]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/ctree.c
Merge branch 'for-chris-fixed' of git://git.jan-o-sch.net/btrfs-unstable
[people/ms/linux.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
143bede5 40static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
f3ea38da
JS
41 struct btrfs_path *path, int level, int slot,
42 int tree_mod_log);
f230475e
JS
43static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 u32 blocksize, u64 parent_transid,
47 u64 time_seq);
48struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 u64 bytenr, u32 blocksize,
50 u64 time_seq);
d97e63b6 51
df24a2b9 52struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 53{
df24a2b9 54 struct btrfs_path *path;
e00f7308 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 56 return path;
2c90e5d6
CM
57}
58
b4ce94de
CM
59/*
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
62 */
63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64{
65 int i;
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
67 if (!p->nodes[i] || !p->locks[i])
68 continue;
69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 if (p->locks[i] == BTRFS_READ_LOCK)
71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
74 }
75}
76
77/*
78 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
79 *
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
83 * for held
b4ce94de 84 */
4008c04a 85noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 86 struct extent_buffer *held, int held_rw)
b4ce94de
CM
87{
88 int i;
4008c04a
CM
89
90#ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
95 * the path blocking.
96 */
bd681513
CM
97 if (held) {
98 btrfs_set_lock_blocking_rw(held, held_rw);
99 if (held_rw == BTRFS_WRITE_LOCK)
100 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 else if (held_rw == BTRFS_READ_LOCK)
102 held_rw = BTRFS_READ_LOCK_BLOCKING;
103 }
4008c04a
CM
104 btrfs_set_path_blocking(p);
105#endif
106
107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
108 if (p->nodes[i] && p->locks[i]) {
109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 p->locks[i] = BTRFS_WRITE_LOCK;
112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 p->locks[i] = BTRFS_READ_LOCK;
114 }
b4ce94de 115 }
4008c04a
CM
116
117#ifdef CONFIG_DEBUG_LOCK_ALLOC
118 if (held)
bd681513 119 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 120#endif
b4ce94de
CM
121}
122
d352ac68 123/* this also releases the path */
df24a2b9 124void btrfs_free_path(struct btrfs_path *p)
be0e5c09 125{
ff175d57
JJ
126 if (!p)
127 return;
b3b4aa74 128 btrfs_release_path(p);
df24a2b9 129 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
130}
131
d352ac68
CM
132/*
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
135 *
136 * It is safe to call this on paths that no locks or extent buffers held.
137 */
b3b4aa74 138noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
139{
140 int i;
a2135011 141
234b63a0 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 143 p->slots[i] = 0;
eb60ceac 144 if (!p->nodes[i])
925baedd
CM
145 continue;
146 if (p->locks[i]) {
bd681513 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
148 p->locks[i] = 0;
149 }
5f39d397 150 free_extent_buffer(p->nodes[i]);
3f157a2f 151 p->nodes[i] = NULL;
eb60ceac
CM
152 }
153}
154
d352ac68
CM
155/*
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
159 * looping required.
160 *
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
164 */
925baedd
CM
165struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166{
167 struct extent_buffer *eb;
240f62c8 168
3083ee2e
JB
169 while (1) {
170 rcu_read_lock();
171 eb = rcu_dereference(root->node);
172
173 /*
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
178 */
179 if (atomic_inc_not_zero(&eb->refs)) {
180 rcu_read_unlock();
181 break;
182 }
183 rcu_read_unlock();
184 synchronize_rcu();
185 }
925baedd
CM
186 return eb;
187}
188
d352ac68
CM
189/* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
192 */
925baedd
CM
193struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194{
195 struct extent_buffer *eb;
196
d397712b 197 while (1) {
925baedd
CM
198 eb = btrfs_root_node(root);
199 btrfs_tree_lock(eb);
240f62c8 200 if (eb == root->node)
925baedd 201 break;
925baedd
CM
202 btrfs_tree_unlock(eb);
203 free_extent_buffer(eb);
204 }
205 return eb;
206}
207
bd681513
CM
208/* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
211 */
212struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213{
214 struct extent_buffer *eb;
215
216 while (1) {
217 eb = btrfs_root_node(root);
218 btrfs_tree_read_lock(eb);
219 if (eb == root->node)
220 break;
221 btrfs_tree_read_unlock(eb);
222 free_extent_buffer(eb);
223 }
224 return eb;
225}
226
d352ac68
CM
227/* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
230 */
0b86a832
CM
231static void add_root_to_dirty_list(struct btrfs_root *root)
232{
e5846fc6 233 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
234 if (root->track_dirty && list_empty(&root->dirty_list)) {
235 list_add(&root->dirty_list,
236 &root->fs_info->dirty_cowonly_roots);
237 }
e5846fc6 238 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
239}
240
d352ac68
CM
241/*
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
245 */
be20aa9d
CM
246int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root,
248 struct extent_buffer *buf,
249 struct extent_buffer **cow_ret, u64 new_root_objectid)
250{
251 struct extent_buffer *cow;
be20aa9d
CM
252 int ret = 0;
253 int level;
5d4f98a2 254 struct btrfs_disk_key disk_key;
be20aa9d
CM
255
256 WARN_ON(root->ref_cows && trans->transid !=
257 root->fs_info->running_transaction->transid);
258 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260 level = btrfs_header_level(buf);
5d4f98a2
YZ
261 if (level == 0)
262 btrfs_item_key(buf, &disk_key, 0);
263 else
264 btrfs_node_key(buf, &disk_key, 0);
31840ae1 265
5d4f98a2
YZ
266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 new_root_objectid, &disk_key, level,
5581a51a 268 buf->start, 0);
5d4f98a2 269 if (IS_ERR(cow))
be20aa9d
CM
270 return PTR_ERR(cow);
271
272 copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 btrfs_set_header_bytenr(cow, cow->start);
274 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 BTRFS_HEADER_FLAG_RELOC);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 else
281 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 282
2b82032c
YZ
283 write_extent_buffer(cow, root->fs_info->fsid,
284 (unsigned long)btrfs_header_fsid(cow),
285 BTRFS_FSID_SIZE);
286
be20aa9d 287 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 290 else
66d7e7f0 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 292
be20aa9d
CM
293 if (ret)
294 return ret;
295
296 btrfs_mark_buffer_dirty(cow);
297 *cow_ret = cow;
298 return 0;
299}
300
bd989ba3
JS
301enum mod_log_op {
302 MOD_LOG_KEY_REPLACE,
303 MOD_LOG_KEY_ADD,
304 MOD_LOG_KEY_REMOVE,
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 MOD_LOG_MOVE_KEYS,
308 MOD_LOG_ROOT_REPLACE,
309};
310
311struct tree_mod_move {
312 int dst_slot;
313 int nr_items;
314};
315
316struct tree_mod_root {
317 u64 logical;
318 u8 level;
319};
320
321struct tree_mod_elem {
322 struct rb_node node;
323 u64 index; /* shifted logical */
097b8a7c 324 u64 seq;
bd989ba3
JS
325 enum mod_log_op op;
326
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 int slot;
329
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 u64 generation;
332
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key;
335 u64 blockptr;
336
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move;
339
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root;
342};
343
097b8a7c 344static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 345{
097b8a7c 346 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
347}
348
097b8a7c
JS
349static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350{
351 read_unlock(&fs_info->tree_mod_log_lock);
352}
353
354static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355{
356 write_lock(&fs_info->tree_mod_log_lock);
357}
358
359static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360{
361 write_unlock(&fs_info->tree_mod_log_lock);
362}
363
364/*
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
370 * blocker was added.
371 */
372u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
bd989ba3 374{
097b8a7c
JS
375 u64 seq;
376
377 tree_mod_log_write_lock(fs_info);
bd989ba3 378 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
379 if (!elem->seq) {
380 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 }
383 seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 384 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
385 tree_mod_log_write_unlock(fs_info);
386
387 return seq;
bd989ba3
JS
388}
389
390void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 struct seq_list *elem)
392{
393 struct rb_root *tm_root;
394 struct rb_node *node;
395 struct rb_node *next;
396 struct seq_list *cur_elem;
397 struct tree_mod_elem *tm;
398 u64 min_seq = (u64)-1;
399 u64 seq_putting = elem->seq;
400
401 if (!seq_putting)
402 return;
403
bd989ba3
JS
404 spin_lock(&fs_info->tree_mod_seq_lock);
405 list_del(&elem->list);
097b8a7c 406 elem->seq = 0;
bd989ba3
JS
407
408 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 409 if (cur_elem->seq < min_seq) {
bd989ba3
JS
410 if (seq_putting > cur_elem->seq) {
411 /*
412 * blocker with lower sequence number exists, we
413 * cannot remove anything from the log
414 */
097b8a7c
JS
415 spin_unlock(&fs_info->tree_mod_seq_lock);
416 return;
bd989ba3
JS
417 }
418 min_seq = cur_elem->seq;
419 }
420 }
097b8a7c
JS
421 spin_unlock(&fs_info->tree_mod_seq_lock);
422
bd989ba3
JS
423 /*
424 * anything that's lower than the lowest existing (read: blocked)
425 * sequence number can be removed from the tree.
426 */
097b8a7c 427 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
428 tm_root = &fs_info->tree_mod_log;
429 for (node = rb_first(tm_root); node; node = next) {
430 next = rb_next(node);
431 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 432 if (tm->seq > min_seq)
bd989ba3
JS
433 continue;
434 rb_erase(node, tm_root);
bd989ba3
JS
435 kfree(tm);
436 }
097b8a7c 437 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
438}
439
440/*
441 * key order of the log:
442 * index -> sequence
443 *
444 * the index is the shifted logical of the *new* root node for root replace
445 * operations, or the shifted logical of the affected block for all other
446 * operations.
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
bd989ba3 455
097b8a7c 456 BUG_ON(!tm || !tm->seq);
bd989ba3 457
bd989ba3
JS
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = container_of(*new, struct tree_mod_elem, node);
462 parent = *new;
463 if (cur->index < tm->index)
464 new = &((*new)->rb_left);
465 else if (cur->index > tm->index)
466 new = &((*new)->rb_right);
097b8a7c 467 else if (cur->seq < tm->seq)
bd989ba3 468 new = &((*new)->rb_left);
097b8a7c 469 else if (cur->seq > tm->seq)
bd989ba3
JS
470 new = &((*new)->rb_right);
471 else {
472 kfree(tm);
097b8a7c 473 return -EEXIST;
bd989ba3
JS
474 }
475 }
476
477 rb_link_node(&tm->node, parent, new);
478 rb_insert_color(&tm->node, tm_root);
097b8a7c 479 return 0;
bd989ba3
JS
480}
481
097b8a7c
JS
482/*
483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
485 * this until all tree mod log insertions are recorded in the rb tree and then
486 * call tree_mod_log_write_unlock() to release.
487 */
e9b7fd4d
JS
488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 struct extent_buffer *eb) {
490 smp_mb();
491 if (list_empty(&(fs_info)->tree_mod_seq_list))
492 return 1;
097b8a7c
JS
493 if (eb && btrfs_header_level(eb) == 0)
494 return 1;
495
496 tree_mod_log_write_lock(fs_info);
497 if (list_empty(&fs_info->tree_mod_seq_list)) {
498 /*
499 * someone emptied the list while we were waiting for the lock.
500 * we must not add to the list when no blocker exists.
501 */
502 tree_mod_log_write_unlock(fs_info);
e9b7fd4d 503 return 1;
097b8a7c
JS
504 }
505
e9b7fd4d
JS
506 return 0;
507}
508
3310c36e 509/*
097b8a7c 510 * This allocates memory and gets a tree modification sequence number.
3310c36e 511 *
097b8a7c
JS
512 * Returns <0 on error.
513 * Returns >0 (the added sequence number) on success.
3310c36e 514 */
926dd8a6
JS
515static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
516 struct tree_mod_elem **tm_ret)
bd989ba3
JS
517{
518 struct tree_mod_elem *tm;
bd989ba3 519
097b8a7c
JS
520 /*
521 * once we switch from spin locks to something different, we should
522 * honor the flags parameter here.
523 */
524 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
bd989ba3
JS
525 if (!tm)
526 return -ENOMEM;
527
097b8a7c
JS
528 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
529 return tm->seq;
bd989ba3
JS
530}
531
097b8a7c
JS
532static inline int
533__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
534 struct extent_buffer *eb, int slot,
535 enum mod_log_op op, gfp_t flags)
bd989ba3 536{
bd989ba3 537 int ret;
097b8a7c 538 struct tree_mod_elem *tm;
bd989ba3
JS
539
540 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c 541 if (ret < 0)
bd989ba3
JS
542 return ret;
543
544 tm->index = eb->start >> PAGE_CACHE_SHIFT;
545 if (op != MOD_LOG_KEY_ADD) {
546 btrfs_node_key(eb, &tm->key, slot);
547 tm->blockptr = btrfs_node_blockptr(eb, slot);
548 }
549 tm->op = op;
550 tm->slot = slot;
551 tm->generation = btrfs_node_ptr_generation(eb, slot);
552
097b8a7c
JS
553 return __tree_mod_log_insert(fs_info, tm);
554}
555
556static noinline int
557tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
558 struct extent_buffer *eb, int slot,
559 enum mod_log_op op, gfp_t flags)
560{
561 int ret;
562
563 if (tree_mod_dont_log(fs_info, eb))
564 return 0;
565
566 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
567
568 tree_mod_log_write_unlock(fs_info);
3310c36e 569 return ret;
bd989ba3
JS
570}
571
572static noinline int
573tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
574 int slot, enum mod_log_op op)
575{
576 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
577}
578
097b8a7c
JS
579static noinline int
580tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
581 struct extent_buffer *eb, int slot,
582 enum mod_log_op op)
583{
584 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
585}
586
bd989ba3
JS
587static noinline int
588tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
589 struct extent_buffer *eb, int dst_slot, int src_slot,
590 int nr_items, gfp_t flags)
591{
592 struct tree_mod_elem *tm;
593 int ret;
594 int i;
595
f395694c
JS
596 if (tree_mod_dont_log(fs_info, eb))
597 return 0;
bd989ba3 598
01763a2e
JS
599 /*
600 * When we override something during the move, we log these removals.
601 * This can only happen when we move towards the beginning of the
602 * buffer, i.e. dst_slot < src_slot.
603 */
bd989ba3 604 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
097b8a7c 605 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
bd989ba3
JS
606 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
607 BUG_ON(ret < 0);
608 }
609
f395694c 610 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
611 if (ret < 0)
612 goto out;
f395694c 613
bd989ba3
JS
614 tm->index = eb->start >> PAGE_CACHE_SHIFT;
615 tm->slot = src_slot;
616 tm->move.dst_slot = dst_slot;
617 tm->move.nr_items = nr_items;
618 tm->op = MOD_LOG_MOVE_KEYS;
619
3310c36e 620 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
621out:
622 tree_mod_log_write_unlock(fs_info);
3310c36e 623 return ret;
bd989ba3
JS
624}
625
097b8a7c
JS
626static inline void
627__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
628{
629 int i;
630 u32 nritems;
631 int ret;
632
b12a3b1e
CM
633 if (btrfs_header_level(eb) == 0)
634 return;
635
097b8a7c
JS
636 nritems = btrfs_header_nritems(eb);
637 for (i = nritems - 1; i >= 0; i--) {
638 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
639 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
640 BUG_ON(ret < 0);
641 }
642}
643
bd989ba3
JS
644static noinline int
645tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
646 struct extent_buffer *old_root,
647 struct extent_buffer *new_root, gfp_t flags)
648{
649 struct tree_mod_elem *tm;
650 int ret;
651
097b8a7c
JS
652 if (tree_mod_dont_log(fs_info, NULL))
653 return 0;
654
bd989ba3 655 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
656 if (ret < 0)
657 goto out;
bd989ba3
JS
658
659 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
664
3310c36e 665 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
666out:
667 tree_mod_log_write_unlock(fs_info);
3310c36e 668 return ret;
bd989ba3
JS
669}
670
671static struct tree_mod_elem *
672__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
673 int smallest)
674{
675 struct rb_root *tm_root;
676 struct rb_node *node;
677 struct tree_mod_elem *cur = NULL;
678 struct tree_mod_elem *found = NULL;
679 u64 index = start >> PAGE_CACHE_SHIFT;
680
097b8a7c 681 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
682 tm_root = &fs_info->tree_mod_log;
683 node = tm_root->rb_node;
684 while (node) {
685 cur = container_of(node, struct tree_mod_elem, node);
686 if (cur->index < index) {
687 node = node->rb_left;
688 } else if (cur->index > index) {
689 node = node->rb_right;
097b8a7c 690 } else if (cur->seq < min_seq) {
bd989ba3
JS
691 node = node->rb_left;
692 } else if (!smallest) {
693 /* we want the node with the highest seq */
694 if (found)
097b8a7c 695 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
696 found = cur;
697 node = node->rb_left;
097b8a7c 698 } else if (cur->seq > min_seq) {
bd989ba3
JS
699 /* we want the node with the smallest seq */
700 if (found)
097b8a7c 701 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
702 found = cur;
703 node = node->rb_right;
704 } else {
705 found = cur;
706 break;
707 }
708 }
097b8a7c 709 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
710
711 return found;
712}
713
714/*
715 * this returns the element from the log with the smallest time sequence
716 * value that's in the log (the oldest log item). any element with a time
717 * sequence lower than min_seq will be ignored.
718 */
719static struct tree_mod_elem *
720tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
721 u64 min_seq)
722{
723 return __tree_mod_log_search(fs_info, start, min_seq, 1);
724}
725
726/*
727 * this returns the element from the log with the largest time sequence
728 * value that's in the log (the most recent log item). any element with
729 * a time sequence lower than min_seq will be ignored.
730 */
731static struct tree_mod_elem *
732tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
733{
734 return __tree_mod_log_search(fs_info, start, min_seq, 0);
735}
736
097b8a7c 737static noinline void
bd989ba3
JS
738tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
739 struct extent_buffer *src, unsigned long dst_offset,
740 unsigned long src_offset, int nr_items)
741{
742 int ret;
743 int i;
744
e9b7fd4d 745 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
746 return;
747
097b8a7c
JS
748 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
749 tree_mod_log_write_unlock(fs_info);
bd989ba3 750 return;
097b8a7c 751 }
bd989ba3 752
bd989ba3 753 for (i = 0; i < nr_items; i++) {
097b8a7c
JS
754 ret = tree_mod_log_insert_key_locked(fs_info, src,
755 i + src_offset,
756 MOD_LOG_KEY_REMOVE);
bd989ba3 757 BUG_ON(ret < 0);
097b8a7c
JS
758 ret = tree_mod_log_insert_key_locked(fs_info, dst,
759 i + dst_offset,
760 MOD_LOG_KEY_ADD);
bd989ba3
JS
761 BUG_ON(ret < 0);
762 }
097b8a7c
JS
763
764 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
765}
766
767static inline void
768tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
769 int dst_offset, int src_offset, int nr_items)
770{
771 int ret;
772 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
773 nr_items, GFP_NOFS);
774 BUG_ON(ret < 0);
775}
776
097b8a7c 777static noinline void
bd989ba3
JS
778tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
779 struct extent_buffer *eb,
780 struct btrfs_disk_key *disk_key, int slot, int atomic)
781{
782 int ret;
783
784 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
785 MOD_LOG_KEY_REPLACE,
786 atomic ? GFP_ATOMIC : GFP_NOFS);
787 BUG_ON(ret < 0);
788}
789
097b8a7c
JS
790static noinline void
791tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 792{
e9b7fd4d 793 if (tree_mod_dont_log(fs_info, eb))
bd989ba3
JS
794 return;
795
097b8a7c
JS
796 __tree_mod_log_free_eb(fs_info, eb);
797
798 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
799}
800
097b8a7c 801static noinline void
bd989ba3
JS
802tree_mod_log_set_root_pointer(struct btrfs_root *root,
803 struct extent_buffer *new_root_node)
804{
805 int ret;
bd989ba3
JS
806 ret = tree_mod_log_insert_root(root->fs_info, root->node,
807 new_root_node, GFP_NOFS);
808 BUG_ON(ret < 0);
809}
810
5d4f98a2
YZ
811/*
812 * check if the tree block can be shared by multiple trees
813 */
814int btrfs_block_can_be_shared(struct btrfs_root *root,
815 struct extent_buffer *buf)
816{
817 /*
818 * Tree blocks not in refernece counted trees and tree roots
819 * are never shared. If a block was allocated after the last
820 * snapshot and the block was not allocated by tree relocation,
821 * we know the block is not shared.
822 */
823 if (root->ref_cows &&
824 buf != root->node && buf != root->commit_root &&
825 (btrfs_header_generation(buf) <=
826 btrfs_root_last_snapshot(&root->root_item) ||
827 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
828 return 1;
829#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
830 if (root->ref_cows &&
831 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
832 return 1;
833#endif
834 return 0;
835}
836
837static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct extent_buffer *buf,
f0486c68
YZ
840 struct extent_buffer *cow,
841 int *last_ref)
5d4f98a2
YZ
842{
843 u64 refs;
844 u64 owner;
845 u64 flags;
846 u64 new_flags = 0;
847 int ret;
848
849 /*
850 * Backrefs update rules:
851 *
852 * Always use full backrefs for extent pointers in tree block
853 * allocated by tree relocation.
854 *
855 * If a shared tree block is no longer referenced by its owner
856 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
857 * use full backrefs for extent pointers in tree block.
858 *
859 * If a tree block is been relocating
860 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
861 * use full backrefs for extent pointers in tree block.
862 * The reason for this is some operations (such as drop tree)
863 * are only allowed for blocks use full backrefs.
864 */
865
866 if (btrfs_block_can_be_shared(root, buf)) {
867 ret = btrfs_lookup_extent_info(trans, root, buf->start,
868 buf->len, &refs, &flags);
be1a5564
MF
869 if (ret)
870 return ret;
e5df9573
MF
871 if (refs == 0) {
872 ret = -EROFS;
873 btrfs_std_error(root->fs_info, ret);
874 return ret;
875 }
5d4f98a2
YZ
876 } else {
877 refs = 1;
878 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
879 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
880 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881 else
882 flags = 0;
883 }
884
885 owner = btrfs_header_owner(buf);
886 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
887 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
888
889 if (refs > 1) {
890 if ((owner == root->root_key.objectid ||
891 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
892 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 893 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 894 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
895
896 if (root->root_key.objectid ==
897 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 898 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 899 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 900 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 901 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
902 }
903 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
904 } else {
905
906 if (root->root_key.objectid ==
907 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 908 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 909 else
66d7e7f0 910 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 911 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
912 }
913 if (new_flags != 0) {
914 ret = btrfs_set_disk_extent_flags(trans, root,
915 buf->start,
916 buf->len,
917 new_flags, 0);
be1a5564
MF
918 if (ret)
919 return ret;
5d4f98a2
YZ
920 }
921 } else {
922 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
923 if (root->root_key.objectid ==
924 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 925 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 926 else
66d7e7f0 927 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 928 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 929 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 930 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 931 }
ba1bfbd5 932 tree_mod_log_free_eb(root->fs_info, buf);
5d4f98a2 933 clean_tree_block(trans, root, buf);
f0486c68 934 *last_ref = 1;
5d4f98a2
YZ
935 }
936 return 0;
937}
938
d352ac68 939/*
d397712b
CM
940 * does the dirty work in cow of a single block. The parent block (if
941 * supplied) is updated to point to the new cow copy. The new buffer is marked
942 * dirty and returned locked. If you modify the block it needs to be marked
943 * dirty again.
d352ac68
CM
944 *
945 * search_start -- an allocation hint for the new block
946 *
d397712b
CM
947 * empty_size -- a hint that you plan on doing more cow. This is the size in
948 * bytes the allocator should try to find free next to the block it returns.
