]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/ctree.c
Btrfs: move d_instantiate outside the transaction during mksubvol
[people/ms/linux.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
143bede5 40static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
0e411ece 41 struct btrfs_path *path, int level, int slot);
f230475e
JS
42static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 u32 blocksize, u64 parent_transid,
46 u64 time_seq);
47struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 u64 bytenr, u32 blocksize,
49 u64 time_seq);
d97e63b6 50
df24a2b9 51struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 52{
df24a2b9 53 struct btrfs_path *path;
e00f7308 54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 55 return path;
2c90e5d6
CM
56}
57
b4ce94de
CM
58/*
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
61 */
62noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63{
64 int i;
65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
66 if (!p->nodes[i] || !p->locks[i])
67 continue;
68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 if (p->locks[i] == BTRFS_READ_LOCK)
70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
73 }
74}
75
76/*
77 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
78 *
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
82 * for held
b4ce94de 83 */
4008c04a 84noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 85 struct extent_buffer *held, int held_rw)
b4ce94de
CM
86{
87 int i;
4008c04a
CM
88
89#ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
94 * the path blocking.
95 */
bd681513
CM
96 if (held) {
97 btrfs_set_lock_blocking_rw(held, held_rw);
98 if (held_rw == BTRFS_WRITE_LOCK)
99 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 else if (held_rw == BTRFS_READ_LOCK)
101 held_rw = BTRFS_READ_LOCK_BLOCKING;
102 }
4008c04a
CM
103 btrfs_set_path_blocking(p);
104#endif
105
106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
107 if (p->nodes[i] && p->locks[i]) {
108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 p->locks[i] = BTRFS_WRITE_LOCK;
111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 p->locks[i] = BTRFS_READ_LOCK;
113 }
b4ce94de 114 }
4008c04a
CM
115
116#ifdef CONFIG_DEBUG_LOCK_ALLOC
117 if (held)
bd681513 118 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 119#endif
b4ce94de
CM
120}
121
d352ac68 122/* this also releases the path */
df24a2b9 123void btrfs_free_path(struct btrfs_path *p)
be0e5c09 124{
ff175d57
JJ
125 if (!p)
126 return;
b3b4aa74 127 btrfs_release_path(p);
df24a2b9 128 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
129}
130
d352ac68
CM
131/*
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
134 *
135 * It is safe to call this on paths that no locks or extent buffers held.
136 */
b3b4aa74 137noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
138{
139 int i;
a2135011 140
234b63a0 141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 142 p->slots[i] = 0;
eb60ceac 143 if (!p->nodes[i])
925baedd
CM
144 continue;
145 if (p->locks[i]) {
bd681513 146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
147 p->locks[i] = 0;
148 }
5f39d397 149 free_extent_buffer(p->nodes[i]);
3f157a2f 150 p->nodes[i] = NULL;
eb60ceac
CM
151 }
152}
153
d352ac68
CM
154/*
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
158 * looping required.
159 *
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
163 */
925baedd
CM
164struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165{
166 struct extent_buffer *eb;
240f62c8 167
3083ee2e
JB
168 while (1) {
169 rcu_read_lock();
170 eb = rcu_dereference(root->node);
171
172 /*
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
177 */
178 if (atomic_inc_not_zero(&eb->refs)) {
179 rcu_read_unlock();
180 break;
181 }
182 rcu_read_unlock();
183 synchronize_rcu();
184 }
925baedd
CM
185 return eb;
186}
187
d352ac68
CM
188/* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
191 */
925baedd
CM
192struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193{
194 struct extent_buffer *eb;
195
d397712b 196 while (1) {
925baedd
CM
197 eb = btrfs_root_node(root);
198 btrfs_tree_lock(eb);
240f62c8 199 if (eb == root->node)
925baedd 200 break;
925baedd
CM
201 btrfs_tree_unlock(eb);
202 free_extent_buffer(eb);
203 }
204 return eb;
205}
206
bd681513
CM
207/* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
210 */
211struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212{
213 struct extent_buffer *eb;
214
215 while (1) {
216 eb = btrfs_root_node(root);
217 btrfs_tree_read_lock(eb);
218 if (eb == root->node)
219 break;
220 btrfs_tree_read_unlock(eb);
221 free_extent_buffer(eb);
222 }
223 return eb;
224}
225
d352ac68
CM
226/* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
229 */
0b86a832
CM
230static void add_root_to_dirty_list(struct btrfs_root *root)
231{
e5846fc6 232 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
233 if (root->track_dirty && list_empty(&root->dirty_list)) {
234 list_add(&root->dirty_list,
235 &root->fs_info->dirty_cowonly_roots);
236 }
e5846fc6 237 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
238}
239
d352ac68
CM
240/*
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
244 */
be20aa9d
CM
245int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer **cow_ret, u64 new_root_objectid)
249{
250 struct extent_buffer *cow;
be20aa9d
CM
251 int ret = 0;
252 int level;
5d4f98a2 253 struct btrfs_disk_key disk_key;
be20aa9d
CM
254
255 WARN_ON(root->ref_cows && trans->transid !=
256 root->fs_info->running_transaction->transid);
257 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259 level = btrfs_header_level(buf);
5d4f98a2
YZ
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
31840ae1 264
5d4f98a2
YZ
265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 new_root_objectid, &disk_key, level,
5581a51a 267 buf->start, 0);
5d4f98a2 268 if (IS_ERR(cow))
be20aa9d
CM
269 return PTR_ERR(cow);
270
271 copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 btrfs_set_header_bytenr(cow, cow->start);
273 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 BTRFS_HEADER_FLAG_RELOC);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 else
280 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 281
2b82032c
YZ
282 write_extent_buffer(cow, root->fs_info->fsid,
283 (unsigned long)btrfs_header_fsid(cow),
284 BTRFS_FSID_SIZE);
285
be20aa9d 286 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 288 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 289 else
66d7e7f0 290 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 291
be20aa9d
CM
292 if (ret)
293 return ret;
294
295 btrfs_mark_buffer_dirty(cow);
296 *cow_ret = cow;
297 return 0;
298}
299
bd989ba3
JS
300enum mod_log_op {
301 MOD_LOG_KEY_REPLACE,
302 MOD_LOG_KEY_ADD,
303 MOD_LOG_KEY_REMOVE,
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 MOD_LOG_MOVE_KEYS,
307 MOD_LOG_ROOT_REPLACE,
308};
309
310struct tree_mod_move {
311 int dst_slot;
312 int nr_items;
313};
314
315struct tree_mod_root {
316 u64 logical;
317 u8 level;
318};
319
320struct tree_mod_elem {
321 struct rb_node node;
322 u64 index; /* shifted logical */
097b8a7c 323 u64 seq;
bd989ba3
JS
324 enum mod_log_op op;
325
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 int slot;
328
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 u64 generation;
331
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key;
334 u64 blockptr;
335
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move;
338
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root;
341};
342
097b8a7c 343static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 344{
097b8a7c 345 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
346}
347
097b8a7c
JS
348static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349{
350 read_unlock(&fs_info->tree_mod_log_lock);
351}
352
353static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354{
355 write_lock(&fs_info->tree_mod_log_lock);
356}
357
358static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359{
360 write_unlock(&fs_info->tree_mod_log_lock);
361}
362
363/*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
bd989ba3 373{
097b8a7c
JS
374 u64 seq;
375
376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 383 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
384 tree_mod_log_write_unlock(fs_info);
385
386 return seq;
bd989ba3
JS
387}
388
389void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391{
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
bd989ba3
JS
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
097b8a7c 405 elem->seq = 0;
bd989ba3
JS
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 408 if (cur_elem->seq < min_seq) {
bd989ba3
JS
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
097b8a7c
JS
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
bd989ba3
JS
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
097b8a7c
JS
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
bd989ba3
JS
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
097b8a7c 426 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 431 if (tm->seq > min_seq)
bd989ba3
JS
432 continue;
433 rb_erase(node, tm_root);
bd989ba3
JS
434 kfree(tm);
435 }
097b8a7c 436 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
437}
438
439/*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
446 */
447static noinline int
448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449{
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
bd989ba3 454
097b8a7c 455 BUG_ON(!tm || !tm->seq);
bd989ba3 456
bd989ba3
JS
457 tm_root = &fs_info->tree_mod_log;
458 new = &tm_root->rb_node;
459 while (*new) {
460 cur = container_of(*new, struct tree_mod_elem, node);
461 parent = *new;
462 if (cur->index < tm->index)
463 new = &((*new)->rb_left);
464 else if (cur->index > tm->index)
465 new = &((*new)->rb_right);
097b8a7c 466 else if (cur->seq < tm->seq)
bd989ba3 467 new = &((*new)->rb_left);
097b8a7c 468 else if (cur->seq > tm->seq)
bd989ba3
JS
469 new = &((*new)->rb_right);
470 else {
471 kfree(tm);
097b8a7c 472 return -EEXIST;
bd989ba3
JS
473 }
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
097b8a7c 478 return 0;
bd989ba3
JS
479}
480
097b8a7c
JS
481/*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
e9b7fd4d
JS
487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
097b8a7c
JS
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&fs_info->tree_mod_seq_list)) {
497 /*
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
500 */
501 tree_mod_log_write_unlock(fs_info);
e9b7fd4d 502 return 1;
097b8a7c
JS
503 }
504
e9b7fd4d
JS
505 return 0;
506}
507
3310c36e 508/*
097b8a7c 509 * This allocates memory and gets a tree modification sequence number.
3310c36e 510 *
097b8a7c
JS
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
3310c36e 513 */
926dd8a6
JS
514static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 struct tree_mod_elem **tm_ret)
bd989ba3
JS
516{
517 struct tree_mod_elem *tm;
bd989ba3 518
097b8a7c
JS
519 /*
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
522 */
523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
bd989ba3
JS
524 if (!tm)
525 return -ENOMEM;
526
097b8a7c
JS
527 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 return tm->seq;
bd989ba3
JS
529}
530
097b8a7c
JS
531static inline int
532__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb, int slot,
534 enum mod_log_op op, gfp_t flags)
bd989ba3 535{
bd989ba3 536 int ret;
097b8a7c 537 struct tree_mod_elem *tm;
bd989ba3
JS
538
539 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c 540 if (ret < 0)
bd989ba3
JS
541 return ret;
542
543 tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 if (op != MOD_LOG_KEY_ADD) {
545 btrfs_node_key(eb, &tm->key, slot);
546 tm->blockptr = btrfs_node_blockptr(eb, slot);
547 }
548 tm->op = op;
549 tm->slot = slot;
550 tm->generation = btrfs_node_ptr_generation(eb, slot);
551
097b8a7c
JS
552 return __tree_mod_log_insert(fs_info, tm);
553}
554
555static noinline int
556tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 struct extent_buffer *eb, int slot,
558 enum mod_log_op op, gfp_t flags)
559{
560 int ret;
561
562 if (tree_mod_dont_log(fs_info, eb))
563 return 0;
564
565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567 tree_mod_log_write_unlock(fs_info);
3310c36e 568 return ret;
bd989ba3
JS
569}
570
571static noinline int
572tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 int slot, enum mod_log_op op)
574{
575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576}
577
097b8a7c
JS
578static noinline int
579tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *eb, int slot,
581 enum mod_log_op op)
582{
583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584}
585
bd989ba3
JS
586static noinline int
587tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 struct extent_buffer *eb, int dst_slot, int src_slot,
589 int nr_items, gfp_t flags)
590{
591 struct tree_mod_elem *tm;
592 int ret;
593 int i;
594
f395694c
JS
595 if (tree_mod_dont_log(fs_info, eb))
596 return 0;
bd989ba3 597
01763a2e
JS
598 /*
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
602 */
bd989ba3 603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
097b8a7c 604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
bd989ba3
JS
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 BUG_ON(ret < 0);
607 }
608
f395694c 609 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
610 if (ret < 0)
611 goto out;
f395694c 612
bd989ba3
JS
613 tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 tm->slot = src_slot;
615 tm->move.dst_slot = dst_slot;
616 tm->move.nr_items = nr_items;
617 tm->op = MOD_LOG_MOVE_KEYS;
618
3310c36e 619 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
620out:
621 tree_mod_log_write_unlock(fs_info);
3310c36e 622 return ret;
bd989ba3
JS
623}
624
097b8a7c
JS
625static inline void
626__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627{
628 int i;
629 u32 nritems;
630 int ret;
631
b12a3b1e
CM
632 if (btrfs_header_level(eb) == 0)
633 return;
634
097b8a7c
JS
635 nritems = btrfs_header_nritems(eb);
636 for (i = nritems - 1; i >= 0; i--) {
637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 BUG_ON(ret < 0);
640 }
641}
642
bd989ba3
JS
643static noinline int
644tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 struct extent_buffer *old_root,
646 struct extent_buffer *new_root, gfp_t flags)
647{
648 struct tree_mod_elem *tm;
649 int ret;
650
097b8a7c
JS
651 if (tree_mod_dont_log(fs_info, NULL))
652 return 0;
653
bd989ba3 654 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
655 if (ret < 0)
656 goto out;
bd989ba3
JS
657
658 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
659 tm->old_root.logical = old_root->start;
660 tm->old_root.level = btrfs_header_level(old_root);
661 tm->generation = btrfs_header_generation(old_root);
662 tm->op = MOD_LOG_ROOT_REPLACE;
663
3310c36e 664 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
665out:
666 tree_mod_log_write_unlock(fs_info);
3310c36e 667 return ret;
bd989ba3
JS
668}
669
670static struct tree_mod_elem *
671__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
672 int smallest)
673{
674 struct rb_root *tm_root;
675 struct rb_node *node;
676 struct tree_mod_elem *cur = NULL;
677 struct tree_mod_elem *found = NULL;
678 u64 index = start >> PAGE_CACHE_SHIFT;
679
097b8a7c 680 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
681 tm_root = &fs_info->tree_mod_log;
682 node = tm_root->rb_node;
683 while (node) {
684 cur = container_of(node, struct tree_mod_elem, node);
685 if (cur->index < index) {
686 node = node->rb_left;
687 } else if (cur->index > index) {
688 node = node->rb_right;
097b8a7c 689 } else if (cur->seq < min_seq) {
bd989ba3
JS
690 node = node->rb_left;
691 } else if (!smallest) {
692 /* we want the node with the highest seq */
693 if (found)
097b8a7c 694 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
695 found = cur;
696 node = node->rb_left;
097b8a7c 697 } else if (cur->seq > min_seq) {
bd989ba3
JS
698 /* we want the node with the smallest seq */
699 if (found)
097b8a7c 700 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
701 found = cur;
702 node = node->rb_right;
703 } else {
704 found = cur;
705 break;
706 }
707 }
097b8a7c 708 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
709
710 return found;
711}
712
713/*
714 * this returns the element from the log with the smallest time sequence
715 * value that's in the log (the oldest log item). any element with a time
716 * sequence lower than min_seq will be ignored.
717 */
718static struct tree_mod_elem *
719tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
720 u64 min_seq)
721{
722 return __tree_mod_log_search(fs_info, start, min_seq, 1);
723}
724
725/*
726 * this returns the element from the log with the largest time sequence
727 * value that's in the log (the most recent log item). any element with
728 * a time sequence lower than min_seq will be ignored.
729 */
730static struct tree_mod_elem *
731tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
732{
733 return __tree_mod_log_search(fs_info, start, min_seq, 0);
734}
735
097b8a7c 736static noinline void
bd989ba3
JS
737tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
738 struct extent_buffer *src, unsigned long dst_offset,
739 unsigned long src_offset, int nr_items)
740{
741 int ret;
742 int i;
743
e9b7fd4d 744 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
745 return;
746
097b8a7c
JS
747 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
748 tree_mod_log_write_unlock(fs_info);
bd989ba3 749 return;
097b8a7c 750 }
bd989ba3 751
bd989ba3 752 for (i = 0; i < nr_items; i++) {
097b8a7c
JS
753 ret = tree_mod_log_insert_key_locked(fs_info, src,
754 i + src_offset,
755 MOD_LOG_KEY_REMOVE);
bd989ba3 756 BUG_ON(ret < 0);
097b8a7c
JS
757 ret = tree_mod_log_insert_key_locked(fs_info, dst,
758 i + dst_offset,
759 MOD_LOG_KEY_ADD);
bd989ba3
JS
760 BUG_ON(ret < 0);
761 }
097b8a7c
JS
762
763 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
764}
765
766static inline void
767tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
768 int dst_offset, int src_offset, int nr_items)
769{
770 int ret;
771 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
772 nr_items, GFP_NOFS);
773 BUG_ON(ret < 0);
774}
775
097b8a7c 776static noinline void
bd989ba3 777tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 778 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
779{
780 int ret;
781
782 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
783 MOD_LOG_KEY_REPLACE,
784 atomic ? GFP_ATOMIC : GFP_NOFS);
785 BUG_ON(ret < 0);
786}
787
097b8a7c
JS
788static noinline void
789tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 790{
e9b7fd4d 791 if (tree_mod_dont_log(fs_info, eb))
bd989ba3
JS
792 return;
793
097b8a7c
JS
794 __tree_mod_log_free_eb(fs_info, eb);
795
796 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
797}
798
097b8a7c 799static noinline void
bd989ba3
JS
800tree_mod_log_set_root_pointer(struct btrfs_root *root,
801 struct extent_buffer *new_root_node)
802{
803 int ret;
bd989ba3
JS
804 ret = tree_mod_log_insert_root(root->fs_info, root->node,
805 new_root_node, GFP_NOFS);
806 BUG_ON(ret < 0);
807}
808
5d4f98a2
YZ
809/*
810 * check if the tree block can be shared by multiple trees
811 */
812int btrfs_block_can_be_shared(struct btrfs_root *root,
813 struct extent_buffer *buf)
814{
815 /*
816 * Tree blocks not in refernece counted trees and tree roots
817 * are never shared. If a block was allocated after the last
818 * snapshot and the block was not allocated by tree relocation,
819 * we know the block is not shared.
820 */
821 if (root->ref_cows &&
822 buf != root->node && buf != root->commit_root &&
823 (btrfs_header_generation(buf) <=
824 btrfs_root_last_snapshot(&root->root_item) ||
825 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
826 return 1;
827#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 if (root->ref_cows &&
829 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
830 return 1;
831#endif
832 return 0;
833}
834
835static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
836 struct btrfs_root *root,
837 struct extent_buffer *buf,
f0486c68
YZ
838 struct extent_buffer *cow,
839 int *last_ref)
5d4f98a2
YZ
840{
841 u64 refs;
842 u64 owner;
843 u64 flags;
844 u64 new_flags = 0;
845 int ret;
846
847 /*
848 * Backrefs update rules:
849 *
850 * Always use full backrefs for extent pointers in tree block
851 * allocated by tree relocation.
852 *
853 * If a shared tree block is no longer referenced by its owner
854 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855 * use full backrefs for extent pointers in tree block.
856 *
857 * If a tree block is been relocating
858 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859 * use full backrefs for extent pointers in tree block.
860 * The reason for this is some operations (such as drop tree)
861 * are only allowed for blocks use full backrefs.
862 */
863
864 if (btrfs_block_can_be_shared(root, buf)) {
865 ret = btrfs_lookup_extent_info(trans, root, buf->start,
866 buf->len, &refs, &flags);
be1a5564
MF
867 if (ret)
868 return ret;
e5df9573
MF
869 if (refs == 0) {
870 ret = -EROFS;
871 btrfs_std_error(root->fs_info, ret);
872 return ret;
873 }
5d4f98a2
YZ
874 } else {
875 refs = 1;
876 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
877 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
878 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
879 else
880 flags = 0;
881 }
882
883 owner = btrfs_header_owner(buf);
884 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
885 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
886
887 if (refs > 1) {
888 if ((owner == root->root_key.objectid ||
889 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
890 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 891 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 892 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
893
894 if (root->root_key.objectid ==
895 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 896 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 897 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 898 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 899 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
900 }
901 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
902 } else {
903
904 if (root->root_key.objectid ==
905 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 906 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 907 else
66d7e7f0 908 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 909 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
910 }
911 if (new_flags != 0) {
912 ret = btrfs_set_disk_extent_flags(trans, root,
913 buf->start,
914 buf->len,
915 new_flags, 0);
be1a5564
MF
916 if (ret)
917 return ret;
5d4f98a2
YZ
918 }
919 } else {
920 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
921 if (root->root_key.objectid ==
922 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 923 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 924 else
66d7e7f0 925 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 926 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 927 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 928 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 929 }
ba1bfbd5 930 tree_mod_log_free_eb(root->fs_info, buf);
5d4f98a2 931 clean_tree_block(trans, root, buf);
f0486c68 932 *last_ref = 1;
5d4f98a2
YZ
933 }
934 return 0;
935}
936
d352ac68 937/*
d397712b
CM
938 * does the dirty work in cow of a single block. The parent block (if
939 * supplied) is updated to point to the new cow copy. The new buffer is marked
940 * dirty and returned locked. If you modify the block it needs to be marked
941 * dirty again.
d352ac68
CM
942 *
943 * search_start -- an allocation hint for the new block
944 *
d397712b
CM
945 * empty_size -- a hint that you plan on doing more cow. This is the size in
946 * bytes the allocator should try to find free next to the block it returns.
947 * This is just a hint and may be ignored by the allocator.
d352ac68 948 */
d397712b 949static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
950 struct btrfs_root *root,
951 struct extent_buffer *buf,
952 struct extent_buffer *parent, int parent_slot,
953 struct extent_buffer **cow_ret,
9fa8cfe7 954 u64 search_start, u64 empty_size)
02217ed2 955{
5d4f98a2 956 struct btrfs_disk_key disk_key;
5f39d397 957 struct extent_buffer *cow;
be1a5564 958 int level, ret;
f0486c68 959 int last_ref = 0;
925baedd 960 int unlock_orig = 0;
5d4f98a2 961 u64 parent_start;
7bb86316 962
925baedd
CM
963 if (*cow_ret == buf)
964 unlock_orig = 1;
965
b9447ef8 966 btrfs_assert_tree_locked(buf);
925baedd 967
7bb86316
CM
968 WARN_ON(root->ref_cows && trans->transid !=
969 root->fs_info->running_transaction->transid);
6702ed49 970 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 971
7bb86316 972 level = btrfs_header_level(buf);
31840ae1 973
5d4f98a2
YZ
974 if (level == 0)
975 btrfs_item_key(buf, &disk_key, 0);
976 else
977 btrfs_node_key(buf, &disk_key, 0);
978
979 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
980 if (parent)
981 parent_start = parent->start;
982 else
983 parent_start = 0;
984 } else
985 parent_start = 0;
986
987 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
988 root->root_key.objectid, &disk_key,
5581a51a 989 level, search_start, empty_size);
54aa1f4d
CM
990 if (IS_ERR(cow))
991 return PTR_ERR(cow);
6702ed49 992
b4ce94de
CM
993 /* cow is set to blocking by btrfs_init_new_buffer */
994
5f39d397 995 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 996 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 997 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
998 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
999 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1000 BTRFS_HEADER_FLAG_RELOC);
1001 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1002 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1003 else
1004 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1005
2b82032c
YZ
1006 write_extent_buffer(cow, root->fs_info->fsid,
1007 (unsigned long)btrfs_header_fsid(cow),
1008 BTRFS_FSID_SIZE);
1009
be1a5564 1010 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1011 if (ret) {
79787eaa 1012 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1013 return ret;
1014 }
1a40e23b 1015
3fd0a558
YZ
1016 if (root->ref_cows)
1017 btrfs_reloc_cow_block(trans, root, buf, cow);
1018
02217ed2 1019 if (buf == root->node) {
925baedd 1020 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023 parent_start = buf->start;
1024 else
1025 parent_start = 0;
925baedd 1026
5f39d397 1027 extent_buffer_get(cow);
f230475e 1028 tree_mod_log_set_root_pointer(root, cow);
240f62c8 1029 rcu_assign_pointer(root->node, cow);
925baedd 1030
f0486c68 1031 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1032 last_ref);
5f39d397 1033 free_extent_buffer(buf);
0b86a832 1034 add_root_to_dirty_list(root);
02217ed2 1035 } else {
5d4f98a2
YZ
1036 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1037 parent_start = parent->start;
1038 else
1039 parent_start = 0;
1040
1041 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e
JS
1042 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1043 MOD_LOG_KEY_REPLACE);
5f39d397 1044 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1045 cow->start);
74493f7a
CM
1046 btrfs_set_node_ptr_generation(parent, parent_slot,
1047 trans->transid);
d6025579 1048 btrfs_mark_buffer_dirty(parent);
f0486c68 1049 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1050 last_ref);
02217ed2 1051 }
925baedd
CM
1052 if (unlock_orig)
1053 btrfs_tree_unlock(buf);
3083ee2e 1054 free_extent_buffer_stale(buf);
ccd467d6 1055 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1056 *cow_ret = cow;
02217ed2
CM
1057 return 0;
1058}
1059
5d9e75c4
JS
1060/*
1061 * returns the logical address of the oldest predecessor of the given root.
