]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/block-group.c
btrfs: move all btree inode initialization into btrfs_init_btree_inode
[thirdparty/linux.git] / fs / btrfs / block-group.c
CommitLineData
2e405ad8
JB
1// SPDX-License-Identifier: GPL-2.0
2
52bb7a21 3#include <linux/sizes.h>
2ca0ec77 4#include <linux/list_sort.h>
784352fe 5#include "misc.h"
2e405ad8
JB
6#include "ctree.h"
7#include "block-group.h"
3eeb3226 8#include "space-info.h"
9f21246d
JB
9#include "disk-io.h"
10#include "free-space-cache.h"
11#include "free-space-tree.h"
e3e0520b
JB
12#include "volumes.h"
13#include "transaction.h"
14#include "ref-verify.h"
4358d963
JB
15#include "sysfs.h"
16#include "tree-log.h"
77745c05 17#include "delalloc-space.h"
b0643e59 18#include "discard.h"
96a14336 19#include "raid56.h"
08e11a3d 20#include "zoned.h"
c7f13d42 21#include "fs.h"
07e81dc9 22#include "accessors.h"
a0231804 23#include "extent-tree.h"
2e405ad8 24
06d61cb1
JB
25#ifdef CONFIG_BTRFS_DEBUG
26int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27{
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34}
35#endif
36
878d7b67
JB
37/*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
e11c0406 43static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
878d7b67
JB
44{
45 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63}
64
65/*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
72static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73{
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
e11c0406 84 target = get_restripe_target(fs_info, flags);
878d7b67 85 if (target) {
162e0a16
JB
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
878d7b67
JB
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
98 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
99 allowed = BTRFS_BLOCK_GROUP_RAID6;
100 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
101 allowed = BTRFS_BLOCK_GROUP_RAID5;
102 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
103 allowed = BTRFS_BLOCK_GROUP_RAID10;
104 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
105 allowed = BTRFS_BLOCK_GROUP_RAID1;
106 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
107 allowed = BTRFS_BLOCK_GROUP_RAID0;
108
109 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
110
111 return extended_to_chunk(flags | allowed);
112}
113
ef0a82da 114u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
878d7b67
JB
115{
116 unsigned seq;
117 u64 flags;
118
119 do {
120 flags = orig_flags;
121 seq = read_seqbegin(&fs_info->profiles_lock);
122
123 if (flags & BTRFS_BLOCK_GROUP_DATA)
124 flags |= fs_info->avail_data_alloc_bits;
125 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
126 flags |= fs_info->avail_system_alloc_bits;
127 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
128 flags |= fs_info->avail_metadata_alloc_bits;
129 } while (read_seqretry(&fs_info->profiles_lock, seq));
130
131 return btrfs_reduce_alloc_profile(fs_info, flags);
132}
133
32da5386 134void btrfs_get_block_group(struct btrfs_block_group *cache)
3cad1284 135{
48aaeebe 136 refcount_inc(&cache->refs);
3cad1284
JB
137}
138
32da5386 139void btrfs_put_block_group(struct btrfs_block_group *cache)
3cad1284 140{
48aaeebe 141 if (refcount_dec_and_test(&cache->refs)) {
3cad1284 142 WARN_ON(cache->pinned > 0);
40cdc509
FM
143 /*
144 * If there was a failure to cleanup a log tree, very likely due
145 * to an IO failure on a writeback attempt of one or more of its
146 * extent buffers, we could not do proper (and cheap) unaccounting
147 * of their reserved space, so don't warn on reserved > 0 in that
148 * case.
149 */
150 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
151 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
152 WARN_ON(cache->reserved > 0);
3cad1284 153
b0643e59
DZ
154 /*
155 * A block_group shouldn't be on the discard_list anymore.
156 * Remove the block_group from the discard_list to prevent us
157 * from causing a panic due to NULL pointer dereference.
158 */
159 if (WARN_ON(!list_empty(&cache->discard_list)))
160 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
161 cache);
162
3cad1284
JB
163 /*
164 * If not empty, someone is still holding mutex of
165 * full_stripe_lock, which can only be released by caller.
166 * And it will definitely cause use-after-free when caller
167 * tries to release full stripe lock.
168 *
169 * No better way to resolve, but only to warn.
170 */
171 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
172 kfree(cache->free_space_ctl);
dafc340d 173 kfree(cache->physical_map);
3cad1284
JB
174 kfree(cache);
175 }
176}
177
4358d963
JB
178/*
179 * This adds the block group to the fs_info rb tree for the block group cache
180 */
181static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
32da5386 182 struct btrfs_block_group *block_group)
4358d963
JB
183{
184 struct rb_node **p;
185 struct rb_node *parent = NULL;
32da5386 186 struct btrfs_block_group *cache;
08dddb29 187 bool leftmost = true;
4358d963 188
9afc6649
QW
189 ASSERT(block_group->length != 0);
190
16b0c258 191 write_lock(&info->block_group_cache_lock);
08dddb29 192 p = &info->block_group_cache_tree.rb_root.rb_node;
4358d963
JB
193
194 while (*p) {
195 parent = *p;
32da5386 196 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
b3470b5d 197 if (block_group->start < cache->start) {
4358d963 198 p = &(*p)->rb_left;
b3470b5d 199 } else if (block_group->start > cache->start) {
4358d963 200 p = &(*p)->rb_right;
08dddb29 201 leftmost = false;
4358d963 202 } else {
16b0c258 203 write_unlock(&info->block_group_cache_lock);
4358d963
JB
204 return -EEXIST;
205 }
206 }
207
208 rb_link_node(&block_group->cache_node, parent, p);
08dddb29
FM
209 rb_insert_color_cached(&block_group->cache_node,
210 &info->block_group_cache_tree, leftmost);
4358d963 211
16b0c258 212 write_unlock(&info->block_group_cache_lock);
4358d963
JB
213
214 return 0;
215}
216
2e405ad8
JB
217/*
218 * This will return the block group at or after bytenr if contains is 0, else
219 * it will return the block group that contains the bytenr
220 */
32da5386 221static struct btrfs_block_group *block_group_cache_tree_search(
2e405ad8
JB
222 struct btrfs_fs_info *info, u64 bytenr, int contains)
223{
32da5386 224 struct btrfs_block_group *cache, *ret = NULL;
2e405ad8
JB
225 struct rb_node *n;
226 u64 end, start;
227
16b0c258 228 read_lock(&info->block_group_cache_lock);
08dddb29 229 n = info->block_group_cache_tree.rb_root.rb_node;
2e405ad8
JB
230
231 while (n) {
32da5386 232 cache = rb_entry(n, struct btrfs_block_group, cache_node);
b3470b5d
DS
233 end = cache->start + cache->length - 1;
234 start = cache->start;
2e405ad8
JB
235
236 if (bytenr < start) {
b3470b5d 237 if (!contains && (!ret || start < ret->start))
2e405ad8
JB
238 ret = cache;
239 n = n->rb_left;
240 } else if (bytenr > start) {
241 if (contains && bytenr <= end) {
242 ret = cache;
243 break;
244 }
245 n = n->rb_right;
246 } else {
247 ret = cache;
248 break;
249 }
250 }
08dddb29 251 if (ret)
2e405ad8 252 btrfs_get_block_group(ret);
16b0c258 253 read_unlock(&info->block_group_cache_lock);
2e405ad8
JB
254
255 return ret;
256}
257
258/*
259 * Return the block group that starts at or after bytenr
260 */
32da5386 261struct btrfs_block_group *btrfs_lookup_first_block_group(
2e405ad8
JB
262 struct btrfs_fs_info *info, u64 bytenr)
263{
264 return block_group_cache_tree_search(info, bytenr, 0);
265}
266
267/*
268 * Return the block group that contains the given bytenr
269 */
32da5386 270struct btrfs_block_group *btrfs_lookup_block_group(
2e405ad8
JB
271 struct btrfs_fs_info *info, u64 bytenr)
272{
273 return block_group_cache_tree_search(info, bytenr, 1);
274}
275
32da5386
DS
276struct btrfs_block_group *btrfs_next_block_group(
277 struct btrfs_block_group *cache)
2e405ad8
JB
278{
279 struct btrfs_fs_info *fs_info = cache->fs_info;
280 struct rb_node *node;
281
16b0c258 282 read_lock(&fs_info->block_group_cache_lock);
2e405ad8
JB
283
284 /* If our block group was removed, we need a full search. */
285 if (RB_EMPTY_NODE(&cache->cache_node)) {
b3470b5d 286 const u64 next_bytenr = cache->start + cache->length;
2e405ad8 287
16b0c258 288 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8 289 btrfs_put_block_group(cache);
8b01f931 290 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
2e405ad8
JB
291 }
292 node = rb_next(&cache->cache_node);
293 btrfs_put_block_group(cache);
294 if (node) {
32da5386 295 cache = rb_entry(node, struct btrfs_block_group, cache_node);
2e405ad8
JB
296 btrfs_get_block_group(cache);
297 } else
298 cache = NULL;
16b0c258 299 read_unlock(&fs_info->block_group_cache_lock);
2e405ad8
JB
300 return cache;
301}
3eeb3226 302
43dd529a 303/*
2306e83e
FM
304 * Check if we can do a NOCOW write for a given extent.
305 *
306 * @fs_info: The filesystem information object.
307 * @bytenr: Logical start address of the extent.
308 *
309 * Check if we can do a NOCOW write for the given extent, and increments the
310 * number of NOCOW writers in the block group that contains the extent, as long
311 * as the block group exists and it's currently not in read-only mode.
312 *
313 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
314 * is responsible for calling btrfs_dec_nocow_writers() later.
315 *
316 * Or NULL if we can not do a NOCOW write
317 */
318struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
319 u64 bytenr)
3eeb3226 320{
32da5386 321 struct btrfs_block_group *bg;
2306e83e 322 bool can_nocow = true;
3eeb3226
JB
323
324 bg = btrfs_lookup_block_group(fs_info, bytenr);
325 if (!bg)
2306e83e 326 return NULL;
3eeb3226
JB
327
328 spin_lock(&bg->lock);
329 if (bg->ro)
2306e83e 330 can_nocow = false;
3eeb3226
JB
331 else
332 atomic_inc(&bg->nocow_writers);
333 spin_unlock(&bg->lock);
334
2306e83e 335 if (!can_nocow) {
3eeb3226 336 btrfs_put_block_group(bg);
2306e83e
FM
337 return NULL;
338 }
3eeb3226 339
2306e83e
FM
340 /* No put on block group, done by btrfs_dec_nocow_writers(). */
341 return bg;
3eeb3226
JB
342}
343
43dd529a 344/*
2306e83e
FM
345 * Decrement the number of NOCOW writers in a block group.
346 *
2306e83e
FM
347 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
348 * and on the block group returned by that call. Typically this is called after
349 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
350 * relocation.
351 *
352 * After this call, the caller should not use the block group anymore. It it wants
353 * to use it, then it should get a reference on it before calling this function.
354 */
355void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
3eeb3226 356{
3eeb3226
JB
357 if (atomic_dec_and_test(&bg->nocow_writers))
358 wake_up_var(&bg->nocow_writers);
2306e83e
FM
359
360 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
3eeb3226
JB
361 btrfs_put_block_group(bg);
362}
363
32da5386 364void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
3eeb3226
JB
365{
366 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
367}
368
369void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
370 const u64 start)
371{
32da5386 372 struct btrfs_block_group *bg;
3eeb3226
JB
373
374 bg = btrfs_lookup_block_group(fs_info, start);
375 ASSERT(bg);
376 if (atomic_dec_and_test(&bg->reservations))
377 wake_up_var(&bg->reservations);
378 btrfs_put_block_group(bg);
379}
380
32da5386 381void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
3eeb3226
JB
382{
383 struct btrfs_space_info *space_info = bg->space_info;
384
385 ASSERT(bg->ro);
386
387 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
388 return;
389
390 /*
391 * Our block group is read only but before we set it to read only,
392 * some task might have had allocated an extent from it already, but it
393 * has not yet created a respective ordered extent (and added it to a
394 * root's list of ordered extents).
395 * Therefore wait for any task currently allocating extents, since the
396 * block group's reservations counter is incremented while a read lock
397 * on the groups' semaphore is held and decremented after releasing
398 * the read access on that semaphore and creating the ordered extent.
399 */
400 down_write(&space_info->groups_sem);
401 up_write(&space_info->groups_sem);
402
403 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
404}
9f21246d
JB
405
406struct btrfs_caching_control *btrfs_get_caching_control(
32da5386 407 struct btrfs_block_group *cache)
9f21246d
JB
408{
409 struct btrfs_caching_control *ctl;
410
411 spin_lock(&cache->lock);
412 if (!cache->caching_ctl) {
413 spin_unlock(&cache->lock);
414 return NULL;
415 }
416
417 ctl = cache->caching_ctl;
418 refcount_inc(&ctl->count);
419 spin_unlock(&cache->lock);
420 return ctl;
421}
422
423void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
424{
425 if (refcount_dec_and_test(&ctl->count))
426 kfree(ctl);
427}
428
429/*
430 * When we wait for progress in the block group caching, its because our
431 * allocation attempt failed at least once. So, we must sleep and let some
432 * progress happen before we try again.
433 *
434 * This function will sleep at least once waiting for new free space to show
435 * up, and then it will check the block group free space numbers for our min
436 * num_bytes. Another option is to have it go ahead and look in the rbtree for
437 * a free extent of a given size, but this is a good start.
438 *
439 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
440 * any of the information in this block group.
441 */
32da5386 442void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
9f21246d
JB
443 u64 num_bytes)
444{
445 struct btrfs_caching_control *caching_ctl;
446
447 caching_ctl = btrfs_get_caching_control(cache);
448 if (!caching_ctl)
449 return;
450
32da5386 451 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
9f21246d
JB
452 (cache->free_space_ctl->free_space >= num_bytes));
453
454 btrfs_put_caching_control(caching_ctl);
455}
456
ced8ecf0
OS
457static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
458 struct btrfs_caching_control *caching_ctl)
459{
460 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
461 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
462}
463
464static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
9f21246d
JB
465{
466 struct btrfs_caching_control *caching_ctl;
ced8ecf0 467 int ret;
9f21246d
JB
468
469 caching_ctl = btrfs_get_caching_control(cache);
470 if (!caching_ctl)
471 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
ced8ecf0 472 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
9f21246d
JB
473 btrfs_put_caching_control(caching_ctl);
474 return ret;
475}
476
477#ifdef CONFIG_BTRFS_DEBUG
32da5386 478static void fragment_free_space(struct btrfs_block_group *block_group)
9f21246d
JB
479{
480 struct btrfs_fs_info *fs_info = block_group->fs_info;
b3470b5d
DS
481 u64 start = block_group->start;
482 u64 len = block_group->length;
9f21246d
JB
483 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
484 fs_info->nodesize : fs_info->sectorsize;
485 u64 step = chunk << 1;
486
487 while (len > chunk) {
488 btrfs_remove_free_space(block_group, start, chunk);
489 start += step;
490 if (len < step)
491 len = 0;
492 else
493 len -= step;
494 }
495}
496#endif
497
498/*
499 * This is only called by btrfs_cache_block_group, since we could have freed
500 * extents we need to check the pinned_extents for any extents that can't be
501 * used yet since their free space will be released as soon as the transaction
502 * commits.
503 */
32da5386 504u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
9f21246d
JB
505{
506 struct btrfs_fs_info *info = block_group->fs_info;
507 u64 extent_start, extent_end, size, total_added = 0;
508 int ret;
509
510 while (start < end) {
fe119a6e 511 ret = find_first_extent_bit(&info->excluded_extents, start,
9f21246d
JB
512 &extent_start, &extent_end,
513 EXTENT_DIRTY | EXTENT_UPTODATE,
514 NULL);
515 if (ret)
516 break;
517
518 if (extent_start <= start) {
519 start = extent_end + 1;
520 } else if (extent_start > start && extent_start < end) {
521 size = extent_start - start;
522 total_added += size;
b0643e59
DZ
523 ret = btrfs_add_free_space_async_trimmed(block_group,
524 start, size);
9f21246d
JB
525 BUG_ON(ret); /* -ENOMEM or logic error */
526 start = extent_end + 1;
527 } else {
528 break;
529 }
530 }
531
532 if (start < end) {
533 size = end - start;
534 total_added += size;
b0643e59
DZ
535 ret = btrfs_add_free_space_async_trimmed(block_group, start,
536 size);
9f21246d
JB
537 BUG_ON(ret); /* -ENOMEM or logic error */
538 }
539
540 return total_added;
541}
542
c7eec3d9
BB
543/*
544 * Get an arbitrary extent item index / max_index through the block group
545 *
546 * @block_group the block group to sample from
547 * @index: the integral step through the block group to grab from
548 * @max_index: the granularity of the sampling
549 * @key: return value parameter for the item we find
550 *
551 * Pre-conditions on indices:
552 * 0 <= index <= max_index
553 * 0 < max_index
554 *
555 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
556 * error code on error.
557 */
558static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
559 struct btrfs_block_group *block_group,
560 int index, int max_index,
12148367 561 struct btrfs_key *found_key)
c7eec3d9
BB
562{
563 struct btrfs_fs_info *fs_info = block_group->fs_info;
564 struct btrfs_root *extent_root;
c7eec3d9
BB
565 u64 search_offset;
566 u64 search_end = block_group->start + block_group->length;
567 struct btrfs_path *path;
12148367
BB
568 struct btrfs_key search_key;
569 int ret = 0;
c7eec3d9
BB
570
571 ASSERT(index >= 0);
572 ASSERT(index <= max_index);
573 ASSERT(max_index > 0);
574 lockdep_assert_held(&caching_ctl->mutex);
575 lockdep_assert_held_read(&fs_info->commit_root_sem);
576
577 path = btrfs_alloc_path();
578 if (!path)
579 return -ENOMEM;
580
581 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
582 BTRFS_SUPER_INFO_OFFSET));
583
584 path->skip_locking = 1;
585 path->search_commit_root = 1;
586 path->reada = READA_FORWARD;
587
588 search_offset = index * div_u64(block_group->length, max_index);
12148367
BB
589 search_key.objectid = block_group->start + search_offset;
590 search_key.type = BTRFS_EXTENT_ITEM_KEY;
591 search_key.offset = 0;
c7eec3d9 592
12148367 593 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
c7eec3d9 594 /* Success; sampled an extent item in the block group */
12148367
BB
595 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
596 found_key->objectid >= block_group->start &&
597 found_key->objectid + found_key->offset <= search_end)
598 break;
c7eec3d9
BB
599
600 /* We can't possibly find a valid extent item anymore */
12148367 601 if (found_key->objectid >= search_end) {
c7eec3d9
BB
602 ret = 1;
603 break;
604 }
c7eec3d9 605 }
12148367 606
c7eec3d9
BB
607 lockdep_assert_held(&caching_ctl->mutex);
608 lockdep_assert_held_read(&fs_info->commit_root_sem);
609 btrfs_free_path(path);
610 return ret;
611}
612
613/*
614 * Best effort attempt to compute a block group's size class while caching it.
615 *
616 * @block_group: the block group we are caching
617 *
618 * We cannot infer the size class while adding free space extents, because that
619 * logic doesn't care about contiguous file extents (it doesn't differentiate
620 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
621 * file extent items. Reading all of them is quite wasteful, because usually
622 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
623 * them at even steps through the block group and pick the smallest size class
624 * we see. Since size class is best effort, and not guaranteed in general,
625 * inaccuracy is acceptable.
626 *
627 * To be more explicit about why this algorithm makes sense:
628 *
629 * If we are caching in a block group from disk, then there are three major cases
630 * to consider:
631 * 1. the block group is well behaved and all extents in it are the same size
632 * class.
633 * 2. the block group is mostly one size class with rare exceptions for last
634 * ditch allocations
635 * 3. the block group was populated before size classes and can have a totally
636 * arbitrary mix of size classes.
637 *
638 * In case 1, looking at any extent in the block group will yield the correct
639 * result. For the mixed cases, taking the minimum size class seems like a good
640 * approximation, since gaps from frees will be usable to the size class. For
641 * 2., a small handful of file extents is likely to yield the right answer. For
642 * 3, we can either read every file extent, or admit that this is best effort
643 * anyway and try to stay fast.