949 * This is just a hint and may be ignored by the allocator.
d352ac68 950 */
d397712b 951static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
952 struct btrfs_root *root,
953 struct extent_buffer *buf,
954 struct extent_buffer *parent, int parent_slot,
955 struct extent_buffer **cow_ret,
9fa8cfe7 956 u64 search_start, u64 empty_size)
02217ed2 957{
5d4f98a2 958 struct btrfs_disk_key disk_key;
5f39d397 959 struct extent_buffer *cow;
be1a5564 960 int level, ret;
f0486c68 961 int last_ref = 0;
925baedd 962 int unlock_orig = 0;
5d4f98a2 963 u64 parent_start;
7bb86316 964
925baedd
CM
965 if (*cow_ret == buf)
966 unlock_orig = 1;
967
b9447ef8 968 btrfs_assert_tree_locked(buf);
925baedd 969
7bb86316
CM
970 WARN_ON(root->ref_cows && trans->transid !=
971 root->fs_info->running_transaction->transid);
6702ed49 972 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 973
7bb86316 974 level = btrfs_header_level(buf);
31840ae1 975
5d4f98a2
YZ
976 if (level == 0)
977 btrfs_item_key(buf, &disk_key, 0);
978 else
979 btrfs_node_key(buf, &disk_key, 0);
980
981 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
982 if (parent)
983 parent_start = parent->start;
984 else
985 parent_start = 0;
986 } else
987 parent_start = 0;
988
989 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
990 root->root_key.objectid, &disk_key,
5581a51a 991 level, search_start, empty_size);
54aa1f4d
CM
992 if (IS_ERR(cow))
993 return PTR_ERR(cow);
6702ed49 994
b4ce94de
CM
995 /* cow is set to blocking by btrfs_init_new_buffer */
996
5f39d397 997 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 998 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 999 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1000 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1001 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1002 BTRFS_HEADER_FLAG_RELOC);
1003 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1004 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1005 else
1006 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1007
2b82032c
YZ
1008 write_extent_buffer(cow, root->fs_info->fsid,
1009 (unsigned long)btrfs_header_fsid(cow),
1010 BTRFS_FSID_SIZE);
1011
be1a5564 1012 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1013 if (ret) {
79787eaa 1014 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1015 return ret;
1016 }
1a40e23b 1017
3fd0a558
YZ
1018 if (root->ref_cows)
1019 btrfs_reloc_cow_block(trans, root, buf, cow);
1020
02217ed2 1021 if (buf == root->node) {
925baedd 1022 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1023 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025 parent_start = buf->start;
1026 else
1027 parent_start = 0;
925baedd 1028
5f39d397 1029 extent_buffer_get(cow);
f230475e 1030 tree_mod_log_set_root_pointer(root, cow);
240f62c8 1031 rcu_assign_pointer(root->node, cow);
925baedd 1032
f0486c68 1033 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1034 last_ref);
5f39d397 1035 free_extent_buffer(buf);
0b86a832 1036 add_root_to_dirty_list(root);
02217ed2 1037 } else {
5d4f98a2
YZ
1038 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1039 parent_start = parent->start;
1040 else
1041 parent_start = 0;
1042
1043 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e
JS
1044 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1045 MOD_LOG_KEY_REPLACE);
5f39d397 1046 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1047 cow->start);
74493f7a
CM
1048 btrfs_set_node_ptr_generation(parent, parent_slot,
1049 trans->transid);
d6025579 1050 btrfs_mark_buffer_dirty(parent);
f0486c68 1051 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1052 last_ref);
02217ed2 1053 }
925baedd
CM
1054 if (unlock_orig)
1055 btrfs_tree_unlock(buf);
3083ee2e 1056 free_extent_buffer_stale(buf);
ccd467d6 1057 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1058 *cow_ret = cow;
02217ed2
CM
1059 return 0;
1060}
1061
5d9e75c4
JS
1062/*
1063 * returns the logical address of the oldest predecessor of the given root.
1064 * entries older than time_seq are ignored.
1065 */
1066static struct tree_mod_elem *
1067__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1068 struct btrfs_root *root, u64 time_seq)
1069{
1070 struct tree_mod_elem *tm;
1071 struct tree_mod_elem *found = NULL;
1072 u64 root_logical = root->node->start;
1073 int looped = 0;
1074
1075 if (!time_seq)
1076 return 0;
1077
1078 /*
1079 * the very last operation that's logged for a root is the replacement
1080 * operation (if it is replaced at all). this has the index of the *new*
1081 * root, making it the very first operation that's logged for this root.
1082 */
1083 while (1) {
1084 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1085 time_seq);
1086 if (!looped && !tm)
1087 return 0;
1088 /*
28da9fb4
JS
1089 * if there are no tree operation for the oldest root, we simply
1090 * return it. this should only happen if that (old) root is at
1091 * level 0.
5d9e75c4 1092 */
28da9fb4
JS
1093 if (!tm)
1094 break;
5d9e75c4 1095
28da9fb4
JS
1096 /*
1097 * if there's an operation that's not a root replacement, we
1098 * found the oldest version of our root. normally, we'll find a
1099 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1100 */
5d9e75c4
JS
1101 if (tm->op != MOD_LOG_ROOT_REPLACE)
1102 break;
1103
1104 found = tm;
1105 root_logical = tm->old_root.logical;
1106 BUG_ON(root_logical == root->node->start);
1107 looped = 1;
1108 }
1109
a95236d9
JS
1110 /* if there's no old root to return, return what we found instead */
1111 if (!found)
1112 found = tm;
1113
5d9e75c4
JS
1114 return found;
1115}
1116
1117/*
1118 * tm is a pointer to the first operation to rewind within eb. then, all
1119 * previous operations will be rewinded (until we reach something older than
1120 * time_seq).
1121 */
1122static void
1123__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1124 struct tree_mod_elem *first_tm)
1125{
1126 u32 n;
1127 struct rb_node *next;
1128 struct tree_mod_elem *tm = first_tm;
1129 unsigned long o_dst;
1130 unsigned long o_src;
1131 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1132
1133 n = btrfs_header_nritems(eb);
097b8a7c 1134 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1135 /*
1136 * all the operations are recorded with the operator used for
1137 * the modification. as we're going backwards, we do the
1138 * opposite of each operation here.
1139 */
1140 switch (tm->op) {
1141 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1142 BUG_ON(tm->slot < n);
1143 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1144 case MOD_LOG_KEY_REMOVE:
1145 btrfs_set_node_key(eb, &tm->key, tm->slot);
1146 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1147 btrfs_set_node_ptr_generation(eb, tm->slot,
1148 tm->generation);
1149 n++;
1150 break;
1151 case MOD_LOG_KEY_REPLACE:
1152 BUG_ON(tm->slot >= n);
1153 btrfs_set_node_key(eb, &tm->key, tm->slot);
1154 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1155 btrfs_set_node_ptr_generation(eb, tm->slot,
1156 tm->generation);
1157 break;
1158 case MOD_LOG_KEY_ADD:
19956c7e 1159 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1160 n--;
1161 break;
1162 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1163 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1164 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1165 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1166 tm->move.nr_items * p_size);
1167 break;
1168 case MOD_LOG_ROOT_REPLACE:
1169 /*
1170 * this operation is special. for roots, this must be
1171 * handled explicitly before rewinding.
1172 * for non-roots, this operation may exist if the node
1173 * was a root: root A -> child B; then A gets empty and
1174 * B is promoted to the new root. in the mod log, we'll
1175 * have a root-replace operation for B, a tree block
1176 * that is no root. we simply ignore that operation.
1177 */
1178 break;
1179 }
1180 next = rb_next(&tm->node);
1181 if (!next)
1182 break;
1183 tm = container_of(next, struct tree_mod_elem, node);
1184 if (tm->index != first_tm->index)
1185 break;
1186 }
1187 btrfs_set_header_nritems(eb, n);
1188}
1189
1190static struct extent_buffer *
1191tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1192 u64 time_seq)
1193{
1194 struct extent_buffer *eb_rewin;
1195 struct tree_mod_elem *tm;
1196
1197 if (!time_seq)
1198 return eb;
1199
1200 if (btrfs_header_level(eb) == 0)
1201 return eb;
1202
1203 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1204 if (!tm)
1205 return eb;
1206
1207 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1208 BUG_ON(tm->slot != 0);
1209 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1210 fs_info->tree_root->nodesize);
1211 BUG_ON(!eb_rewin);
1212 btrfs_set_header_bytenr(eb_rewin, eb->start);
1213 btrfs_set_header_backref_rev(eb_rewin,
1214 btrfs_header_backref_rev(eb));
1215 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1216 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1217 } else {
1218 eb_rewin = btrfs_clone_extent_buffer(eb);
1219 BUG_ON(!eb_rewin);
1220 }
1221
1222 extent_buffer_get(eb_rewin);
1223 free_extent_buffer(eb);
1224
1225 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
57911b8b
JS
1226 WARN_ON(btrfs_header_nritems(eb_rewin) >
1227 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
5d9e75c4
JS
1228
1229 return eb_rewin;
1230}
1231
8ba97a15
JS
1232/*
1233 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1234 * value. If there are no changes, the current root->root_node is returned. If
1235 * anything changed in between, there's a fresh buffer allocated on which the
1236 * rewind operations are done. In any case, the returned buffer is read locked.
1237 * Returns NULL on error (with no locks held).
1238 */
5d9e75c4
JS
1239static inline struct extent_buffer *
1240get_old_root(struct btrfs_root *root, u64 time_seq)
1241{
1242 struct tree_mod_elem *tm;
1243 struct extent_buffer *eb;
a95236d9 1244 struct tree_mod_root *old_root = NULL;
4325edd0 1245 u64 old_generation = 0;
a95236d9 1246 u64 logical;
834328a8 1247 u32 blocksize;
5d9e75c4 1248
8ba97a15 1249 eb = btrfs_read_lock_root_node(root);
5d9e75c4
JS
1250 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1251 if (!tm)
1252 return root->node;
1253
a95236d9
JS
1254 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1255 old_root = &tm->old_root;
1256 old_generation = tm->generation;
1257 logical = old_root->logical;
1258 } else {
1259 logical = root->node->start;
1260 }
5d9e75c4 1261
a95236d9 1262 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8
JS
1263 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1264 btrfs_tree_read_unlock(root->node);
1265 free_extent_buffer(root->node);
1266 blocksize = btrfs_level_size(root, old_root->level);
1267 eb = read_tree_block(root, logical, blocksize, 0);
1268 if (!eb) {
1269 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1270 logical);
1271 WARN_ON(1);
1272 } else {
1273 eb = btrfs_clone_extent_buffer(eb);
1274 }
1275 } else if (old_root) {
1276 btrfs_tree_read_unlock(root->node);
1277 free_extent_buffer(root->node);
28da9fb4 1278 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1279 } else {
a95236d9 1280 eb = btrfs_clone_extent_buffer(root->node);
834328a8
JS
1281 btrfs_tree_read_unlock(root->node);
1282 free_extent_buffer(root->node);
1283 }
1284
8ba97a15
JS
1285 if (!eb)
1286 return NULL;
d6381084 1287 extent_buffer_get(eb);
8ba97a15 1288 btrfs_tree_read_lock(eb);
a95236d9 1289 if (old_root) {
5d9e75c4
JS
1290 btrfs_set_header_bytenr(eb, eb->start);
1291 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1292 btrfs_set_header_owner(eb, root->root_key.objectid);
a95236d9
JS
1293 btrfs_set_header_level(eb, old_root->level);
1294 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1295 }
28da9fb4
JS
1296 if (tm)
1297 __tree_mod_log_rewind(eb, time_seq, tm);
1298 else
1299 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1300 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1301
1302 return eb;
1303}
1304
5b6602e7
JS
1305int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1306{
1307 struct tree_mod_elem *tm;
1308 int level;
1309
1310 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1311 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1312 level = tm->old_root.level;
1313 } else {
1314 rcu_read_lock();
1315 level = btrfs_header_level(root->node);
1316 rcu_read_unlock();
1317 }
1318
1319 return level;
1320}
1321
5d4f98a2
YZ
1322static inline int should_cow_block(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 struct extent_buffer *buf)
1325{
f1ebcc74
LB
1326 /* ensure we can see the force_cow */
1327 smp_rmb();
1328
1329 /*
1330 * We do not need to cow a block if
1331 * 1) this block is not created or changed in this transaction;
1332 * 2) this block does not belong to TREE_RELOC tree;
1333 * 3) the root is not forced COW.
1334 *
1335 * What is forced COW:
1336 * when we create snapshot during commiting the transaction,
1337 * after we've finished coping src root, we must COW the shared
1338 * block to ensure the metadata consistency.
1339 */
5d4f98a2
YZ
1340 if (btrfs_header_generation(buf) == trans->transid &&
1341 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1342 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1343 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1344 !root->force_cow)
5d4f98a2
YZ
1345 return 0;
1346 return 1;
1347}
1348
d352ac68
CM
1349/*
1350 * cows a single block, see __btrfs_cow_block for the real work.
1351 * This version of it has extra checks so that a block isn't cow'd more than
1352 * once per transaction, as long as it hasn't been written yet
1353 */
d397712b 1354noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1355 struct btrfs_root *root, struct extent_buffer *buf,
1356 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1357 struct extent_buffer **cow_ret)
6702ed49
CM
1358{
1359 u64 search_start;
f510cfec 1360 int ret;
dc17ff8f 1361
6702ed49 1362 if (trans->transaction != root->fs_info->running_transaction) {
d397712b
CM
1363 printk(KERN_CRIT "trans %llu running %llu\n",
1364 (unsigned long long)trans->transid,
1365 (unsigned long long)
6702ed49
CM
1366 root->fs_info->running_transaction->transid);
1367 WARN_ON(1);
1368 }
1369 if (trans->transid != root->fs_info->generation) {
d397712b
CM
1370 printk(KERN_CRIT "trans %llu running %llu\n",
1371 (unsigned long long)trans->transid,
1372 (unsigned long long)root->fs_info->generation);
6702ed49
CM
1373 WARN_ON(1);
1374 }
dc17ff8f 1375
5d4f98a2 1376 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1377 *cow_ret = buf;
1378 return 0;
1379 }
c487685d 1380
0b86a832 1381 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1382
1383 if (parent)
1384 btrfs_set_lock_blocking(parent);
1385 btrfs_set_lock_blocking(buf);
1386
f510cfec 1387 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1388 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1389
1390 trace_btrfs_cow_block(root, buf, *cow_ret);
1391
f510cfec 1392 return ret;
6702ed49
CM
1393}
1394
d352ac68
CM
1395/*
1396 * helper function for defrag to decide if two blocks pointed to by a
1397 * node are actually close by
1398 */
6b80053d 1399static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1400{
6b80053d 1401 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1402 return 1;
6b80053d 1403 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1404 return 1;
1405 return 0;
1406}
1407
081e9573
CM
1408/*
1409 * compare two keys in a memcmp fashion
1410 */
1411static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1412{
1413 struct btrfs_key k1;
1414
1415 btrfs_disk_key_to_cpu(&k1, disk);
1416
20736aba 1417 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1418}
1419
f3465ca4
JB
1420/*
1421 * same as comp_keys only with two btrfs_key's
1422 */
5d4f98a2 1423int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1424{
1425 if (k1->objectid > k2->objectid)
1426 return 1;
1427 if (k1->objectid < k2->objectid)
1428 return -1;
1429 if (k1->type > k2->type)
1430 return 1;
1431 if (k1->type < k2->type)
1432 return -1;
1433 if (k1->offset > k2->offset)
1434 return 1;
1435 if (k1->offset < k2->offset)
1436 return -1;
1437 return 0;
1438}
081e9573 1439
d352ac68
CM
1440/*
1441 * this is used by the defrag code to go through all the
1442 * leaves pointed to by a node and reallocate them so that
1443 * disk order is close to key order
1444 */
6702ed49 1445int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1446 struct btrfs_root *root, struct extent_buffer *parent,
a6b6e75e
CM
1447 int start_slot, int cache_only, u64 *last_ret,
1448 struct btrfs_key *progress)
6702ed49 1449{
6b80053d 1450 struct extent_buffer *cur;
6702ed49 1451 u64 blocknr;
ca7a79ad 1452 u64 gen;
e9d0b13b
CM
1453 u64 search_start = *last_ret;
1454 u64 last_block = 0;
6702ed49
CM
1455 u64 other;
1456 u32 parent_nritems;
6702ed49
CM
1457 int end_slot;
1458 int i;
1459 int err = 0;
f2183bde 1460 int parent_level;
6b80053d
CM
1461 int uptodate;
1462 u32 blocksize;
081e9573
CM
1463 int progress_passed = 0;
1464 struct btrfs_disk_key disk_key;
6702ed49 1465
5708b959
CM
1466 parent_level = btrfs_header_level(parent);
1467 if (cache_only && parent_level != 1)
1468 return 0;
1469
d397712b 1470 if (trans->transaction != root->fs_info->running_transaction)
6702ed49 1471 WARN_ON(1);
d397712b 1472 if (trans->transid != root->fs_info->generation)
6702ed49 1473 WARN_ON(1);
86479a04 1474
6b80053d 1475 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1476 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1477 end_slot = parent_nritems;
1478
1479 if (parent_nritems == 1)
1480 return 0;
1481
b4ce94de
CM
1482 btrfs_set_lock_blocking(parent);
1483
6702ed49
CM
1484 for (i = start_slot; i < end_slot; i++) {
1485 int close = 1;
a6b6e75e 1486
081e9573
CM
1487 btrfs_node_key(parent, &disk_key, i);
1488 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1489 continue;
1490
1491 progress_passed = 1;
6b80053d 1492 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1493 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1494 if (last_block == 0)
1495 last_block = blocknr;
5708b959 1496
6702ed49 1497 if (i > 0) {
6b80053d
CM
1498 other = btrfs_node_blockptr(parent, i - 1);
1499 close = close_blocks(blocknr, other, blocksize);
6702ed49 1500 }
0ef3e66b 1501 if (!close && i < end_slot - 2) {
6b80053d
CM
1502 other = btrfs_node_blockptr(parent, i + 1);
1503 close = close_blocks(blocknr, other, blocksize);
6702ed49 1504 }
e9d0b13b
CM
1505 if (close) {
1506 last_block = blocknr;
6702ed49 1507 continue;
e9d0b13b 1508 }
6702ed49 1509
6b80053d
CM
1510 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1511 if (cur)
b9fab919 1512 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1513 else
1514 uptodate = 0;
5708b959 1515 if (!cur || !uptodate) {
6702ed49 1516 if (cache_only) {
6b80053d 1517 free_extent_buffer(cur);
6702ed49
CM
1518 continue;
1519 }
6b80053d
CM
1520 if (!cur) {
1521 cur = read_tree_block(root, blocknr,
ca7a79ad 1522 blocksize, gen);
97d9a8a4
TI
1523 if (!cur)
1524 return -EIO;
6b80053d 1525 } else if (!uptodate) {
018642a1
TI
1526 err = btrfs_read_buffer(cur, gen);
1527 if (err) {
1528 free_extent_buffer(cur);
1529 return err;
1530 }
f2183bde 1531 }
6702ed49 1532 }
e9d0b13b 1533 if (search_start == 0)
6b80053d 1534 search_start = last_block;
e9d0b13b 1535
e7a84565 1536 btrfs_tree_lock(cur);
b4ce94de 1537 btrfs_set_lock_blocking(cur);
6b80053d 1538 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1539 &cur, search_start,
6b80053d 1540 min(16 * blocksize,
9fa8cfe7 1541 (end_slot - i) * blocksize));
252c38f0 1542 if (err) {
e7a84565 1543 btrfs_tree_unlock(cur);
6b80053d 1544 free_extent_buffer(cur);
6702ed49 1545 break;
252c38f0 1546 }
e7a84565
CM
1547 search_start = cur->start;
1548 last_block = cur->start;
f2183bde 1549 *last_ret = search_start;
e7a84565
CM
1550 btrfs_tree_unlock(cur);
1551 free_extent_buffer(cur);
6702ed49
CM
1552 }
1553 return err;
1554}
1555
74123bd7
CM
1556/*
1557 * The leaf data grows from end-to-front in the node.
1558 * this returns the address of the start of the last item,
1559 * which is the stop of the leaf data stack
1560 */
123abc88 1561static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1562 struct extent_buffer *leaf)
be0e5c09 1563{
5f39d397 1564 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1565 if (nr == 0)
123abc88 1566 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1567 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1568}
1569
aa5d6bed 1570
74123bd7 1571/*
5f39d397
CM
1572 * search for key in the extent_buffer. The items start at offset p,
1573 * and they are item_size apart. There are 'max' items in p.
1574 *
74123bd7
CM
1575 * the slot in the array is returned via slot, and it points to
1576 * the place where you would insert key if it is not found in
1577 * the array.
1578 *
1579 * slot may point to max if the key is bigger than all of the keys
1580 */
e02119d5
CM
1581static noinline int generic_bin_search(struct extent_buffer *eb,
1582 unsigned long p,
1583 int item_size, struct btrfs_key *key,
1584 int max, int *slot)
be0e5c09
CM
1585{
1586 int low = 0;
1587 int high = max;
1588 int mid;
1589 int ret;
479965d6 1590 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1591 struct btrfs_disk_key unaligned;
1592 unsigned long offset;
5f39d397
CM
1593 char *kaddr = NULL;
1594 unsigned long map_start = 0;
1595 unsigned long map_len = 0;
479965d6 1596 int err;
be0e5c09 1597
d397712b 1598 while (low < high) {
be0e5c09 1599 mid = (low + high) / 2;
5f39d397
CM
1600 offset = p + mid * item_size;
1601
a6591715 1602 if (!kaddr || offset < map_start ||
5f39d397
CM
1603 (offset + sizeof(struct btrfs_disk_key)) >
1604 map_start + map_len) {
934d375b
CM
1605
1606 err = map_private_extent_buffer(eb, offset,
479965d6 1607 sizeof(struct btrfs_disk_key),
a6591715 1608 &kaddr, &map_start, &map_len);
479965d6
CM
1609
1610 if (!err) {
1611 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1612 map_start);
1613 } else {
1614 read_extent_buffer(eb, &unaligned,
1615 offset, sizeof(unaligned));
1616 tmp = &unaligned;
1617 }
5f39d397 1618
5f39d397
CM
1619 } else {
1620 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1621 map_start);
1622 }
be0e5c09
CM
1623 ret = comp_keys(tmp, key);
1624
1625 if (ret < 0)
1626 low = mid + 1;
1627 else if (ret > 0)
1628 high = mid;
1629 else {
1630 *slot = mid;
1631 return 0;
1632 }
1633 }
1634 *slot = low;
1635 return 1;
1636}
1637
97571fd0
CM
1638/*
1639 * simple bin_search frontend that does the right thing for
1640 * leaves vs nodes
1641 */
5f39d397
CM
1642static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1643 int level, int *slot)
be0e5c09 1644{
f775738f 1645 if (level == 0)
5f39d397
CM
1646 return generic_bin_search(eb,
1647 offsetof(struct btrfs_leaf, items),
0783fcfc 1648 sizeof(struct btrfs_item),
5f39d397 1649 key, btrfs_header_nritems(eb),
7518a238 1650 slot);
f775738f 1651 else
5f39d397
CM
1652 return generic_bin_search(eb,
1653 offsetof(struct btrfs_node, ptrs),
123abc88 1654 sizeof(struct btrfs_key_ptr),
5f39d397 1655 key, btrfs_header_nritems(eb),
7518a238 1656 slot);
be0e5c09
CM
1657}
1658
5d4f98a2
YZ
1659int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1660 int level, int *slot)
1661{
1662 return bin_search(eb, key, level, slot);
1663}
1664
f0486c68
YZ
1665static void root_add_used(struct btrfs_root *root, u32 size)
1666{
1667 spin_lock(&root->accounting_lock);
1668 btrfs_set_root_used(&root->root_item,
1669 btrfs_root_used(&root->root_item) + size);
1670 spin_unlock(&root->accounting_lock);
1671}
1672
1673static void root_sub_used(struct btrfs_root *root, u32 size)
1674{
1675 spin_lock(&root->accounting_lock);
1676 btrfs_set_root_used(&root->root_item,
1677 btrfs_root_used(&root->root_item) - size);
1678 spin_unlock(&root->accounting_lock);
1679}
1680
d352ac68
CM
1681/* given a node and slot number, this reads the blocks it points to. The
1682 * extent buffer is returned with a reference taken (but unlocked).