1062 * entries older than time_seq are ignored.
1063 */
1064static struct tree_mod_elem *
1065__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1066 struct btrfs_root *root, u64 time_seq)
1067{
1068 struct tree_mod_elem *tm;
1069 struct tree_mod_elem *found = NULL;
1070 u64 root_logical = root->node->start;
1071 int looped = 0;
1072
1073 if (!time_seq)
1074 return 0;
1075
1076 /*
1077 * the very last operation that's logged for a root is the replacement
1078 * operation (if it is replaced at all). this has the index of the *new*
1079 * root, making it the very first operation that's logged for this root.
1080 */
1081 while (1) {
1082 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1083 time_seq);
1084 if (!looped && !tm)
1085 return 0;
1086 /*
28da9fb4
JS
1087 * if there are no tree operation for the oldest root, we simply
1088 * return it. this should only happen if that (old) root is at
1089 * level 0.
5d9e75c4 1090 */
28da9fb4
JS
1091 if (!tm)
1092 break;
5d9e75c4 1093
28da9fb4
JS
1094 /*
1095 * if there's an operation that's not a root replacement, we
1096 * found the oldest version of our root. normally, we'll find a
1097 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1098 */
5d9e75c4
JS
1099 if (tm->op != MOD_LOG_ROOT_REPLACE)
1100 break;
1101
1102 found = tm;
1103 root_logical = tm->old_root.logical;
1104 BUG_ON(root_logical == root->node->start);
1105 looped = 1;
1106 }
1107
a95236d9
JS
1108 /* if there's no old root to return, return what we found instead */
1109 if (!found)
1110 found = tm;
1111
5d9e75c4
JS
1112 return found;
1113}
1114
1115/*
1116 * tm is a pointer to the first operation to rewind within eb. then, all
1117 * previous operations will be rewinded (until we reach something older than
1118 * time_seq).
1119 */
1120static void
1121__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1122 struct tree_mod_elem *first_tm)
1123{
1124 u32 n;
1125 struct rb_node *next;
1126 struct tree_mod_elem *tm = first_tm;
1127 unsigned long o_dst;
1128 unsigned long o_src;
1129 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1130
1131 n = btrfs_header_nritems(eb);
097b8a7c 1132 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1133 /*
1134 * all the operations are recorded with the operator used for
1135 * the modification. as we're going backwards, we do the
1136 * opposite of each operation here.
1137 */
1138 switch (tm->op) {
1139 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1140 BUG_ON(tm->slot < n);
95c80bb1 1141 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1142 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1143 btrfs_set_node_key(eb, &tm->key, tm->slot);
1144 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1145 btrfs_set_node_ptr_generation(eb, tm->slot,
1146 tm->generation);
4c3e6969 1147 n++;
5d9e75c4
JS
1148 break;
1149 case MOD_LOG_KEY_REPLACE:
1150 BUG_ON(tm->slot >= n);
1151 btrfs_set_node_key(eb, &tm->key, tm->slot);
1152 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1153 btrfs_set_node_ptr_generation(eb, tm->slot,
1154 tm->generation);
1155 break;
1156 case MOD_LOG_KEY_ADD:
19956c7e 1157 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1158 n--;
1159 break;
1160 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1161 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1162 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1163 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1164 tm->move.nr_items * p_size);
1165 break;
1166 case MOD_LOG_ROOT_REPLACE:
1167 /*
1168 * this operation is special. for roots, this must be
1169 * handled explicitly before rewinding.
1170 * for non-roots, this operation may exist if the node
1171 * was a root: root A -> child B; then A gets empty and
1172 * B is promoted to the new root. in the mod log, we'll
1173 * have a root-replace operation for B, a tree block
1174 * that is no root. we simply ignore that operation.
1175 */
1176 break;
1177 }
1178 next = rb_next(&tm->node);
1179 if (!next)
1180 break;
1181 tm = container_of(next, struct tree_mod_elem, node);
1182 if (tm->index != first_tm->index)
1183 break;
1184 }
1185 btrfs_set_header_nritems(eb, n);
1186}
1187
1188static struct extent_buffer *
1189tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1190 u64 time_seq)
1191{
1192 struct extent_buffer *eb_rewin;
1193 struct tree_mod_elem *tm;
1194
1195 if (!time_seq)
1196 return eb;
1197
1198 if (btrfs_header_level(eb) == 0)
1199 return eb;
1200
1201 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1202 if (!tm)
1203 return eb;
1204
1205 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1206 BUG_ON(tm->slot != 0);
1207 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1208 fs_info->tree_root->nodesize);
1209 BUG_ON(!eb_rewin);
1210 btrfs_set_header_bytenr(eb_rewin, eb->start);
1211 btrfs_set_header_backref_rev(eb_rewin,
1212 btrfs_header_backref_rev(eb));
1213 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1214 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1215 } else {
1216 eb_rewin = btrfs_clone_extent_buffer(eb);
1217 BUG_ON(!eb_rewin);
1218 }
1219
1220 extent_buffer_get(eb_rewin);
1221 free_extent_buffer(eb);
1222
1223 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
57911b8b
JS
1224 WARN_ON(btrfs_header_nritems(eb_rewin) >
1225 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
5d9e75c4
JS
1226
1227 return eb_rewin;
1228}
1229
8ba97a15
JS
1230/*
1231 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1232 * value. If there are no changes, the current root->root_node is returned. If
1233 * anything changed in between, there's a fresh buffer allocated on which the
1234 * rewind operations are done. In any case, the returned buffer is read locked.
1235 * Returns NULL on error (with no locks held).
1236 */
5d9e75c4
JS
1237static inline struct extent_buffer *
1238get_old_root(struct btrfs_root *root, u64 time_seq)
1239{
1240 struct tree_mod_elem *tm;
1241 struct extent_buffer *eb;
7bfdcf7f 1242 struct extent_buffer *old;
a95236d9 1243 struct tree_mod_root *old_root = NULL;
4325edd0 1244 u64 old_generation = 0;
a95236d9 1245 u64 logical;
834328a8 1246 u32 blocksize;
5d9e75c4 1247
8ba97a15 1248 eb = btrfs_read_lock_root_node(root);
5d9e75c4
JS
1249 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1250 if (!tm)
1251 return root->node;
1252
a95236d9
JS
1253 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1254 old_root = &tm->old_root;
1255 old_generation = tm->generation;
1256 logical = old_root->logical;
1257 } else {
1258 logical = root->node->start;
1259 }
5d9e75c4 1260
a95236d9 1261 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8
JS
1262 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1263 btrfs_tree_read_unlock(root->node);
1264 free_extent_buffer(root->node);
1265 blocksize = btrfs_level_size(root, old_root->level);
7bfdcf7f
LB
1266 old = read_tree_block(root, logical, blocksize, 0);
1267 if (!old) {
834328a8
JS
1268 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1269 logical);
1270 WARN_ON(1);
1271 } else {
7bfdcf7f
LB
1272 eb = btrfs_clone_extent_buffer(old);
1273 free_extent_buffer(old);
834328a8
JS
1274 }
1275 } else if (old_root) {
1276 btrfs_tree_read_unlock(root->node);
1277 free_extent_buffer(root->node);
28da9fb4 1278 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1279 } else {
a95236d9 1280 eb = btrfs_clone_extent_buffer(root->node);
834328a8
JS
1281 btrfs_tree_read_unlock(root->node);
1282 free_extent_buffer(root->node);
1283 }
1284
8ba97a15
JS
1285 if (!eb)
1286 return NULL;
d6381084 1287 extent_buffer_get(eb);
8ba97a15 1288 btrfs_tree_read_lock(eb);
a95236d9 1289 if (old_root) {
5d9e75c4
JS
1290 btrfs_set_header_bytenr(eb, eb->start);
1291 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1292 btrfs_set_header_owner(eb, root->root_key.objectid);
a95236d9
JS
1293 btrfs_set_header_level(eb, old_root->level);
1294 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1295 }
28da9fb4
JS
1296 if (tm)
1297 __tree_mod_log_rewind(eb, time_seq, tm);
1298 else
1299 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1300 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1301
1302 return eb;
1303}
1304
5b6602e7
JS
1305int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1306{
1307 struct tree_mod_elem *tm;
1308 int level;
1309
1310 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1311 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1312 level = tm->old_root.level;
1313 } else {
1314 rcu_read_lock();
1315 level = btrfs_header_level(root->node);
1316 rcu_read_unlock();
1317 }
1318
1319 return level;
1320}
1321
5d4f98a2
YZ
1322static inline int should_cow_block(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 struct extent_buffer *buf)
1325{
f1ebcc74
LB
1326 /* ensure we can see the force_cow */
1327 smp_rmb();
1328
1329 /*
1330 * We do not need to cow a block if
1331 * 1) this block is not created or changed in this transaction;
1332 * 2) this block does not belong to TREE_RELOC tree;
1333 * 3) the root is not forced COW.
1334 *
1335 * What is forced COW:
1336 * when we create snapshot during commiting the transaction,
1337 * after we've finished coping src root, we must COW the shared
1338 * block to ensure the metadata consistency.
1339 */
5d4f98a2
YZ
1340 if (btrfs_header_generation(buf) == trans->transid &&
1341 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1342 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1343 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1344 !root->force_cow)
5d4f98a2
YZ
1345 return 0;
1346 return 1;
1347}
1348
d352ac68
CM
1349/*
1350 * cows a single block, see __btrfs_cow_block for the real work.
1351 * This version of it has extra checks so that a block isn't cow'd more than
1352 * once per transaction, as long as it hasn't been written yet
1353 */
d397712b 1354noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1355 struct btrfs_root *root, struct extent_buffer *buf,
1356 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1357 struct extent_buffer **cow_ret)
6702ed49
CM
1358{
1359 u64 search_start;
f510cfec 1360 int ret;
dc17ff8f 1361
31b1a2bd
JL
1362 if (trans->transaction != root->fs_info->running_transaction)
1363 WARN(1, KERN_CRIT "trans %llu running %llu\n",
d397712b
CM
1364 (unsigned long long)trans->transid,
1365 (unsigned long long)
6702ed49 1366 root->fs_info->running_transaction->transid);
31b1a2bd
JL
1367
1368 if (trans->transid != root->fs_info->generation)
1369 WARN(1, KERN_CRIT "trans %llu running %llu\n",
d397712b
CM
1370 (unsigned long long)trans->transid,
1371 (unsigned long long)root->fs_info->generation);
dc17ff8f 1372
5d4f98a2 1373 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1374 *cow_ret = buf;
1375 return 0;
1376 }
c487685d 1377
0b86a832 1378 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1379
1380 if (parent)
1381 btrfs_set_lock_blocking(parent);
1382 btrfs_set_lock_blocking(buf);
1383
f510cfec 1384 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1385 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1386
1387 trace_btrfs_cow_block(root, buf, *cow_ret);
1388
f510cfec 1389 return ret;
6702ed49
CM
1390}
1391
d352ac68
CM
1392/*
1393 * helper function for defrag to decide if two blocks pointed to by a
1394 * node are actually close by
1395 */
6b80053d 1396static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1397{
6b80053d 1398 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1399 return 1;
6b80053d 1400 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1401 return 1;
1402 return 0;
1403}
1404
081e9573
CM
1405/*
1406 * compare two keys in a memcmp fashion
1407 */
1408static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1409{
1410 struct btrfs_key k1;
1411
1412 btrfs_disk_key_to_cpu(&k1, disk);
1413
20736aba 1414 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1415}
1416
f3465ca4
JB
1417/*
1418 * same as comp_keys only with two btrfs_key's
1419 */
5d4f98a2 1420int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1421{
1422 if (k1->objectid > k2->objectid)
1423 return 1;
1424 if (k1->objectid < k2->objectid)
1425 return -1;
1426 if (k1->type > k2->type)
1427 return 1;
1428 if (k1->type < k2->type)
1429 return -1;
1430 if (k1->offset > k2->offset)
1431 return 1;
1432 if (k1->offset < k2->offset)
1433 return -1;
1434 return 0;
1435}
081e9573 1436
d352ac68
CM
1437/*
1438 * this is used by the defrag code to go through all the
1439 * leaves pointed to by a node and reallocate them so that
1440 * disk order is close to key order
1441 */
6702ed49 1442int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1443 struct btrfs_root *root, struct extent_buffer *parent,
a6b6e75e
CM
1444 int start_slot, int cache_only, u64 *last_ret,
1445 struct btrfs_key *progress)
6702ed49 1446{
6b80053d 1447 struct extent_buffer *cur;
6702ed49 1448 u64 blocknr;
ca7a79ad 1449 u64 gen;
e9d0b13b
CM
1450 u64 search_start = *last_ret;
1451 u64 last_block = 0;
6702ed49
CM
1452 u64 other;
1453 u32 parent_nritems;
6702ed49
CM
1454 int end_slot;
1455 int i;
1456 int err = 0;
f2183bde 1457 int parent_level;
6b80053d
CM
1458 int uptodate;
1459 u32 blocksize;
081e9573
CM
1460 int progress_passed = 0;
1461 struct btrfs_disk_key disk_key;
6702ed49 1462
5708b959
CM
1463 parent_level = btrfs_header_level(parent);
1464 if (cache_only && parent_level != 1)
1465 return 0;
1466
6c1500f2
JL
1467 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1468 WARN_ON(trans->transid != root->fs_info->generation);
86479a04 1469
6b80053d 1470 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1471 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1472 end_slot = parent_nritems;
1473
1474 if (parent_nritems == 1)
1475 return 0;
1476
b4ce94de
CM
1477 btrfs_set_lock_blocking(parent);
1478
6702ed49
CM
1479 for (i = start_slot; i < end_slot; i++) {
1480 int close = 1;
a6b6e75e 1481
081e9573
CM
1482 btrfs_node_key(parent, &disk_key, i);
1483 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1484 continue;
1485
1486 progress_passed = 1;
6b80053d 1487 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1488 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1489 if (last_block == 0)
1490 last_block = blocknr;
5708b959 1491
6702ed49 1492 if (i > 0) {
6b80053d
CM
1493 other = btrfs_node_blockptr(parent, i - 1);
1494 close = close_blocks(blocknr, other, blocksize);
6702ed49 1495 }
0ef3e66b 1496 if (!close && i < end_slot - 2) {
6b80053d
CM
1497 other = btrfs_node_blockptr(parent, i + 1);
1498 close = close_blocks(blocknr, other, blocksize);
6702ed49 1499 }
e9d0b13b
CM
1500 if (close) {
1501 last_block = blocknr;
6702ed49 1502 continue;
e9d0b13b 1503 }
6702ed49 1504
6b80053d
CM
1505 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1506 if (cur)
b9fab919 1507 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1508 else
1509 uptodate = 0;
5708b959 1510 if (!cur || !uptodate) {
6702ed49 1511 if (cache_only) {
6b80053d 1512 free_extent_buffer(cur);
6702ed49
CM
1513 continue;
1514 }
6b80053d
CM
1515 if (!cur) {
1516 cur = read_tree_block(root, blocknr,
ca7a79ad 1517 blocksize, gen);
97d9a8a4
TI
1518 if (!cur)
1519 return -EIO;
6b80053d 1520 } else if (!uptodate) {
018642a1
TI
1521 err = btrfs_read_buffer(cur, gen);
1522 if (err) {
1523 free_extent_buffer(cur);
1524 return err;
1525 }
f2183bde 1526 }
6702ed49 1527 }
e9d0b13b 1528 if (search_start == 0)
6b80053d 1529 search_start = last_block;
e9d0b13b 1530
e7a84565 1531 btrfs_tree_lock(cur);
b4ce94de 1532 btrfs_set_lock_blocking(cur);
6b80053d 1533 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1534 &cur, search_start,
6b80053d 1535 min(16 * blocksize,
9fa8cfe7 1536 (end_slot - i) * blocksize));
252c38f0 1537 if (err) {
e7a84565 1538 btrfs_tree_unlock(cur);
6b80053d 1539 free_extent_buffer(cur);
6702ed49 1540 break;
252c38f0 1541 }
e7a84565
CM
1542 search_start = cur->start;
1543 last_block = cur->start;
f2183bde 1544 *last_ret = search_start;
e7a84565
CM
1545 btrfs_tree_unlock(cur);
1546 free_extent_buffer(cur);
6702ed49
CM
1547 }
1548 return err;
1549}
1550
74123bd7
CM
1551/*
1552 * The leaf data grows from end-to-front in the node.
1553 * this returns the address of the start of the last item,
1554 * which is the stop of the leaf data stack
1555 */
123abc88 1556static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1557 struct extent_buffer *leaf)
be0e5c09 1558{
5f39d397 1559 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1560 if (nr == 0)
123abc88 1561 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1562 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1563}
1564
aa5d6bed 1565
74123bd7 1566/*
5f39d397
CM
1567 * search for key in the extent_buffer. The items start at offset p,
1568 * and they are item_size apart. There are 'max' items in p.
1569 *
74123bd7
CM
1570 * the slot in the array is returned via slot, and it points to
1571 * the place where you would insert key if it is not found in
1572 * the array.
1573 *
1574 * slot may point to max if the key is bigger than all of the keys
1575 */
e02119d5
CM
1576static noinline int generic_bin_search(struct extent_buffer *eb,
1577 unsigned long p,
1578 int item_size, struct btrfs_key *key,
1579 int max, int *slot)
be0e5c09
CM
1580{
1581 int low = 0;
1582 int high = max;
1583 int mid;
1584 int ret;
479965d6 1585 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1586 struct btrfs_disk_key unaligned;
1587 unsigned long offset;
5f39d397
CM
1588 char *kaddr = NULL;
1589 unsigned long map_start = 0;
1590 unsigned long map_len = 0;
479965d6 1591 int err;
be0e5c09 1592
d397712b 1593 while (low < high) {
be0e5c09 1594 mid = (low + high) / 2;
5f39d397
CM
1595 offset = p + mid * item_size;
1596
a6591715 1597 if (!kaddr || offset < map_start ||
5f39d397
CM
1598 (offset + sizeof(struct btrfs_disk_key)) >
1599 map_start + map_len) {
934d375b
CM
1600
1601 err = map_private_extent_buffer(eb, offset,
479965d6 1602 sizeof(struct btrfs_disk_key),
a6591715 1603 &kaddr, &map_start, &map_len);
479965d6
CM
1604
1605 if (!err) {
1606 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1607 map_start);
1608 } else {
1609 read_extent_buffer(eb, &unaligned,
1610 offset, sizeof(unaligned));
1611 tmp = &unaligned;
1612 }
5f39d397 1613
5f39d397
CM
1614 } else {
1615 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1616 map_start);
1617 }
be0e5c09
CM
1618 ret = comp_keys(tmp, key);
1619
1620 if (ret < 0)
1621 low = mid + 1;
1622 else if (ret > 0)
1623 high = mid;
1624 else {
1625 *slot = mid;
1626 return 0;
1627 }
1628 }
1629 *slot = low;
1630 return 1;
1631}
1632
97571fd0
CM
1633/*
1634 * simple bin_search frontend that does the right thing for
1635 * leaves vs nodes
1636 */
5f39d397
CM
1637static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1638 int level, int *slot)
be0e5c09 1639{
f775738f 1640 if (level == 0)
5f39d397
CM
1641 return generic_bin_search(eb,
1642 offsetof(struct btrfs_leaf, items),
0783fcfc 1643 sizeof(struct btrfs_item),
5f39d397 1644 key, btrfs_header_nritems(eb),
7518a238 1645 slot);
f775738f 1646 else
5f39d397
CM
1647 return generic_bin_search(eb,
1648 offsetof(struct btrfs_node, ptrs),
123abc88 1649 sizeof(struct btrfs_key_ptr),
5f39d397 1650 key, btrfs_header_nritems(eb),
7518a238 1651 slot);
be0e5c09
CM
1652}
1653
5d4f98a2
YZ
1654int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655 int level, int *slot)
1656{
1657 return bin_search(eb, key, level, slot);
1658}
1659
f0486c68
YZ
1660static void root_add_used(struct btrfs_root *root, u32 size)
1661{
1662 spin_lock(&root->accounting_lock);
1663 btrfs_set_root_used(&root->root_item,
1664 btrfs_root_used(&root->root_item) + size);
1665 spin_unlock(&root->accounting_lock);
1666}
1667
1668static void root_sub_used(struct btrfs_root *root, u32 size)
1669{
1670 spin_lock(&root->accounting_lock);
1671 btrfs_set_root_used(&root->root_item,
1672 btrfs_root_used(&root->root_item) - size);
1673 spin_unlock(&root->accounting_lock);
1674}
1675
d352ac68
CM
1676/* given a node and slot number, this reads the blocks it points to. The
1677 * extent buffer is returned with a reference taken (but unlocked).
1678 * NULL is returned on error.
1679 */
e02119d5 1680static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1681 struct extent_buffer *parent, int slot)
bb803951 1682{
ca7a79ad 1683 int level = btrfs_header_level(parent);
bb803951
CM
1684 if (slot < 0)
1685 return NULL;
5f39d397 1686 if (slot >= btrfs_header_nritems(parent))
bb803951 1687 return NULL;
ca7a79ad
CM
1688
1689 BUG_ON(level == 0);
1690
db94535d 1691 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
ca7a79ad
CM
1692 btrfs_level_size(root, level - 1),
1693 btrfs_node_ptr_generation(parent, slot));
bb803951
CM
1694}
1695
d352ac68
CM
1696/*
1697 * node level balancing, used to make sure nodes are in proper order for
1698 * item deletion. We balance from the top down, so we have to make sure
1699 * that a deletion won't leave an node completely empty later on.
