]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/block-group.c
btrfs: convert __TRANS_* defines to enum bits
[thirdparty/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
2ca0ec77 3#include <linux/list_sort.h>
784352fe 4#include "misc.h"
2e405ad8
JB
5#include "ctree.h"
6#include "block-group.h"
3eeb3226 7#include "space-info.h"
9f21246d
JB
8#include "disk-io.h"
9#include "free-space-cache.h"
10#include "free-space-tree.h"
e3e0520b
JB
11#include "volumes.h"
12#include "transaction.h"
13#include "ref-verify.h"
4358d963
JB
14#include "sysfs.h"
15#include "tree-log.h"
77745c05 16#include "delalloc-space.h"
b0643e59 17#include "discard.h"
96a14336 18#include "raid56.h"
08e11a3d 19#include "zoned.h"
2e405ad8 20
06d61cb1
JB
21#ifdef CONFIG_BTRFS_DEBUG
22int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
23{
24 struct btrfs_fs_info *fs_info = block_group->fs_info;
25
26 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
27 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
28 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
29 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
30}
31#endif
32
878d7b67
JB
33/*
34 * Return target flags in extended format or 0 if restripe for this chunk_type
35 * is not in progress
36 *
37 * Should be called with balance_lock held
38 */
e11c0406 39static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
40{
41 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
42 u64 target = 0;
43
44 if (!bctl)
45 return 0;
46
47 if (flags & BTRFS_BLOCK_GROUP_DATA &&
48 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
49 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
50 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
51 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
52 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
53 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
54 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
55 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
56 }
57
58 return target;
59}
60
61/*
62 * @flags: available profiles in extended format (see ctree.h)
63 *
64 * Return reduced profile in chunk format. If profile changing is in progress
65 * (either running or paused) picks the target profile (if it's already
66 * available), otherwise falls back to plain reducing.
67 */
68static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
69{
70 u64 num_devices = fs_info->fs_devices->rw_devices;
71 u64 target;
72 u64 raid_type;
73 u64 allowed = 0;
74
75 /*
76 * See if restripe for this chunk_type is in progress, if so try to
77 * reduce to the target profile
78 */
79 spin_lock(&fs_info->balance_lock);
e11c0406 80 target = get_restripe_target(fs_info, flags);
878d7b67 81 if (target) {
162e0a16
JB
82 spin_unlock(&fs_info->balance_lock);
83 return extended_to_chunk(target);
878d7b67
JB
84 }
85 spin_unlock(&fs_info->balance_lock);
86
87 /* First, mask out the RAID levels which aren't possible */
88 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
89 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
90 allowed |= btrfs_raid_array[raid_type].bg_flag;
91 }
92 allowed &= flags;
93
94 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
95 allowed = BTRFS_BLOCK_GROUP_RAID6;
96 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
97 allowed = BTRFS_BLOCK_GROUP_RAID5;
98 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
99 allowed = BTRFS_BLOCK_GROUP_RAID10;
100 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
101 allowed = BTRFS_BLOCK_GROUP_RAID1;
102 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
103 allowed = BTRFS_BLOCK_GROUP_RAID0;
104
105 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
106
107 return extended_to_chunk(flags | allowed);
108}
109
ef0a82da 110u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
111{
112 unsigned seq;
113 u64 flags;
114
115 do {
116 flags = orig_flags;
117 seq = read_seqbegin(&fs_info->profiles_lock);
118
119 if (flags & BTRFS_BLOCK_GROUP_DATA)
120 flags |= fs_info->avail_data_alloc_bits;
121 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
122 flags |= fs_info->avail_system_alloc_bits;
123 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
124 flags |= fs_info->avail_metadata_alloc_bits;
125 } while (read_seqretry(&fs_info->profiles_lock, seq));
126
127 return btrfs_reduce_alloc_profile(fs_info, flags);
128}
129
32da5386 130void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 131{
48aaeebe 132 refcount_inc(&cache->refs);
3cad1284
JB
133}
134
32da5386 135void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 136{
48aaeebe 137 if (refcount_dec_and_test(&cache->refs)) {
3cad1284 138 WARN_ON(cache->pinned > 0);
40cdc509
FM
139 /*
140 * If there was a failure to cleanup a log tree, very likely due
141 * to an IO failure on a writeback attempt of one or more of its
142 * extent buffers, we could not do proper (and cheap) unaccounting
143 * of their reserved space, so don't warn on reserved > 0 in that
144 * case.
145 */
146 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
147 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
148 WARN_ON(cache->reserved > 0);
3cad1284 149
b0643e59
DZ
150 /*
151 * A block_group shouldn't be on the discard_list anymore.
152 * Remove the block_group from the discard_list to prevent us
153 * from causing a panic due to NULL pointer dereference.
154 */
155 if (WARN_ON(!list_empty(&cache->discard_list)))
156 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
157 cache);
158
3cad1284
JB
159 /*
160 * If not empty, someone is still holding mutex of
161 * full_stripe_lock, which can only be released by caller.
162 * And it will definitely cause use-after-free when caller
163 * tries to release full stripe lock.
164 *
165 * No better way to resolve, but only to warn.
166 */
167 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
168 kfree(cache->free_space_ctl);
dafc340d 169 kfree(cache->physical_map);
3cad1284
JB
170 kfree(cache);
171 }
172}
173
4358d963
JB
174/*
175 * This adds the block group to the fs_info rb tree for the block group cache
176 */
177static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 178 struct btrfs_block_group *block_group)
4358d963
JB
179{
180 struct rb_node **p;
181 struct rb_node *parent = NULL;
32da5386 182 struct btrfs_block_group *cache;
08dddb29 183 bool leftmost = true;
4358d963 184
9afc6649
QW
185 ASSERT(block_group->length != 0);
186
16b0c258 187 write_lock(&info->block_group_cache_lock);
08dddb29 188 p = &info->block_group_cache_tree.rb_root.rb_node;
4358d963
JB
189
190 while (*p) {
191 parent = *p;
32da5386 192 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 193 if (block_group->start < cache->start) {
4358d963 194 p = &(*p)->rb_left;
b3470b5d 195 } else if (block_group->start > cache->start) {
4358d963 196 p = &(*p)->rb_right;
08dddb29 197 leftmost = false;
4358d963 198 } else {
16b0c258 199 write_unlock(&info->block_group_cache_lock);
4358d963
JB
200 return -EEXIST;
201 }
202 }
203
204 rb_link_node(&block_group->cache_node, parent, p);
08dddb29
FM
205 rb_insert_color_cached(&block_group->cache_node,
206 &info->block_group_cache_tree, leftmost);
4358d963 207
16b0c258 208 write_unlock(&info->block_group_cache_lock);
4358d963
JB
209
210 return 0;
211}
212
2e405ad8
JB
213/*
214 * This will return the block group at or after bytenr if contains is 0, else
215 * it will return the block group that contains the bytenr
216 */
32da5386 217static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
218 struct btrfs_fs_info *info, u64 bytenr, int contains)
219{
32da5386 220 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
221 struct rb_node *n;
222 u64 end, start;
223
16b0c258 224 read_lock(&info->block_group_cache_lock);
08dddb29 225 n = info->block_group_cache_tree.rb_root.rb_node;
2e405ad8
JB
226
227 while (n) {
32da5386 228 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
229 end = cache->start + cache->length - 1;
230 start = cache->start;
2e405ad8
JB
231
232 if (bytenr < start) {
b3470b5d 233 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
234 ret = cache;
235 n = n->rb_left;
236 } else if (bytenr > start) {
237 if (contains && bytenr <= end) {
238 ret = cache;
239 break;
240 }
241 n = n->rb_right;
242 } else {
243 ret = cache;
244 break;
245 }
246 }
08dddb29 247 if (ret)
2e405ad8 248 btrfs_get_block_group(ret);
16b0c258 249 read_unlock(&info->block_group_cache_lock);
2e405ad8
JB
250
251 return ret;
252}
253
254/*
255 * Return the block group that starts at or after bytenr
256 */
32da5386 257struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
258 struct btrfs_fs_info *info, u64 bytenr)
259{
260 return block_group_cache_tree_search(info, bytenr, 0);
261}
262
263/*
264 * Return the block group that contains the given bytenr
265 */
32da5386 266struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
267 struct btrfs_fs_info *info, u64 bytenr)
268{
269 return block_group_cache_tree_search(info, bytenr, 1);
270}
271
32da5386
DS
272struct btrfs_block_group *btrfs_next_block_group(
273 struct btrfs_block_group *cache)
2e405ad8
JB
274{
275 struct btrfs_fs_info *fs_info = cache->fs_info;
276 struct rb_node *node;
277
16b0c258 278 read_lock(&fs_info->block_group_cache_lock);
2e405ad8
JB
279
280 /* If our block group was removed, we need a full search. */
281 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 282 const u64 next_bytenr = cache->start + cache->length;
2e405ad8 283
16b0c258 284 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8 285 btrfs_put_block_group(cache);
8b01f931 286 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
2e405ad8
JB
287 }
288 node = rb_next(&cache->cache_node);
289 btrfs_put_block_group(cache);
290 if (node) {
32da5386 291 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
292 btrfs_get_block_group(cache);
293 } else
294 cache = NULL;
16b0c258 295 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8
JB
296 return cache;
297}
3eeb3226 298
2306e83e
FM
299/**
300 * Check if we can do a NOCOW write for a given extent.
301 *
302 * @fs_info: The filesystem information object.
303 * @bytenr: Logical start address of the extent.
304 *
305 * Check if we can do a NOCOW write for the given extent, and increments the
306 * number of NOCOW writers in the block group that contains the extent, as long
307 * as the block group exists and it's currently not in read-only mode.
308 *
309 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
310 * is responsible for calling btrfs_dec_nocow_writers() later.
311 *
312 * Or NULL if we can not do a NOCOW write
313 */
314struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
315 u64 bytenr)
3eeb3226 316{
32da5386 317 struct btrfs_block_group *bg;
2306e83e 318 bool can_nocow = true;
3eeb3226
JB
319
320 bg = btrfs_lookup_block_group(fs_info, bytenr);
321 if (!bg)
2306e83e 322 return NULL;
3eeb3226
JB
323
324 spin_lock(&bg->lock);
325 if (bg->ro)
2306e83e 326 can_nocow = false;
3eeb3226
JB
327 else
328 atomic_inc(&bg->nocow_writers);
329 spin_unlock(&bg->lock);
330
2306e83e 331 if (!can_nocow) {
3eeb3226 332 btrfs_put_block_group(bg);
2306e83e
FM
333 return NULL;
334 }
3eeb3226 335
2306e83e
FM
336 /* No put on block group, done by btrfs_dec_nocow_writers(). */
337 return bg;
3eeb3226
JB
338}
339
2306e83e
FM
340/**
341 * Decrement the number of NOCOW writers in a block group.
342 *
343 * @bg: The block group.
344 *
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348 * relocation.
349 *
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
352 */
353void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
3eeb3226 354{
3eeb3226
JB
355 if (atomic_dec_and_test(&bg->nocow_writers))
356 wake_up_var(&bg->nocow_writers);
2306e83e
FM
357
358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
3eeb3226
JB
359 btrfs_put_block_group(bg);
360}
361
32da5386 362void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
363{
364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365}
366
367void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 const u64 start)
369{
32da5386 370 struct btrfs_block_group *bg;
3eeb3226
JB
371
372 bg = btrfs_lookup_block_group(fs_info, start);
373 ASSERT(bg);
374 if (atomic_dec_and_test(&bg->reservations))
375 wake_up_var(&bg->reservations);
376 btrfs_put_block_group(bg);
377}
378
32da5386 379void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
380{
381 struct btrfs_space_info *space_info = bg->space_info;
382
383 ASSERT(bg->ro);
384
385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 return;
387
388 /*
389 * Our block group is read only but before we set it to read only,
390 * some task might have had allocated an extent from it already, but it
391 * has not yet created a respective ordered extent (and added it to a
392 * root's list of ordered extents).
393 * Therefore wait for any task currently allocating extents, since the
394 * block group's reservations counter is incremented while a read lock
395 * on the groups' semaphore is held and decremented after releasing
396 * the read access on that semaphore and creating the ordered extent.
397 */
398 down_write(&space_info->groups_sem);
399 up_write(&space_info->groups_sem);
400
401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402}
9f21246d
JB
403
404struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 405 struct btrfs_block_group *cache)
9f21246d
JB
406{
407 struct btrfs_caching_control *ctl;
408
409 spin_lock(&cache->lock);
410 if (!cache->caching_ctl) {
411 spin_unlock(&cache->lock);
412 return NULL;
413 }
414
415 ctl = cache->caching_ctl;
416 refcount_inc(&ctl->count);
417 spin_unlock(&cache->lock);
418 return ctl;
419}
420
421void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422{
423 if (refcount_dec_and_test(&ctl->count))
424 kfree(ctl);
425}
426
427/*
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once. So, we must sleep and let some
430 * progress happen before we try again.
431 *
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes. Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
436 *
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
439 */
32da5386 440void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
441 u64 num_bytes)
442{
443 struct btrfs_caching_control *caching_ctl;
444
445 caching_ctl = btrfs_get_caching_control(cache);
446 if (!caching_ctl)
447 return;
448
32da5386 449 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
450 (cache->free_space_ctl->free_space >= num_bytes));
451
452 btrfs_put_caching_control(caching_ctl);
453}
454
ced8ecf0
OS
455static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
456 struct btrfs_caching_control *caching_ctl)
457{
458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
459 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
460}
461
462static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
463{
464 struct btrfs_caching_control *caching_ctl;
ced8ecf0 465 int ret;
9f21246d
JB
466
467 caching_ctl = btrfs_get_caching_control(cache);
468 if (!caching_ctl)
469 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
ced8ecf0 470 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
9f21246d
JB
471 btrfs_put_caching_control(caching_ctl);
472 return ret;
473}
474
475#ifdef CONFIG_BTRFS_DEBUG
32da5386 476static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
477{
478 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
479 u64 start = block_group->start;
480 u64 len = block_group->length;
9f21246d
JB
481 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
482 fs_info->nodesize : fs_info->sectorsize;
483 u64 step = chunk << 1;
484
485 while (len > chunk) {
486 btrfs_remove_free_space(block_group, start, chunk);
487 start += step;
488 if (len < step)
489 len = 0;
490 else
491 len -= step;
492 }
493}
494#endif
495
496/*
497 * This is only called by btrfs_cache_block_group, since we could have freed
498 * extents we need to check the pinned_extents for any extents that can't be
499 * used yet since their free space will be released as soon as the transaction
500 * commits.
501 */
32da5386 502u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
503{
504 struct btrfs_fs_info *info = block_group->fs_info;
505 u64 extent_start, extent_end, size, total_added = 0;
506 int ret;
507
508 while (start < end) {
fe119a6e 509 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
510 &extent_start, &extent_end,
511 EXTENT_DIRTY | EXTENT_UPTODATE,
512 NULL);
513 if (ret)
514 break;
515
516 if (extent_start <= start) {
517 start = extent_end + 1;
518 } else if (extent_start > start && extent_start < end) {
519 size = extent_start - start;
520 total_added += size;
b0643e59
DZ
521 ret = btrfs_add_free_space_async_trimmed(block_group,
522 start, size);
9f21246d
JB
523 BUG_ON(ret); /* -ENOMEM or logic error */
524 start = extent_end + 1;
525 } else {
526 break;
527 }
528 }
529
530 if (start < end) {
531 size = end - start;
532 total_added += size;
b0643e59
DZ
533 ret = btrfs_add_free_space_async_trimmed(block_group, start,
534 size);
9f21246d
JB
535 BUG_ON(ret); /* -ENOMEM or logic error */
536 }
537
538 return total_added;
539}
540
541static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
542{
32da5386 543 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d 544 struct btrfs_fs_info *fs_info = block_group->fs_info;
29cbcf40 545 struct btrfs_root *extent_root;
9f21246d
JB
546 struct btrfs_path *path;
547 struct extent_buffer *leaf;
548 struct btrfs_key key;
549 u64 total_found = 0;
550 u64 last = 0;
551 u32 nritems;
552 int ret;
553 bool wakeup = true;
554
555 path = btrfs_alloc_path();
556 if (!path)
557 return -ENOMEM;
558
b3470b5d 559 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
29cbcf40 560 extent_root = btrfs_extent_root(fs_info, last);
9f21246d
JB
561
562#ifdef CONFIG_BTRFS_DEBUG
563 /*
564 * If we're fragmenting we don't want to make anybody think we can
565 * allocate from this block group until we've had a chance to fragment
566 * the free space.