1683 * NULL is returned on error.
1684 */
e02119d5 1685static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1686 struct extent_buffer *parent, int slot)
bb803951 1687{
ca7a79ad 1688 int level = btrfs_header_level(parent);
bb803951
CM
1689 if (slot < 0)
1690 return NULL;
5f39d397 1691 if (slot >= btrfs_header_nritems(parent))
bb803951 1692 return NULL;
ca7a79ad
CM
1693
1694 BUG_ON(level == 0);
1695
db94535d 1696 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
ca7a79ad
CM
1697 btrfs_level_size(root, level - 1),
1698 btrfs_node_ptr_generation(parent, slot));
bb803951
CM
1699}
1700
d352ac68
CM
1701/*
1702 * node level balancing, used to make sure nodes are in proper order for
1703 * item deletion. We balance from the top down, so we have to make sure
1704 * that a deletion won't leave an node completely empty later on.
1705 */
e02119d5 1706static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1707 struct btrfs_root *root,
1708 struct btrfs_path *path, int level)
bb803951 1709{
5f39d397
CM
1710 struct extent_buffer *right = NULL;
1711 struct extent_buffer *mid;
1712 struct extent_buffer *left = NULL;
1713 struct extent_buffer *parent = NULL;
bb803951
CM
1714 int ret = 0;
1715 int wret;
1716 int pslot;
bb803951 1717 int orig_slot = path->slots[level];
79f95c82 1718 u64 orig_ptr;
bb803951
CM
1719
1720 if (level == 0)
1721 return 0;
1722
5f39d397 1723 mid = path->nodes[level];
b4ce94de 1724
bd681513
CM
1725 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1726 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1727 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1728
1d4f8a0c 1729 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1730
a05a9bb1 1731 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1732 parent = path->nodes[level + 1];
a05a9bb1
LZ
1733 pslot = path->slots[level + 1];
1734 }
bb803951 1735
40689478
CM
1736 /*
1737 * deal with the case where there is only one pointer in the root
1738 * by promoting the node below to a root
1739 */
5f39d397
CM
1740 if (!parent) {
1741 struct extent_buffer *child;
bb803951 1742
5f39d397 1743 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1744 return 0;
1745
1746 /* promote the child to a root */
5f39d397 1747 child = read_node_slot(root, mid, 0);
305a26af
MF
1748 if (!child) {
1749 ret = -EROFS;
1750 btrfs_std_error(root->fs_info, ret);
1751 goto enospc;
1752 }
1753
925baedd 1754 btrfs_tree_lock(child);
b4ce94de 1755 btrfs_set_lock_blocking(child);
9fa8cfe7 1756 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1757 if (ret) {
1758 btrfs_tree_unlock(child);
1759 free_extent_buffer(child);
1760 goto enospc;
1761 }
2f375ab9 1762
ba1bfbd5 1763 tree_mod_log_free_eb(root->fs_info, root->node);
f230475e 1764 tree_mod_log_set_root_pointer(root, child);
240f62c8 1765 rcu_assign_pointer(root->node, child);
925baedd 1766
0b86a832 1767 add_root_to_dirty_list(root);
925baedd 1768 btrfs_tree_unlock(child);
b4ce94de 1769
925baedd 1770 path->locks[level] = 0;
bb803951 1771 path->nodes[level] = NULL;
5f39d397 1772 clean_tree_block(trans, root, mid);
925baedd 1773 btrfs_tree_unlock(mid);
bb803951 1774 /* once for the path */
5f39d397 1775 free_extent_buffer(mid);
f0486c68
YZ
1776
1777 root_sub_used(root, mid->len);
5581a51a 1778 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1779 /* once for the root ptr */
3083ee2e 1780 free_extent_buffer_stale(mid);
f0486c68 1781 return 0;
bb803951 1782 }
5f39d397 1783 if (btrfs_header_nritems(mid) >
123abc88 1784 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1785 return 0;
1786
5f39d397
CM
1787 left = read_node_slot(root, parent, pslot - 1);
1788 if (left) {
925baedd 1789 btrfs_tree_lock(left);
b4ce94de 1790 btrfs_set_lock_blocking(left);
5f39d397 1791 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1792 parent, pslot - 1, &left);
54aa1f4d
CM
1793 if (wret) {
1794 ret = wret;
1795 goto enospc;
1796 }
2cc58cf2 1797 }
5f39d397
CM
1798 right = read_node_slot(root, parent, pslot + 1);
1799 if (right) {
925baedd 1800 btrfs_tree_lock(right);
b4ce94de 1801 btrfs_set_lock_blocking(right);
5f39d397 1802 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1803 parent, pslot + 1, &right);
2cc58cf2
CM
1804 if (wret) {
1805 ret = wret;
1806 goto enospc;
1807 }
1808 }
1809
1810 /* first, try to make some room in the middle buffer */
5f39d397
CM
1811 if (left) {
1812 orig_slot += btrfs_header_nritems(left);
bce4eae9 1813 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1814 if (wret < 0)
1815 ret = wret;
bb803951 1816 }
79f95c82
CM
1817
1818 /*
1819 * then try to empty the right most buffer into the middle
1820 */
5f39d397 1821 if (right) {
971a1f66 1822 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1823 if (wret < 0 && wret != -ENOSPC)
79f95c82 1824 ret = wret;
5f39d397 1825 if (btrfs_header_nritems(right) == 0) {
5f39d397 1826 clean_tree_block(trans, root, right);
925baedd 1827 btrfs_tree_unlock(right);
f3ea38da 1828 del_ptr(trans, root, path, level + 1, pslot + 1, 1);
f0486c68 1829 root_sub_used(root, right->len);
5581a51a 1830 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1831 free_extent_buffer_stale(right);
f0486c68 1832 right = NULL;
bb803951 1833 } else {
5f39d397
CM
1834 struct btrfs_disk_key right_key;
1835 btrfs_node_key(right, &right_key, 0);
f230475e
JS
1836 tree_mod_log_set_node_key(root->fs_info, parent,
1837 &right_key, pslot + 1, 0);
5f39d397
CM
1838 btrfs_set_node_key(parent, &right_key, pslot + 1);
1839 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1840 }
1841 }
5f39d397 1842 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1843 /*
1844 * we're not allowed to leave a node with one item in the
1845 * tree during a delete. A deletion from lower in the tree
1846 * could try to delete the only pointer in this node.
1847 * So, pull some keys from the left.
1848 * There has to be a left pointer at this point because
1849 * otherwise we would have pulled some pointers from the
1850 * right
1851 */
305a26af
MF
1852 if (!left) {
1853 ret = -EROFS;
1854 btrfs_std_error(root->fs_info, ret);
1855 goto enospc;
1856 }
5f39d397 1857 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1858 if (wret < 0) {
79f95c82 1859 ret = wret;
54aa1f4d
CM
1860 goto enospc;
1861 }
bce4eae9
CM
1862 if (wret == 1) {
1863 wret = push_node_left(trans, root, left, mid, 1);
1864 if (wret < 0)
1865 ret = wret;
1866 }
79f95c82
CM
1867 BUG_ON(wret == 1);
1868 }
5f39d397 1869 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1870 clean_tree_block(trans, root, mid);
925baedd 1871 btrfs_tree_unlock(mid);
f3ea38da 1872 del_ptr(trans, root, path, level + 1, pslot, 1);
f0486c68 1873 root_sub_used(root, mid->len);
5581a51a 1874 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1875 free_extent_buffer_stale(mid);
f0486c68 1876 mid = NULL;
79f95c82
CM
1877 } else {
1878 /* update the parent key to reflect our changes */
5f39d397
CM
1879 struct btrfs_disk_key mid_key;
1880 btrfs_node_key(mid, &mid_key, 0);
f230475e
JS
1881 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1882 pslot, 0);
5f39d397
CM
1883 btrfs_set_node_key(parent, &mid_key, pslot);
1884 btrfs_mark_buffer_dirty(parent);
79f95c82 1885 }
bb803951 1886
79f95c82 1887 /* update the path */
5f39d397
CM
1888 if (left) {
1889 if (btrfs_header_nritems(left) > orig_slot) {
1890 extent_buffer_get(left);
925baedd 1891 /* left was locked after cow */
5f39d397 1892 path->nodes[level] = left;
bb803951
CM
1893 path->slots[level + 1] -= 1;
1894 path->slots[level] = orig_slot;
925baedd
CM
1895 if (mid) {
1896 btrfs_tree_unlock(mid);
5f39d397 1897 free_extent_buffer(mid);
925baedd 1898 }
bb803951 1899 } else {
5f39d397 1900 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1901 path->slots[level] = orig_slot;
1902 }
1903 }
79f95c82 1904 /* double check we haven't messed things up */
e20d96d6 1905 if (orig_ptr !=
5f39d397 1906 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1907 BUG();
54aa1f4d 1908enospc:
925baedd
CM
1909 if (right) {
1910 btrfs_tree_unlock(right);
5f39d397 1911 free_extent_buffer(right);
925baedd
CM
1912 }
1913 if (left) {
1914 if (path->nodes[level] != left)
1915 btrfs_tree_unlock(left);
5f39d397 1916 free_extent_buffer(left);
925baedd 1917 }
bb803951
CM
1918 return ret;
1919}
1920
d352ac68
CM
1921/* Node balancing for insertion. Here we only split or push nodes around
1922 * when they are completely full. This is also done top down, so we
1923 * have to be pessimistic.
1924 */
d397712b 1925static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1926 struct btrfs_root *root,
1927 struct btrfs_path *path, int level)
e66f709b 1928{
5f39d397
CM
1929 struct extent_buffer *right = NULL;
1930 struct extent_buffer *mid;
1931 struct extent_buffer *left = NULL;
1932 struct extent_buffer *parent = NULL;
e66f709b
CM
1933 int ret = 0;
1934 int wret;
1935 int pslot;
1936 int orig_slot = path->slots[level];
e66f709b
CM
1937
1938 if (level == 0)
1939 return 1;
1940
5f39d397 1941 mid = path->nodes[level];
7bb86316 1942 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1943
a05a9bb1 1944 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1945 parent = path->nodes[level + 1];
a05a9bb1
LZ
1946 pslot = path->slots[level + 1];
1947 }
e66f709b 1948
5f39d397 1949 if (!parent)
e66f709b 1950 return 1;
e66f709b 1951
5f39d397 1952 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1953
1954 /* first, try to make some room in the middle buffer */
5f39d397 1955 if (left) {
e66f709b 1956 u32 left_nr;
925baedd
CM
1957
1958 btrfs_tree_lock(left);
b4ce94de
CM
1959 btrfs_set_lock_blocking(left);
1960
5f39d397 1961 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1962 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1963 wret = 1;
1964 } else {
5f39d397 1965 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1966 pslot - 1, &left);
54aa1f4d
CM
1967 if (ret)
1968 wret = 1;
1969 else {
54aa1f4d 1970 wret = push_node_left(trans, root,
971a1f66 1971 left, mid, 0);
54aa1f4d 1972 }
33ade1f8 1973 }
e66f709b
CM
1974 if (wret < 0)
1975 ret = wret;
1976 if (wret == 0) {
5f39d397 1977 struct btrfs_disk_key disk_key;
e66f709b 1978 orig_slot += left_nr;
5f39d397 1979 btrfs_node_key(mid, &disk_key, 0);
f230475e
JS
1980 tree_mod_log_set_node_key(root->fs_info, parent,
1981 &disk_key, pslot, 0);
5f39d397
CM
1982 btrfs_set_node_key(parent, &disk_key, pslot);
1983 btrfs_mark_buffer_dirty(parent);
1984 if (btrfs_header_nritems(left) > orig_slot) {
1985 path->nodes[level] = left;
e66f709b
CM
1986 path->slots[level + 1] -= 1;
1987 path->slots[level] = orig_slot;
925baedd 1988 btrfs_tree_unlock(mid);
5f39d397 1989 free_extent_buffer(mid);
e66f709b
CM
1990 } else {
1991 orig_slot -=
5f39d397 1992 btrfs_header_nritems(left);
e66f709b 1993 path->slots[level] = orig_slot;
925baedd 1994 btrfs_tree_unlock(left);
5f39d397 1995 free_extent_buffer(left);
e66f709b 1996 }
e66f709b
CM
1997 return 0;
1998 }
925baedd 1999 btrfs_tree_unlock(left);
5f39d397 2000 free_extent_buffer(left);
e66f709b 2001 }
925baedd 2002 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
2003
2004 /*
2005 * then try to empty the right most buffer into the middle
2006 */
5f39d397 2007 if (right) {
33ade1f8 2008 u32 right_nr;
b4ce94de 2009
925baedd 2010 btrfs_tree_lock(right);
b4ce94de
CM
2011 btrfs_set_lock_blocking(right);
2012
5f39d397 2013 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2014 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2015 wret = 1;
2016 } else {
5f39d397
CM
2017 ret = btrfs_cow_block(trans, root, right,
2018 parent, pslot + 1,
9fa8cfe7 2019 &right);
54aa1f4d
CM
2020 if (ret)
2021 wret = 1;
2022 else {
54aa1f4d 2023 wret = balance_node_right(trans, root,
5f39d397 2024 right, mid);
54aa1f4d 2025 }
33ade1f8 2026 }
e66f709b
CM
2027 if (wret < 0)
2028 ret = wret;
2029 if (wret == 0) {
5f39d397
CM
2030 struct btrfs_disk_key disk_key;
2031
2032 btrfs_node_key(right, &disk_key, 0);
f230475e
JS
2033 tree_mod_log_set_node_key(root->fs_info, parent,
2034 &disk_key, pslot + 1, 0);
5f39d397
CM
2035 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2036 btrfs_mark_buffer_dirty(parent);
2037
2038 if (btrfs_header_nritems(mid) <= orig_slot) {
2039 path->nodes[level] = right;
e66f709b
CM
2040 path->slots[level + 1] += 1;
2041 path->slots[level] = orig_slot -
5f39d397 2042 btrfs_header_nritems(mid);
925baedd 2043 btrfs_tree_unlock(mid);
5f39d397 2044 free_extent_buffer(mid);
e66f709b 2045 } else {
925baedd 2046 btrfs_tree_unlock(right);
5f39d397 2047 free_extent_buffer(right);
e66f709b 2048 }
e66f709b
CM
2049 return 0;
2050 }
925baedd 2051 btrfs_tree_unlock(right);
5f39d397 2052 free_extent_buffer(right);
e66f709b 2053 }
e66f709b
CM
2054 return 1;
2055}
2056
3c69faec 2057/*
d352ac68
CM
2058 * readahead one full node of leaves, finding things that are close
2059 * to the block in 'slot', and triggering ra on them.
3c69faec 2060 */
c8c42864
CM
2061static void reada_for_search(struct btrfs_root *root,
2062 struct btrfs_path *path,
2063 int level, int slot, u64 objectid)
3c69faec 2064{
5f39d397 2065 struct extent_buffer *node;
01f46658 2066 struct btrfs_disk_key disk_key;
3c69faec 2067 u32 nritems;
3c69faec 2068 u64 search;
a7175319 2069 u64 target;
6b80053d 2070 u64 nread = 0;
cb25c2ea 2071 u64 gen;
3c69faec 2072 int direction = path->reada;
5f39d397 2073 struct extent_buffer *eb;
6b80053d
CM
2074 u32 nr;
2075 u32 blocksize;
2076 u32 nscan = 0;
db94535d 2077
a6b6e75e 2078 if (level != 1)
6702ed49
CM
2079 return;
2080
2081 if (!path->nodes[level])
3c69faec
CM
2082 return;
2083
5f39d397 2084 node = path->nodes[level];
925baedd 2085
3c69faec 2086 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
2087 blocksize = btrfs_level_size(root, level - 1);
2088 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
2089 if (eb) {
2090 free_extent_buffer(eb);
3c69faec
CM
2091 return;
2092 }
2093
a7175319 2094 target = search;
6b80053d 2095
5f39d397 2096 nritems = btrfs_header_nritems(node);
6b80053d 2097 nr = slot;
25b8b936 2098
d397712b 2099 while (1) {
6b80053d
CM
2100 if (direction < 0) {
2101 if (nr == 0)
2102 break;
2103 nr--;
2104 } else if (direction > 0) {
2105 nr++;
2106 if (nr >= nritems)
2107 break;
3c69faec 2108 }
01f46658
CM
2109 if (path->reada < 0 && objectid) {
2110 btrfs_node_key(node, &disk_key, nr);
2111 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2112 break;
2113 }
6b80053d 2114 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2115 if ((search <= target && target - search <= 65536) ||
2116 (search > target && search - target <= 65536)) {
cb25c2ea 2117 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2118 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2119 nread += blocksize;
2120 }
2121 nscan++;
a7175319 2122 if ((nread > 65536 || nscan > 32))
6b80053d 2123 break;
3c69faec
CM
2124 }
2125}
925baedd 2126
b4ce94de
CM
2127/*
2128 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2129 * cache
2130 */
2131static noinline int reada_for_balance(struct btrfs_root *root,
2132 struct btrfs_path *path, int level)
2133{
2134 int slot;
2135 int nritems;
2136 struct extent_buffer *parent;
2137 struct extent_buffer *eb;
2138 u64 gen;
2139 u64 block1 = 0;
2140 u64 block2 = 0;
2141 int ret = 0;
2142 int blocksize;
2143
8c594ea8 2144 parent = path->nodes[level + 1];
b4ce94de
CM
2145 if (!parent)
2146 return 0;
2147
2148 nritems = btrfs_header_nritems(parent);
8c594ea8 2149 slot = path->slots[level + 1];
b4ce94de
CM
2150 blocksize = btrfs_level_size(root, level);
2151
2152 if (slot > 0) {
2153 block1 = btrfs_node_blockptr(parent, slot - 1);
2154 gen = btrfs_node_ptr_generation(parent, slot - 1);
2155 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2156 /*
2157 * if we get -eagain from btrfs_buffer_uptodate, we
2158 * don't want to return eagain here. That will loop
2159 * forever
2160 */
2161 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2162 block1 = 0;
2163 free_extent_buffer(eb);
2164 }
8c594ea8 2165 if (slot + 1 < nritems) {
b4ce94de
CM
2166 block2 = btrfs_node_blockptr(parent, slot + 1);
2167 gen = btrfs_node_ptr_generation(parent, slot + 1);
2168 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2169 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2170 block2 = 0;
2171 free_extent_buffer(eb);
2172 }
2173 if (block1 || block2) {
2174 ret = -EAGAIN;
8c594ea8
CM
2175
2176 /* release the whole path */
b3b4aa74 2177 btrfs_release_path(path);
8c594ea8
CM
2178
2179 /* read the blocks */
b4ce94de
CM
2180 if (block1)
2181 readahead_tree_block(root, block1, blocksize, 0);
2182 if (block2)
2183 readahead_tree_block(root, block2, blocksize, 0);
2184
2185 if (block1) {
2186 eb = read_tree_block(root, block1, blocksize, 0);
2187 free_extent_buffer(eb);
2188 }
8c594ea8 2189 if (block2) {
b4ce94de
CM
2190 eb = read_tree_block(root, block2, blocksize, 0);
2191 free_extent_buffer(eb);
2192 }
2193 }
2194 return ret;
2195}
2196
2197
d352ac68 2198/*
d397712b
CM
2199 * when we walk down the tree, it is usually safe to unlock the higher layers
2200 * in the tree. The exceptions are when our path goes through slot 0, because
2201 * operations on the tree might require changing key pointers higher up in the
2202 * tree.
d352ac68 2203 *
d397712b
CM
2204 * callers might also have set path->keep_locks, which tells this code to keep
2205 * the lock if the path points to the last slot in the block. This is part of
2206 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2207 *
d397712b
CM
2208 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2209 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2210 */
e02119d5 2211static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2212 int lowest_unlock, int min_write_lock_level,
2213 int *write_lock_level)
925baedd
CM
2214{
2215 int i;
2216 int skip_level = level;
051e1b9f 2217 int no_skips = 0;
925baedd
CM
2218 struct extent_buffer *t;
2219
2220 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2221 if (!path->nodes[i])
2222 break;
2223 if (!path->locks[i])
2224 break;
051e1b9f 2225 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2226 skip_level = i + 1;
2227 continue;
2228 }
051e1b9f 2229 if (!no_skips && path->keep_locks) {
925baedd
CM
2230 u32 nritems;
2231 t = path->nodes[i];
2232 nritems = btrfs_header_nritems(t);
051e1b9f 2233 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2234 skip_level = i + 1;
2235 continue;
2236 }
2237 }
051e1b9f
CM
2238 if (skip_level < i && i >= lowest_unlock)
2239 no_skips = 1;
2240
925baedd
CM
2241 t = path->nodes[i];
2242 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2243 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2244 path->locks[i] = 0;
f7c79f30
CM
2245 if (write_lock_level &&
2246 i > min_write_lock_level &&
2247 i <= *write_lock_level) {
2248 *write_lock_level = i - 1;
2249 }
925baedd
CM
2250 }
2251 }
2252}
2253
b4ce94de
CM
2254/*
2255 * This releases any locks held in the path starting at level and
2256 * going all the way up to the root.
2257 *
2258 * btrfs_search_slot will keep the lock held on higher nodes in a few
2259 * corner cases, such as COW of the block at slot zero in the node. This
2260 * ignores those rules, and it should only be called when there are no
2261 * more updates to be done higher up in the tree.
2262 */
2263noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2264{
2265 int i;
2266
5d4f98a2 2267 if (path->keep_locks)
b4ce94de
CM
2268 return;
2269
2270 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2271 if (!path->nodes[i])
12f4dacc 2272 continue;
b4ce94de 2273 if (!path->locks[i])
12f4dacc 2274 continue;
bd681513 2275 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2276 path->locks[i] = 0;
2277 }
2278}
2279
c8c42864
CM
2280/*
2281 * helper function for btrfs_search_slot. The goal is to find a block
2282 * in cache without setting the path to blocking. If we find the block
2283 * we return zero and the path is unchanged.
2284 *
2285 * If we can't find the block, we set the path blocking and do some
2286 * reada. -EAGAIN is returned and the search must be repeated.