1700 */
e02119d5 1701static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1702 struct btrfs_root *root,
1703 struct btrfs_path *path, int level)
bb803951 1704{
5f39d397
CM
1705 struct extent_buffer *right = NULL;
1706 struct extent_buffer *mid;
1707 struct extent_buffer *left = NULL;
1708 struct extent_buffer *parent = NULL;
bb803951
CM
1709 int ret = 0;
1710 int wret;
1711 int pslot;
bb803951 1712 int orig_slot = path->slots[level];
79f95c82 1713 u64 orig_ptr;
bb803951
CM
1714
1715 if (level == 0)
1716 return 0;
1717
5f39d397 1718 mid = path->nodes[level];
b4ce94de 1719
bd681513
CM
1720 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1721 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1722 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1723
1d4f8a0c 1724 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1725
a05a9bb1 1726 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1727 parent = path->nodes[level + 1];
a05a9bb1
LZ
1728 pslot = path->slots[level + 1];
1729 }
bb803951 1730
40689478
CM
1731 /*
1732 * deal with the case where there is only one pointer in the root
1733 * by promoting the node below to a root
1734 */
5f39d397
CM
1735 if (!parent) {
1736 struct extent_buffer *child;
bb803951 1737
5f39d397 1738 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1739 return 0;
1740
1741 /* promote the child to a root */
5f39d397 1742 child = read_node_slot(root, mid, 0);
305a26af
MF
1743 if (!child) {
1744 ret = -EROFS;
1745 btrfs_std_error(root->fs_info, ret);
1746 goto enospc;
1747 }
1748
925baedd 1749 btrfs_tree_lock(child);
b4ce94de 1750 btrfs_set_lock_blocking(child);
9fa8cfe7 1751 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1752 if (ret) {
1753 btrfs_tree_unlock(child);
1754 free_extent_buffer(child);
1755 goto enospc;
1756 }
2f375ab9 1757
ba1bfbd5 1758 tree_mod_log_free_eb(root->fs_info, root->node);
f230475e 1759 tree_mod_log_set_root_pointer(root, child);
240f62c8 1760 rcu_assign_pointer(root->node, child);
925baedd 1761
0b86a832 1762 add_root_to_dirty_list(root);
925baedd 1763 btrfs_tree_unlock(child);
b4ce94de 1764
925baedd 1765 path->locks[level] = 0;
bb803951 1766 path->nodes[level] = NULL;
5f39d397 1767 clean_tree_block(trans, root, mid);
925baedd 1768 btrfs_tree_unlock(mid);
bb803951 1769 /* once for the path */
5f39d397 1770 free_extent_buffer(mid);
f0486c68
YZ
1771
1772 root_sub_used(root, mid->len);
5581a51a 1773 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1774 /* once for the root ptr */
3083ee2e 1775 free_extent_buffer_stale(mid);
f0486c68 1776 return 0;
bb803951 1777 }
5f39d397 1778 if (btrfs_header_nritems(mid) >
123abc88 1779 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1780 return 0;
1781
5f39d397
CM
1782 left = read_node_slot(root, parent, pslot - 1);
1783 if (left) {
925baedd 1784 btrfs_tree_lock(left);
b4ce94de 1785 btrfs_set_lock_blocking(left);
5f39d397 1786 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1787 parent, pslot - 1, &left);
54aa1f4d
CM
1788 if (wret) {
1789 ret = wret;
1790 goto enospc;
1791 }
2cc58cf2 1792 }
5f39d397
CM
1793 right = read_node_slot(root, parent, pslot + 1);
1794 if (right) {
925baedd 1795 btrfs_tree_lock(right);
b4ce94de 1796 btrfs_set_lock_blocking(right);
5f39d397 1797 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1798 parent, pslot + 1, &right);
2cc58cf2
CM
1799 if (wret) {
1800 ret = wret;
1801 goto enospc;
1802 }
1803 }
1804
1805 /* first, try to make some room in the middle buffer */
5f39d397
CM
1806 if (left) {
1807 orig_slot += btrfs_header_nritems(left);
bce4eae9 1808 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1809 if (wret < 0)
1810 ret = wret;
bb803951 1811 }
79f95c82
CM
1812
1813 /*
1814 * then try to empty the right most buffer into the middle
1815 */
5f39d397 1816 if (right) {
971a1f66 1817 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1818 if (wret < 0 && wret != -ENOSPC)
79f95c82 1819 ret = wret;
5f39d397 1820 if (btrfs_header_nritems(right) == 0) {
5f39d397 1821 clean_tree_block(trans, root, right);
925baedd 1822 btrfs_tree_unlock(right);
0e411ece 1823 del_ptr(trans, root, path, level + 1, pslot + 1);
f0486c68 1824 root_sub_used(root, right->len);
5581a51a 1825 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1826 free_extent_buffer_stale(right);
f0486c68 1827 right = NULL;
bb803951 1828 } else {
5f39d397
CM
1829 struct btrfs_disk_key right_key;
1830 btrfs_node_key(right, &right_key, 0);
f230475e 1831 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 1832 pslot + 1, 0);
5f39d397
CM
1833 btrfs_set_node_key(parent, &right_key, pslot + 1);
1834 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1835 }
1836 }
5f39d397 1837 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1838 /*
1839 * we're not allowed to leave a node with one item in the
1840 * tree during a delete. A deletion from lower in the tree
1841 * could try to delete the only pointer in this node.
1842 * So, pull some keys from the left.
1843 * There has to be a left pointer at this point because
1844 * otherwise we would have pulled some pointers from the
1845 * right
1846 */
305a26af
MF
1847 if (!left) {
1848 ret = -EROFS;
1849 btrfs_std_error(root->fs_info, ret);
1850 goto enospc;
1851 }
5f39d397 1852 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1853 if (wret < 0) {
79f95c82 1854 ret = wret;
54aa1f4d
CM
1855 goto enospc;
1856 }
bce4eae9
CM
1857 if (wret == 1) {
1858 wret = push_node_left(trans, root, left, mid, 1);
1859 if (wret < 0)
1860 ret = wret;
1861 }
79f95c82
CM
1862 BUG_ON(wret == 1);
1863 }
5f39d397 1864 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1865 clean_tree_block(trans, root, mid);
925baedd 1866 btrfs_tree_unlock(mid);
0e411ece 1867 del_ptr(trans, root, path, level + 1, pslot);
f0486c68 1868 root_sub_used(root, mid->len);
5581a51a 1869 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1870 free_extent_buffer_stale(mid);
f0486c68 1871 mid = NULL;
79f95c82
CM
1872 } else {
1873 /* update the parent key to reflect our changes */
5f39d397
CM
1874 struct btrfs_disk_key mid_key;
1875 btrfs_node_key(mid, &mid_key, 0);
32adf090 1876 tree_mod_log_set_node_key(root->fs_info, parent,
f230475e 1877 pslot, 0);
5f39d397
CM
1878 btrfs_set_node_key(parent, &mid_key, pslot);
1879 btrfs_mark_buffer_dirty(parent);
79f95c82 1880 }
bb803951 1881
79f95c82 1882 /* update the path */
5f39d397
CM
1883 if (left) {
1884 if (btrfs_header_nritems(left) > orig_slot) {
1885 extent_buffer_get(left);
925baedd 1886 /* left was locked after cow */
5f39d397 1887 path->nodes[level] = left;
bb803951
CM
1888 path->slots[level + 1] -= 1;
1889 path->slots[level] = orig_slot;
925baedd
CM
1890 if (mid) {
1891 btrfs_tree_unlock(mid);
5f39d397 1892 free_extent_buffer(mid);
925baedd 1893 }
bb803951 1894 } else {
5f39d397 1895 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1896 path->slots[level] = orig_slot;
1897 }
1898 }
79f95c82 1899 /* double check we haven't messed things up */
e20d96d6 1900 if (orig_ptr !=
5f39d397 1901 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1902 BUG();
54aa1f4d 1903enospc:
925baedd
CM
1904 if (right) {
1905 btrfs_tree_unlock(right);
5f39d397 1906 free_extent_buffer(right);
925baedd
CM
1907 }
1908 if (left) {
1909 if (path->nodes[level] != left)
1910 btrfs_tree_unlock(left);
5f39d397 1911 free_extent_buffer(left);
925baedd 1912 }
bb803951
CM
1913 return ret;
1914}
1915
d352ac68
CM
1916/* Node balancing for insertion. Here we only split or push nodes around
1917 * when they are completely full. This is also done top down, so we
1918 * have to be pessimistic.
1919 */
d397712b 1920static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1921 struct btrfs_root *root,
1922 struct btrfs_path *path, int level)
e66f709b 1923{
5f39d397
CM
1924 struct extent_buffer *right = NULL;
1925 struct extent_buffer *mid;
1926 struct extent_buffer *left = NULL;
1927 struct extent_buffer *parent = NULL;
e66f709b
CM
1928 int ret = 0;
1929 int wret;
1930 int pslot;
1931 int orig_slot = path->slots[level];
e66f709b
CM
1932
1933 if (level == 0)
1934 return 1;
1935
5f39d397 1936 mid = path->nodes[level];
7bb86316 1937 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1938
a05a9bb1 1939 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1940 parent = path->nodes[level + 1];
a05a9bb1
LZ
1941 pslot = path->slots[level + 1];
1942 }
e66f709b 1943
5f39d397 1944 if (!parent)
e66f709b 1945 return 1;
e66f709b 1946
5f39d397 1947 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1948
1949 /* first, try to make some room in the middle buffer */
5f39d397 1950 if (left) {
e66f709b 1951 u32 left_nr;
925baedd
CM
1952
1953 btrfs_tree_lock(left);
b4ce94de
CM
1954 btrfs_set_lock_blocking(left);
1955
5f39d397 1956 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1957 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1958 wret = 1;
1959 } else {
5f39d397 1960 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1961 pslot - 1, &left);
54aa1f4d
CM
1962 if (ret)
1963 wret = 1;
1964 else {
54aa1f4d 1965 wret = push_node_left(trans, root,
971a1f66 1966 left, mid, 0);
54aa1f4d 1967 }
33ade1f8 1968 }
e66f709b
CM
1969 if (wret < 0)
1970 ret = wret;
1971 if (wret == 0) {
5f39d397 1972 struct btrfs_disk_key disk_key;
e66f709b 1973 orig_slot += left_nr;
5f39d397 1974 btrfs_node_key(mid, &disk_key, 0);
f230475e 1975 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 1976 pslot, 0);
5f39d397
CM
1977 btrfs_set_node_key(parent, &disk_key, pslot);
1978 btrfs_mark_buffer_dirty(parent);
1979 if (btrfs_header_nritems(left) > orig_slot) {
1980 path->nodes[level] = left;
e66f709b
CM
1981 path->slots[level + 1] -= 1;
1982 path->slots[level] = orig_slot;
925baedd 1983 btrfs_tree_unlock(mid);
5f39d397 1984 free_extent_buffer(mid);
e66f709b
CM
1985 } else {
1986 orig_slot -=
5f39d397 1987 btrfs_header_nritems(left);
e66f709b 1988 path->slots[level] = orig_slot;
925baedd 1989 btrfs_tree_unlock(left);
5f39d397 1990 free_extent_buffer(left);
e66f709b 1991 }
e66f709b
CM
1992 return 0;
1993 }
925baedd 1994 btrfs_tree_unlock(left);
5f39d397 1995 free_extent_buffer(left);
e66f709b 1996 }
925baedd 1997 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
1998
1999 /*
2000 * then try to empty the right most buffer into the middle
2001 */
5f39d397 2002 if (right) {
33ade1f8 2003 u32 right_nr;
b4ce94de 2004
925baedd 2005 btrfs_tree_lock(right);
b4ce94de
CM
2006 btrfs_set_lock_blocking(right);
2007
5f39d397 2008 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2009 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2010 wret = 1;
2011 } else {
5f39d397
CM
2012 ret = btrfs_cow_block(trans, root, right,
2013 parent, pslot + 1,
9fa8cfe7 2014 &right);
54aa1f4d
CM
2015 if (ret)
2016 wret = 1;
2017 else {
54aa1f4d 2018 wret = balance_node_right(trans, root,
5f39d397 2019 right, mid);
54aa1f4d 2020 }
33ade1f8 2021 }
e66f709b
CM
2022 if (wret < 0)
2023 ret = wret;
2024 if (wret == 0) {
5f39d397
CM
2025 struct btrfs_disk_key disk_key;
2026
2027 btrfs_node_key(right, &disk_key, 0);
f230475e 2028 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2029 pslot + 1, 0);
5f39d397
CM
2030 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2031 btrfs_mark_buffer_dirty(parent);
2032
2033 if (btrfs_header_nritems(mid) <= orig_slot) {
2034 path->nodes[level] = right;
e66f709b
CM
2035 path->slots[level + 1] += 1;
2036 path->slots[level] = orig_slot -
5f39d397 2037 btrfs_header_nritems(mid);
925baedd 2038 btrfs_tree_unlock(mid);
5f39d397 2039 free_extent_buffer(mid);
e66f709b 2040 } else {
925baedd 2041 btrfs_tree_unlock(right);
5f39d397 2042 free_extent_buffer(right);
e66f709b 2043 }
e66f709b
CM
2044 return 0;
2045 }
925baedd 2046 btrfs_tree_unlock(right);
5f39d397 2047 free_extent_buffer(right);
e66f709b 2048 }
e66f709b
CM
2049 return 1;
2050}
2051
3c69faec 2052/*
d352ac68
CM
2053 * readahead one full node of leaves, finding things that are close
2054 * to the block in 'slot', and triggering ra on them.
3c69faec 2055 */
c8c42864
CM
2056static void reada_for_search(struct btrfs_root *root,
2057 struct btrfs_path *path,
2058 int level, int slot, u64 objectid)
3c69faec 2059{
5f39d397 2060 struct extent_buffer *node;
01f46658 2061 struct btrfs_disk_key disk_key;
3c69faec 2062 u32 nritems;
3c69faec 2063 u64 search;
a7175319 2064 u64 target;
6b80053d 2065 u64 nread = 0;
cb25c2ea 2066 u64 gen;
3c69faec 2067 int direction = path->reada;
5f39d397 2068 struct extent_buffer *eb;
6b80053d
CM
2069 u32 nr;
2070 u32 blocksize;
2071 u32 nscan = 0;
db94535d 2072
a6b6e75e 2073 if (level != 1)
6702ed49
CM
2074 return;
2075
2076 if (!path->nodes[level])
3c69faec
CM
2077 return;
2078
5f39d397 2079 node = path->nodes[level];
925baedd 2080
3c69faec 2081 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
2082 blocksize = btrfs_level_size(root, level - 1);
2083 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
2084 if (eb) {
2085 free_extent_buffer(eb);
3c69faec
CM
2086 return;
2087 }
2088
a7175319 2089 target = search;
6b80053d 2090
5f39d397 2091 nritems = btrfs_header_nritems(node);
6b80053d 2092 nr = slot;
25b8b936 2093
d397712b 2094 while (1) {
6b80053d
CM
2095 if (direction < 0) {
2096 if (nr == 0)
2097 break;
2098 nr--;
2099 } else if (direction > 0) {
2100 nr++;
2101 if (nr >= nritems)
2102 break;
3c69faec 2103 }
01f46658
CM
2104 if (path->reada < 0 && objectid) {
2105 btrfs_node_key(node, &disk_key, nr);
2106 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2107 break;
2108 }
6b80053d 2109 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2110 if ((search <= target && target - search <= 65536) ||
2111 (search > target && search - target <= 65536)) {
cb25c2ea 2112 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2113 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2114 nread += blocksize;
2115 }
2116 nscan++;
a7175319 2117 if ((nread > 65536 || nscan > 32))
6b80053d 2118 break;
3c69faec
CM
2119 }
2120}
925baedd 2121
b4ce94de
CM
2122/*
2123 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2124 * cache
2125 */
2126static noinline int reada_for_balance(struct btrfs_root *root,
2127 struct btrfs_path *path, int level)
2128{
2129 int slot;
2130 int nritems;
2131 struct extent_buffer *parent;
2132 struct extent_buffer *eb;
2133 u64 gen;
2134 u64 block1 = 0;
2135 u64 block2 = 0;
2136 int ret = 0;
2137 int blocksize;
2138
8c594ea8 2139 parent = path->nodes[level + 1];
b4ce94de
CM
2140 if (!parent)
2141 return 0;
2142
2143 nritems = btrfs_header_nritems(parent);
8c594ea8 2144 slot = path->slots[level + 1];
b4ce94de
CM
2145 blocksize = btrfs_level_size(root, level);
2146
2147 if (slot > 0) {
2148 block1 = btrfs_node_blockptr(parent, slot - 1);
2149 gen = btrfs_node_ptr_generation(parent, slot - 1);
2150 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2151 /*
2152 * if we get -eagain from btrfs_buffer_uptodate, we
2153 * don't want to return eagain here. That will loop
2154 * forever
2155 */
2156 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2157 block1 = 0;
2158 free_extent_buffer(eb);
2159 }
8c594ea8 2160 if (slot + 1 < nritems) {
b4ce94de
CM
2161 block2 = btrfs_node_blockptr(parent, slot + 1);
2162 gen = btrfs_node_ptr_generation(parent, slot + 1);
2163 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2164 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2165 block2 = 0;
2166 free_extent_buffer(eb);
2167 }
2168 if (block1 || block2) {
2169 ret = -EAGAIN;
8c594ea8
CM
2170
2171 /* release the whole path */
b3b4aa74 2172 btrfs_release_path(path);
8c594ea8
CM
2173
2174 /* read the blocks */
b4ce94de
CM
2175 if (block1)
2176 readahead_tree_block(root, block1, blocksize, 0);
2177 if (block2)
2178 readahead_tree_block(root, block2, blocksize, 0);
2179
2180 if (block1) {
2181 eb = read_tree_block(root, block1, blocksize, 0);
2182 free_extent_buffer(eb);
2183 }
8c594ea8 2184 if (block2) {
b4ce94de
CM
2185 eb = read_tree_block(root, block2, blocksize, 0);
2186 free_extent_buffer(eb);
2187 }
2188 }
2189 return ret;
2190}
2191
2192
d352ac68 2193/*
d397712b
CM
2194 * when we walk down the tree, it is usually safe to unlock the higher layers
2195 * in the tree. The exceptions are when our path goes through slot 0, because
2196 * operations on the tree might require changing key pointers higher up in the
2197 * tree.
d352ac68 2198 *
d397712b
CM
2199 * callers might also have set path->keep_locks, which tells this code to keep
2200 * the lock if the path points to the last slot in the block. This is part of
2201 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2202 *
d397712b
CM
2203 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2204 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2205 */
e02119d5 2206static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2207 int lowest_unlock, int min_write_lock_level,
2208 int *write_lock_level)
925baedd
CM
2209{
2210 int i;
2211 int skip_level = level;
051e1b9f 2212 int no_skips = 0;
925baedd
CM
2213 struct extent_buffer *t;
2214
d6393786
JB
2215 if (path->really_keep_locks)
2216 return;
2217
925baedd
CM
2218 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2219 if (!path->nodes[i])
2220 break;
2221 if (!path->locks[i])
2222 break;
051e1b9f 2223 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2224 skip_level = i + 1;
2225 continue;
2226 }
051e1b9f 2227 if (!no_skips && path->keep_locks) {
925baedd
CM
2228 u32 nritems;
2229 t = path->nodes[i];
2230 nritems = btrfs_header_nritems(t);
051e1b9f 2231 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2232 skip_level = i + 1;
2233 continue;
2234 }
2235 }
051e1b9f
CM
2236 if (skip_level < i && i >= lowest_unlock)
2237 no_skips = 1;
2238
925baedd
CM
2239 t = path->nodes[i];
2240 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2241 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2242 path->locks[i] = 0;
f7c79f30
CM
2243 if (write_lock_level &&
2244 i > min_write_lock_level &&
2245 i <= *write_lock_level) {
2246 *write_lock_level = i - 1;
2247 }
925baedd
CM
2248 }
2249 }
2250}
2251
b4ce94de
CM
2252/*
2253 * This releases any locks held in the path starting at level and
2254 * going all the way up to the root.
2255 *
2256 * btrfs_search_slot will keep the lock held on higher nodes in a few
2257 * corner cases, such as COW of the block at slot zero in the node. This
2258 * ignores those rules, and it should only be called when there are no
2259 * more updates to be done higher up in the tree.
2260 */
2261noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2262{
2263 int i;
2264
d6393786 2265 if (path->keep_locks || path->really_keep_locks)
b4ce94de
CM
2266 return;
2267
2268 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2269 if (!path->nodes[i])
12f4dacc 2270 continue;
b4ce94de 2271 if (!path->locks[i])
12f4dacc 2272 continue;
bd681513 2273 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2274 path->locks[i] = 0;
2275 }
2276}
2277
c8c42864
CM
2278/*
2279 * helper function for btrfs_search_slot. The goal is to find a block
2280 * in cache without setting the path to blocking. If we find the block
2281 * we return zero and the path is unchanged.
2282 *
2283 * If we can't find the block, we set the path blocking and do some
2284 * reada. -EAGAIN is returned and the search must be repeated.
2285 */
2286static int
2287read_block_for_search(struct btrfs_trans_handle *trans,
2288 struct btrfs_root *root, struct btrfs_path *p,
2289 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2290 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2291{
2292 u64 blocknr;
2293 u64 gen;
2294 u32 blocksize;
2295 struct extent_buffer *b = *eb_ret;
2296 struct extent_buffer *tmp;
76a05b35 2297 int ret;
c8c42864
CM
2298
2299 blocknr = btrfs_node_blockptr(b, slot);
2300 gen = btrfs_node_ptr_generation(b, slot);
2301 blocksize = btrfs_level_size(root, level - 1);
2302
2303 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2304 if (tmp) {
b9fab919
CM
2305 /* first we do an atomic uptodate check */
2306 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2307 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
cb44921a
CM
2308 /*
2309 * we found an up to date block without
2310 * sleeping, return
2311 * right away
2312 */
2313 *eb_ret = tmp;
2314 return 0;
2315 }
2316 /* the pages were up to date, but we failed
2317 * the generation number check. Do a full
2318 * read for the generation number that is correct.
2319 * We must do this without dropping locks so
2320 * we can trust our generation number
2321 */
2322 free_extent_buffer(tmp);
bd681513
CM
2323 btrfs_set_path_blocking(p);
2324
b9fab919 2325 /* now we're allowed to do a blocking uptodate check */
cb44921a 2326 tmp = read_tree_block(root, blocknr, blocksize, gen);
b9fab919 2327 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
cb44921a
CM
2328 *eb_ret = tmp;
2329 return 0;
2330 }
2331 free_extent_buffer(tmp);
b3b4aa74 2332 btrfs_release_path(p);
cb44921a
CM
2333 return -EIO;
2334 }
c8c42864
CM
2335 }
2336
2337 /*
2338 * reduce lock contention at high levels
2339 * of the btree by dropping locks before
76a05b35
CM
2340 * we read. Don't release the lock on the current
2341 * level because we need to walk this node to figure
2342 * out which blocks to read.
c8c42864 2343 */
8c594ea8
CM
2344 btrfs_unlock_up_safe(p, level + 1);
2345 btrfs_set_path_blocking(p);
2346
cb44921a 2347 free_extent_buffer(tmp);
c8c42864
CM
2348 if (p->reada)
2349 reada_for_search(root, p, level, slot, key->objectid);
2350
b3b4aa74 2351 btrfs_release_path(p);
76a05b35
CM
2352
2353 ret = -EAGAIN;
5bdd3536 2354 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2355 if (tmp) {
2356 /*
2357 * If the read above didn't mark this buffer up to date,
2358 * it will never end up being up to date. Set ret to EIO now
2359 * and give up so that our caller doesn't loop forever
2360 * on our EAGAINs.
2361 */
b9fab919 2362 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2363 ret = -EIO;
c8c42864 2364 free_extent_buffer(tmp);
76a05b35
CM
2365 }
2366 return ret;
c8c42864
CM
2367}
2368
2369/*
2370 * helper function for btrfs_search_slot. This does all of the checks
2371 * for node-level blocks and does any balancing required based on
2372 * the ins_len.