567 */
568 if (btrfs_should_fragment_free_space(block_group))
569 wakeup = false;
570#endif
571 /*
572 * We don't want to deadlock with somebody trying to allocate a new
573 * extent for the extent root while also trying to search the extent
574 * root to add free space. So we skip locking and search the commit
575 * root, since its read-only
576 */
577 path->skip_locking = 1;
578 path->search_commit_root = 1;
579 path->reada = READA_FORWARD;
580
581 key.objectid = last;
582 key.offset = 0;
583 key.type = BTRFS_EXTENT_ITEM_KEY;
584
585next:
586 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
587 if (ret < 0)
588 goto out;
589
590 leaf = path->nodes[0];
591 nritems = btrfs_header_nritems(leaf);
592
593 while (1) {
594 if (btrfs_fs_closing(fs_info) > 1) {
595 last = (u64)-1;
596 break;
597 }
598
599 if (path->slots[0] < nritems) {
600 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
601 } else {
602 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
603 if (ret)
604 break;
605
606 if (need_resched() ||
607 rwsem_is_contended(&fs_info->commit_root_sem)) {
9f21246d
JB
608 btrfs_release_path(path);
609 up_read(&fs_info->commit_root_sem);
610 mutex_unlock(&caching_ctl->mutex);
611 cond_resched();
612 mutex_lock(&caching_ctl->mutex);
613 down_read(&fs_info->commit_root_sem);
614 goto next;
615 }
616
617 ret = btrfs_next_leaf(extent_root, path);
618 if (ret < 0)
619 goto out;
620 if (ret)
621 break;
622 leaf = path->nodes[0];
623 nritems = btrfs_header_nritems(leaf);
624 continue;
625 }
626
627 if (key.objectid < last) {
628 key.objectid = last;
629 key.offset = 0;
630 key.type = BTRFS_EXTENT_ITEM_KEY;
9f21246d
JB
631 btrfs_release_path(path);
632 goto next;
633 }
634
b3470b5d 635 if (key.objectid < block_group->start) {
9f21246d
JB
636 path->slots[0]++;
637 continue;
638 }
639
b3470b5d 640 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
641 break;
642
643 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
644 key.type == BTRFS_METADATA_ITEM_KEY) {
645 total_found += add_new_free_space(block_group, last,
646 key.objectid);
647 if (key.type == BTRFS_METADATA_ITEM_KEY)
648 last = key.objectid +
649 fs_info->nodesize;
650 else
651 last = key.objectid + key.offset;
652
653 if (total_found > CACHING_CTL_WAKE_UP) {
654 total_found = 0;
655 if (wakeup)
656 wake_up(&caching_ctl->wait);
657 }
658 }
659 path->slots[0]++;
660 }
661 ret = 0;
662
663 total_found += add_new_free_space(block_group, last,
b3470b5d 664 block_group->start + block_group->length);
9f21246d
JB
665
666out:
667 btrfs_free_path(path);
668 return ret;
669}
670
671static noinline void caching_thread(struct btrfs_work *work)
672{
32da5386 673 struct btrfs_block_group *block_group;
9f21246d
JB
674 struct btrfs_fs_info *fs_info;
675 struct btrfs_caching_control *caching_ctl;
676 int ret;
677
678 caching_ctl = container_of(work, struct btrfs_caching_control, work);
679 block_group = caching_ctl->block_group;
680 fs_info = block_group->fs_info;
681
682 mutex_lock(&caching_ctl->mutex);
683 down_read(&fs_info->commit_root_sem);
684
e747853c
JB
685 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
686 ret = load_free_space_cache(block_group);
687 if (ret == 1) {
688 ret = 0;
689 goto done;
690 }
691
692 /*
693 * We failed to load the space cache, set ourselves to
694 * CACHE_STARTED and carry on.
695 */
696 spin_lock(&block_group->lock);
697 block_group->cached = BTRFS_CACHE_STARTED;
698 spin_unlock(&block_group->lock);
699 wake_up(&caching_ctl->wait);
700 }
701
2f96e402
JB
702 /*
703 * If we are in the transaction that populated the free space tree we
704 * can't actually cache from the free space tree as our commit root and
705 * real root are the same, so we could change the contents of the blocks
706 * while caching. Instead do the slow caching in this case, and after
707 * the transaction has committed we will be safe.
708 */
709 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
710 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
711 ret = load_free_space_tree(caching_ctl);
712 else
713 ret = load_extent_tree_free(caching_ctl);
e747853c 714done:
9f21246d
JB
715 spin_lock(&block_group->lock);
716 block_group->caching_ctl = NULL;
717 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
718 spin_unlock(&block_group->lock);
719
720#ifdef CONFIG_BTRFS_DEBUG
721 if (btrfs_should_fragment_free_space(block_group)) {
722 u64 bytes_used;
723
724 spin_lock(&block_group->space_info->lock);
725 spin_lock(&block_group->lock);
b3470b5d 726 bytes_used = block_group->length - block_group->used;
9f21246d
JB
727 block_group->space_info->bytes_used += bytes_used >> 1;
728 spin_unlock(&block_group->lock);
729 spin_unlock(&block_group->space_info->lock);
e11c0406 730 fragment_free_space(block_group);
9f21246d
JB
731 }
732#endif
733
9f21246d
JB
734 up_read(&fs_info->commit_root_sem);
735 btrfs_free_excluded_extents(block_group);
736 mutex_unlock(&caching_ctl->mutex);
737
738 wake_up(&caching_ctl->wait);
739
740 btrfs_put_caching_control(caching_ctl);
741 btrfs_put_block_group(block_group);
742}
743
ced8ecf0 744int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
9f21246d 745{
9f21246d 746 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 747 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
748 int ret = 0;
749
2eda5708
NA
750 /* Allocator for zoned filesystems does not use the cache at all */
751 if (btrfs_is_zoned(fs_info))
752 return 0;
753
9f21246d
JB
754 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
755 if (!caching_ctl)
756 return -ENOMEM;
757
758 INIT_LIST_HEAD(&caching_ctl->list);
759 mutex_init(&caching_ctl->mutex);
760 init_waitqueue_head(&caching_ctl->wait);
761 caching_ctl->block_group = cache;
e747853c 762 refcount_set(&caching_ctl->count, 2);
a0cac0ec 763 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
764
765 spin_lock(&cache->lock);
9f21246d 766 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 767 kfree(caching_ctl);
e747853c
JB
768
769 caching_ctl = cache->caching_ctl;
770 if (caching_ctl)
771 refcount_inc(&caching_ctl->count);
772 spin_unlock(&cache->lock);
773 goto out;
9f21246d
JB
774 }
775 WARN_ON(cache->caching_ctl);
776 cache->caching_ctl = caching_ctl;
ced8ecf0 777 cache->cached = BTRFS_CACHE_STARTED;
9f21246d
JB
778 spin_unlock(&cache->lock);
779
16b0c258 780 write_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
781 refcount_inc(&caching_ctl->count);
782 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
16b0c258 783 write_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
784
785 btrfs_get_block_group(cache);
786
787 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c 788out:
ced8ecf0
OS
789 if (wait && caching_ctl)
790 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
e747853c
JB
791 if (caching_ctl)
792 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
793
794 return ret;
795}
e3e0520b
JB
796
797static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
798{
799 u64 extra_flags = chunk_to_extended(flags) &
800 BTRFS_EXTENDED_PROFILE_MASK;
801
802 write_seqlock(&fs_info->profiles_lock);
803 if (flags & BTRFS_BLOCK_GROUP_DATA)
804 fs_info->avail_data_alloc_bits &= ~extra_flags;
805 if (flags & BTRFS_BLOCK_GROUP_METADATA)
806 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
807 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
808 fs_info->avail_system_alloc_bits &= ~extra_flags;
809 write_sequnlock(&fs_info->profiles_lock);
810}
811
812/*
813 * Clear incompat bits for the following feature(s):
814 *
815 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
816 * in the whole filesystem
9c907446
DS
817 *
818 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
819 */
820static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
821{
9c907446
DS
822 bool found_raid56 = false;
823 bool found_raid1c34 = false;
824
825 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
826 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
827 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
828 struct list_head *head = &fs_info->space_info;
829 struct btrfs_space_info *sinfo;
830
831 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
832 down_read(&sinfo->groups_sem);
833 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 834 found_raid56 = true;
e3e0520b 835 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
836 found_raid56 = true;
837 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
838 found_raid1c34 = true;
839 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
840 found_raid1c34 = true;
e3e0520b 841 up_read(&sinfo->groups_sem);
e3e0520b 842 }
d8e6fd5c 843 if (!found_raid56)
9c907446 844 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 845 if (!found_raid1c34)
9c907446 846 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
847 }
848}
849
7357623a
QW
850static int remove_block_group_item(struct btrfs_trans_handle *trans,
851 struct btrfs_path *path,
852 struct btrfs_block_group *block_group)
853{
854 struct btrfs_fs_info *fs_info = trans->fs_info;
855 struct btrfs_root *root;
856 struct btrfs_key key;
857 int ret;
858
dfe8aec4 859 root = btrfs_block_group_root(fs_info);
7357623a
QW
860 key.objectid = block_group->start;
861 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
862 key.offset = block_group->length;
863
864 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
865 if (ret > 0)
866 ret = -ENOENT;
867 if (ret < 0)
868 return ret;
869
870 ret = btrfs_del_item(trans, root, path);
871 return ret;
872}
873
e3e0520b
JB
874int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
875 u64 group_start, struct extent_map *em)
876{
877 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 878 struct btrfs_path *path;
32da5386 879 struct btrfs_block_group *block_group;
e3e0520b 880 struct btrfs_free_cluster *cluster;
e3e0520b
JB
881 struct inode *inode;
882 struct kobject *kobj = NULL;
883 int ret;
884 int index;
885 int factor;
886 struct btrfs_caching_control *caching_ctl = NULL;
887 bool remove_em;
888 bool remove_rsv = false;
889
890 block_group = btrfs_lookup_block_group(fs_info, group_start);
891 BUG_ON(!block_group);
892 BUG_ON(!block_group->ro);
893
894 trace_btrfs_remove_block_group(block_group);
895 /*
896 * Free the reserved super bytes from this block group before
897 * remove it.
898 */
899 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
900 btrfs_free_ref_tree_range(fs_info, block_group->start,
901 block_group->length);
e3e0520b 902
e3e0520b
JB
903 index = btrfs_bg_flags_to_raid_index(block_group->flags);
904 factor = btrfs_bg_type_to_factor(block_group->flags);
905
906 /* make sure this block group isn't part of an allocation cluster */
907 cluster = &fs_info->data_alloc_cluster;
908 spin_lock(&cluster->refill_lock);
909 btrfs_return_cluster_to_free_space(block_group, cluster);
910 spin_unlock(&cluster->refill_lock);
911
912 /*
913 * make sure this block group isn't part of a metadata
914 * allocation cluster
915 */
916 cluster = &fs_info->meta_alloc_cluster;
917 spin_lock(&cluster->refill_lock);
918 btrfs_return_cluster_to_free_space(block_group, cluster);
919 spin_unlock(&cluster->refill_lock);
920
40ab3be1 921 btrfs_clear_treelog_bg(block_group);
c2707a25 922 btrfs_clear_data_reloc_bg(block_group);
40ab3be1 923
e3e0520b
JB
924 path = btrfs_alloc_path();
925 if (!path) {
926 ret = -ENOMEM;
9fecd132 927 goto out;
e3e0520b
JB
928 }
929
930 /*
931 * get the inode first so any iput calls done for the io_list
932 * aren't the final iput (no unlinks allowed now)
933 */
934 inode = lookup_free_space_inode(block_group, path);
935
936 mutex_lock(&trans->transaction->cache_write_mutex);
937 /*
938 * Make sure our free space cache IO is done before removing the
939 * free space inode
940 */
941 spin_lock(&trans->transaction->dirty_bgs_lock);
942 if (!list_empty(&block_group->io_list)) {
943 list_del_init(&block_group->io_list);
944
945 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
946
947 spin_unlock(&trans->transaction->dirty_bgs_lock);
948 btrfs_wait_cache_io(trans, block_group, path);
949 btrfs_put_block_group(block_group);
950 spin_lock(&trans->transaction->dirty_bgs_lock);
951 }
952
953 if (!list_empty(&block_group->dirty_list)) {
954 list_del_init(&block_group->dirty_list);
955 remove_rsv = true;
956 btrfs_put_block_group(block_group);
957 }
958 spin_unlock(&trans->transaction->dirty_bgs_lock);
959 mutex_unlock(&trans->transaction->cache_write_mutex);
960
36b216c8
BB
961 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
962 if (ret)
9fecd132 963 goto out;
e3e0520b 964
16b0c258 965 write_lock(&fs_info->block_group_cache_lock);
08dddb29
FM
966 rb_erase_cached(&block_group->cache_node,
967 &fs_info->block_group_cache_tree);
e3e0520b
JB
968 RB_CLEAR_NODE(&block_group->cache_node);
969
9fecd132
FM
970 /* Once for the block groups rbtree */
971 btrfs_put_block_group(block_group);
972
16b0c258 973 write_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
974
975 down_write(&block_group->space_info->groups_sem);
976 /*
977 * we must use list_del_init so people can check to see if they
978 * are still on the list after taking the semaphore
979 */
980 list_del_init(&block_group->list);
981 if (list_empty(&block_group->space_info->block_groups[index])) {
982 kobj = block_group->space_info->block_group_kobjs[index];
983 block_group->space_info->block_group_kobjs[index] = NULL;
984 clear_avail_alloc_bits(fs_info, block_group->flags);
985 }
986 up_write(&block_group->space_info->groups_sem);
987 clear_incompat_bg_bits(fs_info, block_group->flags);
988 if (kobj) {
989 kobject_del(kobj);
990 kobject_put(kobj);
991 }
992
e3e0520b
JB
993 if (block_group->cached == BTRFS_CACHE_STARTED)
994 btrfs_wait_block_group_cache_done(block_group);
7b9c293b
JB
995
996 write_lock(&fs_info->block_group_cache_lock);
997 caching_ctl = btrfs_get_caching_control(block_group);
998 if (!caching_ctl) {
999 struct btrfs_caching_control *ctl;
1000
1001 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1002 if (ctl->block_group == block_group) {
1003 caching_ctl = ctl;
1004 refcount_inc(&caching_ctl->count);
1005 break;
1006 }
e3e0520b
JB
1007 }
1008 }
7b9c293b
JB
1009 if (caching_ctl)
1010 list_del_init(&caching_ctl->list);
1011 write_unlock(&fs_info->block_group_cache_lock);
1012
1013 if (caching_ctl) {
1014 /* Once for the caching bgs list and once for us. */
1015 btrfs_put_caching_control(caching_ctl);
1016 btrfs_put_caching_control(caching_ctl);
1017 }
e3e0520b
JB
1018
1019 spin_lock(&trans->transaction->dirty_bgs_lock);
1020 WARN_ON(!list_empty(&block_group->dirty_list));
1021 WARN_ON(!list_empty(&block_group->io_list));
1022 spin_unlock(&trans->transaction->dirty_bgs_lock);
1023
1024 btrfs_remove_free_space_cache(block_group);
1025
1026 spin_lock(&block_group->space_info->lock);
1027 list_del_init(&block_group->ro_list);
1028
1029 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1030 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1031 < block_group->length);
e3e0520b 1032 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1033 < block_group->length - block_group->zone_unusable);
1034 WARN_ON(block_group->space_info->bytes_zone_unusable
1035 < block_group->zone_unusable);
e3e0520b 1036 WARN_ON(block_group->space_info->disk_total
b3470b5d 1037 < block_group->length * factor);
3349b57f
JB
1038 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1039 &block_group->runtime_flags) &&
6a921de5
NA
1040 block_group->space_info->active_total_bytes
1041 < block_group->length);
e3e0520b 1042 }
b3470b5d 1043 block_group->space_info->total_bytes -= block_group->length;
3349b57f 1044 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
6a921de5 1045 block_group->space_info->active_total_bytes -= block_group->length;
169e0da9
NA
1046 block_group->space_info->bytes_readonly -=
1047 (block_group->length - block_group->zone_unusable);
1048 block_group->space_info->bytes_zone_unusable -=
1049 block_group->zone_unusable;
b3470b5d 1050 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1051
1052 spin_unlock(&block_group->space_info->lock);
1053
ffcb9d44
FM
1054 /*
1055 * Remove the free space for the block group from the free space tree
1056 * and the block group's item from the extent tree before marking the
1057 * block group as removed. This is to prevent races with tasks that
1058 * freeze and unfreeze a block group, this task and another task
1059 * allocating a new block group - the unfreeze task ends up removing
1060 * the block group's extent map before the task calling this function
1061 * deletes the block group item from the extent tree, allowing for
1062 * another task to attempt to create another block group with the same
1063 * item key (and failing with -EEXIST and a transaction abort).
1064 */
1065 ret = remove_block_group_free_space(trans, block_group);
1066 if (ret)
1067 goto out;
1068
1069 ret = remove_block_group_item(trans, path, block_group);
1070 if (ret < 0)
1071 goto out;
1072
e3e0520b 1073 spin_lock(&block_group->lock);
3349b57f
JB
1074 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1075
e3e0520b 1076 /*
6b7304af
FM
1077 * At this point trimming or scrub can't start on this block group,
1078 * because we removed the block group from the rbtree
1079 * fs_info->block_group_cache_tree so no one can't find it anymore and
1080 * even if someone already got this block group before we removed it
1081 * from the rbtree, they have already incremented block_group->frozen -
1082 * if they didn't, for the trimming case they won't find any free space
1083 * entries because we already removed them all when we called
1084 * btrfs_remove_free_space_cache().
e3e0520b
JB
1085 *
1086 * And we must not remove the extent map from the fs_info->mapping_tree
1087 * to prevent the same logical address range and physical device space
6b7304af
FM
1088 * ranges from being reused for a new block group. This is needed to
1089 * avoid races with trimming and scrub.
1090 *
1091 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1092 * completely transactionless, so while it is trimming a range the
1093 * currently running transaction might finish and a new one start,
1094 * allowing for new block groups to be created that can reuse the same
1095 * physical device locations unless we take this special care.
1096 *
1097 * There may also be an implicit trim operation if the file system
1098 * is mounted with -odiscard. The same protections must remain
1099 * in place until the extents have been discarded completely when
1100 * the transaction commit has completed.
1101 */
6b7304af 1102 remove_em = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1103 spin_unlock(&block_group->lock);
1104
e3e0520b
JB
1105 if (remove_em) {
1106 struct extent_map_tree *em_tree;
1107
1108 em_tree = &fs_info->mapping_tree;
1109 write_lock(&em_tree->lock);
1110 remove_extent_mapping(em_tree, em);
1111 write_unlock(&em_tree->lock);
1112 /* once for the tree */
1113 free_extent_map(em);
1114 }
f6033c5e 1115
9fecd132 1116out:
f6033c5e
XY
1117 /* Once for the lookup reference */
1118 btrfs_put_block_group(block_group);
e3e0520b
JB
1119 if (remove_rsv)
1120 btrfs_delayed_refs_rsv_release(fs_info, 1);
1121 btrfs_free_path(path);
1122 return ret;
1123}
1124
1125struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1126 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1127{
dfe8aec4 1128 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3e0520b
JB
1129 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1130 struct extent_map *em;
1131 struct map_lookup *map;
1132 unsigned int num_items;
1133
1134 read_lock(&em_tree->lock);
1135 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1136 read_unlock(&em_tree->lock);
1137 ASSERT(em && em->start == chunk_offset);
1138
1139 /*
1140 * We need to reserve 3 + N units from the metadata space info in order
1141 * to remove a block group (done at btrfs_remove_chunk() and at
1142 * btrfs_remove_block_group()), which are used for:
1143 *
1144 * 1 unit for adding the free space inode's orphan (located in the tree
1145 * of tree roots).
