]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/ctree.c
Btrfs: fix unnecessary while loop when search the free space, cache
[people/ms/linux.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
143bede5 40static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
f3ea38da
JS
41 struct btrfs_path *path, int level, int slot,
42 int tree_mod_log);
f230475e
JS
43static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 struct extent_buffer *eb);
45struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 u32 blocksize, u64 parent_transid,
47 u64 time_seq);
48struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 u64 bytenr, u32 blocksize,
50 u64 time_seq);
d97e63b6 51
df24a2b9 52struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 53{
df24a2b9 54 struct btrfs_path *path;
e00f7308 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 56 return path;
2c90e5d6
CM
57}
58
b4ce94de
CM
59/*
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
62 */
63noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64{
65 int i;
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
67 if (!p->nodes[i] || !p->locks[i])
68 continue;
69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 if (p->locks[i] == BTRFS_READ_LOCK)
71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
74 }
75}
76
77/*
78 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
79 *
80 * held is used to keep lockdep happy, when lockdep is enabled
81 * we set held to a blocking lock before we go around and
82 * retake all the spinlocks in the path. You can safely use NULL
83 * for held
b4ce94de 84 */
4008c04a 85noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 86 struct extent_buffer *held, int held_rw)
b4ce94de
CM
87{
88 int i;
4008c04a
CM
89
90#ifdef CONFIG_DEBUG_LOCK_ALLOC
91 /* lockdep really cares that we take all of these spinlocks
92 * in the right order. If any of the locks in the path are not
93 * currently blocking, it is going to complain. So, make really
94 * really sure by forcing the path to blocking before we clear
95 * the path blocking.
96 */
bd681513
CM
97 if (held) {
98 btrfs_set_lock_blocking_rw(held, held_rw);
99 if (held_rw == BTRFS_WRITE_LOCK)
100 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 else if (held_rw == BTRFS_READ_LOCK)
102 held_rw = BTRFS_READ_LOCK_BLOCKING;
103 }
4008c04a
CM
104 btrfs_set_path_blocking(p);
105#endif
106
107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
108 if (p->nodes[i] && p->locks[i]) {
109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 p->locks[i] = BTRFS_WRITE_LOCK;
112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 p->locks[i] = BTRFS_READ_LOCK;
114 }
b4ce94de 115 }
4008c04a
CM
116
117#ifdef CONFIG_DEBUG_LOCK_ALLOC
118 if (held)
bd681513 119 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 120#endif
b4ce94de
CM
121}
122
d352ac68 123/* this also releases the path */
df24a2b9 124void btrfs_free_path(struct btrfs_path *p)
be0e5c09 125{
ff175d57
JJ
126 if (!p)
127 return;
b3b4aa74 128 btrfs_release_path(p);
df24a2b9 129 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
130}
131
d352ac68
CM
132/*
133 * path release drops references on the extent buffers in the path
134 * and it drops any locks held by this path
135 *
136 * It is safe to call this on paths that no locks or extent buffers held.
137 */
b3b4aa74 138noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
139{
140 int i;
a2135011 141
234b63a0 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 143 p->slots[i] = 0;
eb60ceac 144 if (!p->nodes[i])
925baedd
CM
145 continue;
146 if (p->locks[i]) {
bd681513 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
148 p->locks[i] = 0;
149 }
5f39d397 150 free_extent_buffer(p->nodes[i]);
3f157a2f 151 p->nodes[i] = NULL;
eb60ceac
CM
152 }
153}
154
d352ac68
CM
155/*
156 * safely gets a reference on the root node of a tree. A lock
157 * is not taken, so a concurrent writer may put a different node
158 * at the root of the tree. See btrfs_lock_root_node for the
159 * looping required.
160 *
161 * The extent buffer returned by this has a reference taken, so
162 * it won't disappear. It may stop being the root of the tree
163 * at any time because there are no locks held.
164 */
925baedd
CM
165struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166{
167 struct extent_buffer *eb;
240f62c8 168
3083ee2e
JB
169 while (1) {
170 rcu_read_lock();
171 eb = rcu_dereference(root->node);
172
173 /*
174 * RCU really hurts here, we could free up the root node because
175 * it was cow'ed but we may not get the new root node yet so do
176 * the inc_not_zero dance and if it doesn't work then
177 * synchronize_rcu and try again.
