915 return 0;
2916}
2917
2918/*
2919 * Transaction commit does final block group cache writeback during a critical
2920 * section where nothing is allowed to change the FS. This is required in
2921 * order for the cache to actually match the block group, but can introduce a
2922 * lot of latency into the commit.
2923 *
2924 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2925 * There's a chance we'll have to redo some of it if the block group changes
2926 * again during the commit, but it greatly reduces the commit latency by
2927 * getting rid of the easy block groups while we're still allowing others to
2928 * join the commit.
2929 */
2930int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2931{
2932 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2933 struct btrfs_block_group *cache;
77745c05
JB
2934 struct btrfs_transaction *cur_trans = trans->transaction;
2935 int ret = 0;
2936 int should_put;
2937 struct btrfs_path *path = NULL;
2938 LIST_HEAD(dirty);
2939 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
2940 int loops = 0;
2941
2942 spin_lock(&cur_trans->dirty_bgs_lock);
2943 if (list_empty(&cur_trans->dirty_bgs)) {
2944 spin_unlock(&cur_trans->dirty_bgs_lock);
2945 return 0;
2946 }
2947 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2948 spin_unlock(&cur_trans->dirty_bgs_lock);
2949
2950again:
2951 /* Make sure all the block groups on our dirty list actually exist */
2952 btrfs_create_pending_block_groups(trans);
2953
2954 if (!path) {
2955 path = btrfs_alloc_path();
938fcbfb
JB
2956 if (!path) {
2957 ret = -ENOMEM;
2958 goto out;
2959 }
77745c05
JB
2960 }
2961
2962 /*
2963 * cache_write_mutex is here only to save us from balance or automatic
2964 * removal of empty block groups deleting this block group while we are
2965 * writing out the cache
2966 */
2967 mutex_lock(&trans->transaction->cache_write_mutex);
2968 while (!list_empty(&dirty)) {
2969 bool drop_reserve = true;
2970
32da5386 2971 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
2972 dirty_list);
2973 /*
2974 * This can happen if something re-dirties a block group that
2975 * is already under IO. Just wait for it to finish and then do
2976 * it all again
2977 */
2978 if (!list_empty(&cache->io_list)) {
2979 list_del_init(&cache->io_list);
2980 btrfs_wait_cache_io(trans, cache, path);
2981 btrfs_put_block_group(cache);
2982 }
2983
2984
2985 /*
2986 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2987 * it should update the cache_state. Don't delete until after
2988 * we wait.
2989 *
2990 * Since we're not running in the commit critical section
2991 * we need the dirty_bgs_lock to protect from update_block_group
2992 */
2993 spin_lock(&cur_trans->dirty_bgs_lock);
2994 list_del_init(&cache->dirty_list);
2995 spin_unlock(&cur_trans->dirty_bgs_lock);
2996
2997 should_put = 1;
2998
2999 cache_save_setup(cache, trans, path);
3000
3001 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3002 cache->io_ctl.inode = NULL;
3003 ret = btrfs_write_out_cache(trans, cache, path);
3004 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3005 should_put = 0;
3006
3007 /*
3008 * The cache_write_mutex is protecting the
3009 * io_list, also refer to the definition of
3010 * btrfs_transaction::io_bgs for more details
3011 */
3012 list_add_tail(&cache->io_list, io);
3013 } else {
3014 /*
3015 * If we failed to write the cache, the
3016 * generation will be bad and life goes on
3017 */
3018 ret = 0;
3019 }
3020 }
3021 if (!ret) {
3be4d8ef 3022 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3023 /*
3024 * Our block group might still be attached to the list
3025 * of new block groups in the transaction handle of some
3026 * other task (struct btrfs_trans_handle->new_bgs). This
3027 * means its block group item isn't yet in the extent
3028 * tree. If this happens ignore the error, as we will
3029 * try again later in the critical section of the
3030 * transaction commit.
3031 */
3032 if (ret == -ENOENT) {
3033 ret = 0;
3034 spin_lock(&cur_trans->dirty_bgs_lock);
3035 if (list_empty(&cache->dirty_list)) {
3036 list_add_tail(&cache->dirty_list,
3037 &cur_trans->dirty_bgs);
3038 btrfs_get_block_group(cache);
3039 drop_reserve = false;
3040 }
3041 spin_unlock(&cur_trans->dirty_bgs_lock);
3042 } else if (ret) {
3043 btrfs_abort_transaction(trans, ret);
3044 }
3045 }
3046
3047 /* If it's not on the io list, we need to put the block group */
3048 if (should_put)
3049 btrfs_put_block_group(cache);
3050 if (drop_reserve)
3051 btrfs_delayed_refs_rsv_release(fs_info, 1);
77745c05
JB
3052 /*
3053 * Avoid blocking other tasks for too long. It might even save
3054 * us from writing caches for block groups that are going to be
3055 * removed.
3056 */
3057 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
3058 if (ret)
3059 goto out;
77745c05
JB
3060 mutex_lock(&trans->transaction->cache_write_mutex);
3061 }
3062 mutex_unlock(&trans->transaction->cache_write_mutex);
3063
3064 /*
3065 * Go through delayed refs for all the stuff we've just kicked off
3066 * and then loop back (just once)
3067 */
34d1eb0e
JB
3068 if (!ret)
3069 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
3070 if (!ret && loops == 0) {
3071 loops++;
3072 spin_lock(&cur_trans->dirty_bgs_lock);
3073 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3074 /*
3075 * dirty_bgs_lock protects us from concurrent block group
3076 * deletes too (not just cache_write_mutex).