644 *
645 * Returns: 0 on success, negative error code on error.
646 */
647static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
648 struct btrfs_block_group *block_group)
649{
12148367 650 struct btrfs_fs_info *fs_info = block_group->fs_info;
c7eec3d9
BB
651 struct btrfs_key key;
652 int i;
653 u64 min_size = block_group->length;
654 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
655 int ret;
656
cb0922f2 657 if (!btrfs_block_group_should_use_size_class(block_group))
c7eec3d9
BB
658 return 0;
659
12148367
BB
660 lockdep_assert_held(&caching_ctl->mutex);
661 lockdep_assert_held_read(&fs_info->commit_root_sem);
c7eec3d9
BB
662 for (i = 0; i < 5; ++i) {
663 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
664 if (ret < 0)
665 goto out;
666 if (ret > 0)
667 continue;
668 min_size = min_t(u64, min_size, key.offset);
669 size_class = btrfs_calc_block_group_size_class(min_size);
670 }
671 if (size_class != BTRFS_BG_SZ_NONE) {
672 spin_lock(&block_group->lock);
673 block_group->size_class = size_class;
674 spin_unlock(&block_group->lock);
675 }
c7eec3d9
BB
676out:
677 return ret;
678}
679
9f21246d
JB
680static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
681{
32da5386 682 struct btrfs_block_group *block_group = caching_ctl->block_group;
9f21246d 683 struct btrfs_fs_info *fs_info = block_group->fs_info;
29cbcf40 684 struct btrfs_root *extent_root;
9f21246d
JB
685 struct btrfs_path *path;
686 struct extent_buffer *leaf;
687 struct btrfs_key key;
688 u64 total_found = 0;
689 u64 last = 0;
690 u32 nritems;
691 int ret;
692 bool wakeup = true;
693
694 path = btrfs_alloc_path();
695 if (!path)
696 return -ENOMEM;
697
b3470b5d 698 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
29cbcf40 699 extent_root = btrfs_extent_root(fs_info, last);
9f21246d
JB
700
701#ifdef CONFIG_BTRFS_DEBUG
702 /*
703 * If we're fragmenting we don't want to make anybody think we can
704 * allocate from this block group until we've had a chance to fragment
705 * the free space.
706 */
707 if (btrfs_should_fragment_free_space(block_group))
708 wakeup = false;
709#endif
710 /*
711 * We don't want to deadlock with somebody trying to allocate a new
712 * extent for the extent root while also trying to search the extent
713 * root to add free space. So we skip locking and search the commit
714 * root, since its read-only
715 */
716 path->skip_locking = 1;
717 path->search_commit_root = 1;
718 path->reada = READA_FORWARD;
719
720 key.objectid = last;
721 key.offset = 0;
722 key.type = BTRFS_EXTENT_ITEM_KEY;
723
724next:
725 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
726 if (ret < 0)
727 goto out;
728
729 leaf = path->nodes[0];
730 nritems = btrfs_header_nritems(leaf);
731
732 while (1) {
733 if (btrfs_fs_closing(fs_info) > 1) {
734 last = (u64)-1;
735 break;
736 }
737
738 if (path->slots[0] < nritems) {
739 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
740 } else {
741 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
742 if (ret)
743 break;
744
745 if (need_resched() ||
746 rwsem_is_contended(&fs_info->commit_root_sem)) {
9f21246d
JB
747 btrfs_release_path(path);
748 up_read(&fs_info->commit_root_sem);
749 mutex_unlock(&caching_ctl->mutex);
750 cond_resched();
751 mutex_lock(&caching_ctl->mutex);
752 down_read(&fs_info->commit_root_sem);
753 goto next;
754 }
755
756 ret = btrfs_next_leaf(extent_root, path);
757 if (ret < 0)
758 goto out;
759 if (ret)
760 break;
761 leaf = path->nodes[0];
762 nritems = btrfs_header_nritems(leaf);
763 continue;
764 }
765
766 if (key.objectid < last) {
767 key.objectid = last;
768 key.offset = 0;
769 key.type = BTRFS_EXTENT_ITEM_KEY;
9f21246d
JB
770 btrfs_release_path(path);
771 goto next;
772 }
773
b3470b5d 774 if (key.objectid < block_group->start) {
9f21246d
JB
775 path->slots[0]++;
776 continue;
777 }
778
b3470b5d 779 if (key.objectid >= block_group->start + block_group->length)
9f21246d
JB
780 break;
781
782 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
783 key.type == BTRFS_METADATA_ITEM_KEY) {
784 total_found += add_new_free_space(block_group, last,
785 key.objectid);
786 if (key.type == BTRFS_METADATA_ITEM_KEY)
787 last = key.objectid +
788 fs_info->nodesize;
789 else
790 last = key.objectid + key.offset;
791
792 if (total_found > CACHING_CTL_WAKE_UP) {
793 total_found = 0;
794 if (wakeup)
795 wake_up(&caching_ctl->wait);
796 }
797 }
798 path->slots[0]++;
799 }
800 ret = 0;
801
802 total_found += add_new_free_space(block_group, last,
b3470b5d 803 block_group->start + block_group->length);
9f21246d
JB
804
805out:
806 btrfs_free_path(path);
807 return ret;
808}
809
810static noinline void caching_thread(struct btrfs_work *work)
811{
32da5386 812 struct btrfs_block_group *block_group;
9f21246d
JB
813 struct btrfs_fs_info *fs_info;
814 struct btrfs_caching_control *caching_ctl;
815 int ret;
816
817 caching_ctl = container_of(work, struct btrfs_caching_control, work);
818 block_group = caching_ctl->block_group;
819 fs_info = block_group->fs_info;
820
821 mutex_lock(&caching_ctl->mutex);
822 down_read(&fs_info->commit_root_sem);
823
c7eec3d9 824 load_block_group_size_class(caching_ctl, block_group);
e747853c
JB
825 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
826 ret = load_free_space_cache(block_group);
827 if (ret == 1) {
828 ret = 0;
829 goto done;
830 }
831
832 /*
833 * We failed to load the space cache, set ourselves to
834 * CACHE_STARTED and carry on.
835 */
836 spin_lock(&block_group->lock);
837 block_group->cached = BTRFS_CACHE_STARTED;
838 spin_unlock(&block_group->lock);
839 wake_up(&caching_ctl->wait);
840 }
841
2f96e402
JB
842 /*
843 * If we are in the transaction that populated the free space tree we
844 * can't actually cache from the free space tree as our commit root and
845 * real root are the same, so we could change the contents of the blocks
846 * while caching. Instead do the slow caching in this case, and after
847 * the transaction has committed we will be safe.
848 */
849 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
850 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
9f21246d
JB
851 ret = load_free_space_tree(caching_ctl);
852 else
853 ret = load_extent_tree_free(caching_ctl);
e747853c 854done:
9f21246d
JB
855 spin_lock(&block_group->lock);
856 block_group->caching_ctl = NULL;
857 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
858 spin_unlock(&block_group->lock);
859
860#ifdef CONFIG_BTRFS_DEBUG
861 if (btrfs_should_fragment_free_space(block_group)) {
862 u64 bytes_used;
863
864 spin_lock(&block_group->space_info->lock);
865 spin_lock(&block_group->lock);
b3470b5d 866 bytes_used = block_group->length - block_group->used;
9f21246d
JB
867 block_group->space_info->bytes_used += bytes_used >> 1;
868 spin_unlock(&block_group->lock);
869 spin_unlock(&block_group->space_info->lock);
e11c0406 870 fragment_free_space(block_group);
9f21246d
JB
871 }
872#endif
873
9f21246d
JB
874 up_read(&fs_info->commit_root_sem);
875 btrfs_free_excluded_extents(block_group);
876 mutex_unlock(&caching_ctl->mutex);
877
878 wake_up(&caching_ctl->wait);
879
880 btrfs_put_caching_control(caching_ctl);
881 btrfs_put_block_group(block_group);
882}
883
ced8ecf0 884int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
9f21246d 885{
9f21246d 886 struct btrfs_fs_info *fs_info = cache->fs_info;
e747853c 887 struct btrfs_caching_control *caching_ctl = NULL;
9f21246d
JB
888 int ret = 0;
889
2eda5708
NA
890 /* Allocator for zoned filesystems does not use the cache at all */
891 if (btrfs_is_zoned(fs_info))
892 return 0;
893
9f21246d
JB
894 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
895 if (!caching_ctl)
896 return -ENOMEM;
897
898 INIT_LIST_HEAD(&caching_ctl->list);
899 mutex_init(&caching_ctl->mutex);
900 init_waitqueue_head(&caching_ctl->wait);
901 caching_ctl->block_group = cache;
e747853c 902 refcount_set(&caching_ctl->count, 2);
a0cac0ec 903 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
9f21246d
JB
904
905 spin_lock(&cache->lock);
9f21246d 906 if (cache->cached != BTRFS_CACHE_NO) {
9f21246d 907 kfree(caching_ctl);
e747853c
JB
908
909 caching_ctl = cache->caching_ctl;
910 if (caching_ctl)
911 refcount_inc(&caching_ctl->count);
912 spin_unlock(&cache->lock);
913 goto out;
9f21246d
JB
914 }
915 WARN_ON(cache->caching_ctl);
916 cache->caching_ctl = caching_ctl;
ced8ecf0 917 cache->cached = BTRFS_CACHE_STARTED;
9f21246d
JB
918 spin_unlock(&cache->lock);
919
16b0c258 920 write_lock(&fs_info->block_group_cache_lock);
9f21246d
JB
921 refcount_inc(&caching_ctl->count);
922 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
16b0c258 923 write_unlock(&fs_info->block_group_cache_lock);
9f21246d
JB
924
925 btrfs_get_block_group(cache);
926
927 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
e747853c 928out:
ced8ecf0
OS
929 if (wait && caching_ctl)
930 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
e747853c
JB
931 if (caching_ctl)
932 btrfs_put_caching_control(caching_ctl);
9f21246d
JB
933
934 return ret;
935}
e3e0520b
JB
936
937static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
938{
939 u64 extra_flags = chunk_to_extended(flags) &
940 BTRFS_EXTENDED_PROFILE_MASK;
941
942 write_seqlock(&fs_info->profiles_lock);
943 if (flags & BTRFS_BLOCK_GROUP_DATA)
944 fs_info->avail_data_alloc_bits &= ~extra_flags;
945 if (flags & BTRFS_BLOCK_GROUP_METADATA)
946 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
947 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
948 fs_info->avail_system_alloc_bits &= ~extra_flags;
949 write_sequnlock(&fs_info->profiles_lock);
950}
951
952/*
953 * Clear incompat bits for the following feature(s):
954 *
955 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
956 * in the whole filesystem
9c907446
DS
957 *
958 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
e3e0520b
JB
959 */
960static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
961{
9c907446
DS
962 bool found_raid56 = false;
963 bool found_raid1c34 = false;
964
965 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
966 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
967 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
e3e0520b
JB
968 struct list_head *head = &fs_info->space_info;
969 struct btrfs_space_info *sinfo;
970
971 list_for_each_entry_rcu(sinfo, head, list) {
e3e0520b
JB
972 down_read(&sinfo->groups_sem);
973 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
9c907446 974 found_raid56 = true;
e3e0520b 975 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
9c907446
DS
976 found_raid56 = true;
977 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
978 found_raid1c34 = true;
979 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
980 found_raid1c34 = true;
e3e0520b 981 up_read(&sinfo->groups_sem);
e3e0520b 982 }
d8e6fd5c 983 if (!found_raid56)
9c907446 984 btrfs_clear_fs_incompat(fs_info, RAID56);
d8e6fd5c 985 if (!found_raid1c34)
9c907446 986 btrfs_clear_fs_incompat(fs_info, RAID1C34);
e3e0520b
JB
987 }
988}
989
7357623a
QW
990static int remove_block_group_item(struct btrfs_trans_handle *trans,
991 struct btrfs_path *path,
992 struct btrfs_block_group *block_group)
993{
994 struct btrfs_fs_info *fs_info = trans->fs_info;
995 struct btrfs_root *root;
996 struct btrfs_key key;
997 int ret;
998
dfe8aec4 999 root = btrfs_block_group_root(fs_info);
7357623a
QW
1000 key.objectid = block_group->start;
1001 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1002 key.offset = block_group->length;
1003
1004 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1005 if (ret > 0)
1006 ret = -ENOENT;
1007 if (ret < 0)
1008 return ret;
1009
1010 ret = btrfs_del_item(trans, root, path);
1011 return ret;
1012}
1013
e3e0520b
JB
1014int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1015 u64 group_start, struct extent_map *em)
1016{
1017 struct btrfs_fs_info *fs_info = trans->fs_info;
e3e0520b 1018 struct btrfs_path *path;
32da5386 1019 struct btrfs_block_group *block_group;
e3e0520b 1020 struct btrfs_free_cluster *cluster;
e3e0520b
JB
1021 struct inode *inode;
1022 struct kobject *kobj = NULL;
1023 int ret;
1024 int index;
1025 int factor;
1026 struct btrfs_caching_control *caching_ctl = NULL;
1027 bool remove_em;
1028 bool remove_rsv = false;
1029
1030 block_group = btrfs_lookup_block_group(fs_info, group_start);
1031 BUG_ON(!block_group);
1032 BUG_ON(!block_group->ro);
1033
1034 trace_btrfs_remove_block_group(block_group);
1035 /*
1036 * Free the reserved super bytes from this block group before
1037 * remove it.
1038 */
1039 btrfs_free_excluded_extents(block_group);
b3470b5d
DS
1040 btrfs_free_ref_tree_range(fs_info, block_group->start,
1041 block_group->length);
e3e0520b 1042
e3e0520b
JB
1043 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1044 factor = btrfs_bg_type_to_factor(block_group->flags);
1045
1046 /* make sure this block group isn't part of an allocation cluster */
1047 cluster = &fs_info->data_alloc_cluster;
1048 spin_lock(&cluster->refill_lock);
1049 btrfs_return_cluster_to_free_space(block_group, cluster);
1050 spin_unlock(&cluster->refill_lock);
1051
1052 /*
1053 * make sure this block group isn't part of a metadata
1054 * allocation cluster
1055 */
1056 cluster = &fs_info->meta_alloc_cluster;
1057 spin_lock(&cluster->refill_lock);
1058 btrfs_return_cluster_to_free_space(block_group, cluster);
1059 spin_unlock(&cluster->refill_lock);
1060
40ab3be1 1061 btrfs_clear_treelog_bg(block_group);
c2707a25 1062 btrfs_clear_data_reloc_bg(block_group);
40ab3be1 1063
e3e0520b
JB
1064 path = btrfs_alloc_path();
1065 if (!path) {
1066 ret = -ENOMEM;
9fecd132 1067 goto out;
e3e0520b
JB
1068 }
1069
1070 /*
1071 * get the inode first so any iput calls done for the io_list
1072 * aren't the final iput (no unlinks allowed now)
1073 */
1074 inode = lookup_free_space_inode(block_group, path);
1075
1076 mutex_lock(&trans->transaction->cache_write_mutex);
1077 /*
1078 * Make sure our free space cache IO is done before removing the
1079 * free space inode
1080 */
1081 spin_lock(&trans->transaction->dirty_bgs_lock);
1082 if (!list_empty(&block_group->io_list)) {
1083 list_del_init(&block_group->io_list);
1084
1085 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1086
1087 spin_unlock(&trans->transaction->dirty_bgs_lock);
1088 btrfs_wait_cache_io(trans, block_group, path);
1089 btrfs_put_block_group(block_group);
1090 spin_lock(&trans->transaction->dirty_bgs_lock);
1091 }
1092
1093 if (!list_empty(&block_group->dirty_list)) {
1094 list_del_init(&block_group->dirty_list);
1095 remove_rsv = true;
1096 btrfs_put_block_group(block_group);
1097 }
1098 spin_unlock(&trans->transaction->dirty_bgs_lock);
1099 mutex_unlock(&trans->transaction->cache_write_mutex);
1100
36b216c8
BB
1101 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1102 if (ret)
9fecd132 1103 goto out;
e3e0520b 1104
16b0c258 1105 write_lock(&fs_info->block_group_cache_lock);
08dddb29
FM
1106 rb_erase_cached(&block_group->cache_node,
1107 &fs_info->block_group_cache_tree);
e3e0520b
JB
1108 RB_CLEAR_NODE(&block_group->cache_node);
1109
9fecd132
FM
1110 /* Once for the block groups rbtree */
1111 btrfs_put_block_group(block_group);
1112
16b0c258 1113 write_unlock(&fs_info->block_group_cache_lock);
e3e0520b
JB
1114
1115 down_write(&block_group->space_info->groups_sem);
1116 /*
1117 * we must use list_del_init so people can check to see if they
1118 * are still on the list after taking the semaphore
1119 */
1120 list_del_init(&block_group->list);
1121 if (list_empty(&block_group->space_info->block_groups[index])) {
1122 kobj = block_group->space_info->block_group_kobjs[index];
1123 block_group->space_info->block_group_kobjs[index] = NULL;
1124 clear_avail_alloc_bits(fs_info, block_group->flags);
1125 }
1126 up_write(&block_group->space_info->groups_sem);
1127 clear_incompat_bg_bits(fs_info, block_group->flags);
1128 if (kobj) {
1129 kobject_del(kobj);
1130 kobject_put(kobj);
1131 }
1132
e3e0520b
JB
1133 if (block_group->cached == BTRFS_CACHE_STARTED)
1134 btrfs_wait_block_group_cache_done(block_group);
7b9c293b
JB
1135
1136 write_lock(&fs_info->block_group_cache_lock);
1137 caching_ctl = btrfs_get_caching_control(block_group);
1138 if (!caching_ctl) {
1139 struct btrfs_caching_control *ctl;
1140
1141 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1142 if (ctl->block_group == block_group) {
1143 caching_ctl = ctl;
1144 refcount_inc(&caching_ctl->count);
1145 break;
1146 }
e3e0520b
JB
1147 }
1148 }
7b9c293b
JB
1149 if (caching_ctl)
1150 list_del_init(&caching_ctl->list);
1151 write_unlock(&fs_info->block_group_cache_lock);
1152
1153 if (caching_ctl) {
1154 /* Once for the caching bgs list and once for us. */
1155 btrfs_put_caching_control(caching_ctl);
1156 btrfs_put_caching_control(caching_ctl);
1157 }
e3e0520b
JB
1158
1159 spin_lock(&trans->transaction->dirty_bgs_lock);
1160 WARN_ON(!list_empty(&block_group->dirty_list));
1161 WARN_ON(!list_empty(&block_group->io_list));
1162 spin_unlock(&trans->transaction->dirty_bgs_lock);
1163
1164 btrfs_remove_free_space_cache(block_group);
1165
1166 spin_lock(&block_group->space_info->lock);
1167 list_del_init(&block_group->ro_list);
1168
1169 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1170 WARN_ON(block_group->space_info->total_bytes
b3470b5d 1171 < block_group->length);
e3e0520b 1172 WARN_ON(block_group->space_info->bytes_readonly
169e0da9
NA
1173 < block_group->length - block_group->zone_unusable);
1174 WARN_ON(block_group->space_info->bytes_zone_unusable
1175 < block_group->zone_unusable);
e3e0520b 1176 WARN_ON(block_group->space_info->disk_total
b3470b5d 1177 < block_group->length * factor);
e3e0520b 1178 }
b3470b5d 1179 block_group->space_info->total_bytes -= block_group->length;
169e0da9
NA
1180 block_group->space_info->bytes_readonly -=
1181 (block_group->length - block_group->zone_unusable);
1182 block_group->space_info->bytes_zone_unusable -=
1183 block_group->zone_unusable;
b3470b5d 1184 block_group->space_info->disk_total -= block_group->length * factor;
e3e0520b
JB
1185
1186 spin_unlock(&block_group->space_info->lock);
1187
ffcb9d44
FM
1188 /*
1189 * Remove the free space for the block group from the free space tree
1190 * and the block group's item from the extent tree before marking the
1191 * block group as removed. This is to prevent races with tasks that
1192 * freeze and unfreeze a block group, this task and another task
1193 * allocating a new block group - the unfreeze task ends up removing
1194 * the block group's extent map before the task calling this function
1195 * deletes the block group item from the extent tree, allowing for
1196 * another task to attempt to create another block group with the same
1197 * item key (and failing with -EEXIST and a transaction abort).