178 */
179 if (atomic_inc_not_zero(&eb->refs)) {
180 rcu_read_unlock();
181 break;
182 }
183 rcu_read_unlock();
184 synchronize_rcu();
185 }
925baedd
CM
186 return eb;
187}
188
d352ac68
CM
189/* loop around taking references on and locking the root node of the
190 * tree until you end up with a lock on the root. A locked buffer
191 * is returned, with a reference held.
192 */
925baedd
CM
193struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194{
195 struct extent_buffer *eb;
196
d397712b 197 while (1) {
925baedd
CM
198 eb = btrfs_root_node(root);
199 btrfs_tree_lock(eb);
240f62c8 200 if (eb == root->node)
925baedd 201 break;
925baedd
CM
202 btrfs_tree_unlock(eb);
203 free_extent_buffer(eb);
204 }
205 return eb;
206}
207
bd681513
CM
208/* loop around taking references on and locking the root node of the
209 * tree until you end up with a lock on the root. A locked buffer
210 * is returned, with a reference held.
211 */
212struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213{
214 struct extent_buffer *eb;
215
216 while (1) {
217 eb = btrfs_root_node(root);
218 btrfs_tree_read_lock(eb);
219 if (eb == root->node)
220 break;
221 btrfs_tree_read_unlock(eb);
222 free_extent_buffer(eb);
223 }
224 return eb;
225}
226
d352ac68
CM
227/* cowonly root (everything not a reference counted cow subvolume), just get
228 * put onto a simple dirty list. transaction.c walks this to make sure they
229 * get properly updated on disk.
230 */
0b86a832
CM
231static void add_root_to_dirty_list(struct btrfs_root *root)
232{
e5846fc6 233 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
234 if (root->track_dirty && list_empty(&root->dirty_list)) {
235 list_add(&root->dirty_list,
236 &root->fs_info->dirty_cowonly_roots);
237 }
e5846fc6 238 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
239}
240
d352ac68
CM
241/*
242 * used by snapshot creation to make a copy of a root for a tree with
243 * a given objectid. The buffer with the new root node is returned in
244 * cow_ret, and this func returns zero on success or a negative error code.
245 */
be20aa9d
CM
246int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root,
248 struct extent_buffer *buf,
249 struct extent_buffer **cow_ret, u64 new_root_objectid)
250{
251 struct extent_buffer *cow;
be20aa9d
CM
252 int ret = 0;
253 int level;
5d4f98a2 254 struct btrfs_disk_key disk_key;
be20aa9d
CM
255
256 WARN_ON(root->ref_cows && trans->transid !=
257 root->fs_info->running_transaction->transid);
258 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260 level = btrfs_header_level(buf);
5d4f98a2
YZ
261 if (level == 0)
262 btrfs_item_key(buf, &disk_key, 0);
263 else
264 btrfs_node_key(buf, &disk_key, 0);
31840ae1 265
5d4f98a2
YZ
266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 new_root_objectid, &disk_key, level,
5581a51a 268 buf->start, 0);
5d4f98a2 269 if (IS_ERR(cow))
be20aa9d
CM
270 return PTR_ERR(cow);
271
272 copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 btrfs_set_header_bytenr(cow, cow->start);
274 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 BTRFS_HEADER_FLAG_RELOC);
278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 else
281 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 282
2b82032c
YZ
283 write_extent_buffer(cow, root->fs_info->fsid,
284 (unsigned long)btrfs_header_fsid(cow),
285 BTRFS_FSID_SIZE);
286
be20aa9d 287 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 290 else
66d7e7f0 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 292
be20aa9d
CM
293 if (ret)
294 return ret;
295
296 btrfs_mark_buffer_dirty(cow);
297 *cow_ret = cow;
298 return 0;
299}
300
bd989ba3
JS
301enum mod_log_op {
302 MOD_LOG_KEY_REPLACE,
303 MOD_LOG_KEY_ADD,
304 MOD_LOG_KEY_REMOVE,
305 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 MOD_LOG_MOVE_KEYS,
308 MOD_LOG_ROOT_REPLACE,
309};
310
311struct tree_mod_move {
312 int dst_slot;
313 int nr_items;
314};
315
316struct tree_mod_root {
317 u64 logical;
318 u8 level;
319};
320
321struct tree_mod_elem {
322 struct rb_node node;
323 u64 index; /* shifted logical */
097b8a7c 324 u64 seq;
bd989ba3
JS
325 enum mod_log_op op;
326
327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 int slot;
329
330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 u64 generation;
332
333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 struct btrfs_disk_key key;
335 u64 blockptr;
336
337 /* this is used for op == MOD_LOG_MOVE_KEYS */
338 struct tree_mod_move move;
339
340 /* this is used for op == MOD_LOG_ROOT_REPLACE */
341 struct tree_mod_root old_root;
342};
343
097b8a7c 344static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 345{
097b8a7c 346 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
347}
348
097b8a7c
JS
349static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350{
351 read_unlock(&fs_info->tree_mod_log_lock);
352}
353
354static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355{
356 write_lock(&fs_info->tree_mod_log_lock);
357}
358
359static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360{
361 write_unlock(&fs_info->tree_mod_log_lock);
362}
363
364/*
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
370 * blocker was added.