2287 */
2288static int
2289read_block_for_search(struct btrfs_trans_handle *trans,
2290 struct btrfs_root *root, struct btrfs_path *p,
2291 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2292 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2293{
2294 u64 blocknr;
2295 u64 gen;
2296 u32 blocksize;
2297 struct extent_buffer *b = *eb_ret;
2298 struct extent_buffer *tmp;
76a05b35 2299 int ret;
c8c42864
CM
2300
2301 blocknr = btrfs_node_blockptr(b, slot);
2302 gen = btrfs_node_ptr_generation(b, slot);
2303 blocksize = btrfs_level_size(root, level - 1);
2304
2305 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2306 if (tmp) {
b9fab919
CM
2307 /* first we do an atomic uptodate check */
2308 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2309 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
cb44921a
CM
2310 /*
2311 * we found an up to date block without
2312 * sleeping, return
2313 * right away
2314 */
2315 *eb_ret = tmp;
2316 return 0;
2317 }
2318 /* the pages were up to date, but we failed
2319 * the generation number check. Do a full
2320 * read for the generation number that is correct.
2321 * We must do this without dropping locks so
2322 * we can trust our generation number
2323 */
2324 free_extent_buffer(tmp);
bd681513
CM
2325 btrfs_set_path_blocking(p);
2326
b9fab919 2327 /* now we're allowed to do a blocking uptodate check */
cb44921a 2328 tmp = read_tree_block(root, blocknr, blocksize, gen);
b9fab919 2329 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
cb44921a
CM
2330 *eb_ret = tmp;
2331 return 0;
2332 }
2333 free_extent_buffer(tmp);
b3b4aa74 2334 btrfs_release_path(p);
cb44921a
CM
2335 return -EIO;
2336 }
c8c42864
CM
2337 }
2338
2339 /*
2340 * reduce lock contention at high levels
2341 * of the btree by dropping locks before
76a05b35
CM
2342 * we read. Don't release the lock on the current
2343 * level because we need to walk this node to figure
2344 * out which blocks to read.
c8c42864 2345 */
8c594ea8
CM
2346 btrfs_unlock_up_safe(p, level + 1);
2347 btrfs_set_path_blocking(p);
2348
cb44921a 2349 free_extent_buffer(tmp);
c8c42864
CM
2350 if (p->reada)
2351 reada_for_search(root, p, level, slot, key->objectid);
2352
b3b4aa74 2353 btrfs_release_path(p);
76a05b35
CM
2354
2355 ret = -EAGAIN;
5bdd3536 2356 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2357 if (tmp) {
2358 /*
2359 * If the read above didn't mark this buffer up to date,
2360 * it will never end up being up to date. Set ret to EIO now
2361 * and give up so that our caller doesn't loop forever
2362 * on our EAGAINs.
2363 */
b9fab919 2364 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2365 ret = -EIO;
c8c42864 2366 free_extent_buffer(tmp);
76a05b35
CM
2367 }
2368 return ret;
c8c42864
CM
2369}
2370
2371/*
2372 * helper function for btrfs_search_slot. This does all of the checks
2373 * for node-level blocks and does any balancing required based on
2374 * the ins_len.
2375 *
2376 * If no extra work was required, zero is returned. If we had to
2377 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2378 * start over
2379 */
2380static int
2381setup_nodes_for_search(struct btrfs_trans_handle *trans,
2382 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2383 struct extent_buffer *b, int level, int ins_len,
2384 int *write_lock_level)
c8c42864
CM
2385{
2386 int ret;
2387 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2388 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2389 int sret;
2390
bd681513
CM
2391 if (*write_lock_level < level + 1) {
2392 *write_lock_level = level + 1;
2393 btrfs_release_path(p);
2394 goto again;
2395 }
2396
c8c42864
CM
2397 sret = reada_for_balance(root, p, level);
2398 if (sret)
2399 goto again;
2400
2401 btrfs_set_path_blocking(p);
2402 sret = split_node(trans, root, p, level);
bd681513 2403 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2404
2405 BUG_ON(sret > 0);
2406 if (sret) {
2407 ret = sret;
2408 goto done;
2409 }
2410 b = p->nodes[level];
2411 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2412 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2413 int sret;
2414
bd681513
CM
2415 if (*write_lock_level < level + 1) {
2416 *write_lock_level = level + 1;
2417 btrfs_release_path(p);
2418 goto again;
2419 }
2420
c8c42864
CM
2421 sret = reada_for_balance(root, p, level);
2422 if (sret)
2423 goto again;
2424
2425 btrfs_set_path_blocking(p);
2426 sret = balance_level(trans, root, p, level);
bd681513 2427 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2428
2429 if (sret) {
2430 ret = sret;
2431 goto done;
2432 }
2433 b = p->nodes[level];
2434 if (!b) {
b3b4aa74 2435 btrfs_release_path(p);
c8c42864
CM
2436 goto again;
2437 }
2438 BUG_ON(btrfs_header_nritems(b) == 1);
2439 }
2440 return 0;
2441
2442again:
2443 ret = -EAGAIN;
2444done:
2445 return ret;
2446}
2447
74123bd7
CM
2448/*
2449 * look for key in the tree. path is filled in with nodes along the way
2450 * if key is found, we return zero and you can find the item in the leaf
2451 * level of the path (level 0)
2452 *
2453 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2454 * be inserted, and 1 is returned. If there are other errors during the
2455 * search a negative error number is returned.
97571fd0
CM
2456 *
2457 * if ins_len > 0, nodes and leaves will be split as we walk down the
2458 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2459 * possible)
74123bd7 2460 */
e089f05c
CM
2461int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2462 *root, struct btrfs_key *key, struct btrfs_path *p, int
2463 ins_len, int cow)
be0e5c09 2464{
5f39d397 2465 struct extent_buffer *b;
be0e5c09
CM
2466 int slot;
2467 int ret;
33c66f43 2468 int err;
be0e5c09 2469 int level;
925baedd 2470 int lowest_unlock = 1;
bd681513
CM
2471 int root_lock;
2472 /* everything at write_lock_level or lower must be write locked */
2473 int write_lock_level = 0;
9f3a7427 2474 u8 lowest_level = 0;
f7c79f30 2475 int min_write_lock_level;
9f3a7427 2476
6702ed49 2477 lowest_level = p->lowest_level;
323ac95b 2478 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2479 WARN_ON(p->nodes[0] != NULL);
25179201 2480
bd681513 2481 if (ins_len < 0) {
925baedd 2482 lowest_unlock = 2;
65b51a00 2483
bd681513
CM
2484 /* when we are removing items, we might have to go up to level
2485 * two as we update tree pointers Make sure we keep write
2486 * for those levels as well
2487 */
2488 write_lock_level = 2;
2489 } else if (ins_len > 0) {
2490 /*
2491 * for inserting items, make sure we have a write lock on
2492 * level 1 so we can update keys
2493 */
2494 write_lock_level = 1;
2495 }
2496
2497 if (!cow)
2498 write_lock_level = -1;
2499
2500 if (cow && (p->keep_locks || p->lowest_level))
2501 write_lock_level = BTRFS_MAX_LEVEL;
2502
f7c79f30
CM
2503 min_write_lock_level = write_lock_level;
2504
bb803951 2505again:
bd681513
CM
2506 /*
2507 * we try very hard to do read locks on the root
2508 */
2509 root_lock = BTRFS_READ_LOCK;
2510 level = 0;
5d4f98a2 2511 if (p->search_commit_root) {
bd681513
CM
2512 /*
2513 * the commit roots are read only
2514 * so we always do read locks
2515 */
5d4f98a2
YZ
2516 b = root->commit_root;
2517 extent_buffer_get(b);
bd681513 2518 level = btrfs_header_level(b);
5d4f98a2 2519 if (!p->skip_locking)
bd681513 2520 btrfs_tree_read_lock(b);
5d4f98a2 2521 } else {
bd681513 2522 if (p->skip_locking) {
5d4f98a2 2523 b = btrfs_root_node(root);
bd681513
CM
2524 level = btrfs_header_level(b);
2525 } else {
2526 /* we don't know the level of the root node
2527 * until we actually have it read locked
2528 */
2529 b = btrfs_read_lock_root_node(root);
2530 level = btrfs_header_level(b);
2531 if (level <= write_lock_level) {
2532 /* whoops, must trade for write lock */
2533 btrfs_tree_read_unlock(b);
2534 free_extent_buffer(b);
2535 b = btrfs_lock_root_node(root);
2536 root_lock = BTRFS_WRITE_LOCK;
2537
2538 /* the level might have changed, check again */
2539 level = btrfs_header_level(b);
2540 }
2541 }
5d4f98a2 2542 }
bd681513
CM
2543 p->nodes[level] = b;
2544 if (!p->skip_locking)
2545 p->locks[level] = root_lock;
925baedd 2546
eb60ceac 2547 while (b) {
5f39d397 2548 level = btrfs_header_level(b);
65b51a00
CM
2549
2550 /*
2551 * setup the path here so we can release it under lock
2552 * contention with the cow code
2553 */
02217ed2 2554 if (cow) {
c8c42864
CM
2555 /*
2556 * if we don't really need to cow this block
2557 * then we don't want to set the path blocking,
2558 * so we test it here
2559 */
5d4f98a2 2560 if (!should_cow_block(trans, root, b))
65b51a00 2561 goto cow_done;
5d4f98a2 2562
b4ce94de
CM
2563 btrfs_set_path_blocking(p);
2564
bd681513
CM
2565 /*
2566 * must have write locks on this node and the
2567 * parent
2568 */
2569 if (level + 1 > write_lock_level) {
2570 write_lock_level = level + 1;
2571 btrfs_release_path(p);
2572 goto again;
2573 }
2574
33c66f43
YZ
2575 err = btrfs_cow_block(trans, root, b,
2576 p->nodes[level + 1],
2577 p->slots[level + 1], &b);
2578 if (err) {
33c66f43 2579 ret = err;
65b51a00 2580 goto done;
54aa1f4d 2581 }
02217ed2 2582 }
65b51a00 2583cow_done:
02217ed2 2584 BUG_ON(!cow && ins_len);
65b51a00 2585
eb60ceac 2586 p->nodes[level] = b;
bd681513 2587 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2588
2589 /*
2590 * we have a lock on b and as long as we aren't changing
2591 * the tree, there is no way to for the items in b to change.
2592 * It is safe to drop the lock on our parent before we
2593 * go through the expensive btree search on b.
2594 *
2595 * If cow is true, then we might be changing slot zero,
2596 * which may require changing the parent. So, we can't
2597 * drop the lock until after we know which slot we're
2598 * operating on.
2599 */
2600 if (!cow)
2601 btrfs_unlock_up_safe(p, level + 1);
2602
5f39d397 2603 ret = bin_search(b, key, level, &slot);
b4ce94de 2604
5f39d397 2605 if (level != 0) {
33c66f43
YZ
2606 int dec = 0;
2607 if (ret && slot > 0) {
2608 dec = 1;
be0e5c09 2609 slot -= 1;
33c66f43 2610 }
be0e5c09 2611 p->slots[level] = slot;
33c66f43 2612 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2613 ins_len, &write_lock_level);
33c66f43 2614 if (err == -EAGAIN)
c8c42864 2615 goto again;
33c66f43
YZ
2616 if (err) {
2617 ret = err;
c8c42864 2618 goto done;
33c66f43 2619 }
c8c42864
CM
2620 b = p->nodes[level];
2621 slot = p->slots[level];
b4ce94de 2622
bd681513
CM
2623 /*
2624 * slot 0 is special, if we change the key
2625 * we have to update the parent pointer
2626 * which means we must have a write lock
2627 * on the parent
2628 */
2629 if (slot == 0 && cow &&
2630 write_lock_level < level + 1) {
2631 write_lock_level = level + 1;
2632 btrfs_release_path(p);
2633 goto again;
2634 }
2635
f7c79f30
CM
2636 unlock_up(p, level, lowest_unlock,
2637 min_write_lock_level, &write_lock_level);
f9efa9c7 2638
925baedd 2639 if (level == lowest_level) {
33c66f43
YZ
2640 if (dec)
2641 p->slots[level]++;
5b21f2ed 2642 goto done;
925baedd 2643 }
ca7a79ad 2644
33c66f43 2645 err = read_block_for_search(trans, root, p,
5d9e75c4 2646 &b, level, slot, key, 0);
33c66f43 2647 if (err == -EAGAIN)
c8c42864 2648 goto again;
33c66f43
YZ
2649 if (err) {
2650 ret = err;
76a05b35 2651 goto done;
33c66f43 2652 }
76a05b35 2653
b4ce94de 2654 if (!p->skip_locking) {
bd681513
CM
2655 level = btrfs_header_level(b);
2656 if (level <= write_lock_level) {
2657 err = btrfs_try_tree_write_lock(b);
2658 if (!err) {
2659 btrfs_set_path_blocking(p);
2660 btrfs_tree_lock(b);
2661 btrfs_clear_path_blocking(p, b,
2662 BTRFS_WRITE_LOCK);
2663 }
2664 p->locks[level] = BTRFS_WRITE_LOCK;
2665 } else {
2666 err = btrfs_try_tree_read_lock(b);
2667 if (!err) {
2668 btrfs_set_path_blocking(p);
2669 btrfs_tree_read_lock(b);
2670 btrfs_clear_path_blocking(p, b,
2671 BTRFS_READ_LOCK);
2672 }
2673 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2674 }
bd681513 2675 p->nodes[level] = b;
b4ce94de 2676 }
be0e5c09
CM
2677 } else {
2678 p->slots[level] = slot;
87b29b20
YZ
2679 if (ins_len > 0 &&
2680 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2681 if (write_lock_level < 1) {
2682 write_lock_level = 1;
2683 btrfs_release_path(p);
2684 goto again;
2685 }
2686
b4ce94de 2687 btrfs_set_path_blocking(p);
33c66f43
YZ
2688 err = split_leaf(trans, root, key,
2689 p, ins_len, ret == 0);
bd681513 2690 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2691
33c66f43
YZ
2692 BUG_ON(err > 0);
2693 if (err) {
2694 ret = err;
65b51a00
CM
2695 goto done;
2696 }
5c680ed6 2697 }
459931ec 2698 if (!p->search_for_split)
f7c79f30
CM
2699 unlock_up(p, level, lowest_unlock,
2700 min_write_lock_level, &write_lock_level);
65b51a00 2701 goto done;
be0e5c09
CM
2702 }
2703 }
65b51a00
CM
2704 ret = 1;
2705done:
b4ce94de
CM
2706 /*
2707 * we don't really know what they plan on doing with the path
2708 * from here on, so for now just mark it as blocking
2709 */
b9473439
CM
2710 if (!p->leave_spinning)
2711 btrfs_set_path_blocking(p);
76a05b35 2712 if (ret < 0)
b3b4aa74 2713 btrfs_release_path(p);
65b51a00 2714 return ret;
be0e5c09
CM
2715}
2716
5d9e75c4
JS
2717/*
2718 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2719 * current state of the tree together with the operations recorded in the tree
2720 * modification log to search for the key in a previous version of this tree, as
2721 * denoted by the time_seq parameter.
2722 *
2723 * Naturally, there is no support for insert, delete or cow operations.
2724 *
2725 * The resulting path and return value will be set up as if we called
2726 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2727 */
2728int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2729 struct btrfs_path *p, u64 time_seq)
2730{
2731 struct extent_buffer *b;
2732 int slot;
2733 int ret;
2734 int err;
2735 int level;
2736 int lowest_unlock = 1;
2737 u8 lowest_level = 0;
2738
2739 lowest_level = p->lowest_level;
2740 WARN_ON(p->nodes[0] != NULL);
2741
2742 if (p->search_commit_root) {
2743 BUG_ON(time_seq);
2744 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2745 }
2746
2747again:
5d9e75c4 2748 b = get_old_root(root, time_seq);
5d9e75c4 2749 level = btrfs_header_level(b);
5d9e75c4
JS
2750 p->locks[level] = BTRFS_READ_LOCK;
2751
2752 while (b) {
2753 level = btrfs_header_level(b);
2754 p->nodes[level] = b;
2755 btrfs_clear_path_blocking(p, NULL, 0);
2756
2757 /*
2758 * we have a lock on b and as long as we aren't changing
2759 * the tree, there is no way to for the items in b to change.
2760 * It is safe to drop the lock on our parent before we
2761 * go through the expensive btree search on b.
2762 */
2763 btrfs_unlock_up_safe(p, level + 1);
2764
2765 ret = bin_search(b, key, level, &slot);
2766
2767 if (level != 0) {
2768 int dec = 0;
2769 if (ret && slot > 0) {
2770 dec = 1;
2771 slot -= 1;
2772 }
2773 p->slots[level] = slot;
2774 unlock_up(p, level, lowest_unlock, 0, NULL);
2775
2776 if (level == lowest_level) {
2777 if (dec)
2778 p->slots[level]++;
2779 goto done;
2780 }
2781
2782 err = read_block_for_search(NULL, root, p, &b, level,
2783 slot, key, time_seq);
2784 if (err == -EAGAIN)
2785 goto again;
2786 if (err) {
2787 ret = err;
2788 goto done;
2789 }
2790
2791 level = btrfs_header_level(b);
2792 err = btrfs_try_tree_read_lock(b);
2793 if (!err) {
2794 btrfs_set_path_blocking(p);
2795 btrfs_tree_read_lock(b);
2796 btrfs_clear_path_blocking(p, b,
2797 BTRFS_READ_LOCK);
2798 }
2799 p->locks[level] = BTRFS_READ_LOCK;
2800 p->nodes[level] = b;
2801 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2802 if (b != p->nodes[level]) {
2803 btrfs_tree_unlock_rw(p->nodes[level],
2804 p->locks[level]);
2805 p->locks[level] = 0;
2806 p->nodes[level] = b;
2807 }
2808 } else {
2809 p->slots[level] = slot;
2810 unlock_up(p, level, lowest_unlock, 0, NULL);
2811 goto done;
2812 }
2813 }
2814 ret = 1;
2815done:
2816 if (!p->leave_spinning)
2817 btrfs_set_path_blocking(p);
2818 if (ret < 0)
2819 btrfs_release_path(p);
2820
2821 return ret;
2822}
2823
2f38b3e1
AJ
2824/*
2825 * helper to use instead of search slot if no exact match is needed but
2826 * instead the next or previous item should be returned.
2827 * When find_higher is true, the next higher item is returned, the next lower
2828 * otherwise.
2829 * When return_any and find_higher are both true, and no higher item is found,
2830 * return the next lower instead.
2831 * When return_any is true and find_higher is false, and no lower item is found,
2832 * return the next higher instead.
2833 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2834 * < 0 on error
2835 */
2836int btrfs_search_slot_for_read(struct btrfs_root *root,
2837 struct btrfs_key *key, struct btrfs_path *p,
2838 int find_higher, int return_any)
2839{
2840 int ret;
2841 struct extent_buffer *leaf;
2842
2843again:
2844 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2845 if (ret <= 0)
2846 return ret;
2847 /*
2848 * a return value of 1 means the path is at the position where the
2849 * item should be inserted. Normally this is the next bigger item,
2850 * but in case the previous item is the last in a leaf, path points
2851 * to the first free slot in the previous leaf, i.e. at an invalid
2852 * item.
2853 */
2854 leaf = p->nodes[0];
2855
2856 if (find_higher) {
2857 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2858 ret = btrfs_next_leaf(root, p);
2859 if (ret <= 0)
2860 return ret;
2861 if (!return_any)
2862 return 1;
2863 /*
2864 * no higher item found, return the next
2865 * lower instead
2866 */
2867 return_any = 0;
2868 find_higher = 0;
2869 btrfs_release_path(p);
2870 goto again;
2871 }
2872 } else {
e6793769
AJ
2873 if (p->slots[0] == 0) {
2874 ret = btrfs_prev_leaf(root, p);
2875 if (ret < 0)
2876 return ret;
2877 if (!ret) {
2878 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2879 return 0;
2f38b3e1 2880 }
e6793769
AJ
2881 if (!return_any)
2882 return 1;
2883 /*
2884 * no lower item found, return the next
2885 * higher instead
2886 */
2887 return_any = 0;
2888 find_higher = 1;
2889 btrfs_release_path(p);
2890 goto again;
2891 } else {
2f38b3e1
AJ
2892 --p->slots[0];
2893 }
2894 }
2895 return 0;
2896}
2897
74123bd7
CM
2898/*
2899 * adjust the pointers going up the tree, starting at level
2900 * making sure the right key of each node is points to 'key'.
2901 * This is used after shifting pointers to the left, so it stops
2902 * fixing up pointers when a given leaf/node is not in slot 0 of the
2903 * higher levels
aa5d6bed 2904 *
74123bd7 2905 */
143bede5
JM
2906static void fixup_low_keys(struct btrfs_trans_handle *trans,
2907 struct btrfs_root *root, struct btrfs_path *path,
2908 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2909{
2910 int i;
5f39d397
CM
2911 struct extent_buffer *t;
2912
234b63a0 2913 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2914 int tslot = path->slots[i];
eb60ceac 2915 if (!path->nodes[i])
be0e5c09 2916 break;
5f39d397 2917 t = path->nodes[i];
f230475e 2918 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
5f39d397 2919 btrfs_set_node_key(t, key, tslot);
d6025579 2920 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2921 if (tslot != 0)
2922 break;
2923 }
2924}
2925
31840ae1
ZY
2926/*
2927 * update item key.
2928 *
2929 * This function isn't completely safe. It's the caller's responsibility
2930 * that the new key won't break the order
2931 */
143bede5
JM
2932void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root, struct btrfs_path *path,
2934 struct btrfs_key *new_key)
31840ae1
ZY
2935{
2936 struct btrfs_disk_key disk_key;
2937 struct extent_buffer *eb;
2938 int slot;
2939
2940 eb = path->nodes[0];
2941 slot = path->slots[0];
2942 if (slot > 0) {
2943 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2944 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2945 }
2946 if (slot < btrfs_header_nritems(eb) - 1) {
2947 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2948 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2949 }
2950
2951 btrfs_cpu_key_to_disk(&disk_key, new_key);
2952 btrfs_set_item_key(eb, &disk_key, slot);
2953 btrfs_mark_buffer_dirty(eb);
2954 if (slot == 0)
2955 fixup_low_keys(trans, root, path, &disk_key, 1);
31840ae1
ZY
2956}
2957
74123bd7
CM
2958/*
2959 * try to push data from one node into the next node left in the
79f95c82 2960 * tree.
aa5d6bed
CM
2961 *
2962 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2963 * error, and > 0 if there was no room in the left hand block.
74123bd7 2964 */
98ed5174
CM
2965static int push_node_left(struct btrfs_trans_handle *trans,
2966 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2967 struct extent_buffer *src, int empty)
be0e5c09 2968{
be0e5c09 2969 int push_items = 0;
bb803951
CM
2970 int src_nritems;
2971 int dst_nritems;
aa5d6bed 2972 int ret = 0;
be0e5c09 2973
5f39d397
CM
2974 src_nritems = btrfs_header_nritems(src);
2975 dst_nritems = btrfs_header_nritems(dst);
123abc88 2976 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2977 WARN_ON(btrfs_header_generation(src) != trans->transid);
2978 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2979
bce4eae9 2980 if (!empty && src_nritems <= 8)
971a1f66
CM
2981 return 1;
2982
d397712b 2983 if (push_items <= 0)
be0e5c09
CM
2984 return 1;
2985
bce4eae9 2986 if (empty) {
971a1f66 2987 push_items = min(src_nritems, push_items);
bce4eae9
CM
2988 if (push_items < src_nritems) {
2989 /* leave at least 8 pointers in the node if
2990 * we aren't going to empty it
2991 */
2992 if (src_nritems - push_items < 8) {
2993 if (push_items <= 8)
2994 return 1;
2995 push_items -= 8;
2996 }
2997 }
2998 } else
2999 push_items = min(src_nritems - 8, push_items);
79f95c82 3000
f230475e
JS
3001 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3002 push_items);
5f39d397
CM
3003 copy_extent_buffer(dst, src,
3004 btrfs_node_key_ptr_offset(dst_nritems),
3005 btrfs_node_key_ptr_offset(0),
d397712b 3006 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3007
bb803951 3008 if (push_items < src_nritems) {
57911b8b
JS
3009 /*
3010 * don't call tree_mod_log_eb_move here, key removal was already
3011 * fully logged by tree_mod_log_eb_copy above.