1198 */
1199 ret = remove_block_group_free_space(trans, block_group);
1200 if (ret)
1201 goto out;
1202
1203 ret = remove_block_group_item(trans, path, block_group);
1204 if (ret < 0)
1205 goto out;
1206
e3e0520b 1207 spin_lock(&block_group->lock);
3349b57f
JB
1208 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1209
e3e0520b 1210 /*
6b7304af
FM
1211 * At this point trimming or scrub can't start on this block group,
1212 * because we removed the block group from the rbtree
1213 * fs_info->block_group_cache_tree so no one can't find it anymore and
1214 * even if someone already got this block group before we removed it
1215 * from the rbtree, they have already incremented block_group->frozen -
1216 * if they didn't, for the trimming case they won't find any free space
1217 * entries because we already removed them all when we called
1218 * btrfs_remove_free_space_cache().
e3e0520b
JB
1219 *
1220 * And we must not remove the extent map from the fs_info->mapping_tree
1221 * to prevent the same logical address range and physical device space
6b7304af
FM
1222 * ranges from being reused for a new block group. This is needed to
1223 * avoid races with trimming and scrub.
1224 *
1225 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
e3e0520b
JB
1226 * completely transactionless, so while it is trimming a range the
1227 * currently running transaction might finish and a new one start,
1228 * allowing for new block groups to be created that can reuse the same
1229 * physical device locations unless we take this special care.
1230 *
1231 * There may also be an implicit trim operation if the file system
1232 * is mounted with -odiscard. The same protections must remain
1233 * in place until the extents have been discarded completely when
1234 * the transaction commit has completed.
1235 */
6b7304af 1236 remove_em = (atomic_read(&block_group->frozen) == 0);
e3e0520b
JB
1237 spin_unlock(&block_group->lock);
1238
e3e0520b
JB
1239 if (remove_em) {
1240 struct extent_map_tree *em_tree;
1241
1242 em_tree = &fs_info->mapping_tree;
1243 write_lock(&em_tree->lock);
1244 remove_extent_mapping(em_tree, em);
1245 write_unlock(&em_tree->lock);
1246 /* once for the tree */
1247 free_extent_map(em);
1248 }
f6033c5e 1249
9fecd132 1250out:
f6033c5e
XY
1251 /* Once for the lookup reference */
1252 btrfs_put_block_group(block_group);
e3e0520b
JB
1253 if (remove_rsv)
1254 btrfs_delayed_refs_rsv_release(fs_info, 1);
1255 btrfs_free_path(path);
1256 return ret;
1257}
1258
1259struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1260 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1261{
dfe8aec4 1262 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3e0520b
JB
1263 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1264 struct extent_map *em;
1265 struct map_lookup *map;
1266 unsigned int num_items;
1267
1268 read_lock(&em_tree->lock);
1269 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1270 read_unlock(&em_tree->lock);
1271 ASSERT(em && em->start == chunk_offset);
1272
1273 /*
1274 * We need to reserve 3 + N units from the metadata space info in order
1275 * to remove a block group (done at btrfs_remove_chunk() and at
1276 * btrfs_remove_block_group()), which are used for:
1277 *
1278 * 1 unit for adding the free space inode's orphan (located in the tree
1279 * of tree roots).
1280 * 1 unit for deleting the block group item (located in the extent
1281 * tree).
1282 * 1 unit for deleting the free space item (located in tree of tree
1283 * roots).
1284 * N units for deleting N device extent items corresponding to each
1285 * stripe (located in the device tree).
1286 *
1287 * In order to remove a block group we also need to reserve units in the
1288 * system space info in order to update the chunk tree (update one or
1289 * more device items and remove one chunk item), but this is done at
1290 * btrfs_remove_chunk() through a call to check_system_chunk().
1291 */
1292 map = em->map_lookup;
1293 num_items = 3 + map->num_stripes;
1294 free_extent_map(em);
1295
dfe8aec4 1296 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
e3e0520b
JB
1297}
1298
26ce2095
JB
1299/*
1300 * Mark block group @cache read-only, so later write won't happen to block
1301 * group @cache.
1302 *
1303 * If @force is not set, this function will only mark the block group readonly
1304 * if we have enough free space (1M) in other metadata/system block groups.
1305 * If @force is not set, this function will mark the block group readonly
1306 * without checking free space.
1307 *
1308 * NOTE: This function doesn't care if other block groups can contain all the
1309 * data in this block group. That check should be done by relocation routine,
1310 * not this function.
1311 */
32da5386 1312static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
26ce2095
JB
1313{
1314 struct btrfs_space_info *sinfo = cache->space_info;
1315 u64 num_bytes;
26ce2095
JB
1316 int ret = -ENOSPC;
1317
26ce2095
JB
1318 spin_lock(&sinfo->lock);
1319 spin_lock(&cache->lock);
1320
195a49ea
FM
1321 if (cache->swap_extents) {
1322 ret = -ETXTBSY;
1323 goto out;
1324 }
1325
26ce2095
JB
1326 if (cache->ro) {
1327 cache->ro++;
1328 ret = 0;
1329 goto out;
1330 }
1331
b3470b5d 1332 num_bytes = cache->length - cache->reserved - cache->pinned -
169e0da9 1333 cache->bytes_super - cache->zone_unusable - cache->used;
26ce2095
JB
1334
1335 /*
a30a3d20
JB
1336 * Data never overcommits, even in mixed mode, so do just the straight
1337 * check of left over space in how much we have allocated.
26ce2095 1338 */
a30a3d20
JB
1339 if (force) {
1340 ret = 0;
1341 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1342 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1343
1344 /*
1345 * Here we make sure if we mark this bg RO, we still have enough
1346 * free space as buffer.
1347 */
1348 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1349 ret = 0;
1350 } else {
1351 /*
1352 * We overcommit metadata, so we need to do the
1353 * btrfs_can_overcommit check here, and we need to pass in
1354 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1355 * leeway to allow us to mark this block group as read only.
1356 */
1357 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1358 BTRFS_RESERVE_NO_FLUSH))
1359 ret = 0;
1360 }
1361
1362 if (!ret) {
26ce2095 1363 sinfo->bytes_readonly += num_bytes;
169e0da9
NA
1364 if (btrfs_is_zoned(cache->fs_info)) {
1365 /* Migrate zone_unusable bytes to readonly */
1366 sinfo->bytes_readonly += cache->zone_unusable;
1367 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1368 cache->zone_unusable = 0;
1369 }
26ce2095
JB
1370 cache->ro++;
1371 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
26ce2095
JB
1372 }
1373out:
1374 spin_unlock(&cache->lock);
1375 spin_unlock(&sinfo->lock);
1376 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1377 btrfs_info(cache->fs_info,
b3470b5d 1378 "unable to make block group %llu ro", cache->start);
26ce2095
JB
1379 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1380 }
1381 return ret;
1382}
1383
fe119a6e
NB
1384static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1385 struct btrfs_block_group *bg)
45bb5d6a
NB
1386{
1387 struct btrfs_fs_info *fs_info = bg->fs_info;
fe119a6e 1388 struct btrfs_transaction *prev_trans = NULL;
45bb5d6a
NB
1389 const u64 start = bg->start;
1390 const u64 end = start + bg->length - 1;
1391 int ret;
1392
fe119a6e
NB
1393 spin_lock(&fs_info->trans_lock);
1394 if (trans->transaction->list.prev != &fs_info->trans_list) {
1395 prev_trans = list_last_entry(&trans->transaction->list,
1396 struct btrfs_transaction, list);
1397 refcount_inc(&prev_trans->use_count);
1398 }
1399 spin_unlock(&fs_info->trans_lock);
1400
45bb5d6a
NB
1401 /*
1402 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1403 * btrfs_finish_extent_commit(). If we are at transaction N, another
1404 * task might be running finish_extent_commit() for the previous
1405 * transaction N - 1, and have seen a range belonging to the block
fe119a6e
NB
1406 * group in pinned_extents before we were able to clear the whole block
1407 * group range from pinned_extents. This means that task can lookup for
1408 * the block group after we unpinned it from pinned_extents and removed
1409 * it, leading to a BUG_ON() at unpin_extent_range().
45bb5d6a
NB
1410 */
1411 mutex_lock(&fs_info->unused_bg_unpin_mutex);
fe119a6e
NB
1412 if (prev_trans) {
1413 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1414 EXTENT_DIRTY);
1415 if (ret)
534cf531 1416 goto out;
fe119a6e 1417 }
45bb5d6a 1418
fe119a6e 1419 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
45bb5d6a 1420 EXTENT_DIRTY);
534cf531 1421out:
45bb5d6a 1422 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5150bf19
FM
1423 if (prev_trans)
1424 btrfs_put_transaction(prev_trans);
45bb5d6a 1425
534cf531 1426 return ret == 0;
45bb5d6a
NB
1427}
1428
e3e0520b
JB
1429/*
1430 * Process the unused_bgs list and remove any that don't have any allocated
1431 * space inside of them.
1432 */
1433void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1434{
32da5386 1435 struct btrfs_block_group *block_group;
e3e0520b
JB
1436 struct btrfs_space_info *space_info;
1437 struct btrfs_trans_handle *trans;
6e80d4f8 1438 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
e3e0520b
JB
1439 int ret = 0;
1440
1441 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1442 return;
1443
2f12741f
JB
1444 if (btrfs_fs_closing(fs_info))
1445 return;
1446
ddfd08cb
JB
1447 /*
1448 * Long running balances can keep us blocked here for eternity, so
1449 * simply skip deletion if we're unable to get the mutex.
1450 */
f3372065 1451 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
ddfd08cb
JB
1452 return;
1453
e3e0520b
JB
1454 spin_lock(&fs_info->unused_bgs_lock);
1455 while (!list_empty(&fs_info->unused_bgs)) {
e3e0520b
JB
1456 int trimming;
1457
1458 block_group = list_first_entry(&fs_info->unused_bgs,
32da5386 1459 struct btrfs_block_group,
e3e0520b
JB
1460 bg_list);
1461 list_del_init(&block_group->bg_list);
1462
1463 space_info = block_group->space_info;
1464
1465 if (ret || btrfs_mixed_space_info(space_info)) {
1466 btrfs_put_block_group(block_group);
1467 continue;
1468 }
1469 spin_unlock(&fs_info->unused_bgs_lock);
1470
b0643e59
DZ
1471 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1472
e3e0520b
JB
1473 /* Don't want to race with allocators so take the groups_sem */
1474 down_write(&space_info->groups_sem);
6e80d4f8
DZ
1475
1476 /*
1477 * Async discard moves the final block group discard to be prior
1478 * to the unused_bgs code path. Therefore, if it's not fully
1479 * trimmed, punt it back to the async discard lists.
1480 */
1481 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1482 !btrfs_is_free_space_trimmed(block_group)) {
1483 trace_btrfs_skip_unused_block_group(block_group);
1484 up_write(&space_info->groups_sem);
1485 /* Requeue if we failed because of async discard */
1486 btrfs_discard_queue_work(&fs_info->discard_ctl,
1487 block_group);
1488 goto next;
1489 }
1490
e3e0520b
JB
1491 spin_lock(&block_group->lock);
1492 if (block_group->reserved || block_group->pinned ||
bf38be65 1493 block_group->used || block_group->ro ||
e3e0520b
JB
1494 list_is_singular(&block_group->list)) {
1495 /*
1496 * We want to bail if we made new allocations or have
1497 * outstanding allocations in this block group. We do
1498 * the ro check in case balance is currently acting on
1499 * this block group.
1500 */
1501 trace_btrfs_skip_unused_block_group(block_group);
1502 spin_unlock(&block_group->lock);
1503 up_write(&space_info->groups_sem);
1504 goto next;
1505 }
1506 spin_unlock(&block_group->lock);
1507
1508 /* We don't want to force the issue, only flip if it's ok. */
e11c0406 1509 ret = inc_block_group_ro(block_group, 0);
e3e0520b
JB
1510 up_write(&space_info->groups_sem);
1511 if (ret < 0) {
1512 ret = 0;
1513 goto next;
1514 }
1515
74e91b12
NA
1516 ret = btrfs_zone_finish(block_group);
1517 if (ret < 0) {
1518 btrfs_dec_block_group_ro(block_group);
1519 if (ret == -EAGAIN)
1520 ret = 0;
1521 goto next;
1522 }
1523
e3e0520b
JB
1524 /*
1525 * Want to do this before we do anything else so we can recover
1526 * properly if we fail to join the transaction.
1527 */
1528 trans = btrfs_start_trans_remove_block_group(fs_info,
b3470b5d 1529 block_group->start);
e3e0520b
JB
1530 if (IS_ERR(trans)) {
1531 btrfs_dec_block_group_ro(block_group);
1532 ret = PTR_ERR(trans);
1533 goto next;
1534 }
1535
1536 /*
1537 * We could have pending pinned extents for this block group,
1538 * just delete them, we don't care about them anymore.
1539 */
534cf531
FM
1540 if (!clean_pinned_extents(trans, block_group)) {
1541 btrfs_dec_block_group_ro(block_group);
e3e0520b 1542 goto end_trans;
534cf531 1543 }
e3e0520b 1544
b0643e59
DZ
1545 /*
1546 * At this point, the block_group is read only and should fail
1547 * new allocations. However, btrfs_finish_extent_commit() can
1548 * cause this block_group to be placed back on the discard
1549 * lists because now the block_group isn't fully discarded.
1550 * Bail here and try again later after discarding everything.
1551 */
1552 spin_lock(&fs_info->discard_ctl.lock);
1553 if (!list_empty(&block_group->discard_list)) {
1554 spin_unlock(&fs_info->discard_ctl.lock);
1555 btrfs_dec_block_group_ro(block_group);
1556 btrfs_discard_queue_work(&fs_info->discard_ctl,
1557 block_group);
1558 goto end_trans;
1559 }
1560 spin_unlock(&fs_info->discard_ctl.lock);
1561
e3e0520b
JB
1562 /* Reset pinned so btrfs_put_block_group doesn't complain */
1563 spin_lock(&space_info->lock);
1564 spin_lock(&block_group->lock);
1565
1566 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1567 -block_group->pinned);
1568 space_info->bytes_readonly += block_group->pinned;
e3e0520b
JB
1569 block_group->pinned = 0;
1570
1571 spin_unlock(&block_group->lock);
1572 spin_unlock(&space_info->lock);
1573
6e80d4f8
DZ
1574 /*
1575 * The normal path here is an unused block group is passed here,
1576 * then trimming is handled in the transaction commit path.
1577 * Async discard interposes before this to do the trimming
1578 * before coming down the unused block group path as trimming
1579 * will no longer be done later in the transaction commit path.
1580 */
1581 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1582 goto flip_async;
1583
dcba6e48
NA
1584 /*
1585 * DISCARD can flip during remount. On zoned filesystems, we
1586 * need to reset sequential-required zones.
1587 */
1588 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1589 btrfs_is_zoned(fs_info);
e3e0520b
JB
1590
1591 /* Implicit trim during transaction commit. */
1592 if (trimming)
6b7304af 1593 btrfs_freeze_block_group(block_group);
e3e0520b
JB
1594
1595 /*
1596 * Btrfs_remove_chunk will abort the transaction if things go
1597 * horribly wrong.
1598 */
b3470b5d 1599 ret = btrfs_remove_chunk(trans, block_group->start);
e3e0520b
JB
1600
1601 if (ret) {
1602 if (trimming)
6b7304af 1603 btrfs_unfreeze_block_group(block_group);
e3e0520b
JB
1604 goto end_trans;
1605 }
1606
1607 /*
1608 * If we're not mounted with -odiscard, we can just forget
1609 * about this block group. Otherwise we'll need to wait
1610 * until transaction commit to do the actual discard.
1611 */
1612 if (trimming) {
1613 spin_lock(&fs_info->unused_bgs_lock);
1614 /*
1615 * A concurrent scrub might have added us to the list
1616 * fs_info->unused_bgs, so use a list_move operation
1617 * to add the block group to the deleted_bgs list.
1618 */
1619 list_move(&block_group->bg_list,
1620 &trans->transaction->deleted_bgs);
1621 spin_unlock(&fs_info->unused_bgs_lock);
1622 btrfs_get_block_group(block_group);
1623 }
1624end_trans:
1625 btrfs_end_transaction(trans);
1626next:
e3e0520b
JB
1627 btrfs_put_block_group(block_group);
1628 spin_lock(&fs_info->unused_bgs_lock);
1629 }
1630 spin_unlock(&fs_info->unused_bgs_lock);
f3372065 1631 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1632 return;
1633
1634flip_async:
1635 btrfs_end_transaction(trans);
f3372065 1636 mutex_unlock(&fs_info->reclaim_bgs_lock);
6e80d4f8
DZ
1637 btrfs_put_block_group(block_group);
1638 btrfs_discard_punt_unused_bgs_list(fs_info);
e3e0520b
JB
1639}
1640
32da5386 1641void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
e3e0520b
JB
1642{
1643 struct btrfs_fs_info *fs_info = bg->fs_info;
1644
1645 spin_lock(&fs_info->unused_bgs_lock);
1646 if (list_empty(&bg->bg_list)) {
1647 btrfs_get_block_group(bg);
1648 trace_btrfs_add_unused_block_group(bg);
1649 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1650 }
1651 spin_unlock(&fs_info->unused_bgs_lock);
1652}
4358d963 1653
2ca0ec77
JT
1654/*
1655 * We want block groups with a low number of used bytes to be in the beginning
1656 * of the list, so they will get reclaimed first.
1657 */
1658static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1659 const struct list_head *b)
1660{
1661 const struct btrfs_block_group *bg1, *bg2;
1662
1663 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1664 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1665
1666 return bg1->used > bg2->used;
1667}
1668
3687fcb0
JT
1669static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1670{
1671 if (btrfs_is_zoned(fs_info))
1672 return btrfs_zoned_should_reclaim(fs_info);
1673 return true;
1674}
1675
81531225
BB
1676static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1677{
1678 const struct btrfs_space_info *space_info = bg->space_info;
1679 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1680 const u64 new_val = bg->used;
1681 const u64 old_val = new_val + bytes_freed;
1682 u64 thresh;
1683
1684 if (reclaim_thresh == 0)
1685 return false;
1686
428c8e03 1687 thresh = mult_perc(bg->length, reclaim_thresh);
81531225
BB
1688
1689 /*
1690 * If we were below the threshold before don't reclaim, we are likely a
1691 * brand new block group and we don't want to relocate new block groups.
1692 */
1693 if (old_val < thresh)
1694 return false;
1695 if (new_val >= thresh)
1696 return false;
1697 return true;
1698}
1699
18bb8bbf
JT
1700void btrfs_reclaim_bgs_work(struct work_struct *work)
1701{
1702 struct btrfs_fs_info *fs_info =
1703 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1704 struct btrfs_block_group *bg;
1705 struct btrfs_space_info *space_info;
18bb8bbf
JT
1706
1707 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1708 return;
1709
2f12741f
JB
1710 if (btrfs_fs_closing(fs_info))
1711 return;
1712
3687fcb0
JT
1713 if (!btrfs_should_reclaim(fs_info))
1714 return;
1715
ca5e4ea0
NA
1716 sb_start_write(fs_info->sb);
1717
1718 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1719 sb_end_write(fs_info->sb);
18bb8bbf 1720 return;
ca5e4ea0 1721 }
18bb8bbf 1722
9cc0b837
JT
1723 /*
1724 * Long running balances can keep us blocked here for eternity, so
1725 * simply skip reclaim if we're unable to get the mutex.