1146 * 1 unit for deleting the block group item (located in the extent
1147 * tree).
1148 * 1 unit for deleting the free space item (located in tree of tree
1149 * roots).
1150 * N units for deleting N device extent items corresponding to each
1151 * stripe (located in the device tree).
1152 *
1153 * In order to remove a block group we also need to reserve units in the
1154 * system space info in order to update the chunk tree (update one or
1155 * more device items and remove one chunk item), but this is done at
1156 * btrfs_remove_chunk() through a call to check_system_chunk().
1157 */
1158 map = em->map_lookup;
1159 num_items = 3 + map->num_stripes;
1160 free_extent_map(em);
1161
dfe8aec4 1162 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
e3e0520b
JB
1163}
1164
26ce2095
JB
1165/*
1166 * Mark block group @cache read-only, so later write won't happen to block
1167 * group @cache.
1168 *
1169 * If @force is not set, this function will only mark the block group readonly
1170 * if we have enough free space (1M) in other metadata/system block groups.
1171 * If @force is not set, this function will mark the block group readonly
1172 * without checking free space.
1173 *
1174 * NOTE: This function doesn't care if other block groups can contain all the
1175 * data in this block group. That check should be done by relocation routine,
1176 * not this function.
1177 */
32da5386 1178static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1179{
1180 struct btrfs_space_info *sinfo = cache->space_info;
1181 u64 num_bytes;
26ce2095
JB
1182 int ret = -ENOSPC;
1183
26ce2095
JB
1184 spin_lock(&sinfo->lock);
1185 spin_lock(&cache->lock);
1186
195a49ea
FM
1187 if (cache->swap_extents) {
1188 ret = -ETXTBSY;
1189 goto out;
1190 }
1191
26ce2095
JB
1192 if (cache->ro) {
1193 cache->ro++;
1194 ret = 0;
1195 goto out;
1196 }
1197
b3470b5d 1198 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1199 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1200
1201 /*
a30a3d20
JB
1202 * Data never overcommits, even in mixed mode, so do just the straight
1203 * check of left over space in how much we have allocated.
26ce2095 1204 */
a30a3d20
JB
1205 if (force) {
1206 ret = 0;
1207 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1208 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1209
1210 /*
1211 * Here we make sure if we mark this bg RO, we still have enough
1212 * free space as buffer.
1213 */
1214 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1215 ret = 0;
1216 } else {
1217 /*
1218 * We overcommit metadata, so we need to do the
1219 * btrfs_can_overcommit check here, and we need to pass in
1220 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1221 * leeway to allow us to mark this block group as read only.
1222 */
1223 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1224 BTRFS_RESERVE_NO_FLUSH))
1225 ret = 0;
1226 }
1227
1228 if (!ret) {
26ce2095 1229 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1230 if (btrfs_is_zoned(cache->fs_info)) {
1231 /* Migrate zone_unusable bytes to readonly */
1232 sinfo->bytes_readonly += cache->zone_unusable;
1233 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1234 cache->zone_unusable = 0;
1235 }
26ce2095
JB
1236 cache->ro++;
1237 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1238 }
1239out:
1240 spin_unlock(&cache->lock);
1241 spin_unlock(&sinfo->lock);
1242 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1243 btrfs_info(cache->fs_info,
b3470b5d 1244 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1245 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1246 }
1247 return ret;
1248}
1249
fe119a6e
NB
1250static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1251 struct btrfs_block_group *bg)
45bb5d6a
NB
1252{
1253 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1254 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1255 const u64 start = bg->start;
1256 const u64 end = start + bg->length - 1;
1257 int ret;
1258
fe119a6e
NB
1259 spin_lock(&fs_info->trans_lock);
1260 if (trans->transaction->list.prev != &fs_info->trans_list) {
1261 prev_trans = list_last_entry(&trans->transaction->list,
1262 struct btrfs_transaction, list);
1263 refcount_inc(&prev_trans->use_count);
1264 }
1265 spin_unlock(&fs_info->trans_lock);
1266
45bb5d6a
NB
1267 /*
1268 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1269 * btrfs_finish_extent_commit(). If we are at transaction N, another
1270 * task might be running finish_extent_commit() for the previous
1271 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1272 * group in pinned_extents before we were able to clear the whole block
1273 * group range from pinned_extents. This means that task can lookup for
1274 * the block group after we unpinned it from pinned_extents and removed
1275 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1276 */
1277 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1278 if (prev_trans) {
1279 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1280 EXTENT_DIRTY);
1281 if (ret)
534cf531 1282 goto out;
fe119a6e 1283 }
45bb5d6a 1284
fe119a6e 1285 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1286 EXTENT_DIRTY);
534cf531 1287out:
45bb5d6a 1288 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1289 if (prev_trans)
1290 btrfs_put_transaction(prev_trans);
45bb5d6a 1291
534cf531 1292 return ret == 0;
45bb5d6a
NB
1293}
1294
e3e0520b
JB
1295/*
1296 * Process the unused_bgs list and remove any that don't have any allocated
1297 * space inside of them.
1298 */
1299void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1300{
32da5386 1301 struct btrfs_block_group *block_group;
e3e0520b
JB
1302 struct btrfs_space_info *space_info;
1303 struct btrfs_trans_handle *trans;
6e80d4f8 1304 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1305 int ret = 0;
1306
1307 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1308 return;
1309
2f12741f
JB
1310 if (btrfs_fs_closing(fs_info))
1311 return;
1312
ddfd08cb
JB
1313 /*
1314 * Long running balances can keep us blocked here for eternity, so
1315 * simply skip deletion if we're unable to get the mutex.
1316 */
f3372065 1317 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
ddfd08cb
JB
1318 return;
1319
e3e0520b
JB
1320 spin_lock(&fs_info->unused_bgs_lock);
1321 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1322 int trimming;
1323
1324 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1325 struct btrfs_block_group,
e3e0520b
JB
1326 bg_list);
1327 list_del_init(&block_group->bg_list);
1328
1329 space_info = block_group->space_info;
1330
1331 if (ret || btrfs_mixed_space_info(space_info)) {
1332 btrfs_put_block_group(block_group);
1333 continue;
1334 }
1335 spin_unlock(&fs_info->unused_bgs_lock);
1336
b0643e59
DZ
1337 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1338
e3e0520b
JB
1339 /* Don't want to race with allocators so take the groups_sem */
1340 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1341
1342 /*
1343 * Async discard moves the final block group discard to be prior
1344 * to the unused_bgs code path. Therefore, if it's not fully
1345 * trimmed, punt it back to the async discard lists.
1346 */
1347 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1348 !btrfs_is_free_space_trimmed(block_group)) {
1349 trace_btrfs_skip_unused_block_group(block_group);
1350 up_write(&space_info->groups_sem);
1351 /* Requeue if we failed because of async discard */
1352 btrfs_discard_queue_work(&fs_info->discard_ctl,
1353 block_group);
1354 goto next;
1355 }
1356
e3e0520b
JB
1357 spin_lock(&block_group->lock);
1358 if (block_group->reserved || block_group->pinned ||
bf38be65 1359 block_group->used || block_group->ro ||
e3e0520b
JB
1360 list_is_singular(&block_group->list)) {
1361 /*
1362 * We want to bail if we made new allocations or have
1363 * outstanding allocations in this block group. We do
1364 * the ro check in case balance is currently acting on
1365 * this block group.
1366 */
1367 trace_btrfs_skip_unused_block_group(block_group);
1368 spin_unlock(&block_group->lock);
1369 up_write(&space_info->groups_sem);
1370 goto next;
1371 }
1372 spin_unlock(&block_group->lock);
1373
1374 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1375 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1376 up_write(&space_info->groups_sem);
1377 if (ret < 0) {
1378 ret = 0;
1379 goto next;
1380 }
1381
74e91b12
NA
1382 ret = btrfs_zone_finish(block_group);
1383 if (ret < 0) {
1384 btrfs_dec_block_group_ro(block_group);
1385 if (ret == -EAGAIN)
1386 ret = 0;
1387 goto next;
1388 }
1389
e3e0520b
JB
1390 /*
1391 * Want to do this before we do anything else so we can recover
1392 * properly if we fail to join the transaction.
1393 */
1394 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1395 block_group->start);
e3e0520b
JB
1396 if (IS_ERR(trans)) {
1397 btrfs_dec_block_group_ro(block_group);
1398 ret = PTR_ERR(trans);
1399 goto next;
1400 }
1401
1402 /*
1403 * We could have pending pinned extents for this block group,
1404 * just delete them, we don't care about them anymore.
1405 */
534cf531
FM
1406 if (!clean_pinned_extents(trans, block_group)) {
1407 btrfs_dec_block_group_ro(block_group);
e3e0520b 1408 goto end_trans;
534cf531 1409 }
e3e0520b 1410
b0643e59
DZ
1411 /*
1412 * At this point, the block_group is read only and should fail
1413 * new allocations. However, btrfs_finish_extent_commit() can
1414 * cause this block_group to be placed back on the discard
1415 * lists because now the block_group isn't fully discarded.
1416 * Bail here and try again later after discarding everything.
1417 */
1418 spin_lock(&fs_info->discard_ctl.lock);
1419 if (!list_empty(&block_group->discard_list)) {
1420 spin_unlock(&fs_info->discard_ctl.lock);
1421 btrfs_dec_block_group_ro(block_group);
1422 btrfs_discard_queue_work(&fs_info->discard_ctl,
1423 block_group);
1424 goto end_trans;
1425 }
1426 spin_unlock(&fs_info->discard_ctl.lock);
1427
e3e0520b
JB
1428 /* Reset pinned so btrfs_put_block_group doesn't complain */
1429 spin_lock(&space_info->lock);
1430 spin_lock(&block_group->lock);
1431
1432 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1433 -block_group->pinned);
1434 space_info->bytes_readonly += block_group->pinned;
e3e0520b
JB
1435 block_group->pinned = 0;
1436
1437 spin_unlock(&block_group->lock);
1438 spin_unlock(&space_info->lock);
1439
6e80d4f8
DZ
1440 /*
1441 * The normal path here is an unused block group is passed here,
1442 * then trimming is handled in the transaction commit path.
1443 * Async discard interposes before this to do the trimming
1444 * before coming down the unused block group path as trimming
1445 * will no longer be done later in the transaction commit path.
1446 */
1447 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1448 goto flip_async;
1449
dcba6e48
NA
1450 /*
1451 * DISCARD can flip during remount. On zoned filesystems, we
1452 * need to reset sequential-required zones.
1453 */
1454 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1455 btrfs_is_zoned(fs_info);
e3e0520b
JB
1456
1457 /* Implicit trim during transaction commit. */
1458 if (trimming)
6b7304af 1459 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1460
1461 /*
1462 * Btrfs_remove_chunk will abort the transaction if things go
1463 * horribly wrong.
1464 */
b3470b5d 1465 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1466
1467 if (ret) {
1468 if (trimming)
6b7304af 1469 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1470 goto end_trans;
1471 }
1472
1473 /*
1474 * If we're not mounted with -odiscard, we can just forget
1475 * about this block group. Otherwise we'll need to wait
1476 * until transaction commit to do the actual discard.
1477 */
1478 if (trimming) {
1479 spin_lock(&fs_info->unused_bgs_lock);
1480 /*
1481 * A concurrent scrub might have added us to the list
1482 * fs_info->unused_bgs, so use a list_move operation
1483 * to add the block group to the deleted_bgs list.
1484 */
1485 list_move(&block_group->bg_list,
1486 &trans->transaction->deleted_bgs);
1487 spin_unlock(&fs_info->unused_bgs_lock);
1488 btrfs_get_block_group(block_group);
1489 }
1490end_trans:
1491 btrfs_end_transaction(trans);
1492next:
e3e0520b
JB
1493 btrfs_put_block_group(block_group);
1494 spin_lock(&fs_info->unused_bgs_lock);
1495 }
1496 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1497 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1498 return;
1499
1500flip_async:
1501 btrfs_end_transaction(trans);
f3372065 1502 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1503 btrfs_put_block_group(block_group);
1504 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1505}
1506
32da5386 1507void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1508{
1509 struct btrfs_fs_info *fs_info = bg->fs_info;
1510
1511 spin_lock(&fs_info->unused_bgs_lock);
1512 if (list_empty(&bg->bg_list)) {
1513 btrfs_get_block_group(bg);
1514 trace_btrfs_add_unused_block_group(bg);
1515 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1516 }
1517 spin_unlock(&fs_info->unused_bgs_lock);
1518}
4358d963 1519
2ca0ec77
JT
1520/*
1521 * We want block groups with a low number of used bytes to be in the beginning
1522 * of the list, so they will get reclaimed first.
1523 */
1524static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1525 const struct list_head *b)
1526{
1527 const struct btrfs_block_group *bg1, *bg2;
1528
1529 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1530 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1531
1532 return bg1->used > bg2->used;
1533}
1534
3687fcb0
JT
1535static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1536{
1537 if (btrfs_is_zoned(fs_info))
1538 return btrfs_zoned_should_reclaim(fs_info);
1539 return true;
1540}
1541
81531225
BB
1542static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1543{
1544 const struct btrfs_space_info *space_info = bg->space_info;
1545 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1546 const u64 new_val = bg->used;
1547 const u64 old_val = new_val + bytes_freed;
1548 u64 thresh;
1549
1550 if (reclaim_thresh == 0)
1551 return false;
1552
1553 thresh = div_factor_fine(bg->length, reclaim_thresh);
1554
1555 /*
1556 * If we were below the threshold before don't reclaim, we are likely a
1557 * brand new block group and we don't want to relocate new block groups.
1558 */
1559 if (old_val < thresh)
1560 return false;
1561 if (new_val >= thresh)
1562 return false;
1563 return true;
1564}
1565
18bb8bbf
JT
1566void btrfs_reclaim_bgs_work(struct work_struct *work)
1567{
1568 struct btrfs_fs_info *fs_info =
1569 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1570 struct btrfs_block_group *bg;
1571 struct btrfs_space_info *space_info;
18bb8bbf
JT
1572
1573 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1574 return;
1575
2f12741f
JB
1576 if (btrfs_fs_closing(fs_info))
1577 return;
1578
3687fcb0
JT
1579 if (!btrfs_should_reclaim(fs_info))
1580 return;
1581
ca5e4ea0
NA
1582 sb_start_write(fs_info->sb);
1583
1584 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1585 sb_end_write(fs_info->sb);
18bb8bbf 1586 return;
ca5e4ea0 1587 }
18bb8bbf 1588
9cc0b837
JT
1589 /*
1590 * Long running balances can keep us blocked here for eternity, so
1591 * simply skip reclaim if we're unable to get the mutex.
1592 */
1593 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1594 btrfs_exclop_finish(fs_info);
ca5e4ea0 1595 sb_end_write(fs_info->sb);
9cc0b837
JT
1596 return;
1597 }
1598
18bb8bbf 1599 spin_lock(&fs_info->unused_bgs_lock);
2ca0ec77
JT
1600 /*
1601 * Sort happens under lock because we can't simply splice it and sort.
1602 * The block groups might still be in use and reachable via bg_list,
1603 * and their presence in the reclaim_bgs list must be preserved.
1604 */
1605 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
18bb8bbf 1606 while (!list_empty(&fs_info->reclaim_bgs)) {
5f93e776 1607 u64 zone_unusable;
1cea5cf0
FM
1608 int ret = 0;
1609
18bb8bbf
JT
1610 bg = list_first_entry(&fs_info->reclaim_bgs,
1611 struct btrfs_block_group,
1612 bg_list);
1613 list_del_init(&bg->bg_list);
1614
1615 space_info = bg->space_info;
1616 spin_unlock(&fs_info->unused_bgs_lock);
1617
1618 /* Don't race with allocators so take the groups_sem */
1619 down_write(&space_info->groups_sem);
1620
1621 spin_lock(&bg->lock);
1622 if (bg->reserved || bg->pinned || bg->ro) {
1623 /*
1624 * We want to bail if we made new allocations or have
1625 * outstanding allocations in this block group. We do
1626 * the ro check in case balance is currently acting on
1627 * this block group.
1628 */
1629 spin_unlock(&bg->lock);
1630 up_write(&space_info->groups_sem);
1631 goto next;
1632 }
cc4804bf
BB
1633 if (bg->used == 0) {
1634 /*
1635 * It is possible that we trigger relocation on a block
1636 * group as its extents are deleted and it first goes
1637 * below the threshold, then shortly after goes empty.
1638 *
1639 * In this case, relocating it does delete it, but has
1640 * some overhead in relocation specific metadata, looking
1641 * for the non-existent extents and running some extra
1642 * transactions, which we can avoid by using one of the
1643 * other mechanisms for dealing with empty block groups.
1644 */
1645 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1646 btrfs_mark_bg_unused(bg);
1647 spin_unlock(&bg->lock);
1648 up_write(&space_info->groups_sem);
1649 goto next;
81531225
BB
1650
1651 }
1652 /*
1653 * The block group might no longer meet the reclaim condition by
1654 * the time we get around to reclaiming it, so to avoid
1655 * reclaiming overly full block_groups, skip reclaiming them.
1656 *
1657 * Since the decision making process also depends on the amount
1658 * being freed, pass in a fake giant value to skip that extra
1659 * check, which is more meaningful when adding to the list in
1660 * the first place.