3012 */
5f39d397
CM
3013 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3014 btrfs_node_key_ptr_offset(push_items),
3015 (src_nritems - push_items) *
3016 sizeof(struct btrfs_key_ptr));
3017 }
3018 btrfs_set_header_nritems(src, src_nritems - push_items);
3019 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3020 btrfs_mark_buffer_dirty(src);
3021 btrfs_mark_buffer_dirty(dst);
31840ae1 3022
79f95c82
CM
3023 return ret;
3024}
3025
3026/*
3027 * try to push data from one node into the next node right in the
3028 * tree.
3029 *
3030 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3031 * error, and > 0 if there was no room in the right hand block.
3032 *
3033 * this will only push up to 1/2 the contents of the left node over
3034 */
5f39d397
CM
3035static int balance_node_right(struct btrfs_trans_handle *trans,
3036 struct btrfs_root *root,
3037 struct extent_buffer *dst,
3038 struct extent_buffer *src)
79f95c82 3039{
79f95c82
CM
3040 int push_items = 0;
3041 int max_push;
3042 int src_nritems;
3043 int dst_nritems;
3044 int ret = 0;
79f95c82 3045
7bb86316
CM
3046 WARN_ON(btrfs_header_generation(src) != trans->transid);
3047 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3048
5f39d397
CM
3049 src_nritems = btrfs_header_nritems(src);
3050 dst_nritems = btrfs_header_nritems(dst);
123abc88 3051 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3052 if (push_items <= 0)
79f95c82 3053 return 1;
bce4eae9 3054
d397712b 3055 if (src_nritems < 4)
bce4eae9 3056 return 1;
79f95c82
CM
3057
3058 max_push = src_nritems / 2 + 1;
3059 /* don't try to empty the node */
d397712b 3060 if (max_push >= src_nritems)
79f95c82 3061 return 1;
252c38f0 3062
79f95c82
CM
3063 if (max_push < push_items)
3064 push_items = max_push;
3065
f230475e 3066 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3067 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3068 btrfs_node_key_ptr_offset(0),
3069 (dst_nritems) *
3070 sizeof(struct btrfs_key_ptr));
d6025579 3071
f230475e
JS
3072 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3073 src_nritems - push_items, push_items);
5f39d397
CM
3074 copy_extent_buffer(dst, src,
3075 btrfs_node_key_ptr_offset(0),
3076 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3077 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3078
5f39d397
CM
3079 btrfs_set_header_nritems(src, src_nritems - push_items);
3080 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3081
5f39d397
CM
3082 btrfs_mark_buffer_dirty(src);
3083 btrfs_mark_buffer_dirty(dst);
31840ae1 3084
aa5d6bed 3085 return ret;
be0e5c09
CM
3086}
3087
97571fd0
CM
3088/*
3089 * helper function to insert a new root level in the tree.
3090 * A new node is allocated, and a single item is inserted to
3091 * point to the existing root
aa5d6bed
CM
3092 *
3093 * returns zero on success or < 0 on failure.
97571fd0 3094 */
d397712b 3095static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397
CM
3096 struct btrfs_root *root,
3097 struct btrfs_path *path, int level)
5c680ed6 3098{
7bb86316 3099 u64 lower_gen;
5f39d397
CM
3100 struct extent_buffer *lower;
3101 struct extent_buffer *c;
925baedd 3102 struct extent_buffer *old;
5f39d397 3103 struct btrfs_disk_key lower_key;
5c680ed6
CM
3104
3105 BUG_ON(path->nodes[level]);
3106 BUG_ON(path->nodes[level-1] != root->node);
3107
7bb86316
CM
3108 lower = path->nodes[level-1];
3109 if (level == 1)
3110 btrfs_item_key(lower, &lower_key, 0);
3111 else
3112 btrfs_node_key(lower, &lower_key, 0);
3113
31840ae1 3114 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3115 root->root_key.objectid, &lower_key,
5581a51a 3116 level, root->node->start, 0);
5f39d397
CM
3117 if (IS_ERR(c))
3118 return PTR_ERR(c);
925baedd 3119
f0486c68
YZ
3120 root_add_used(root, root->nodesize);
3121
5d4f98a2 3122 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3123 btrfs_set_header_nritems(c, 1);
3124 btrfs_set_header_level(c, level);
db94535d 3125 btrfs_set_header_bytenr(c, c->start);
5f39d397 3126 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3127 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3128 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397
CM
3129
3130 write_extent_buffer(c, root->fs_info->fsid,
3131 (unsigned long)btrfs_header_fsid(c),
3132 BTRFS_FSID_SIZE);
e17cade2
CM
3133
3134 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3135 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3136 BTRFS_UUID_SIZE);
3137
5f39d397 3138 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3139 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3140 lower_gen = btrfs_header_generation(lower);
31840ae1 3141 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3142
3143 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3144
5f39d397 3145 btrfs_mark_buffer_dirty(c);
d5719762 3146
925baedd 3147 old = root->node;
f230475e 3148 tree_mod_log_set_root_pointer(root, c);
240f62c8 3149 rcu_assign_pointer(root->node, c);
925baedd
CM
3150
3151 /* the super has an extra ref to root->node */
3152 free_extent_buffer(old);
3153
0b86a832 3154 add_root_to_dirty_list(root);
5f39d397
CM
3155 extent_buffer_get(c);
3156 path->nodes[level] = c;
bd681513 3157 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3158 path->slots[level] = 0;
3159 return 0;
3160}
3161
74123bd7
CM
3162/*
3163 * worker function to insert a single pointer in a node.
3164 * the node should have enough room for the pointer already
97571fd0 3165 *
74123bd7
CM
3166 * slot and level indicate where you want the key to go, and
3167 * blocknr is the block the key points to.
3168 */
143bede5
JM
3169static void insert_ptr(struct btrfs_trans_handle *trans,
3170 struct btrfs_root *root, struct btrfs_path *path,
3171 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3172 int slot, int level)
74123bd7 3173{
5f39d397 3174 struct extent_buffer *lower;
74123bd7 3175 int nritems;
f3ea38da 3176 int ret;
5c680ed6
CM
3177
3178 BUG_ON(!path->nodes[level]);
f0486c68 3179 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3180 lower = path->nodes[level];
3181 nritems = btrfs_header_nritems(lower);
c293498b 3182 BUG_ON(slot > nritems);
143bede5 3183 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3184 if (slot != nritems) {
c3e06965 3185 if (level)
f3ea38da
JS
3186 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3187 slot, nritems - slot);
5f39d397
CM
3188 memmove_extent_buffer(lower,
3189 btrfs_node_key_ptr_offset(slot + 1),
3190 btrfs_node_key_ptr_offset(slot),
d6025579 3191 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3192 }
c3e06965 3193 if (level) {
f3ea38da
JS
3194 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3195 MOD_LOG_KEY_ADD);
3196 BUG_ON(ret < 0);
3197 }
5f39d397 3198 btrfs_set_node_key(lower, key, slot);
db94535d 3199 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3200 WARN_ON(trans->transid == 0);
3201 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3202 btrfs_set_header_nritems(lower, nritems + 1);
3203 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3204}
3205
97571fd0
CM
3206/*
3207 * split the node at the specified level in path in two.
3208 * The path is corrected to point to the appropriate node after the split
3209 *
3210 * Before splitting this tries to make some room in the node by pushing
3211 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3212 *
3213 * returns 0 on success and < 0 on failure
97571fd0 3214 */
e02119d5
CM
3215static noinline int split_node(struct btrfs_trans_handle *trans,
3216 struct btrfs_root *root,
3217 struct btrfs_path *path, int level)
be0e5c09 3218{
5f39d397
CM
3219 struct extent_buffer *c;
3220 struct extent_buffer *split;
3221 struct btrfs_disk_key disk_key;
be0e5c09 3222 int mid;
5c680ed6 3223 int ret;
7518a238 3224 u32 c_nritems;
eb60ceac 3225
5f39d397 3226 c = path->nodes[level];
7bb86316 3227 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3228 if (c == root->node) {
5c680ed6 3229 /* trying to split the root, lets make a new one */
e089f05c 3230 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3231 if (ret)
3232 return ret;
b3612421 3233 } else {
e66f709b 3234 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3235 c = path->nodes[level];
3236 if (!ret && btrfs_header_nritems(c) <
c448acf0 3237 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3238 return 0;
54aa1f4d
CM
3239 if (ret < 0)
3240 return ret;
be0e5c09 3241 }
e66f709b 3242
5f39d397 3243 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3244 mid = (c_nritems + 1) / 2;
3245 btrfs_node_key(c, &disk_key, mid);
7bb86316 3246
5d4f98a2 3247 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3248 root->root_key.objectid,
5581a51a 3249 &disk_key, level, c->start, 0);
5f39d397
CM
3250 if (IS_ERR(split))
3251 return PTR_ERR(split);
3252
f0486c68
YZ
3253 root_add_used(root, root->nodesize);
3254
5d4f98a2 3255 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3256 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3257 btrfs_set_header_bytenr(split, split->start);
5f39d397 3258 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3259 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3260 btrfs_set_header_owner(split, root->root_key.objectid);
3261 write_extent_buffer(split, root->fs_info->fsid,
3262 (unsigned long)btrfs_header_fsid(split),
3263 BTRFS_FSID_SIZE);
e17cade2
CM
3264 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3265 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3266 BTRFS_UUID_SIZE);
54aa1f4d 3267
f230475e 3268 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3269 copy_extent_buffer(split, c,
3270 btrfs_node_key_ptr_offset(0),
3271 btrfs_node_key_ptr_offset(mid),
3272 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3273 btrfs_set_header_nritems(split, c_nritems - mid);
3274 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3275 ret = 0;
3276
5f39d397
CM
3277 btrfs_mark_buffer_dirty(c);
3278 btrfs_mark_buffer_dirty(split);
3279
143bede5 3280 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3281 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3282
5de08d7d 3283 if (path->slots[level] >= mid) {
5c680ed6 3284 path->slots[level] -= mid;
925baedd 3285 btrfs_tree_unlock(c);
5f39d397
CM
3286 free_extent_buffer(c);
3287 path->nodes[level] = split;
5c680ed6
CM
3288 path->slots[level + 1] += 1;
3289 } else {
925baedd 3290 btrfs_tree_unlock(split);
5f39d397 3291 free_extent_buffer(split);
be0e5c09 3292 }
aa5d6bed 3293 return ret;
be0e5c09
CM
3294}
3295
74123bd7
CM
3296/*
3297 * how many bytes are required to store the items in a leaf. start
3298 * and nr indicate which items in the leaf to check. This totals up the
3299 * space used both by the item structs and the item data
3300 */
5f39d397 3301static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09
CM
3302{
3303 int data_len;
5f39d397 3304 int nritems = btrfs_header_nritems(l);
d4dbff95 3305 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3306
3307 if (!nr)
3308 return 0;
5f39d397
CM
3309 data_len = btrfs_item_end_nr(l, start);
3310 data_len = data_len - btrfs_item_offset_nr(l, end);
0783fcfc 3311 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3312 WARN_ON(data_len < 0);
be0e5c09
CM
3313 return data_len;
3314}
3315
d4dbff95
CM
3316/*
3317 * The space between the end of the leaf items and
3318 * the start of the leaf data. IOW, how much room
3319 * the leaf has left for both items and data
3320 */
d397712b 3321noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3322 struct extent_buffer *leaf)
d4dbff95 3323{
5f39d397
CM
3324 int nritems = btrfs_header_nritems(leaf);
3325 int ret;
3326 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3327 if (ret < 0) {
d397712b
CM
3328 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3329 "used %d nritems %d\n",
ae2f5411 3330 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3331 leaf_space_used(leaf, 0, nritems), nritems);
3332 }
3333 return ret;
d4dbff95
CM
3334}
3335
99d8f83c
CM
3336/*
3337 * min slot controls the lowest index we're willing to push to the
3338 * right. We'll push up to and including min_slot, but no lower
3339 */
44871b1b
CM
3340static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3341 struct btrfs_root *root,
3342 struct btrfs_path *path,
3343 int data_size, int empty,
3344 struct extent_buffer *right,
99d8f83c
CM
3345 int free_space, u32 left_nritems,
3346 u32 min_slot)
00ec4c51 3347{
5f39d397 3348 struct extent_buffer *left = path->nodes[0];
44871b1b 3349 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3350 struct btrfs_map_token token;
5f39d397 3351 struct btrfs_disk_key disk_key;
00ec4c51 3352 int slot;
34a38218 3353 u32 i;
00ec4c51
CM
3354 int push_space = 0;
3355 int push_items = 0;
0783fcfc 3356 struct btrfs_item *item;
34a38218 3357 u32 nr;
7518a238 3358 u32 right_nritems;
5f39d397 3359 u32 data_end;
db94535d 3360 u32 this_item_size;
00ec4c51 3361
cfed81a0
CM
3362 btrfs_init_map_token(&token);
3363
34a38218
CM
3364 if (empty)
3365 nr = 0;
3366 else
99d8f83c 3367 nr = max_t(u32, 1, min_slot);
34a38218 3368
31840ae1 3369 if (path->slots[0] >= left_nritems)
87b29b20 3370 push_space += data_size;
31840ae1 3371
44871b1b 3372 slot = path->slots[1];
34a38218
CM
3373 i = left_nritems - 1;
3374 while (i >= nr) {
5f39d397 3375 item = btrfs_item_nr(left, i);
db94535d 3376
31840ae1
ZY
3377 if (!empty && push_items > 0) {
3378 if (path->slots[0] > i)
3379 break;
3380 if (path->slots[0] == i) {
3381 int space = btrfs_leaf_free_space(root, left);
3382 if (space + push_space * 2 > free_space)
3383 break;
3384 }
3385 }
3386
00ec4c51 3387 if (path->slots[0] == i)
87b29b20 3388 push_space += data_size;
db94535d 3389
db94535d
CM
3390 this_item_size = btrfs_item_size(left, item);
3391 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3392 break;
31840ae1 3393
00ec4c51 3394 push_items++;
db94535d 3395 push_space += this_item_size + sizeof(*item);
34a38218
CM
3396 if (i == 0)
3397 break;
3398 i--;
db94535d 3399 }
5f39d397 3400
925baedd
CM
3401 if (push_items == 0)
3402 goto out_unlock;
5f39d397 3403
34a38218 3404 if (!empty && push_items == left_nritems)
a429e513 3405 WARN_ON(1);
5f39d397 3406
00ec4c51 3407 /* push left to right */
5f39d397 3408 right_nritems = btrfs_header_nritems(right);
34a38218 3409
5f39d397 3410 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3411 push_space -= leaf_data_end(root, left);
5f39d397 3412
00ec4c51 3413 /* make room in the right data area */
5f39d397
CM
3414 data_end = leaf_data_end(root, right);
3415 memmove_extent_buffer(right,
3416 btrfs_leaf_data(right) + data_end - push_space,
3417 btrfs_leaf_data(right) + data_end,
3418 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3419
00ec4c51 3420 /* copy from the left data area */
5f39d397 3421 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3422 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3423 btrfs_leaf_data(left) + leaf_data_end(root, left),
3424 push_space);
5f39d397
CM
3425
3426 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3427 btrfs_item_nr_offset(0),
3428 right_nritems * sizeof(struct btrfs_item));
3429
00ec4c51 3430 /* copy the items from left to right */
5f39d397
CM
3431 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3432 btrfs_item_nr_offset(left_nritems - push_items),
3433 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3434
3435 /* update the item pointers */
7518a238 3436 right_nritems += push_items;
5f39d397 3437 btrfs_set_header_nritems(right, right_nritems);
123abc88 3438 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3439 for (i = 0; i < right_nritems; i++) {
5f39d397 3440 item = btrfs_item_nr(right, i);
cfed81a0
CM
3441 push_space -= btrfs_token_item_size(right, item, &token);
3442 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3443 }
3444
7518a238 3445 left_nritems -= push_items;
5f39d397 3446 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3447
34a38218
CM
3448 if (left_nritems)
3449 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3450 else
3451 clean_tree_block(trans, root, left);
3452
5f39d397 3453 btrfs_mark_buffer_dirty(right);
a429e513 3454
5f39d397
CM
3455 btrfs_item_key(right, &disk_key, 0);
3456 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3457 btrfs_mark_buffer_dirty(upper);
02217ed2 3458
00ec4c51 3459 /* then fixup the leaf pointer in the path */
7518a238
CM
3460 if (path->slots[0] >= left_nritems) {
3461 path->slots[0] -= left_nritems;
925baedd
CM
3462 if (btrfs_header_nritems(path->nodes[0]) == 0)
3463 clean_tree_block(trans, root, path->nodes[0]);
3464 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3465 free_extent_buffer(path->nodes[0]);
3466 path->nodes[0] = right;
00ec4c51
CM
3467 path->slots[1] += 1;
3468 } else {
925baedd 3469 btrfs_tree_unlock(right);
5f39d397 3470 free_extent_buffer(right);
00ec4c51
CM
3471 }
3472 return 0;
925baedd
CM
3473
3474out_unlock:
3475 btrfs_tree_unlock(right);
3476 free_extent_buffer(right);
3477 return 1;
00ec4c51 3478}
925baedd 3479
44871b1b
CM
3480/*
3481 * push some data in the path leaf to the right, trying to free up at
3482 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3483 *
3484 * returns 1 if the push failed because the other node didn't have enough
3485 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3486 *
3487 * this will push starting from min_slot to the end of the leaf. It won't
3488 * push any slot lower than min_slot
44871b1b
CM
3489 */
3490static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3491 *root, struct btrfs_path *path,
3492 int min_data_size, int data_size,
3493 int empty, u32 min_slot)
44871b1b
CM
3494{
3495 struct extent_buffer *left = path->nodes[0];
3496 struct extent_buffer *right;
3497 struct extent_buffer *upper;
3498 int slot;
3499 int free_space;
3500 u32 left_nritems;
3501 int ret;
3502
3503 if (!path->nodes[1])
3504 return 1;
3505
3506 slot = path->slots[1];
3507 upper = path->nodes[1];
3508 if (slot >= btrfs_header_nritems(upper) - 1)
3509 return 1;
3510
3511 btrfs_assert_tree_locked(path->nodes[1]);
3512
3513 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3514 if (right == NULL)
3515 return 1;
3516
44871b1b
CM
3517 btrfs_tree_lock(right);
3518 btrfs_set_lock_blocking(right);
3519
3520 free_space = btrfs_leaf_free_space(root, right);
3521 if (free_space < data_size)
3522 goto out_unlock;
3523
3524 /* cow and double check */
3525 ret = btrfs_cow_block(trans, root, right, upper,
3526 slot + 1, &right);
3527 if (ret)
3528 goto out_unlock;
3529
3530 free_space = btrfs_leaf_free_space(root, right);
3531 if (free_space < data_size)
3532 goto out_unlock;
3533
3534 left_nritems = btrfs_header_nritems(left);
3535 if (left_nritems == 0)
3536 goto out_unlock;
3537
99d8f83c
CM
3538 return __push_leaf_right(trans, root, path, min_data_size, empty,
3539 right, free_space, left_nritems, min_slot);
44871b1b
CM
3540out_unlock:
3541 btrfs_tree_unlock(right);
3542 free_extent_buffer(right);
3543 return 1;
3544}
3545
74123bd7
CM
3546/*
3547 * push some data in the path leaf to the left, trying to free up at
3548 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3549 *
3550 * max_slot can put a limit on how far into the leaf we'll push items. The
3551 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3552 * items
74123bd7 3553 */
44871b1b
CM
3554static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3555 struct btrfs_root *root,
3556 struct btrfs_path *path, int data_size,
3557 int empty, struct extent_buffer *left,
99d8f83c
CM
3558 int free_space, u32 right_nritems,
3559 u32 max_slot)
be0e5c09 3560{
5f39d397
CM
3561 struct btrfs_disk_key disk_key;
3562 struct extent_buffer *right = path->nodes[0];
be0e5c09 3563 int i;
be0e5c09
CM
3564 int push_space = 0;
3565 int push_items = 0;
0783fcfc 3566 struct btrfs_item *item;
7518a238 3567 u32 old_left_nritems;
34a38218 3568 u32 nr;
aa5d6bed 3569 int ret = 0;
db94535d
CM
3570 u32 this_item_size;
3571 u32 old_left_item_size;
cfed81a0
CM
3572 struct btrfs_map_token token;
3573
3574 btrfs_init_map_token(&token);
be0e5c09 3575
34a38218 3576 if (empty)
99d8f83c 3577 nr = min(right_nritems, max_slot);
34a38218 3578 else
99d8f83c 3579 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3580
3581 for (i = 0; i < nr; i++) {
5f39d397 3582 item = btrfs_item_nr(right, i);
db94535d 3583
31840ae1
ZY
3584 if (!empty && push_items > 0) {
3585 if (path->slots[0] < i)
3586 break;
3587 if (path->slots[0] == i) {
3588 int space = btrfs_leaf_free_space(root, right);
3589 if (space + push_space * 2 > free_space)
3590 break;
3591 }
3592 }
3593
be0e5c09 3594 if (path->slots[0] == i)
87b29b20 3595 push_space += data_size;
db94535d
CM
3596
3597 this_item_size = btrfs_item_size(right, item);
3598 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3599 break;
db94535d 3600
be0e5c09 3601 push_items++;
db94535d
CM
3602 push_space += this_item_size + sizeof(*item);
3603 }
3604
be0e5c09 3605 if (push_items == 0) {
925baedd
CM
3606 ret = 1;
3607 goto out;
be0e5c09 3608 }
34a38218 3609 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3610 WARN_ON(1);
5f39d397 3611
be0e5c09 3612 /* push data from right to left */
5f39d397
CM
3613 copy_extent_buffer(left, right,
3614 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3615 btrfs_item_nr_offset(0),
3616 push_items * sizeof(struct btrfs_item));
3617
123abc88 3618 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3619 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3620
3621 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3622 leaf_data_end(root, left) - push_space,
3623 btrfs_leaf_data(right) +
5f39d397 3624 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3625 push_space);
5f39d397 3626 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3627 BUG_ON(old_left_nritems <= 0);
eb60ceac 3628
db94535d 3629 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3630 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3631 u32 ioff;
db94535d 3632
5f39d397 3633 item = btrfs_item_nr(left, i);
db94535d 3634
cfed81a0
CM
3635 ioff = btrfs_token_item_offset(left, item, &token);
3636 btrfs_set_token_item_offset(left, item,
3637 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3638 &token);
be0e5c09 3639 }
5f39d397 3640 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3641
3642 /* fixup right node */
34a38218 3643 if (push_items > right_nritems) {
d397712b
CM
3644 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3645 right_nritems);
34a38218
CM
3646 WARN_ON(1);
3647 }
3648
3649 if (push_items < right_nritems) {
3650 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3651 leaf_data_end(root, right);
3652 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3653 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3654 btrfs_leaf_data(right) +
3655 leaf_data_end(root, right), push_space);
3656
3657 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3658 btrfs_item_nr_offset(push_items),
3659 (btrfs_header_nritems(right) - push_items) *
3660 sizeof(struct btrfs_item));
34a38218 3661 }
eef1c494
Y
3662 right_nritems -= push_items;
3663 btrfs_set_header_nritems(right, right_nritems);
123abc88 3664 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3665 for (i = 0; i < right_nritems; i++) {
3666 item = btrfs_item_nr(right, i);
db94535d 3667
cfed81a0
CM
3668 push_space = push_space - btrfs_token_item_size(right,
3669 item, &token);
3670 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3671 }
eb60ceac 3672
5f39d397 3673 btrfs_mark_buffer_dirty(left);
34a38218
CM
3674 if (right_nritems)
3675 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3676 else
3677 clean_tree_block(trans, root, right);
098f59c2 3678
5f39d397 3679 btrfs_item_key(right, &disk_key, 0);
143bede5 3680 fixup_low_keys(trans, root, path, &disk_key, 1);
be0e5c09
CM
3681
3682 /* then fixup the leaf pointer in the path */
3683 if (path->slots[0] < push_items) {
3684 path->slots[0] += old_left_nritems;
925baedd 3685 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3686 free_extent_buffer(path->nodes[0]);
3687 path->nodes[0] = left;
be0e5c09
CM
3688 path->slots[1] -= 1;
3689 } else {
925baedd 3690 btrfs_tree_unlock(left);
5f39d397 3691 free_extent_buffer(left);
be0e5c09
CM
3692 path->slots[0] -= push_items;
3693 }
eb60ceac 3694 BUG_ON(path->slots[0] < 0);
aa5d6bed 3695 return ret;
925baedd
CM
3696out:
3697 btrfs_tree_unlock(left);
3698 free_extent_buffer(left);
3699 return ret;
be0e5c09
CM
3700}
3701
44871b1b
CM
3702/*
3703 * push some data in the path leaf to the left, trying to free up at
3704 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3705 *
3706 * max_slot can put a limit on how far into the leaf we'll push items. The
3707 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3708 * items
44871b1b
CM
3709 */
3710static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3711 *root, struct btrfs_path *path, int min_data_size,
3712 int data_size, int empty, u32 max_slot)
44871b1b
CM
3713{
3714 struct extent_buffer *right = path->nodes[0];
3715 struct extent_buffer *left;
3716 int slot;
3717 int free_space;
3718 u32 right_nritems;
3719 int ret = 0;
3720
3721 slot = path->slots[1];
3722 if (slot == 0)
3723 return 1;
3724 if (!path->nodes[1])
3725 return 1;
3726
3727 right_nritems = btrfs_header_nritems(right);
3728 if (right_nritems == 0)
3729 return 1;
3730
3731 btrfs_assert_tree_locked(path->nodes[1]);
3732
3733 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3734 if (left == NULL)
3735 return 1;
3736
44871b1b
CM
3737 btrfs_tree_lock(left);
3738 btrfs_set_lock_blocking(left);
3739
3740 free_space = btrfs_leaf_free_space(root, left);
3741 if (free_space < data_size) {
3742 ret = 1;
3743 goto out;
3744 }
3745
3746 /* cow and double check */
3747 ret = btrfs_cow_block(trans, root, left,
3748 path->nodes[1], slot - 1, &left);
3749 if (ret) {
3750 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3751 if (ret == -ENOSPC)
3752 ret = 1;
44871b1b
CM
3753 goto out;
3754 }
3755
3756 free_space = btrfs_leaf_free_space(root, left);
3757 if (free_space < data_size) {
3758 ret = 1;
3759 goto out;
3760 }
3761
99d8f83c
CM
3762 return __push_leaf_left(trans, root, path, min_data_size,
3763 empty, left, free_space, right_nritems,
3764 max_slot);
44871b1b
CM
3765out:
3766 btrfs_tree_unlock(left);
3767 free_extent_buffer(left);
3768 return ret;
3769}
3770
3771/*
3772 * split the path's leaf in two, making sure there is at least data_size
3773 * available for the resulting leaf level of the path.