371 */
372u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 struct seq_list *elem)
bd989ba3 374{
097b8a7c
JS
375 u64 seq;
376
377 tree_mod_log_write_lock(fs_info);
bd989ba3 378 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
379 if (!elem->seq) {
380 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 }
383 seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 384 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
385 tree_mod_log_write_unlock(fs_info);
386
387 return seq;
bd989ba3
JS
388}
389
390void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 struct seq_list *elem)
392{
393 struct rb_root *tm_root;
394 struct rb_node *node;
395 struct rb_node *next;
396 struct seq_list *cur_elem;
397 struct tree_mod_elem *tm;
398 u64 min_seq = (u64)-1;
399 u64 seq_putting = elem->seq;
400
401 if (!seq_putting)
402 return;
403
bd989ba3
JS
404 spin_lock(&fs_info->tree_mod_seq_lock);
405 list_del(&elem->list);
097b8a7c 406 elem->seq = 0;
bd989ba3
JS
407
408 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 409 if (cur_elem->seq < min_seq) {
bd989ba3
JS
410 if (seq_putting > cur_elem->seq) {
411 /*
412 * blocker with lower sequence number exists, we
413 * cannot remove anything from the log
414 */
097b8a7c
JS
415 spin_unlock(&fs_info->tree_mod_seq_lock);
416 return;
bd989ba3
JS
417 }
418 min_seq = cur_elem->seq;
419 }
420 }
097b8a7c
JS
421 spin_unlock(&fs_info->tree_mod_seq_lock);
422
bd989ba3
JS
423 /*
424 * anything that's lower than the lowest existing (read: blocked)
425 * sequence number can be removed from the tree.
426 */
097b8a7c 427 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
428 tm_root = &fs_info->tree_mod_log;
429 for (node = rb_first(tm_root); node; node = next) {
430 next = rb_next(node);
431 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 432 if (tm->seq > min_seq)
bd989ba3
JS
433 continue;
434 rb_erase(node, tm_root);
bd989ba3
JS
435 kfree(tm);
436 }
097b8a7c 437 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
438}
439
440/*
441 * key order of the log:
442 * index -> sequence
443 *
444 * the index is the shifted logical of the *new* root node for root replace
445 * operations, or the shifted logical of the affected block for all other
446 * operations.
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
bd989ba3 455
097b8a7c 456 BUG_ON(!tm || !tm->seq);
bd989ba3 457
bd989ba3
JS
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = container_of(*new, struct tree_mod_elem, node);
462 parent = *new;
463 if (cur->index < tm->index)
464 new = &((*new)->rb_left);
465 else if (cur->index > tm->index)
466 new = &((*new)->rb_right);
097b8a7c 467 else if (cur->seq < tm->seq)
bd989ba3 468 new = &((*new)->rb_left);
097b8a7c 469 else if (cur->seq > tm->seq)
bd989ba3
JS
470 new = &((*new)->rb_right);
471 else {
472 kfree(tm);
097b8a7c 473 return -EEXIST;
bd989ba3
JS
474 }
475 }
476
477 rb_link_node(&tm->node, parent, new);
478 rb_insert_color(&tm->node, tm_root);
097b8a7c 479 return 0;
bd989ba3
JS
480}
481
097b8a7c
JS
482/*
483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
485 * this until all tree mod log insertions are recorded in the rb tree and then
486 * call tree_mod_log_write_unlock() to release.