3077 */
3078 if (!list_empty(&dirty)) {
3079 spin_unlock(&cur_trans->dirty_bgs_lock);
3080 goto again;
3081 }
3082 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
3083 }
3084out:
3085 if (ret < 0) {
3086 spin_lock(&cur_trans->dirty_bgs_lock);
3087 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3088 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
3089 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3090 }
3091
3092 btrfs_free_path(path);
3093 return ret;
3094}
3095
3096int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3097{
3098 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3099 struct btrfs_block_group *cache;
77745c05
JB
3100 struct btrfs_transaction *cur_trans = trans->transaction;
3101 int ret = 0;
3102 int should_put;
3103 struct btrfs_path *path;
3104 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
3105
3106 path = btrfs_alloc_path();
3107 if (!path)
3108 return -ENOMEM;
3109
3110 /*
3111 * Even though we are in the critical section of the transaction commit,
3112 * we can still have concurrent tasks adding elements to this
3113 * transaction's list of dirty block groups. These tasks correspond to
3114 * endio free space workers started when writeback finishes for a
3115 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3116 * allocate new block groups as a result of COWing nodes of the root
3117 * tree when updating the free space inode. The writeback for the space
3118 * caches is triggered by an earlier call to
3119 * btrfs_start_dirty_block_groups() and iterations of the following
3120 * loop.
3121 * Also we want to do the cache_save_setup first and then run the
3122 * delayed refs to make sure we have the best chance at doing this all
3123 * in one shot.
3124 */
3125 spin_lock(&cur_trans->dirty_bgs_lock);
3126 while (!list_empty(&cur_trans->dirty_bgs)) {
3127 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 3128 struct btrfs_block_group,
77745c05
JB
3129 dirty_list);
3130
3131 /*
3132 * This can happen if cache_save_setup re-dirties a block group
3133 * that is already under IO. Just wait for it to finish and
3134 * then do it all again
3135 */
3136 if (!list_empty(&cache->io_list)) {
3137 spin_unlock(&cur_trans->dirty_bgs_lock);
3138 list_del_init(&cache->io_list);
3139 btrfs_wait_cache_io(trans, cache, path);
3140 btrfs_put_block_group(cache);
3141 spin_lock(&cur_trans->dirty_bgs_lock);
3142 }
3143
3144 /*
3145 * Don't remove from the dirty list until after we've waited on
3146 * any pending IO
3147 */
3148 list_del_init(&cache->dirty_list);
3149 spin_unlock(&cur_trans->dirty_bgs_lock);
3150 should_put = 1;
3151
3152 cache_save_setup(cache, trans, path);
3153
3154 if (!ret)
3155 ret = btrfs_run_delayed_refs(trans,
3156 (unsigned long) -1);
3157
3158 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3159 cache->io_ctl.inode = NULL;
3160 ret = btrfs_write_out_cache(trans, cache, path);
3161 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3162 should_put = 0;
3163 list_add_tail(&cache->io_list, io);
3164 } else {
3165 /*
3166 * If we failed to write the cache, the
3167 * generation will be bad and life goes on
3168 */
3169 ret = 0;
3170 }
3171 }
3172 if (!ret) {
3be4d8ef 3173 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3174 /*
3175 * One of the free space endio workers might have
3176 * created a new block group while updating a free space
3177 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3178 * and hasn't released its transaction handle yet, in
3179 * which case the new block group is still attached to
3180 * its transaction handle and its creation has not
3181 * finished yet (no block group item in the extent tree
3182 * yet, etc). If this is the case, wait for all free
3183 * space endio workers to finish and retry. This is a
260db43c 3184 * very rare case so no need for a more efficient and
77745c05
JB
3185 * complex approach.
3186 */
3187 if (ret == -ENOENT) {
3188 wait_event(cur_trans->writer_wait,
3189 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 3190 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3191 }
3192 if (ret)
3193 btrfs_abort_transaction(trans, ret);
3194 }
3195
3196 /* If its not on the io list, we need to put the block group */
3197 if (should_put)
3198 btrfs_put_block_group(cache);
3199 btrfs_delayed_refs_rsv_release(fs_info, 1);
3200 spin_lock(&cur_trans->dirty_bgs_lock);
3201 }
3202 spin_unlock(&cur_trans->dirty_bgs_lock);
3203
3204 /*
3205 * Refer to the definition of io_bgs member for details why it's safe
3206 * to use it without any locking
3207 */
3208 while (!list_empty(io)) {
32da5386 3209 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
3210 io_list);
3211 list_del_init(&cache->io_list);
3212 btrfs_wait_cache_io(trans, cache, path);
3213 btrfs_put_block_group(cache);
3214 }
3215
3216 btrfs_free_path(path);
3217 return ret;
3218}
606d1bf1 3219
ac2f1e63
JB
3220static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3221 u64 bytes_freed)
3222{
3223 const struct btrfs_space_info *space_info = bg->space_info;
3224 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3225 const u64 new_val = bg->used;
3226 const u64 old_val = new_val + bytes_freed;
3227 u64 thresh;
3228
3229 if (reclaim_thresh == 0)
3230 return false;
3231
3232 thresh = div_factor_fine(bg->length, reclaim_thresh);
3233
3234 /*
3235 * If we were below the threshold before don't reclaim, we are likely a
3236 * brand new block group and we don't want to relocate new block groups.
3237 */
3238 if (old_val < thresh)
3239 return false;
3240 if (new_val >= thresh)
3241 return false;
3242 return true;
3243}
3244
606d1bf1 3245int btrfs_update_block_group(struct btrfs_trans_handle *trans,
11b66fa6 3246 u64 bytenr, u64 num_bytes, bool alloc)
606d1bf1
JB
3247{
3248 struct btrfs_fs_info *info = trans->fs_info;
32da5386 3249 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
3250 u64 total = num_bytes;
3251 u64 old_val;
3252 u64 byte_in_group;
3253 int factor;
3254 int ret = 0;
3255
3256 /* Block accounting for super block */
3257 spin_lock(&info->delalloc_root_lock);
3258 old_val = btrfs_super_bytes_used(info->super_copy);
3259 if (alloc)
3260 old_val += num_bytes;
3261 else
3262 old_val -= num_bytes;
3263 btrfs_set_super_bytes_used(info->super_copy, old_val);
3264 spin_unlock(&info->delalloc_root_lock);
3265
3266 while (total) {
ac2f1e63
JB
3267 bool reclaim;
3268
606d1bf1
JB
3269 cache = btrfs_lookup_block_group(info, bytenr);
3270 if (!cache) {
3271 ret = -ENOENT;
3272 break;
3273 }
3274 factor = btrfs_bg_type_to_factor(cache->flags);
3275
3276 /*
3277 * If this block group has free space cache written out, we
3278 * need to make sure to load it if we are removing space. This
3279 * is because we need the unpinning stage to actually add the
3280 * space back to the block group, otherwise we will leak space.