44871b1b 3774 */
143bede5
JM
3775static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3776 struct btrfs_root *root,
3777 struct btrfs_path *path,
3778 struct extent_buffer *l,
3779 struct extent_buffer *right,
3780 int slot, int mid, int nritems)
44871b1b
CM
3781{
3782 int data_copy_size;
3783 int rt_data_off;
3784 int i;
44871b1b 3785 struct btrfs_disk_key disk_key;
cfed81a0
CM
3786 struct btrfs_map_token token;
3787
3788 btrfs_init_map_token(&token);
44871b1b
CM
3789
3790 nritems = nritems - mid;
3791 btrfs_set_header_nritems(right, nritems);
3792 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3793
3794 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3795 btrfs_item_nr_offset(mid),
3796 nritems * sizeof(struct btrfs_item));
3797
3798 copy_extent_buffer(right, l,
3799 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3800 data_copy_size, btrfs_leaf_data(l) +
3801 leaf_data_end(root, l), data_copy_size);
3802
3803 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3804 btrfs_item_end_nr(l, mid);
3805
3806 for (i = 0; i < nritems; i++) {
3807 struct btrfs_item *item = btrfs_item_nr(right, i);
3808 u32 ioff;
3809
cfed81a0
CM
3810 ioff = btrfs_token_item_offset(right, item, &token);
3811 btrfs_set_token_item_offset(right, item,
3812 ioff + rt_data_off, &token);
44871b1b
CM
3813 }
3814
44871b1b 3815 btrfs_set_header_nritems(l, mid);
44871b1b 3816 btrfs_item_key(right, &disk_key, 0);
143bede5 3817 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3818 path->slots[1] + 1, 1);
44871b1b
CM
3819
3820 btrfs_mark_buffer_dirty(right);
3821 btrfs_mark_buffer_dirty(l);
3822 BUG_ON(path->slots[0] != slot);
3823
44871b1b
CM
3824 if (mid <= slot) {
3825 btrfs_tree_unlock(path->nodes[0]);
3826 free_extent_buffer(path->nodes[0]);
3827 path->nodes[0] = right;
3828 path->slots[0] -= mid;
3829 path->slots[1] += 1;
3830 } else {
3831 btrfs_tree_unlock(right);
3832 free_extent_buffer(right);
3833 }
3834
3835 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3836}
3837
99d8f83c
CM
3838/*
3839 * double splits happen when we need to insert a big item in the middle
3840 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3841 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3842 * A B C
3843 *
3844 * We avoid this by trying to push the items on either side of our target
3845 * into the adjacent leaves. If all goes well we can avoid the double split
3846 * completely.
3847 */
3848static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root,
3850 struct btrfs_path *path,
3851 int data_size)
3852{
3853 int ret;
3854 int progress = 0;
3855 int slot;
3856 u32 nritems;
3857
3858 slot = path->slots[0];
3859
3860 /*
3861 * try to push all the items after our slot into the
3862 * right leaf
3863 */
3864 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3865 if (ret < 0)
3866 return ret;
3867
3868 if (ret == 0)
3869 progress++;
3870
3871 nritems = btrfs_header_nritems(path->nodes[0]);
3872 /*
3873 * our goal is to get our slot at the start or end of a leaf. If
3874 * we've done so we're done
3875 */
3876 if (path->slots[0] == 0 || path->slots[0] == nritems)
3877 return 0;
3878
3879 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3880 return 0;
3881
3882 /* try to push all the items before our slot into the next leaf */
3883 slot = path->slots[0];
3884 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3885 if (ret < 0)
3886 return ret;
3887
3888 if (ret == 0)
3889 progress++;
3890
3891 if (progress)
3892 return 0;
3893 return 1;
3894}
3895
74123bd7
CM
3896/*
3897 * split the path's leaf in two, making sure there is at least data_size
3898 * available for the resulting leaf level of the path.
aa5d6bed
CM
3899 *
3900 * returns 0 if all went well and < 0 on failure.
74123bd7 3901 */
e02119d5
CM
3902static noinline int split_leaf(struct btrfs_trans_handle *trans,
3903 struct btrfs_root *root,
3904 struct btrfs_key *ins_key,
3905 struct btrfs_path *path, int data_size,
3906 int extend)
be0e5c09 3907{
5d4f98a2 3908 struct btrfs_disk_key disk_key;
5f39d397 3909 struct extent_buffer *l;
7518a238 3910 u32 nritems;
eb60ceac
CM
3911 int mid;
3912 int slot;
5f39d397 3913 struct extent_buffer *right;
d4dbff95 3914 int ret = 0;
aa5d6bed 3915 int wret;
5d4f98a2 3916 int split;
cc0c5538 3917 int num_doubles = 0;
99d8f83c 3918 int tried_avoid_double = 0;
aa5d6bed 3919
a5719521
YZ
3920 l = path->nodes[0];
3921 slot = path->slots[0];
3922 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3923 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3924 return -EOVERFLOW;
3925
40689478 3926 /* first try to make some room by pushing left and right */
99d8f83c
CM
3927 if (data_size) {
3928 wret = push_leaf_right(trans, root, path, data_size,
3929 data_size, 0, 0);
d397712b 3930 if (wret < 0)
eaee50e8 3931 return wret;
3685f791 3932 if (wret) {
99d8f83c
CM
3933 wret = push_leaf_left(trans, root, path, data_size,
3934 data_size, 0, (u32)-1);
3685f791
CM
3935 if (wret < 0)
3936 return wret;
3937 }
3938 l = path->nodes[0];
aa5d6bed 3939
3685f791 3940 /* did the pushes work? */
87b29b20 3941 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3942 return 0;
3326d1b0 3943 }
aa5d6bed 3944
5c680ed6 3945 if (!path->nodes[1]) {
e089f05c 3946 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
3947 if (ret)
3948 return ret;
3949 }
cc0c5538 3950again:
5d4f98a2 3951 split = 1;
cc0c5538 3952 l = path->nodes[0];
eb60ceac 3953 slot = path->slots[0];
5f39d397 3954 nritems = btrfs_header_nritems(l);
d397712b 3955 mid = (nritems + 1) / 2;
54aa1f4d 3956
5d4f98a2
YZ
3957 if (mid <= slot) {
3958 if (nritems == 1 ||
3959 leaf_space_used(l, mid, nritems - mid) + data_size >
3960 BTRFS_LEAF_DATA_SIZE(root)) {
3961 if (slot >= nritems) {
3962 split = 0;
3963 } else {
3964 mid = slot;
3965 if (mid != nritems &&
3966 leaf_space_used(l, mid, nritems - mid) +
3967 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3968 if (data_size && !tried_avoid_double)
3969 goto push_for_double;
5d4f98a2
YZ
3970 split = 2;
3971 }
3972 }
3973 }
3974 } else {
3975 if (leaf_space_used(l, 0, mid) + data_size >
3976 BTRFS_LEAF_DATA_SIZE(root)) {
3977 if (!extend && data_size && slot == 0) {
3978 split = 0;
3979 } else if ((extend || !data_size) && slot == 0) {
3980 mid = 1;
3981 } else {
3982 mid = slot;
3983 if (mid != nritems &&
3984 leaf_space_used(l, mid, nritems - mid) +
3985 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3986 if (data_size && !tried_avoid_double)
3987 goto push_for_double;
5d4f98a2
YZ
3988 split = 2 ;
3989 }
3990 }
3991 }
3992 }
3993
3994 if (split == 0)
3995 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3996 else
3997 btrfs_item_key(l, &disk_key, mid);
3998
3999 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 4000 root->root_key.objectid,
5581a51a 4001 &disk_key, 0, l->start, 0);
f0486c68 4002 if (IS_ERR(right))
5f39d397 4003 return PTR_ERR(right);
f0486c68
YZ
4004
4005 root_add_used(root, root->leafsize);
5f39d397
CM
4006
4007 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4008 btrfs_set_header_bytenr(right, right->start);
5f39d397 4009 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4010 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4011 btrfs_set_header_owner(right, root->root_key.objectid);
4012 btrfs_set_header_level(right, 0);
4013 write_extent_buffer(right, root->fs_info->fsid,
4014 (unsigned long)btrfs_header_fsid(right),
4015 BTRFS_FSID_SIZE);
e17cade2
CM
4016
4017 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4018 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4019 BTRFS_UUID_SIZE);
44871b1b 4020
5d4f98a2
YZ
4021 if (split == 0) {
4022 if (mid <= slot) {
4023 btrfs_set_header_nritems(right, 0);
143bede5 4024 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4025 path->slots[1] + 1, 1);
5d4f98a2
YZ
4026 btrfs_tree_unlock(path->nodes[0]);
4027 free_extent_buffer(path->nodes[0]);
4028 path->nodes[0] = right;
4029 path->slots[0] = 0;
4030 path->slots[1] += 1;
4031 } else {
4032 btrfs_set_header_nritems(right, 0);
143bede5 4033 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4034 path->slots[1], 1);
5d4f98a2
YZ
4035 btrfs_tree_unlock(path->nodes[0]);
4036 free_extent_buffer(path->nodes[0]);
4037 path->nodes[0] = right;
4038 path->slots[0] = 0;
143bede5
JM
4039 if (path->slots[1] == 0)
4040 fixup_low_keys(trans, root, path,
4041 &disk_key, 1);
d4dbff95 4042 }
5d4f98a2
YZ
4043 btrfs_mark_buffer_dirty(right);
4044 return ret;
d4dbff95 4045 }
74123bd7 4046
143bede5 4047 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4048
5d4f98a2 4049 if (split == 2) {
cc0c5538
CM
4050 BUG_ON(num_doubles != 0);
4051 num_doubles++;
4052 goto again;
a429e513 4053 }
44871b1b 4054
143bede5 4055 return 0;
99d8f83c
CM
4056
4057push_for_double:
4058 push_for_double_split(trans, root, path, data_size);
4059 tried_avoid_double = 1;
4060 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4061 return 0;
4062 goto again;
be0e5c09
CM
4063}
4064
ad48fd75
YZ
4065static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4066 struct btrfs_root *root,
4067 struct btrfs_path *path, int ins_len)
459931ec 4068{
ad48fd75 4069 struct btrfs_key key;
459931ec 4070 struct extent_buffer *leaf;
ad48fd75
YZ
4071 struct btrfs_file_extent_item *fi;
4072 u64 extent_len = 0;
4073 u32 item_size;
4074 int ret;
459931ec
CM
4075
4076 leaf = path->nodes[0];
ad48fd75
YZ
4077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4078
4079 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4080 key.type != BTRFS_EXTENT_CSUM_KEY);
4081
4082 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4083 return 0;
459931ec
CM
4084
4085 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4086 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4087 fi = btrfs_item_ptr(leaf, path->slots[0],
4088 struct btrfs_file_extent_item);
4089 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4090 }
b3b4aa74 4091 btrfs_release_path(path);
459931ec 4092
459931ec 4093 path->keep_locks = 1;
ad48fd75
YZ
4094 path->search_for_split = 1;
4095 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4096 path->search_for_split = 0;
ad48fd75
YZ
4097 if (ret < 0)
4098 goto err;
459931ec 4099
ad48fd75
YZ
4100 ret = -EAGAIN;
4101 leaf = path->nodes[0];
459931ec 4102 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4103 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4104 goto err;
4105
109f6aef
CM
4106 /* the leaf has changed, it now has room. return now */
4107 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4108 goto err;
4109
ad48fd75
YZ
4110 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4111 fi = btrfs_item_ptr(leaf, path->slots[0],
4112 struct btrfs_file_extent_item);
4113 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4114 goto err;
459931ec
CM
4115 }
4116
b9473439 4117 btrfs_set_path_blocking(path);
ad48fd75 4118 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4119 if (ret)
4120 goto err;
459931ec 4121
ad48fd75 4122 path->keep_locks = 0;
b9473439 4123 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4124 return 0;
4125err:
4126 path->keep_locks = 0;
4127 return ret;
4128}
4129
4130static noinline int split_item(struct btrfs_trans_handle *trans,
4131 struct btrfs_root *root,
4132 struct btrfs_path *path,
4133 struct btrfs_key *new_key,
4134 unsigned long split_offset)
4135{
4136 struct extent_buffer *leaf;
4137 struct btrfs_item *item;
4138 struct btrfs_item *new_item;
4139 int slot;
4140 char *buf;
4141 u32 nritems;
4142 u32 item_size;
4143 u32 orig_offset;
4144 struct btrfs_disk_key disk_key;
4145
b9473439
CM
4146 leaf = path->nodes[0];
4147 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4148
b4ce94de
CM
4149 btrfs_set_path_blocking(path);
4150
459931ec
CM
4151 item = btrfs_item_nr(leaf, path->slots[0]);
4152 orig_offset = btrfs_item_offset(leaf, item);
4153 item_size = btrfs_item_size(leaf, item);
4154
459931ec 4155 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4156 if (!buf)
4157 return -ENOMEM;
4158
459931ec
CM
4159 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4160 path->slots[0]), item_size);
459931ec 4161
ad48fd75 4162 slot = path->slots[0] + 1;
459931ec 4163 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4164 if (slot != nritems) {
4165 /* shift the items */
4166 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4167 btrfs_item_nr_offset(slot),
4168 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4169 }
4170
4171 btrfs_cpu_key_to_disk(&disk_key, new_key);
4172 btrfs_set_item_key(leaf, &disk_key, slot);
4173
4174 new_item = btrfs_item_nr(leaf, slot);
4175
4176 btrfs_set_item_offset(leaf, new_item, orig_offset);
4177 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4178
4179 btrfs_set_item_offset(leaf, item,
4180 orig_offset + item_size - split_offset);
4181 btrfs_set_item_size(leaf, item, split_offset);
4182
4183 btrfs_set_header_nritems(leaf, nritems + 1);
4184
4185 /* write the data for the start of the original item */
4186 write_extent_buffer(leaf, buf,
4187 btrfs_item_ptr_offset(leaf, path->slots[0]),
4188 split_offset);
4189
4190 /* write the data for the new item */
4191 write_extent_buffer(leaf, buf + split_offset,
4192 btrfs_item_ptr_offset(leaf, slot),
4193 item_size - split_offset);
4194 btrfs_mark_buffer_dirty(leaf);
4195
ad48fd75 4196 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4197 kfree(buf);
ad48fd75
YZ
4198 return 0;
4199}
4200
4201/*
4202 * This function splits a single item into two items,
4203 * giving 'new_key' to the new item and splitting the
4204 * old one at split_offset (from the start of the item).
4205 *
4206 * The path may be released by this operation. After
4207 * the split, the path is pointing to the old item. The
4208 * new item is going to be in the same node as the old one.
4209 *
4210 * Note, the item being split must be smaller enough to live alone on
4211 * a tree block with room for one extra struct btrfs_item
4212 *
4213 * This allows us to split the item in place, keeping a lock on the
4214 * leaf the entire time.
4215 */
4216int btrfs_split_item(struct btrfs_trans_handle *trans,
4217 struct btrfs_root *root,
4218 struct btrfs_path *path,
4219 struct btrfs_key *new_key,
4220 unsigned long split_offset)
4221{
4222 int ret;
4223 ret = setup_leaf_for_split(trans, root, path,
4224 sizeof(struct btrfs_item));
4225 if (ret)
4226 return ret;
4227
4228 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4229 return ret;
4230}
4231
ad48fd75
YZ
4232/*
4233 * This function duplicate a item, giving 'new_key' to the new item.
4234 * It guarantees both items live in the same tree leaf and the new item
4235 * is contiguous with the original item.
4236 *
4237 * This allows us to split file extent in place, keeping a lock on the
4238 * leaf the entire time.
4239 */
4240int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4241 struct btrfs_root *root,
4242 struct btrfs_path *path,
4243 struct btrfs_key *new_key)
4244{
4245 struct extent_buffer *leaf;
4246 int ret;
4247 u32 item_size;
4248
4249 leaf = path->nodes[0];
4250 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4251 ret = setup_leaf_for_split(trans, root, path,
4252 item_size + sizeof(struct btrfs_item));
4253 if (ret)
4254 return ret;
4255
4256 path->slots[0]++;
143bede5
JM
4257 setup_items_for_insert(trans, root, path, new_key, &item_size,
4258 item_size, item_size +
4259 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4260 leaf = path->nodes[0];
4261 memcpy_extent_buffer(leaf,
4262 btrfs_item_ptr_offset(leaf, path->slots[0]),
4263 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4264 item_size);
4265 return 0;
4266}
4267
d352ac68
CM
4268/*
4269 * make the item pointed to by the path smaller. new_size indicates
4270 * how small to make it, and from_end tells us if we just chop bytes
4271 * off the end of the item or if we shift the item to chop bytes off
4272 * the front.
4273 */
143bede5
JM
4274void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4275 struct btrfs_root *root,
4276 struct btrfs_path *path,
4277 u32 new_size, int from_end)
b18c6685 4278{
b18c6685 4279 int slot;
5f39d397
CM
4280 struct extent_buffer *leaf;
4281 struct btrfs_item *item;
b18c6685
CM
4282 u32 nritems;
4283 unsigned int data_end;
4284 unsigned int old_data_start;
4285 unsigned int old_size;
4286 unsigned int size_diff;
4287 int i;
cfed81a0
CM
4288 struct btrfs_map_token token;
4289
4290 btrfs_init_map_token(&token);
b18c6685 4291
5f39d397 4292 leaf = path->nodes[0];
179e29e4
CM
4293 slot = path->slots[0];
4294
4295 old_size = btrfs_item_size_nr(leaf, slot);
4296 if (old_size == new_size)
143bede5 4297 return;
b18c6685 4298
5f39d397 4299 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4300 data_end = leaf_data_end(root, leaf);
4301
5f39d397 4302 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4303
b18c6685
CM
4304 size_diff = old_size - new_size;
4305
4306 BUG_ON(slot < 0);
4307 BUG_ON(slot >= nritems);
4308
4309 /*
4310 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4311 */
4312 /* first correct the data pointers */
4313 for (i = slot; i < nritems; i++) {
5f39d397
CM
4314 u32 ioff;
4315 item = btrfs_item_nr(leaf, i);
db94535d 4316
cfed81a0
CM
4317 ioff = btrfs_token_item_offset(leaf, item, &token);
4318 btrfs_set_token_item_offset(leaf, item,
4319 ioff + size_diff, &token);
b18c6685 4320 }
db94535d 4321
b18c6685 4322 /* shift the data */
179e29e4
CM
4323 if (from_end) {
4324 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4325 data_end + size_diff, btrfs_leaf_data(leaf) +
4326 data_end, old_data_start + new_size - data_end);
4327 } else {
4328 struct btrfs_disk_key disk_key;
4329 u64 offset;
4330
4331 btrfs_item_key(leaf, &disk_key, slot);
4332
4333 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4334 unsigned long ptr;
4335 struct btrfs_file_extent_item *fi;
4336
4337 fi = btrfs_item_ptr(leaf, slot,
4338 struct btrfs_file_extent_item);
4339 fi = (struct btrfs_file_extent_item *)(
4340 (unsigned long)fi - size_diff);
4341
4342 if (btrfs_file_extent_type(leaf, fi) ==
4343 BTRFS_FILE_EXTENT_INLINE) {
4344 ptr = btrfs_item_ptr_offset(leaf, slot);
4345 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4346 (unsigned long)fi,
4347 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4348 disk_bytenr));
4349 }
4350 }
4351
4352 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4353 data_end + size_diff, btrfs_leaf_data(leaf) +
4354 data_end, old_data_start - data_end);
4355
4356 offset = btrfs_disk_key_offset(&disk_key);
4357 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4358 btrfs_set_item_key(leaf, &disk_key, slot);
4359 if (slot == 0)
4360 fixup_low_keys(trans, root, path, &disk_key, 1);
4361 }
5f39d397
CM
4362
4363 item = btrfs_item_nr(leaf, slot);
4364 btrfs_set_item_size(leaf, item, new_size);
4365 btrfs_mark_buffer_dirty(leaf);
b18c6685 4366
5f39d397
CM
4367 if (btrfs_leaf_free_space(root, leaf) < 0) {
4368 btrfs_print_leaf(root, leaf);
b18c6685 4369 BUG();
5f39d397 4370 }
b18c6685
CM
4371}
4372
d352ac68
CM
4373/*
4374 * make the item pointed to by the path bigger, data_size is the new size.