487 */
e9b7fd4d
JS
488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 struct extent_buffer *eb) {
490 smp_mb();
491 if (list_empty(&(fs_info)->tree_mod_seq_list))
492 return 1;
097b8a7c
JS
493 if (eb && btrfs_header_level(eb) == 0)
494 return 1;
495
496 tree_mod_log_write_lock(fs_info);
497 if (list_empty(&fs_info->tree_mod_seq_list)) {
498 /*
499 * someone emptied the list while we were waiting for the lock.
500 * we must not add to the list when no blocker exists.
501 */
502 tree_mod_log_write_unlock(fs_info);
e9b7fd4d 503 return 1;
097b8a7c
JS
504 }
505
e9b7fd4d
JS
506 return 0;
507}
508
3310c36e 509/*
097b8a7c 510 * This allocates memory and gets a tree modification sequence number.
3310c36e 511 *
097b8a7c
JS
512 * Returns <0 on error.
513 * Returns >0 (the added sequence number) on success.
3310c36e 514 */
926dd8a6
JS
515static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
516 struct tree_mod_elem **tm_ret)
bd989ba3
JS
517{
518 struct tree_mod_elem *tm;
bd989ba3 519
097b8a7c
JS
520 /*
521 * once we switch from spin locks to something different, we should
522 * honor the flags parameter here.
523 */
524 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
bd989ba3
JS
525 if (!tm)
526 return -ENOMEM;
527
097b8a7c
JS
528 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
529 return tm->seq;
bd989ba3
JS
530}
531
097b8a7c
JS
532static inline int
533__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
534 struct extent_buffer *eb, int slot,
535 enum mod_log_op op, gfp_t flags)
bd989ba3 536{
bd989ba3 537 int ret;
097b8a7c 538 struct tree_mod_elem *tm;
bd989ba3
JS
539
540 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c 541 if (ret < 0)
bd989ba3
JS
542 return ret;
543
544 tm->index = eb->start >> PAGE_CACHE_SHIFT;
545 if (op != MOD_LOG_KEY_ADD) {
546 btrfs_node_key(eb, &tm->key, slot);
547 tm->blockptr = btrfs_node_blockptr(eb, slot);
548 }
549 tm->op = op;
550 tm->slot = slot;
551 tm->generation = btrfs_node_ptr_generation(eb, slot);
552
097b8a7c
JS
553 return __tree_mod_log_insert(fs_info, tm);
554}
555
556static noinline int
557tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
558 struct extent_buffer *eb, int slot,
559 enum mod_log_op op, gfp_t flags)
560{
561 int ret;
562
563 if (tree_mod_dont_log(fs_info, eb))
564 return 0;
565
566 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
567
568 tree_mod_log_write_unlock(fs_info);
3310c36e 569 return ret;
bd989ba3
JS
570}
571
572static noinline int
573tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
574 int slot, enum mod_log_op op)
575{
576 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
577}
578
097b8a7c
JS
579static noinline int
580tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
581 struct extent_buffer *eb, int slot,
582 enum mod_log_op op)
583{
584 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
585}
586
bd989ba3
JS
587static noinline int
588tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
589 struct extent_buffer *eb, int dst_slot, int src_slot,
590 int nr_items, gfp_t flags)
591{
592 struct tree_mod_elem *tm;
593 int ret;
594 int i;
595
f395694c
JS
596 if (tree_mod_dont_log(fs_info, eb))
597 return 0;
bd989ba3 598
01763a2e
JS
599 /*
600 * When we override something during the move, we log these removals.
601 * This can only happen when we move towards the beginning of the
602 * buffer, i.e. dst_slot < src_slot.