2373 *
2374 * If no extra work was required, zero is returned. If we had to
2375 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2376 * start over
2377 */
2378static int
2379setup_nodes_for_search(struct btrfs_trans_handle *trans,
2380 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2381 struct extent_buffer *b, int level, int ins_len,
2382 int *write_lock_level)
c8c42864
CM
2383{
2384 int ret;
2385 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2386 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2387 int sret;
2388
bd681513
CM
2389 if (*write_lock_level < level + 1) {
2390 *write_lock_level = level + 1;
2391 btrfs_release_path(p);
2392 goto again;
2393 }
2394
c8c42864
CM
2395 sret = reada_for_balance(root, p, level);
2396 if (sret)
2397 goto again;
2398
2399 btrfs_set_path_blocking(p);
2400 sret = split_node(trans, root, p, level);
bd681513 2401 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2402
2403 BUG_ON(sret > 0);
2404 if (sret) {
2405 ret = sret;
2406 goto done;
2407 }
2408 b = p->nodes[level];
2409 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2410 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2411 int sret;
2412
bd681513
CM
2413 if (*write_lock_level < level + 1) {
2414 *write_lock_level = level + 1;
2415 btrfs_release_path(p);
2416 goto again;
2417 }
2418
c8c42864
CM
2419 sret = reada_for_balance(root, p, level);
2420 if (sret)
2421 goto again;
2422
2423 btrfs_set_path_blocking(p);
2424 sret = balance_level(trans, root, p, level);
bd681513 2425 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2426
2427 if (sret) {
2428 ret = sret;
2429 goto done;
2430 }
2431 b = p->nodes[level];
2432 if (!b) {
b3b4aa74 2433 btrfs_release_path(p);
c8c42864
CM
2434 goto again;
2435 }
2436 BUG_ON(btrfs_header_nritems(b) == 1);
2437 }
2438 return 0;
2439
2440again:
2441 ret = -EAGAIN;
2442done:
2443 return ret;
2444}
2445
74123bd7
CM
2446/*
2447 * look for key in the tree. path is filled in with nodes along the way
2448 * if key is found, we return zero and you can find the item in the leaf
2449 * level of the path (level 0)
2450 *
2451 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2452 * be inserted, and 1 is returned. If there are other errors during the
2453 * search a negative error number is returned.
97571fd0
CM
2454 *
2455 * if ins_len > 0, nodes and leaves will be split as we walk down the
2456 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2457 * possible)
74123bd7 2458 */
e089f05c
CM
2459int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2460 *root, struct btrfs_key *key, struct btrfs_path *p, int
2461 ins_len, int cow)
be0e5c09 2462{
5f39d397 2463 struct extent_buffer *b;
be0e5c09
CM
2464 int slot;
2465 int ret;
33c66f43 2466 int err;
be0e5c09 2467 int level;
925baedd 2468 int lowest_unlock = 1;
bd681513
CM
2469 int root_lock;
2470 /* everything at write_lock_level or lower must be write locked */
2471 int write_lock_level = 0;
9f3a7427 2472 u8 lowest_level = 0;
f7c79f30 2473 int min_write_lock_level;
9f3a7427 2474
6702ed49 2475 lowest_level = p->lowest_level;
323ac95b 2476 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2477 WARN_ON(p->nodes[0] != NULL);
25179201 2478
bd681513 2479 if (ins_len < 0) {
925baedd 2480 lowest_unlock = 2;
65b51a00 2481
bd681513
CM
2482 /* when we are removing items, we might have to go up to level
2483 * two as we update tree pointers Make sure we keep write
2484 * for those levels as well
2485 */
2486 write_lock_level = 2;
2487 } else if (ins_len > 0) {
2488 /*
2489 * for inserting items, make sure we have a write lock on
2490 * level 1 so we can update keys
2491 */
2492 write_lock_level = 1;
2493 }
2494
2495 if (!cow)
2496 write_lock_level = -1;
2497
d6393786 2498 if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
bd681513
CM
2499 write_lock_level = BTRFS_MAX_LEVEL;
2500
f7c79f30
CM
2501 min_write_lock_level = write_lock_level;
2502
bb803951 2503again:
bd681513
CM
2504 /*
2505 * we try very hard to do read locks on the root
2506 */
2507 root_lock = BTRFS_READ_LOCK;
2508 level = 0;
5d4f98a2 2509 if (p->search_commit_root) {
bd681513
CM
2510 /*
2511 * the commit roots are read only
2512 * so we always do read locks
2513 */
5d4f98a2
YZ
2514 b = root->commit_root;
2515 extent_buffer_get(b);
bd681513 2516 level = btrfs_header_level(b);
5d4f98a2 2517 if (!p->skip_locking)
bd681513 2518 btrfs_tree_read_lock(b);
5d4f98a2 2519 } else {
bd681513 2520 if (p->skip_locking) {
5d4f98a2 2521 b = btrfs_root_node(root);
bd681513
CM
2522 level = btrfs_header_level(b);
2523 } else {
2524 /* we don't know the level of the root node
2525 * until we actually have it read locked
2526 */
2527 b = btrfs_read_lock_root_node(root);
2528 level = btrfs_header_level(b);
2529 if (level <= write_lock_level) {
2530 /* whoops, must trade for write lock */
2531 btrfs_tree_read_unlock(b);
2532 free_extent_buffer(b);
2533 b = btrfs_lock_root_node(root);
2534 root_lock = BTRFS_WRITE_LOCK;
2535
2536 /* the level might have changed, check again */
2537 level = btrfs_header_level(b);
2538 }
2539 }
5d4f98a2 2540 }
bd681513
CM
2541 p->nodes[level] = b;
2542 if (!p->skip_locking)
2543 p->locks[level] = root_lock;
925baedd 2544
eb60ceac 2545 while (b) {
5f39d397 2546 level = btrfs_header_level(b);
65b51a00
CM
2547
2548 /*
2549 * setup the path here so we can release it under lock
2550 * contention with the cow code
2551 */
02217ed2 2552 if (cow) {
c8c42864
CM
2553 /*
2554 * if we don't really need to cow this block
2555 * then we don't want to set the path blocking,
2556 * so we test it here
2557 */
5d4f98a2 2558 if (!should_cow_block(trans, root, b))
65b51a00 2559 goto cow_done;
5d4f98a2 2560
b4ce94de
CM
2561 btrfs_set_path_blocking(p);
2562
bd681513
CM
2563 /*
2564 * must have write locks on this node and the
2565 * parent
2566 */
5124e00e
JB
2567 if (level > write_lock_level ||
2568 (level + 1 > write_lock_level &&
2569 level + 1 < BTRFS_MAX_LEVEL &&
2570 p->nodes[level + 1])) {
bd681513
CM
2571 write_lock_level = level + 1;
2572 btrfs_release_path(p);
2573 goto again;
2574 }
2575
33c66f43
YZ
2576 err = btrfs_cow_block(trans, root, b,
2577 p->nodes[level + 1],
2578 p->slots[level + 1], &b);
2579 if (err) {
33c66f43 2580 ret = err;
65b51a00 2581 goto done;
54aa1f4d 2582 }
02217ed2 2583 }
65b51a00 2584cow_done:
02217ed2 2585 BUG_ON(!cow && ins_len);
65b51a00 2586
eb60ceac 2587 p->nodes[level] = b;
bd681513 2588 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2589
2590 /*
2591 * we have a lock on b and as long as we aren't changing
2592 * the tree, there is no way to for the items in b to change.
2593 * It is safe to drop the lock on our parent before we
2594 * go through the expensive btree search on b.
2595 *
2596 * If cow is true, then we might be changing slot zero,
2597 * which may require changing the parent. So, we can't
2598 * drop the lock until after we know which slot we're
2599 * operating on.
2600 */
2601 if (!cow)
2602 btrfs_unlock_up_safe(p, level + 1);
2603
5f39d397 2604 ret = bin_search(b, key, level, &slot);
b4ce94de 2605
5f39d397 2606 if (level != 0) {
33c66f43
YZ
2607 int dec = 0;
2608 if (ret && slot > 0) {
2609 dec = 1;
be0e5c09 2610 slot -= 1;
33c66f43 2611 }
be0e5c09 2612 p->slots[level] = slot;
33c66f43 2613 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2614 ins_len, &write_lock_level);
33c66f43 2615 if (err == -EAGAIN)
c8c42864 2616 goto again;
33c66f43
YZ
2617 if (err) {
2618 ret = err;
c8c42864 2619 goto done;
33c66f43 2620 }
c8c42864
CM
2621 b = p->nodes[level];
2622 slot = p->slots[level];
b4ce94de 2623
bd681513
CM
2624 /*
2625 * slot 0 is special, if we change the key
2626 * we have to update the parent pointer
2627 * which means we must have a write lock
2628 * on the parent
2629 */
2630 if (slot == 0 && cow &&
2631 write_lock_level < level + 1) {
2632 write_lock_level = level + 1;
2633 btrfs_release_path(p);
2634 goto again;
2635 }
2636
f7c79f30
CM
2637 unlock_up(p, level, lowest_unlock,
2638 min_write_lock_level, &write_lock_level);
f9efa9c7 2639
925baedd 2640 if (level == lowest_level) {
33c66f43
YZ
2641 if (dec)
2642 p->slots[level]++;
5b21f2ed 2643 goto done;
925baedd 2644 }
ca7a79ad 2645
33c66f43 2646 err = read_block_for_search(trans, root, p,
5d9e75c4 2647 &b, level, slot, key, 0);
33c66f43 2648 if (err == -EAGAIN)
c8c42864 2649 goto again;
33c66f43
YZ
2650 if (err) {
2651 ret = err;
76a05b35 2652 goto done;
33c66f43 2653 }
76a05b35 2654
b4ce94de 2655 if (!p->skip_locking) {
bd681513
CM
2656 level = btrfs_header_level(b);
2657 if (level <= write_lock_level) {
2658 err = btrfs_try_tree_write_lock(b);
2659 if (!err) {
2660 btrfs_set_path_blocking(p);
2661 btrfs_tree_lock(b);
2662 btrfs_clear_path_blocking(p, b,
2663 BTRFS_WRITE_LOCK);
2664 }
2665 p->locks[level] = BTRFS_WRITE_LOCK;
2666 } else {
2667 err = btrfs_try_tree_read_lock(b);
2668 if (!err) {
2669 btrfs_set_path_blocking(p);
2670 btrfs_tree_read_lock(b);
2671 btrfs_clear_path_blocking(p, b,
2672 BTRFS_READ_LOCK);
2673 }
2674 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2675 }
bd681513 2676 p->nodes[level] = b;
b4ce94de 2677 }
be0e5c09
CM
2678 } else {
2679 p->slots[level] = slot;
87b29b20
YZ
2680 if (ins_len > 0 &&
2681 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2682 if (write_lock_level < 1) {
2683 write_lock_level = 1;
2684 btrfs_release_path(p);
2685 goto again;
2686 }
2687
b4ce94de 2688 btrfs_set_path_blocking(p);
33c66f43
YZ
2689 err = split_leaf(trans, root, key,
2690 p, ins_len, ret == 0);
bd681513 2691 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2692
33c66f43
YZ
2693 BUG_ON(err > 0);
2694 if (err) {
2695 ret = err;
65b51a00
CM
2696 goto done;
2697 }
5c680ed6 2698 }
459931ec 2699 if (!p->search_for_split)
f7c79f30
CM
2700 unlock_up(p, level, lowest_unlock,
2701 min_write_lock_level, &write_lock_level);
65b51a00 2702 goto done;
be0e5c09
CM
2703 }
2704 }
65b51a00
CM
2705 ret = 1;
2706done:
b4ce94de
CM
2707 /*
2708 * we don't really know what they plan on doing with the path
2709 * from here on, so for now just mark it as blocking
2710 */
b9473439
CM
2711 if (!p->leave_spinning)
2712 btrfs_set_path_blocking(p);
76a05b35 2713 if (ret < 0)
b3b4aa74 2714 btrfs_release_path(p);
65b51a00 2715 return ret;
be0e5c09
CM
2716}
2717
5d9e75c4
JS
2718/*
2719 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2720 * current state of the tree together with the operations recorded in the tree
2721 * modification log to search for the key in a previous version of this tree, as
2722 * denoted by the time_seq parameter.
2723 *
2724 * Naturally, there is no support for insert, delete or cow operations.
2725 *
2726 * The resulting path and return value will be set up as if we called
2727 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2728 */
2729int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2730 struct btrfs_path *p, u64 time_seq)
2731{
2732 struct extent_buffer *b;
2733 int slot;
2734 int ret;
2735 int err;
2736 int level;
2737 int lowest_unlock = 1;
2738 u8 lowest_level = 0;
2739
2740 lowest_level = p->lowest_level;
2741 WARN_ON(p->nodes[0] != NULL);
2742
2743 if (p->search_commit_root) {
2744 BUG_ON(time_seq);
2745 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2746 }
2747
2748again:
5d9e75c4 2749 b = get_old_root(root, time_seq);
5d9e75c4 2750 level = btrfs_header_level(b);
5d9e75c4
JS
2751 p->locks[level] = BTRFS_READ_LOCK;
2752
2753 while (b) {
2754 level = btrfs_header_level(b);
2755 p->nodes[level] = b;
2756 btrfs_clear_path_blocking(p, NULL, 0);
2757
2758 /*
2759 * we have a lock on b and as long as we aren't changing
2760 * the tree, there is no way to for the items in b to change.
2761 * It is safe to drop the lock on our parent before we
2762 * go through the expensive btree search on b.
2763 */
2764 btrfs_unlock_up_safe(p, level + 1);
2765
2766 ret = bin_search(b, key, level, &slot);
2767
2768 if (level != 0) {
2769 int dec = 0;
2770 if (ret && slot > 0) {
2771 dec = 1;
2772 slot -= 1;
2773 }
2774 p->slots[level] = slot;
2775 unlock_up(p, level, lowest_unlock, 0, NULL);
2776
2777 if (level == lowest_level) {
2778 if (dec)
2779 p->slots[level]++;
2780 goto done;
2781 }
2782
2783 err = read_block_for_search(NULL, root, p, &b, level,
2784 slot, key, time_seq);
2785 if (err == -EAGAIN)
2786 goto again;
2787 if (err) {
2788 ret = err;
2789 goto done;
2790 }
2791
2792 level = btrfs_header_level(b);
2793 err = btrfs_try_tree_read_lock(b);
2794 if (!err) {
2795 btrfs_set_path_blocking(p);
2796 btrfs_tree_read_lock(b);
2797 btrfs_clear_path_blocking(p, b,
2798 BTRFS_READ_LOCK);
2799 }
2800 p->locks[level] = BTRFS_READ_LOCK;
2801 p->nodes[level] = b;
2802 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2803 if (b != p->nodes[level]) {
2804 btrfs_tree_unlock_rw(p->nodes[level],
2805 p->locks[level]);
2806 p->locks[level] = 0;
2807 p->nodes[level] = b;
2808 }
2809 } else {
2810 p->slots[level] = slot;
2811 unlock_up(p, level, lowest_unlock, 0, NULL);
2812 goto done;
2813 }
2814 }
2815 ret = 1;
2816done:
2817 if (!p->leave_spinning)
2818 btrfs_set_path_blocking(p);
2819 if (ret < 0)
2820 btrfs_release_path(p);
2821
2822 return ret;
2823}
2824
2f38b3e1
AJ
2825/*
2826 * helper to use instead of search slot if no exact match is needed but
2827 * instead the next or previous item should be returned.
2828 * When find_higher is true, the next higher item is returned, the next lower
2829 * otherwise.
2830 * When return_any and find_higher are both true, and no higher item is found,
2831 * return the next lower instead.
2832 * When return_any is true and find_higher is false, and no lower item is found,
2833 * return the next higher instead.
2834 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2835 * < 0 on error
2836 */
2837int btrfs_search_slot_for_read(struct btrfs_root *root,
2838 struct btrfs_key *key, struct btrfs_path *p,
2839 int find_higher, int return_any)
2840{
2841 int ret;
2842 struct extent_buffer *leaf;
2843
2844again:
2845 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2846 if (ret <= 0)
2847 return ret;
2848 /*
2849 * a return value of 1 means the path is at the position where the
2850 * item should be inserted. Normally this is the next bigger item,
2851 * but in case the previous item is the last in a leaf, path points
2852 * to the first free slot in the previous leaf, i.e. at an invalid
2853 * item.
2854 */
2855 leaf = p->nodes[0];
2856
2857 if (find_higher) {
2858 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2859 ret = btrfs_next_leaf(root, p);
2860 if (ret <= 0)
2861 return ret;
2862 if (!return_any)
2863 return 1;
2864 /*
2865 * no higher item found, return the next
2866 * lower instead
2867 */
2868 return_any = 0;
2869 find_higher = 0;
2870 btrfs_release_path(p);
2871 goto again;
2872 }
2873 } else {
e6793769
AJ
2874 if (p->slots[0] == 0) {
2875 ret = btrfs_prev_leaf(root, p);
2876 if (ret < 0)
2877 return ret;
2878 if (!ret) {
2879 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2880 return 0;
2f38b3e1 2881 }
e6793769
AJ
2882 if (!return_any)
2883 return 1;
2884 /*
2885 * no lower item found, return the next
2886 * higher instead
2887 */
2888 return_any = 0;
2889 find_higher = 1;
2890 btrfs_release_path(p);
2891 goto again;
2892 } else {
2f38b3e1
AJ
2893 --p->slots[0];
2894 }
2895 }
2896 return 0;
2897}
2898
74123bd7
CM
2899/*
2900 * adjust the pointers going up the tree, starting at level
2901 * making sure the right key of each node is points to 'key'.
2902 * This is used after shifting pointers to the left, so it stops
2903 * fixing up pointers when a given leaf/node is not in slot 0 of the
2904 * higher levels
aa5d6bed 2905 *
74123bd7 2906 */
143bede5
JM
2907static void fixup_low_keys(struct btrfs_trans_handle *trans,
2908 struct btrfs_root *root, struct btrfs_path *path,
2909 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2910{
2911 int i;
5f39d397
CM
2912 struct extent_buffer *t;
2913
234b63a0 2914 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2915 int tslot = path->slots[i];
eb60ceac 2916 if (!path->nodes[i])
be0e5c09 2917 break;
5f39d397 2918 t = path->nodes[i];
32adf090 2919 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
5f39d397 2920 btrfs_set_node_key(t, key, tslot);
d6025579 2921 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2922 if (tslot != 0)
2923 break;
2924 }
2925}
2926
31840ae1
ZY
2927/*
2928 * update item key.
2929 *
2930 * This function isn't completely safe. It's the caller's responsibility
2931 * that the new key won't break the order
2932 */
143bede5
JM
2933void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2934 struct btrfs_root *root, struct btrfs_path *path,
2935 struct btrfs_key *new_key)
31840ae1
ZY
2936{
2937 struct btrfs_disk_key disk_key;
2938 struct extent_buffer *eb;
2939 int slot;
2940
2941 eb = path->nodes[0];
2942 slot = path->slots[0];
2943 if (slot > 0) {
2944 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2945 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2946 }
2947 if (slot < btrfs_header_nritems(eb) - 1) {
2948 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2949 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2950 }
2951
2952 btrfs_cpu_key_to_disk(&disk_key, new_key);
2953 btrfs_set_item_key(eb, &disk_key, slot);
2954 btrfs_mark_buffer_dirty(eb);
2955 if (slot == 0)
2956 fixup_low_keys(trans, root, path, &disk_key, 1);
31840ae1
ZY
2957}
2958
74123bd7
CM
2959/*
2960 * try to push data from one node into the next node left in the
79f95c82 2961 * tree.
aa5d6bed
CM
2962 *
2963 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2964 * error, and > 0 if there was no room in the left hand block.
74123bd7 2965 */
98ed5174
CM
2966static int push_node_left(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2968 struct extent_buffer *src, int empty)
be0e5c09 2969{
be0e5c09 2970 int push_items = 0;
bb803951
CM
2971 int src_nritems;
2972 int dst_nritems;
aa5d6bed 2973 int ret = 0;
be0e5c09 2974
5f39d397
CM
2975 src_nritems = btrfs_header_nritems(src);
2976 dst_nritems = btrfs_header_nritems(dst);
123abc88 2977 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2978 WARN_ON(btrfs_header_generation(src) != trans->transid);
2979 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2980
bce4eae9 2981 if (!empty && src_nritems <= 8)
971a1f66
CM
2982 return 1;
2983
d397712b 2984 if (push_items <= 0)
be0e5c09
CM
2985 return 1;
2986
bce4eae9 2987 if (empty) {
971a1f66 2988 push_items = min(src_nritems, push_items);
bce4eae9
CM
2989 if (push_items < src_nritems) {
2990 /* leave at least 8 pointers in the node if
2991 * we aren't going to empty it
2992 */
2993 if (src_nritems - push_items < 8) {
2994 if (push_items <= 8)
2995 return 1;
2996 push_items -= 8;
2997 }
2998 }
2999 } else
3000 push_items = min(src_nritems - 8, push_items);
79f95c82 3001
f230475e
JS
3002 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3003 push_items);
5f39d397
CM
3004 copy_extent_buffer(dst, src,
3005 btrfs_node_key_ptr_offset(dst_nritems),
3006 btrfs_node_key_ptr_offset(0),
d397712b 3007 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3008
bb803951 3009 if (push_items < src_nritems) {
57911b8b
JS
3010 /*
3011 * don't call tree_mod_log_eb_move here, key removal was already
3012 * fully logged by tree_mod_log_eb_copy above.
3013 */
5f39d397
CM
3014 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3015 btrfs_node_key_ptr_offset(push_items),
3016 (src_nritems - push_items) *
3017 sizeof(struct btrfs_key_ptr));
3018 }
3019 btrfs_set_header_nritems(src, src_nritems - push_items);
3020 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3021 btrfs_mark_buffer_dirty(src);
3022 btrfs_mark_buffer_dirty(dst);
31840ae1 3023
79f95c82
CM
3024 return ret;
3025}
3026
3027/*
3028 * try to push data from one node into the next node right in the
3029 * tree.
3030 *
3031 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3032 * error, and > 0 if there was no room in the right hand block.
3033 *
3034 * this will only push up to 1/2 the contents of the left node over
3035 */
5f39d397
CM
3036static int balance_node_right(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root,
3038 struct extent_buffer *dst,
3039 struct extent_buffer *src)
79f95c82 3040{
79f95c82
CM
3041 int push_items = 0;
3042 int max_push;
3043 int src_nritems;
3044 int dst_nritems;
3045 int ret = 0;
79f95c82 3046
7bb86316
CM
3047 WARN_ON(btrfs_header_generation(src) != trans->transid);
3048 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3049
5f39d397
CM
3050 src_nritems = btrfs_header_nritems(src);
3051 dst_nritems = btrfs_header_nritems(dst);
123abc88 3052 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3053 if (push_items <= 0)
79f95c82 3054 return 1;
bce4eae9 3055
d397712b 3056 if (src_nritems < 4)
bce4eae9 3057 return 1;
79f95c82
CM
3058
3059 max_push = src_nritems / 2 + 1;
3060 /* don't try to empty the node */
d397712b 3061 if (max_push >= src_nritems)
79f95c82 3062 return 1;
252c38f0 3063
79f95c82
CM
3064 if (max_push < push_items)
3065 push_items = max_push;
3066
f230475e 3067 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3068 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3069 btrfs_node_key_ptr_offset(0),
3070 (dst_nritems) *
3071 sizeof(struct btrfs_key_ptr));
d6025579 3072
f230475e
JS
3073 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3074 src_nritems - push_items, push_items);
5f39d397
CM
3075 copy_extent_buffer(dst, src,
3076 btrfs_node_key_ptr_offset(0),
3077 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3078 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3079
5f39d397
CM
3080 btrfs_set_header_nritems(src, src_nritems - push_items);
3081 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3082
5f39d397
CM
3083 btrfs_mark_buffer_dirty(src);
3084 btrfs_mark_buffer_dirty(dst);
31840ae1 3085
aa5d6bed 3086 return ret;
be0e5c09
CM
3087}
3088
97571fd0
CM
3089/*
3090 * helper function to insert a new root level in the tree.