4375 */
143bede5
JM
4376void btrfs_extend_item(struct btrfs_trans_handle *trans,
4377 struct btrfs_root *root, struct btrfs_path *path,
4378 u32 data_size)
6567e837 4379{
6567e837 4380 int slot;
5f39d397
CM
4381 struct extent_buffer *leaf;
4382 struct btrfs_item *item;
6567e837
CM
4383 u32 nritems;
4384 unsigned int data_end;
4385 unsigned int old_data;
4386 unsigned int old_size;
4387 int i;
cfed81a0
CM
4388 struct btrfs_map_token token;
4389
4390 btrfs_init_map_token(&token);
6567e837 4391
5f39d397 4392 leaf = path->nodes[0];
6567e837 4393
5f39d397 4394 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4395 data_end = leaf_data_end(root, leaf);
4396
5f39d397
CM
4397 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4398 btrfs_print_leaf(root, leaf);
6567e837 4399 BUG();
5f39d397 4400 }
6567e837 4401 slot = path->slots[0];
5f39d397 4402 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4403
4404 BUG_ON(slot < 0);
3326d1b0
CM
4405 if (slot >= nritems) {
4406 btrfs_print_leaf(root, leaf);
d397712b
CM
4407 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4408 slot, nritems);
3326d1b0
CM
4409 BUG_ON(1);
4410 }
6567e837
CM
4411
4412 /*
4413 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4414 */
4415 /* first correct the data pointers */
4416 for (i = slot; i < nritems; i++) {
5f39d397
CM
4417 u32 ioff;
4418 item = btrfs_item_nr(leaf, i);
db94535d 4419
cfed81a0
CM
4420 ioff = btrfs_token_item_offset(leaf, item, &token);
4421 btrfs_set_token_item_offset(leaf, item,
4422 ioff - data_size, &token);
6567e837 4423 }
5f39d397 4424
6567e837 4425 /* shift the data */
5f39d397 4426 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4427 data_end - data_size, btrfs_leaf_data(leaf) +
4428 data_end, old_data - data_end);
5f39d397 4429
6567e837 4430 data_end = old_data;
5f39d397
CM
4431 old_size = btrfs_item_size_nr(leaf, slot);
4432 item = btrfs_item_nr(leaf, slot);
4433 btrfs_set_item_size(leaf, item, old_size + data_size);
4434 btrfs_mark_buffer_dirty(leaf);
6567e837 4435
5f39d397
CM
4436 if (btrfs_leaf_free_space(root, leaf) < 0) {
4437 btrfs_print_leaf(root, leaf);
6567e837 4438 BUG();
5f39d397 4439 }
6567e837
CM
4440}
4441
74123bd7 4442/*
44871b1b
CM
4443 * this is a helper for btrfs_insert_empty_items, the main goal here is
4444 * to save stack depth by doing the bulk of the work in a function
4445 * that doesn't call btrfs_search_slot
74123bd7 4446 */
143bede5
JM
4447void setup_items_for_insert(struct btrfs_trans_handle *trans,
4448 struct btrfs_root *root, struct btrfs_path *path,
4449 struct btrfs_key *cpu_key, u32 *data_size,
4450 u32 total_data, u32 total_size, int nr)
be0e5c09 4451{
5f39d397 4452 struct btrfs_item *item;
9c58309d 4453 int i;
7518a238 4454 u32 nritems;
be0e5c09 4455 unsigned int data_end;
e2fa7227 4456 struct btrfs_disk_key disk_key;
44871b1b
CM
4457 struct extent_buffer *leaf;
4458 int slot;
cfed81a0
CM
4459 struct btrfs_map_token token;
4460
4461 btrfs_init_map_token(&token);
e2fa7227 4462
5f39d397 4463 leaf = path->nodes[0];
44871b1b 4464 slot = path->slots[0];
74123bd7 4465
5f39d397 4466 nritems = btrfs_header_nritems(leaf);
123abc88 4467 data_end = leaf_data_end(root, leaf);
eb60ceac 4468
f25956cc 4469 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4470 btrfs_print_leaf(root, leaf);
d397712b 4471 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4472 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4473 BUG();
d4dbff95 4474 }
5f39d397 4475
be0e5c09 4476 if (slot != nritems) {
5f39d397 4477 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4478
5f39d397
CM
4479 if (old_data < data_end) {
4480 btrfs_print_leaf(root, leaf);
d397712b 4481 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4482 slot, old_data, data_end);
4483 BUG_ON(1);
4484 }
be0e5c09
CM
4485 /*
4486 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4487 */
4488 /* first correct the data pointers */
0783fcfc 4489 for (i = slot; i < nritems; i++) {
5f39d397 4490 u32 ioff;
db94535d 4491
5f39d397 4492 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4493 ioff = btrfs_token_item_offset(leaf, item, &token);
4494 btrfs_set_token_item_offset(leaf, item,
4495 ioff - total_data, &token);
0783fcfc 4496 }
be0e5c09 4497 /* shift the items */
9c58309d 4498 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4499 btrfs_item_nr_offset(slot),
d6025579 4500 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4501
4502 /* shift the data */
5f39d397 4503 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4504 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4505 data_end, old_data - data_end);
be0e5c09
CM
4506 data_end = old_data;
4507 }
5f39d397 4508
62e2749e 4509 /* setup the item for the new data */
9c58309d
CM
4510 for (i = 0; i < nr; i++) {
4511 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4512 btrfs_set_item_key(leaf, &disk_key, slot + i);
4513 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4514 btrfs_set_token_item_offset(leaf, item,
4515 data_end - data_size[i], &token);
9c58309d 4516 data_end -= data_size[i];
cfed81a0 4517 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4518 }
44871b1b 4519
9c58309d 4520 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4521
5a01a2e3
CM
4522 if (slot == 0) {
4523 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4524 fixup_low_keys(trans, root, path, &disk_key, 1);
5a01a2e3 4525 }
b9473439
CM
4526 btrfs_unlock_up_safe(path, 1);
4527 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4528
5f39d397
CM
4529 if (btrfs_leaf_free_space(root, leaf) < 0) {
4530 btrfs_print_leaf(root, leaf);
be0e5c09 4531 BUG();
5f39d397 4532 }
44871b1b
CM
4533}
4534
4535/*
4536 * Given a key and some data, insert items into the tree.
4537 * This does all the path init required, making room in the tree if needed.
4538 */
4539int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4540 struct btrfs_root *root,
4541 struct btrfs_path *path,
4542 struct btrfs_key *cpu_key, u32 *data_size,
4543 int nr)
4544{
44871b1b
CM
4545 int ret = 0;
4546 int slot;
4547 int i;
4548 u32 total_size = 0;
4549 u32 total_data = 0;
4550
4551 for (i = 0; i < nr; i++)
4552 total_data += data_size[i];
4553
4554 total_size = total_data + (nr * sizeof(struct btrfs_item));
4555 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4556 if (ret == 0)
4557 return -EEXIST;
4558 if (ret < 0)
143bede5 4559 return ret;
44871b1b 4560
44871b1b
CM
4561 slot = path->slots[0];
4562 BUG_ON(slot < 0);
4563
143bede5 4564 setup_items_for_insert(trans, root, path, cpu_key, data_size,
44871b1b 4565 total_data, total_size, nr);
143bede5 4566 return 0;
62e2749e
CM
4567}
4568
4569/*
4570 * Given a key and some data, insert an item into the tree.
4571 * This does all the path init required, making room in the tree if needed.
4572 */
e089f05c
CM
4573int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4574 *root, struct btrfs_key *cpu_key, void *data, u32
4575 data_size)
62e2749e
CM
4576{
4577 int ret = 0;
2c90e5d6 4578 struct btrfs_path *path;
5f39d397
CM
4579 struct extent_buffer *leaf;
4580 unsigned long ptr;
62e2749e 4581
2c90e5d6 4582 path = btrfs_alloc_path();
db5b493a
TI
4583 if (!path)
4584 return -ENOMEM;
2c90e5d6 4585 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4586 if (!ret) {
5f39d397
CM
4587 leaf = path->nodes[0];
4588 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4589 write_extent_buffer(leaf, data, ptr, data_size);
4590 btrfs_mark_buffer_dirty(leaf);
62e2749e 4591 }
2c90e5d6 4592 btrfs_free_path(path);
aa5d6bed 4593 return ret;
be0e5c09
CM
4594}
4595
74123bd7 4596/*
5de08d7d 4597 * delete the pointer from a given node.
74123bd7 4598 *
d352ac68
CM
4599 * the tree should have been previously balanced so the deletion does not
4600 * empty a node.
74123bd7 4601 */
143bede5 4602static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
f3ea38da
JS
4603 struct btrfs_path *path, int level, int slot,
4604 int tree_mod_log)
be0e5c09 4605{
5f39d397 4606 struct extent_buffer *parent = path->nodes[level];
7518a238 4607 u32 nritems;
f3ea38da 4608 int ret;
be0e5c09 4609
5f39d397 4610 nritems = btrfs_header_nritems(parent);
d397712b 4611 if (slot != nritems - 1) {
f3ea38da
JS
4612 if (tree_mod_log && level)
4613 tree_mod_log_eb_move(root->fs_info, parent, slot,
4614 slot + 1, nritems - slot - 1);
5f39d397
CM
4615 memmove_extent_buffer(parent,
4616 btrfs_node_key_ptr_offset(slot),
4617 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4618 sizeof(struct btrfs_key_ptr) *
4619 (nritems - slot - 1));
f395694c 4620 } else if (tree_mod_log && level) {
f3ea38da
JS
4621 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4622 MOD_LOG_KEY_REMOVE);
4623 BUG_ON(ret < 0);
bb803951 4624 }
f3ea38da 4625
7518a238 4626 nritems--;
5f39d397 4627 btrfs_set_header_nritems(parent, nritems);
7518a238 4628 if (nritems == 0 && parent == root->node) {
5f39d397 4629 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4630 /* just turn the root into a leaf and break */
5f39d397 4631 btrfs_set_header_level(root->node, 0);
bb803951 4632 } else if (slot == 0) {
5f39d397
CM
4633 struct btrfs_disk_key disk_key;
4634
4635 btrfs_node_key(parent, &disk_key, 0);
143bede5 4636 fixup_low_keys(trans, root, path, &disk_key, level + 1);
be0e5c09 4637 }
d6025579 4638 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4639}
4640
323ac95b
CM
4641/*
4642 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4643 * path->nodes[1].
323ac95b
CM
4644 *
4645 * This deletes the pointer in path->nodes[1] and frees the leaf
4646 * block extent. zero is returned if it all worked out, < 0 otherwise.
4647 *
4648 * The path must have already been setup for deleting the leaf, including
4649 * all the proper balancing. path->nodes[1] must be locked.
4650 */
143bede5
JM
4651static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4652 struct btrfs_root *root,
4653 struct btrfs_path *path,
4654 struct extent_buffer *leaf)
323ac95b 4655{
5d4f98a2 4656 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
f3ea38da 4657 del_ptr(trans, root, path, 1, path->slots[1], 1);
323ac95b 4658
4d081c41
CM
4659 /*
4660 * btrfs_free_extent is expensive, we want to make sure we
4661 * aren't holding any locks when we call it
4662 */
4663 btrfs_unlock_up_safe(path, 0);
4664
f0486c68
YZ
4665 root_sub_used(root, leaf->len);
4666
3083ee2e 4667 extent_buffer_get(leaf);
5581a51a 4668 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4669 free_extent_buffer_stale(leaf);
323ac95b 4670}
74123bd7
CM
4671/*
4672 * delete the item at the leaf level in path. If that empties
4673 * the leaf, remove it from the tree
4674 */
85e21bac
CM
4675int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4676 struct btrfs_path *path, int slot, int nr)
be0e5c09 4677{
5f39d397
CM
4678 struct extent_buffer *leaf;
4679 struct btrfs_item *item;
85e21bac
CM
4680 int last_off;
4681 int dsize = 0;
aa5d6bed
CM
4682 int ret = 0;
4683 int wret;
85e21bac 4684 int i;
7518a238 4685 u32 nritems;
cfed81a0
CM
4686 struct btrfs_map_token token;
4687
4688 btrfs_init_map_token(&token);
be0e5c09 4689
5f39d397 4690 leaf = path->nodes[0];
85e21bac
CM
4691 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4692
4693 for (i = 0; i < nr; i++)
4694 dsize += btrfs_item_size_nr(leaf, slot + i);
4695
5f39d397 4696 nritems = btrfs_header_nritems(leaf);
be0e5c09 4697
85e21bac 4698 if (slot + nr != nritems) {
123abc88 4699 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4700
4701 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4702 data_end + dsize,
4703 btrfs_leaf_data(leaf) + data_end,
85e21bac 4704 last_off - data_end);
5f39d397 4705
85e21bac 4706 for (i = slot + nr; i < nritems; i++) {
5f39d397 4707 u32 ioff;
db94535d 4708
5f39d397 4709 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4710 ioff = btrfs_token_item_offset(leaf, item, &token);
4711 btrfs_set_token_item_offset(leaf, item,
4712 ioff + dsize, &token);
0783fcfc 4713 }
db94535d 4714
5f39d397 4715 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4716 btrfs_item_nr_offset(slot + nr),
d6025579 4717 sizeof(struct btrfs_item) *
85e21bac 4718 (nritems - slot - nr));
be0e5c09 4719 }
85e21bac
CM
4720 btrfs_set_header_nritems(leaf, nritems - nr);
4721 nritems -= nr;
5f39d397 4722
74123bd7 4723 /* delete the leaf if we've emptied it */
7518a238 4724 if (nritems == 0) {
5f39d397
CM
4725 if (leaf == root->node) {
4726 btrfs_set_header_level(leaf, 0);
9a8dd150 4727 } else {
f0486c68
YZ
4728 btrfs_set_path_blocking(path);
4729 clean_tree_block(trans, root, leaf);
143bede5 4730 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4731 }
be0e5c09 4732 } else {
7518a238 4733 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4734 if (slot == 0) {
5f39d397
CM
4735 struct btrfs_disk_key disk_key;
4736
4737 btrfs_item_key(leaf, &disk_key, 0);
143bede5 4738 fixup_low_keys(trans, root, path, &disk_key, 1);
aa5d6bed 4739 }
aa5d6bed 4740
74123bd7 4741 /* delete the leaf if it is mostly empty */
d717aa1d 4742 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4743 /* push_leaf_left fixes the path.
4744 * make sure the path still points to our leaf
4745 * for possible call to del_ptr below
4746 */
4920c9ac 4747 slot = path->slots[1];
5f39d397
CM
4748 extent_buffer_get(leaf);
4749
b9473439 4750 btrfs_set_path_blocking(path);
99d8f83c
CM
4751 wret = push_leaf_left(trans, root, path, 1, 1,
4752 1, (u32)-1);
54aa1f4d 4753 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4754 ret = wret;
5f39d397
CM
4755
4756 if (path->nodes[0] == leaf &&
4757 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4758 wret = push_leaf_right(trans, root, path, 1,
4759 1, 1, 0);
54aa1f4d 4760 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4761 ret = wret;
4762 }
5f39d397
CM
4763
4764 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4765 path->slots[1] = slot;
143bede5 4766 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4767 free_extent_buffer(leaf);
143bede5 4768 ret = 0;
5de08d7d 4769 } else {
925baedd
CM
4770 /* if we're still in the path, make sure
4771 * we're dirty. Otherwise, one of the
4772 * push_leaf functions must have already
4773 * dirtied this buffer
4774 */
4775 if (path->nodes[0] == leaf)
4776 btrfs_mark_buffer_dirty(leaf);
5f39d397 4777 free_extent_buffer(leaf);
be0e5c09 4778 }
d5719762 4779 } else {
5f39d397 4780 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4781 }
4782 }
aa5d6bed 4783 return ret;
be0e5c09
CM
4784}
4785
7bb86316 4786/*
925baedd 4787 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4788 * returns 0 if it found something or 1 if there are no lesser leaves.
4789 * returns < 0 on io errors.
d352ac68
CM
4790 *
4791 * This may release the path, and so you may lose any locks held at the
4792 * time you call it.
7bb86316
CM
4793 */
4794int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4795{
925baedd
CM
4796 struct btrfs_key key;
4797 struct btrfs_disk_key found_key;
4798 int ret;
7bb86316 4799
925baedd 4800 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4801
925baedd
CM
4802 if (key.offset > 0)
4803 key.offset--;
4804 else if (key.type > 0)
4805 key.type--;
4806 else if (key.objectid > 0)
4807 key.objectid--;
4808 else
4809 return 1;
7bb86316 4810
b3b4aa74 4811 btrfs_release_path(path);
925baedd
CM
4812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4813 if (ret < 0)
4814 return ret;
4815 btrfs_item_key(path->nodes[0], &found_key, 0);
4816 ret = comp_keys(&found_key, &key);
4817 if (ret < 0)
4818 return 0;
4819 return 1;
7bb86316
CM
4820}
4821
3f157a2f
CM
4822/*
4823 * A helper function to walk down the tree starting at min_key, and looking
4824 * for nodes or leaves that are either in cache or have a minimum
d352ac68 4825 * transaction id. This is used by the btree defrag code, and tree logging
3f157a2f
CM
4826 *
4827 * This does not cow, but it does stuff the starting key it finds back
4828 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4829 * key and get a writable path.
4830 *
4831 * This does lock as it descends, and path->keep_locks should be set
4832 * to 1 by the caller.
4833 *
4834 * This honors path->lowest_level to prevent descent past a given level
4835 * of the tree.
4836 *
d352ac68
CM
4837 * min_trans indicates the oldest transaction that you are interested
4838 * in walking through. Any nodes or leaves older than min_trans are
4839 * skipped over (without reading them).
4840 *
3f157a2f
CM
4841 * returns zero if something useful was found, < 0 on error and 1 if there
4842 * was nothing in the tree that matched the search criteria.
4843 */
4844int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4845 struct btrfs_key *max_key,
3f157a2f
CM
4846 struct btrfs_path *path, int cache_only,
4847 u64 min_trans)
4848{
4849 struct extent_buffer *cur;
4850 struct btrfs_key found_key;
4851 int slot;
9652480b 4852 int sret;
3f157a2f
CM
4853 u32 nritems;
4854 int level;
4855 int ret = 1;
4856
934d375b 4857 WARN_ON(!path->keep_locks);
3f157a2f 4858again:
bd681513 4859 cur = btrfs_read_lock_root_node(root);
3f157a2f 4860 level = btrfs_header_level(cur);
e02119d5 4861 WARN_ON(path->nodes[level]);
3f157a2f 4862 path->nodes[level] = cur;
bd681513 4863 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4864
4865 if (btrfs_header_generation(cur) < min_trans) {
4866 ret = 1;
4867 goto out;
4868 }
d397712b 4869 while (1) {
3f157a2f
CM
4870 nritems = btrfs_header_nritems(cur);
4871 level = btrfs_header_level(cur);
9652480b 4872 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4873
323ac95b
CM
4874 /* at the lowest level, we're done, setup the path and exit */
4875 if (level == path->lowest_level) {
e02119d5
CM
4876 if (slot >= nritems)
4877 goto find_next_key;
3f157a2f
CM
4878 ret = 0;
4879 path->slots[level] = slot;
4880 btrfs_item_key_to_cpu(cur, &found_key, slot);
4881 goto out;
4882 }
9652480b
Y
4883 if (sret && slot > 0)
4884 slot--;
3f157a2f
CM
4885 /*
4886 * check this node pointer against the cache_only and
4887 * min_trans parameters. If it isn't in cache or is too
4888 * old, skip to the next one.
4889 */
d397712b 4890 while (slot < nritems) {
3f157a2f
CM
4891 u64 blockptr;
4892 u64 gen;
4893 struct extent_buffer *tmp;
e02119d5
CM
4894 struct btrfs_disk_key disk_key;
4895
3f157a2f
CM
4896 blockptr = btrfs_node_blockptr(cur, slot);
4897 gen = btrfs_node_ptr_generation(cur, slot);
4898 if (gen < min_trans) {
4899 slot++;
4900 continue;
4901 }
4902 if (!cache_only)
4903 break;
4904
e02119d5
CM
4905 if (max_key) {
4906 btrfs_node_key(cur, &disk_key, slot);
4907 if (comp_keys(&disk_key, max_key) >= 0) {
4908 ret = 1;
4909 goto out;
4910 }
4911 }
4912
3f157a2f
CM
4913 tmp = btrfs_find_tree_block(root, blockptr,
4914 btrfs_level_size(root, level - 1));
4915
b9fab919 4916 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
3f157a2f
CM
4917 free_extent_buffer(tmp);
4918 break;
4919 }
4920 if (tmp)
4921 free_extent_buffer(tmp);
4922 slot++;
4923 }
e02119d5 4924find_next_key:
3f157a2f
CM
4925 /*
4926 * we didn't find a candidate key in this node, walk forward
4927 * and find another one
4928 */
4929 if (slot >= nritems) {
e02119d5 4930 path->slots[level] = slot;
b4ce94de 4931 btrfs_set_path_blocking(path);
e02119d5 4932 sret = btrfs_find_next_key(root, path, min_key, level,
3f157a2f 4933 cache_only, min_trans);
e02119d5 4934 if (sret == 0) {
b3b4aa74 4935 btrfs_release_path(path);
3f157a2f
CM
4936 goto again;
4937 } else {
4938 goto out;
4939 }
4940 }
4941 /* save our key for returning back */
4942 btrfs_node_key_to_cpu(cur, &found_key, slot);
4943 path->slots[level] = slot;
4944 if (level == path->lowest_level) {
4945 ret = 0;
f7c79f30 4946 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4947 goto out;
4948 }
b4ce94de 4949 btrfs_set_path_blocking(path);
3f157a2f 4950 cur = read_node_slot(root, cur, slot);
79787eaa 4951 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4952
bd681513 4953 btrfs_tree_read_lock(cur);
b4ce94de 4954
bd681513 4955 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4956 path->nodes[level - 1] = cur;
f7c79f30 4957 unlock_up(path, level, 1, 0, NULL);
bd681513 4958 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
4959 }
4960out:
4961 if (ret == 0)
4962 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 4963 btrfs_set_path_blocking(path);
3f157a2f
CM
4964 return ret;
4965}
4966
7069830a
AB
4967static void tree_move_down(struct btrfs_root *root,
4968 struct btrfs_path *path,
4969 int *level, int root_level)
4970{
74dd17fb 4971 BUG_ON(*level == 0);
7069830a
AB
4972 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4973 path->slots[*level]);
4974 path->slots[*level - 1] = 0;
4975 (*level)--;
4976}
4977
4978static int tree_move_next_or_upnext(struct btrfs_root *root,
4979 struct btrfs_path *path,
4980 int *level, int root_level)
4981{
4982 int ret = 0;
4983 int nritems;
4984 nritems = btrfs_header_nritems(path->nodes[*level]);
4985
4986 path->slots[*level]++;
4987
74dd17fb 4988 while (path->slots[*level] >= nritems) {
7069830a
AB
4989 if (*level == root_level)
4990 return -1;
4991
4992 /* move upnext */
4993 path->slots[*level] = 0;
4994 free_extent_buffer(path->nodes[*level]);
4995 path->nodes[*level] = NULL;
4996 (*level)++;
4997 path->slots[*level]++;
4998
4999 nritems = btrfs_header_nritems(path->nodes[*level]);
5000 ret = 1;
5001 }
5002 return ret;
5003}
5004
5005/*
5006 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5007 * or down.