3281 */
32da5386 3282 if (!alloc && !btrfs_block_group_done(cache))
ced8ecf0 3283 btrfs_cache_block_group(cache, true);
606d1bf1 3284
b3470b5d
DS
3285 byte_in_group = bytenr - cache->start;
3286 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
3287
3288 spin_lock(&cache->space_info->lock);
3289 spin_lock(&cache->lock);
3290
3291 if (btrfs_test_opt(info, SPACE_CACHE) &&
3292 cache->disk_cache_state < BTRFS_DC_CLEAR)
3293 cache->disk_cache_state = BTRFS_DC_CLEAR;
3294
bf38be65 3295 old_val = cache->used;
b3470b5d 3296 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
3297 if (alloc) {
3298 old_val += num_bytes;
bf38be65 3299 cache->used = old_val;
606d1bf1
JB
3300 cache->reserved -= num_bytes;
3301 cache->space_info->bytes_reserved -= num_bytes;
3302 cache->space_info->bytes_used += num_bytes;
3303 cache->space_info->disk_used += num_bytes * factor;
3304 spin_unlock(&cache->lock);
3305 spin_unlock(&cache->space_info->lock);
3306 } else {
3307 old_val -= num_bytes;
bf38be65 3308 cache->used = old_val;
606d1bf1
JB
3309 cache->pinned += num_bytes;
3310 btrfs_space_info_update_bytes_pinned(info,
3311 cache->space_info, num_bytes);
3312 cache->space_info->bytes_used -= num_bytes;
3313 cache->space_info->disk_used -= num_bytes * factor;
ac2f1e63
JB
3314
3315 reclaim = should_reclaim_block_group(cache, num_bytes);
606d1bf1
JB
3316 spin_unlock(&cache->lock);
3317 spin_unlock(&cache->space_info->lock);
3318
fe119a6e 3319 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
3320 bytenr, bytenr + num_bytes - 1,
3321 GFP_NOFS | __GFP_NOFAIL);
3322 }
3323
3324 spin_lock(&trans->transaction->dirty_bgs_lock);
3325 if (list_empty(&cache->dirty_list)) {
3326 list_add_tail(&cache->dirty_list,
3327 &trans->transaction->dirty_bgs);
3328 trans->delayed_ref_updates++;
3329 btrfs_get_block_group(cache);
3330 }
3331 spin_unlock(&trans->transaction->dirty_bgs_lock);
3332
3333 /*
3334 * No longer have used bytes in this block group, queue it for
3335 * deletion. We do this after adding the block group to the
3336 * dirty list to avoid races between cleaner kthread and space
3337 * cache writeout.
3338 */
6e80d4f8
DZ
3339 if (!alloc && old_val == 0) {
3340 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3341 btrfs_mark_bg_unused(cache);
ac2f1e63
JB
3342 } else if (!alloc && reclaim) {
3343 btrfs_mark_bg_to_reclaim(cache);
6e80d4f8 3344 }
606d1bf1
JB
3345
3346 btrfs_put_block_group(cache);
3347 total -= num_bytes;
3348 bytenr += num_bytes;
3349 }
3350
3351 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3352 btrfs_update_delayed_refs_rsv(trans);
3353 return ret;
3354}
3355
3356/**
3357 * btrfs_add_reserved_bytes - update the block_group and space info counters
3358 * @cache: The cache we are manipulating
3359 * @ram_bytes: The number of bytes of file content, and will be same to
3360 * @num_bytes except for the compress path.
3361 * @num_bytes: The number of bytes in question
3362 * @delalloc: The blocks are allocated for the delalloc write
3363 *
3364 * This is called by the allocator when it reserves space. If this is a
3365 * reservation and the block group has become read only we cannot make the
3366 * reservation and return -EAGAIN, otherwise this function always succeeds.
3367 */
32da5386 3368int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3369 u64 ram_bytes, u64 num_bytes, int delalloc)
3370{
3371 struct btrfs_space_info *space_info = cache->space_info;
3372 int ret = 0;
3373
3374 spin_lock(&space_info->lock);
3375 spin_lock(&cache->lock);
3376 if (cache->ro) {
3377 ret = -EAGAIN;
3378 } else {
3379 cache->reserved += num_bytes;
3380 space_info->bytes_reserved += num_bytes;
a43c3835
JB
3381 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3382 space_info->flags, num_bytes, 1);
606d1bf1
JB
3383 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3384 space_info, -ram_bytes);
3385 if (delalloc)
3386 cache->delalloc_bytes += num_bytes;
99ffb43e
JB
3387
3388 /*
3389 * Compression can use less space than we reserved, so wake
3390 * tickets if that happens
3391 */
3392 if (num_bytes < ram_bytes)
3393 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3394 }
3395 spin_unlock(&cache->lock);
3396 spin_unlock(&space_info->lock);
3397 return ret;
3398}
3399
3400/**
3401 * btrfs_free_reserved_bytes - update the block_group and space info counters
3402 * @cache: The cache we are manipulating
3403 * @num_bytes: The number of bytes in question
3404 * @delalloc: The blocks are allocated for the delalloc write
3405 *
3406 * This is called by somebody who is freeing space that was never actually used
3407 * on disk. For example if you reserve some space for a new leaf in transaction
3408 * A and before transaction A commits you free that leaf, you call this with
3409 * reserve set to 0 in order to clear the reservation.