603 */
bd989ba3 604 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
097b8a7c 605 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
bd989ba3
JS
606 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
607 BUG_ON(ret < 0);
608 }
609
f395694c 610 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
611 if (ret < 0)
612 goto out;
f395694c 613
bd989ba3
JS
614 tm->index = eb->start >> PAGE_CACHE_SHIFT;
615 tm->slot = src_slot;
616 tm->move.dst_slot = dst_slot;
617 tm->move.nr_items = nr_items;
618 tm->op = MOD_LOG_MOVE_KEYS;
619
3310c36e 620 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
621out:
622 tree_mod_log_write_unlock(fs_info);
3310c36e 623 return ret;
bd989ba3
JS
624}
625
097b8a7c
JS
626static inline void
627__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
628{
629 int i;
630 u32 nritems;
631 int ret;
632
b12a3b1e
CM
633 if (btrfs_header_level(eb) == 0)
634 return;
635
097b8a7c
JS
636 nritems = btrfs_header_nritems(eb);
637 for (i = nritems - 1; i >= 0; i--) {
638 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
639 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
640 BUG_ON(ret < 0);
641 }
642}
643
bd989ba3
JS
644static noinline int
645tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
646 struct extent_buffer *old_root,
647 struct extent_buffer *new_root, gfp_t flags)
648{
649 struct tree_mod_elem *tm;
650 int ret;
651
097b8a7c
JS
652 if (tree_mod_dont_log(fs_info, NULL))
653 return 0;
654
bd989ba3 655 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
656 if (ret < 0)
657 goto out;
bd989ba3
JS
658
659 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
664
3310c36e 665 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
666out:
667 tree_mod_log_write_unlock(fs_info);
3310c36e 668 return ret;
bd989ba3
JS
669}
670
671static struct tree_mod_elem *
672__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
673 int smallest)
674{
675 struct rb_root *tm_root;
676 struct rb_node *node;
677 struct tree_mod_elem *cur = NULL;
678 struct tree_mod_elem *found = NULL;
679 u64 index = start >> PAGE_CACHE_SHIFT;
680
097b8a7c 681 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
682 tm_root = &fs_info->tree_mod_log;
683 node = tm_root->rb_node;
684 while (node) {
685 cur = container_of(node, struct tree_mod_elem, node);
686 if (cur->index < index) {
687 node = node->rb_left;
688 } else if (cur->index > index) {
689 node = node->rb_right;
097b8a7c 690 } else if (cur->seq < min_seq) {
bd989ba3
JS
691 node = node->rb_left;
692 } else if (!smallest) {
693 /* we want the node with the highest seq */
694 if (found)
097b8a7c 695 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
696 found = cur;
697 node = node->rb_left;
097b8a7c 698 } else if (cur->seq > min_seq) {
bd989ba3
JS
699 /* we want the node with the smallest seq */
700 if (found)
097b8a7c 701 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
702 found = cur;
703 node = node->rb_right;
704 } else {
705 found = cur;
706 break;
707 }
708 }
097b8a7c 709 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
710
711 return found;
712}
713
714/*
715 * this returns the element from the log with the smallest time sequence
716 * value that's in the log (the oldest log item). any element with a time
717 * sequence lower than min_seq will be ignored.
718 */
719static struct tree_mod_elem *
720tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
721 u64 min_seq)
722{
723 return __tree_mod_log_search(fs_info, start, min_seq, 1);
724}
725
726/*
727 * this returns the element from the log with the largest time sequence
728 * value that's in the log (the most recent log item). any element with
729 * a time sequence lower than min_seq will be ignored.