3091 * A new node is allocated, and a single item is inserted to
3092 * point to the existing root
aa5d6bed
CM
3093 *
3094 * returns zero on success or < 0 on failure.
97571fd0 3095 */
d397712b 3096static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397
CM
3097 struct btrfs_root *root,
3098 struct btrfs_path *path, int level)
5c680ed6 3099{
7bb86316 3100 u64 lower_gen;
5f39d397
CM
3101 struct extent_buffer *lower;
3102 struct extent_buffer *c;
925baedd 3103 struct extent_buffer *old;
5f39d397 3104 struct btrfs_disk_key lower_key;
5c680ed6
CM
3105
3106 BUG_ON(path->nodes[level]);
3107 BUG_ON(path->nodes[level-1] != root->node);
3108
7bb86316
CM
3109 lower = path->nodes[level-1];
3110 if (level == 1)
3111 btrfs_item_key(lower, &lower_key, 0);
3112 else
3113 btrfs_node_key(lower, &lower_key, 0);
3114
31840ae1 3115 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3116 root->root_key.objectid, &lower_key,
5581a51a 3117 level, root->node->start, 0);
5f39d397
CM
3118 if (IS_ERR(c))
3119 return PTR_ERR(c);
925baedd 3120
f0486c68
YZ
3121 root_add_used(root, root->nodesize);
3122
5d4f98a2 3123 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3124 btrfs_set_header_nritems(c, 1);
3125 btrfs_set_header_level(c, level);
db94535d 3126 btrfs_set_header_bytenr(c, c->start);
5f39d397 3127 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3128 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3129 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397
CM
3130
3131 write_extent_buffer(c, root->fs_info->fsid,
3132 (unsigned long)btrfs_header_fsid(c),
3133 BTRFS_FSID_SIZE);
e17cade2
CM
3134
3135 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3136 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3137 BTRFS_UUID_SIZE);
3138
5f39d397 3139 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3140 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3141 lower_gen = btrfs_header_generation(lower);
31840ae1 3142 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3143
3144 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3145
5f39d397 3146 btrfs_mark_buffer_dirty(c);
d5719762 3147
925baedd 3148 old = root->node;
f230475e 3149 tree_mod_log_set_root_pointer(root, c);
240f62c8 3150 rcu_assign_pointer(root->node, c);
925baedd
CM
3151
3152 /* the super has an extra ref to root->node */
3153 free_extent_buffer(old);
3154
0b86a832 3155 add_root_to_dirty_list(root);
5f39d397
CM
3156 extent_buffer_get(c);
3157 path->nodes[level] = c;
bd681513 3158 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3159 path->slots[level] = 0;
3160 return 0;
3161}
3162
74123bd7
CM
3163/*
3164 * worker function to insert a single pointer in a node.
3165 * the node should have enough room for the pointer already
97571fd0 3166 *
74123bd7
CM
3167 * slot and level indicate where you want the key to go, and
3168 * blocknr is the block the key points to.
3169 */
143bede5
JM
3170static void insert_ptr(struct btrfs_trans_handle *trans,
3171 struct btrfs_root *root, struct btrfs_path *path,
3172 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3173 int slot, int level)
74123bd7 3174{
5f39d397 3175 struct extent_buffer *lower;
74123bd7 3176 int nritems;
f3ea38da 3177 int ret;
5c680ed6
CM
3178
3179 BUG_ON(!path->nodes[level]);
f0486c68 3180 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3181 lower = path->nodes[level];
3182 nritems = btrfs_header_nritems(lower);
c293498b 3183 BUG_ON(slot > nritems);
143bede5 3184 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3185 if (slot != nritems) {
c3e06965 3186 if (level)
f3ea38da
JS
3187 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3188 slot, nritems - slot);
5f39d397
CM
3189 memmove_extent_buffer(lower,
3190 btrfs_node_key_ptr_offset(slot + 1),
3191 btrfs_node_key_ptr_offset(slot),
d6025579 3192 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3193 }
c3e06965 3194 if (level) {
f3ea38da
JS
3195 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3196 MOD_LOG_KEY_ADD);
3197 BUG_ON(ret < 0);
3198 }
5f39d397 3199 btrfs_set_node_key(lower, key, slot);
db94535d 3200 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3201 WARN_ON(trans->transid == 0);
3202 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3203 btrfs_set_header_nritems(lower, nritems + 1);
3204 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3205}
3206
97571fd0
CM
3207/*
3208 * split the node at the specified level in path in two.
3209 * The path is corrected to point to the appropriate node after the split
3210 *
3211 * Before splitting this tries to make some room in the node by pushing
3212 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3213 *
3214 * returns 0 on success and < 0 on failure
97571fd0 3215 */
e02119d5
CM
3216static noinline int split_node(struct btrfs_trans_handle *trans,
3217 struct btrfs_root *root,
3218 struct btrfs_path *path, int level)
be0e5c09 3219{
5f39d397
CM
3220 struct extent_buffer *c;
3221 struct extent_buffer *split;
3222 struct btrfs_disk_key disk_key;
be0e5c09 3223 int mid;
5c680ed6 3224 int ret;
7518a238 3225 u32 c_nritems;
eb60ceac 3226
5f39d397 3227 c = path->nodes[level];
7bb86316 3228 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3229 if (c == root->node) {
5c680ed6 3230 /* trying to split the root, lets make a new one */
e089f05c 3231 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3232 if (ret)
3233 return ret;
b3612421 3234 } else {
e66f709b 3235 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3236 c = path->nodes[level];
3237 if (!ret && btrfs_header_nritems(c) <
c448acf0 3238 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3239 return 0;
54aa1f4d
CM
3240 if (ret < 0)
3241 return ret;
be0e5c09 3242 }
e66f709b 3243
5f39d397 3244 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3245 mid = (c_nritems + 1) / 2;
3246 btrfs_node_key(c, &disk_key, mid);
7bb86316 3247
5d4f98a2 3248 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3249 root->root_key.objectid,
5581a51a 3250 &disk_key, level, c->start, 0);
5f39d397
CM
3251 if (IS_ERR(split))
3252 return PTR_ERR(split);
3253
f0486c68
YZ
3254 root_add_used(root, root->nodesize);
3255
5d4f98a2 3256 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3257 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3258 btrfs_set_header_bytenr(split, split->start);
5f39d397 3259 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3260 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3261 btrfs_set_header_owner(split, root->root_key.objectid);
3262 write_extent_buffer(split, root->fs_info->fsid,
3263 (unsigned long)btrfs_header_fsid(split),
3264 BTRFS_FSID_SIZE);
e17cade2
CM
3265 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3266 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3267 BTRFS_UUID_SIZE);
54aa1f4d 3268
f230475e 3269 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3270 copy_extent_buffer(split, c,
3271 btrfs_node_key_ptr_offset(0),
3272 btrfs_node_key_ptr_offset(mid),
3273 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3274 btrfs_set_header_nritems(split, c_nritems - mid);
3275 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3276 ret = 0;
3277
5f39d397
CM
3278 btrfs_mark_buffer_dirty(c);
3279 btrfs_mark_buffer_dirty(split);
3280
143bede5 3281 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3282 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3283
5de08d7d 3284 if (path->slots[level] >= mid) {
5c680ed6 3285 path->slots[level] -= mid;
925baedd 3286 btrfs_tree_unlock(c);
5f39d397
CM
3287 free_extent_buffer(c);
3288 path->nodes[level] = split;
5c680ed6
CM
3289 path->slots[level + 1] += 1;
3290 } else {
925baedd 3291 btrfs_tree_unlock(split);
5f39d397 3292 free_extent_buffer(split);
be0e5c09 3293 }
aa5d6bed 3294 return ret;
be0e5c09
CM
3295}
3296
74123bd7
CM
3297/*
3298 * how many bytes are required to store the items in a leaf. start
3299 * and nr indicate which items in the leaf to check. This totals up the
3300 * space used both by the item structs and the item data
3301 */
5f39d397 3302static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3303{
41be1f3b
JB
3304 struct btrfs_item *start_item;
3305 struct btrfs_item *end_item;
3306 struct btrfs_map_token token;
be0e5c09 3307 int data_len;
5f39d397 3308 int nritems = btrfs_header_nritems(l);
d4dbff95 3309 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3310
3311 if (!nr)
3312 return 0;
41be1f3b
JB
3313 btrfs_init_map_token(&token);
3314 start_item = btrfs_item_nr(l, start);
3315 end_item = btrfs_item_nr(l, end);
3316 data_len = btrfs_token_item_offset(l, start_item, &token) +
3317 btrfs_token_item_size(l, start_item, &token);
3318 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3319 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3320 WARN_ON(data_len < 0);
be0e5c09
CM
3321 return data_len;
3322}
3323
d4dbff95
CM
3324/*
3325 * The space between the end of the leaf items and
3326 * the start of the leaf data. IOW, how much room
3327 * the leaf has left for both items and data
3328 */
d397712b 3329noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3330 struct extent_buffer *leaf)
d4dbff95 3331{
5f39d397
CM
3332 int nritems = btrfs_header_nritems(leaf);
3333 int ret;
3334 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3335 if (ret < 0) {
d397712b
CM
3336 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3337 "used %d nritems %d\n",
ae2f5411 3338 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3339 leaf_space_used(leaf, 0, nritems), nritems);
3340 }
3341 return ret;
d4dbff95
CM
3342}
3343
99d8f83c
CM
3344/*
3345 * min slot controls the lowest index we're willing to push to the
3346 * right. We'll push up to and including min_slot, but no lower
3347 */
44871b1b
CM
3348static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3349 struct btrfs_root *root,
3350 struct btrfs_path *path,
3351 int data_size, int empty,
3352 struct extent_buffer *right,
99d8f83c
CM
3353 int free_space, u32 left_nritems,
3354 u32 min_slot)
00ec4c51 3355{
5f39d397 3356 struct extent_buffer *left = path->nodes[0];
44871b1b 3357 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3358 struct btrfs_map_token token;
5f39d397 3359 struct btrfs_disk_key disk_key;
00ec4c51 3360 int slot;
34a38218 3361 u32 i;
00ec4c51
CM
3362 int push_space = 0;
3363 int push_items = 0;
0783fcfc 3364 struct btrfs_item *item;
34a38218 3365 u32 nr;
7518a238 3366 u32 right_nritems;
5f39d397 3367 u32 data_end;
db94535d 3368 u32 this_item_size;
00ec4c51 3369
cfed81a0
CM
3370 btrfs_init_map_token(&token);
3371
34a38218
CM
3372 if (empty)
3373 nr = 0;
3374 else
99d8f83c 3375 nr = max_t(u32, 1, min_slot);
34a38218 3376
31840ae1 3377 if (path->slots[0] >= left_nritems)
87b29b20 3378 push_space += data_size;
31840ae1 3379
44871b1b 3380 slot = path->slots[1];
34a38218
CM
3381 i = left_nritems - 1;
3382 while (i >= nr) {
5f39d397 3383 item = btrfs_item_nr(left, i);
db94535d 3384
31840ae1
ZY
3385 if (!empty && push_items > 0) {
3386 if (path->slots[0] > i)
3387 break;
3388 if (path->slots[0] == i) {
3389 int space = btrfs_leaf_free_space(root, left);
3390 if (space + push_space * 2 > free_space)
3391 break;
3392 }
3393 }
3394
00ec4c51 3395 if (path->slots[0] == i)
87b29b20 3396 push_space += data_size;
db94535d 3397
db94535d
CM
3398 this_item_size = btrfs_item_size(left, item);
3399 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3400 break;
31840ae1 3401
00ec4c51 3402 push_items++;
db94535d 3403 push_space += this_item_size + sizeof(*item);
34a38218
CM
3404 if (i == 0)
3405 break;
3406 i--;
db94535d 3407 }
5f39d397 3408
925baedd
CM
3409 if (push_items == 0)
3410 goto out_unlock;
5f39d397 3411
6c1500f2 3412 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3413
00ec4c51 3414 /* push left to right */
5f39d397 3415 right_nritems = btrfs_header_nritems(right);
34a38218 3416
5f39d397 3417 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3418 push_space -= leaf_data_end(root, left);
5f39d397 3419
00ec4c51 3420 /* make room in the right data area */
5f39d397
CM
3421 data_end = leaf_data_end(root, right);
3422 memmove_extent_buffer(right,
3423 btrfs_leaf_data(right) + data_end - push_space,
3424 btrfs_leaf_data(right) + data_end,
3425 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3426
00ec4c51 3427 /* copy from the left data area */
5f39d397 3428 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3429 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3430 btrfs_leaf_data(left) + leaf_data_end(root, left),
3431 push_space);
5f39d397
CM
3432
3433 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3434 btrfs_item_nr_offset(0),
3435 right_nritems * sizeof(struct btrfs_item));
3436
00ec4c51 3437 /* copy the items from left to right */
5f39d397
CM
3438 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3439 btrfs_item_nr_offset(left_nritems - push_items),
3440 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3441
3442 /* update the item pointers */
7518a238 3443 right_nritems += push_items;
5f39d397 3444 btrfs_set_header_nritems(right, right_nritems);
123abc88 3445 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3446 for (i = 0; i < right_nritems; i++) {
5f39d397 3447 item = btrfs_item_nr(right, i);
cfed81a0
CM
3448 push_space -= btrfs_token_item_size(right, item, &token);
3449 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3450 }
3451
7518a238 3452 left_nritems -= push_items;
5f39d397 3453 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3454
34a38218
CM
3455 if (left_nritems)
3456 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3457 else
3458 clean_tree_block(trans, root, left);
3459
5f39d397 3460 btrfs_mark_buffer_dirty(right);
a429e513 3461
5f39d397
CM
3462 btrfs_item_key(right, &disk_key, 0);
3463 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3464 btrfs_mark_buffer_dirty(upper);
02217ed2 3465
00ec4c51 3466 /* then fixup the leaf pointer in the path */
7518a238
CM
3467 if (path->slots[0] >= left_nritems) {
3468 path->slots[0] -= left_nritems;
925baedd
CM
3469 if (btrfs_header_nritems(path->nodes[0]) == 0)
3470 clean_tree_block(trans, root, path->nodes[0]);
3471 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3472 free_extent_buffer(path->nodes[0]);
3473 path->nodes[0] = right;
00ec4c51
CM
3474 path->slots[1] += 1;
3475 } else {
925baedd 3476 btrfs_tree_unlock(right);
5f39d397 3477 free_extent_buffer(right);
00ec4c51
CM
3478 }
3479 return 0;
925baedd
CM
3480
3481out_unlock:
3482 btrfs_tree_unlock(right);
3483 free_extent_buffer(right);
3484 return 1;
00ec4c51 3485}
925baedd 3486
44871b1b
CM
3487/*
3488 * push some data in the path leaf to the right, trying to free up at
3489 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3490 *
3491 * returns 1 if the push failed because the other node didn't have enough
3492 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3493 *
3494 * this will push starting from min_slot to the end of the leaf. It won't
3495 * push any slot lower than min_slot
44871b1b
CM
3496 */
3497static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3498 *root, struct btrfs_path *path,
3499 int min_data_size, int data_size,
3500 int empty, u32 min_slot)
44871b1b
CM
3501{
3502 struct extent_buffer *left = path->nodes[0];
3503 struct extent_buffer *right;
3504 struct extent_buffer *upper;
3505 int slot;
3506 int free_space;
3507 u32 left_nritems;
3508 int ret;
3509
3510 if (!path->nodes[1])
3511 return 1;
3512
3513 slot = path->slots[1];
3514 upper = path->nodes[1];
3515 if (slot >= btrfs_header_nritems(upper) - 1)
3516 return 1;
3517
3518 btrfs_assert_tree_locked(path->nodes[1]);
3519
3520 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3521 if (right == NULL)
3522 return 1;
3523
44871b1b
CM
3524 btrfs_tree_lock(right);
3525 btrfs_set_lock_blocking(right);
3526
3527 free_space = btrfs_leaf_free_space(root, right);
3528 if (free_space < data_size)
3529 goto out_unlock;
3530
3531 /* cow and double check */
3532 ret = btrfs_cow_block(trans, root, right, upper,
3533 slot + 1, &right);
3534 if (ret)
3535 goto out_unlock;
3536
3537 free_space = btrfs_leaf_free_space(root, right);
3538 if (free_space < data_size)
3539 goto out_unlock;
3540
3541 left_nritems = btrfs_header_nritems(left);
3542 if (left_nritems == 0)
3543 goto out_unlock;
3544
99d8f83c
CM
3545 return __push_leaf_right(trans, root, path, min_data_size, empty,
3546 right, free_space, left_nritems, min_slot);
44871b1b
CM
3547out_unlock:
3548 btrfs_tree_unlock(right);
3549 free_extent_buffer(right);
3550 return 1;
3551}
3552
74123bd7
CM
3553/*
3554 * push some data in the path leaf to the left, trying to free up at
3555 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3556 *
3557 * max_slot can put a limit on how far into the leaf we'll push items. The
3558 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3559 * items
74123bd7 3560 */
44871b1b
CM
3561static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3562 struct btrfs_root *root,
3563 struct btrfs_path *path, int data_size,
3564 int empty, struct extent_buffer *left,
99d8f83c
CM
3565 int free_space, u32 right_nritems,
3566 u32 max_slot)
be0e5c09 3567{
5f39d397
CM
3568 struct btrfs_disk_key disk_key;
3569 struct extent_buffer *right = path->nodes[0];
be0e5c09 3570 int i;
be0e5c09
CM
3571 int push_space = 0;
3572 int push_items = 0;
0783fcfc 3573 struct btrfs_item *item;
7518a238 3574 u32 old_left_nritems;
34a38218 3575 u32 nr;
aa5d6bed 3576 int ret = 0;
db94535d
CM
3577 u32 this_item_size;
3578 u32 old_left_item_size;
cfed81a0
CM
3579 struct btrfs_map_token token;
3580
3581 btrfs_init_map_token(&token);
be0e5c09 3582
34a38218 3583 if (empty)
99d8f83c 3584 nr = min(right_nritems, max_slot);
34a38218 3585 else
99d8f83c 3586 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3587
3588 for (i = 0; i < nr; i++) {
5f39d397 3589 item = btrfs_item_nr(right, i);
db94535d 3590
31840ae1
ZY
3591 if (!empty && push_items > 0) {
3592 if (path->slots[0] < i)
3593 break;
3594 if (path->slots[0] == i) {
3595 int space = btrfs_leaf_free_space(root, right);
3596 if (space + push_space * 2 > free_space)
3597 break;
3598 }
3599 }
3600
be0e5c09 3601 if (path->slots[0] == i)
87b29b20 3602 push_space += data_size;
db94535d
CM
3603
3604 this_item_size = btrfs_item_size(right, item);
3605 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3606 break;
db94535d 3607
be0e5c09 3608 push_items++;
db94535d
CM
3609 push_space += this_item_size + sizeof(*item);
3610 }
3611
be0e5c09 3612 if (push_items == 0) {
925baedd
CM
3613 ret = 1;
3614 goto out;
be0e5c09 3615 }
34a38218 3616 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3617 WARN_ON(1);
5f39d397 3618
be0e5c09 3619 /* push data from right to left */
5f39d397
CM
3620 copy_extent_buffer(left, right,
3621 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3622 btrfs_item_nr_offset(0),
3623 push_items * sizeof(struct btrfs_item));
3624
123abc88 3625 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3626 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3627
3628 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3629 leaf_data_end(root, left) - push_space,
3630 btrfs_leaf_data(right) +
5f39d397 3631 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3632 push_space);
5f39d397 3633 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3634 BUG_ON(old_left_nritems <= 0);
eb60ceac 3635
db94535d 3636 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3637 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3638 u32 ioff;
db94535d 3639
5f39d397 3640 item = btrfs_item_nr(left, i);
db94535d 3641
cfed81a0
CM
3642 ioff = btrfs_token_item_offset(left, item, &token);
3643 btrfs_set_token_item_offset(left, item,
3644 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3645 &token);
be0e5c09 3646 }
5f39d397 3647 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3648
3649 /* fixup right node */
31b1a2bd
JL
3650 if (push_items > right_nritems)
3651 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3652 right_nritems);
34a38218
CM
3653
3654 if (push_items < right_nritems) {
3655 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3656 leaf_data_end(root, right);
3657 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3658 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3659 btrfs_leaf_data(right) +
3660 leaf_data_end(root, right), push_space);
3661
3662 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3663 btrfs_item_nr_offset(push_items),
3664 (btrfs_header_nritems(right) - push_items) *
3665 sizeof(struct btrfs_item));
34a38218 3666 }
eef1c494
Y
3667 right_nritems -= push_items;
3668 btrfs_set_header_nritems(right, right_nritems);
123abc88 3669 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3670 for (i = 0; i < right_nritems; i++) {
3671 item = btrfs_item_nr(right, i);
db94535d 3672
cfed81a0
CM
3673 push_space = push_space - btrfs_token_item_size(right,
3674 item, &token);
3675 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3676 }
eb60ceac 3677
5f39d397 3678 btrfs_mark_buffer_dirty(left);
34a38218
CM
3679 if (right_nritems)
3680 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3681 else
3682 clean_tree_block(trans, root, right);
098f59c2 3683
5f39d397 3684 btrfs_item_key(right, &disk_key, 0);
143bede5 3685 fixup_low_keys(trans, root, path, &disk_key, 1);
be0e5c09
CM
3686
3687 /* then fixup the leaf pointer in the path */
3688 if (path->slots[0] < push_items) {
3689 path->slots[0] += old_left_nritems;
925baedd 3690 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3691 free_extent_buffer(path->nodes[0]);
3692 path->nodes[0] = left;
be0e5c09
CM
3693 path->slots[1] -= 1;
3694 } else {
925baedd 3695 btrfs_tree_unlock(left);
5f39d397 3696 free_extent_buffer(left);
be0e5c09
CM
3697 path->slots[0] -= push_items;
3698 }
eb60ceac 3699 BUG_ON(path->slots[0] < 0);
aa5d6bed 3700 return ret;
925baedd
CM
3701out:
3702 btrfs_tree_unlock(left);
3703 free_extent_buffer(left);
3704 return ret;
be0e5c09
CM
3705}
3706
44871b1b
CM
3707/*
3708 * push some data in the path leaf to the left, trying to free up at
3709 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3710 *
3711 * max_slot can put a limit on how far into the leaf we'll push items. The
3712 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3713 * items
44871b1b
CM
3714 */
3715static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3716 *root, struct btrfs_path *path, int min_data_size,
3717 int data_size, int empty, u32 max_slot)
44871b1b
CM
3718{
3719 struct extent_buffer *right = path->nodes[0];
3720 struct extent_buffer *left;
3721 int slot;
3722 int free_space;
3723 u32 right_nritems;
3724 int ret = 0;
3725
3726 slot = path->slots[1];
3727 if (slot == 0)
3728 return 1;
3729 if (!path->nodes[1])
3730 return 1;
3731
3732 right_nritems = btrfs_header_nritems(right);
3733 if (right_nritems == 0)
3734 return 1;
3735
3736 btrfs_assert_tree_locked(path->nodes[1]);
3737
3738 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3739 if (left == NULL)
3740 return 1;
3741
44871b1b
CM
3742 btrfs_tree_lock(left);
3743 btrfs_set_lock_blocking(left);
3744
3745 free_space = btrfs_leaf_free_space(root, left);
3746 if (free_space < data_size) {
3747 ret = 1;
3748 goto out;
3749 }
3750
3751 /* cow and double check */
3752 ret = btrfs_cow_block(trans, root, left,
3753 path->nodes[1], slot - 1, &left);
3754 if (ret) {
3755 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3756 if (ret == -ENOSPC)
3757 ret = 1;
44871b1b
CM
3758 goto out;
3759 }
3760
3761 free_space = btrfs_leaf_free_space(root, left);
3762 if (free_space < data_size) {
3763 ret = 1;
3764 goto out;
3765 }
3766
99d8f83c
CM
3767 return __push_leaf_left(trans, root, path, min_data_size,
3768 empty, left, free_space, right_nritems,
3769 max_slot);
44871b1b
CM
3770out:
3771 btrfs_tree_unlock(left);
3772 free_extent_buffer(left);
3773 return ret;
3774}
3775
3776/*
3777 * split the path's leaf in two, making sure there is at least data_size
3778 * available for the resulting leaf level of the path.