3410 */
32da5386 3411void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3412 u64 num_bytes, int delalloc)
3413{
3414 struct btrfs_space_info *space_info = cache->space_info;
3415
3416 spin_lock(&space_info->lock);
3417 spin_lock(&cache->lock);
3418 if (cache->ro)
3419 space_info->bytes_readonly += num_bytes;
3420 cache->reserved -= num_bytes;
3421 space_info->bytes_reserved -= num_bytes;
3422 space_info->max_extent_size = 0;
3423
3424 if (delalloc)
3425 cache->delalloc_bytes -= num_bytes;
3426 spin_unlock(&cache->lock);
3308234a
JB
3427
3428 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3429 spin_unlock(&space_info->lock);
3430}
07730d87
JB
3431
3432static void force_metadata_allocation(struct btrfs_fs_info *info)
3433{
3434 struct list_head *head = &info->space_info;
3435 struct btrfs_space_info *found;
3436
72804905 3437 list_for_each_entry(found, head, list) {
07730d87
JB
3438 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3439 found->force_alloc = CHUNK_ALLOC_FORCE;
3440 }
07730d87
JB
3441}
3442
3443static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3444 struct btrfs_space_info *sinfo, int force)
3445{
3446 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3447 u64 thresh;
3448
3449 if (force == CHUNK_ALLOC_FORCE)
3450 return 1;
3451
3452 /*
3453 * in limited mode, we want to have some free space up to
3454 * about 1% of the FS size.
3455 */
3456 if (force == CHUNK_ALLOC_LIMITED) {
3457 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3458 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3459
3460 if (sinfo->total_bytes - bytes_used < thresh)
3461 return 1;
3462 }
3463
3464 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3465 return 0;
3466 return 1;
3467}
3468
3469int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3470{
3471 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3472
3473 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3474}
3475
820c363b 3476static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
79bd3712
FM
3477{
3478 struct btrfs_block_group *bg;
3479 int ret;
3480
3481 /*
3482 * Check if we have enough space in the system space info because we
3483 * will need to update device items in the chunk btree and insert a new
3484 * chunk item in the chunk btree as well. This will allocate a new
3485 * system block group if needed.
3486 */
3487 check_system_chunk(trans, flags);
3488
f6f39f7a 3489 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3490 if (IS_ERR(bg)) {
3491 ret = PTR_ERR(bg);
3492 goto out;
3493 }
3494
79bd3712
FM
3495 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3496 /*
3497 * Normally we are not expected to fail with -ENOSPC here, since we have
3498 * previously reserved space in the system space_info and allocated one
ecd84d54 3499 * new system chunk if necessary. However there are three exceptions:
79bd3712
FM
3500 *
3501 * 1) We may have enough free space in the system space_info but all the
3502 * existing system block groups have a profile which can not be used
3503 * for extent allocation.
3504 *
3505 * This happens when mounting in degraded mode. For example we have a
3506 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3507 * using the other device in degraded mode. If we then allocate a chunk,
3508 * we may have enough free space in the existing system space_info, but
3509 * none of the block groups can be used for extent allocation since they
3510 * have a RAID1 profile, and because we are in degraded mode with a
3511 * single device, we are forced to allocate a new system chunk with a
3512 * SINGLE profile. Making check_system_chunk() iterate over all system
3513 * block groups and check if they have a usable profile and enough space
3514 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3515 * try again after forcing allocation of a new system chunk. Like this
3516 * we avoid paying the cost of that search in normal circumstances, when
3517 * we were not mounted in degraded mode;
3518 *
3519 * 2) We had enough free space info the system space_info, and one suitable
3520 * block group to allocate from when we called check_system_chunk()
3521 * above. However right after we called it, the only system block group
3522 * with enough free space got turned into RO mode by a running scrub,
3523 * and in this case we have to allocate a new one and retry. We only
3524 * need do this allocate and retry once, since we have a transaction
ecd84d54
FM
3525 * handle and scrub uses the commit root to search for block groups;
3526 *
3527 * 3) We had one system block group with enough free space when we called
3528 * check_system_chunk(), but after that, right before we tried to
3529 * allocate the last extent buffer we needed, a discard operation came
3530 * in and it temporarily removed the last free space entry from the
3531 * block group (discard removes a free space entry, discards it, and
3532 * then adds back the entry to the block group cache).
79bd3712
FM
3533 */
3534 if (ret == -ENOSPC) {
3535 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3536 struct btrfs_block_group *sys_bg;
3537
f6f39f7a 3538 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3539 if (IS_ERR(sys_bg)) {
3540 ret = PTR_ERR(sys_bg);
3541 btrfs_abort_transaction(trans, ret);
3542 goto out;
3543 }
3544
3545 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3546 if (ret) {
3547 btrfs_abort_transaction(trans, ret);
3548 goto out;
3549 }
3550
3551 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3552 if (ret) {
3553 btrfs_abort_transaction(trans, ret);
3554 goto out;
3555 }
3556 } else if (ret) {
3557 btrfs_abort_transaction(trans, ret);
3558 goto out;
3559 }
3560out:
3561 btrfs_trans_release_chunk_metadata(trans);
3562
820c363b
NA
3563 if (ret)
3564 return ERR_PTR(ret);
3565
3566 btrfs_get_block_group(bg);
3567 return bg;
79bd3712
FM
3568}
3569
07730d87 3570/*
79bd3712
FM
3571 * Chunk allocation is done in 2 phases:
3572 *
3573 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3574 * the chunk, the chunk mapping, create its block group and add the items
3575 * that belong in the chunk btree to it - more specifically, we need to
3576 * update device items in the chunk btree and add a new chunk item to it.