1661 */
1662 if (!should_reclaim_block_group(bg, bg->length)) {
1663 spin_unlock(&bg->lock);
1664 up_write(&space_info->groups_sem);
1665 goto next;
cc4804bf 1666 }
18bb8bbf
JT
1667 spin_unlock(&bg->lock);
1668
1669 /* Get out fast, in case we're unmounting the filesystem */
1670 if (btrfs_fs_closing(fs_info)) {
1671 up_write(&space_info->groups_sem);
1672 goto next;
1673 }
1674
5f93e776
JT
1675 /*
1676 * Cache the zone_unusable value before turning the block group
1677 * to read only. As soon as the blog group is read only it's
1678 * zone_unusable value gets moved to the block group's read-only
1679 * bytes and isn't available for calculations anymore.
1680 */
1681 zone_unusable = bg->zone_unusable;
18bb8bbf
JT
1682 ret = inc_block_group_ro(bg, 0);
1683 up_write(&space_info->groups_sem);
1684 if (ret < 0)
1685 goto next;
1686
5f93e776
JT
1687 btrfs_info(fs_info,
1688 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1689 bg->start, div_u64(bg->used * 100, bg->length),
1690 div64_u64(zone_unusable * 100, bg->length));
18bb8bbf
JT
1691 trace_btrfs_reclaim_block_group(bg);
1692 ret = btrfs_relocate_chunk(fs_info, bg->start);
74944c87
JB
1693 if (ret) {
1694 btrfs_dec_block_group_ro(bg);
18bb8bbf
JT
1695 btrfs_err(fs_info, "error relocating chunk %llu",
1696 bg->start);
74944c87 1697 }
18bb8bbf
JT
1698
1699next:
d96b3424 1700 btrfs_put_block_group(bg);
18bb8bbf
JT
1701 spin_lock(&fs_info->unused_bgs_lock);
1702 }
1703 spin_unlock(&fs_info->unused_bgs_lock);
1704 mutex_unlock(&fs_info->reclaim_bgs_lock);
1705 btrfs_exclop_finish(fs_info);
ca5e4ea0 1706 sb_end_write(fs_info->sb);
18bb8bbf
JT
1707}
1708
1709void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1710{
1711 spin_lock(&fs_info->unused_bgs_lock);
1712 if (!list_empty(&fs_info->reclaim_bgs))
1713 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1714 spin_unlock(&fs_info->unused_bgs_lock);
1715}
1716
1717void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1718{
1719 struct btrfs_fs_info *fs_info = bg->fs_info;
1720
1721 spin_lock(&fs_info->unused_bgs_lock);
1722 if (list_empty(&bg->bg_list)) {
1723 btrfs_get_block_group(bg);
1724 trace_btrfs_add_reclaim_block_group(bg);
1725 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1726 }
1727 spin_unlock(&fs_info->unused_bgs_lock);
1728}
1729
e3ba67a1
JT
1730static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1731 struct btrfs_path *path)
1732{
1733 struct extent_map_tree *em_tree;
1734 struct extent_map *em;
1735 struct btrfs_block_group_item bg;
1736 struct extent_buffer *leaf;
1737 int slot;
1738 u64 flags;
1739 int ret = 0;
1740
1741 slot = path->slots[0];
1742 leaf = path->nodes[0];
1743
1744 em_tree = &fs_info->mapping_tree;
1745 read_lock(&em_tree->lock);
1746 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1747 read_unlock(&em_tree->lock);
1748 if (!em) {
1749 btrfs_err(fs_info,
1750 "logical %llu len %llu found bg but no related chunk",
1751 key->objectid, key->offset);
1752 return -ENOENT;
1753 }
1754
1755 if (em->start != key->objectid || em->len != key->offset) {
1756 btrfs_err(fs_info,
1757 "block group %llu len %llu mismatch with chunk %llu len %llu",
1758 key->objectid, key->offset, em->start, em->len);
1759 ret = -EUCLEAN;
1760 goto out_free_em;
1761 }
1762
1763 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1764 sizeof(bg));
1765 flags = btrfs_stack_block_group_flags(&bg) &
1766 BTRFS_BLOCK_GROUP_TYPE_MASK;
1767
1768 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1769 btrfs_err(fs_info,
1770"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1771 key->objectid, key->offset, flags,
1772 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1773 ret = -EUCLEAN;
1774 }
1775
1776out_free_em:
1777 free_extent_map(em);
1778 return ret;
1779}
1780
4358d963
JB
1781static int find_first_block_group(struct btrfs_fs_info *fs_info,
1782 struct btrfs_path *path,
1783 struct btrfs_key *key)
1784{
dfe8aec4 1785 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3ba67a1 1786 int ret;
4358d963 1787 struct btrfs_key found_key;
4358d963 1788
36dfbbe2 1789 btrfs_for_each_slot(root, key, &found_key, path, ret) {
4358d963
JB
1790 if (found_key.objectid >= key->objectid &&
1791 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
36dfbbe2 1792 return read_bg_from_eb(fs_info, &found_key, path);
4358d963 1793 }
4358d963 1794 }
4358d963
JB
1795 return ret;
1796}
1797
1798static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1799{
1800 u64 extra_flags = chunk_to_extended(flags) &
1801 BTRFS_EXTENDED_PROFILE_MASK;
1802
1803 write_seqlock(&fs_info->profiles_lock);
1804 if (flags & BTRFS_BLOCK_GROUP_DATA)
1805 fs_info->avail_data_alloc_bits |= extra_flags;
1806 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1807 fs_info->avail_metadata_alloc_bits |= extra_flags;
1808 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1809 fs_info->avail_system_alloc_bits |= extra_flags;
1810 write_sequnlock(&fs_info->profiles_lock);
1811}
1812
96a14336 1813/**
9ee9b979
NB
1814 * Map a physical disk address to a list of logical addresses
1815 *
1816 * @fs_info: the filesystem
96a14336 1817 * @chunk_start: logical address of block group
138082f3 1818 * @bdev: physical device to resolve, can be NULL to indicate any device
96a14336
NB
1819 * @physical: physical address to map to logical addresses
1820 * @logical: return array of logical addresses which map to @physical
1821 * @naddrs: length of @logical
1822 * @stripe_len: size of IO stripe for the given block group
1823 *
1824 * Maps a particular @physical disk address to a list of @logical addresses.
1825 * Used primarily to exclude those portions of a block group that contain super
1826 * block copies.
1827 */
96a14336 1828int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
138082f3
NA
1829 struct block_device *bdev, u64 physical, u64 **logical,
1830 int *naddrs, int *stripe_len)
96a14336
NB
1831{
1832 struct extent_map *em;
1833 struct map_lookup *map;
1834 u64 *buf;
1835 u64 bytenr;
1776ad17
NB
1836 u64 data_stripe_length;
1837 u64 io_stripe_size;
1838 int i, nr = 0;
1839 int ret = 0;
96a14336
NB
1840
1841 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1842 if (IS_ERR(em))
1843 return -EIO;
1844
1845 map = em->map_lookup;
9e22b925 1846 data_stripe_length = em->orig_block_len;
1776ad17 1847 io_stripe_size = map->stripe_len;
138082f3 1848 chunk_start = em->start;
96a14336 1849
9e22b925
NB
1850 /* For RAID5/6 adjust to a full IO stripe length */
1851 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776ad17 1852 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1853
1854 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1855 if (!buf) {
1856 ret = -ENOMEM;
1857 goto out;
1858 }
96a14336
NB
1859
1860 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1861 bool already_inserted = false;
1862 u64 stripe_nr;
138082f3 1863 u64 offset;
1776ad17
NB
1864 int j;
1865
1866 if (!in_range(physical, map->stripes[i].physical,
1867 data_stripe_length))
96a14336
NB
1868 continue;
1869
138082f3
NA
1870 if (bdev && map->stripes[i].dev->bdev != bdev)
1871 continue;
1872
96a14336 1873 stripe_nr = physical - map->stripes[i].physical;
138082f3 1874 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
96a14336 1875
ac067734
DS
1876 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1877 BTRFS_BLOCK_GROUP_RAID10)) {
96a14336
NB
1878 stripe_nr = stripe_nr * map->num_stripes + i;
1879 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
96a14336
NB
1880 }
1881 /*
1882 * The remaining case would be for RAID56, multiply by
1883 * nr_data_stripes(). Alternatively, just use rmap_len below
1884 * instead of map->stripe_len
1885 */
1886
138082f3 1887 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
1888
1889 /* Ensure we don't add duplicate addresses */
96a14336 1890 for (j = 0; j < nr; j++) {
1776ad17
NB
1891 if (buf[j] == bytenr) {
1892 already_inserted = true;
96a14336 1893 break;
1776ad17 1894 }
96a14336 1895 }
1776ad17
NB
1896
1897 if (!already_inserted)
96a14336 1898 buf[nr++] = bytenr;
96a14336
NB
1899 }
1900
1901 *logical = buf;
1902 *naddrs = nr;
1776ad17
NB
1903 *stripe_len = io_stripe_size;
1904out:
96a14336 1905 free_extent_map(em);
1776ad17 1906 return ret;
96a14336
NB
1907}
1908
32da5386 1909static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
1910{
1911 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 1912 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
1913 u64 bytenr;
1914 u64 *logical;
1915 int stripe_len;
1916 int i, nr, ret;
1917
b3470b5d
DS
1918 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1919 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 1920 cache->bytes_super += stripe_len;
b3470b5d 1921 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
1922 stripe_len);
1923 if (ret)
1924 return ret;
1925 }
1926
1927 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1928 bytenr = btrfs_sb_offset(i);
138082f3 1929 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
4358d963
JB
1930 bytenr, &logical, &nr, &stripe_len);
1931 if (ret)
1932 return ret;
1933
12659251
NA
1934 /* Shouldn't have super stripes in sequential zones */
1935 if (zoned && nr) {
1936 btrfs_err(fs_info,
1937 "zoned: block group %llu must not contain super block",
1938 cache->start);
1939 return -EUCLEAN;
1940 }
1941
4358d963 1942 while (nr--) {
96f9b0f2
NB
1943 u64 len = min_t(u64, stripe_len,
1944 cache->start + cache->length - logical[nr]);
4358d963
JB
1945
1946 cache->bytes_super += len;
96f9b0f2
NB
1947 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1948 len);
4358d963
JB
1949 if (ret) {
1950 kfree(logical);
1951 return ret;
1952 }
1953 }
1954
1955 kfree(logical);
1956 }
1957 return 0;
1958}
1959
32da5386 1960static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 1961 struct btrfs_fs_info *fs_info, u64 start)
4358d963 1962{
32da5386 1963 struct btrfs_block_group *cache;
4358d963
JB
1964
1965 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1966 if (!cache)
1967 return NULL;
1968
1969 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1970 GFP_NOFS);
1971 if (!cache->free_space_ctl) {
1972 kfree(cache);
1973 return NULL;
1974 }
1975
b3470b5d 1976 cache->start = start;
4358d963
JB
1977
1978 cache->fs_info = fs_info;
1979 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 1980
6e80d4f8
DZ
1981 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1982
48aaeebe 1983 refcount_set(&cache->refs, 1);
4358d963
JB
1984 spin_lock_init(&cache->lock);
1985 init_rwsem(&cache->data_rwsem);
1986 INIT_LIST_HEAD(&cache->list);
1987 INIT_LIST_HEAD(&cache->cluster_list);
1988 INIT_LIST_HEAD(&cache->bg_list);
1989 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 1990 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
1991 INIT_LIST_HEAD(&cache->dirty_list);
1992 INIT_LIST_HEAD(&cache->io_list);
afba2bc0 1993 INIT_LIST_HEAD(&cache->active_bg_list);
cd79909b 1994 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 1995 atomic_set(&cache->frozen, 0);
4358d963 1996 mutex_init(&cache->free_space_lock);
c29abab4
JB
1997 cache->full_stripe_locks_root.root = RB_ROOT;
1998 mutex_init(&cache->full_stripe_locks_root.lock);
4358d963
JB
1999
2000 return cache;
2001}
2002
2003/*
2004 * Iterate all chunks and verify that each of them has the corresponding block
2005 * group
2006 */
2007static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2008{
2009 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2010 struct extent_map *em;
32da5386 2011 struct btrfs_block_group *bg;
4358d963
JB
2012 u64 start = 0;
2013 int ret = 0;
2014
2015 while (1) {
2016 read_lock(&map_tree->lock);
2017 /*
2018 * lookup_extent_mapping will return the first extent map
2019 * intersecting the range, so setting @len to 1 is enough to
2020 * get the first chunk.
2021 */
2022 em = lookup_extent_mapping(map_tree, start, 1);
2023 read_unlock(&map_tree->lock);
2024 if (!em)
2025 break;
2026
2027 bg = btrfs_lookup_block_group(fs_info, em->start);
2028 if (!bg) {
2029 btrfs_err(fs_info,
2030 "chunk start=%llu len=%llu doesn't have corresponding block group",
2031 em->start, em->len);
2032 ret = -EUCLEAN;
2033 free_extent_map(em);
2034 break;
2035 }
b3470b5d 2036 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
2037 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2038 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2039 btrfs_err(fs_info,
2040"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2041 em->start, em->len,
2042 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 2043 bg->start, bg->length,
4358d963
JB
2044 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2045 ret = -EUCLEAN;
2046 free_extent_map(em);
2047 btrfs_put_block_group(bg);
2048 break;
2049 }
2050 start = em->start + em->len;
2051 free_extent_map(em);
2052 btrfs_put_block_group(bg);
2053 }
2054 return ret;
2055}
2056
ffb9e0f0 2057static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 2058 struct btrfs_block_group_item *bgi,
d49a2ddb 2059 const struct btrfs_key *key,
ffb9e0f0
QW
2060 int need_clear)
2061{
32da5386 2062 struct btrfs_block_group *cache;
ffb9e0f0 2063 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
2064 int ret;
2065
d49a2ddb 2066 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 2067
9afc6649 2068 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
2069 if (!cache)
2070 return -ENOMEM;
2071
4afd2fe8
JT
2072 cache->length = key->offset;
2073 cache->used = btrfs_stack_block_group_used(bgi);
2074 cache->flags = btrfs_stack_block_group_flags(bgi);
f7238e50 2075 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
9afc6649 2076
e3e39c72
MPS
2077 set_free_space_tree_thresholds(cache);
2078
ffb9e0f0
QW
2079 if (need_clear) {
2080 /*
2081 * When we mount with old space cache, we need to
2082 * set BTRFS_DC_CLEAR and set dirty flag.
2083 *
2084 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2085 * truncate the old free space cache inode and
2086 * setup a new one.
2087 * b) Setting 'dirty flag' makes sure that we flush
2088 * the new space cache info onto disk.
2089 */
2090 if (btrfs_test_opt(info, SPACE_CACHE))
2091 cache->disk_cache_state = BTRFS_DC_CLEAR;
2092 }
ffb9e0f0
QW
2093 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2094 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2095 btrfs_err(info,
2096"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2097 cache->start);
2098 ret = -EINVAL;
2099 goto error;
2100 }
2101
a94794d5 2102 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
2103 if (ret) {
2104 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2105 cache->start);
2106 goto error;
2107 }
2108
ffb9e0f0
QW
2109 /*
2110 * We need to exclude the super stripes now so that the space info has
2111 * super bytes accounted for, otherwise we'll think we have more space
2112 * than we actually do.
2113 */
2114 ret = exclude_super_stripes(cache);
2115 if (ret) {
2116 /* We may have excluded something, so call this just in case. */
2117 btrfs_free_excluded_extents(cache);
2118 goto error;
2119 }
2120
2121 /*
169e0da9
NA
2122 * For zoned filesystem, space after the allocation offset is the only
2123 * free space for a block group. So, we don't need any caching work.
2124 * btrfs_calc_zone_unusable() will set the amount of free space and
2125 * zone_unusable space.
2126 *
2127 * For regular filesystem, check for two cases, either we are full, and
2128 * therefore don't need to bother with the caching work since we won't
2129 * find any space, or we are empty, and we can just add all the space
2130 * in and be done with it. This saves us _a_lot_ of time, particularly
2131 * in the full case.
ffb9e0f0 2132 */
169e0da9
NA
2133 if (btrfs_is_zoned(info)) {
2134 btrfs_calc_zone_unusable(cache);
c46c4247
NA
2135 /* Should not have any excluded extents. Just in case, though. */
2136 btrfs_free_excluded_extents(cache);
169e0da9 2137 } else if (cache->length == cache->used) {
ffb9e0f0
QW
2138 cache->cached = BTRFS_CACHE_FINISHED;
2139 btrfs_free_excluded_extents(cache);
2140 } else if (cache->used == 0) {
ffb9e0f0 2141 cache->cached = BTRFS_CACHE_FINISHED;
9afc6649
QW
2142 add_new_free_space(cache, cache->start,
2143 cache->start + cache->length);
ffb9e0f0
QW
2144 btrfs_free_excluded_extents(cache);
2145 }
2146
2147 ret = btrfs_add_block_group_cache(info, cache);
2148 if (ret) {
2149 btrfs_remove_free_space_cache(cache);
2150 goto error;
2151 }
2152 trace_btrfs_add_block_group(info, cache, 0);
723de71d 2153 btrfs_add_bg_to_space_info(info, cache);
ffb9e0f0
QW
2154
2155 set_avail_alloc_bits(info, cache->flags);
a09f23c3
AJ
2156 if (btrfs_chunk_writeable(info, cache->start)) {
2157 if (cache->used == 0) {
2158 ASSERT(list_empty(&cache->bg_list));
2159 if (btrfs_test_opt(info, DISCARD_ASYNC))
2160 btrfs_discard_queue_work(&info->discard_ctl, cache);
2161 else
2162 btrfs_mark_bg_unused(cache);
2163 }
2164 } else {
ffb9e0f0 2165 inc_block_group_ro(cache, 1);
ffb9e0f0 2166 }
a09f23c3 2167
ffb9e0f0
QW
2168 return 0;
2169error:
2170 btrfs_put_block_group(cache);
2171 return ret;
2172}
2173
42437a63
JB
2174static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2175{
2176 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
42437a63
JB
2177 struct rb_node *node;
2178 int ret = 0;
2179
2180 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2181 struct extent_map *em;
2182 struct map_lookup *map;
2183 struct btrfs_block_group *bg;
2184
2185 em = rb_entry(node, struct extent_map, rb_node);
2186 map = em->map_lookup;
2187 bg = btrfs_create_block_group_cache(fs_info, em->start);
2188 if (!bg) {
2189 ret = -ENOMEM;
2190 break;
2191 }
2192
2193 /* Fill dummy cache as FULL */
2194 bg->length = em->len;
2195 bg->flags = map->type;
42437a63
JB
2196 bg->cached = BTRFS_CACHE_FINISHED;
2197 bg->used = em->len;
2198 bg->flags = map->type;
2199 ret = btrfs_add_block_group_cache(fs_info, bg);
2b29726c
QW
2200 /*
2201 * We may have some valid block group cache added already, in
2202 * that case we skip to the next one.