730 */
731static struct tree_mod_elem *
732tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
733{
734 return __tree_mod_log_search(fs_info, start, min_seq, 0);
735}
736
097b8a7c 737static noinline void
bd989ba3
JS
738tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
739 struct extent_buffer *src, unsigned long dst_offset,
740 unsigned long src_offset, int nr_items)
741{
742 int ret;
743 int i;
744
e9b7fd4d 745 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
746 return;
747
097b8a7c
JS
748 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
749 tree_mod_log_write_unlock(fs_info);
bd989ba3 750 return;
097b8a7c 751 }
bd989ba3 752
bd989ba3 753 for (i = 0; i < nr_items; i++) {
097b8a7c
JS
754 ret = tree_mod_log_insert_key_locked(fs_info, src,
755 i + src_offset,
756 MOD_LOG_KEY_REMOVE);
bd989ba3 757 BUG_ON(ret < 0);
097b8a7c
JS
758 ret = tree_mod_log_insert_key_locked(fs_info, dst,
759 i + dst_offset,
760 MOD_LOG_KEY_ADD);
bd989ba3
JS
761 BUG_ON(ret < 0);
762 }
097b8a7c
JS
763
764 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
765}
766
767static inline void
768tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
769 int dst_offset, int src_offset, int nr_items)
770{
771 int ret;
772 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
773 nr_items, GFP_NOFS);
774 BUG_ON(ret < 0);
775}
776
097b8a7c 777static noinline void
bd989ba3
JS
778tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
779 struct extent_buffer *eb,
780 struct btrfs_disk_key *disk_key, int slot, int atomic)
781{
782 int ret;
783
784 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
785 MOD_LOG_KEY_REPLACE,
786 atomic ? GFP_ATOMIC : GFP_NOFS);
787 BUG_ON(ret < 0);
788}
789
097b8a7c
JS
790static noinline void
791tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 792{
e9b7fd4d 793 if (tree_mod_dont_log(fs_info, eb))
bd989ba3
JS
794 return;
795
097b8a7c
JS
796 __tree_mod_log_free_eb(fs_info, eb);
797
798 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
799}
800
097b8a7c 801static noinline void
bd989ba3
JS
802tree_mod_log_set_root_pointer(struct btrfs_root *root,
803 struct extent_buffer *new_root_node)
804{
805 int ret;
bd989ba3
JS
806 ret = tree_mod_log_insert_root(root->fs_info, root->node,
807 new_root_node, GFP_NOFS);
808 BUG_ON(ret < 0);
809}
810
5d4f98a2
YZ
811/*
812 * check if the tree block can be shared by multiple trees
813 */
814int btrfs_block_can_be_shared(struct btrfs_root *root,
815 struct extent_buffer *buf)
816{
817 /*
818 * Tree blocks not in refernece counted trees and tree roots
819 * are never shared. If a block was allocated after the last
820 * snapshot and the block was not allocated by tree relocation,
821 * we know the block is not shared.
822 */
823 if (root->ref_cows &&
824 buf != root->node && buf != root->commit_root &&
825 (btrfs_header_generation(buf) <=
826 btrfs_root_last_snapshot(&root->root_item) ||
827 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
828 return 1;
829#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
830 if (root->ref_cows &&
831 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
832 return 1;
833#endif
834 return 0;
835}
836
837static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct extent_buffer *buf,
f0486c68
YZ
840 struct extent_buffer *cow,
841 int *last_ref)
5d4f98a2
YZ
842{
843 u64 refs;
844 u64 owner;
845 u64 flags;
846 u64 new_flags = 0;
847 int ret;
848
849 /*
850 * Backrefs update rules:
851 *
852 * Always use full backrefs for extent pointers in tree block
853 * allocated by tree relocation.
854 *
855 * If a shared tree block is no longer referenced by its owner
856 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
857 * use full backrefs for extent pointers in tree block.
858 *
859 * If a tree block is been relocating
860 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
861 * use full backrefs for extent pointers in tree block.
862 * The reason for this is some operations (such as drop tree)
863 * are only allowed for blocks use full backrefs.
864 */
865
866 if (btrfs_block_can_be_shared(root, buf)) {
867 ret = btrfs_lookup_extent_info(trans, root, buf->start,
868 buf->len, &refs, &flags);
be1a5564
MF
869 if (ret)
870 return ret;
e5df9573
MF
871 if (refs == 0) {
872 ret = -EROFS;
873 btrfs_std_error(root->fs_info, ret);
874 return ret;
875 }
5d4f98a2
YZ
876 } else {
877 refs = 1;
878 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
879 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
880 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881 else
882 flags = 0;
883 }
884
885 owner = btrfs_header_owner(buf);
886 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
887 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
888
889 if (refs > 1) {
890 if ((owner == root->root_key.objectid ||
891 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
892 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 893 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 894 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
895
896 if (root->root_key.objectid ==
897 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 898 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 899 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 900 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 901 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
902 }
903 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
904 } else {
905
906 if (root->root_key.objectid ==
907 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 908 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 909 else
66d7e7f0 910 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 911 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
912 }
913 if (new_flags != 0) {
914 ret = btrfs_set_disk_extent_flags(trans, root,
915 buf->start,
916 buf->len,
917 new_flags, 0);
be1a5564
MF
918 if (ret)
919 return ret;
5d4f98a2
YZ
920 }
921 } else {
922 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
923 if (root->root_key.objectid ==
924 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 925 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 926 else
66d7e7f0 927 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 928 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 929 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 930 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 931 }
ba1bfbd5 932 tree_mod_log_free_eb(root->fs_info, buf);
5d4f98a2 933 clean_tree_block(trans, root, buf);
f0486c68 934 *last_ref = 1;
5d4f98a2
YZ
935 }
936 return 0;
937}
938
d352ac68 939/*
d397712b
CM
940 * does the dirty work in cow of a single block. The parent block (if
941 * supplied) is updated to point to the new cow copy. The new buffer is marked
942 * dirty and returned locked. If you modify the block it needs to be marked
943 * dirty again.