3577 *
3578 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3579 * group item to the extent btree and the device extent items to the devices
3580 * btree.
3581 *
3582 * This is done to prevent deadlocks. For example when COWing a node from the
3583 * extent btree we are holding a write lock on the node's parent and if we
3584 * trigger chunk allocation and attempted to insert the new block group item
3585 * in the extent btree right way, we could deadlock because the path for the
3586 * insertion can include that parent node. At first glance it seems impossible
3587 * to trigger chunk allocation after starting a transaction since tasks should
3588 * reserve enough transaction units (metadata space), however while that is true
3589 * most of the time, chunk allocation may still be triggered for several reasons:
3590 *
3591 * 1) When reserving metadata, we check if there is enough free space in the
3592 * metadata space_info and therefore don't trigger allocation of a new chunk.
3593 * However later when the task actually tries to COW an extent buffer from
3594 * the extent btree or from the device btree for example, it is forced to
3595 * allocate a new block group (chunk) because the only one that had enough
3596 * free space was just turned to RO mode by a running scrub for example (or
3597 * device replace, block group reclaim thread, etc), so we can not use it
3598 * for allocating an extent and end up being forced to allocate a new one;
3599 *
3600 * 2) Because we only check that the metadata space_info has enough free bytes,
3601 * we end up not allocating a new metadata chunk in that case. However if
3602 * the filesystem was mounted in degraded mode, none of the existing block
3603 * groups might be suitable for extent allocation due to their incompatible
3604 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3605 * use a RAID1 profile, in degraded mode using a single device). In this case
3606 * when the task attempts to COW some extent buffer of the extent btree for
3607 * example, it will trigger allocation of a new metadata block group with a
3608 * suitable profile (SINGLE profile in the example of the degraded mount of
3609 * the RAID1 filesystem);
3610 *
3611 * 3) The task has reserved enough transaction units / metadata space, but when
3612 * it attempts to COW an extent buffer from the extent or device btree for
3613 * example, it does not find any free extent in any metadata block group,
3614 * therefore forced to try to allocate a new metadata block group.
3615 * This is because some other task allocated all available extents in the
3616 * meanwhile - this typically happens with tasks that don't reserve space
3617 * properly, either intentionally or as a bug. One example where this is
3618 * done intentionally is fsync, as it does not reserve any transaction units
3619 * and ends up allocating a variable number of metadata extents for log
ecd84d54
FM
3620 * tree extent buffers;
3621 *
3622 * 4) The task has reserved enough transaction units / metadata space, but right
3623 * before it tries to allocate the last extent buffer it needs, a discard
3624 * operation comes in and, temporarily, removes the last free space entry from
3625 * the only metadata block group that had free space (discard starts by
3626 * removing a free space entry from a block group, then does the discard
3627 * operation and, once it's done, it adds back the free space entry to the
3628 * block group).
79bd3712
FM
3629 *
3630 * We also need this 2 phases setup when adding a device to a filesystem with
3631 * a seed device - we must create new metadata and system chunks without adding
3632 * any of the block group items to the chunk, extent and device btrees. If we
3633 * did not do it this way, we would get ENOSPC when attempting to update those
3634 * btrees, since all the chunks from the seed device are read-only.
3635 *
3636 * Phase 1 does the updates and insertions to the chunk btree because if we had
3637 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3638 * parallel, we risk having too many system chunks allocated by many tasks if
3639 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3640 * extreme case this leads to exhaustion of the system chunk array in the
3641 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3642 * and with RAID filesystems (so we have more device items in the chunk btree).
3643 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3644 * the system chunk array due to concurrent allocations") provides more details.
3645 *
2bb2e00e
FM
3646 * Allocation of system chunks does not happen through this function. A task that
3647 * needs to update the chunk btree (the only btree that uses system chunks), must
3648 * preallocate chunk space by calling either check_system_chunk() or
3649 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3650 * metadata chunk or when removing a chunk, while the later is used before doing
3651 * a modification to the chunk btree - use cases for the later are adding,
3652 * removing and resizing a device as well as relocation of a system chunk.
3653 * See the comment below for more details.
79bd3712
FM
3654 *
3655 * The reservation of system space, done through check_system_chunk(), as well
3656 * as all the updates and insertions into the chunk btree must be done while
3657 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3658 * an extent buffer from the chunks btree we never trigger allocation of a new
3659 * system chunk, which would result in a deadlock (trying to lock twice an
3660 * extent buffer of the chunk btree, first time before triggering the chunk
3661 * allocation and the second time during chunk allocation while attempting to
3662 * update the chunks btree). The system chunk array is also updated while holding
3663 * that mutex. The same logic applies to removing chunks - we must reserve system
3664 * space, update the chunk btree and the system chunk array in the superblock
3665 * while holding fs_info->chunk_mutex.
3666 *
3667 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3668 *
3669 * If @force is CHUNK_ALLOC_FORCE:
07730d87
JB
3670 * - return 1 if it successfully allocates a chunk,
3671 * - return errors including -ENOSPC otherwise.
79bd3712 3672 * If @force is NOT CHUNK_ALLOC_FORCE:
07730d87
JB
3673 * - return 0 if it doesn't need to allocate a new chunk,
3674 * - return 1 if it successfully allocates a chunk,
3675 * - return errors including -ENOSPC otherwise.