2203 */
2204 if (ret == -EEXIST) {
2205 ret = 0;
2206 btrfs_put_block_group(bg);
2207 continue;
2208 }
2209
42437a63
JB
2210 if (ret) {
2211 btrfs_remove_free_space_cache(bg);
2212 btrfs_put_block_group(bg);
2213 break;
2214 }
2b29726c 2215
723de71d 2216 btrfs_add_bg_to_space_info(fs_info, bg);
42437a63
JB
2217
2218 set_avail_alloc_bits(fs_info, bg->flags);
2219 }
2220 if (!ret)
2221 btrfs_init_global_block_rsv(fs_info);
2222 return ret;
2223}
2224
4358d963
JB
2225int btrfs_read_block_groups(struct btrfs_fs_info *info)
2226{
dfe8aec4 2227 struct btrfs_root *root = btrfs_block_group_root(info);
4358d963
JB
2228 struct btrfs_path *path;
2229 int ret;
32da5386 2230 struct btrfs_block_group *cache;
4358d963
JB
2231 struct btrfs_space_info *space_info;
2232 struct btrfs_key key;
4358d963
JB
2233 int need_clear = 0;
2234 u64 cache_gen;
4358d963 2235
81d5d614
QW
2236 /*
2237 * Either no extent root (with ibadroots rescue option) or we have
2238 * unsupported RO options. The fs can never be mounted read-write, so no
2239 * need to waste time searching block group items.
2240 *
2241 * This also allows new extent tree related changes to be RO compat,
2242 * no need for a full incompat flag.
2243 */
2244 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2245 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
42437a63
JB
2246 return fill_dummy_bgs(info);
2247
4358d963
JB
2248 key.objectid = 0;
2249 key.offset = 0;
2250 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2251 path = btrfs_alloc_path();
2252 if (!path)
2253 return -ENOMEM;
4358d963
JB
2254
2255 cache_gen = btrfs_super_cache_generation(info->super_copy);
2256 if (btrfs_test_opt(info, SPACE_CACHE) &&
2257 btrfs_super_generation(info->super_copy) != cache_gen)
2258 need_clear = 1;
2259 if (btrfs_test_opt(info, CLEAR_CACHE))
2260 need_clear = 1;
2261
2262 while (1) {
4afd2fe8
JT
2263 struct btrfs_block_group_item bgi;
2264 struct extent_buffer *leaf;
2265 int slot;
2266
4358d963
JB
2267 ret = find_first_block_group(info, path, &key);
2268 if (ret > 0)
2269 break;
2270 if (ret != 0)
2271 goto error;
2272
4afd2fe8
JT
2273 leaf = path->nodes[0];
2274 slot = path->slots[0];
2275
2276 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2277 sizeof(bgi));
2278
2279 btrfs_item_key_to_cpu(leaf, &key, slot);
2280 btrfs_release_path(path);
2281 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2282 if (ret < 0)
4358d963 2283 goto error;
ffb9e0f0
QW
2284 key.objectid += key.offset;
2285 key.offset = 0;
4358d963 2286 }
7837fa88 2287 btrfs_release_path(path);
4358d963 2288
72804905 2289 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2290 int i;
2291
2292 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2293 if (list_empty(&space_info->block_groups[i]))
2294 continue;
2295 cache = list_first_entry(&space_info->block_groups[i],
2296 struct btrfs_block_group,
2297 list);
2298 btrfs_sysfs_add_block_group_type(cache);
2299 }
2300
4358d963
JB
2301 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2302 (BTRFS_BLOCK_GROUP_RAID10 |
2303 BTRFS_BLOCK_GROUP_RAID1_MASK |
2304 BTRFS_BLOCK_GROUP_RAID56_MASK |
2305 BTRFS_BLOCK_GROUP_DUP)))
2306 continue;
2307 /*
2308 * Avoid allocating from un-mirrored block group if there are
2309 * mirrored block groups.
2310 */
2311 list_for_each_entry(cache,
2312 &space_info->block_groups[BTRFS_RAID_RAID0],
2313 list)
e11c0406 2314 inc_block_group_ro(cache, 1);
4358d963
JB
2315 list_for_each_entry(cache,
2316 &space_info->block_groups[BTRFS_RAID_SINGLE],
2317 list)
e11c0406 2318 inc_block_group_ro(cache, 1);
4358d963
JB
2319 }
2320
2321 btrfs_init_global_block_rsv(info);
2322 ret = check_chunk_block_group_mappings(info);
2323error:
2324 btrfs_free_path(path);
2b29726c
QW
2325 /*
2326 * We've hit some error while reading the extent tree, and have
2327 * rescue=ibadroots mount option.
2328 * Try to fill the tree using dummy block groups so that the user can
2329 * continue to mount and grab their data.
2330 */
2331 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2332 ret = fill_dummy_bgs(info);
4358d963
JB
2333 return ret;
2334}
2335
79bd3712
FM
2336/*
2337 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2338 * allocation.
2339 *
2340 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2341 * phases.
2342 */
97f4728a
QW
2343static int insert_block_group_item(struct btrfs_trans_handle *trans,
2344 struct btrfs_block_group *block_group)
2345{
2346 struct btrfs_fs_info *fs_info = trans->fs_info;
2347 struct btrfs_block_group_item bgi;
dfe8aec4 2348 struct btrfs_root *root = btrfs_block_group_root(fs_info);
97f4728a
QW
2349 struct btrfs_key key;
2350
2351 spin_lock(&block_group->lock);
2352 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2353 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2354 block_group->global_root_id);
97f4728a
QW
2355 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2356 key.objectid = block_group->start;
2357 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2358 key.offset = block_group->length;
2359 spin_unlock(&block_group->lock);
2360
97f4728a
QW
2361 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2362}
2363
2eadb9e7
NB
2364static int insert_dev_extent(struct btrfs_trans_handle *trans,
2365 struct btrfs_device *device, u64 chunk_offset,
2366 u64 start, u64 num_bytes)
2367{
2368 struct btrfs_fs_info *fs_info = device->fs_info;
2369 struct btrfs_root *root = fs_info->dev_root;
2370 struct btrfs_path *path;
2371 struct btrfs_dev_extent *extent;
2372 struct extent_buffer *leaf;
2373 struct btrfs_key key;
2374 int ret;
2375
2376 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2377 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2378 path = btrfs_alloc_path();
2379 if (!path)
2380 return -ENOMEM;
2381
2382 key.objectid = device->devid;
2383 key.type = BTRFS_DEV_EXTENT_KEY;
2384 key.offset = start;
2385 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2386 if (ret)
2387 goto out;
2388
2389 leaf = path->nodes[0];
2390 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2391 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2392 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2393 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2394 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2395
2396 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2397 btrfs_mark_buffer_dirty(leaf);
2398out:
2399 btrfs_free_path(path);
2400 return ret;
2401}
2402
2403/*
2404 * This function belongs to phase 2.
2405 *
2406 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2407 * phases.
2408 */
2409static int insert_dev_extents(struct btrfs_trans_handle *trans,
2410 u64 chunk_offset, u64 chunk_size)
2411{
2412 struct btrfs_fs_info *fs_info = trans->fs_info;
2413 struct btrfs_device *device;
2414 struct extent_map *em;
2415 struct map_lookup *map;
2416 u64 dev_offset;
2417 u64 stripe_size;
2418 int i;
2419 int ret = 0;
2420
2421 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2422 if (IS_ERR(em))
2423 return PTR_ERR(em);
2424
2425 map = em->map_lookup;
2426 stripe_size = em->orig_block_len;
2427
2428 /*
2429 * Take the device list mutex to prevent races with the final phase of
2430 * a device replace operation that replaces the device object associated
2431 * with the map's stripes, because the device object's id can change
2432 * at any time during that final phase of the device replace operation
2433 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2434 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2435 * resulting in persisting a device extent item with such ID.
2436 */
2437 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2438 for (i = 0; i < map->num_stripes; i++) {
2439 device = map->stripes[i].dev;
2440 dev_offset = map->stripes[i].physical;
2441
2442 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2443 stripe_size);
2444 if (ret)
2445 break;
2446 }
2447 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2448
2449 free_extent_map(em);
2450 return ret;
2451}
2452
79bd3712
FM
2453/*
2454 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2455 * chunk allocation.
2456 *
2457 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2458 * phases.
2459 */
4358d963
JB
2460void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2461{
2462 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2463 struct btrfs_block_group *block_group;
4358d963
JB
2464 int ret = 0;
2465
4358d963 2466 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2467 int index;
2468
4358d963 2469 block_group = list_first_entry(&trans->new_bgs,
32da5386 2470 struct btrfs_block_group,
4358d963
JB
2471 bg_list);
2472 if (ret)
2473 goto next;
2474
49ea112d
JB
2475 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2476
97f4728a 2477 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2478 if (ret)
2479 btrfs_abort_transaction(trans, ret);
3349b57f
JB
2480 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2481 &block_group->runtime_flags)) {
79bd3712
FM
2482 mutex_lock(&fs_info->chunk_mutex);
2483 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2484 mutex_unlock(&fs_info->chunk_mutex);
2485 if (ret)
2486 btrfs_abort_transaction(trans, ret);
2487 }
2eadb9e7
NB
2488 ret = insert_dev_extents(trans, block_group->start,
2489 block_group->length);
4358d963
JB
2490 if (ret)
2491 btrfs_abort_transaction(trans, ret);
2492 add_block_group_free_space(trans, block_group);
49ea112d
JB
2493
2494 /*
2495 * If we restriped during balance, we may have added a new raid
2496 * type, so now add the sysfs entries when it is safe to do so.
2497 * We don't have to worry about locking here as it's handled in
2498 * btrfs_sysfs_add_block_group_type.
2499 */
2500 if (block_group->space_info->block_group_kobjs[index] == NULL)
2501 btrfs_sysfs_add_block_group_type(block_group);
2502
4358d963
JB
2503 /* Already aborted the transaction if it failed. */
2504next:
2505 btrfs_delayed_refs_rsv_release(fs_info, 1);
2506 list_del_init(&block_group->bg_list);
2507 }
2508 btrfs_trans_release_chunk_metadata(trans);
2509}
2510
f7238e50
JB
2511/*
2512 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2513 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2514 */
2515static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2516{
2517 u64 div = SZ_1G;
2518 u64 index;
2519
2520 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2521 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2522
2523 /* If we have a smaller fs index based on 128MiB. */
2524 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2525 div = SZ_128M;
2526
2527 offset = div64_u64(offset, div);
2528 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2529 return index;
2530}
2531
79bd3712
FM
2532struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2533 u64 bytes_used, u64 type,
2534 u64 chunk_offset, u64 size)
4358d963
JB
2535{
2536 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2537 struct btrfs_block_group *cache;
4358d963
JB
2538 int ret;
2539
2540 btrfs_set_log_full_commit(trans);
2541
9afc6649 2542 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963 2543 if (!cache)
79bd3712 2544 return ERR_PTR(-ENOMEM);
4358d963 2545
9afc6649 2546 cache->length = size;
e3e39c72 2547 set_free_space_tree_thresholds(cache);
bf38be65 2548 cache->used = bytes_used;
4358d963 2549 cache->flags = type;
4358d963 2550 cache->cached = BTRFS_CACHE_FINISHED;
f7238e50
JB
2551 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2552
997e3e2e
BB
2553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2554 cache->needs_free_space = 1;
08e11a3d 2555
a94794d5 2556 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2557 if (ret) {
2558 btrfs_put_block_group(cache);
79bd3712 2559 return ERR_PTR(ret);
08e11a3d
NA
2560 }
2561
4358d963
JB
2562 ret = exclude_super_stripes(cache);
2563 if (ret) {
2564 /* We may have excluded something, so call this just in case */
2565 btrfs_free_excluded_extents(cache);
2566 btrfs_put_block_group(cache);
79bd3712 2567 return ERR_PTR(ret);
4358d963
JB
2568 }
2569
2570 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2571
2572 btrfs_free_excluded_extents(cache);
2573
4358d963
JB
2574 /*
2575 * Ensure the corresponding space_info object is created and
2576 * assigned to our block group. We want our bg to be added to the rbtree
2577 * with its ->space_info set.
2578 */
2579 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2580 ASSERT(cache->space_info);
2581
2582 ret = btrfs_add_block_group_cache(fs_info, cache);
2583 if (ret) {
2584 btrfs_remove_free_space_cache(cache);
2585 btrfs_put_block_group(cache);
79bd3712 2586 return ERR_PTR(ret);
4358d963
JB
2587 }
2588
2589 /*
2590 * Now that our block group has its ->space_info set and is inserted in
2591 * the rbtree, update the space info's counters.
2592 */
2593 trace_btrfs_add_block_group(fs_info, cache, 1);
723de71d 2594 btrfs_add_bg_to_space_info(fs_info, cache);
4358d963
JB
2595 btrfs_update_global_block_rsv(fs_info);
2596
9d4b0a12
JB
2597#ifdef CONFIG_BTRFS_DEBUG
2598 if (btrfs_should_fragment_free_space(cache)) {
2599 u64 new_bytes_used = size - bytes_used;
2600
2601 cache->space_info->bytes_used += new_bytes_used >> 1;
2602 fragment_free_space(cache);
2603 }
2604#endif
4358d963
JB
2605
2606 list_add_tail(&cache->bg_list, &trans->new_bgs);
2607 trans->delayed_ref_updates++;
2608 btrfs_update_delayed_refs_rsv(trans);
2609
2610 set_avail_alloc_bits(fs_info, type);
79bd3712 2611 return cache;
4358d963 2612}
26ce2095 2613
b12de528
QW
2614/*
2615 * Mark one block group RO, can be called several times for the same block
2616 * group.
2617 *
2618 * @cache: the destination block group
2619 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2620 * ensure we still have some free space after marking this
2621 * block group RO.
2622 */
2623int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2624 bool do_chunk_alloc)
26ce2095
JB
2625{
2626 struct btrfs_fs_info *fs_info = cache->fs_info;
2627 struct btrfs_trans_handle *trans;
dfe8aec4 2628 struct btrfs_root *root = btrfs_block_group_root(fs_info);
26ce2095
JB
2629 u64 alloc_flags;
2630 int ret;
b6e9f16c 2631 bool dirty_bg_running;
26ce2095 2632
2d192fc4
QW
2633 /*
2634 * This can only happen when we are doing read-only scrub on read-only
2635 * mount.
2636 * In that case we should not start a new transaction on read-only fs.
2637 * Thus here we skip all chunk allocations.
2638 */
2639 if (sb_rdonly(fs_info->sb)) {
2640 mutex_lock(&fs_info->ro_block_group_mutex);
2641 ret = inc_block_group_ro(cache, 0);
2642 mutex_unlock(&fs_info->ro_block_group_mutex);
2643 return ret;
2644 }
2645
b6e9f16c 2646 do {
dfe8aec4 2647 trans = btrfs_join_transaction(root);
b6e9f16c
NB
2648 if (IS_ERR(trans))
2649 return PTR_ERR(trans);
26ce2095 2650
b6e9f16c 2651 dirty_bg_running = false;
26ce2095 2652
b6e9f16c
NB
2653 /*
2654 * We're not allowed to set block groups readonly after the dirty
2655 * block group cache has started writing. If it already started,
2656 * back off and let this transaction commit.
2657 */
2658 mutex_lock(&fs_info->ro_block_group_mutex);
2659 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2660 u64 transid = trans->transid;
26ce2095 2661
b6e9f16c
NB
2662 mutex_unlock(&fs_info->ro_block_group_mutex);
2663 btrfs_end_transaction(trans);
2664
2665 ret = btrfs_wait_for_commit(fs_info, transid);
2666 if (ret)
2667 return ret;
2668 dirty_bg_running = true;
2669 }
2670 } while (dirty_bg_running);
26ce2095 2671
b12de528 2672 if (do_chunk_alloc) {
26ce2095 2673 /*
b12de528
QW
2674 * If we are changing raid levels, try to allocate a
2675 * corresponding block group with the new raid level.
26ce2095 2676 */
349e120e 2677 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2678 if (alloc_flags != cache->flags) {
2679 ret = btrfs_chunk_alloc(trans, alloc_flags,
2680 CHUNK_ALLOC_FORCE);
2681 /*
2682 * ENOSPC is allowed here, we may have enough space
2683 * already allocated at the new raid level to carry on
2684 */
2685 if (ret == -ENOSPC)
2686 ret = 0;
2687 if (ret < 0)
2688 goto out;
2689 }
26ce2095
JB
2690 }
2691
a7a63acc 2692 ret = inc_block_group_ro(cache, 0);
195a49ea 2693 if (!do_chunk_alloc || ret == -ETXTBSY)
b12de528 2694 goto unlock_out;
26ce2095
JB
2695 if (!ret)
2696 goto out;
2697 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2698 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2699 if (ret < 0)
2700 goto out;
b6a98021
NA
2701 /*
2702 * We have allocated a new chunk. We also need to activate that chunk to
2703 * grant metadata tickets for zoned filesystem.