44871b1b 3779 */
143bede5
JM
3780static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3781 struct btrfs_root *root,
3782 struct btrfs_path *path,
3783 struct extent_buffer *l,
3784 struct extent_buffer *right,
3785 int slot, int mid, int nritems)
44871b1b
CM
3786{
3787 int data_copy_size;
3788 int rt_data_off;
3789 int i;
44871b1b 3790 struct btrfs_disk_key disk_key;
cfed81a0
CM
3791 struct btrfs_map_token token;
3792
3793 btrfs_init_map_token(&token);
44871b1b
CM
3794
3795 nritems = nritems - mid;
3796 btrfs_set_header_nritems(right, nritems);
3797 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3798
3799 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3800 btrfs_item_nr_offset(mid),
3801 nritems * sizeof(struct btrfs_item));
3802
3803 copy_extent_buffer(right, l,
3804 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3805 data_copy_size, btrfs_leaf_data(l) +
3806 leaf_data_end(root, l), data_copy_size);
3807
3808 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3809 btrfs_item_end_nr(l, mid);
3810
3811 for (i = 0; i < nritems; i++) {
3812 struct btrfs_item *item = btrfs_item_nr(right, i);
3813 u32 ioff;
3814
cfed81a0
CM
3815 ioff = btrfs_token_item_offset(right, item, &token);
3816 btrfs_set_token_item_offset(right, item,
3817 ioff + rt_data_off, &token);
44871b1b
CM
3818 }
3819
44871b1b 3820 btrfs_set_header_nritems(l, mid);
44871b1b 3821 btrfs_item_key(right, &disk_key, 0);
143bede5 3822 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3823 path->slots[1] + 1, 1);
44871b1b
CM
3824
3825 btrfs_mark_buffer_dirty(right);
3826 btrfs_mark_buffer_dirty(l);
3827 BUG_ON(path->slots[0] != slot);
3828
44871b1b
CM
3829 if (mid <= slot) {
3830 btrfs_tree_unlock(path->nodes[0]);
3831 free_extent_buffer(path->nodes[0]);
3832 path->nodes[0] = right;
3833 path->slots[0] -= mid;
3834 path->slots[1] += 1;
3835 } else {
3836 btrfs_tree_unlock(right);
3837 free_extent_buffer(right);
3838 }
3839
3840 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3841}
3842
99d8f83c
CM
3843/*
3844 * double splits happen when we need to insert a big item in the middle
3845 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3846 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3847 * A B C
3848 *
3849 * We avoid this by trying to push the items on either side of our target
3850 * into the adjacent leaves. If all goes well we can avoid the double split
3851 * completely.
3852 */
3853static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3854 struct btrfs_root *root,
3855 struct btrfs_path *path,
3856 int data_size)
3857{
3858 int ret;
3859 int progress = 0;
3860 int slot;
3861 u32 nritems;
3862
3863 slot = path->slots[0];
3864
3865 /*
3866 * try to push all the items after our slot into the
3867 * right leaf
3868 */
3869 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3870 if (ret < 0)
3871 return ret;
3872
3873 if (ret == 0)
3874 progress++;
3875
3876 nritems = btrfs_header_nritems(path->nodes[0]);
3877 /*
3878 * our goal is to get our slot at the start or end of a leaf. If
3879 * we've done so we're done
3880 */
3881 if (path->slots[0] == 0 || path->slots[0] == nritems)
3882 return 0;
3883
3884 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3885 return 0;
3886
3887 /* try to push all the items before our slot into the next leaf */
3888 slot = path->slots[0];
3889 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3890 if (ret < 0)
3891 return ret;
3892
3893 if (ret == 0)
3894 progress++;
3895
3896 if (progress)
3897 return 0;
3898 return 1;
3899}
3900
74123bd7
CM
3901/*
3902 * split the path's leaf in two, making sure there is at least data_size
3903 * available for the resulting leaf level of the path.
aa5d6bed
CM
3904 *
3905 * returns 0 if all went well and < 0 on failure.
74123bd7 3906 */
e02119d5
CM
3907static noinline int split_leaf(struct btrfs_trans_handle *trans,
3908 struct btrfs_root *root,
3909 struct btrfs_key *ins_key,
3910 struct btrfs_path *path, int data_size,
3911 int extend)
be0e5c09 3912{
5d4f98a2 3913 struct btrfs_disk_key disk_key;
5f39d397 3914 struct extent_buffer *l;
7518a238 3915 u32 nritems;
eb60ceac
CM
3916 int mid;
3917 int slot;
5f39d397 3918 struct extent_buffer *right;
d4dbff95 3919 int ret = 0;
aa5d6bed 3920 int wret;
5d4f98a2 3921 int split;
cc0c5538 3922 int num_doubles = 0;
99d8f83c 3923 int tried_avoid_double = 0;
aa5d6bed 3924
a5719521
YZ
3925 l = path->nodes[0];
3926 slot = path->slots[0];
3927 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3928 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3929 return -EOVERFLOW;
3930
40689478 3931 /* first try to make some room by pushing left and right */
99d8f83c
CM
3932 if (data_size) {
3933 wret = push_leaf_right(trans, root, path, data_size,
3934 data_size, 0, 0);
d397712b 3935 if (wret < 0)
eaee50e8 3936 return wret;
3685f791 3937 if (wret) {
99d8f83c
CM
3938 wret = push_leaf_left(trans, root, path, data_size,
3939 data_size, 0, (u32)-1);
3685f791
CM
3940 if (wret < 0)
3941 return wret;
3942 }
3943 l = path->nodes[0];
aa5d6bed 3944
3685f791 3945 /* did the pushes work? */
87b29b20 3946 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3947 return 0;
3326d1b0 3948 }
aa5d6bed 3949
5c680ed6 3950 if (!path->nodes[1]) {
e089f05c 3951 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
3952 if (ret)
3953 return ret;
3954 }
cc0c5538 3955again:
5d4f98a2 3956 split = 1;
cc0c5538 3957 l = path->nodes[0];
eb60ceac 3958 slot = path->slots[0];
5f39d397 3959 nritems = btrfs_header_nritems(l);
d397712b 3960 mid = (nritems + 1) / 2;
54aa1f4d 3961
5d4f98a2
YZ
3962 if (mid <= slot) {
3963 if (nritems == 1 ||
3964 leaf_space_used(l, mid, nritems - mid) + data_size >
3965 BTRFS_LEAF_DATA_SIZE(root)) {
3966 if (slot >= nritems) {
3967 split = 0;
3968 } else {
3969 mid = slot;
3970 if (mid != nritems &&
3971 leaf_space_used(l, mid, nritems - mid) +
3972 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3973 if (data_size && !tried_avoid_double)
3974 goto push_for_double;
5d4f98a2
YZ
3975 split = 2;
3976 }
3977 }
3978 }
3979 } else {
3980 if (leaf_space_used(l, 0, mid) + data_size >
3981 BTRFS_LEAF_DATA_SIZE(root)) {
3982 if (!extend && data_size && slot == 0) {
3983 split = 0;
3984 } else if ((extend || !data_size) && slot == 0) {
3985 mid = 1;
3986 } else {
3987 mid = slot;
3988 if (mid != nritems &&
3989 leaf_space_used(l, mid, nritems - mid) +
3990 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3991 if (data_size && !tried_avoid_double)
3992 goto push_for_double;
5d4f98a2
YZ
3993 split = 2 ;
3994 }
3995 }
3996 }
3997 }
3998
3999 if (split == 0)
4000 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4001 else
4002 btrfs_item_key(l, &disk_key, mid);
4003
4004 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 4005 root->root_key.objectid,
5581a51a 4006 &disk_key, 0, l->start, 0);
f0486c68 4007 if (IS_ERR(right))
5f39d397 4008 return PTR_ERR(right);
f0486c68
YZ
4009
4010 root_add_used(root, root->leafsize);
5f39d397
CM
4011
4012 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4013 btrfs_set_header_bytenr(right, right->start);
5f39d397 4014 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4015 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4016 btrfs_set_header_owner(right, root->root_key.objectid);
4017 btrfs_set_header_level(right, 0);
4018 write_extent_buffer(right, root->fs_info->fsid,
4019 (unsigned long)btrfs_header_fsid(right),
4020 BTRFS_FSID_SIZE);
e17cade2
CM
4021
4022 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4023 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4024 BTRFS_UUID_SIZE);
44871b1b 4025
5d4f98a2
YZ
4026 if (split == 0) {
4027 if (mid <= slot) {
4028 btrfs_set_header_nritems(right, 0);
143bede5 4029 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4030 path->slots[1] + 1, 1);
5d4f98a2
YZ
4031 btrfs_tree_unlock(path->nodes[0]);
4032 free_extent_buffer(path->nodes[0]);
4033 path->nodes[0] = right;
4034 path->slots[0] = 0;
4035 path->slots[1] += 1;
4036 } else {
4037 btrfs_set_header_nritems(right, 0);
143bede5 4038 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4039 path->slots[1], 1);
5d4f98a2
YZ
4040 btrfs_tree_unlock(path->nodes[0]);
4041 free_extent_buffer(path->nodes[0]);
4042 path->nodes[0] = right;
4043 path->slots[0] = 0;
143bede5
JM
4044 if (path->slots[1] == 0)
4045 fixup_low_keys(trans, root, path,
4046 &disk_key, 1);
d4dbff95 4047 }
5d4f98a2
YZ
4048 btrfs_mark_buffer_dirty(right);
4049 return ret;
d4dbff95 4050 }
74123bd7 4051
143bede5 4052 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4053
5d4f98a2 4054 if (split == 2) {
cc0c5538
CM
4055 BUG_ON(num_doubles != 0);
4056 num_doubles++;
4057 goto again;
a429e513 4058 }
44871b1b 4059
143bede5 4060 return 0;
99d8f83c
CM
4061
4062push_for_double:
4063 push_for_double_split(trans, root, path, data_size);
4064 tried_avoid_double = 1;
4065 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4066 return 0;
4067 goto again;
be0e5c09
CM
4068}
4069
ad48fd75
YZ
4070static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4071 struct btrfs_root *root,
4072 struct btrfs_path *path, int ins_len)
459931ec 4073{
ad48fd75 4074 struct btrfs_key key;
459931ec 4075 struct extent_buffer *leaf;
ad48fd75
YZ
4076 struct btrfs_file_extent_item *fi;
4077 u64 extent_len = 0;
4078 u32 item_size;
4079 int ret;
459931ec
CM
4080
4081 leaf = path->nodes[0];
ad48fd75
YZ
4082 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4083
4084 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4085 key.type != BTRFS_EXTENT_CSUM_KEY);
4086
4087 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4088 return 0;
459931ec
CM
4089
4090 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4091 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4092 fi = btrfs_item_ptr(leaf, path->slots[0],
4093 struct btrfs_file_extent_item);
4094 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4095 }
b3b4aa74 4096 btrfs_release_path(path);
459931ec 4097
459931ec 4098 path->keep_locks = 1;
ad48fd75
YZ
4099 path->search_for_split = 1;
4100 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4101 path->search_for_split = 0;
ad48fd75
YZ
4102 if (ret < 0)
4103 goto err;
459931ec 4104
ad48fd75
YZ
4105 ret = -EAGAIN;
4106 leaf = path->nodes[0];
459931ec 4107 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4108 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4109 goto err;
4110
109f6aef
CM
4111 /* the leaf has changed, it now has room. return now */
4112 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4113 goto err;
4114
ad48fd75
YZ
4115 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4116 fi = btrfs_item_ptr(leaf, path->slots[0],
4117 struct btrfs_file_extent_item);
4118 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4119 goto err;
459931ec
CM
4120 }
4121
b9473439 4122 btrfs_set_path_blocking(path);
ad48fd75 4123 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4124 if (ret)
4125 goto err;
459931ec 4126
ad48fd75 4127 path->keep_locks = 0;
b9473439 4128 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4129 return 0;
4130err:
4131 path->keep_locks = 0;
4132 return ret;
4133}
4134
4135static noinline int split_item(struct btrfs_trans_handle *trans,
4136 struct btrfs_root *root,
4137 struct btrfs_path *path,
4138 struct btrfs_key *new_key,
4139 unsigned long split_offset)
4140{
4141 struct extent_buffer *leaf;
4142 struct btrfs_item *item;
4143 struct btrfs_item *new_item;
4144 int slot;
4145 char *buf;
4146 u32 nritems;
4147 u32 item_size;
4148 u32 orig_offset;
4149 struct btrfs_disk_key disk_key;
4150
b9473439
CM
4151 leaf = path->nodes[0];
4152 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4153
b4ce94de
CM
4154 btrfs_set_path_blocking(path);
4155
459931ec
CM
4156 item = btrfs_item_nr(leaf, path->slots[0]);
4157 orig_offset = btrfs_item_offset(leaf, item);
4158 item_size = btrfs_item_size(leaf, item);
4159
459931ec 4160 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4161 if (!buf)
4162 return -ENOMEM;
4163
459931ec
CM
4164 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4165 path->slots[0]), item_size);
459931ec 4166
ad48fd75 4167 slot = path->slots[0] + 1;
459931ec 4168 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4169 if (slot != nritems) {
4170 /* shift the items */
4171 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4172 btrfs_item_nr_offset(slot),
4173 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4174 }
4175
4176 btrfs_cpu_key_to_disk(&disk_key, new_key);
4177 btrfs_set_item_key(leaf, &disk_key, slot);
4178
4179 new_item = btrfs_item_nr(leaf, slot);
4180
4181 btrfs_set_item_offset(leaf, new_item, orig_offset);
4182 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4183
4184 btrfs_set_item_offset(leaf, item,
4185 orig_offset + item_size - split_offset);
4186 btrfs_set_item_size(leaf, item, split_offset);
4187
4188 btrfs_set_header_nritems(leaf, nritems + 1);
4189
4190 /* write the data for the start of the original item */
4191 write_extent_buffer(leaf, buf,
4192 btrfs_item_ptr_offset(leaf, path->slots[0]),
4193 split_offset);
4194
4195 /* write the data for the new item */
4196 write_extent_buffer(leaf, buf + split_offset,
4197 btrfs_item_ptr_offset(leaf, slot),
4198 item_size - split_offset);
4199 btrfs_mark_buffer_dirty(leaf);
4200
ad48fd75 4201 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4202 kfree(buf);
ad48fd75
YZ
4203 return 0;
4204}
4205
4206/*
4207 * This function splits a single item into two items,
4208 * giving 'new_key' to the new item and splitting the
4209 * old one at split_offset (from the start of the item).
4210 *
4211 * The path may be released by this operation. After
4212 * the split, the path is pointing to the old item. The
4213 * new item is going to be in the same node as the old one.
4214 *
4215 * Note, the item being split must be smaller enough to live alone on
4216 * a tree block with room for one extra struct btrfs_item
4217 *
4218 * This allows us to split the item in place, keeping a lock on the
4219 * leaf the entire time.
4220 */
4221int btrfs_split_item(struct btrfs_trans_handle *trans,
4222 struct btrfs_root *root,
4223 struct btrfs_path *path,
4224 struct btrfs_key *new_key,
4225 unsigned long split_offset)
4226{
4227 int ret;
4228 ret = setup_leaf_for_split(trans, root, path,
4229 sizeof(struct btrfs_item));
4230 if (ret)
4231 return ret;
4232
4233 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4234 return ret;
4235}
4236
ad48fd75
YZ
4237/*
4238 * This function duplicate a item, giving 'new_key' to the new item.
4239 * It guarantees both items live in the same tree leaf and the new item
4240 * is contiguous with the original item.
4241 *
4242 * This allows us to split file extent in place, keeping a lock on the
4243 * leaf the entire time.
4244 */
4245int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4246 struct btrfs_root *root,
4247 struct btrfs_path *path,
4248 struct btrfs_key *new_key)
4249{
4250 struct extent_buffer *leaf;
4251 int ret;
4252 u32 item_size;
4253
4254 leaf = path->nodes[0];
4255 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4256 ret = setup_leaf_for_split(trans, root, path,
4257 item_size + sizeof(struct btrfs_item));
4258 if (ret)
4259 return ret;
4260
4261 path->slots[0]++;
143bede5
JM
4262 setup_items_for_insert(trans, root, path, new_key, &item_size,
4263 item_size, item_size +
4264 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4265 leaf = path->nodes[0];
4266 memcpy_extent_buffer(leaf,
4267 btrfs_item_ptr_offset(leaf, path->slots[0]),
4268 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4269 item_size);
4270 return 0;
4271}
4272
d352ac68
CM
4273/*
4274 * make the item pointed to by the path smaller. new_size indicates
4275 * how small to make it, and from_end tells us if we just chop bytes
4276 * off the end of the item or if we shift the item to chop bytes off
4277 * the front.
4278 */
143bede5
JM
4279void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4280 struct btrfs_root *root,
4281 struct btrfs_path *path,
4282 u32 new_size, int from_end)
b18c6685 4283{
b18c6685 4284 int slot;
5f39d397
CM
4285 struct extent_buffer *leaf;
4286 struct btrfs_item *item;
b18c6685
CM
4287 u32 nritems;
4288 unsigned int data_end;
4289 unsigned int old_data_start;
4290 unsigned int old_size;
4291 unsigned int size_diff;
4292 int i;
cfed81a0
CM
4293 struct btrfs_map_token token;
4294
4295 btrfs_init_map_token(&token);
b18c6685 4296
5f39d397 4297 leaf = path->nodes[0];
179e29e4
CM
4298 slot = path->slots[0];
4299
4300 old_size = btrfs_item_size_nr(leaf, slot);
4301 if (old_size == new_size)
143bede5 4302 return;
b18c6685 4303
5f39d397 4304 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4305 data_end = leaf_data_end(root, leaf);
4306
5f39d397 4307 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4308
b18c6685
CM
4309 size_diff = old_size - new_size;
4310
4311 BUG_ON(slot < 0);
4312 BUG_ON(slot >= nritems);
4313
4314 /*
4315 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4316 */
4317 /* first correct the data pointers */
4318 for (i = slot; i < nritems; i++) {
5f39d397
CM
4319 u32 ioff;
4320 item = btrfs_item_nr(leaf, i);
db94535d 4321
cfed81a0
CM
4322 ioff = btrfs_token_item_offset(leaf, item, &token);
4323 btrfs_set_token_item_offset(leaf, item,
4324 ioff + size_diff, &token);
b18c6685 4325 }
db94535d 4326
b18c6685 4327 /* shift the data */
179e29e4
CM
4328 if (from_end) {
4329 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4330 data_end + size_diff, btrfs_leaf_data(leaf) +
4331 data_end, old_data_start + new_size - data_end);
4332 } else {
4333 struct btrfs_disk_key disk_key;
4334 u64 offset;
4335
4336 btrfs_item_key(leaf, &disk_key, slot);
4337
4338 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4339 unsigned long ptr;
4340 struct btrfs_file_extent_item *fi;
4341
4342 fi = btrfs_item_ptr(leaf, slot,
4343 struct btrfs_file_extent_item);
4344 fi = (struct btrfs_file_extent_item *)(
4345 (unsigned long)fi - size_diff);
4346
4347 if (btrfs_file_extent_type(leaf, fi) ==
4348 BTRFS_FILE_EXTENT_INLINE) {
4349 ptr = btrfs_item_ptr_offset(leaf, slot);
4350 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4351 (unsigned long)fi,
4352 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4353 disk_bytenr));
4354 }
4355 }
4356
4357 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4358 data_end + size_diff, btrfs_leaf_data(leaf) +
4359 data_end, old_data_start - data_end);
4360
4361 offset = btrfs_disk_key_offset(&disk_key);
4362 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4363 btrfs_set_item_key(leaf, &disk_key, slot);
4364 if (slot == 0)
4365 fixup_low_keys(trans, root, path, &disk_key, 1);
4366 }
5f39d397
CM
4367
4368 item = btrfs_item_nr(leaf, slot);
4369 btrfs_set_item_size(leaf, item, new_size);
4370 btrfs_mark_buffer_dirty(leaf);
b18c6685 4371
5f39d397
CM
4372 if (btrfs_leaf_free_space(root, leaf) < 0) {
4373 btrfs_print_leaf(root, leaf);
b18c6685 4374 BUG();
5f39d397 4375 }
b18c6685
CM
4376}
4377
d352ac68
CM
4378/*
4379 * make the item pointed to by the path bigger, data_size is the new size.