3676 */
3677int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3678 enum btrfs_chunk_alloc_enum force)
3679{
3680 struct btrfs_fs_info *fs_info = trans->fs_info;
3681 struct btrfs_space_info *space_info;
820c363b 3682 struct btrfs_block_group *ret_bg;
07730d87
JB
3683 bool wait_for_alloc = false;
3684 bool should_alloc = false;
760e69c4 3685 bool from_extent_allocation = false;
07730d87
JB
3686 int ret = 0;
3687
760e69c4
NA
3688 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3689 from_extent_allocation = true;
3690 force = CHUNK_ALLOC_FORCE;
3691 }
3692
07730d87
JB
3693 /* Don't re-enter if we're already allocating a chunk */
3694 if (trans->allocating_chunk)
3695 return -ENOSPC;
79bd3712 3696 /*
2bb2e00e
FM
3697 * Allocation of system chunks can not happen through this path, as we
3698 * could end up in a deadlock if we are allocating a data or metadata
3699 * chunk and there is another task modifying the chunk btree.
3700 *
3701 * This is because while we are holding the chunk mutex, we will attempt
3702 * to add the new chunk item to the chunk btree or update an existing
3703 * device item in the chunk btree, while the other task that is modifying
3704 * the chunk btree is attempting to COW an extent buffer while holding a
3705 * lock on it and on its parent - if the COW operation triggers a system
3706 * chunk allocation, then we can deadlock because we are holding the
3707 * chunk mutex and we may need to access that extent buffer or its parent
3708 * in order to add the chunk item or update a device item.
3709 *
3710 * Tasks that want to modify the chunk tree should reserve system space
3711 * before updating the chunk btree, by calling either
3712 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3713 * It's possible that after a task reserves the space, it still ends up
3714 * here - this happens in the cases described above at do_chunk_alloc().
3715 * The task will have to either retry or fail.
79bd3712 3716 */
2bb2e00e 3717 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
79bd3712 3718 return -ENOSPC;
07730d87
JB
3719
3720 space_info = btrfs_find_space_info(fs_info, flags);
3721 ASSERT(space_info);
3722
3723 do {
3724 spin_lock(&space_info->lock);
3725 if (force < space_info->force_alloc)
3726 force = space_info->force_alloc;
3727 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3728 if (space_info->full) {
3729 /* No more free physical space */
3730 if (should_alloc)
3731 ret = -ENOSPC;
3732 else
3733 ret = 0;
3734 spin_unlock(&space_info->lock);
3735 return ret;
3736 } else if (!should_alloc) {
3737 spin_unlock(&space_info->lock);
3738 return 0;
3739 } else if (space_info->chunk_alloc) {
3740 /*
3741 * Someone is already allocating, so we need to block
3742 * until this someone is finished and then loop to
3743 * recheck if we should continue with our allocation
3744 * attempt.
3745 */
3746 wait_for_alloc = true;
1314ca78 3747 force = CHUNK_ALLOC_NO_FORCE;
07730d87
JB
3748 spin_unlock(&space_info->lock);
3749 mutex_lock(&fs_info->chunk_mutex);
3750 mutex_unlock(&fs_info->chunk_mutex);
3751 } else {
3752 /* Proceed with allocation */
3753 space_info->chunk_alloc = 1;
3754 wait_for_alloc = false;
3755 spin_unlock(&space_info->lock);
3756 }
3757
3758 cond_resched();
3759 } while (wait_for_alloc);
3760
3761 mutex_lock(&fs_info->chunk_mutex);
3762 trans->allocating_chunk = true;
3763
3764 /*
3765 * If we have mixed data/metadata chunks we want to make sure we keep
3766 * allocating mixed chunks instead of individual chunks.
3767 */
3768 if (btrfs_mixed_space_info(space_info))
3769 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3770
3771 /*
3772 * if we're doing a data chunk, go ahead and make sure that
3773 * we keep a reasonable number of metadata chunks allocated in the
3774 * FS as well.
3775 */
3776 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3777 fs_info->data_chunk_allocations++;
3778 if (!(fs_info->data_chunk_allocations %
3779 fs_info->metadata_ratio))
3780 force_metadata_allocation(fs_info);
3781 }
3782
820c363b 3783 ret_bg = do_chunk_alloc(trans, flags);
07730d87
JB
3784 trans->allocating_chunk = false;
3785
760e69c4 3786 if (IS_ERR(ret_bg)) {
820c363b 3787 ret = PTR_ERR(ret_bg);
760e69c4
NA
3788 } else if (from_extent_allocation) {
3789 /*
3790 * New block group is likely to be used soon. Try to activate
3791 * it now. Failure is OK for now.
3792 */
3793 btrfs_zone_activate(ret_bg);
3794 }
3795
3796 if (!ret)
820c363b
NA
3797 btrfs_put_block_group(ret_bg);
3798
07730d87
JB
3799 spin_lock(&space_info->lock);
3800 if (ret < 0) {
3801 if (ret == -ENOSPC)
3802 space_info->full = 1;
3803 else
3804 goto out;
3805 } else {
3806 ret = 1;
3807 space_info->max_extent_size = 0;
3808 }
3809
3810 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3811out:
3812 space_info->chunk_alloc = 0;
3813 spin_unlock(&space_info->lock);
3814 mutex_unlock(&fs_info->chunk_mutex);
07730d87
JB
3815
3816 return ret;
3817}
3818
3819static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3820{
3821 u64 num_dev;
3822
3823 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3824 if (!num_dev)
3825 num_dev = fs_info->fs_devices->rw_devices;
3826
3827 return num_dev;
3828}
3829
2bb2e00e
FM
3830static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3831 u64 bytes,
3832 u64 type)
07730d87
JB
3833{
3834 struct btrfs_fs_info *fs_info = trans->fs_info;
3835 struct btrfs_space_info *info;
3836 u64 left;
07730d87 3837 int ret = 0;
07730d87
JB
3838
3839 /*
3840 * Needed because we can end up allocating a system chunk and for an
3841 * atomic and race free space reservation in the chunk block reserve.