2704 */
2705 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2706 if (ret < 0)
2707 goto out;
2708
e11c0406 2709 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
2710 if (ret == -ETXTBSY)
2711 goto unlock_out;
26ce2095
JB
2712out:
2713 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 2714 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
2715 mutex_lock(&fs_info->chunk_mutex);
2716 check_system_chunk(trans, alloc_flags);
2717 mutex_unlock(&fs_info->chunk_mutex);
2718 }
b12de528 2719unlock_out:
26ce2095
JB
2720 mutex_unlock(&fs_info->ro_block_group_mutex);
2721
2722 btrfs_end_transaction(trans);
2723 return ret;
2724}
2725
32da5386 2726void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2727{
2728 struct btrfs_space_info *sinfo = cache->space_info;
2729 u64 num_bytes;
2730
2731 BUG_ON(!cache->ro);
2732
2733 spin_lock(&sinfo->lock);
2734 spin_lock(&cache->lock);
2735 if (!--cache->ro) {
169e0da9
NA
2736 if (btrfs_is_zoned(cache->fs_info)) {
2737 /* Migrate zone_unusable bytes back */
98173255
NA
2738 cache->zone_unusable =
2739 (cache->alloc_offset - cache->used) +
2740 (cache->length - cache->zone_capacity);
169e0da9
NA
2741 sinfo->bytes_zone_unusable += cache->zone_unusable;
2742 sinfo->bytes_readonly -= cache->zone_unusable;
2743 }
f9f28e5b
NA
2744 num_bytes = cache->length - cache->reserved -
2745 cache->pinned - cache->bytes_super -
2746 cache->zone_unusable - cache->used;
2747 sinfo->bytes_readonly -= num_bytes;
26ce2095
JB
2748 list_del_init(&cache->ro_list);
2749 }
2750 spin_unlock(&cache->lock);
2751 spin_unlock(&sinfo->lock);
2752}
77745c05 2753
3be4d8ef
QW
2754static int update_block_group_item(struct btrfs_trans_handle *trans,
2755 struct btrfs_path *path,
2756 struct btrfs_block_group *cache)
77745c05
JB
2757{
2758 struct btrfs_fs_info *fs_info = trans->fs_info;
2759 int ret;
dfe8aec4 2760 struct btrfs_root *root = btrfs_block_group_root(fs_info);
77745c05
JB
2761 unsigned long bi;
2762 struct extent_buffer *leaf;
bf38be65 2763 struct btrfs_block_group_item bgi;
b3470b5d
DS
2764 struct btrfs_key key;
2765
2766 key.objectid = cache->start;
2767 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2768 key.offset = cache->length;
77745c05 2769
3be4d8ef 2770 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
2771 if (ret) {
2772 if (ret > 0)
2773 ret = -ENOENT;
2774 goto fail;
2775 }
2776
2777 leaf = path->nodes[0];
2778 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
de0dc456
DS
2779 btrfs_set_stack_block_group_used(&bgi, cache->used);
2780 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2781 cache->global_root_id);
de0dc456 2782 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2783 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2784 btrfs_mark_buffer_dirty(leaf);
2785fail:
2786 btrfs_release_path(path);
2787 return ret;
2788
2789}
2790
32da5386 2791static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2792 struct btrfs_trans_handle *trans,
2793 struct btrfs_path *path)
2794{
2795 struct btrfs_fs_info *fs_info = block_group->fs_info;
2796 struct btrfs_root *root = fs_info->tree_root;
2797 struct inode *inode = NULL;
2798 struct extent_changeset *data_reserved = NULL;
2799 u64 alloc_hint = 0;
2800 int dcs = BTRFS_DC_ERROR;
0044ae11 2801 u64 cache_size = 0;
77745c05
JB
2802 int retries = 0;
2803 int ret = 0;
2804
af456a2c
BB
2805 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2806 return 0;
2807
77745c05
JB
2808 /*
2809 * If this block group is smaller than 100 megs don't bother caching the
2810 * block group.
2811 */
b3470b5d 2812 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2813 spin_lock(&block_group->lock);
2814 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2815 spin_unlock(&block_group->lock);
2816 return 0;
2817 }
2818
bf31f87f 2819 if (TRANS_ABORTED(trans))
77745c05
JB
2820 return 0;
2821again:
2822 inode = lookup_free_space_inode(block_group, path);
2823 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2824 ret = PTR_ERR(inode);
2825 btrfs_release_path(path);
2826 goto out;
2827 }
2828
2829 if (IS_ERR(inode)) {
2830 BUG_ON(retries);
2831 retries++;
2832
2833 if (block_group->ro)
2834 goto out_free;
2835
2836 ret = create_free_space_inode(trans, block_group, path);
2837 if (ret)
2838 goto out_free;
2839 goto again;
2840 }
2841
2842 /*
2843 * We want to set the generation to 0, that way if anything goes wrong
2844 * from here on out we know not to trust this cache when we load up next
2845 * time.
2846 */
2847 BTRFS_I(inode)->generation = 0;
9a56fcd1 2848 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
77745c05
JB
2849 if (ret) {
2850 /*
2851 * So theoretically we could recover from this, simply set the
2852 * super cache generation to 0 so we know to invalidate the
2853 * cache, but then we'd have to keep track of the block groups
2854 * that fail this way so we know we _have_ to reset this cache
2855 * before the next commit or risk reading stale cache. So to
2856 * limit our exposure to horrible edge cases lets just abort the
2857 * transaction, this only happens in really bad situations
2858 * anyway.
2859 */
2860 btrfs_abort_transaction(trans, ret);
2861 goto out_put;
2862 }
2863 WARN_ON(ret);
2864
2865 /* We've already setup this transaction, go ahead and exit */
2866 if (block_group->cache_generation == trans->transid &&
2867 i_size_read(inode)) {
2868 dcs = BTRFS_DC_SETUP;
2869 goto out_put;
2870 }
2871
2872 if (i_size_read(inode) > 0) {
2873 ret = btrfs_check_trunc_cache_free_space(fs_info,
2874 &fs_info->global_block_rsv);
2875 if (ret)
2876 goto out_put;
2877
2878 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2879 if (ret)
2880 goto out_put;
2881 }
2882
2883 spin_lock(&block_group->lock);
2884 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2885 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2886 /*
2887 * don't bother trying to write stuff out _if_
2888 * a) we're not cached,
2889 * b) we're with nospace_cache mount option,
2890 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2891 */
2892 dcs = BTRFS_DC_WRITTEN;
2893 spin_unlock(&block_group->lock);
2894 goto out_put;
2895 }
2896 spin_unlock(&block_group->lock);
2897
2898 /*
2899 * We hit an ENOSPC when setting up the cache in this transaction, just
2900 * skip doing the setup, we've already cleared the cache so we're safe.
2901 */
2902 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2903 ret = -ENOSPC;
2904 goto out_put;
2905 }
2906
2907 /*
2908 * Try to preallocate enough space based on how big the block group is.
2909 * Keep in mind this has to include any pinned space which could end up
2910 * taking up quite a bit since it's not folded into the other space
2911 * cache.
2912 */
0044ae11
QW
2913 cache_size = div_u64(block_group->length, SZ_256M);
2914 if (!cache_size)
2915 cache_size = 1;
77745c05 2916
0044ae11
QW
2917 cache_size *= 16;
2918 cache_size *= fs_info->sectorsize;
77745c05 2919
36ea6f3e 2920 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
1daedb1d 2921 cache_size, false);
77745c05
JB
2922 if (ret)
2923 goto out_put;
2924
0044ae11
QW
2925 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2926 cache_size, cache_size,
77745c05
JB
2927 &alloc_hint);
2928 /*
2929 * Our cache requires contiguous chunks so that we don't modify a bunch
2930 * of metadata or split extents when writing the cache out, which means
2931 * we can enospc if we are heavily fragmented in addition to just normal
2932 * out of space conditions. So if we hit this just skip setting up any
2933 * other block groups for this transaction, maybe we'll unpin enough
2934 * space the next time around.
2935 */
2936 if (!ret)
2937 dcs = BTRFS_DC_SETUP;
2938 else if (ret == -ENOSPC)
2939 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2940
2941out_put:
2942 iput(inode);
2943out_free:
2944 btrfs_release_path(path);
2945out:
2946 spin_lock(&block_group->lock);
2947 if (!ret && dcs == BTRFS_DC_SETUP)
2948 block_group->cache_generation = trans->transid;
2949 block_group->disk_cache_state = dcs;
2950 spin_unlock(&block_group->lock);
2951
2952 extent_changeset_free(data_reserved);
2953 return ret;
2954}
2955
2956int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2957{
2958 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2959 struct btrfs_block_group *cache, *tmp;
77745c05
JB
2960 struct btrfs_transaction *cur_trans = trans->transaction;
2961 struct btrfs_path *path;
2962
2963 if (list_empty(&cur_trans->dirty_bgs) ||
2964 !btrfs_test_opt(fs_info, SPACE_CACHE))
2965 return 0;
2966
2967 path = btrfs_alloc_path();
2968 if (!path)
2969 return -ENOMEM;
2970
2971 /* Could add new block groups, use _safe just in case */
2972 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2973 dirty_list) {
2974 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2975 cache_save_setup(cache, trans, path);
2976 }
2977
2978 btrfs_free_path(path);
2979 return 0;
2980}
2981
2982/*
2983 * Transaction commit does final block group cache writeback during a critical
2984 * section where nothing is allowed to change the FS. This is required in
2985 * order for the cache to actually match the block group, but can introduce a
2986 * lot of latency into the commit.
2987 *
2988 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2989 * There's a chance we'll have to redo some of it if the block group changes
2990 * again during the commit, but it greatly reduces the commit latency by
2991 * getting rid of the easy block groups while we're still allowing others to
2992 * join the commit.
2993 */
2994int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2995{
2996 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2997 struct btrfs_block_group *cache;
77745c05
JB
2998 struct btrfs_transaction *cur_trans = trans->transaction;
2999 int ret = 0;
3000 int should_put;
3001 struct btrfs_path *path = NULL;
3002 LIST_HEAD(dirty);
3003 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
3004 int loops = 0;
3005
3006 spin_lock(&cur_trans->dirty_bgs_lock);
3007 if (list_empty(&cur_trans->dirty_bgs)) {
3008 spin_unlock(&cur_trans->dirty_bgs_lock);
3009 return 0;
3010 }
3011 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3012 spin_unlock(&cur_trans->dirty_bgs_lock);
3013
3014again:
3015 /* Make sure all the block groups on our dirty list actually exist */
3016 btrfs_create_pending_block_groups(trans);
3017
3018 if (!path) {
3019 path = btrfs_alloc_path();
938fcbfb
JB
3020 if (!path) {
3021 ret = -ENOMEM;
3022 goto out;
3023 }
77745c05
JB
3024 }
3025
3026 /*
3027 * cache_write_mutex is here only to save us from balance or automatic
3028 * removal of empty block groups deleting this block group while we are
3029 * writing out the cache
3030 */
3031 mutex_lock(&trans->transaction->cache_write_mutex);
3032 while (!list_empty(&dirty)) {
3033 bool drop_reserve = true;
3034
32da5386 3035 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
3036 dirty_list);
3037 /*
3038 * This can happen if something re-dirties a block group that
3039 * is already under IO. Just wait for it to finish and then do
3040 * it all again
3041 */
3042 if (!list_empty(&cache->io_list)) {
3043 list_del_init(&cache->io_list);
3044 btrfs_wait_cache_io(trans, cache, path);
3045 btrfs_put_block_group(cache);
3046 }
3047
3048
3049 /*
3050 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3051 * it should update the cache_state. Don't delete until after
3052 * we wait.
3053 *
3054 * Since we're not running in the commit critical section
3055 * we need the dirty_bgs_lock to protect from update_block_group
3056 */
3057 spin_lock(&cur_trans->dirty_bgs_lock);
3058 list_del_init(&cache->dirty_list);
3059 spin_unlock(&cur_trans->dirty_bgs_lock);
3060
3061 should_put = 1;
3062
3063 cache_save_setup(cache, trans, path);
3064
3065 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3066 cache->io_ctl.inode = NULL;
3067 ret = btrfs_write_out_cache(trans, cache, path);
3068 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3069 should_put = 0;
3070
3071 /*
3072 * The cache_write_mutex is protecting the
3073 * io_list, also refer to the definition of
3074 * btrfs_transaction::io_bgs for more details
3075 */
3076 list_add_tail(&cache->io_list, io);
3077 } else {
3078 /*
3079 * If we failed to write the cache, the
3080 * generation will be bad and life goes on
3081 */
3082 ret = 0;
3083 }
3084 }
3085 if (!ret) {
3be4d8ef 3086 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3087 /*
3088 * Our block group might still be attached to the list
3089 * of new block groups in the transaction handle of some
3090 * other task (struct btrfs_trans_handle->new_bgs). This
3091 * means its block group item isn't yet in the extent
3092 * tree. If this happens ignore the error, as we will
3093 * try again later in the critical section of the
3094 * transaction commit.
3095 */
3096 if (ret == -ENOENT) {
3097 ret = 0;
3098 spin_lock(&cur_trans->dirty_bgs_lock);
3099 if (list_empty(&cache->dirty_list)) {
3100 list_add_tail(&cache->dirty_list,
3101 &cur_trans->dirty_bgs);
3102 btrfs_get_block_group(cache);
3103 drop_reserve = false;
3104 }
3105 spin_unlock(&cur_trans->dirty_bgs_lock);
3106 } else if (ret) {
3107 btrfs_abort_transaction(trans, ret);
3108 }
3109 }
3110
3111 /* If it's not on the io list, we need to put the block group */
3112 if (should_put)
3113 btrfs_put_block_group(cache);
3114 if (drop_reserve)
3115 btrfs_delayed_refs_rsv_release(fs_info, 1);
77745c05
JB
3116 /*
3117 * Avoid blocking other tasks for too long. It might even save
3118 * us from writing caches for block groups that are going to be
3119 * removed.
3120 */
3121 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
3122 if (ret)
3123 goto out;
77745c05
JB
3124 mutex_lock(&trans->transaction->cache_write_mutex);
3125 }
3126 mutex_unlock(&trans->transaction->cache_write_mutex);
3127
3128 /*
3129 * Go through delayed refs for all the stuff we've just kicked off
3130 * and then loop back (just once)
3131 */
34d1eb0e
JB
3132 if (!ret)
3133 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
3134 if (!ret && loops == 0) {
3135 loops++;
3136 spin_lock(&cur_trans->dirty_bgs_lock);
3137 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3138 /*
3139 * dirty_bgs_lock protects us from concurrent block group
3140 * deletes too (not just cache_write_mutex).
3141 */
3142 if (!list_empty(&dirty)) {
3143 spin_unlock(&cur_trans->dirty_bgs_lock);
3144 goto again;
3145 }
3146 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
3147 }
3148out:
3149 if (ret < 0) {
3150 spin_lock(&cur_trans->dirty_bgs_lock);
3151 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3152 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
3153 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3154 }
3155
3156 btrfs_free_path(path);
3157 return ret;
3158}
3159
3160int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3161{
3162 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3163 struct btrfs_block_group *cache;
77745c05
JB
3164 struct btrfs_transaction *cur_trans = trans->transaction;
3165 int ret = 0;
3166 int should_put;
3167 struct btrfs_path *path;
3168 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
3169
3170 path = btrfs_alloc_path();
3171 if (!path)
3172 return -ENOMEM;
3173
3174 /*
3175 * Even though we are in the critical section of the transaction commit,
3176 * we can still have concurrent tasks adding elements to this
3177 * transaction's list of dirty block groups. These tasks correspond to
3178 * endio free space workers started when writeback finishes for a
3179 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3180 * allocate new block groups as a result of COWing nodes of the root
3181 * tree when updating the free space inode. The writeback for the space
3182 * caches is triggered by an earlier call to
3183 * btrfs_start_dirty_block_groups() and iterations of the following
3184 * loop.
3185 * Also we want to do the cache_save_setup first and then run the
3186 * delayed refs to make sure we have the best chance at doing this all
3187 * in one shot.
3188 */
3189 spin_lock(&cur_trans->dirty_bgs_lock);
3190 while (!list_empty(&cur_trans->dirty_bgs)) {
3191 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 3192 struct btrfs_block_group,
77745c05
JB
3193 dirty_list);
3194
3195 /*
3196 * This can happen if cache_save_setup re-dirties a block group
3197 * that is already under IO. Just wait for it to finish and
3198 * then do it all again
3199 */
3200 if (!list_empty(&cache->io_list)) {
3201 spin_unlock(&cur_trans->dirty_bgs_lock);
3202 list_del_init(&cache->io_list);
3203 btrfs_wait_cache_io(trans, cache, path);
3204 btrfs_put_block_group(cache);
3205 spin_lock(&cur_trans->dirty_bgs_lock);
3206 }
3207
3208 /*
3209 * Don't remove from the dirty list until after we've waited on
3210 * any pending IO
3211 */
3212 list_del_init(&cache->dirty_list);
3213 spin_unlock(&cur_trans->dirty_bgs_lock);
3214 should_put = 1;
3215
3216 cache_save_setup(cache, trans, path);
3217
3218 if (!ret)
3219 ret = btrfs_run_delayed_refs(trans,
3220 (unsigned long) -1);
3221
3222 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3223 cache->io_ctl.inode = NULL;
3224 ret = btrfs_write_out_cache(trans, cache, path);
3225 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3226 should_put = 0;
3227 list_add_tail(&cache->io_list, io);
3228 } else {
3229 /*
3230 * If we failed to write the cache, the
3231 * generation will be bad and life goes on
3232 */
3233 ret = 0;
3234 }
3235 }
3236 if (!ret) {
3be4d8ef 3237 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3238 /*
3239 * One of the free space endio workers might have
3240 * created a new block group while updating a free space
3241 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3242 * and hasn't released its transaction handle yet, in
3243 * which case the new block group is still attached to
3244 * its transaction handle and its creation has not
3245 * finished yet (no block group item in the extent tree
3246 * yet, etc). If this is the case, wait for all free
3247 * space endio workers to finish and retry. This is a
260db43c 3248 * very rare case so no need for a more efficient and
77745c05
JB
3249 * complex approach.