1726 */
1727 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1728 btrfs_exclop_finish(fs_info);
ca5e4ea0 1729 sb_end_write(fs_info->sb);
9cc0b837
JT
1730 return;
1731 }
1732
18bb8bbf 1733 spin_lock(&fs_info->unused_bgs_lock);
2ca0ec77
JT
1734 /*
1735 * Sort happens under lock because we can't simply splice it and sort.
1736 * The block groups might still be in use and reachable via bg_list,
1737 * and their presence in the reclaim_bgs list must be preserved.
1738 */
1739 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
18bb8bbf 1740 while (!list_empty(&fs_info->reclaim_bgs)) {
5f93e776 1741 u64 zone_unusable;
1cea5cf0
FM
1742 int ret = 0;
1743
18bb8bbf
JT
1744 bg = list_first_entry(&fs_info->reclaim_bgs,
1745 struct btrfs_block_group,
1746 bg_list);
1747 list_del_init(&bg->bg_list);
1748
1749 space_info = bg->space_info;
1750 spin_unlock(&fs_info->unused_bgs_lock);
1751
1752 /* Don't race with allocators so take the groups_sem */
1753 down_write(&space_info->groups_sem);
1754
1755 spin_lock(&bg->lock);
1756 if (bg->reserved || bg->pinned || bg->ro) {
1757 /*
1758 * We want to bail if we made new allocations or have
1759 * outstanding allocations in this block group. We do
1760 * the ro check in case balance is currently acting on
1761 * this block group.
1762 */
1763 spin_unlock(&bg->lock);
1764 up_write(&space_info->groups_sem);
1765 goto next;
1766 }
cc4804bf
BB
1767 if (bg->used == 0) {
1768 /*
1769 * It is possible that we trigger relocation on a block
1770 * group as its extents are deleted and it first goes
1771 * below the threshold, then shortly after goes empty.
1772 *
1773 * In this case, relocating it does delete it, but has
1774 * some overhead in relocation specific metadata, looking
1775 * for the non-existent extents and running some extra
1776 * transactions, which we can avoid by using one of the
1777 * other mechanisms for dealing with empty block groups.
1778 */
1779 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1780 btrfs_mark_bg_unused(bg);
1781 spin_unlock(&bg->lock);
1782 up_write(&space_info->groups_sem);
1783 goto next;
81531225
BB
1784
1785 }
1786 /*
1787 * The block group might no longer meet the reclaim condition by
1788 * the time we get around to reclaiming it, so to avoid
1789 * reclaiming overly full block_groups, skip reclaiming them.
1790 *
1791 * Since the decision making process also depends on the amount
1792 * being freed, pass in a fake giant value to skip that extra
1793 * check, which is more meaningful when adding to the list in
1794 * the first place.
1795 */
1796 if (!should_reclaim_block_group(bg, bg->length)) {
1797 spin_unlock(&bg->lock);
1798 up_write(&space_info->groups_sem);
1799 goto next;
cc4804bf 1800 }
18bb8bbf
JT
1801 spin_unlock(&bg->lock);
1802
1803 /* Get out fast, in case we're unmounting the filesystem */
1804 if (btrfs_fs_closing(fs_info)) {
1805 up_write(&space_info->groups_sem);
1806 goto next;
1807 }
1808
5f93e776
JT
1809 /*
1810 * Cache the zone_unusable value before turning the block group
1811 * to read only. As soon as the blog group is read only it's
1812 * zone_unusable value gets moved to the block group's read-only
1813 * bytes and isn't available for calculations anymore.
1814 */
1815 zone_unusable = bg->zone_unusable;
18bb8bbf
JT
1816 ret = inc_block_group_ro(bg, 0);
1817 up_write(&space_info->groups_sem);
1818 if (ret < 0)
1819 goto next;
1820
5f93e776
JT
1821 btrfs_info(fs_info,
1822 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
95cd356c
JT
1823 bg->start,
1824 div64_u64(bg->used * 100, bg->length),
5f93e776 1825 div64_u64(zone_unusable * 100, bg->length));
18bb8bbf
JT
1826 trace_btrfs_reclaim_block_group(bg);
1827 ret = btrfs_relocate_chunk(fs_info, bg->start);
74944c87
JB
1828 if (ret) {
1829 btrfs_dec_block_group_ro(bg);
18bb8bbf
JT
1830 btrfs_err(fs_info, "error relocating chunk %llu",
1831 bg->start);
74944c87 1832 }
18bb8bbf
JT
1833
1834next:
d96b3424 1835 btrfs_put_block_group(bg);
18bb8bbf
JT
1836 spin_lock(&fs_info->unused_bgs_lock);
1837 }
1838 spin_unlock(&fs_info->unused_bgs_lock);
1839 mutex_unlock(&fs_info->reclaim_bgs_lock);
1840 btrfs_exclop_finish(fs_info);
ca5e4ea0 1841 sb_end_write(fs_info->sb);
18bb8bbf
JT
1842}
1843
1844void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1845{
1846 spin_lock(&fs_info->unused_bgs_lock);
1847 if (!list_empty(&fs_info->reclaim_bgs))
1848 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1849 spin_unlock(&fs_info->unused_bgs_lock);
1850}
1851
1852void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1853{
1854 struct btrfs_fs_info *fs_info = bg->fs_info;
1855
1856 spin_lock(&fs_info->unused_bgs_lock);
1857 if (list_empty(&bg->bg_list)) {
1858 btrfs_get_block_group(bg);
1859 trace_btrfs_add_reclaim_block_group(bg);
1860 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1861 }
1862 spin_unlock(&fs_info->unused_bgs_lock);
1863}
1864
e3ba67a1
JT
1865static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1866 struct btrfs_path *path)
1867{
1868 struct extent_map_tree *em_tree;
1869 struct extent_map *em;
1870 struct btrfs_block_group_item bg;
1871 struct extent_buffer *leaf;
1872 int slot;
1873 u64 flags;
1874 int ret = 0;
1875
1876 slot = path->slots[0];
1877 leaf = path->nodes[0];
1878
1879 em_tree = &fs_info->mapping_tree;
1880 read_lock(&em_tree->lock);
1881 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1882 read_unlock(&em_tree->lock);
1883 if (!em) {
1884 btrfs_err(fs_info,
1885 "logical %llu len %llu found bg but no related chunk",
1886 key->objectid, key->offset);
1887 return -ENOENT;
1888 }
1889
1890 if (em->start != key->objectid || em->len != key->offset) {
1891 btrfs_err(fs_info,
1892 "block group %llu len %llu mismatch with chunk %llu len %llu",
1893 key->objectid, key->offset, em->start, em->len);
1894 ret = -EUCLEAN;
1895 goto out_free_em;
1896 }
1897
1898 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1899 sizeof(bg));
1900 flags = btrfs_stack_block_group_flags(&bg) &
1901 BTRFS_BLOCK_GROUP_TYPE_MASK;
1902
1903 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1904 btrfs_err(fs_info,
1905"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1906 key->objectid, key->offset, flags,
1907 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1908 ret = -EUCLEAN;
1909 }
1910
1911out_free_em:
1912 free_extent_map(em);
1913 return ret;
1914}
1915
4358d963
JB
1916static int find_first_block_group(struct btrfs_fs_info *fs_info,
1917 struct btrfs_path *path,
1918 struct btrfs_key *key)
1919{
dfe8aec4 1920 struct btrfs_root *root = btrfs_block_group_root(fs_info);
e3ba67a1 1921 int ret;
4358d963 1922 struct btrfs_key found_key;
4358d963 1923
36dfbbe2 1924 btrfs_for_each_slot(root, key, &found_key, path, ret) {
4358d963
JB
1925 if (found_key.objectid >= key->objectid &&
1926 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
36dfbbe2 1927 return read_bg_from_eb(fs_info, &found_key, path);
4358d963 1928 }
4358d963 1929 }
4358d963
JB
1930 return ret;
1931}
1932
1933static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1934{
1935 u64 extra_flags = chunk_to_extended(flags) &
1936 BTRFS_EXTENDED_PROFILE_MASK;
1937
1938 write_seqlock(&fs_info->profiles_lock);
1939 if (flags & BTRFS_BLOCK_GROUP_DATA)
1940 fs_info->avail_data_alloc_bits |= extra_flags;
1941 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1942 fs_info->avail_metadata_alloc_bits |= extra_flags;
1943 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1944 fs_info->avail_system_alloc_bits |= extra_flags;
1945 write_sequnlock(&fs_info->profiles_lock);
1946}
1947
43dd529a
DS
1948/*
1949 * Map a physical disk address to a list of logical addresses.
9ee9b979
NB
1950 *
1951 * @fs_info: the filesystem
96a14336
NB
1952 * @chunk_start: logical address of block group
1953 * @physical: physical address to map to logical addresses
1954 * @logical: return array of logical addresses which map to @physical
1955 * @naddrs: length of @logical
1956 * @stripe_len: size of IO stripe for the given block group
1957 *
1958 * Maps a particular @physical disk address to a list of @logical addresses.
1959 * Used primarily to exclude those portions of a block group that contain super
1960 * block copies.
1961 */
96a14336 1962int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1eb82ef8 1963 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
96a14336
NB
1964{
1965 struct extent_map *em;
1966 struct map_lookup *map;
1967 u64 *buf;
1968 u64 bytenr;
1776ad17
NB
1969 u64 data_stripe_length;
1970 u64 io_stripe_size;
1971 int i, nr = 0;
1972 int ret = 0;
96a14336
NB
1973
1974 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1975 if (IS_ERR(em))
1976 return -EIO;
1977
1978 map = em->map_lookup;
9e22b925 1979 data_stripe_length = em->orig_block_len;
1776ad17 1980 io_stripe_size = map->stripe_len;
138082f3 1981 chunk_start = em->start;
96a14336 1982
9e22b925
NB
1983 /* For RAID5/6 adjust to a full IO stripe length */
1984 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1776ad17 1985 io_stripe_size = map->stripe_len * nr_data_stripes(map);
96a14336
NB
1986
1987 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1776ad17
NB
1988 if (!buf) {
1989 ret = -ENOMEM;
1990 goto out;
1991 }
96a14336
NB
1992
1993 for (i = 0; i < map->num_stripes; i++) {
1776ad17
NB
1994 bool already_inserted = false;
1995 u64 stripe_nr;
138082f3 1996 u64 offset;
1776ad17
NB
1997 int j;
1998
1999 if (!in_range(physical, map->stripes[i].physical,
2000 data_stripe_length))
96a14336
NB
2001 continue;
2002
2003 stripe_nr = physical - map->stripes[i].physical;
138082f3 2004 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
96a14336 2005
ac067734
DS
2006 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2007 BTRFS_BLOCK_GROUP_RAID10)) {
96a14336
NB
2008 stripe_nr = stripe_nr * map->num_stripes + i;
2009 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
96a14336
NB
2010 }
2011 /*
2012 * The remaining case would be for RAID56, multiply by
2013 * nr_data_stripes(). Alternatively, just use rmap_len below
2014 * instead of map->stripe_len
2015 */
2016
138082f3 2017 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1776ad17
NB
2018
2019 /* Ensure we don't add duplicate addresses */
96a14336 2020 for (j = 0; j < nr; j++) {
1776ad17
NB
2021 if (buf[j] == bytenr) {
2022 already_inserted = true;
96a14336 2023 break;
1776ad17 2024 }
96a14336 2025 }
1776ad17
NB
2026
2027 if (!already_inserted)
96a14336 2028 buf[nr++] = bytenr;
96a14336
NB
2029 }
2030
2031 *logical = buf;
2032 *naddrs = nr;
1776ad17
NB
2033 *stripe_len = io_stripe_size;
2034out:
96a14336 2035 free_extent_map(em);
1776ad17 2036 return ret;
96a14336
NB
2037}
2038
32da5386 2039static int exclude_super_stripes(struct btrfs_block_group *cache)
4358d963
JB
2040{
2041 struct btrfs_fs_info *fs_info = cache->fs_info;
12659251 2042 const bool zoned = btrfs_is_zoned(fs_info);
4358d963
JB
2043 u64 bytenr;
2044 u64 *logical;
2045 int stripe_len;
2046 int i, nr, ret;
2047
b3470b5d
DS
2048 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2049 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
4358d963 2050 cache->bytes_super += stripe_len;
b3470b5d 2051 ret = btrfs_add_excluded_extent(fs_info, cache->start,
4358d963
JB
2052 stripe_len);
2053 if (ret)
2054 return ret;
2055 }
2056
2057 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2058 bytenr = btrfs_sb_offset(i);
1eb82ef8 2059 ret = btrfs_rmap_block(fs_info, cache->start,
4358d963
JB
2060 bytenr, &logical, &nr, &stripe_len);
2061 if (ret)
2062 return ret;
2063
12659251
NA
2064 /* Shouldn't have super stripes in sequential zones */
2065 if (zoned && nr) {
2066 btrfs_err(fs_info,
2067 "zoned: block group %llu must not contain super block",
2068 cache->start);
2069 return -EUCLEAN;
2070 }
2071
4358d963 2072 while (nr--) {
96f9b0f2
NB
2073 u64 len = min_t(u64, stripe_len,
2074 cache->start + cache->length - logical[nr]);
4358d963
JB
2075
2076 cache->bytes_super += len;
96f9b0f2
NB
2077 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
2078 len);
4358d963
JB
2079 if (ret) {
2080 kfree(logical);
2081 return ret;
2082 }
2083 }
2084
2085 kfree(logical);
2086 }
2087 return 0;
2088}
2089
32da5386 2090static struct btrfs_block_group *btrfs_create_block_group_cache(
9afc6649 2091 struct btrfs_fs_info *fs_info, u64 start)
4358d963 2092{
32da5386 2093 struct btrfs_block_group *cache;
4358d963
JB
2094
2095 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2096 if (!cache)
2097 return NULL;
2098
2099 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2100 GFP_NOFS);
2101 if (!cache->free_space_ctl) {
2102 kfree(cache);
2103 return NULL;
2104 }
2105
b3470b5d 2106 cache->start = start;
4358d963
JB
2107
2108 cache->fs_info = fs_info;
2109 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
4358d963 2110
6e80d4f8
DZ
2111 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2112
48aaeebe 2113 refcount_set(&cache->refs, 1);
4358d963
JB
2114 spin_lock_init(&cache->lock);
2115 init_rwsem(&cache->data_rwsem);
2116 INIT_LIST_HEAD(&cache->list);
2117 INIT_LIST_HEAD(&cache->cluster_list);
2118 INIT_LIST_HEAD(&cache->bg_list);
2119 INIT_LIST_HEAD(&cache->ro_list);
b0643e59 2120 INIT_LIST_HEAD(&cache->discard_list);
4358d963
JB
2121 INIT_LIST_HEAD(&cache->dirty_list);
2122 INIT_LIST_HEAD(&cache->io_list);
afba2bc0 2123 INIT_LIST_HEAD(&cache->active_bg_list);
cd79909b 2124 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
6b7304af 2125 atomic_set(&cache->frozen, 0);
4358d963 2126 mutex_init(&cache->free_space_lock);
c29abab4
JB
2127 cache->full_stripe_locks_root.root = RB_ROOT;
2128 mutex_init(&cache->full_stripe_locks_root.lock);
4358d963
JB
2129
2130 return cache;
2131}
2132
2133/*
2134 * Iterate all chunks and verify that each of them has the corresponding block
2135 * group
2136 */
2137static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2138{
2139 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2140 struct extent_map *em;
32da5386 2141 struct btrfs_block_group *bg;
4358d963
JB
2142 u64 start = 0;
2143 int ret = 0;
2144
2145 while (1) {
2146 read_lock(&map_tree->lock);
2147 /*
2148 * lookup_extent_mapping will return the first extent map
2149 * intersecting the range, so setting @len to 1 is enough to
2150 * get the first chunk.
2151 */
2152 em = lookup_extent_mapping(map_tree, start, 1);
2153 read_unlock(&map_tree->lock);
2154 if (!em)
2155 break;
2156
2157 bg = btrfs_lookup_block_group(fs_info, em->start);
2158 if (!bg) {
2159 btrfs_err(fs_info,
2160 "chunk start=%llu len=%llu doesn't have corresponding block group",
2161 em->start, em->len);
2162 ret = -EUCLEAN;
2163 free_extent_map(em);
2164 break;
2165 }
b3470b5d 2166 if (bg->start != em->start || bg->length != em->len ||
4358d963
JB
2167 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2168 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2169 btrfs_err(fs_info,
2170"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2171 em->start, em->len,
2172 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
b3470b5d 2173 bg->start, bg->length,
4358d963
JB
2174 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2175 ret = -EUCLEAN;
2176 free_extent_map(em);
2177 btrfs_put_block_group(bg);
2178 break;
2179 }
2180 start = em->start + em->len;
2181 free_extent_map(em);
2182 btrfs_put_block_group(bg);
2183 }
2184 return ret;
2185}
2186
ffb9e0f0 2187static int read_one_block_group(struct btrfs_fs_info *info,
4afd2fe8 2188 struct btrfs_block_group_item *bgi,
d49a2ddb 2189 const struct btrfs_key *key,
ffb9e0f0
QW
2190 int need_clear)
2191{
32da5386 2192 struct btrfs_block_group *cache;
ffb9e0f0 2193 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
ffb9e0f0
QW
2194 int ret;
2195
d49a2ddb 2196 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
ffb9e0f0 2197
9afc6649 2198 cache = btrfs_create_block_group_cache(info, key->objectid);
ffb9e0f0
QW
2199 if (!cache)
2200 return -ENOMEM;
2201
4afd2fe8
JT
2202 cache->length = key->offset;
2203 cache->used = btrfs_stack_block_group_used(bgi);
7248e0ce 2204 cache->commit_used = cache->used;
4afd2fe8 2205 cache->flags = btrfs_stack_block_group_flags(bgi);
f7238e50 2206 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
9afc6649 2207
e3e39c72
MPS
2208 set_free_space_tree_thresholds(cache);
2209
ffb9e0f0
QW
2210 if (need_clear) {
2211 /*
2212 * When we mount with old space cache, we need to
2213 * set BTRFS_DC_CLEAR and set dirty flag.
2214 *
2215 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2216 * truncate the old free space cache inode and
2217 * setup a new one.
2218 * b) Setting 'dirty flag' makes sure that we flush
2219 * the new space cache info onto disk.
2220 */
2221 if (btrfs_test_opt(info, SPACE_CACHE))
2222 cache->disk_cache_state = BTRFS_DC_CLEAR;
2223 }
ffb9e0f0
QW
2224 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2225 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2226 btrfs_err(info,
2227"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2228 cache->start);
2229 ret = -EINVAL;
2230 goto error;
2231 }
2232
a94794d5 2233 ret = btrfs_load_block_group_zone_info(cache, false);
08e11a3d
NA
2234 if (ret) {
2235 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2236 cache->start);
2237 goto error;
2238 }
2239
ffb9e0f0
QW
2240 /*
2241 * We need to exclude the super stripes now so that the space info has
2242 * super bytes accounted for, otherwise we'll think we have more space
2243 * than we actually do.
2244 */
2245 ret = exclude_super_stripes(cache);
2246 if (ret) {
2247 /* We may have excluded something, so call this just in case. */
2248 btrfs_free_excluded_extents(cache);
2249 goto error;
2250 }
2251
2252 /*
169e0da9
NA
2253 * For zoned filesystem, space after the allocation offset is the only
2254 * free space for a block group. So, we don't need any caching work.
2255 * btrfs_calc_zone_unusable() will set the amount of free space and
2256 * zone_unusable space.