4380 */
143bede5
JM
4381void btrfs_extend_item(struct btrfs_trans_handle *trans,
4382 struct btrfs_root *root, struct btrfs_path *path,
4383 u32 data_size)
6567e837 4384{
6567e837 4385 int slot;
5f39d397
CM
4386 struct extent_buffer *leaf;
4387 struct btrfs_item *item;
6567e837
CM
4388 u32 nritems;
4389 unsigned int data_end;
4390 unsigned int old_data;
4391 unsigned int old_size;
4392 int i;
cfed81a0
CM
4393 struct btrfs_map_token token;
4394
4395 btrfs_init_map_token(&token);
6567e837 4396
5f39d397 4397 leaf = path->nodes[0];
6567e837 4398
5f39d397 4399 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4400 data_end = leaf_data_end(root, leaf);
4401
5f39d397
CM
4402 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4403 btrfs_print_leaf(root, leaf);
6567e837 4404 BUG();
5f39d397 4405 }
6567e837 4406 slot = path->slots[0];
5f39d397 4407 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4408
4409 BUG_ON(slot < 0);
3326d1b0
CM
4410 if (slot >= nritems) {
4411 btrfs_print_leaf(root, leaf);
d397712b
CM
4412 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4413 slot, nritems);
3326d1b0
CM
4414 BUG_ON(1);
4415 }
6567e837
CM
4416
4417 /*
4418 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4419 */
4420 /* first correct the data pointers */
4421 for (i = slot; i < nritems; i++) {
5f39d397
CM
4422 u32 ioff;
4423 item = btrfs_item_nr(leaf, i);
db94535d 4424
cfed81a0
CM
4425 ioff = btrfs_token_item_offset(leaf, item, &token);
4426 btrfs_set_token_item_offset(leaf, item,
4427 ioff - data_size, &token);
6567e837 4428 }
5f39d397 4429
6567e837 4430 /* shift the data */
5f39d397 4431 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4432 data_end - data_size, btrfs_leaf_data(leaf) +
4433 data_end, old_data - data_end);
5f39d397 4434
6567e837 4435 data_end = old_data;
5f39d397
CM
4436 old_size = btrfs_item_size_nr(leaf, slot);
4437 item = btrfs_item_nr(leaf, slot);
4438 btrfs_set_item_size(leaf, item, old_size + data_size);
4439 btrfs_mark_buffer_dirty(leaf);
6567e837 4440
5f39d397
CM
4441 if (btrfs_leaf_free_space(root, leaf) < 0) {
4442 btrfs_print_leaf(root, leaf);
6567e837 4443 BUG();
5f39d397 4444 }
6567e837
CM
4445}
4446
74123bd7 4447/*
44871b1b
CM
4448 * this is a helper for btrfs_insert_empty_items, the main goal here is
4449 * to save stack depth by doing the bulk of the work in a function
4450 * that doesn't call btrfs_search_slot
74123bd7 4451 */
143bede5
JM
4452void setup_items_for_insert(struct btrfs_trans_handle *trans,
4453 struct btrfs_root *root, struct btrfs_path *path,
4454 struct btrfs_key *cpu_key, u32 *data_size,
4455 u32 total_data, u32 total_size, int nr)
be0e5c09 4456{
5f39d397 4457 struct btrfs_item *item;
9c58309d 4458 int i;
7518a238 4459 u32 nritems;
be0e5c09 4460 unsigned int data_end;
e2fa7227 4461 struct btrfs_disk_key disk_key;
44871b1b
CM
4462 struct extent_buffer *leaf;
4463 int slot;
cfed81a0
CM
4464 struct btrfs_map_token token;
4465
4466 btrfs_init_map_token(&token);
e2fa7227 4467
5f39d397 4468 leaf = path->nodes[0];
44871b1b 4469 slot = path->slots[0];
74123bd7 4470
5f39d397 4471 nritems = btrfs_header_nritems(leaf);
123abc88 4472 data_end = leaf_data_end(root, leaf);
eb60ceac 4473
f25956cc 4474 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4475 btrfs_print_leaf(root, leaf);
d397712b 4476 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4477 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4478 BUG();
d4dbff95 4479 }
5f39d397 4480
be0e5c09 4481 if (slot != nritems) {
5f39d397 4482 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4483
5f39d397
CM
4484 if (old_data < data_end) {
4485 btrfs_print_leaf(root, leaf);
d397712b 4486 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4487 slot, old_data, data_end);
4488 BUG_ON(1);
4489 }
be0e5c09
CM
4490 /*
4491 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4492 */
4493 /* first correct the data pointers */
0783fcfc 4494 for (i = slot; i < nritems; i++) {
5f39d397 4495 u32 ioff;
db94535d 4496
5f39d397 4497 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4498 ioff = btrfs_token_item_offset(leaf, item, &token);
4499 btrfs_set_token_item_offset(leaf, item,
4500 ioff - total_data, &token);
0783fcfc 4501 }
be0e5c09 4502 /* shift the items */
9c58309d 4503 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4504 btrfs_item_nr_offset(slot),
d6025579 4505 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4506
4507 /* shift the data */
5f39d397 4508 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4509 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4510 data_end, old_data - data_end);
be0e5c09
CM
4511 data_end = old_data;
4512 }
5f39d397 4513
62e2749e 4514 /* setup the item for the new data */
9c58309d
CM
4515 for (i = 0; i < nr; i++) {
4516 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4517 btrfs_set_item_key(leaf, &disk_key, slot + i);
4518 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4519 btrfs_set_token_item_offset(leaf, item,
4520 data_end - data_size[i], &token);
9c58309d 4521 data_end -= data_size[i];
cfed81a0 4522 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4523 }
44871b1b 4524
9c58309d 4525 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4526
5a01a2e3
CM
4527 if (slot == 0) {
4528 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4529 fixup_low_keys(trans, root, path, &disk_key, 1);
5a01a2e3 4530 }
b9473439
CM
4531 btrfs_unlock_up_safe(path, 1);
4532 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4533
5f39d397
CM
4534 if (btrfs_leaf_free_space(root, leaf) < 0) {
4535 btrfs_print_leaf(root, leaf);
be0e5c09 4536 BUG();
5f39d397 4537 }
44871b1b
CM
4538}
4539
4540/*
4541 * Given a key and some data, insert items into the tree.
4542 * This does all the path init required, making room in the tree if needed.
4543 */
4544int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4545 struct btrfs_root *root,
4546 struct btrfs_path *path,
4547 struct btrfs_key *cpu_key, u32 *data_size,
4548 int nr)
4549{
44871b1b
CM
4550 int ret = 0;
4551 int slot;
4552 int i;
4553 u32 total_size = 0;
4554 u32 total_data = 0;
4555
4556 for (i = 0; i < nr; i++)
4557 total_data += data_size[i];
4558
4559 total_size = total_data + (nr * sizeof(struct btrfs_item));
4560 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4561 if (ret == 0)
4562 return -EEXIST;
4563 if (ret < 0)
143bede5 4564 return ret;
44871b1b 4565
44871b1b
CM
4566 slot = path->slots[0];
4567 BUG_ON(slot < 0);
4568
143bede5 4569 setup_items_for_insert(trans, root, path, cpu_key, data_size,
44871b1b 4570 total_data, total_size, nr);
143bede5 4571 return 0;
62e2749e
CM
4572}
4573
4574/*
4575 * Given a key and some data, insert an item into the tree.
4576 * This does all the path init required, making room in the tree if needed.
4577 */
e089f05c
CM
4578int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4579 *root, struct btrfs_key *cpu_key, void *data, u32
4580 data_size)
62e2749e
CM
4581{
4582 int ret = 0;
2c90e5d6 4583 struct btrfs_path *path;
5f39d397
CM
4584 struct extent_buffer *leaf;
4585 unsigned long ptr;
62e2749e 4586
2c90e5d6 4587 path = btrfs_alloc_path();
db5b493a
TI
4588 if (!path)
4589 return -ENOMEM;
2c90e5d6 4590 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4591 if (!ret) {
5f39d397
CM
4592 leaf = path->nodes[0];
4593 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4594 write_extent_buffer(leaf, data, ptr, data_size);
4595 btrfs_mark_buffer_dirty(leaf);
62e2749e 4596 }
2c90e5d6 4597 btrfs_free_path(path);
aa5d6bed 4598 return ret;
be0e5c09
CM
4599}
4600
74123bd7 4601/*
5de08d7d 4602 * delete the pointer from a given node.
74123bd7 4603 *
d352ac68
CM
4604 * the tree should have been previously balanced so the deletion does not
4605 * empty a node.
74123bd7 4606 */
143bede5 4607static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
0e411ece 4608 struct btrfs_path *path, int level, int slot)
be0e5c09 4609{
5f39d397 4610 struct extent_buffer *parent = path->nodes[level];
7518a238 4611 u32 nritems;
f3ea38da 4612 int ret;
be0e5c09 4613
5f39d397 4614 nritems = btrfs_header_nritems(parent);
d397712b 4615 if (slot != nritems - 1) {
0e411ece 4616 if (level)
f3ea38da
JS
4617 tree_mod_log_eb_move(root->fs_info, parent, slot,
4618 slot + 1, nritems - slot - 1);
5f39d397
CM
4619 memmove_extent_buffer(parent,
4620 btrfs_node_key_ptr_offset(slot),
4621 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4622 sizeof(struct btrfs_key_ptr) *
4623 (nritems - slot - 1));
57ba86c0
CM
4624 } else if (level) {
4625 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4626 MOD_LOG_KEY_REMOVE);
4627 BUG_ON(ret < 0);
bb803951 4628 }
f3ea38da 4629
7518a238 4630 nritems--;
5f39d397 4631 btrfs_set_header_nritems(parent, nritems);
7518a238 4632 if (nritems == 0 && parent == root->node) {
5f39d397 4633 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4634 /* just turn the root into a leaf and break */
5f39d397 4635 btrfs_set_header_level(root->node, 0);
bb803951 4636 } else if (slot == 0) {
5f39d397
CM
4637 struct btrfs_disk_key disk_key;
4638
4639 btrfs_node_key(parent, &disk_key, 0);
143bede5 4640 fixup_low_keys(trans, root, path, &disk_key, level + 1);
be0e5c09 4641 }
d6025579 4642 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4643}
4644
323ac95b
CM
4645/*
4646 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4647 * path->nodes[1].
323ac95b
CM
4648 *
4649 * This deletes the pointer in path->nodes[1] and frees the leaf
4650 * block extent. zero is returned if it all worked out, < 0 otherwise.
4651 *
4652 * The path must have already been setup for deleting the leaf, including
4653 * all the proper balancing. path->nodes[1] must be locked.
4654 */
143bede5
JM
4655static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4656 struct btrfs_root *root,
4657 struct btrfs_path *path,
4658 struct extent_buffer *leaf)
323ac95b 4659{
5d4f98a2 4660 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
0e411ece 4661 del_ptr(trans, root, path, 1, path->slots[1]);
323ac95b 4662
4d081c41
CM
4663 /*
4664 * btrfs_free_extent is expensive, we want to make sure we
4665 * aren't holding any locks when we call it
4666 */
4667 btrfs_unlock_up_safe(path, 0);
4668
f0486c68
YZ
4669 root_sub_used(root, leaf->len);
4670
3083ee2e 4671 extent_buffer_get(leaf);
5581a51a 4672 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4673 free_extent_buffer_stale(leaf);
323ac95b 4674}
74123bd7
CM
4675/*
4676 * delete the item at the leaf level in path. If that empties
4677 * the leaf, remove it from the tree
4678 */
85e21bac
CM
4679int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4680 struct btrfs_path *path, int slot, int nr)
be0e5c09 4681{
5f39d397
CM
4682 struct extent_buffer *leaf;
4683 struct btrfs_item *item;
85e21bac
CM
4684 int last_off;
4685 int dsize = 0;
aa5d6bed
CM
4686 int ret = 0;
4687 int wret;
85e21bac 4688 int i;
7518a238 4689 u32 nritems;
cfed81a0
CM
4690 struct btrfs_map_token token;
4691
4692 btrfs_init_map_token(&token);
be0e5c09 4693
5f39d397 4694 leaf = path->nodes[0];
85e21bac
CM
4695 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4696
4697 for (i = 0; i < nr; i++)
4698 dsize += btrfs_item_size_nr(leaf, slot + i);
4699
5f39d397 4700 nritems = btrfs_header_nritems(leaf);
be0e5c09 4701
85e21bac 4702 if (slot + nr != nritems) {
123abc88 4703 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4704
4705 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4706 data_end + dsize,
4707 btrfs_leaf_data(leaf) + data_end,
85e21bac 4708 last_off - data_end);
5f39d397 4709
85e21bac 4710 for (i = slot + nr; i < nritems; i++) {
5f39d397 4711 u32 ioff;
db94535d 4712
5f39d397 4713 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4714 ioff = btrfs_token_item_offset(leaf, item, &token);
4715 btrfs_set_token_item_offset(leaf, item,
4716 ioff + dsize, &token);
0783fcfc 4717 }
db94535d 4718
5f39d397 4719 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4720 btrfs_item_nr_offset(slot + nr),
d6025579 4721 sizeof(struct btrfs_item) *
85e21bac 4722 (nritems - slot - nr));
be0e5c09 4723 }
85e21bac
CM
4724 btrfs_set_header_nritems(leaf, nritems - nr);
4725 nritems -= nr;
5f39d397 4726
74123bd7 4727 /* delete the leaf if we've emptied it */
7518a238 4728 if (nritems == 0) {
5f39d397
CM
4729 if (leaf == root->node) {
4730 btrfs_set_header_level(leaf, 0);
9a8dd150 4731 } else {
f0486c68
YZ
4732 btrfs_set_path_blocking(path);
4733 clean_tree_block(trans, root, leaf);
143bede5 4734 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4735 }
be0e5c09 4736 } else {
7518a238 4737 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4738 if (slot == 0) {
5f39d397
CM
4739 struct btrfs_disk_key disk_key;
4740
4741 btrfs_item_key(leaf, &disk_key, 0);
143bede5 4742 fixup_low_keys(trans, root, path, &disk_key, 1);
aa5d6bed 4743 }
aa5d6bed 4744
74123bd7 4745 /* delete the leaf if it is mostly empty */
d717aa1d 4746 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4747 /* push_leaf_left fixes the path.
4748 * make sure the path still points to our leaf
4749 * for possible call to del_ptr below
4750 */
4920c9ac 4751 slot = path->slots[1];
5f39d397
CM
4752 extent_buffer_get(leaf);
4753
b9473439 4754 btrfs_set_path_blocking(path);
99d8f83c
CM
4755 wret = push_leaf_left(trans, root, path, 1, 1,
4756 1, (u32)-1);
54aa1f4d 4757 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4758 ret = wret;
5f39d397
CM
4759
4760 if (path->nodes[0] == leaf &&
4761 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4762 wret = push_leaf_right(trans, root, path, 1,
4763 1, 1, 0);
54aa1f4d 4764 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4765 ret = wret;
4766 }
5f39d397
CM
4767
4768 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4769 path->slots[1] = slot;
143bede5 4770 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4771 free_extent_buffer(leaf);
143bede5 4772 ret = 0;
5de08d7d 4773 } else {
925baedd
CM
4774 /* if we're still in the path, make sure
4775 * we're dirty. Otherwise, one of the
4776 * push_leaf functions must have already
4777 * dirtied this buffer
4778 */
4779 if (path->nodes[0] == leaf)
4780 btrfs_mark_buffer_dirty(leaf);
5f39d397 4781 free_extent_buffer(leaf);
be0e5c09 4782 }
d5719762 4783 } else {
5f39d397 4784 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4785 }
4786 }
aa5d6bed 4787 return ret;
be0e5c09
CM
4788}
4789
7bb86316 4790/*
925baedd 4791 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4792 * returns 0 if it found something or 1 if there are no lesser leaves.
4793 * returns < 0 on io errors.
d352ac68
CM
4794 *
4795 * This may release the path, and so you may lose any locks held at the
4796 * time you call it.
7bb86316
CM
4797 */
4798int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4799{
925baedd
CM
4800 struct btrfs_key key;
4801 struct btrfs_disk_key found_key;
4802 int ret;
7bb86316 4803
925baedd 4804 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4805
925baedd
CM
4806 if (key.offset > 0)
4807 key.offset--;
4808 else if (key.type > 0)
4809 key.type--;
4810 else if (key.objectid > 0)
4811 key.objectid--;
4812 else
4813 return 1;
7bb86316 4814
b3b4aa74 4815 btrfs_release_path(path);
925baedd
CM
4816 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4817 if (ret < 0)
4818 return ret;
4819 btrfs_item_key(path->nodes[0], &found_key, 0);
4820 ret = comp_keys(&found_key, &key);
4821 if (ret < 0)
4822 return 0;
4823 return 1;
7bb86316
CM
4824}
4825
3f157a2f
CM
4826/*
4827 * A helper function to walk down the tree starting at min_key, and looking
4828 * for nodes or leaves that are either in cache or have a minimum
d352ac68 4829 * transaction id. This is used by the btree defrag code, and tree logging
3f157a2f
CM
4830 *
4831 * This does not cow, but it does stuff the starting key it finds back
4832 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4833 * key and get a writable path.
4834 *
4835 * This does lock as it descends, and path->keep_locks should be set
4836 * to 1 by the caller.
4837 *
4838 * This honors path->lowest_level to prevent descent past a given level
4839 * of the tree.
4840 *
d352ac68
CM
4841 * min_trans indicates the oldest transaction that you are interested
4842 * in walking through. Any nodes or leaves older than min_trans are
4843 * skipped over (without reading them).
4844 *
3f157a2f
CM
4845 * returns zero if something useful was found, < 0 on error and 1 if there
4846 * was nothing in the tree that matched the search criteria.
4847 */
4848int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4849 struct btrfs_key *max_key,
3f157a2f
CM
4850 struct btrfs_path *path, int cache_only,
4851 u64 min_trans)
4852{
4853 struct extent_buffer *cur;
4854 struct btrfs_key found_key;
4855 int slot;
9652480b 4856 int sret;
3f157a2f
CM
4857 u32 nritems;
4858 int level;
4859 int ret = 1;
4860
934d375b 4861 WARN_ON(!path->keep_locks);
3f157a2f 4862again:
bd681513 4863 cur = btrfs_read_lock_root_node(root);
3f157a2f 4864 level = btrfs_header_level(cur);
e02119d5 4865 WARN_ON(path->nodes[level]);
3f157a2f 4866 path->nodes[level] = cur;
bd681513 4867 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4868
4869 if (btrfs_header_generation(cur) < min_trans) {
4870 ret = 1;
4871 goto out;
4872 }
d397712b 4873 while (1) {
3f157a2f
CM
4874 nritems = btrfs_header_nritems(cur);
4875 level = btrfs_header_level(cur);
9652480b 4876 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4877
323ac95b
CM
4878 /* at the lowest level, we're done, setup the path and exit */
4879 if (level == path->lowest_level) {
e02119d5
CM
4880 if (slot >= nritems)
4881 goto find_next_key;
3f157a2f
CM
4882 ret = 0;
4883 path->slots[level] = slot;
4884 btrfs_item_key_to_cpu(cur, &found_key, slot);
4885 goto out;
4886 }
9652480b
Y
4887 if (sret && slot > 0)
4888 slot--;
3f157a2f
CM
4889 /*
4890 * check this node pointer against the cache_only and
4891 * min_trans parameters. If it isn't in cache or is too
4892 * old, skip to the next one.
4893 */
d397712b 4894 while (slot < nritems) {
3f157a2f
CM
4895 u64 blockptr;
4896 u64 gen;
4897 struct extent_buffer *tmp;
e02119d5
CM
4898 struct btrfs_disk_key disk_key;
4899
3f157a2f
CM
4900 blockptr = btrfs_node_blockptr(cur, slot);
4901 gen = btrfs_node_ptr_generation(cur, slot);
4902 if (gen < min_trans) {
4903 slot++;
4904 continue;
4905 }
4906 if (!cache_only)
4907 break;
4908
e02119d5
CM
4909 if (max_key) {
4910 btrfs_node_key(cur, &disk_key, slot);
4911 if (comp_keys(&disk_key, max_key) >= 0) {
4912 ret = 1;
4913 goto out;
4914 }
4915 }
4916
3f157a2f
CM
4917 tmp = btrfs_find_tree_block(root, blockptr,
4918 btrfs_level_size(root, level - 1));
4919
b9fab919 4920 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
3f157a2f
CM
4921 free_extent_buffer(tmp);
4922 break;
4923 }
4924 if (tmp)
4925 free_extent_buffer(tmp);
4926 slot++;
4927 }
e02119d5 4928find_next_key:
3f157a2f
CM
4929 /*
4930 * we didn't find a candidate key in this node, walk forward
4931 * and find another one
4932 */
4933 if (slot >= nritems) {
e02119d5 4934 path->slots[level] = slot;
b4ce94de 4935 btrfs_set_path_blocking(path);
e02119d5 4936 sret = btrfs_find_next_key(root, path, min_key, level,
3f157a2f 4937 cache_only, min_trans);
e02119d5 4938 if (sret == 0) {
b3b4aa74 4939 btrfs_release_path(path);
3f157a2f
CM
4940 goto again;
4941 } else {
4942 goto out;
4943 }
4944 }
4945 /* save our key for returning back */
4946 btrfs_node_key_to_cpu(cur, &found_key, slot);
4947 path->slots[level] = slot;
4948 if (level == path->lowest_level) {
4949 ret = 0;
f7c79f30 4950 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4951 goto out;
4952 }
b4ce94de 4953 btrfs_set_path_blocking(path);
3f157a2f 4954 cur = read_node_slot(root, cur, slot);
79787eaa 4955 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4956
bd681513 4957 btrfs_tree_read_lock(cur);
b4ce94de 4958
bd681513 4959 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4960 path->nodes[level - 1] = cur;
f7c79f30 4961 unlock_up(path, level, 1, 0, NULL);
bd681513 4962 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
4963 }
4964out:
4965 if (ret == 0)
4966 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 4967 btrfs_set_path_blocking(path);
3f157a2f
CM
4968 return ret;
4969}
4970
7069830a
AB
4971static void tree_move_down(struct btrfs_root *root,
4972 struct btrfs_path *path,
4973 int *level, int root_level)
4974{
74dd17fb 4975 BUG_ON(*level == 0);
7069830a
AB
4976 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4977 path->slots[*level]);
4978 path->slots[*level - 1] = 0;
4979 (*level)--;
4980}
4981
4982static int tree_move_next_or_upnext(struct btrfs_root *root,
4983 struct btrfs_path *path,
4984 int *level, int root_level)
4985{
4986 int ret = 0;
4987 int nritems;
4988 nritems = btrfs_header_nritems(path->nodes[*level]);
4989
4990 path->slots[*level]++;
4991
74dd17fb 4992 while (path->slots[*level] >= nritems) {
7069830a
AB
4993 if (*level == root_level)
4994 return -1;
4995
4996 /* move upnext */
4997 path->slots[*level] = 0;
4998 free_extent_buffer(path->nodes[*level]);
4999 path->nodes[*level] = NULL;
5000 (*level)++;
5001 path->slots[*level]++;
5002
5003 nritems = btrfs_header_nritems(path->nodes[*level]);
5004 ret = 1;
5005 }
5006 return ret;
5007}
5008
5009/*
5010 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5011 * or down.
5012 */
5013static int tree_advance(struct btrfs_root *root,
5014 struct btrfs_path *path,
5015 int *level, int root_level,
5016 int allow_down,
5017 struct btrfs_key *key)
5018{
5019 int ret;
5020
5021 if (*level == 0 || !allow_down) {
5022 ret = tree_move_next_or_upnext(root, path, level, root_level);
5023 } else {
5024 tree_move_down(root, path, level, root_level);
5025 ret = 0;
5026 }
5027 if (ret >= 0) {
5028 if (*level == 0)
5029 btrfs_item_key_to_cpu(path->nodes[*level], key,
5030 path->slots[*level]);
5031 else
5032 btrfs_node_key_to_cpu(path->nodes[*level], key,
5033 path->slots[*level]);
5034 }
5035 return ret;
5036}
5037
5038static int tree_compare_item(struct btrfs_root *left_root,
5039 struct btrfs_path *left_path,
5040 struct btrfs_path *right_path,
5041 char *tmp_buf)
5042{
5043 int cmp;
5044 int len1, len2;
5045 unsigned long off1, off2;
5046
5047 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5048 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5049 if (len1 != len2)
5050 return 1;
5051
5052 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5053 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5054 right_path->slots[0]);
5055
5056 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5057
5058 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5059 if (cmp)
5060 return 1;
5061 return 0;
5062}
5063
5064#define ADVANCE 1
5065#define ADVANCE_ONLY_NEXT -1
5066
5067/*
5068 * This function compares two trees and calls the provided callback for
5069 * every changed/new/deleted item it finds.
5070 * If shared tree blocks are encountered, whole subtrees are skipped, making
5071 * the compare pretty fast on snapshotted subvolumes.
5072 *
5073 * This currently works on commit roots only. As commit roots are read only,
5074 * we don't do any locking. The commit roots are protected with transactions.
5075 * Transactions are ended and rejoined when a commit is tried in between.
5076 *
5077 * This function checks for modifications done to the trees while comparing.
5078 * If it detects a change, it aborts immediately.