3250 */
3251 if (ret == -ENOENT) {
3252 wait_event(cur_trans->writer_wait,
3253 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 3254 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3255 }
3256 if (ret)
3257 btrfs_abort_transaction(trans, ret);
3258 }
3259
3260 /* If its not on the io list, we need to put the block group */
3261 if (should_put)
3262 btrfs_put_block_group(cache);
3263 btrfs_delayed_refs_rsv_release(fs_info, 1);
3264 spin_lock(&cur_trans->dirty_bgs_lock);
3265 }
3266 spin_unlock(&cur_trans->dirty_bgs_lock);
3267
3268 /*
3269 * Refer to the definition of io_bgs member for details why it's safe
3270 * to use it without any locking
3271 */
3272 while (!list_empty(io)) {
32da5386 3273 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
3274 io_list);
3275 list_del_init(&cache->io_list);
3276 btrfs_wait_cache_io(trans, cache, path);
3277 btrfs_put_block_group(cache);
3278 }
3279
3280 btrfs_free_path(path);
3281 return ret;
3282}
606d1bf1
JB
3283
3284int btrfs_update_block_group(struct btrfs_trans_handle *trans,
11b66fa6 3285 u64 bytenr, u64 num_bytes, bool alloc)
606d1bf1
JB
3286{
3287 struct btrfs_fs_info *info = trans->fs_info;
32da5386 3288 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
3289 u64 total = num_bytes;
3290 u64 old_val;
3291 u64 byte_in_group;
3292 int factor;
3293 int ret = 0;
3294
3295 /* Block accounting for super block */
3296 spin_lock(&info->delalloc_root_lock);
3297 old_val = btrfs_super_bytes_used(info->super_copy);
3298 if (alloc)
3299 old_val += num_bytes;
3300 else
3301 old_val -= num_bytes;
3302 btrfs_set_super_bytes_used(info->super_copy, old_val);
3303 spin_unlock(&info->delalloc_root_lock);
3304
3305 while (total) {
ac2f1e63
JB
3306 bool reclaim;
3307
606d1bf1
JB
3308 cache = btrfs_lookup_block_group(info, bytenr);
3309 if (!cache) {
3310 ret = -ENOENT;
3311 break;
3312 }
3313 factor = btrfs_bg_type_to_factor(cache->flags);
3314
3315 /*
3316 * If this block group has free space cache written out, we
3317 * need to make sure to load it if we are removing space. This
3318 * is because we need the unpinning stage to actually add the
3319 * space back to the block group, otherwise we will leak space.
3320 */
32da5386 3321 if (!alloc && !btrfs_block_group_done(cache))
ced8ecf0 3322 btrfs_cache_block_group(cache, true);
606d1bf1 3323
b3470b5d
DS
3324 byte_in_group = bytenr - cache->start;
3325 WARN_ON(byte_in_group > cache->length);
606d1bf1
JB
3326
3327 spin_lock(&cache->space_info->lock);
3328 spin_lock(&cache->lock);
3329
3330 if (btrfs_test_opt(info, SPACE_CACHE) &&
3331 cache->disk_cache_state < BTRFS_DC_CLEAR)
3332 cache->disk_cache_state = BTRFS_DC_CLEAR;
3333
bf38be65 3334 old_val = cache->used;
b3470b5d 3335 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
3336 if (alloc) {
3337 old_val += num_bytes;
bf38be65 3338 cache->used = old_val;
606d1bf1
JB
3339 cache->reserved -= num_bytes;
3340 cache->space_info->bytes_reserved -= num_bytes;
3341 cache->space_info->bytes_used += num_bytes;
3342 cache->space_info->disk_used += num_bytes * factor;
3343 spin_unlock(&cache->lock);
3344 spin_unlock(&cache->space_info->lock);
3345 } else {
3346 old_val -= num_bytes;
bf38be65 3347 cache->used = old_val;
606d1bf1
JB
3348 cache->pinned += num_bytes;
3349 btrfs_space_info_update_bytes_pinned(info,
3350 cache->space_info, num_bytes);
3351 cache->space_info->bytes_used -= num_bytes;
3352 cache->space_info->disk_used -= num_bytes * factor;
ac2f1e63
JB
3353
3354 reclaim = should_reclaim_block_group(cache, num_bytes);
606d1bf1
JB
3355 spin_unlock(&cache->lock);
3356 spin_unlock(&cache->space_info->lock);
3357
fe119a6e 3358 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
3359 bytenr, bytenr + num_bytes - 1,
3360 GFP_NOFS | __GFP_NOFAIL);
3361 }
3362
3363 spin_lock(&trans->transaction->dirty_bgs_lock);
3364 if (list_empty(&cache->dirty_list)) {
3365 list_add_tail(&cache->dirty_list,
3366 &trans->transaction->dirty_bgs);
3367 trans->delayed_ref_updates++;
3368 btrfs_get_block_group(cache);
3369 }
3370 spin_unlock(&trans->transaction->dirty_bgs_lock);
3371
3372 /*
3373 * No longer have used bytes in this block group, queue it for
3374 * deletion. We do this after adding the block group to the
3375 * dirty list to avoid races between cleaner kthread and space
3376 * cache writeout.
3377 */
6e80d4f8
DZ
3378 if (!alloc && old_val == 0) {
3379 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3380 btrfs_mark_bg_unused(cache);
ac2f1e63
JB
3381 } else if (!alloc && reclaim) {
3382 btrfs_mark_bg_to_reclaim(cache);
6e80d4f8 3383 }
606d1bf1
JB
3384
3385 btrfs_put_block_group(cache);
3386 total -= num_bytes;
3387 bytenr += num_bytes;
3388 }
3389
3390 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3391 btrfs_update_delayed_refs_rsv(trans);
3392 return ret;
3393}
3394
3395/**
3396 * btrfs_add_reserved_bytes - update the block_group and space info counters
3397 * @cache: The cache we are manipulating
3398 * @ram_bytes: The number of bytes of file content, and will be same to
3399 * @num_bytes except for the compress path.
3400 * @num_bytes: The number of bytes in question
3401 * @delalloc: The blocks are allocated for the delalloc write
3402 *
3403 * This is called by the allocator when it reserves space. If this is a
3404 * reservation and the block group has become read only we cannot make the
3405 * reservation and return -EAGAIN, otherwise this function always succeeds.
3406 */
32da5386 3407int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3408 u64 ram_bytes, u64 num_bytes, int delalloc)
3409{
3410 struct btrfs_space_info *space_info = cache->space_info;
3411 int ret = 0;
3412
3413 spin_lock(&space_info->lock);
3414 spin_lock(&cache->lock);
3415 if (cache->ro) {
3416 ret = -EAGAIN;
3417 } else {
3418 cache->reserved += num_bytes;
3419 space_info->bytes_reserved += num_bytes;
a43c3835
JB
3420 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3421 space_info->flags, num_bytes, 1);
606d1bf1
JB
3422 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3423 space_info, -ram_bytes);
3424 if (delalloc)
3425 cache->delalloc_bytes += num_bytes;
99ffb43e
JB
3426
3427 /*
3428 * Compression can use less space than we reserved, so wake
3429 * tickets if that happens
3430 */
3431 if (num_bytes < ram_bytes)
3432 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3433 }
3434 spin_unlock(&cache->lock);
3435 spin_unlock(&space_info->lock);
3436 return ret;
3437}
3438
3439/**
3440 * btrfs_free_reserved_bytes - update the block_group and space info counters
3441 * @cache: The cache we are manipulating
3442 * @num_bytes: The number of bytes in question
3443 * @delalloc: The blocks are allocated for the delalloc write
3444 *
3445 * This is called by somebody who is freeing space that was never actually used
3446 * on disk. For example if you reserve some space for a new leaf in transaction
3447 * A and before transaction A commits you free that leaf, you call this with
3448 * reserve set to 0 in order to clear the reservation.
3449 */
32da5386 3450void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3451 u64 num_bytes, int delalloc)
3452{
3453 struct btrfs_space_info *space_info = cache->space_info;
3454
3455 spin_lock(&space_info->lock);
3456 spin_lock(&cache->lock);
3457 if (cache->ro)
3458 space_info->bytes_readonly += num_bytes;
3459 cache->reserved -= num_bytes;
3460 space_info->bytes_reserved -= num_bytes;
3461 space_info->max_extent_size = 0;
3462
3463 if (delalloc)
3464 cache->delalloc_bytes -= num_bytes;
3465 spin_unlock(&cache->lock);
3308234a
JB
3466
3467 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3468 spin_unlock(&space_info->lock);
3469}
07730d87
JB
3470
3471static void force_metadata_allocation(struct btrfs_fs_info *info)
3472{
3473 struct list_head *head = &info->space_info;
3474 struct btrfs_space_info *found;
3475
72804905 3476 list_for_each_entry(found, head, list) {
07730d87
JB
3477 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3478 found->force_alloc = CHUNK_ALLOC_FORCE;
3479 }
07730d87
JB
3480}
3481
3482static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3483 struct btrfs_space_info *sinfo, int force)
3484{
3485 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3486 u64 thresh;
3487
3488 if (force == CHUNK_ALLOC_FORCE)
3489 return 1;
3490
3491 /*
3492 * in limited mode, we want to have some free space up to
3493 * about 1% of the FS size.
3494 */
3495 if (force == CHUNK_ALLOC_LIMITED) {
3496 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3497 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3498
3499 if (sinfo->total_bytes - bytes_used < thresh)
3500 return 1;
3501 }
3502
3503 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3504 return 0;
3505 return 1;
3506}
3507
3508int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3509{
3510 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3511
3512 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3513}
3514
820c363b 3515static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
79bd3712
FM
3516{
3517 struct btrfs_block_group *bg;
3518 int ret;
3519
3520 /*
3521 * Check if we have enough space in the system space info because we
3522 * will need to update device items in the chunk btree and insert a new
3523 * chunk item in the chunk btree as well. This will allocate a new
3524 * system block group if needed.
3525 */
3526 check_system_chunk(trans, flags);
3527
f6f39f7a 3528 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3529 if (IS_ERR(bg)) {
3530 ret = PTR_ERR(bg);
3531 goto out;
3532 }
3533
79bd3712
FM
3534 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3535 /*
3536 * Normally we are not expected to fail with -ENOSPC here, since we have
3537 * previously reserved space in the system space_info and allocated one
ecd84d54 3538 * new system chunk if necessary. However there are three exceptions:
79bd3712
FM
3539 *
3540 * 1) We may have enough free space in the system space_info but all the
3541 * existing system block groups have a profile which can not be used
3542 * for extent allocation.
3543 *
3544 * This happens when mounting in degraded mode. For example we have a
3545 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3546 * using the other device in degraded mode. If we then allocate a chunk,
3547 * we may have enough free space in the existing system space_info, but
3548 * none of the block groups can be used for extent allocation since they
3549 * have a RAID1 profile, and because we are in degraded mode with a
3550 * single device, we are forced to allocate a new system chunk with a
3551 * SINGLE profile. Making check_system_chunk() iterate over all system
3552 * block groups and check if they have a usable profile and enough space
3553 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3554 * try again after forcing allocation of a new system chunk. Like this
3555 * we avoid paying the cost of that search in normal circumstances, when
3556 * we were not mounted in degraded mode;
3557 *
3558 * 2) We had enough free space info the system space_info, and one suitable
3559 * block group to allocate from when we called check_system_chunk()
3560 * above. However right after we called it, the only system block group
3561 * with enough free space got turned into RO mode by a running scrub,
3562 * and in this case we have to allocate a new one and retry. We only
3563 * need do this allocate and retry once, since we have a transaction
ecd84d54
FM
3564 * handle and scrub uses the commit root to search for block groups;
3565 *
3566 * 3) We had one system block group with enough free space when we called
3567 * check_system_chunk(), but after that, right before we tried to
3568 * allocate the last extent buffer we needed, a discard operation came
3569 * in and it temporarily removed the last free space entry from the
3570 * block group (discard removes a free space entry, discards it, and
3571 * then adds back the entry to the block group cache).
79bd3712
FM
3572 */
3573 if (ret == -ENOSPC) {
3574 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3575 struct btrfs_block_group *sys_bg;
3576
f6f39f7a 3577 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3578 if (IS_ERR(sys_bg)) {
3579 ret = PTR_ERR(sys_bg);
3580 btrfs_abort_transaction(trans, ret);
3581 goto out;
3582 }
3583
3584 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3585 if (ret) {
3586 btrfs_abort_transaction(trans, ret);
3587 goto out;
3588 }
3589
3590 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3591 if (ret) {
3592 btrfs_abort_transaction(trans, ret);
3593 goto out;
3594 }
3595 } else if (ret) {
3596 btrfs_abort_transaction(trans, ret);
3597 goto out;
3598 }
3599out:
3600 btrfs_trans_release_chunk_metadata(trans);
3601
820c363b
NA
3602 if (ret)
3603 return ERR_PTR(ret);
3604
3605 btrfs_get_block_group(bg);
3606 return bg;
79bd3712
FM
3607}
3608
07730d87 3609/*
79bd3712
FM
3610 * Chunk allocation is done in 2 phases:
3611 *
3612 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3613 * the chunk, the chunk mapping, create its block group and add the items
3614 * that belong in the chunk btree to it - more specifically, we need to
3615 * update device items in the chunk btree and add a new chunk item to it.
3616 *
3617 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3618 * group item to the extent btree and the device extent items to the devices
3619 * btree.
3620 *
3621 * This is done to prevent deadlocks. For example when COWing a node from the
3622 * extent btree we are holding a write lock on the node's parent and if we
3623 * trigger chunk allocation and attempted to insert the new block group item
3624 * in the extent btree right way, we could deadlock because the path for the
3625 * insertion can include that parent node. At first glance it seems impossible
3626 * to trigger chunk allocation after starting a transaction since tasks should
3627 * reserve enough transaction units (metadata space), however while that is true
3628 * most of the time, chunk allocation may still be triggered for several reasons:
3629 *
3630 * 1) When reserving metadata, we check if there is enough free space in the
3631 * metadata space_info and therefore don't trigger allocation of a new chunk.
3632 * However later when the task actually tries to COW an extent buffer from
3633 * the extent btree or from the device btree for example, it is forced to
3634 * allocate a new block group (chunk) because the only one that had enough
3635 * free space was just turned to RO mode by a running scrub for example (or
3636 * device replace, block group reclaim thread, etc), so we can not use it
3637 * for allocating an extent and end up being forced to allocate a new one;
3638 *
3639 * 2) Because we only check that the metadata space_info has enough free bytes,
3640 * we end up not allocating a new metadata chunk in that case. However if
3641 * the filesystem was mounted in degraded mode, none of the existing block
3642 * groups might be suitable for extent allocation due to their incompatible
3643 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3644 * use a RAID1 profile, in degraded mode using a single device). In this case
3645 * when the task attempts to COW some extent buffer of the extent btree for
3646 * example, it will trigger allocation of a new metadata block group with a
3647 * suitable profile (SINGLE profile in the example of the degraded mount of
3648 * the RAID1 filesystem);
3649 *
3650 * 3) The task has reserved enough transaction units / metadata space, but when
3651 * it attempts to COW an extent buffer from the extent or device btree for
3652 * example, it does not find any free extent in any metadata block group,
3653 * therefore forced to try to allocate a new metadata block group.
3654 * This is because some other task allocated all available extents in the
3655 * meanwhile - this typically happens with tasks that don't reserve space
3656 * properly, either intentionally or as a bug. One example where this is
3657 * done intentionally is fsync, as it does not reserve any transaction units
3658 * and ends up allocating a variable number of metadata extents for log
ecd84d54
FM
3659 * tree extent buffers;
3660 *
3661 * 4) The task has reserved enough transaction units / metadata space, but right
3662 * before it tries to allocate the last extent buffer it needs, a discard
3663 * operation comes in and, temporarily, removes the last free space entry from
3664 * the only metadata block group that had free space (discard starts by
3665 * removing a free space entry from a block group, then does the discard
3666 * operation and, once it's done, it adds back the free space entry to the
3667 * block group).
79bd3712
FM
3668 *
3669 * We also need this 2 phases setup when adding a device to a filesystem with
3670 * a seed device - we must create new metadata and system chunks without adding
3671 * any of the block group items to the chunk, extent and device btrees. If we
3672 * did not do it this way, we would get ENOSPC when attempting to update those
3673 * btrees, since all the chunks from the seed device are read-only.
3674 *
3675 * Phase 1 does the updates and insertions to the chunk btree because if we had
3676 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3677 * parallel, we risk having too many system chunks allocated by many tasks if
3678 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3679 * extreme case this leads to exhaustion of the system chunk array in the
3680 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3681 * and with RAID filesystems (so we have more device items in the chunk btree).
3682 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3683 * the system chunk array due to concurrent allocations") provides more details.
3684 *
2bb2e00e
FM
3685 * Allocation of system chunks does not happen through this function. A task that
3686 * needs to update the chunk btree (the only btree that uses system chunks), must
3687 * preallocate chunk space by calling either check_system_chunk() or
3688 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3689 * metadata chunk or when removing a chunk, while the later is used before doing
3690 * a modification to the chunk btree - use cases for the later are adding,
3691 * removing and resizing a device as well as relocation of a system chunk.
3692 * See the comment below for more details.
79bd3712
FM
3693 *
3694 * The reservation of system space, done through check_system_chunk(), as well
3695 * as all the updates and insertions into the chunk btree must be done while
3696 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3697 * an extent buffer from the chunks btree we never trigger allocation of a new
3698 * system chunk, which would result in a deadlock (trying to lock twice an
3699 * extent buffer of the chunk btree, first time before triggering the chunk
3700 * allocation and the second time during chunk allocation while attempting to
3701 * update the chunks btree). The system chunk array is also updated while holding
3702 * that mutex. The same logic applies to removing chunks - we must reserve system
3703 * space, update the chunk btree and the system chunk array in the superblock
3704 * while holding fs_info->chunk_mutex.