2257 *
2258 * For regular filesystem, check for two cases, either we are full, and
2259 * therefore don't need to bother with the caching work since we won't
2260 * find any space, or we are empty, and we can just add all the space
2261 * in and be done with it. This saves us _a_lot_ of time, particularly
2262 * in the full case.
ffb9e0f0 2263 */
169e0da9
NA
2264 if (btrfs_is_zoned(info)) {
2265 btrfs_calc_zone_unusable(cache);
c46c4247
NA
2266 /* Should not have any excluded extents. Just in case, though. */
2267 btrfs_free_excluded_extents(cache);
169e0da9 2268 } else if (cache->length == cache->used) {
ffb9e0f0
QW
2269 cache->cached = BTRFS_CACHE_FINISHED;
2270 btrfs_free_excluded_extents(cache);
2271 } else if (cache->used == 0) {
ffb9e0f0 2272 cache->cached = BTRFS_CACHE_FINISHED;
9afc6649
QW
2273 add_new_free_space(cache, cache->start,
2274 cache->start + cache->length);
ffb9e0f0
QW
2275 btrfs_free_excluded_extents(cache);
2276 }
2277
2278 ret = btrfs_add_block_group_cache(info, cache);
2279 if (ret) {
2280 btrfs_remove_free_space_cache(cache);
2281 goto error;
2282 }
2283 trace_btrfs_add_block_group(info, cache, 0);
723de71d 2284 btrfs_add_bg_to_space_info(info, cache);
ffb9e0f0
QW
2285
2286 set_avail_alloc_bits(info, cache->flags);
a09f23c3
AJ
2287 if (btrfs_chunk_writeable(info, cache->start)) {
2288 if (cache->used == 0) {
2289 ASSERT(list_empty(&cache->bg_list));
2290 if (btrfs_test_opt(info, DISCARD_ASYNC))
2291 btrfs_discard_queue_work(&info->discard_ctl, cache);
2292 else
2293 btrfs_mark_bg_unused(cache);
2294 }
2295 } else {
ffb9e0f0 2296 inc_block_group_ro(cache, 1);
ffb9e0f0 2297 }
a09f23c3 2298
ffb9e0f0
QW
2299 return 0;
2300error:
2301 btrfs_put_block_group(cache);
2302 return ret;
2303}
2304
42437a63
JB
2305static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2306{
2307 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
42437a63
JB
2308 struct rb_node *node;
2309 int ret = 0;
2310
2311 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2312 struct extent_map *em;
2313 struct map_lookup *map;
2314 struct btrfs_block_group *bg;
2315
2316 em = rb_entry(node, struct extent_map, rb_node);
2317 map = em->map_lookup;
2318 bg = btrfs_create_block_group_cache(fs_info, em->start);
2319 if (!bg) {
2320 ret = -ENOMEM;
2321 break;
2322 }
2323
2324 /* Fill dummy cache as FULL */
2325 bg->length = em->len;
2326 bg->flags = map->type;
42437a63
JB
2327 bg->cached = BTRFS_CACHE_FINISHED;
2328 bg->used = em->len;
2329 bg->flags = map->type;
2330 ret = btrfs_add_block_group_cache(fs_info, bg);
2b29726c
QW
2331 /*
2332 * We may have some valid block group cache added already, in
2333 * that case we skip to the next one.
2334 */
2335 if (ret == -EEXIST) {
2336 ret = 0;
2337 btrfs_put_block_group(bg);
2338 continue;
2339 }
2340
42437a63
JB
2341 if (ret) {
2342 btrfs_remove_free_space_cache(bg);
2343 btrfs_put_block_group(bg);
2344 break;
2345 }
2b29726c 2346
723de71d 2347 btrfs_add_bg_to_space_info(fs_info, bg);
42437a63
JB
2348
2349 set_avail_alloc_bits(fs_info, bg->flags);
2350 }
2351 if (!ret)
2352 btrfs_init_global_block_rsv(fs_info);
2353 return ret;
2354}
2355
4358d963
JB
2356int btrfs_read_block_groups(struct btrfs_fs_info *info)
2357{
dfe8aec4 2358 struct btrfs_root *root = btrfs_block_group_root(info);
4358d963
JB
2359 struct btrfs_path *path;
2360 int ret;
32da5386 2361 struct btrfs_block_group *cache;
4358d963
JB
2362 struct btrfs_space_info *space_info;
2363 struct btrfs_key key;
4358d963
JB
2364 int need_clear = 0;
2365 u64 cache_gen;
4358d963 2366
81d5d614
QW
2367 /*
2368 * Either no extent root (with ibadroots rescue option) or we have
2369 * unsupported RO options. The fs can never be mounted read-write, so no
2370 * need to waste time searching block group items.
2371 *
2372 * This also allows new extent tree related changes to be RO compat,
2373 * no need for a full incompat flag.
2374 */
2375 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2376 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
42437a63
JB
2377 return fill_dummy_bgs(info);
2378
4358d963
JB
2379 key.objectid = 0;
2380 key.offset = 0;
2381 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2382 path = btrfs_alloc_path();
2383 if (!path)
2384 return -ENOMEM;
4358d963
JB
2385
2386 cache_gen = btrfs_super_cache_generation(info->super_copy);
2387 if (btrfs_test_opt(info, SPACE_CACHE) &&
2388 btrfs_super_generation(info->super_copy) != cache_gen)
2389 need_clear = 1;
2390 if (btrfs_test_opt(info, CLEAR_CACHE))
2391 need_clear = 1;
2392
2393 while (1) {
4afd2fe8
JT
2394 struct btrfs_block_group_item bgi;
2395 struct extent_buffer *leaf;
2396 int slot;
2397
4358d963
JB
2398 ret = find_first_block_group(info, path, &key);
2399 if (ret > 0)
2400 break;
2401 if (ret != 0)
2402 goto error;
2403
4afd2fe8
JT
2404 leaf = path->nodes[0];
2405 slot = path->slots[0];
2406
2407 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2408 sizeof(bgi));
2409
2410 btrfs_item_key_to_cpu(leaf, &key, slot);
2411 btrfs_release_path(path);
2412 ret = read_one_block_group(info, &bgi, &key, need_clear);
ffb9e0f0 2413 if (ret < 0)
4358d963 2414 goto error;
ffb9e0f0
QW
2415 key.objectid += key.offset;
2416 key.offset = 0;
4358d963 2417 }
7837fa88 2418 btrfs_release_path(path);
4358d963 2419
72804905 2420 list_for_each_entry(space_info, &info->space_info, list) {
49ea112d
JB
2421 int i;
2422
2423 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2424 if (list_empty(&space_info->block_groups[i]))
2425 continue;
2426 cache = list_first_entry(&space_info->block_groups[i],
2427 struct btrfs_block_group,
2428 list);
2429 btrfs_sysfs_add_block_group_type(cache);
2430 }
2431
4358d963
JB
2432 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2433 (BTRFS_BLOCK_GROUP_RAID10 |
2434 BTRFS_BLOCK_GROUP_RAID1_MASK |
2435 BTRFS_BLOCK_GROUP_RAID56_MASK |
2436 BTRFS_BLOCK_GROUP_DUP)))
2437 continue;
2438 /*
2439 * Avoid allocating from un-mirrored block group if there are
2440 * mirrored block groups.
2441 */
2442 list_for_each_entry(cache,
2443 &space_info->block_groups[BTRFS_RAID_RAID0],
2444 list)
e11c0406 2445 inc_block_group_ro(cache, 1);
4358d963
JB
2446 list_for_each_entry(cache,
2447 &space_info->block_groups[BTRFS_RAID_SINGLE],
2448 list)
e11c0406 2449 inc_block_group_ro(cache, 1);
4358d963
JB
2450 }
2451
2452 btrfs_init_global_block_rsv(info);
2453 ret = check_chunk_block_group_mappings(info);
2454error:
2455 btrfs_free_path(path);
2b29726c
QW
2456 /*
2457 * We've hit some error while reading the extent tree, and have
2458 * rescue=ibadroots mount option.
2459 * Try to fill the tree using dummy block groups so that the user can
2460 * continue to mount and grab their data.
2461 */
2462 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2463 ret = fill_dummy_bgs(info);
4358d963
JB
2464 return ret;
2465}
2466
79bd3712
FM
2467/*
2468 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2469 * allocation.
2470 *
2471 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2472 * phases.
2473 */
97f4728a
QW
2474static int insert_block_group_item(struct btrfs_trans_handle *trans,
2475 struct btrfs_block_group *block_group)
2476{
2477 struct btrfs_fs_info *fs_info = trans->fs_info;
2478 struct btrfs_block_group_item bgi;
dfe8aec4 2479 struct btrfs_root *root = btrfs_block_group_root(fs_info);
97f4728a 2480 struct btrfs_key key;
675dfe12
FM
2481 u64 old_commit_used;
2482 int ret;
97f4728a
QW
2483
2484 spin_lock(&block_group->lock);
2485 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2486 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2487 block_group->global_root_id);
97f4728a 2488 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
675dfe12
FM
2489 old_commit_used = block_group->commit_used;
2490 block_group->commit_used = block_group->used;
97f4728a
QW
2491 key.objectid = block_group->start;
2492 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2493 key.offset = block_group->length;
2494 spin_unlock(&block_group->lock);
2495
675dfe12
FM
2496 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2497 if (ret < 0) {
2498 spin_lock(&block_group->lock);
2499 block_group->commit_used = old_commit_used;
2500 spin_unlock(&block_group->lock);
2501 }
2502
2503 return ret;
97f4728a
QW
2504}
2505
2eadb9e7
NB
2506static int insert_dev_extent(struct btrfs_trans_handle *trans,
2507 struct btrfs_device *device, u64 chunk_offset,
2508 u64 start, u64 num_bytes)
2509{
2510 struct btrfs_fs_info *fs_info = device->fs_info;
2511 struct btrfs_root *root = fs_info->dev_root;
2512 struct btrfs_path *path;
2513 struct btrfs_dev_extent *extent;
2514 struct extent_buffer *leaf;
2515 struct btrfs_key key;
2516 int ret;
2517
2518 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2519 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
2524 key.objectid = device->devid;
2525 key.type = BTRFS_DEV_EXTENT_KEY;
2526 key.offset = start;
2527 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2528 if (ret)
2529 goto out;
2530
2531 leaf = path->nodes[0];
2532 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2533 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2534 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2535 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2536 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2537
2538 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2539 btrfs_mark_buffer_dirty(leaf);
2540out:
2541 btrfs_free_path(path);
2542 return ret;
2543}
2544
2545/*
2546 * This function belongs to phase 2.
2547 *
2548 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2549 * phases.
2550 */
2551static int insert_dev_extents(struct btrfs_trans_handle *trans,
2552 u64 chunk_offset, u64 chunk_size)
2553{
2554 struct btrfs_fs_info *fs_info = trans->fs_info;
2555 struct btrfs_device *device;
2556 struct extent_map *em;
2557 struct map_lookup *map;
2558 u64 dev_offset;
2559 u64 stripe_size;
2560 int i;
2561 int ret = 0;
2562
2563 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2564 if (IS_ERR(em))
2565 return PTR_ERR(em);
2566
2567 map = em->map_lookup;
2568 stripe_size = em->orig_block_len;
2569
2570 /*
2571 * Take the device list mutex to prevent races with the final phase of
2572 * a device replace operation that replaces the device object associated
2573 * with the map's stripes, because the device object's id can change
2574 * at any time during that final phase of the device replace operation
2575 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2576 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2577 * resulting in persisting a device extent item with such ID.
2578 */
2579 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2580 for (i = 0; i < map->num_stripes; i++) {
2581 device = map->stripes[i].dev;
2582 dev_offset = map->stripes[i].physical;
2583
2584 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2585 stripe_size);
2586 if (ret)
2587 break;
2588 }
2589 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2590
2591 free_extent_map(em);
2592 return ret;
2593}
2594
79bd3712
FM
2595/*
2596 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2597 * chunk allocation.
2598 *
2599 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2600 * phases.
2601 */
4358d963
JB
2602void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2603{
2604 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2605 struct btrfs_block_group *block_group;
4358d963
JB
2606 int ret = 0;
2607
4358d963 2608 while (!list_empty(&trans->new_bgs)) {
49ea112d
JB
2609 int index;
2610
4358d963 2611 block_group = list_first_entry(&trans->new_bgs,
32da5386 2612 struct btrfs_block_group,
4358d963
JB
2613 bg_list);
2614 if (ret)
2615 goto next;
2616
49ea112d
JB
2617 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2618
97f4728a 2619 ret = insert_block_group_item(trans, block_group);
4358d963
JB
2620 if (ret)
2621 btrfs_abort_transaction(trans, ret);
3349b57f
JB
2622 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2623 &block_group->runtime_flags)) {
79bd3712
FM
2624 mutex_lock(&fs_info->chunk_mutex);
2625 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2626 mutex_unlock(&fs_info->chunk_mutex);
2627 if (ret)
2628 btrfs_abort_transaction(trans, ret);
2629 }
2eadb9e7
NB
2630 ret = insert_dev_extents(trans, block_group->start,
2631 block_group->length);
4358d963
JB
2632 if (ret)
2633 btrfs_abort_transaction(trans, ret);
2634 add_block_group_free_space(trans, block_group);
49ea112d
JB
2635
2636 /*
2637 * If we restriped during balance, we may have added a new raid
2638 * type, so now add the sysfs entries when it is safe to do so.
2639 * We don't have to worry about locking here as it's handled in
2640 * btrfs_sysfs_add_block_group_type.
2641 */
2642 if (block_group->space_info->block_group_kobjs[index] == NULL)
2643 btrfs_sysfs_add_block_group_type(block_group);
2644
4358d963
JB
2645 /* Already aborted the transaction if it failed. */
2646next:
2647 btrfs_delayed_refs_rsv_release(fs_info, 1);
2648 list_del_init(&block_group->bg_list);
2649 }
2650 btrfs_trans_release_chunk_metadata(trans);
2651}
2652
f7238e50
JB
2653/*
2654 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2655 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2656 */
2657static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2658{
2659 u64 div = SZ_1G;
2660 u64 index;
2661
2662 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2663 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2664
2665 /* If we have a smaller fs index based on 128MiB. */
2666 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2667 div = SZ_128M;
2668
2669 offset = div64_u64(offset, div);
2670 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2671 return index;
2672}
2673
79bd3712
FM
2674struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2675 u64 bytes_used, u64 type,
2676 u64 chunk_offset, u64 size)
4358d963
JB
2677{
2678 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2679 struct btrfs_block_group *cache;
4358d963
JB
2680 int ret;
2681
2682 btrfs_set_log_full_commit(trans);
2683
9afc6649 2684 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
4358d963 2685 if (!cache)
79bd3712 2686 return ERR_PTR(-ENOMEM);
4358d963 2687
9afc6649 2688 cache->length = size;
e3e39c72 2689 set_free_space_tree_thresholds(cache);
bf38be65 2690 cache->used = bytes_used;
4358d963 2691 cache->flags = type;
4358d963 2692 cache->cached = BTRFS_CACHE_FINISHED;
f7238e50
JB
2693 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2694
997e3e2e 2695 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
0d7764ff 2696 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
08e11a3d 2697
a94794d5 2698 ret = btrfs_load_block_group_zone_info(cache, true);
08e11a3d
NA
2699 if (ret) {
2700 btrfs_put_block_group(cache);
79bd3712 2701 return ERR_PTR(ret);
08e11a3d
NA
2702 }
2703
4358d963
JB
2704 ret = exclude_super_stripes(cache);
2705 if (ret) {
2706 /* We may have excluded something, so call this just in case */
2707 btrfs_free_excluded_extents(cache);
2708 btrfs_put_block_group(cache);
79bd3712 2709 return ERR_PTR(ret);
4358d963
JB
2710 }
2711
2712 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2713
2714 btrfs_free_excluded_extents(cache);
2715
4358d963
JB
2716 /*
2717 * Ensure the corresponding space_info object is created and
2718 * assigned to our block group. We want our bg to be added to the rbtree
2719 * with its ->space_info set.
2720 */
2721 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2722 ASSERT(cache->space_info);
2723
2724 ret = btrfs_add_block_group_cache(fs_info, cache);
2725 if (ret) {
2726 btrfs_remove_free_space_cache(cache);
2727 btrfs_put_block_group(cache);
79bd3712 2728 return ERR_PTR(ret);
4358d963
JB
2729 }
2730
2731 /*
2732 * Now that our block group has its ->space_info set and is inserted in
2733 * the rbtree, update the space info's counters.
2734 */
2735 trace_btrfs_add_block_group(fs_info, cache, 1);
723de71d 2736 btrfs_add_bg_to_space_info(fs_info, cache);
4358d963
JB
2737 btrfs_update_global_block_rsv(fs_info);
2738
9d4b0a12
JB
2739#ifdef CONFIG_BTRFS_DEBUG
2740 if (btrfs_should_fragment_free_space(cache)) {
2741 u64 new_bytes_used = size - bytes_used;
2742
2743 cache->space_info->bytes_used += new_bytes_used >> 1;
2744 fragment_free_space(cache);
2745 }
2746#endif
4358d963
JB
2747
2748 list_add_tail(&cache->bg_list, &trans->new_bgs);
2749 trans->delayed_ref_updates++;
2750 btrfs_update_delayed_refs_rsv(trans);
2751
2752 set_avail_alloc_bits(fs_info, type);
79bd3712 2753 return cache;
4358d963 2754}
26ce2095 2755
b12de528
QW
2756/*
2757 * Mark one block group RO, can be called several times for the same block
2758 * group.
2759 *
2760 * @cache: the destination block group
2761 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2762 * ensure we still have some free space after marking this
2763 * block group RO.
2764 */
2765int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2766 bool do_chunk_alloc)
26ce2095
JB
2767{
2768 struct btrfs_fs_info *fs_info = cache->fs_info;
2769 struct btrfs_trans_handle *trans;
dfe8aec4 2770 struct btrfs_root *root = btrfs_block_group_root(fs_info);
26ce2095
JB
2771 u64 alloc_flags;
2772 int ret;
b6e9f16c 2773 bool dirty_bg_running;
26ce2095 2774
2d192fc4
QW
2775 /*
2776 * This can only happen when we are doing read-only scrub on read-only
2777 * mount.
2778 * In that case we should not start a new transaction on read-only fs.
2779 * Thus here we skip all chunk allocations.
2780 */
2781 if (sb_rdonly(fs_info->sb)) {
2782 mutex_lock(&fs_info->ro_block_group_mutex);
2783 ret = inc_block_group_ro(cache, 0);
2784 mutex_unlock(&fs_info->ro_block_group_mutex);
2785 return ret;
2786 }
2787
b6e9f16c 2788 do {
dfe8aec4 2789 trans = btrfs_join_transaction(root);
b6e9f16c
NB
2790 if (IS_ERR(trans))
2791 return PTR_ERR(trans);
26ce2095 2792
b6e9f16c 2793 dirty_bg_running = false;
26ce2095 2794
b6e9f16c
NB
2795 /*
2796 * We're not allowed to set block groups readonly after the dirty
2797 * block group cache has started writing. If it already started,
2798 * back off and let this transaction commit.
2799 */
2800 mutex_lock(&fs_info->ro_block_group_mutex);
2801 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2802 u64 transid = trans->transid;
26ce2095 2803
b6e9f16c
NB
2804 mutex_unlock(&fs_info->ro_block_group_mutex);
2805 btrfs_end_transaction(trans);
2806
2807 ret = btrfs_wait_for_commit(fs_info, transid);
2808 if (ret)
2809 return ret;
2810 dirty_bg_running = true;
2811 }
2812 } while (dirty_bg_running);
26ce2095 2813
b12de528 2814 if (do_chunk_alloc) {
26ce2095 2815 /*
b12de528
QW
2816 * If we are changing raid levels, try to allocate a
2817 * corresponding block group with the new raid level.
26ce2095 2818 */
349e120e 2819 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
b12de528
QW
2820 if (alloc_flags != cache->flags) {
2821 ret = btrfs_chunk_alloc(trans, alloc_flags,
2822 CHUNK_ALLOC_FORCE);
2823 /*
2824 * ENOSPC is allowed here, we may have enough space
2825 * already allocated at the new raid level to carry on
2826 */
2827 if (ret == -ENOSPC)
2828 ret = 0;
2829 if (ret < 0)
2830 goto out;
2831 }
26ce2095
JB
2832 }
2833
a7a63acc 2834 ret = inc_block_group_ro(cache, 0);
195a49ea 2835 if (!do_chunk_alloc || ret == -ETXTBSY)
b12de528 2836 goto unlock_out;
26ce2095
JB
2837 if (!ret)
2838 goto out;
2839 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2840 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2841 if (ret < 0)
2842 goto out;
b6a98021
NA
2843 /*
2844 * We have allocated a new chunk. We also need to activate that chunk to
2845 * grant metadata tickets for zoned filesystem.