5079 */
5080int btrfs_compare_trees(struct btrfs_root *left_root,
5081 struct btrfs_root *right_root,
5082 btrfs_changed_cb_t changed_cb, void *ctx)
5083{
5084 int ret;
5085 int cmp;
5086 struct btrfs_trans_handle *trans = NULL;
5087 struct btrfs_path *left_path = NULL;
5088 struct btrfs_path *right_path = NULL;
5089 struct btrfs_key left_key;
5090 struct btrfs_key right_key;
5091 char *tmp_buf = NULL;
5092 int left_root_level;
5093 int right_root_level;
5094 int left_level;
5095 int right_level;
5096 int left_end_reached;
5097 int right_end_reached;
5098 int advance_left;
5099 int advance_right;
5100 u64 left_blockptr;
5101 u64 right_blockptr;
5102 u64 left_start_ctransid;
5103 u64 right_start_ctransid;
5104 u64 ctransid;
5105
5106 left_path = btrfs_alloc_path();
5107 if (!left_path) {
5108 ret = -ENOMEM;
5109 goto out;
5110 }
5111 right_path = btrfs_alloc_path();
5112 if (!right_path) {
5113 ret = -ENOMEM;
5114 goto out;
5115 }
5116
5117 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5118 if (!tmp_buf) {
5119 ret = -ENOMEM;
5120 goto out;
5121 }
5122
5123 left_path->search_commit_root = 1;
5124 left_path->skip_locking = 1;
5125 right_path->search_commit_root = 1;
5126 right_path->skip_locking = 1;
5127
5f3ab90a 5128 spin_lock(&left_root->root_item_lock);
7069830a 5129 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5f3ab90a 5130 spin_unlock(&left_root->root_item_lock);
7069830a 5131
5f3ab90a 5132 spin_lock(&right_root->root_item_lock);
7069830a 5133 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5f3ab90a 5134 spin_unlock(&right_root->root_item_lock);
7069830a
AB
5135
5136 trans = btrfs_join_transaction(left_root);
5137 if (IS_ERR(trans)) {
5138 ret = PTR_ERR(trans);
5139 trans = NULL;
5140 goto out;
5141 }
5142
5143 /*
5144 * Strategy: Go to the first items of both trees. Then do
5145 *
5146 * If both trees are at level 0
5147 * Compare keys of current items
5148 * If left < right treat left item as new, advance left tree
5149 * and repeat
5150 * If left > right treat right item as deleted, advance right tree
5151 * and repeat
5152 * If left == right do deep compare of items, treat as changed if
5153 * needed, advance both trees and repeat
5154 * If both trees are at the same level but not at level 0
5155 * Compare keys of current nodes/leafs
5156 * If left < right advance left tree and repeat
5157 * If left > right advance right tree and repeat
5158 * If left == right compare blockptrs of the next nodes/leafs
5159 * If they match advance both trees but stay at the same level
5160 * and repeat
5161 * If they don't match advance both trees while allowing to go
5162 * deeper and repeat
5163 * If tree levels are different
5164 * Advance the tree that needs it and repeat
5165 *
5166 * Advancing a tree means:
5167 * If we are at level 0, try to go to the next slot. If that's not
5168 * possible, go one level up and repeat. Stop when we found a level
5169 * where we could go to the next slot. We may at this point be on a
5170 * node or a leaf.
5171 *
5172 * If we are not at level 0 and not on shared tree blocks, go one
5173 * level deeper.
5174 *
5175 * If we are not at level 0 and on shared tree blocks, go one slot to
5176 * the right if possible or go up and right.
5177 */
5178
5179 left_level = btrfs_header_level(left_root->commit_root);
5180 left_root_level = left_level;
5181 left_path->nodes[left_level] = left_root->commit_root;
5182 extent_buffer_get(left_path->nodes[left_level]);
5183
5184 right_level = btrfs_header_level(right_root->commit_root);
5185 right_root_level = right_level;
5186 right_path->nodes[right_level] = right_root->commit_root;
5187 extent_buffer_get(right_path->nodes[right_level]);
5188
5189 if (left_level == 0)
5190 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5191 &left_key, left_path->slots[left_level]);
5192 else
5193 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5194 &left_key, left_path->slots[left_level]);
5195 if (right_level == 0)
5196 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5197 &right_key, right_path->slots[right_level]);
5198 else
5199 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5200 &right_key, right_path->slots[right_level]);
5201
5202 left_end_reached = right_end_reached = 0;
5203 advance_left = advance_right = 0;
5204
5205 while (1) {
5206 /*
5207 * We need to make sure the transaction does not get committed
5208 * while we do anything on commit roots. This means, we need to
5209 * join and leave transactions for every item that we process.
5210 */
5211 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5212 btrfs_release_path(left_path);
5213 btrfs_release_path(right_path);
5214
5215 ret = btrfs_end_transaction(trans, left_root);
5216 trans = NULL;
5217 if (ret < 0)
5218 goto out;
5219 }
5220 /* now rejoin the transaction */
5221 if (!trans) {
5222 trans = btrfs_join_transaction(left_root);
5223 if (IS_ERR(trans)) {
5224 ret = PTR_ERR(trans);
5225 trans = NULL;
5226 goto out;
5227 }
5228
5f3ab90a 5229 spin_lock(&left_root->root_item_lock);
7069830a 5230 ctransid = btrfs_root_ctransid(&left_root->root_item);
5f3ab90a 5231 spin_unlock(&left_root->root_item_lock);
7069830a
AB
5232 if (ctransid != left_start_ctransid)
5233 left_start_ctransid = 0;
5234
5f3ab90a 5235 spin_lock(&right_root->root_item_lock);
7069830a 5236 ctransid = btrfs_root_ctransid(&right_root->root_item);
5f3ab90a 5237 spin_unlock(&right_root->root_item_lock);
7069830a
AB
5238 if (ctransid != right_start_ctransid)
5239 right_start_ctransid = 0;
5240
5241 if (!left_start_ctransid || !right_start_ctransid) {
5242 WARN(1, KERN_WARNING
5243 "btrfs: btrfs_compare_tree detected "
5244 "a change in one of the trees while "
5245 "iterating. This is probably a "
5246 "bug.\n");
5247 ret = -EIO;
5248 goto out;
5249 }
5250
5251 /*
5252 * the commit root may have changed, so start again
5253 * where we stopped
5254 */
5255 left_path->lowest_level = left_level;
5256 right_path->lowest_level = right_level;
5257 ret = btrfs_search_slot(NULL, left_root,
5258 &left_key, left_path, 0, 0);
5259 if (ret < 0)
5260 goto out;
5261 ret = btrfs_search_slot(NULL, right_root,
5262 &right_key, right_path, 0, 0);
5263 if (ret < 0)
5264 goto out;
5265 }
5266
5267 if (advance_left && !left_end_reached) {
5268 ret = tree_advance(left_root, left_path, &left_level,
5269 left_root_level,
5270 advance_left != ADVANCE_ONLY_NEXT,
5271 &left_key);
5272 if (ret < 0)
5273 left_end_reached = ADVANCE;
5274 advance_left = 0;
5275 }
5276 if (advance_right && !right_end_reached) {
5277 ret = tree_advance(right_root, right_path, &right_level,
5278 right_root_level,
5279 advance_right != ADVANCE_ONLY_NEXT,
5280 &right_key);
5281 if (ret < 0)
5282 right_end_reached = ADVANCE;
5283 advance_right = 0;
5284 }
5285
5286 if (left_end_reached && right_end_reached) {
5287 ret = 0;
5288 goto out;
5289 } else if (left_end_reached) {
5290 if (right_level == 0) {
5291 ret = changed_cb(left_root, right_root,
5292 left_path, right_path,
5293 &right_key,
5294 BTRFS_COMPARE_TREE_DELETED,
5295 ctx);
5296 if (ret < 0)
5297 goto out;
5298 }
5299 advance_right = ADVANCE;
5300 continue;
5301 } else if (right_end_reached) {
5302 if (left_level == 0) {
5303 ret = changed_cb(left_root, right_root,
5304 left_path, right_path,
5305 &left_key,
5306 BTRFS_COMPARE_TREE_NEW,
5307 ctx);
5308 if (ret < 0)
5309 goto out;
5310 }
5311 advance_left = ADVANCE;
5312 continue;
5313 }
5314
5315 if (left_level == 0 && right_level == 0) {
5316 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5317 if (cmp < 0) {
5318 ret = changed_cb(left_root, right_root,
5319 left_path, right_path,
5320 &left_key,
5321 BTRFS_COMPARE_TREE_NEW,
5322 ctx);
5323 if (ret < 0)
5324 goto out;
5325 advance_left = ADVANCE;
5326 } else if (cmp > 0) {
5327 ret = changed_cb(left_root, right_root,
5328 left_path, right_path,
5329 &right_key,
5330 BTRFS_COMPARE_TREE_DELETED,
5331 ctx);
5332 if (ret < 0)
5333 goto out;
5334 advance_right = ADVANCE;
5335 } else {
74dd17fb 5336 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5337 ret = tree_compare_item(left_root, left_path,
5338 right_path, tmp_buf);
5339 if (ret) {
74dd17fb 5340 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5341 ret = changed_cb(left_root, right_root,
5342 left_path, right_path,
5343 &left_key,
5344 BTRFS_COMPARE_TREE_CHANGED,
5345 ctx);
5346 if (ret < 0)
5347 goto out;
5348 }
5349 advance_left = ADVANCE;
5350 advance_right = ADVANCE;
5351 }
5352 } else if (left_level == right_level) {
5353 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5354 if (cmp < 0) {
5355 advance_left = ADVANCE;
5356 } else if (cmp > 0) {
5357 advance_right = ADVANCE;
5358 } else {
5359 left_blockptr = btrfs_node_blockptr(
5360 left_path->nodes[left_level],
5361 left_path->slots[left_level]);
5362 right_blockptr = btrfs_node_blockptr(
5363 right_path->nodes[right_level],
5364 right_path->slots[right_level]);
5365 if (left_blockptr == right_blockptr) {
5366 /*
5367 * As we're on a shared block, don't
5368 * allow to go deeper.
5369 */
5370 advance_left = ADVANCE_ONLY_NEXT;
5371 advance_right = ADVANCE_ONLY_NEXT;
5372 } else {
5373 advance_left = ADVANCE;
5374 advance_right = ADVANCE;
5375 }
5376 }
5377 } else if (left_level < right_level) {
5378 advance_right = ADVANCE;
5379 } else {
5380 advance_left = ADVANCE;
5381 }
5382 }
5383
5384out:
5385 btrfs_free_path(left_path);
5386 btrfs_free_path(right_path);
5387 kfree(tmp_buf);
5388
5389 if (trans) {
5390 if (!ret)
5391 ret = btrfs_end_transaction(trans, left_root);
5392 else
5393 btrfs_end_transaction(trans, left_root);
5394 }
5395
5396 return ret;
5397}
5398
3f157a2f
CM
5399/*
5400 * this is similar to btrfs_next_leaf, but does not try to preserve
5401 * and fixup the path. It looks for and returns the next key in the
5402 * tree based on the current path and the cache_only and min_trans
5403 * parameters.
5404 *
5405 * 0 is returned if another key is found, < 0 if there are any errors
5406 * and 1 is returned if there are no higher keys in the tree
5407 *
5408 * path->keep_locks should be set to 1 on the search made before
5409 * calling this function.
5410 */
e7a84565 5411int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
33c66f43 5412 struct btrfs_key *key, int level,
3f157a2f 5413 int cache_only, u64 min_trans)
e7a84565 5414{
e7a84565
CM
5415 int slot;
5416 struct extent_buffer *c;
5417
934d375b 5418 WARN_ON(!path->keep_locks);
d397712b 5419 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5420 if (!path->nodes[level])
5421 return 1;
5422
5423 slot = path->slots[level] + 1;
5424 c = path->nodes[level];
3f157a2f 5425next:
e7a84565 5426 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5427 int ret;
5428 int orig_lowest;
5429 struct btrfs_key cur_key;
5430 if (level + 1 >= BTRFS_MAX_LEVEL ||
5431 !path->nodes[level + 1])
e7a84565 5432 return 1;
33c66f43
YZ
5433
5434 if (path->locks[level + 1]) {
5435 level++;
5436 continue;
5437 }
5438
5439 slot = btrfs_header_nritems(c) - 1;
5440 if (level == 0)
5441 btrfs_item_key_to_cpu(c, &cur_key, slot);
5442 else
5443 btrfs_node_key_to_cpu(c, &cur_key, slot);
5444
5445 orig_lowest = path->lowest_level;
b3b4aa74 5446 btrfs_release_path(path);
33c66f43
YZ
5447 path->lowest_level = level;
5448 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5449 0, 0);
5450 path->lowest_level = orig_lowest;
5451 if (ret < 0)
5452 return ret;
5453
5454 c = path->nodes[level];
5455 slot = path->slots[level];
5456 if (ret == 0)
5457 slot++;
5458 goto next;
e7a84565 5459 }
33c66f43 5460
e7a84565
CM
5461 if (level == 0)
5462 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f
CM
5463 else {
5464 u64 blockptr = btrfs_node_blockptr(c, slot);
5465 u64 gen = btrfs_node_ptr_generation(c, slot);
5466
5467 if (cache_only) {
5468 struct extent_buffer *cur;
5469 cur = btrfs_find_tree_block(root, blockptr,
5470 btrfs_level_size(root, level - 1));
b9fab919
CM
5471 if (!cur ||
5472 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
3f157a2f
CM
5473 slot++;
5474 if (cur)
5475 free_extent_buffer(cur);
5476 goto next;
5477 }
5478 free_extent_buffer(cur);
5479 }
5480 if (gen < min_trans) {
5481 slot++;
5482 goto next;
5483 }
e7a84565 5484 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5485 }
e7a84565
CM
5486 return 0;
5487 }
5488 return 1;
5489}
5490
97571fd0 5491/*
925baedd 5492 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5493 * returns 0 if it found something or 1 if there are no greater leaves.
5494 * returns < 0 on io errors.
97571fd0 5495 */
234b63a0 5496int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5497{
5498 return btrfs_next_old_leaf(root, path, 0);
5499}
5500
70c8a91c
JB
5501/* Release the path up to but not including the given level */
5502static void btrfs_release_level(struct btrfs_path *path, int level)
5503{
5504 int i;
5505
5506 for (i = 0; i < level; i++) {
5507 path->slots[i] = 0;
5508 if (!path->nodes[i])
5509 continue;
5510 if (path->locks[i]) {
5511 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5512 path->locks[i] = 0;
5513 }
5514 free_extent_buffer(path->nodes[i]);
5515 path->nodes[i] = NULL;
5516 }
5517}
5518
5519/*
5520 * This function assumes 2 things
5521 *
5522 * 1) You are using path->keep_locks
5523 * 2) You are not inserting items.
5524 *
5525 * If either of these are not true do not use this function. If you need a next
5526 * leaf with either of these not being true then this function can be easily
5527 * adapted to do that, but at the moment these are the limitations.
5528 */
5529int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5530 struct btrfs_root *root, struct btrfs_path *path,
5531 int del)
5532{
5533 struct extent_buffer *b;
5534 struct btrfs_key key;
5535 u32 nritems;
5536 int level = 1;
5537 int slot;
5538 int ret = 1;
5539 int write_lock_level = BTRFS_MAX_LEVEL;
5540 int ins_len = del ? -1 : 0;
5541
5542 WARN_ON(!(path->keep_locks || path->really_keep_locks));
5543
5544 nritems = btrfs_header_nritems(path->nodes[0]);
5545 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5546
5547 while (path->nodes[level]) {
5548 nritems = btrfs_header_nritems(path->nodes[level]);
5549 if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5550search:
5551 btrfs_release_path(path);
5552 ret = btrfs_search_slot(trans, root, &key, path,
5553 ins_len, 1);
5554 if (ret < 0)
5555 goto out;
5556 level = 1;
5557 continue;
5558 }
5559
5560 if (path->slots[level] >= nritems - 1) {
5561 level++;
5562 continue;
5563 }
5564
5565 btrfs_release_level(path, level);
5566 break;
5567 }
5568
5569 if (!path->nodes[level]) {
5570 ret = 1;
5571 goto out;
5572 }
5573
5574 path->slots[level]++;
5575 b = path->nodes[level];
5576
5577 while (b) {
5578 level = btrfs_header_level(b);
5579
5580 if (!should_cow_block(trans, root, b))
5581 goto cow_done;
5582
5583 btrfs_set_path_blocking(path);
5584 ret = btrfs_cow_block(trans, root, b,
5585 path->nodes[level + 1],
5586 path->slots[level + 1], &b);
5587 if (ret)
5588 goto out;
5589cow_done:
5590 path->nodes[level] = b;
5591 btrfs_clear_path_blocking(path, NULL, 0);
5592 if (level != 0) {
5593 ret = setup_nodes_for_search(trans, root, path, b,
5594 level, ins_len,
5595 &write_lock_level);
5596 if (ret == -EAGAIN)
5597 goto search;
5598 if (ret)
5599 goto out;
5600
5601 b = path->nodes[level];
5602 slot = path->slots[level];
5603
5604 ret = read_block_for_search(trans, root, path,
5605 &b, level, slot, &key, 0);
5606 if (ret == -EAGAIN)
5607 goto search;
5608 if (ret)
5609 goto out;
5610 level = btrfs_header_level(b);
5611 if (!btrfs_try_tree_write_lock(b)) {
5612 btrfs_set_path_blocking(path);
5613 btrfs_tree_lock(b);
5614 btrfs_clear_path_blocking(path, b,
5615 BTRFS_WRITE_LOCK);
5616 }
5617 path->locks[level] = BTRFS_WRITE_LOCK;
5618 path->nodes[level] = b;
5619 path->slots[level] = 0;
5620 } else {
5621 path->slots[level] = 0;
5622 ret = 0;
5623 break;
5624 }
5625 }
5626
5627out:
5628 if (ret)
5629 btrfs_release_path(path);
5630
5631 return ret;
5632}
5633
3d7806ec
JS
5634int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5635 u64 time_seq)
d97e63b6
CM
5636{
5637 int slot;
8e73f275 5638 int level;
5f39d397 5639 struct extent_buffer *c;
8e73f275 5640 struct extent_buffer *next;
925baedd
CM
5641 struct btrfs_key key;
5642 u32 nritems;
5643 int ret;
8e73f275 5644 int old_spinning = path->leave_spinning;
bd681513 5645 int next_rw_lock = 0;
925baedd
CM
5646
5647 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5648 if (nritems == 0)
925baedd 5649 return 1;
925baedd 5650
8e73f275
CM
5651 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5652again:
5653 level = 1;
5654 next = NULL;
bd681513 5655 next_rw_lock = 0;
b3b4aa74 5656 btrfs_release_path(path);
8e73f275 5657
a2135011 5658 path->keep_locks = 1;
31533fb2 5659 path->leave_spinning = 1;
8e73f275 5660
3d7806ec
JS
5661 if (time_seq)
5662 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5663 else
5664 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5665 path->keep_locks = 0;
5666
5667 if (ret < 0)
5668 return ret;
5669
a2135011 5670 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5671 /*
5672 * by releasing the path above we dropped all our locks. A balance
5673 * could have added more items next to the key that used to be
5674 * at the very end of the block. So, check again here and
5675 * advance the path if there are now more items available.
5676 */
a2135011 5677 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5678 if (ret == 0)
5679 path->slots[0]++;
8e73f275 5680 ret = 0;
925baedd
CM
5681 goto done;
5682 }
d97e63b6 5683
d397712b 5684 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5685 if (!path->nodes[level]) {
5686 ret = 1;
5687 goto done;
5688 }
5f39d397 5689
d97e63b6
CM
5690 slot = path->slots[level] + 1;
5691 c = path->nodes[level];
5f39d397 5692 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5693 level++;
8e73f275
CM
5694 if (level == BTRFS_MAX_LEVEL) {
5695 ret = 1;
5696 goto done;
5697 }
d97e63b6
CM
5698 continue;
5699 }
5f39d397 5700
925baedd 5701 if (next) {
bd681513 5702 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5703 free_extent_buffer(next);
925baedd 5704 }
5f39d397 5705
8e73f275 5706 next = c;
bd681513 5707 next_rw_lock = path->locks[level];
8e73f275 5708 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5709 slot, &key, 0);
8e73f275
CM
5710 if (ret == -EAGAIN)
5711 goto again;
5f39d397 5712
76a05b35 5713 if (ret < 0) {
b3b4aa74 5714 btrfs_release_path(path);
76a05b35
CM
5715 goto done;
5716 }
5717
5cd57b2c 5718 if (!path->skip_locking) {
bd681513 5719 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5720 if (!ret && time_seq) {
5721 /*
5722 * If we don't get the lock, we may be racing
5723 * with push_leaf_left, holding that lock while
5724 * itself waiting for the leaf we've currently
5725 * locked. To solve this situation, we give up
5726 * on our lock and cycle.
5727 */
cf538830 5728 free_extent_buffer(next);
d42244a0
JS
5729 btrfs_release_path(path);
5730 cond_resched();
5731 goto again;
5732 }
8e73f275
CM
5733 if (!ret) {
5734 btrfs_set_path_blocking(path);
bd681513 5735 btrfs_tree_read_lock(next);
31533fb2 5736 btrfs_clear_path_blocking(path, next,
bd681513 5737 BTRFS_READ_LOCK);
8e73f275 5738 }
31533fb2 5739 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5740 }
d97e63b6
CM
5741 break;
5742 }
5743 path->slots[level] = slot;
d397712b 5744 while (1) {
d97e63b6
CM
5745 level--;
5746 c = path->nodes[level];
925baedd 5747 if (path->locks[level])
bd681513 5748 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5749
5f39d397 5750 free_extent_buffer(c);
d97e63b6
CM
5751 path->nodes[level] = next;
5752 path->slots[level] = 0;
a74a4b97 5753 if (!path->skip_locking)
bd681513 5754 path->locks[level] = next_rw_lock;
d97e63b6
CM
5755 if (!level)
5756 break;
b4ce94de 5757
8e73f275 5758 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5759 0, &key, 0);
8e73f275
CM
5760 if (ret == -EAGAIN)
5761 goto again;
5762
76a05b35 5763 if (ret < 0) {
b3b4aa74 5764 btrfs_release_path(path);
76a05b35
CM
5765 goto done;
5766 }
5767
5cd57b2c 5768 if (!path->skip_locking) {
bd681513 5769 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5770 if (!ret) {
5771 btrfs_set_path_blocking(path);
bd681513 5772 btrfs_tree_read_lock(next);
31533fb2 5773 btrfs_clear_path_blocking(path, next,
bd681513
CM
5774 BTRFS_READ_LOCK);
5775 }
31533fb2 5776 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5777 }
d97e63b6 5778 }
8e73f275 5779 ret = 0;
925baedd 5780done:
f7c79f30 5781 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5782 path->leave_spinning = old_spinning;
5783 if (!old_spinning)
5784 btrfs_set_path_blocking(path);
5785
5786 return ret;
d97e63b6 5787}
0b86a832 5788
3f157a2f
CM
5789/*
5790 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5791 * searching until it gets past min_objectid or finds an item of 'type'
5792 *
5793 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5794 */
0b86a832
CM
5795int btrfs_previous_item(struct btrfs_root *root,
5796 struct btrfs_path *path, u64 min_objectid,
5797 int type)
5798{
5799 struct btrfs_key found_key;
5800 struct extent_buffer *leaf;
e02119d5 5801 u32 nritems;
0b86a832
CM
5802 int ret;
5803
d397712b 5804 while (1) {
0b86a832 5805 if (path->slots[0] == 0) {
b4ce94de 5806 btrfs_set_path_blocking(path);
0b86a832
CM
5807 ret = btrfs_prev_leaf(root, path);
5808 if (ret != 0)
5809 return ret;
5810 } else {
5811 path->slots[0]--;
5812 }
5813 leaf = path->nodes[0];
e02119d5
CM
5814 nritems = btrfs_header_nritems(leaf);
5815 if (nritems == 0)
5816 return 1;
5817 if (path->slots[0] == nritems)
5818 path->slots[0]--;
5819
0b86a832 5820 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5821 if (found_key.objectid < min_objectid)
5822 break;
0a4eefbb
YZ
5823 if (found_key.type == type)
5824 return 0;
e02119d5
CM
5825 if (found_key.objectid == min_objectid &&
5826 found_key.type < type)
5827 break;
0b86a832
CM
5828 }
5829 return 1;
5830}