3705 *
3706 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3707 *
3708 * If @force is CHUNK_ALLOC_FORCE:
07730d87
JB
3709 * - return 1 if it successfully allocates a chunk,
3710 * - return errors including -ENOSPC otherwise.
79bd3712 3711 * If @force is NOT CHUNK_ALLOC_FORCE:
07730d87
JB
3712 * - return 0 if it doesn't need to allocate a new chunk,
3713 * - return 1 if it successfully allocates a chunk,
3714 * - return errors including -ENOSPC otherwise.
3715 */
3716int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3717 enum btrfs_chunk_alloc_enum force)
3718{
3719 struct btrfs_fs_info *fs_info = trans->fs_info;
3720 struct btrfs_space_info *space_info;
820c363b 3721 struct btrfs_block_group *ret_bg;
07730d87
JB
3722 bool wait_for_alloc = false;
3723 bool should_alloc = false;
760e69c4 3724 bool from_extent_allocation = false;
07730d87
JB
3725 int ret = 0;
3726
760e69c4
NA
3727 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3728 from_extent_allocation = true;
3729 force = CHUNK_ALLOC_FORCE;
3730 }
3731
07730d87
JB
3732 /* Don't re-enter if we're already allocating a chunk */
3733 if (trans->allocating_chunk)
3734 return -ENOSPC;
79bd3712 3735 /*
2bb2e00e
FM
3736 * Allocation of system chunks can not happen through this path, as we
3737 * could end up in a deadlock if we are allocating a data or metadata
3738 * chunk and there is another task modifying the chunk btree.
3739 *
3740 * This is because while we are holding the chunk mutex, we will attempt
3741 * to add the new chunk item to the chunk btree or update an existing
3742 * device item in the chunk btree, while the other task that is modifying
3743 * the chunk btree is attempting to COW an extent buffer while holding a
3744 * lock on it and on its parent - if the COW operation triggers a system
3745 * chunk allocation, then we can deadlock because we are holding the
3746 * chunk mutex and we may need to access that extent buffer or its parent
3747 * in order to add the chunk item or update a device item.
3748 *
3749 * Tasks that want to modify the chunk tree should reserve system space
3750 * before updating the chunk btree, by calling either
3751 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3752 * It's possible that after a task reserves the space, it still ends up
3753 * here - this happens in the cases described above at do_chunk_alloc().
3754 * The task will have to either retry or fail.
79bd3712 3755 */
2bb2e00e 3756 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
79bd3712 3757 return -ENOSPC;
07730d87
JB
3758
3759 space_info = btrfs_find_space_info(fs_info, flags);
3760 ASSERT(space_info);
3761
3762 do {
3763 spin_lock(&space_info->lock);
3764 if (force < space_info->force_alloc)
3765 force = space_info->force_alloc;
3766 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3767 if (space_info->full) {
3768 /* No more free physical space */
3769 if (should_alloc)
3770 ret = -ENOSPC;
3771 else
3772 ret = 0;
3773 spin_unlock(&space_info->lock);
3774 return ret;
3775 } else if (!should_alloc) {
3776 spin_unlock(&space_info->lock);
3777 return 0;
3778 } else if (space_info->chunk_alloc) {
3779 /*
3780 * Someone is already allocating, so we need to block
3781 * until this someone is finished and then loop to
3782 * recheck if we should continue with our allocation
3783 * attempt.
3784 */
3785 wait_for_alloc = true;
1314ca78 3786 force = CHUNK_ALLOC_NO_FORCE;
07730d87
JB
3787 spin_unlock(&space_info->lock);
3788 mutex_lock(&fs_info->chunk_mutex);
3789 mutex_unlock(&fs_info->chunk_mutex);
3790 } else {
3791 /* Proceed with allocation */
3792 space_info->chunk_alloc = 1;
3793 wait_for_alloc = false;
3794 spin_unlock(&space_info->lock);
3795 }
3796
3797 cond_resched();
3798 } while (wait_for_alloc);
3799
3800 mutex_lock(&fs_info->chunk_mutex);
3801 trans->allocating_chunk = true;
3802
3803 /*
3804 * If we have mixed data/metadata chunks we want to make sure we keep
3805 * allocating mixed chunks instead of individual chunks.
3806 */
3807 if (btrfs_mixed_space_info(space_info))
3808 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3809
3810 /*
3811 * if we're doing a data chunk, go ahead and make sure that
3812 * we keep a reasonable number of metadata chunks allocated in the
3813 * FS as well.
3814 */
3815 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3816 fs_info->data_chunk_allocations++;
3817 if (!(fs_info->data_chunk_allocations %
3818 fs_info->metadata_ratio))
3819 force_metadata_allocation(fs_info);
3820 }
3821
820c363b 3822 ret_bg = do_chunk_alloc(trans, flags);
07730d87
JB
3823 trans->allocating_chunk = false;
3824
760e69c4 3825 if (IS_ERR(ret_bg)) {
820c363b 3826 ret = PTR_ERR(ret_bg);
760e69c4
NA
3827 } else if (from_extent_allocation) {
3828 /*
3829 * New block group is likely to be used soon. Try to activate
3830 * it now. Failure is OK for now.
3831 */
3832 btrfs_zone_activate(ret_bg);
3833 }
3834
3835 if (!ret)
820c363b
NA
3836 btrfs_put_block_group(ret_bg);
3837
07730d87
JB
3838 spin_lock(&space_info->lock);
3839 if (ret < 0) {
3840 if (ret == -ENOSPC)
3841 space_info->full = 1;
3842 else
3843 goto out;
3844 } else {
3845 ret = 1;
3846 space_info->max_extent_size = 0;
3847 }
3848
3849 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3850out:
3851 space_info->chunk_alloc = 0;
3852 spin_unlock(&space_info->lock);
3853 mutex_unlock(&fs_info->chunk_mutex);
07730d87
JB
3854
3855 return ret;
3856}
3857
3858static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3859{
3860 u64 num_dev;
3861
3862 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3863 if (!num_dev)
3864 num_dev = fs_info->fs_devices->rw_devices;
3865
3866 return num_dev;
3867}
3868
2bb2e00e
FM
3869static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3870 u64 bytes,
3871 u64 type)
07730d87
JB
3872{
3873 struct btrfs_fs_info *fs_info = trans->fs_info;
3874 struct btrfs_space_info *info;
3875 u64 left;
07730d87 3876 int ret = 0;
07730d87
JB
3877
3878 /*
3879 * Needed because we can end up allocating a system chunk and for an
3880 * atomic and race free space reservation in the chunk block reserve.
3881 */
3882 lockdep_assert_held(&fs_info->chunk_mutex);
3883
3884 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3885 spin_lock(&info->lock);
3886 left = info->total_bytes - btrfs_space_info_used(info, true);
3887 spin_unlock(&info->lock);
3888
2bb2e00e 3889 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
07730d87 3890 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
2bb2e00e 3891 left, bytes, type);
07730d87
JB
3892 btrfs_dump_space_info(fs_info, info, 0, 0);
3893 }
3894
2bb2e00e 3895 if (left < bytes) {
07730d87 3896 u64 flags = btrfs_system_alloc_profile(fs_info);
79bd3712 3897 struct btrfs_block_group *bg;
07730d87
JB
3898
3899 /*
3900 * Ignore failure to create system chunk. We might end up not
3901 * needing it, as we might not need to COW all nodes/leafs from
3902 * the paths we visit in the chunk tree (they were already COWed
3903 * or created in the current transaction for example).
3904 */
f6f39f7a 3905 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3906 if (IS_ERR(bg)) {
3907 ret = PTR_ERR(bg);
2bb2e00e 3908 } else {
b6a98021
NA
3909 /*
3910 * We have a new chunk. We also need to activate it for
3911 * zoned filesystem.
3912 */
3913 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3914 if (ret < 0)
3915 return;
3916
79bd3712
FM
3917 /*
3918 * If we fail to add the chunk item here, we end up
3919 * trying again at phase 2 of chunk allocation, at
3920 * btrfs_create_pending_block_groups(). So ignore
2bb2e00e
FM
3921 * any error here. An ENOSPC here could happen, due to
3922 * the cases described at do_chunk_alloc() - the system
3923 * block group we just created was just turned into RO
3924 * mode by a scrub for example, or a running discard
3925 * temporarily removed its free space entries, etc.
79bd3712
FM
3926 */
3927 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3928 }
07730d87
JB
3929 }
3930
3931 if (!ret) {
9270501c 3932 ret = btrfs_block_rsv_add(fs_info,
07730d87 3933 &fs_info->chunk_block_rsv,
2bb2e00e 3934 bytes, BTRFS_RESERVE_NO_FLUSH);
1cb3db1c 3935 if (!ret)
2bb2e00e 3936 trans->chunk_bytes_reserved += bytes;
07730d87
JB
3937 }
3938}
3939
2bb2e00e
FM
3940/*
3941 * Reserve space in the system space for allocating or removing a chunk.
3942 * The caller must be holding fs_info->chunk_mutex.
3943 */
3944void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3945{
3946 struct btrfs_fs_info *fs_info = trans->fs_info;
3947 const u64 num_devs = get_profile_num_devs(fs_info, type);
3948 u64 bytes;
3949
3950 /* num_devs device items to update and 1 chunk item to add or remove. */
3951 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3952 btrfs_calc_insert_metadata_size(fs_info, 1);
3953
3954 reserve_chunk_space(trans, bytes, type);
3955}
3956
3957/*
3958 * Reserve space in the system space, if needed, for doing a modification to the
3959 * chunk btree.
3960 *
3961 * @trans: A transaction handle.
3962 * @is_item_insertion: Indicate if the modification is for inserting a new item
3963 * in the chunk btree or if it's for the deletion or update
3964 * of an existing item.
3965 *
3966 * This is used in a context where we need to update the chunk btree outside
3967 * block group allocation and removal, to avoid a deadlock with a concurrent
3968 * task that is allocating a metadata or data block group and therefore needs to
3969 * update the chunk btree while holding the chunk mutex. After the update to the
3970 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3971 *
3972 */
3973void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3974 bool is_item_insertion)
3975{
3976 struct btrfs_fs_info *fs_info = trans->fs_info;
3977 u64 bytes;
3978
3979 if (is_item_insertion)
3980 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3981 else
3982 bytes = btrfs_calc_metadata_size(fs_info, 1);
3983
3984 mutex_lock(&fs_info->chunk_mutex);
3985 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3986 mutex_unlock(&fs_info->chunk_mutex);
3987}
3988
3e43c279
JB
3989void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3990{
32da5386 3991 struct btrfs_block_group *block_group;
3e43c279 3992
50c31eaa
JB
3993 block_group = btrfs_lookup_first_block_group(info, 0);
3994 while (block_group) {
3995 btrfs_wait_block_group_cache_done(block_group);
3996 spin_lock(&block_group->lock);
3997 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
3998 &block_group->runtime_flags)) {
3999 struct inode *inode = block_group->inode;
4000
4001 block_group->inode = NULL;
3e43c279 4002 spin_unlock(&block_group->lock);
3e43c279 4003
50c31eaa
JB
4004 ASSERT(block_group->io_ctl.inode == NULL);
4005 iput(inode);
4006 } else {
4007 spin_unlock(&block_group->lock);
4008 }
4009 block_group = btrfs_next_block_group(block_group);
3e43c279
JB
4010 }
4011}
4012
4013/*
4014 * Must be called only after stopping all workers, since we could have block
4015 * group caching kthreads running, and therefore they could race with us if we
4016 * freed the block groups before stopping them.
4017 */
4018int btrfs_free_block_groups(struct btrfs_fs_info *info)
4019{
32da5386 4020 struct btrfs_block_group *block_group;
3e43c279
JB
4021 struct btrfs_space_info *space_info;
4022 struct btrfs_caching_control *caching_ctl;
4023 struct rb_node *n;
4024
16b0c258 4025 write_lock(&info->block_group_cache_lock);
3e43c279
JB
4026 while (!list_empty(&info->caching_block_groups)) {
4027 caching_ctl = list_entry(info->caching_block_groups.next,
4028 struct btrfs_caching_control, list);
4029 list_del(&caching_ctl->list);
4030 btrfs_put_caching_control(caching_ctl);
4031 }
16b0c258 4032 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4033
4034 spin_lock(&info->unused_bgs_lock);
4035 while (!list_empty(&info->unused_bgs)) {
4036 block_group = list_first_entry(&info->unused_bgs,
32da5386 4037 struct btrfs_block_group,
3e43c279
JB
4038 bg_list);
4039 list_del_init(&block_group->bg_list);
4040 btrfs_put_block_group(block_group);
4041 }
3e43c279 4042
18bb8bbf
JT
4043 while (!list_empty(&info->reclaim_bgs)) {
4044 block_group = list_first_entry(&info->reclaim_bgs,
4045 struct btrfs_block_group,
4046 bg_list);
4047 list_del_init(&block_group->bg_list);
4048 btrfs_put_block_group(block_group);
4049 }
4050 spin_unlock(&info->unused_bgs_lock);
4051
afba2bc0
NA
4052 spin_lock(&info->zone_active_bgs_lock);
4053 while (!list_empty(&info->zone_active_bgs)) {
4054 block_group = list_first_entry(&info->zone_active_bgs,
4055 struct btrfs_block_group,
4056 active_bg_list);
4057 list_del_init(&block_group->active_bg_list);
4058 btrfs_put_block_group(block_group);
4059 }
4060 spin_unlock(&info->zone_active_bgs_lock);
4061
16b0c258 4062 write_lock(&info->block_group_cache_lock);
08dddb29 4063 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
32da5386 4064 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279 4065 cache_node);
08dddb29
FM
4066 rb_erase_cached(&block_group->cache_node,
4067 &info->block_group_cache_tree);
3e43c279 4068 RB_CLEAR_NODE(&block_group->cache_node);
16b0c258 4069 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4070
4071 down_write(&block_group->space_info->groups_sem);
4072 list_del(&block_group->list);
4073 up_write(&block_group->space_info->groups_sem);
4074
4075 /*
4076 * We haven't cached this block group, which means we could
4077 * possibly have excluded extents on this block group.
4078 */
4079 if (block_group->cached == BTRFS_CACHE_NO ||
4080 block_group->cached == BTRFS_CACHE_ERROR)
4081 btrfs_free_excluded_extents(block_group);
4082
4083 btrfs_remove_free_space_cache(block_group);
4084 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4085 ASSERT(list_empty(&block_group->dirty_list));
4086 ASSERT(list_empty(&block_group->io_list));
4087 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 4088 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 4089 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
4090 btrfs_put_block_group(block_group);
4091
16b0c258 4092 write_lock(&info->block_group_cache_lock);
3e43c279 4093 }
16b0c258 4094 write_unlock(&info->block_group_cache_lock);
3e43c279 4095
3e43c279
JB
4096 btrfs_release_global_block_rsv(info);
4097
4098 while (!list_empty(&info->space_info)) {
4099 space_info = list_entry(info->space_info.next,
4100 struct btrfs_space_info,
4101 list);
4102
4103 /*
4104 * Do not hide this behind enospc_debug, this is actually
4105 * important and indicates a real bug if this happens.
4106 */
4107 if (WARN_ON(space_info->bytes_pinned > 0 ||
3e43c279
JB
4108 space_info->bytes_may_use > 0))
4109 btrfs_dump_space_info(info, space_info, 0, 0);
40cdc509
FM
4110
4111 /*
4112 * If there was a failure to cleanup a log tree, very likely due
4113 * to an IO failure on a writeback attempt of one or more of its
4114 * extent buffers, we could not do proper (and cheap) unaccounting
4115 * of their reserved space, so don't warn on bytes_reserved > 0 in
4116 * that case.
4117 */
4118 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4119 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4120 if (WARN_ON(space_info->bytes_reserved > 0))
4121 btrfs_dump_space_info(info, space_info, 0, 0);
4122 }
4123
d611add4 4124 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
4125 list_del(&space_info->list);
4126 btrfs_sysfs_remove_space_info(space_info);
4127 }
4128 return 0;
4129}
684b752b
FM
4130
4131void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4132{
4133 atomic_inc(&cache->frozen);
4134}
4135
4136void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4137{
4138 struct btrfs_fs_info *fs_info = block_group->fs_info;
4139 struct extent_map_tree *em_tree;
4140 struct extent_map *em;
4141 bool cleanup;
4142
4143 spin_lock(&block_group->lock);
4144 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3349b57f 4145 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
684b752b
FM
4146 spin_unlock(&block_group->lock);
4147
4148 if (cleanup) {
684b752b
FM
4149 em_tree = &fs_info->mapping_tree;
4150 write_lock(&em_tree->lock);
4151 em = lookup_extent_mapping(em_tree, block_group->start,
4152 1);
4153 BUG_ON(!em); /* logic error, can't happen */
4154 remove_extent_mapping(em_tree, em);
4155 write_unlock(&em_tree->lock);
684b752b
FM
4156
4157 /* once for us and once for the tree */
4158 free_extent_map(em);
4159 free_extent_map(em);
4160
4161 /*
4162 * We may have left one free space entry and other possible
4163 * tasks trimming this block group have left 1 entry each one.
4164 * Free them if any.
4165 */
fc80f7ac 4166 btrfs_remove_free_space_cache(block_group);
684b752b
FM
4167 }
4168}
195a49ea
FM
4169
4170bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4171{
4172 bool ret = true;
4173
4174 spin_lock(&bg->lock);
4175 if (bg->ro)
4176 ret = false;
4177 else
4178 bg->swap_extents++;
4179 spin_unlock(&bg->lock);
4180
4181 return ret;
4182}
4183
4184void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4185{
4186 spin_lock(&bg->lock);
4187 ASSERT(!bg->ro);
4188 ASSERT(bg->swap_extents >= amount);
4189 bg->swap_extents -= amount;
4190 spin_unlock(&bg->lock);
4191}