2846 */
2847 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2848 if (ret < 0)
2849 goto out;
2850
e11c0406 2851 ret = inc_block_group_ro(cache, 0);
195a49ea
FM
2852 if (ret == -ETXTBSY)
2853 goto unlock_out;
26ce2095
JB
2854out:
2855 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
349e120e 2856 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
26ce2095
JB
2857 mutex_lock(&fs_info->chunk_mutex);
2858 check_system_chunk(trans, alloc_flags);
2859 mutex_unlock(&fs_info->chunk_mutex);
2860 }
b12de528 2861unlock_out:
26ce2095
JB
2862 mutex_unlock(&fs_info->ro_block_group_mutex);
2863
2864 btrfs_end_transaction(trans);
2865 return ret;
2866}
2867
32da5386 2868void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
26ce2095
JB
2869{
2870 struct btrfs_space_info *sinfo = cache->space_info;
2871 u64 num_bytes;
2872
2873 BUG_ON(!cache->ro);
2874
2875 spin_lock(&sinfo->lock);
2876 spin_lock(&cache->lock);
2877 if (!--cache->ro) {
169e0da9
NA
2878 if (btrfs_is_zoned(cache->fs_info)) {
2879 /* Migrate zone_unusable bytes back */
98173255
NA
2880 cache->zone_unusable =
2881 (cache->alloc_offset - cache->used) +
2882 (cache->length - cache->zone_capacity);
169e0da9
NA
2883 sinfo->bytes_zone_unusable += cache->zone_unusable;
2884 sinfo->bytes_readonly -= cache->zone_unusable;
2885 }
f9f28e5b
NA
2886 num_bytes = cache->length - cache->reserved -
2887 cache->pinned - cache->bytes_super -
2888 cache->zone_unusable - cache->used;
2889 sinfo->bytes_readonly -= num_bytes;
26ce2095
JB
2890 list_del_init(&cache->ro_list);
2891 }
2892 spin_unlock(&cache->lock);
2893 spin_unlock(&sinfo->lock);
2894}
77745c05 2895
3be4d8ef
QW
2896static int update_block_group_item(struct btrfs_trans_handle *trans,
2897 struct btrfs_path *path,
2898 struct btrfs_block_group *cache)
77745c05
JB
2899{
2900 struct btrfs_fs_info *fs_info = trans->fs_info;
2901 int ret;
dfe8aec4 2902 struct btrfs_root *root = btrfs_block_group_root(fs_info);
77745c05
JB
2903 unsigned long bi;
2904 struct extent_buffer *leaf;
bf38be65 2905 struct btrfs_block_group_item bgi;
b3470b5d 2906 struct btrfs_key key;
7248e0ce
QW
2907 u64 old_commit_used;
2908 u64 used;
2909
2910 /*
2911 * Block group items update can be triggered out of commit transaction
2912 * critical section, thus we need a consistent view of used bytes.
2913 * We cannot use cache->used directly outside of the spin lock, as it
2914 * may be changed.
2915 */
2916 spin_lock(&cache->lock);
2917 old_commit_used = cache->commit_used;
2918 used = cache->used;
2919 /* No change in used bytes, can safely skip it. */
2920 if (cache->commit_used == used) {
2921 spin_unlock(&cache->lock);
2922 return 0;
2923 }
2924 cache->commit_used = used;
2925 spin_unlock(&cache->lock);
b3470b5d
DS
2926
2927 key.objectid = cache->start;
2928 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2929 key.offset = cache->length;
77745c05 2930
3be4d8ef 2931 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
77745c05
JB
2932 if (ret) {
2933 if (ret > 0)
2934 ret = -ENOENT;
2935 goto fail;
2936 }
2937
2938 leaf = path->nodes[0];
2939 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
7248e0ce 2940 btrfs_set_stack_block_group_used(&bgi, used);
de0dc456 2941 btrfs_set_stack_block_group_chunk_objectid(&bgi,
f7238e50 2942 cache->global_root_id);
de0dc456 2943 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
bf38be65 2944 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
77745c05
JB
2945 btrfs_mark_buffer_dirty(leaf);
2946fail:
2947 btrfs_release_path(path);
7248e0ce
QW
2948 /* We didn't update the block group item, need to revert @commit_used. */
2949 if (ret < 0) {
2950 spin_lock(&cache->lock);
2951 cache->commit_used = old_commit_used;
2952 spin_unlock(&cache->lock);
2953 }
77745c05
JB
2954 return ret;
2955
2956}
2957
32da5386 2958static int cache_save_setup(struct btrfs_block_group *block_group,
77745c05
JB
2959 struct btrfs_trans_handle *trans,
2960 struct btrfs_path *path)
2961{
2962 struct btrfs_fs_info *fs_info = block_group->fs_info;
2963 struct btrfs_root *root = fs_info->tree_root;
2964 struct inode *inode = NULL;
2965 struct extent_changeset *data_reserved = NULL;
2966 u64 alloc_hint = 0;
2967 int dcs = BTRFS_DC_ERROR;
0044ae11 2968 u64 cache_size = 0;
77745c05
JB
2969 int retries = 0;
2970 int ret = 0;
2971
af456a2c
BB
2972 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2973 return 0;
2974
77745c05
JB
2975 /*
2976 * If this block group is smaller than 100 megs don't bother caching the
2977 * block group.
2978 */
b3470b5d 2979 if (block_group->length < (100 * SZ_1M)) {
77745c05
JB
2980 spin_lock(&block_group->lock);
2981 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2982 spin_unlock(&block_group->lock);
2983 return 0;
2984 }
2985
bf31f87f 2986 if (TRANS_ABORTED(trans))
77745c05
JB
2987 return 0;
2988again:
2989 inode = lookup_free_space_inode(block_group, path);
2990 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2991 ret = PTR_ERR(inode);
2992 btrfs_release_path(path);
2993 goto out;
2994 }
2995
2996 if (IS_ERR(inode)) {
2997 BUG_ON(retries);
2998 retries++;
2999
3000 if (block_group->ro)
3001 goto out_free;
3002
3003 ret = create_free_space_inode(trans, block_group, path);
3004 if (ret)
3005 goto out_free;
3006 goto again;
3007 }
3008
3009 /*
3010 * We want to set the generation to 0, that way if anything goes wrong
3011 * from here on out we know not to trust this cache when we load up next
3012 * time.
3013 */
3014 BTRFS_I(inode)->generation = 0;
9a56fcd1 3015 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
77745c05
JB
3016 if (ret) {
3017 /*
3018 * So theoretically we could recover from this, simply set the
3019 * super cache generation to 0 so we know to invalidate the
3020 * cache, but then we'd have to keep track of the block groups
3021 * that fail this way so we know we _have_ to reset this cache
3022 * before the next commit or risk reading stale cache. So to
3023 * limit our exposure to horrible edge cases lets just abort the
3024 * transaction, this only happens in really bad situations
3025 * anyway.
3026 */
3027 btrfs_abort_transaction(trans, ret);
3028 goto out_put;
3029 }
3030 WARN_ON(ret);
3031
3032 /* We've already setup this transaction, go ahead and exit */
3033 if (block_group->cache_generation == trans->transid &&
3034 i_size_read(inode)) {
3035 dcs = BTRFS_DC_SETUP;
3036 goto out_put;
3037 }
3038
3039 if (i_size_read(inode) > 0) {
3040 ret = btrfs_check_trunc_cache_free_space(fs_info,
3041 &fs_info->global_block_rsv);
3042 if (ret)
3043 goto out_put;
3044
3045 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3046 if (ret)
3047 goto out_put;
3048 }
3049
3050 spin_lock(&block_group->lock);
3051 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3052 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3053 /*
3054 * don't bother trying to write stuff out _if_
3055 * a) we're not cached,
3056 * b) we're with nospace_cache mount option,
3057 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3058 */
3059 dcs = BTRFS_DC_WRITTEN;
3060 spin_unlock(&block_group->lock);
3061 goto out_put;
3062 }
3063 spin_unlock(&block_group->lock);
3064
3065 /*
3066 * We hit an ENOSPC when setting up the cache in this transaction, just
3067 * skip doing the setup, we've already cleared the cache so we're safe.
3068 */
3069 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3070 ret = -ENOSPC;
3071 goto out_put;
3072 }
3073
3074 /*
3075 * Try to preallocate enough space based on how big the block group is.
3076 * Keep in mind this has to include any pinned space which could end up
3077 * taking up quite a bit since it's not folded into the other space
3078 * cache.
3079 */
0044ae11
QW
3080 cache_size = div_u64(block_group->length, SZ_256M);
3081 if (!cache_size)
3082 cache_size = 1;
77745c05 3083
0044ae11
QW
3084 cache_size *= 16;
3085 cache_size *= fs_info->sectorsize;
77745c05 3086
36ea6f3e 3087 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
1daedb1d 3088 cache_size, false);
77745c05
JB
3089 if (ret)
3090 goto out_put;
3091
0044ae11
QW
3092 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3093 cache_size, cache_size,
77745c05
JB
3094 &alloc_hint);
3095 /*
3096 * Our cache requires contiguous chunks so that we don't modify a bunch
3097 * of metadata or split extents when writing the cache out, which means
3098 * we can enospc if we are heavily fragmented in addition to just normal
3099 * out of space conditions. So if we hit this just skip setting up any
3100 * other block groups for this transaction, maybe we'll unpin enough
3101 * space the next time around.
3102 */
3103 if (!ret)
3104 dcs = BTRFS_DC_SETUP;
3105 else if (ret == -ENOSPC)
3106 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3107
3108out_put:
3109 iput(inode);
3110out_free:
3111 btrfs_release_path(path);
3112out:
3113 spin_lock(&block_group->lock);
3114 if (!ret && dcs == BTRFS_DC_SETUP)
3115 block_group->cache_generation = trans->transid;
3116 block_group->disk_cache_state = dcs;
3117 spin_unlock(&block_group->lock);
3118
3119 extent_changeset_free(data_reserved);
3120 return ret;
3121}
3122
3123int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3124{
3125 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3126 struct btrfs_block_group *cache, *tmp;
77745c05
JB
3127 struct btrfs_transaction *cur_trans = trans->transaction;
3128 struct btrfs_path *path;
3129
3130 if (list_empty(&cur_trans->dirty_bgs) ||
3131 !btrfs_test_opt(fs_info, SPACE_CACHE))
3132 return 0;
3133
3134 path = btrfs_alloc_path();
3135 if (!path)
3136 return -ENOMEM;
3137
3138 /* Could add new block groups, use _safe just in case */
3139 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3140 dirty_list) {
3141 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3142 cache_save_setup(cache, trans, path);
3143 }
3144
3145 btrfs_free_path(path);
3146 return 0;
3147}
3148
3149/*
3150 * Transaction commit does final block group cache writeback during a critical
3151 * section where nothing is allowed to change the FS. This is required in
3152 * order for the cache to actually match the block group, but can introduce a
3153 * lot of latency into the commit.
3154 *
3155 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3156 * There's a chance we'll have to redo some of it if the block group changes
3157 * again during the commit, but it greatly reduces the commit latency by
3158 * getting rid of the easy block groups while we're still allowing others to
3159 * join the commit.
3160 */
3161int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3162{
3163 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3164 struct btrfs_block_group *cache;
77745c05
JB
3165 struct btrfs_transaction *cur_trans = trans->transaction;
3166 int ret = 0;
3167 int should_put;
3168 struct btrfs_path *path = NULL;
3169 LIST_HEAD(dirty);
3170 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
3171 int loops = 0;
3172
3173 spin_lock(&cur_trans->dirty_bgs_lock);
3174 if (list_empty(&cur_trans->dirty_bgs)) {
3175 spin_unlock(&cur_trans->dirty_bgs_lock);
3176 return 0;
3177 }
3178 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3179 spin_unlock(&cur_trans->dirty_bgs_lock);
3180
3181again:
3182 /* Make sure all the block groups on our dirty list actually exist */
3183 btrfs_create_pending_block_groups(trans);
3184
3185 if (!path) {
3186 path = btrfs_alloc_path();
938fcbfb
JB
3187 if (!path) {
3188 ret = -ENOMEM;
3189 goto out;
3190 }
77745c05
JB
3191 }
3192
3193 /*
3194 * cache_write_mutex is here only to save us from balance or automatic
3195 * removal of empty block groups deleting this block group while we are
3196 * writing out the cache
3197 */
3198 mutex_lock(&trans->transaction->cache_write_mutex);
3199 while (!list_empty(&dirty)) {
3200 bool drop_reserve = true;
3201
32da5386 3202 cache = list_first_entry(&dirty, struct btrfs_block_group,
77745c05
JB
3203 dirty_list);
3204 /*
3205 * This can happen if something re-dirties a block group that
3206 * is already under IO. Just wait for it to finish and then do
3207 * it all again
3208 */
3209 if (!list_empty(&cache->io_list)) {
3210 list_del_init(&cache->io_list);
3211 btrfs_wait_cache_io(trans, cache, path);
3212 btrfs_put_block_group(cache);
3213 }
3214
3215
3216 /*
3217 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3218 * it should update the cache_state. Don't delete until after
3219 * we wait.
3220 *
3221 * Since we're not running in the commit critical section
3222 * we need the dirty_bgs_lock to protect from update_block_group
3223 */
3224 spin_lock(&cur_trans->dirty_bgs_lock);
3225 list_del_init(&cache->dirty_list);
3226 spin_unlock(&cur_trans->dirty_bgs_lock);
3227
3228 should_put = 1;
3229
3230 cache_save_setup(cache, trans, path);
3231
3232 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3233 cache->io_ctl.inode = NULL;
3234 ret = btrfs_write_out_cache(trans, cache, path);
3235 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3236 should_put = 0;
3237
3238 /*
3239 * The cache_write_mutex is protecting the
3240 * io_list, also refer to the definition of
3241 * btrfs_transaction::io_bgs for more details
3242 */
3243 list_add_tail(&cache->io_list, io);
3244 } else {
3245 /*
3246 * If we failed to write the cache, the
3247 * generation will be bad and life goes on
3248 */
3249 ret = 0;
3250 }
3251 }
3252 if (!ret) {
3be4d8ef 3253 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3254 /*
3255 * Our block group might still be attached to the list
3256 * of new block groups in the transaction handle of some
3257 * other task (struct btrfs_trans_handle->new_bgs). This
3258 * means its block group item isn't yet in the extent
3259 * tree. If this happens ignore the error, as we will
3260 * try again later in the critical section of the
3261 * transaction commit.
3262 */
3263 if (ret == -ENOENT) {
3264 ret = 0;
3265 spin_lock(&cur_trans->dirty_bgs_lock);
3266 if (list_empty(&cache->dirty_list)) {
3267 list_add_tail(&cache->dirty_list,
3268 &cur_trans->dirty_bgs);
3269 btrfs_get_block_group(cache);
3270 drop_reserve = false;
3271 }
3272 spin_unlock(&cur_trans->dirty_bgs_lock);
3273 } else if (ret) {
3274 btrfs_abort_transaction(trans, ret);
3275 }
3276 }
3277
3278 /* If it's not on the io list, we need to put the block group */
3279 if (should_put)
3280 btrfs_put_block_group(cache);
3281 if (drop_reserve)
3282 btrfs_delayed_refs_rsv_release(fs_info, 1);
77745c05
JB
3283 /*
3284 * Avoid blocking other tasks for too long. It might even save
3285 * us from writing caches for block groups that are going to be
3286 * removed.
3287 */
3288 mutex_unlock(&trans->transaction->cache_write_mutex);
938fcbfb
JB
3289 if (ret)
3290 goto out;
77745c05
JB
3291 mutex_lock(&trans->transaction->cache_write_mutex);
3292 }
3293 mutex_unlock(&trans->transaction->cache_write_mutex);
3294
3295 /*
3296 * Go through delayed refs for all the stuff we've just kicked off
3297 * and then loop back (just once)
3298 */
34d1eb0e
JB
3299 if (!ret)
3300 ret = btrfs_run_delayed_refs(trans, 0);
77745c05
JB
3301 if (!ret && loops == 0) {
3302 loops++;
3303 spin_lock(&cur_trans->dirty_bgs_lock);
3304 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3305 /*
3306 * dirty_bgs_lock protects us from concurrent block group
3307 * deletes too (not just cache_write_mutex).
3308 */
3309 if (!list_empty(&dirty)) {
3310 spin_unlock(&cur_trans->dirty_bgs_lock);
3311 goto again;
3312 }
3313 spin_unlock(&cur_trans->dirty_bgs_lock);
938fcbfb
JB
3314 }
3315out:
3316 if (ret < 0) {
3317 spin_lock(&cur_trans->dirty_bgs_lock);
3318 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3319 spin_unlock(&cur_trans->dirty_bgs_lock);
77745c05
JB
3320 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3321 }
3322
3323 btrfs_free_path(path);
3324 return ret;
3325}
3326
3327int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3328{
3329 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 3330 struct btrfs_block_group *cache;
77745c05
JB
3331 struct btrfs_transaction *cur_trans = trans->transaction;
3332 int ret = 0;
3333 int should_put;
3334 struct btrfs_path *path;
3335 struct list_head *io = &cur_trans->io_bgs;
77745c05
JB
3336
3337 path = btrfs_alloc_path();
3338 if (!path)
3339 return -ENOMEM;
3340
3341 /*
3342 * Even though we are in the critical section of the transaction commit,
3343 * we can still have concurrent tasks adding elements to this
3344 * transaction's list of dirty block groups. These tasks correspond to
3345 * endio free space workers started when writeback finishes for a
3346 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3347 * allocate new block groups as a result of COWing nodes of the root
3348 * tree when updating the free space inode. The writeback for the space
3349 * caches is triggered by an earlier call to
3350 * btrfs_start_dirty_block_groups() and iterations of the following
3351 * loop.
3352 * Also we want to do the cache_save_setup first and then run the
3353 * delayed refs to make sure we have the best chance at doing this all
3354 * in one shot.
3355 */
3356 spin_lock(&cur_trans->dirty_bgs_lock);
3357 while (!list_empty(&cur_trans->dirty_bgs)) {
3358 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 3359 struct btrfs_block_group,
77745c05
JB
3360 dirty_list);
3361
3362 /*
3363 * This can happen if cache_save_setup re-dirties a block group
3364 * that is already under IO. Just wait for it to finish and
3365 * then do it all again
3366 */
3367 if (!list_empty(&cache->io_list)) {
3368 spin_unlock(&cur_trans->dirty_bgs_lock);
3369 list_del_init(&cache->io_list);
3370 btrfs_wait_cache_io(trans, cache, path);
3371 btrfs_put_block_group(cache);
3372 spin_lock(&cur_trans->dirty_bgs_lock);
3373 }
3374
3375 /*
3376 * Don't remove from the dirty list until after we've waited on
3377 * any pending IO
3378 */
3379 list_del_init(&cache->dirty_list);
3380 spin_unlock(&cur_trans->dirty_bgs_lock);
3381 should_put = 1;
3382
3383 cache_save_setup(cache, trans, path);
3384
3385 if (!ret)
3386 ret = btrfs_run_delayed_refs(trans,
3387 (unsigned long) -1);
3388
3389 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3390 cache->io_ctl.inode = NULL;
3391 ret = btrfs_write_out_cache(trans, cache, path);
3392 if (ret == 0 && cache->io_ctl.inode) {
77745c05
JB
3393 should_put = 0;
3394 list_add_tail(&cache->io_list, io);
3395 } else {
3396 /*
3397 * If we failed to write the cache, the
3398 * generation will be bad and life goes on
3399 */
3400 ret = 0;
3401 }
3402 }
3403 if (!ret) {
3be4d8ef 3404 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3405 /*
3406 * One of the free space endio workers might have
3407 * created a new block group while updating a free space
3408 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3409 * and hasn't released its transaction handle yet, in
3410 * which case the new block group is still attached to
3411 * its transaction handle and its creation has not
3412 * finished yet (no block group item in the extent tree
3413 * yet, etc). If this is the case, wait for all free
3414 * space endio workers to finish and retry. This is a
260db43c 3415 * very rare case so no need for a more efficient and
77745c05
JB
3416 * complex approach.