5008 */
5009static int tree_advance(struct btrfs_root *root,
5010 struct btrfs_path *path,
5011 int *level, int root_level,
5012 int allow_down,
5013 struct btrfs_key *key)
5014{
5015 int ret;
5016
5017 if (*level == 0 || !allow_down) {
5018 ret = tree_move_next_or_upnext(root, path, level, root_level);
5019 } else {
5020 tree_move_down(root, path, level, root_level);
5021 ret = 0;
5022 }
5023 if (ret >= 0) {
5024 if (*level == 0)
5025 btrfs_item_key_to_cpu(path->nodes[*level], key,
5026 path->slots[*level]);
5027 else
5028 btrfs_node_key_to_cpu(path->nodes[*level], key,
5029 path->slots[*level]);
5030 }
5031 return ret;
5032}
5033
5034static int tree_compare_item(struct btrfs_root *left_root,
5035 struct btrfs_path *left_path,
5036 struct btrfs_path *right_path,
5037 char *tmp_buf)
5038{
5039 int cmp;
5040 int len1, len2;
5041 unsigned long off1, off2;
5042
5043 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5044 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5045 if (len1 != len2)
5046 return 1;
5047
5048 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5049 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5050 right_path->slots[0]);
5051
5052 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5053
5054 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5055 if (cmp)
5056 return 1;
5057 return 0;
5058}
5059
5060#define ADVANCE 1
5061#define ADVANCE_ONLY_NEXT -1
5062
5063/*
5064 * This function compares two trees and calls the provided callback for
5065 * every changed/new/deleted item it finds.
5066 * If shared tree blocks are encountered, whole subtrees are skipped, making
5067 * the compare pretty fast on snapshotted subvolumes.
5068 *
5069 * This currently works on commit roots only. As commit roots are read only,
5070 * we don't do any locking. The commit roots are protected with transactions.
5071 * Transactions are ended and rejoined when a commit is tried in between.
5072 *
5073 * This function checks for modifications done to the trees while comparing.
5074 * If it detects a change, it aborts immediately.
5075 */
5076int btrfs_compare_trees(struct btrfs_root *left_root,
5077 struct btrfs_root *right_root,
5078 btrfs_changed_cb_t changed_cb, void *ctx)
5079{
5080 int ret;
5081 int cmp;
5082 struct btrfs_trans_handle *trans = NULL;
5083 struct btrfs_path *left_path = NULL;
5084 struct btrfs_path *right_path = NULL;
5085 struct btrfs_key left_key;
5086 struct btrfs_key right_key;
5087 char *tmp_buf = NULL;
5088 int left_root_level;
5089 int right_root_level;
5090 int left_level;
5091 int right_level;
5092 int left_end_reached;
5093 int right_end_reached;
5094 int advance_left;
5095 int advance_right;
5096 u64 left_blockptr;
5097 u64 right_blockptr;
5098 u64 left_start_ctransid;
5099 u64 right_start_ctransid;
5100 u64 ctransid;
5101
5102 left_path = btrfs_alloc_path();
5103 if (!left_path) {
5104 ret = -ENOMEM;
5105 goto out;
5106 }
5107 right_path = btrfs_alloc_path();
5108 if (!right_path) {
5109 ret = -ENOMEM;
5110 goto out;
5111 }
5112
5113 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5114 if (!tmp_buf) {
5115 ret = -ENOMEM;
5116 goto out;
5117 }
5118
5119 left_path->search_commit_root = 1;
5120 left_path->skip_locking = 1;
5121 right_path->search_commit_root = 1;
5122 right_path->skip_locking = 1;
5123
5124 spin_lock(&left_root->root_times_lock);
5125 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5126 spin_unlock(&left_root->root_times_lock);
5127
5128 spin_lock(&right_root->root_times_lock);
5129 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5130 spin_unlock(&right_root->root_times_lock);
5131
5132 trans = btrfs_join_transaction(left_root);
5133 if (IS_ERR(trans)) {
5134 ret = PTR_ERR(trans);
5135 trans = NULL;
5136 goto out;
5137 }
5138
5139 /*
5140 * Strategy: Go to the first items of both trees. Then do
5141 *
5142 * If both trees are at level 0
5143 * Compare keys of current items
5144 * If left < right treat left item as new, advance left tree
5145 * and repeat
5146 * If left > right treat right item as deleted, advance right tree
5147 * and repeat
5148 * If left == right do deep compare of items, treat as changed if
5149 * needed, advance both trees and repeat
5150 * If both trees are at the same level but not at level 0
5151 * Compare keys of current nodes/leafs
5152 * If left < right advance left tree and repeat
5153 * If left > right advance right tree and repeat
5154 * If left == right compare blockptrs of the next nodes/leafs
5155 * If they match advance both trees but stay at the same level
5156 * and repeat
5157 * If they don't match advance both trees while allowing to go
5158 * deeper and repeat
5159 * If tree levels are different
5160 * Advance the tree that needs it and repeat
5161 *
5162 * Advancing a tree means:
5163 * If we are at level 0, try to go to the next slot. If that's not
5164 * possible, go one level up and repeat. Stop when we found a level
5165 * where we could go to the next slot. We may at this point be on a
5166 * node or a leaf.
5167 *
5168 * If we are not at level 0 and not on shared tree blocks, go one
5169 * level deeper.
5170 *
5171 * If we are not at level 0 and on shared tree blocks, go one slot to
5172 * the right if possible or go up and right.
5173 */
5174
5175 left_level = btrfs_header_level(left_root->commit_root);
5176 left_root_level = left_level;
5177 left_path->nodes[left_level] = left_root->commit_root;
5178 extent_buffer_get(left_path->nodes[left_level]);
5179
5180 right_level = btrfs_header_level(right_root->commit_root);
5181 right_root_level = right_level;
5182 right_path->nodes[right_level] = right_root->commit_root;
5183 extent_buffer_get(right_path->nodes[right_level]);
5184
5185 if (left_level == 0)
5186 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5187 &left_key, left_path->slots[left_level]);
5188 else
5189 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5190 &left_key, left_path->slots[left_level]);
5191 if (right_level == 0)
5192 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5193 &right_key, right_path->slots[right_level]);
5194 else
5195 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5196 &right_key, right_path->slots[right_level]);
5197
5198 left_end_reached = right_end_reached = 0;
5199 advance_left = advance_right = 0;
5200
5201 while (1) {
5202 /*
5203 * We need to make sure the transaction does not get committed
5204 * while we do anything on commit roots. This means, we need to
5205 * join and leave transactions for every item that we process.
5206 */
5207 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5208 btrfs_release_path(left_path);
5209 btrfs_release_path(right_path);
5210
5211 ret = btrfs_end_transaction(trans, left_root);
5212 trans = NULL;
5213 if (ret < 0)
5214 goto out;
5215 }
5216 /* now rejoin the transaction */
5217 if (!trans) {
5218 trans = btrfs_join_transaction(left_root);
5219 if (IS_ERR(trans)) {
5220 ret = PTR_ERR(trans);
5221 trans = NULL;
5222 goto out;
5223 }
5224
5225 spin_lock(&left_root->root_times_lock);
5226 ctransid = btrfs_root_ctransid(&left_root->root_item);
5227 spin_unlock(&left_root->root_times_lock);
5228 if (ctransid != left_start_ctransid)
5229 left_start_ctransid = 0;
5230
5231 spin_lock(&right_root->root_times_lock);
5232 ctransid = btrfs_root_ctransid(&right_root->root_item);
5233 spin_unlock(&right_root->root_times_lock);
5234 if (ctransid != right_start_ctransid)
5235 right_start_ctransid = 0;
5236
5237 if (!left_start_ctransid || !right_start_ctransid) {
5238 WARN(1, KERN_WARNING
5239 "btrfs: btrfs_compare_tree detected "
5240 "a change in one of the trees while "
5241 "iterating. This is probably a "
5242 "bug.\n");
5243 ret = -EIO;
5244 goto out;
5245 }
5246
5247 /*
5248 * the commit root may have changed, so start again
5249 * where we stopped
5250 */
5251 left_path->lowest_level = left_level;
5252 right_path->lowest_level = right_level;
5253 ret = btrfs_search_slot(NULL, left_root,
5254 &left_key, left_path, 0, 0);
5255 if (ret < 0)
5256 goto out;
5257 ret = btrfs_search_slot(NULL, right_root,
5258 &right_key, right_path, 0, 0);
5259 if (ret < 0)
5260 goto out;
5261 }
5262
5263 if (advance_left && !left_end_reached) {
5264 ret = tree_advance(left_root, left_path, &left_level,
5265 left_root_level,
5266 advance_left != ADVANCE_ONLY_NEXT,
5267 &left_key);
5268 if (ret < 0)
5269 left_end_reached = ADVANCE;
5270 advance_left = 0;
5271 }
5272 if (advance_right && !right_end_reached) {
5273 ret = tree_advance(right_root, right_path, &right_level,
5274 right_root_level,
5275 advance_right != ADVANCE_ONLY_NEXT,
5276 &right_key);
5277 if (ret < 0)
5278 right_end_reached = ADVANCE;
5279 advance_right = 0;
5280 }
5281
5282 if (left_end_reached && right_end_reached) {
5283 ret = 0;
5284 goto out;
5285 } else if (left_end_reached) {
5286 if (right_level == 0) {
5287 ret = changed_cb(left_root, right_root,
5288 left_path, right_path,
5289 &right_key,
5290 BTRFS_COMPARE_TREE_DELETED,
5291 ctx);
5292 if (ret < 0)
5293 goto out;
5294 }
5295 advance_right = ADVANCE;
5296 continue;
5297 } else if (right_end_reached) {
5298 if (left_level == 0) {
5299 ret = changed_cb(left_root, right_root,
5300 left_path, right_path,
5301 &left_key,
5302 BTRFS_COMPARE_TREE_NEW,
5303 ctx);
5304 if (ret < 0)
5305 goto out;
5306 }
5307 advance_left = ADVANCE;
5308 continue;
5309 }
5310
5311 if (left_level == 0 && right_level == 0) {
5312 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5313 if (cmp < 0) {
5314 ret = changed_cb(left_root, right_root,
5315 left_path, right_path,
5316 &left_key,
5317 BTRFS_COMPARE_TREE_NEW,
5318 ctx);
5319 if (ret < 0)
5320 goto out;
5321 advance_left = ADVANCE;
5322 } else if (cmp > 0) {
5323 ret = changed_cb(left_root, right_root,
5324 left_path, right_path,
5325 &right_key,
5326 BTRFS_COMPARE_TREE_DELETED,
5327 ctx);
5328 if (ret < 0)
5329 goto out;
5330 advance_right = ADVANCE;
5331 } else {
74dd17fb 5332 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5333 ret = tree_compare_item(left_root, left_path,
5334 right_path, tmp_buf);
5335 if (ret) {
74dd17fb 5336 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5337 ret = changed_cb(left_root, right_root,
5338 left_path, right_path,
5339 &left_key,
5340 BTRFS_COMPARE_TREE_CHANGED,
5341 ctx);
5342 if (ret < 0)
5343 goto out;
5344 }
5345 advance_left = ADVANCE;
5346 advance_right = ADVANCE;
5347 }
5348 } else if (left_level == right_level) {
5349 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5350 if (cmp < 0) {
5351 advance_left = ADVANCE;
5352 } else if (cmp > 0) {
5353 advance_right = ADVANCE;
5354 } else {
5355 left_blockptr = btrfs_node_blockptr(
5356 left_path->nodes[left_level],
5357 left_path->slots[left_level]);
5358 right_blockptr = btrfs_node_blockptr(
5359 right_path->nodes[right_level],
5360 right_path->slots[right_level]);
5361 if (left_blockptr == right_blockptr) {
5362 /*
5363 * As we're on a shared block, don't
5364 * allow to go deeper.
5365 */
5366 advance_left = ADVANCE_ONLY_NEXT;
5367 advance_right = ADVANCE_ONLY_NEXT;
5368 } else {
5369 advance_left = ADVANCE;
5370 advance_right = ADVANCE;
5371 }
5372 }
5373 } else if (left_level < right_level) {
5374 advance_right = ADVANCE;
5375 } else {
5376 advance_left = ADVANCE;
5377 }
5378 }
5379
5380out:
5381 btrfs_free_path(left_path);
5382 btrfs_free_path(right_path);
5383 kfree(tmp_buf);
5384
5385 if (trans) {
5386 if (!ret)
5387 ret = btrfs_end_transaction(trans, left_root);
5388 else
5389 btrfs_end_transaction(trans, left_root);
5390 }
5391
5392 return ret;
5393}
5394
3f157a2f
CM
5395/*
5396 * this is similar to btrfs_next_leaf, but does not try to preserve
5397 * and fixup the path. It looks for and returns the next key in the
5398 * tree based on the current path and the cache_only and min_trans
5399 * parameters.
5400 *
5401 * 0 is returned if another key is found, < 0 if there are any errors
5402 * and 1 is returned if there are no higher keys in the tree
5403 *
5404 * path->keep_locks should be set to 1 on the search made before
5405 * calling this function.
5406 */
e7a84565 5407int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
33c66f43 5408 struct btrfs_key *key, int level,
3f157a2f 5409 int cache_only, u64 min_trans)
e7a84565 5410{
e7a84565
CM
5411 int slot;
5412 struct extent_buffer *c;
5413
934d375b 5414 WARN_ON(!path->keep_locks);
d397712b 5415 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5416 if (!path->nodes[level])
5417 return 1;
5418
5419 slot = path->slots[level] + 1;
5420 c = path->nodes[level];
3f157a2f 5421next:
e7a84565 5422 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5423 int ret;
5424 int orig_lowest;
5425 struct btrfs_key cur_key;
5426 if (level + 1 >= BTRFS_MAX_LEVEL ||
5427 !path->nodes[level + 1])
e7a84565 5428 return 1;
33c66f43
YZ
5429
5430 if (path->locks[level + 1]) {
5431 level++;
5432 continue;
5433 }
5434
5435 slot = btrfs_header_nritems(c) - 1;
5436 if (level == 0)
5437 btrfs_item_key_to_cpu(c, &cur_key, slot);
5438 else
5439 btrfs_node_key_to_cpu(c, &cur_key, slot);
5440
5441 orig_lowest = path->lowest_level;
b3b4aa74 5442 btrfs_release_path(path);
33c66f43
YZ
5443 path->lowest_level = level;
5444 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5445 0, 0);
5446 path->lowest_level = orig_lowest;
5447 if (ret < 0)
5448 return ret;
5449
5450 c = path->nodes[level];
5451 slot = path->slots[level];
5452 if (ret == 0)
5453 slot++;
5454 goto next;
e7a84565 5455 }
33c66f43 5456
e7a84565
CM
5457 if (level == 0)
5458 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f
CM
5459 else {
5460 u64 blockptr = btrfs_node_blockptr(c, slot);
5461 u64 gen = btrfs_node_ptr_generation(c, slot);
5462
5463 if (cache_only) {
5464 struct extent_buffer *cur;
5465 cur = btrfs_find_tree_block(root, blockptr,
5466 btrfs_level_size(root, level - 1));
b9fab919
CM
5467 if (!cur ||
5468 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
3f157a2f
CM
5469 slot++;
5470 if (cur)
5471 free_extent_buffer(cur);
5472 goto next;
5473 }
5474 free_extent_buffer(cur);
5475 }
5476 if (gen < min_trans) {
5477 slot++;
5478 goto next;
5479 }
e7a84565 5480 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5481 }
e7a84565
CM
5482 return 0;
5483 }
5484 return 1;
5485}
5486
97571fd0 5487/*
925baedd 5488 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5489 * returns 0 if it found something or 1 if there are no greater leaves.
5490 * returns < 0 on io errors.
97571fd0 5491 */
234b63a0 5492int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5493{
5494 return btrfs_next_old_leaf(root, path, 0);
5495}
5496
5497int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5498 u64 time_seq)
d97e63b6
CM
5499{
5500 int slot;
8e73f275 5501 int level;
5f39d397 5502 struct extent_buffer *c;
8e73f275 5503 struct extent_buffer *next;
925baedd
CM
5504 struct btrfs_key key;
5505 u32 nritems;
5506 int ret;
8e73f275 5507 int old_spinning = path->leave_spinning;
bd681513 5508 int next_rw_lock = 0;
925baedd
CM
5509
5510 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5511 if (nritems == 0)
925baedd 5512 return 1;
925baedd 5513
8e73f275
CM
5514 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5515again:
5516 level = 1;
5517 next = NULL;
bd681513 5518 next_rw_lock = 0;
b3b4aa74 5519 btrfs_release_path(path);
8e73f275 5520
a2135011 5521 path->keep_locks = 1;
31533fb2 5522 path->leave_spinning = 1;
8e73f275 5523
3d7806ec
JS
5524 if (time_seq)
5525 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5526 else
5527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5528 path->keep_locks = 0;
5529
5530 if (ret < 0)
5531 return ret;
5532
a2135011 5533 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5534 /*
5535 * by releasing the path above we dropped all our locks. A balance
5536 * could have added more items next to the key that used to be
5537 * at the very end of the block. So, check again here and
5538 * advance the path if there are now more items available.
5539 */
a2135011 5540 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5541 if (ret == 0)
5542 path->slots[0]++;
8e73f275 5543 ret = 0;
925baedd
CM
5544 goto done;
5545 }
d97e63b6 5546
d397712b 5547 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5548 if (!path->nodes[level]) {
5549 ret = 1;
5550 goto done;
5551 }
5f39d397 5552
d97e63b6
CM
5553 slot = path->slots[level] + 1;
5554 c = path->nodes[level];
5f39d397 5555 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5556 level++;
8e73f275
CM
5557 if (level == BTRFS_MAX_LEVEL) {
5558 ret = 1;
5559 goto done;
5560 }
d97e63b6
CM
5561 continue;
5562 }
5f39d397 5563
925baedd 5564 if (next) {
bd681513 5565 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5566 free_extent_buffer(next);
925baedd 5567 }
5f39d397 5568
8e73f275 5569 next = c;
bd681513 5570 next_rw_lock = path->locks[level];
8e73f275 5571 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5572 slot, &key, 0);
8e73f275
CM
5573 if (ret == -EAGAIN)
5574 goto again;
5f39d397 5575
76a05b35 5576 if (ret < 0) {
b3b4aa74 5577 btrfs_release_path(path);
76a05b35
CM
5578 goto done;
5579 }
5580
5cd57b2c 5581 if (!path->skip_locking) {
bd681513 5582 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5583 if (!ret && time_seq) {
5584 /*
5585 * If we don't get the lock, we may be racing
5586 * with push_leaf_left, holding that lock while
5587 * itself waiting for the leaf we've currently
5588 * locked. To solve this situation, we give up
5589 * on our lock and cycle.
5590 */
cf538830 5591 free_extent_buffer(next);
d42244a0
JS
5592 btrfs_release_path(path);
5593 cond_resched();
5594 goto again;
5595 }
8e73f275
CM
5596 if (!ret) {
5597 btrfs_set_path_blocking(path);
bd681513 5598 btrfs_tree_read_lock(next);
31533fb2 5599 btrfs_clear_path_blocking(path, next,
bd681513 5600 BTRFS_READ_LOCK);
8e73f275 5601 }
31533fb2 5602 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5603 }
d97e63b6
CM
5604 break;
5605 }
5606 path->slots[level] = slot;
d397712b 5607 while (1) {
d97e63b6
CM
5608 level--;
5609 c = path->nodes[level];
925baedd 5610 if (path->locks[level])
bd681513 5611 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5612
5f39d397 5613 free_extent_buffer(c);
d97e63b6
CM
5614 path->nodes[level] = next;
5615 path->slots[level] = 0;
a74a4b97 5616 if (!path->skip_locking)
bd681513 5617 path->locks[level] = next_rw_lock;
d97e63b6
CM
5618 if (!level)
5619 break;
b4ce94de 5620
8e73f275 5621 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5622 0, &key, 0);
8e73f275
CM
5623 if (ret == -EAGAIN)
5624 goto again;
5625
76a05b35 5626 if (ret < 0) {
b3b4aa74 5627 btrfs_release_path(path);
76a05b35
CM
5628 goto done;
5629 }
5630
5cd57b2c 5631 if (!path->skip_locking) {
bd681513 5632 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5633 if (!ret) {
5634 btrfs_set_path_blocking(path);
bd681513 5635 btrfs_tree_read_lock(next);
31533fb2 5636 btrfs_clear_path_blocking(path, next,
bd681513
CM
5637 BTRFS_READ_LOCK);
5638 }
31533fb2 5639 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5640 }
d97e63b6 5641 }
8e73f275 5642 ret = 0;
925baedd 5643done:
f7c79f30 5644 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5645 path->leave_spinning = old_spinning;
5646 if (!old_spinning)
5647 btrfs_set_path_blocking(path);
5648
5649 return ret;
d97e63b6 5650}
0b86a832 5651
3f157a2f
CM
5652/*
5653 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5654 * searching until it gets past min_objectid or finds an item of 'type'
5655 *
5656 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5657 */
0b86a832
CM
5658int btrfs_previous_item(struct btrfs_root *root,
5659 struct btrfs_path *path, u64 min_objectid,
5660 int type)
5661{
5662 struct btrfs_key found_key;
5663 struct extent_buffer *leaf;
e02119d5 5664 u32 nritems;
0b86a832
CM
5665 int ret;
5666
d397712b 5667 while (1) {
0b86a832 5668 if (path->slots[0] == 0) {
b4ce94de 5669 btrfs_set_path_blocking(path);
0b86a832
CM
5670 ret = btrfs_prev_leaf(root, path);
5671 if (ret != 0)
5672 return ret;
5673 } else {
5674 path->slots[0]--;
5675 }
5676 leaf = path->nodes[0];
e02119d5
CM
5677 nritems = btrfs_header_nritems(leaf);
5678 if (nritems == 0)
5679 return 1;
5680 if (path->slots[0] == nritems)
5681 path->slots[0]--;
5682
0b86a832 5683 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5684 if (found_key.objectid < min_objectid)
5685 break;
0a4eefbb
YZ
5686 if (found_key.type == type)
5687 return 0;
e02119d5
CM
5688 if (found_key.objectid == min_objectid &&
5689 found_key.type < type)
5690 break;
0b86a832
CM
5691 }
5692 return 1;
5693}