3842 */
3843 lockdep_assert_held(&fs_info->chunk_mutex);
3844
3845 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3846 spin_lock(&info->lock);
3847 left = info->total_bytes - btrfs_space_info_used(info, true);
3848 spin_unlock(&info->lock);
3849
2bb2e00e 3850 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
07730d87 3851 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
2bb2e00e 3852 left, bytes, type);
07730d87
JB
3853 btrfs_dump_space_info(fs_info, info, 0, 0);
3854 }
3855
2bb2e00e 3856 if (left < bytes) {
07730d87 3857 u64 flags = btrfs_system_alloc_profile(fs_info);
79bd3712 3858 struct btrfs_block_group *bg;
07730d87
JB
3859
3860 /*
3861 * Ignore failure to create system chunk. We might end up not
3862 * needing it, as we might not need to COW all nodes/leafs from
3863 * the paths we visit in the chunk tree (they were already COWed
3864 * or created in the current transaction for example).
3865 */
f6f39f7a 3866 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3867 if (IS_ERR(bg)) {
3868 ret = PTR_ERR(bg);
2bb2e00e 3869 } else {
b6a98021
NA
3870 /*
3871 * We have a new chunk. We also need to activate it for
3872 * zoned filesystem.
3873 */
3874 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3875 if (ret < 0)
3876 return;
3877
79bd3712
FM
3878 /*
3879 * If we fail to add the chunk item here, we end up
3880 * trying again at phase 2 of chunk allocation, at
3881 * btrfs_create_pending_block_groups(). So ignore
2bb2e00e
FM
3882 * any error here. An ENOSPC here could happen, due to
3883 * the cases described at do_chunk_alloc() - the system
3884 * block group we just created was just turned into RO
3885 * mode by a scrub for example, or a running discard
3886 * temporarily removed its free space entries, etc.
79bd3712
FM
3887 */
3888 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3889 }
07730d87
JB
3890 }
3891
3892 if (!ret) {
9270501c 3893 ret = btrfs_block_rsv_add(fs_info,
07730d87 3894 &fs_info->chunk_block_rsv,
2bb2e00e 3895 bytes, BTRFS_RESERVE_NO_FLUSH);
1cb3db1c 3896 if (!ret)
2bb2e00e 3897 trans->chunk_bytes_reserved += bytes;
07730d87
JB
3898 }
3899}
3900
2bb2e00e
FM
3901/*
3902 * Reserve space in the system space for allocating or removing a chunk.
3903 * The caller must be holding fs_info->chunk_mutex.
3904 */
3905void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3906{
3907 struct btrfs_fs_info *fs_info = trans->fs_info;
3908 const u64 num_devs = get_profile_num_devs(fs_info, type);
3909 u64 bytes;
3910
3911 /* num_devs device items to update and 1 chunk item to add or remove. */
3912 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3913 btrfs_calc_insert_metadata_size(fs_info, 1);
3914
3915 reserve_chunk_space(trans, bytes, type);
3916}
3917
3918/*
3919 * Reserve space in the system space, if needed, for doing a modification to the
3920 * chunk btree.
3921 *
3922 * @trans: A transaction handle.
3923 * @is_item_insertion: Indicate if the modification is for inserting a new item
3924 * in the chunk btree or if it's for the deletion or update
3925 * of an existing item.
3926 *
3927 * This is used in a context where we need to update the chunk btree outside
3928 * block group allocation and removal, to avoid a deadlock with a concurrent
3929 * task that is allocating a metadata or data block group and therefore needs to
3930 * update the chunk btree while holding the chunk mutex. After the update to the
3931 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3932 *
3933 */
3934void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3935 bool is_item_insertion)
3936{
3937 struct btrfs_fs_info *fs_info = trans->fs_info;
3938 u64 bytes;
3939
3940 if (is_item_insertion)
3941 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3942 else
3943 bytes = btrfs_calc_metadata_size(fs_info, 1);
3944
3945 mutex_lock(&fs_info->chunk_mutex);
3946 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3947 mutex_unlock(&fs_info->chunk_mutex);
3948}
3949
3e43c279
JB
3950void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3951{
32da5386 3952 struct btrfs_block_group *block_group;
3e43c279
JB
3953 u64 last = 0;
3954
3955 while (1) {
3956 struct inode *inode;
3957
3958 block_group = btrfs_lookup_first_block_group(info, last);
3959 while (block_group) {
3960 btrfs_wait_block_group_cache_done(block_group);
3961 spin_lock(&block_group->lock);
3349b57f
JB
3962 if (test_bit(BLOCK_GROUP_FLAG_IREF,
3963 &block_group->runtime_flags))
3e43c279
JB
3964 break;
3965 spin_unlock(&block_group->lock);
3966 block_group = btrfs_next_block_group(block_group);
3967 }
3968 if (!block_group) {
3969 if (last == 0)
3970 break;
3971 last = 0;
3972 continue;
3973 }
3974
3975 inode = block_group->inode;
3349b57f 3976 clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags);
3e43c279
JB
3977 block_group->inode = NULL;
3978 spin_unlock(&block_group->lock);
3979 ASSERT(block_group->io_ctl.inode == NULL);
3980 iput(inode);
b3470b5d 3981 last = block_group->start + block_group->length;
3e43c279
JB
3982 btrfs_put_block_group(block_group);
3983 }
3984}
3985
3986/*
3987 * Must be called only after stopping all workers, since we could have block
3988 * group caching kthreads running, and therefore they could race with us if we
3989 * freed the block groups before stopping them.