3417 */
3418 if (ret == -ENOENT) {
3419 wait_event(cur_trans->writer_wait,
3420 atomic_read(&cur_trans->num_writers) == 1);
3be4d8ef 3421 ret = update_block_group_item(trans, path, cache);
77745c05
JB
3422 }
3423 if (ret)
3424 btrfs_abort_transaction(trans, ret);
3425 }
3426
3427 /* If its not on the io list, we need to put the block group */
3428 if (should_put)
3429 btrfs_put_block_group(cache);
3430 btrfs_delayed_refs_rsv_release(fs_info, 1);
3431 spin_lock(&cur_trans->dirty_bgs_lock);
3432 }
3433 spin_unlock(&cur_trans->dirty_bgs_lock);
3434
3435 /*
3436 * Refer to the definition of io_bgs member for details why it's safe
3437 * to use it without any locking
3438 */
3439 while (!list_empty(io)) {
32da5386 3440 cache = list_first_entry(io, struct btrfs_block_group,
77745c05
JB
3441 io_list);
3442 list_del_init(&cache->io_list);
3443 btrfs_wait_cache_io(trans, cache, path);
3444 btrfs_put_block_group(cache);
3445 }
3446
3447 btrfs_free_path(path);
3448 return ret;
3449}
606d1bf1
JB
3450
3451int btrfs_update_block_group(struct btrfs_trans_handle *trans,
11b66fa6 3452 u64 bytenr, u64 num_bytes, bool alloc)
606d1bf1
JB
3453{
3454 struct btrfs_fs_info *info = trans->fs_info;
32da5386 3455 struct btrfs_block_group *cache = NULL;
606d1bf1
JB
3456 u64 total = num_bytes;
3457 u64 old_val;
3458 u64 byte_in_group;
3459 int factor;
3460 int ret = 0;
3461
3462 /* Block accounting for super block */
3463 spin_lock(&info->delalloc_root_lock);
3464 old_val = btrfs_super_bytes_used(info->super_copy);
3465 if (alloc)
3466 old_val += num_bytes;
3467 else
3468 old_val -= num_bytes;
3469 btrfs_set_super_bytes_used(info->super_copy, old_val);
3470 spin_unlock(&info->delalloc_root_lock);
3471
3472 while (total) {
df384da5 3473 struct btrfs_space_info *space_info;
efbf35a1 3474 bool reclaim = false;
ac2f1e63 3475
606d1bf1
JB
3476 cache = btrfs_lookup_block_group(info, bytenr);
3477 if (!cache) {
3478 ret = -ENOENT;
3479 break;
3480 }
df384da5 3481 space_info = cache->space_info;
606d1bf1
JB
3482 factor = btrfs_bg_type_to_factor(cache->flags);
3483
3484 /*
3485 * If this block group has free space cache written out, we
3486 * need to make sure to load it if we are removing space. This
3487 * is because we need the unpinning stage to actually add the
3488 * space back to the block group, otherwise we will leak space.
3489 */
32da5386 3490 if (!alloc && !btrfs_block_group_done(cache))
ced8ecf0 3491 btrfs_cache_block_group(cache, true);
606d1bf1 3492
b3470b5d
DS
3493 byte_in_group = bytenr - cache->start;
3494 WARN_ON(byte_in_group > cache->length);
606d1bf1 3495
df384da5 3496 spin_lock(&space_info->lock);
606d1bf1
JB
3497 spin_lock(&cache->lock);
3498
3499 if (btrfs_test_opt(info, SPACE_CACHE) &&
3500 cache->disk_cache_state < BTRFS_DC_CLEAR)
3501 cache->disk_cache_state = BTRFS_DC_CLEAR;
3502
bf38be65 3503 old_val = cache->used;
b3470b5d 3504 num_bytes = min(total, cache->length - byte_in_group);
606d1bf1
JB
3505 if (alloc) {
3506 old_val += num_bytes;
bf38be65 3507 cache->used = old_val;
606d1bf1 3508 cache->reserved -= num_bytes;
df384da5
JB
3509 space_info->bytes_reserved -= num_bytes;
3510 space_info->bytes_used += num_bytes;
3511 space_info->disk_used += num_bytes * factor;
606d1bf1 3512 spin_unlock(&cache->lock);
df384da5 3513 spin_unlock(&space_info->lock);
606d1bf1
JB
3514 } else {
3515 old_val -= num_bytes;
bf38be65 3516 cache->used = old_val;
606d1bf1 3517 cache->pinned += num_bytes;
df384da5
JB
3518 btrfs_space_info_update_bytes_pinned(info, space_info,
3519 num_bytes);
3520 space_info->bytes_used -= num_bytes;
3521 space_info->disk_used -= num_bytes * factor;
ac2f1e63
JB
3522
3523 reclaim = should_reclaim_block_group(cache, num_bytes);
52bb7a21 3524
606d1bf1 3525 spin_unlock(&cache->lock);
df384da5 3526 spin_unlock(&space_info->lock);
606d1bf1 3527
fe119a6e 3528 set_extent_dirty(&trans->transaction->pinned_extents,
606d1bf1
JB
3529 bytenr, bytenr + num_bytes - 1,
3530 GFP_NOFS | __GFP_NOFAIL);
3531 }
3532
3533 spin_lock(&trans->transaction->dirty_bgs_lock);
3534 if (list_empty(&cache->dirty_list)) {
3535 list_add_tail(&cache->dirty_list,
3536 &trans->transaction->dirty_bgs);
3537 trans->delayed_ref_updates++;
3538 btrfs_get_block_group(cache);
3539 }
3540 spin_unlock(&trans->transaction->dirty_bgs_lock);
3541
3542 /*
3543 * No longer have used bytes in this block group, queue it for
3544 * deletion. We do this after adding the block group to the
3545 * dirty list to avoid races between cleaner kthread and space
3546 * cache writeout.
3547 */
6e80d4f8
DZ
3548 if (!alloc && old_val == 0) {
3549 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3550 btrfs_mark_bg_unused(cache);
ac2f1e63
JB
3551 } else if (!alloc && reclaim) {
3552 btrfs_mark_bg_to_reclaim(cache);
6e80d4f8 3553 }
606d1bf1
JB
3554
3555 btrfs_put_block_group(cache);
3556 total -= num_bytes;
3557 bytenr += num_bytes;
3558 }
3559
3560 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3561 btrfs_update_delayed_refs_rsv(trans);
3562 return ret;
3563}
3564
43dd529a
DS
3565/*
3566 * Update the block_group and space info counters.
3567 *
606d1bf1
JB
3568 * @cache: The cache we are manipulating
3569 * @ram_bytes: The number of bytes of file content, and will be same to
3570 * @num_bytes except for the compress path.
3571 * @num_bytes: The number of bytes in question
3572 * @delalloc: The blocks are allocated for the delalloc write
3573 *
3574 * This is called by the allocator when it reserves space. If this is a
3575 * reservation and the block group has become read only we cannot make the
3576 * reservation and return -EAGAIN, otherwise this function always succeeds.
3577 */
32da5386 3578int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
52bb7a21
BB
3579 u64 ram_bytes, u64 num_bytes, int delalloc,
3580 bool force_wrong_size_class)
606d1bf1
JB
3581{
3582 struct btrfs_space_info *space_info = cache->space_info;
52bb7a21 3583 enum btrfs_block_group_size_class size_class;
606d1bf1
JB
3584 int ret = 0;
3585
3586 spin_lock(&space_info->lock);
3587 spin_lock(&cache->lock);
3588 if (cache->ro) {
3589 ret = -EAGAIN;
52bb7a21
BB
3590 goto out;
3591 }
99ffb43e 3592
cb0922f2 3593 if (btrfs_block_group_should_use_size_class(cache)) {
52bb7a21
BB
3594 size_class = btrfs_calc_block_group_size_class(num_bytes);
3595 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3596 if (ret)
3597 goto out;
606d1bf1 3598 }
52bb7a21
BB
3599 cache->reserved += num_bytes;
3600 space_info->bytes_reserved += num_bytes;
3601 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3602 space_info->flags, num_bytes, 1);
3603 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3604 space_info, -ram_bytes);
3605 if (delalloc)
3606 cache->delalloc_bytes += num_bytes;
3607
3608 /*
3609 * Compression can use less space than we reserved, so wake tickets if
3610 * that happens.
3611 */
3612 if (num_bytes < ram_bytes)
3613 btrfs_try_granting_tickets(cache->fs_info, space_info);
3614out:
606d1bf1
JB
3615 spin_unlock(&cache->lock);
3616 spin_unlock(&space_info->lock);
3617 return ret;
3618}
3619
43dd529a
DS
3620/*
3621 * Update the block_group and space info counters.
3622 *
606d1bf1
JB
3623 * @cache: The cache we are manipulating
3624 * @num_bytes: The number of bytes in question
3625 * @delalloc: The blocks are allocated for the delalloc write
3626 *
3627 * This is called by somebody who is freeing space that was never actually used
3628 * on disk. For example if you reserve some space for a new leaf in transaction
3629 * A and before transaction A commits you free that leaf, you call this with
3630 * reserve set to 0 in order to clear the reservation.
3631 */
32da5386 3632void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
606d1bf1
JB
3633 u64 num_bytes, int delalloc)
3634{
3635 struct btrfs_space_info *space_info = cache->space_info;
3636
3637 spin_lock(&space_info->lock);
3638 spin_lock(&cache->lock);
3639 if (cache->ro)
3640 space_info->bytes_readonly += num_bytes;
3641 cache->reserved -= num_bytes;
3642 space_info->bytes_reserved -= num_bytes;
3643 space_info->max_extent_size = 0;
3644
3645 if (delalloc)
3646 cache->delalloc_bytes -= num_bytes;
3647 spin_unlock(&cache->lock);
3308234a
JB
3648
3649 btrfs_try_granting_tickets(cache->fs_info, space_info);
606d1bf1
JB
3650 spin_unlock(&space_info->lock);
3651}
07730d87
JB
3652
3653static void force_metadata_allocation(struct btrfs_fs_info *info)
3654{
3655 struct list_head *head = &info->space_info;
3656 struct btrfs_space_info *found;
3657
72804905 3658 list_for_each_entry(found, head, list) {
07730d87
JB
3659 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3660 found->force_alloc = CHUNK_ALLOC_FORCE;
3661 }
07730d87
JB
3662}
3663
3664static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3665 struct btrfs_space_info *sinfo, int force)
3666{
3667 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3668 u64 thresh;
3669
3670 if (force == CHUNK_ALLOC_FORCE)
3671 return 1;
3672
3673 /*
3674 * in limited mode, we want to have some free space up to
3675 * about 1% of the FS size.
3676 */
3677 if (force == CHUNK_ALLOC_LIMITED) {
3678 thresh = btrfs_super_total_bytes(fs_info->super_copy);
428c8e03 3679 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
07730d87
JB
3680
3681 if (sinfo->total_bytes - bytes_used < thresh)
3682 return 1;
3683 }
3684
428c8e03 3685 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
07730d87
JB
3686 return 0;
3687 return 1;
3688}
3689
3690int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3691{
3692 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3693
3694 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3695}
3696
820c363b 3697static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
79bd3712
FM
3698{
3699 struct btrfs_block_group *bg;
3700 int ret;
3701
3702 /*
3703 * Check if we have enough space in the system space info because we
3704 * will need to update device items in the chunk btree and insert a new
3705 * chunk item in the chunk btree as well. This will allocate a new
3706 * system block group if needed.
3707 */
3708 check_system_chunk(trans, flags);
3709
f6f39f7a 3710 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
3711 if (IS_ERR(bg)) {
3712 ret = PTR_ERR(bg);
3713 goto out;
3714 }
3715
79bd3712
FM
3716 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3717 /*
3718 * Normally we are not expected to fail with -ENOSPC here, since we have
3719 * previously reserved space in the system space_info and allocated one
ecd84d54 3720 * new system chunk if necessary. However there are three exceptions:
79bd3712
FM
3721 *
3722 * 1) We may have enough free space in the system space_info but all the
3723 * existing system block groups have a profile which can not be used
3724 * for extent allocation.
3725 *
3726 * This happens when mounting in degraded mode. For example we have a
3727 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3728 * using the other device in degraded mode. If we then allocate a chunk,
3729 * we may have enough free space in the existing system space_info, but
3730 * none of the block groups can be used for extent allocation since they
3731 * have a RAID1 profile, and because we are in degraded mode with a
3732 * single device, we are forced to allocate a new system chunk with a
3733 * SINGLE profile. Making check_system_chunk() iterate over all system
3734 * block groups and check if they have a usable profile and enough space
3735 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3736 * try again after forcing allocation of a new system chunk. Like this
3737 * we avoid paying the cost of that search in normal circumstances, when
3738 * we were not mounted in degraded mode;
3739 *
3740 * 2) We had enough free space info the system space_info, and one suitable
3741 * block group to allocate from when we called check_system_chunk()
3742 * above. However right after we called it, the only system block group
3743 * with enough free space got turned into RO mode by a running scrub,
3744 * and in this case we have to allocate a new one and retry. We only
3745 * need do this allocate and retry once, since we have a transaction
ecd84d54
FM
3746 * handle and scrub uses the commit root to search for block groups;
3747 *
3748 * 3) We had one system block group with enough free space when we called
3749 * check_system_chunk(), but after that, right before we tried to
3750 * allocate the last extent buffer we needed, a discard operation came
3751 * in and it temporarily removed the last free space entry from the
3752 * block group (discard removes a free space entry, discards it, and
3753 * then adds back the entry to the block group cache).
79bd3712
FM
3754 */
3755 if (ret == -ENOSPC) {
3756 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3757 struct btrfs_block_group *sys_bg;
3758
f6f39f7a 3759 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3760 if (IS_ERR(sys_bg)) {
3761 ret = PTR_ERR(sys_bg);
3762 btrfs_abort_transaction(trans, ret);
3763 goto out;
3764 }
3765
3766 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3767 if (ret) {
3768 btrfs_abort_transaction(trans, ret);
3769 goto out;
3770 }
3771
3772 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3773 if (ret) {
3774 btrfs_abort_transaction(trans, ret);
3775 goto out;
3776 }
3777 } else if (ret) {
3778 btrfs_abort_transaction(trans, ret);
3779 goto out;
3780 }
3781out:
3782 btrfs_trans_release_chunk_metadata(trans);
3783
820c363b
NA
3784 if (ret)
3785 return ERR_PTR(ret);
3786
3787 btrfs_get_block_group(bg);
3788 return bg;
79bd3712
FM
3789}
3790
07730d87 3791/*
79bd3712
FM
3792 * Chunk allocation is done in 2 phases:
3793 *
3794 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3795 * the chunk, the chunk mapping, create its block group and add the items
3796 * that belong in the chunk btree to it - more specifically, we need to
3797 * update device items in the chunk btree and add a new chunk item to it.
3798 *
3799 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3800 * group item to the extent btree and the device extent items to the devices
3801 * btree.
3802 *
3803 * This is done to prevent deadlocks. For example when COWing a node from the
3804 * extent btree we are holding a write lock on the node's parent and if we
3805 * trigger chunk allocation and attempted to insert the new block group item
3806 * in the extent btree right way, we could deadlock because the path for the
3807 * insertion can include that parent node. At first glance it seems impossible
3808 * to trigger chunk allocation after starting a transaction since tasks should
3809 * reserve enough transaction units (metadata space), however while that is true
3810 * most of the time, chunk allocation may still be triggered for several reasons:
3811 *
3812 * 1) When reserving metadata, we check if there is enough free space in the
3813 * metadata space_info and therefore don't trigger allocation of a new chunk.
3814 * However later when the task actually tries to COW an extent buffer from
3815 * the extent btree or from the device btree for example, it is forced to
3816 * allocate a new block group (chunk) because the only one that had enough
3817 * free space was just turned to RO mode by a running scrub for example (or
3818 * device replace, block group reclaim thread, etc), so we can not use it
3819 * for allocating an extent and end up being forced to allocate a new one;
3820 *
3821 * 2) Because we only check that the metadata space_info has enough free bytes,
3822 * we end up not allocating a new metadata chunk in that case. However if
3823 * the filesystem was mounted in degraded mode, none of the existing block
3824 * groups might be suitable for extent allocation due to their incompatible
3825 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3826 * use a RAID1 profile, in degraded mode using a single device). In this case
3827 * when the task attempts to COW some extent buffer of the extent btree for
3828 * example, it will trigger allocation of a new metadata block group with a
3829 * suitable profile (SINGLE profile in the example of the degraded mount of
3830 * the RAID1 filesystem);
3831 *
3832 * 3) The task has reserved enough transaction units / metadata space, but when
3833 * it attempts to COW an extent buffer from the extent or device btree for
3834 * example, it does not find any free extent in any metadata block group,
3835 * therefore forced to try to allocate a new metadata block group.
3836 * This is because some other task allocated all available extents in the
3837 * meanwhile - this typically happens with tasks that don't reserve space
3838 * properly, either intentionally or as a bug. One example where this is
3839 * done intentionally is fsync, as it does not reserve any transaction units
3840 * and ends up allocating a variable number of metadata extents for log
ecd84d54
FM
3841 * tree extent buffers;
3842 *
3843 * 4) The task has reserved enough transaction units / metadata space, but right
3844 * before it tries to allocate the last extent buffer it needs, a discard
3845 * operation comes in and, temporarily, removes the last free space entry from
3846 * the only metadata block group that had free space (discard starts by
3847 * removing a free space entry from a block group, then does the discard
3848 * operation and, once it's done, it adds back the free space entry to the
3849 * block group).
79bd3712
FM
3850 *
3851 * We also need this 2 phases setup when adding a device to a filesystem with
3852 * a seed device - we must create new metadata and system chunks without adding
3853 * any of the block group items to the chunk, extent and device btrees. If we
3854 * did not do it this way, we would get ENOSPC when attempting to update those
3855 * btrees, since all the chunks from the seed device are read-only.
3856 *
3857 * Phase 1 does the updates and insertions to the chunk btree because if we had
3858 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3859 * parallel, we risk having too many system chunks allocated by many tasks if
3860 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3861 * extreme case this leads to exhaustion of the system chunk array in the
3862 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3863 * and with RAID filesystems (so we have more device items in the chunk btree).
3864 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3865 * the system chunk array due to concurrent allocations") provides more details.
3866 *
2bb2e00e
FM
3867 * Allocation of system chunks does not happen through this function. A task that
3868 * needs to update the chunk btree (the only btree that uses system chunks), must
3869 * preallocate chunk space by calling either check_system_chunk() or
3870 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3871 * metadata chunk or when removing a chunk, while the later is used before doing
3872 * a modification to the chunk btree - use cases for the later are adding,
3873 * removing and resizing a device as well as relocation of a system chunk.
3874 * See the comment below for more details.
79bd3712
FM
3875 *
3876 * The reservation of system space, done through check_system_chunk(), as well
3877 * as all the updates and insertions into the chunk btree must be done while
3878 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3879 * an extent buffer from the chunks btree we never trigger allocation of a new
3880 * system chunk, which would result in a deadlock (trying to lock twice an
3881 * extent buffer of the chunk btree, first time before triggering the chunk
3882 * allocation and the second time during chunk allocation while attempting to
3883 * update the chunks btree). The system chunk array is also updated while holding
3884 * that mutex. The same logic applies to removing chunks - we must reserve system
3885 * space, update the chunk btree and the system chunk array in the superblock
3886 * while holding fs_info->chunk_mutex.
3887 *
3888 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3889 *
3890 * If @force is CHUNK_ALLOC_FORCE:
07730d87
JB
3891 * - return 1 if it successfully allocates a chunk,
3892 * - return errors including -ENOSPC otherwise.
79bd3712 3893 * If @force is NOT CHUNK_ALLOC_FORCE:
07730d87
JB
3894 * - return 0 if it doesn't need to allocate a new chunk,
3895 * - return 1 if it successfully allocates a chunk,
3896 * - return errors including -ENOSPC otherwise.