3990 */
3991int btrfs_free_block_groups(struct btrfs_fs_info *info)
3992{
32da5386 3993 struct btrfs_block_group *block_group;
3e43c279
JB
3994 struct btrfs_space_info *space_info;
3995 struct btrfs_caching_control *caching_ctl;
3996 struct rb_node *n;
3997
16b0c258 3998 write_lock(&info->block_group_cache_lock);
3e43c279
JB
3999 while (!list_empty(&info->caching_block_groups)) {
4000 caching_ctl = list_entry(info->caching_block_groups.next,
4001 struct btrfs_caching_control, list);
4002 list_del(&caching_ctl->list);
4003 btrfs_put_caching_control(caching_ctl);
4004 }
16b0c258 4005 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4006
4007 spin_lock(&info->unused_bgs_lock);
4008 while (!list_empty(&info->unused_bgs)) {
4009 block_group = list_first_entry(&info->unused_bgs,
32da5386 4010 struct btrfs_block_group,
3e43c279
JB
4011 bg_list);
4012 list_del_init(&block_group->bg_list);
4013 btrfs_put_block_group(block_group);
4014 }
3e43c279 4015
18bb8bbf
JT
4016 while (!list_empty(&info->reclaim_bgs)) {
4017 block_group = list_first_entry(&info->reclaim_bgs,
4018 struct btrfs_block_group,
4019 bg_list);
4020 list_del_init(&block_group->bg_list);
4021 btrfs_put_block_group(block_group);
4022 }
4023 spin_unlock(&info->unused_bgs_lock);
4024
afba2bc0
NA
4025 spin_lock(&info->zone_active_bgs_lock);
4026 while (!list_empty(&info->zone_active_bgs)) {
4027 block_group = list_first_entry(&info->zone_active_bgs,
4028 struct btrfs_block_group,
4029 active_bg_list);
4030 list_del_init(&block_group->active_bg_list);
4031 btrfs_put_block_group(block_group);
4032 }
4033 spin_unlock(&info->zone_active_bgs_lock);
4034
16b0c258 4035 write_lock(&info->block_group_cache_lock);
08dddb29 4036 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
32da5386 4037 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279 4038 cache_node);
08dddb29
FM
4039 rb_erase_cached(&block_group->cache_node,
4040 &info->block_group_cache_tree);
3e43c279 4041 RB_CLEAR_NODE(&block_group->cache_node);
16b0c258 4042 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4043
4044 down_write(&block_group->space_info->groups_sem);
4045 list_del(&block_group->list);
4046 up_write(&block_group->space_info->groups_sem);
4047
4048 /*
4049 * We haven't cached this block group, which means we could
4050 * possibly have excluded extents on this block group.
4051 */
4052 if (block_group->cached == BTRFS_CACHE_NO ||
4053 block_group->cached == BTRFS_CACHE_ERROR)
4054 btrfs_free_excluded_extents(block_group);
4055
4056 btrfs_remove_free_space_cache(block_group);
4057 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4058 ASSERT(list_empty(&block_group->dirty_list));
4059 ASSERT(list_empty(&block_group->io_list));
4060 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 4061 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 4062 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
4063 btrfs_put_block_group(block_group);
4064
16b0c258 4065 write_lock(&info->block_group_cache_lock);
3e43c279 4066 }
16b0c258 4067 write_unlock(&info->block_group_cache_lock);
3e43c279 4068
3e43c279
JB
4069 btrfs_release_global_block_rsv(info);
4070
4071 while (!list_empty(&info->space_info)) {
4072 space_info = list_entry(info->space_info.next,
4073 struct btrfs_space_info,
4074 list);
4075
4076 /*
4077 * Do not hide this behind enospc_debug, this is actually
4078 * important and indicates a real bug if this happens.
4079 */
4080 if (WARN_ON(space_info->bytes_pinned > 0 ||
3e43c279
JB
4081 space_info->bytes_may_use > 0))
4082 btrfs_dump_space_info(info, space_info, 0, 0);
40cdc509
FM
4083
4084 /*
4085 * If there was a failure to cleanup a log tree, very likely due
4086 * to an IO failure on a writeback attempt of one or more of its
4087 * extent buffers, we could not do proper (and cheap) unaccounting
4088 * of their reserved space, so don't warn on bytes_reserved > 0 in
4089 * that case.
4090 */
4091 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4092 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4093 if (WARN_ON(space_info->bytes_reserved > 0))
4094 btrfs_dump_space_info(info, space_info, 0, 0);
4095 }
4096
d611add4 4097 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
4098 list_del(&space_info->list);
4099 btrfs_sysfs_remove_space_info(space_info);
4100 }
4101 return 0;
4102}
684b752b
FM
4103
4104void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4105{
4106 atomic_inc(&cache->frozen);
4107}
4108
4109void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4110{
4111 struct btrfs_fs_info *fs_info = block_group->fs_info;
4112 struct extent_map_tree *em_tree;
4113 struct extent_map *em;
4114 bool cleanup;
4115
4116 spin_lock(&block_group->lock);
4117 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3349b57f 4118 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
684b752b
FM
4119 spin_unlock(&block_group->lock);
4120
4121 if (cleanup) {
684b752b
FM
4122 em_tree = &fs_info->mapping_tree;
4123 write_lock(&em_tree->lock);
4124 em = lookup_extent_mapping(em_tree, block_group->start,
4125 1);
4126 BUG_ON(!em); /* logic error, can't happen */
4127 remove_extent_mapping(em_tree, em);
4128 write_unlock(&em_tree->lock);
684b752b
FM
4129
4130 /* once for us and once for the tree */
4131 free_extent_map(em);
4132 free_extent_map(em);
4133
4134 /*
4135 * We may have left one free space entry and other possible
4136 * tasks trimming this block group have left 1 entry each one.
4137 * Free them if any.
4138 */
4139 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
4140 }
4141}
195a49ea
FM
4142
4143bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4144{
4145 bool ret = true;
4146
4147 spin_lock(&bg->lock);
4148 if (bg->ro)
4149 ret = false;
4150 else
4151 bg->swap_extents++;
4152 spin_unlock(&bg->lock);
4153
4154 return ret;
4155}
4156
4157void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4158{
4159 spin_lock(&bg->lock);
4160 ASSERT(!bg->ro);
4161 ASSERT(bg->swap_extents >= amount);
4162 bg->swap_extents -= amount;
4163 spin_unlock(&bg->lock);
4164}