3897 */
3898int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3899 enum btrfs_chunk_alloc_enum force)
3900{
3901 struct btrfs_fs_info *fs_info = trans->fs_info;
3902 struct btrfs_space_info *space_info;
820c363b 3903 struct btrfs_block_group *ret_bg;
07730d87
JB
3904 bool wait_for_alloc = false;
3905 bool should_alloc = false;
760e69c4 3906 bool from_extent_allocation = false;
07730d87
JB
3907 int ret = 0;
3908
760e69c4
NA
3909 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3910 from_extent_allocation = true;
3911 force = CHUNK_ALLOC_FORCE;
3912 }
3913
07730d87
JB
3914 /* Don't re-enter if we're already allocating a chunk */
3915 if (trans->allocating_chunk)
3916 return -ENOSPC;
79bd3712 3917 /*
2bb2e00e
FM
3918 * Allocation of system chunks can not happen through this path, as we
3919 * could end up in a deadlock if we are allocating a data or metadata
3920 * chunk and there is another task modifying the chunk btree.
3921 *
3922 * This is because while we are holding the chunk mutex, we will attempt
3923 * to add the new chunk item to the chunk btree or update an existing
3924 * device item in the chunk btree, while the other task that is modifying
3925 * the chunk btree is attempting to COW an extent buffer while holding a
3926 * lock on it and on its parent - if the COW operation triggers a system
3927 * chunk allocation, then we can deadlock because we are holding the
3928 * chunk mutex and we may need to access that extent buffer or its parent
3929 * in order to add the chunk item or update a device item.
3930 *
3931 * Tasks that want to modify the chunk tree should reserve system space
3932 * before updating the chunk btree, by calling either
3933 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3934 * It's possible that after a task reserves the space, it still ends up
3935 * here - this happens in the cases described above at do_chunk_alloc().
3936 * The task will have to either retry or fail.
79bd3712 3937 */
2bb2e00e 3938 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
79bd3712 3939 return -ENOSPC;
07730d87
JB
3940
3941 space_info = btrfs_find_space_info(fs_info, flags);
3942 ASSERT(space_info);
3943
3944 do {
3945 spin_lock(&space_info->lock);
3946 if (force < space_info->force_alloc)
3947 force = space_info->force_alloc;
3948 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3949 if (space_info->full) {
3950 /* No more free physical space */
3951 if (should_alloc)
3952 ret = -ENOSPC;
3953 else
3954 ret = 0;
3955 spin_unlock(&space_info->lock);
3956 return ret;
3957 } else if (!should_alloc) {
3958 spin_unlock(&space_info->lock);
3959 return 0;
3960 } else if (space_info->chunk_alloc) {
3961 /*
3962 * Someone is already allocating, so we need to block
3963 * until this someone is finished and then loop to
3964 * recheck if we should continue with our allocation
3965 * attempt.
3966 */
3967 wait_for_alloc = true;
1314ca78 3968 force = CHUNK_ALLOC_NO_FORCE;
07730d87
JB
3969 spin_unlock(&space_info->lock);
3970 mutex_lock(&fs_info->chunk_mutex);
3971 mutex_unlock(&fs_info->chunk_mutex);
3972 } else {
3973 /* Proceed with allocation */
3974 space_info->chunk_alloc = 1;
3975 wait_for_alloc = false;
3976 spin_unlock(&space_info->lock);
3977 }
3978
3979 cond_resched();
3980 } while (wait_for_alloc);
3981
3982 mutex_lock(&fs_info->chunk_mutex);
3983 trans->allocating_chunk = true;
3984
3985 /*
3986 * If we have mixed data/metadata chunks we want to make sure we keep
3987 * allocating mixed chunks instead of individual chunks.
3988 */
3989 if (btrfs_mixed_space_info(space_info))
3990 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3991
3992 /*
3993 * if we're doing a data chunk, go ahead and make sure that
3994 * we keep a reasonable number of metadata chunks allocated in the
3995 * FS as well.
3996 */
3997 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3998 fs_info->data_chunk_allocations++;
3999 if (!(fs_info->data_chunk_allocations %
4000 fs_info->metadata_ratio))
4001 force_metadata_allocation(fs_info);
4002 }
4003
820c363b 4004 ret_bg = do_chunk_alloc(trans, flags);
07730d87
JB
4005 trans->allocating_chunk = false;
4006
760e69c4 4007 if (IS_ERR(ret_bg)) {
820c363b 4008 ret = PTR_ERR(ret_bg);
760e69c4
NA
4009 } else if (from_extent_allocation) {
4010 /*
4011 * New block group is likely to be used soon. Try to activate
4012 * it now. Failure is OK for now.
4013 */
4014 btrfs_zone_activate(ret_bg);
4015 }
4016
4017 if (!ret)
820c363b
NA
4018 btrfs_put_block_group(ret_bg);
4019
07730d87
JB
4020 spin_lock(&space_info->lock);
4021 if (ret < 0) {
4022 if (ret == -ENOSPC)
4023 space_info->full = 1;
4024 else
4025 goto out;
4026 } else {
4027 ret = 1;
4028 space_info->max_extent_size = 0;
4029 }
4030
4031 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4032out:
4033 space_info->chunk_alloc = 0;
4034 spin_unlock(&space_info->lock);
4035 mutex_unlock(&fs_info->chunk_mutex);
07730d87
JB
4036
4037 return ret;
4038}
4039
4040static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4041{
4042 u64 num_dev;
4043
4044 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4045 if (!num_dev)
4046 num_dev = fs_info->fs_devices->rw_devices;
4047
4048 return num_dev;
4049}
4050
2bb2e00e
FM
4051static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4052 u64 bytes,
4053 u64 type)
07730d87
JB
4054{
4055 struct btrfs_fs_info *fs_info = trans->fs_info;
4056 struct btrfs_space_info *info;
4057 u64 left;
07730d87 4058 int ret = 0;
07730d87
JB
4059
4060 /*
4061 * Needed because we can end up allocating a system chunk and for an
4062 * atomic and race free space reservation in the chunk block reserve.
4063 */
4064 lockdep_assert_held(&fs_info->chunk_mutex);
4065
4066 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4067 spin_lock(&info->lock);
4068 left = info->total_bytes - btrfs_space_info_used(info, true);
4069 spin_unlock(&info->lock);
4070
2bb2e00e 4071 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
07730d87 4072 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
2bb2e00e 4073 left, bytes, type);
07730d87
JB
4074 btrfs_dump_space_info(fs_info, info, 0, 0);
4075 }
4076
2bb2e00e 4077 if (left < bytes) {
07730d87 4078 u64 flags = btrfs_system_alloc_profile(fs_info);
79bd3712 4079 struct btrfs_block_group *bg;
07730d87
JB
4080
4081 /*
4082 * Ignore failure to create system chunk. We might end up not
4083 * needing it, as we might not need to COW all nodes/leafs from
4084 * the paths we visit in the chunk tree (they were already COWed
4085 * or created in the current transaction for example).
4086 */
f6f39f7a 4087 bg = btrfs_create_chunk(trans, flags);
79bd3712
FM
4088 if (IS_ERR(bg)) {
4089 ret = PTR_ERR(bg);
2bb2e00e 4090 } else {
b6a98021
NA
4091 /*
4092 * We have a new chunk. We also need to activate it for
4093 * zoned filesystem.
4094 */
4095 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4096 if (ret < 0)
4097 return;
4098
79bd3712
FM
4099 /*
4100 * If we fail to add the chunk item here, we end up
4101 * trying again at phase 2 of chunk allocation, at
4102 * btrfs_create_pending_block_groups(). So ignore
2bb2e00e
FM
4103 * any error here. An ENOSPC here could happen, due to
4104 * the cases described at do_chunk_alloc() - the system
4105 * block group we just created was just turned into RO
4106 * mode by a scrub for example, or a running discard
4107 * temporarily removed its free space entries, etc.
79bd3712
FM
4108 */
4109 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4110 }
07730d87
JB
4111 }
4112
4113 if (!ret) {
9270501c 4114 ret = btrfs_block_rsv_add(fs_info,
07730d87 4115 &fs_info->chunk_block_rsv,
2bb2e00e 4116 bytes, BTRFS_RESERVE_NO_FLUSH);
1cb3db1c 4117 if (!ret)
2bb2e00e 4118 trans->chunk_bytes_reserved += bytes;
07730d87
JB
4119 }
4120}
4121
2bb2e00e
FM
4122/*
4123 * Reserve space in the system space for allocating or removing a chunk.
4124 * The caller must be holding fs_info->chunk_mutex.
4125 */
4126void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4127{
4128 struct btrfs_fs_info *fs_info = trans->fs_info;
4129 const u64 num_devs = get_profile_num_devs(fs_info, type);
4130 u64 bytes;
4131
4132 /* num_devs device items to update and 1 chunk item to add or remove. */
4133 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4134 btrfs_calc_insert_metadata_size(fs_info, 1);
4135
4136 reserve_chunk_space(trans, bytes, type);
4137}
4138
4139/*
4140 * Reserve space in the system space, if needed, for doing a modification to the
4141 * chunk btree.
4142 *
4143 * @trans: A transaction handle.
4144 * @is_item_insertion: Indicate if the modification is for inserting a new item
4145 * in the chunk btree or if it's for the deletion or update
4146 * of an existing item.
4147 *
4148 * This is used in a context where we need to update the chunk btree outside
4149 * block group allocation and removal, to avoid a deadlock with a concurrent
4150 * task that is allocating a metadata or data block group and therefore needs to
4151 * update the chunk btree while holding the chunk mutex. After the update to the
4152 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4153 *
4154 */
4155void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4156 bool is_item_insertion)
4157{
4158 struct btrfs_fs_info *fs_info = trans->fs_info;
4159 u64 bytes;
4160
4161 if (is_item_insertion)
4162 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4163 else
4164 bytes = btrfs_calc_metadata_size(fs_info, 1);
4165
4166 mutex_lock(&fs_info->chunk_mutex);
4167 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4168 mutex_unlock(&fs_info->chunk_mutex);
4169}
4170
3e43c279
JB
4171void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4172{
32da5386 4173 struct btrfs_block_group *block_group;
3e43c279 4174
50c31eaa
JB
4175 block_group = btrfs_lookup_first_block_group(info, 0);
4176 while (block_group) {
4177 btrfs_wait_block_group_cache_done(block_group);
4178 spin_lock(&block_group->lock);
4179 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4180 &block_group->runtime_flags)) {
4181 struct inode *inode = block_group->inode;
4182
4183 block_group->inode = NULL;
3e43c279 4184 spin_unlock(&block_group->lock);
3e43c279 4185
50c31eaa
JB
4186 ASSERT(block_group->io_ctl.inode == NULL);
4187 iput(inode);
4188 } else {
4189 spin_unlock(&block_group->lock);
4190 }
4191 block_group = btrfs_next_block_group(block_group);
3e43c279
JB
4192 }
4193}
4194
4195/*
4196 * Must be called only after stopping all workers, since we could have block
4197 * group caching kthreads running, and therefore they could race with us if we
4198 * freed the block groups before stopping them.
4199 */
4200int btrfs_free_block_groups(struct btrfs_fs_info *info)
4201{
32da5386 4202 struct btrfs_block_group *block_group;
3e43c279
JB
4203 struct btrfs_space_info *space_info;
4204 struct btrfs_caching_control *caching_ctl;
4205 struct rb_node *n;
4206
16b0c258 4207 write_lock(&info->block_group_cache_lock);
3e43c279
JB
4208 while (!list_empty(&info->caching_block_groups)) {
4209 caching_ctl = list_entry(info->caching_block_groups.next,
4210 struct btrfs_caching_control, list);
4211 list_del(&caching_ctl->list);
4212 btrfs_put_caching_control(caching_ctl);
4213 }
16b0c258 4214 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4215
4216 spin_lock(&info->unused_bgs_lock);
4217 while (!list_empty(&info->unused_bgs)) {
4218 block_group = list_first_entry(&info->unused_bgs,
32da5386 4219 struct btrfs_block_group,
3e43c279
JB
4220 bg_list);
4221 list_del_init(&block_group->bg_list);
4222 btrfs_put_block_group(block_group);
4223 }
3e43c279 4224
18bb8bbf
JT
4225 while (!list_empty(&info->reclaim_bgs)) {
4226 block_group = list_first_entry(&info->reclaim_bgs,
4227 struct btrfs_block_group,
4228 bg_list);
4229 list_del_init(&block_group->bg_list);
4230 btrfs_put_block_group(block_group);
4231 }
4232 spin_unlock(&info->unused_bgs_lock);
4233
afba2bc0
NA
4234 spin_lock(&info->zone_active_bgs_lock);
4235 while (!list_empty(&info->zone_active_bgs)) {
4236 block_group = list_first_entry(&info->zone_active_bgs,
4237 struct btrfs_block_group,
4238 active_bg_list);
4239 list_del_init(&block_group->active_bg_list);
4240 btrfs_put_block_group(block_group);
4241 }
4242 spin_unlock(&info->zone_active_bgs_lock);
4243
16b0c258 4244 write_lock(&info->block_group_cache_lock);
08dddb29 4245 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
32da5386 4246 block_group = rb_entry(n, struct btrfs_block_group,
3e43c279 4247 cache_node);
08dddb29
FM
4248 rb_erase_cached(&block_group->cache_node,
4249 &info->block_group_cache_tree);
3e43c279 4250 RB_CLEAR_NODE(&block_group->cache_node);
16b0c258 4251 write_unlock(&info->block_group_cache_lock);
3e43c279
JB
4252
4253 down_write(&block_group->space_info->groups_sem);
4254 list_del(&block_group->list);
4255 up_write(&block_group->space_info->groups_sem);
4256
4257 /*
4258 * We haven't cached this block group, which means we could
4259 * possibly have excluded extents on this block group.
4260 */
4261 if (block_group->cached == BTRFS_CACHE_NO ||
4262 block_group->cached == BTRFS_CACHE_ERROR)
4263 btrfs_free_excluded_extents(block_group);
4264
4265 btrfs_remove_free_space_cache(block_group);
4266 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4267 ASSERT(list_empty(&block_group->dirty_list));
4268 ASSERT(list_empty(&block_group->io_list));
4269 ASSERT(list_empty(&block_group->bg_list));
48aaeebe 4270 ASSERT(refcount_read(&block_group->refs) == 1);
195a49ea 4271 ASSERT(block_group->swap_extents == 0);
3e43c279
JB
4272 btrfs_put_block_group(block_group);
4273
16b0c258 4274 write_lock(&info->block_group_cache_lock);
3e43c279 4275 }
16b0c258 4276 write_unlock(&info->block_group_cache_lock);
3e43c279 4277
3e43c279
JB
4278 btrfs_release_global_block_rsv(info);
4279
4280 while (!list_empty(&info->space_info)) {
4281 space_info = list_entry(info->space_info.next,
4282 struct btrfs_space_info,
4283 list);
4284
4285 /*
4286 * Do not hide this behind enospc_debug, this is actually
4287 * important and indicates a real bug if this happens.
4288 */
4289 if (WARN_ON(space_info->bytes_pinned > 0 ||
3e43c279
JB
4290 space_info->bytes_may_use > 0))
4291 btrfs_dump_space_info(info, space_info, 0, 0);
40cdc509
FM
4292
4293 /*
4294 * If there was a failure to cleanup a log tree, very likely due
4295 * to an IO failure on a writeback attempt of one or more of its
4296 * extent buffers, we could not do proper (and cheap) unaccounting
4297 * of their reserved space, so don't warn on bytes_reserved > 0 in
4298 * that case.
4299 */
4300 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4301 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4302 if (WARN_ON(space_info->bytes_reserved > 0))
4303 btrfs_dump_space_info(info, space_info, 0, 0);
4304 }
4305
d611add4 4306 WARN_ON(space_info->reclaim_size > 0);
3e43c279
JB
4307 list_del(&space_info->list);
4308 btrfs_sysfs_remove_space_info(space_info);
4309 }
4310 return 0;
4311}
684b752b
FM
4312
4313void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4314{
4315 atomic_inc(&cache->frozen);
4316}
4317
4318void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4319{
4320 struct btrfs_fs_info *fs_info = block_group->fs_info;
4321 struct extent_map_tree *em_tree;
4322 struct extent_map *em;
4323 bool cleanup;
4324
4325 spin_lock(&block_group->lock);
4326 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3349b57f 4327 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
684b752b
FM
4328 spin_unlock(&block_group->lock);
4329
4330 if (cleanup) {
684b752b
FM
4331 em_tree = &fs_info->mapping_tree;
4332 write_lock(&em_tree->lock);
4333 em = lookup_extent_mapping(em_tree, block_group->start,
4334 1);
4335 BUG_ON(!em); /* logic error, can't happen */
4336 remove_extent_mapping(em_tree, em);
4337 write_unlock(&em_tree->lock);
684b752b
FM
4338
4339 /* once for us and once for the tree */
4340 free_extent_map(em);
4341 free_extent_map(em);
4342
4343 /*
4344 * We may have left one free space entry and other possible
4345 * tasks trimming this block group have left 1 entry each one.
4346 * Free them if any.
4347 */
fc80f7ac 4348 btrfs_remove_free_space_cache(block_group);
684b752b
FM
4349 }
4350}
195a49ea
FM
4351
4352bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4353{
4354 bool ret = true;
4355
4356 spin_lock(&bg->lock);
4357 if (bg->ro)
4358 ret = false;
4359 else
4360 bg->swap_extents++;
4361 spin_unlock(&bg->lock);
4362
4363 return ret;
4364}
4365
4366void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4367{
4368 spin_lock(&bg->lock);
4369 ASSERT(!bg->ro);
4370 ASSERT(bg->swap_extents >= amount);
4371 bg->swap_extents -= amount;
4372 spin_unlock(&bg->lock);
4373}
52bb7a21
BB
4374
4375enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4376{
4377 if (size <= SZ_128K)
4378 return BTRFS_BG_SZ_SMALL;
4379 if (size <= SZ_8M)
4380 return BTRFS_BG_SZ_MEDIUM;
4381 return BTRFS_BG_SZ_LARGE;
4382}
4383
4384/*
4385 * Handle a block group allocating an extent in a size class
4386 *
4387 * @bg: The block group we allocated in.
4388 * @size_class: The size class of the allocation.
4389 * @force_wrong_size_class: Whether we are desperate enough to allow
4390 * mismatched size classes.
4391 *
4392 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4393 * case of a race that leads to the wrong size class without
4394 * force_wrong_size_class set.
4395 *
4396 * find_free_extent will skip block groups with a mismatched size class until
4397 * it really needs to avoid ENOSPC. In that case it will set
4398 * force_wrong_size_class. However, if a block group is newly allocated and
4399 * doesn't yet have a size class, then it is possible for two allocations of
4400 * different sizes to race and both try to use it. The loser is caught here and
4401 * has to retry.
4402 */
4403int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4404 enum btrfs_block_group_size_class size_class,
4405 bool force_wrong_size_class)
4406{
4407 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4408
4409 /* The new allocation is in the right size class, do nothing */
4410 if (bg->size_class == size_class)
4411 return 0;
4412 /*
4413 * The new allocation is in a mismatched size class.
4414 * This means one of two things:
4415 *
4416 * 1. Two tasks in find_free_extent for different size_classes raced
4417 * and hit the same empty block_group. Make the loser try again.
4418 * 2. A call to find_free_extent got desperate enough to set
4419 * 'force_wrong_slab'. Don't change the size_class, but allow the
4420 * allocation.
4421 */
4422 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4423 if (force_wrong_size_class)
4424 return 0;
4425 return -EAGAIN;
4426 }
4427 /*
4428 * The happy new block group case: the new allocation is the first
4429 * one in the block_group so we set size_class.
4430 */
4431 bg->size_class = size_class;
4432
4433 return 0;
4434}
cb0922f2
BB
4435
4436bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4437{
4438 if (btrfs_is_zoned(bg->fs_info))
4439 return false;
4440 if (!btrfs_is_block_group_data_only(bg))
4441 return false;
4442 return true;
4443}