d352ac68
CM
944 *
945 * search_start -- an allocation hint for the new block
946 *
d397712b
CM
947 * empty_size -- a hint that you plan on doing more cow. This is the size in
948 * bytes the allocator should try to find free next to the block it returns.
949 * This is just a hint and may be ignored by the allocator.
d352ac68 950 */
d397712b 951static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
952 struct btrfs_root *root,
953 struct extent_buffer *buf,
954 struct extent_buffer *parent, int parent_slot,
955 struct extent_buffer **cow_ret,
9fa8cfe7 956 u64 search_start, u64 empty_size)
02217ed2 957{
5d4f98a2 958 struct btrfs_disk_key disk_key;
5f39d397 959 struct extent_buffer *cow;
be1a5564 960 int level, ret;
f0486c68 961 int last_ref = 0;
925baedd 962 int unlock_orig = 0;
5d4f98a2 963 u64 parent_start;
7bb86316 964
925baedd
CM
965 if (*cow_ret == buf)
966 unlock_orig = 1;
967
b9447ef8 968 btrfs_assert_tree_locked(buf);
925baedd 969
7bb86316
CM
970 WARN_ON(root->ref_cows && trans->transid !=
971 root->fs_info->running_transaction->transid);
6702ed49 972 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 973
7bb86316 974 level = btrfs_header_level(buf);
31840ae1 975
5d4f98a2
YZ
976 if (level == 0)
977 btrfs_item_key(buf, &disk_key, 0);
978 else
979 btrfs_node_key(buf, &disk_key, 0);
980
981 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
982 if (parent)
983 parent_start = parent->start;
984 else
985 parent_start = 0;
986 } else
987 parent_start = 0;
988
989 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
990 root->root_key.objectid, &disk_key,
5581a51a 991 level, search_start, empty_size);
54aa1f4d
CM
992 if (IS_ERR(cow))
993 return PTR_ERR(cow);
6702ed49 994
b4ce94de
CM
995 /* cow is set to blocking by btrfs_init_new_buffer */
996
5f39d397 997 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 998 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 999 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1000 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1001 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1002 BTRFS_HEADER_FLAG_RELOC);
1003 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1004 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1005 else
1006 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1007
2b82032c
YZ
1008 write_extent_buffer(cow, root->fs_info->fsid,
1009 (unsigned long)btrfs_header_fsid(cow),
1010 BTRFS_FSID_SIZE);
1011
be1a5564 1012 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1013 if (ret) {
79787eaa 1014 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1015 return ret;
1016 }
1a40e23b 1017
3fd0a558
YZ
1018 if (root->ref_cows)
1019 btrfs_reloc_cow_block(trans, root, buf, cow);
1020
02217ed2 1021 if (buf == root->node) {
925baedd 1022 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1023 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025 parent_start = buf->start;
1026 else
1027 parent_start = 0;
925baedd 1028
5f39d397 1029 extent_buffer_get(cow);
f230475e 1030 tree_mod_log_set_root_pointer(root, cow);
240f62c8 1031 rcu_assign_pointer(root->node, cow);
925baedd 1032
f0486c68 1033 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1034 last_ref);
5f39d397 1035 free_extent_buffer(buf);
0b86a832 1036 add_root_to_dirty_list(root);
02217ed2 1037 } else {
5d4f98a2
YZ
1038 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1039 parent_start = parent->start;
1040 else
1041 parent_start = 0;
1042
1043 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e
JS
1044 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1045 MOD_LOG_KEY_REPLACE);
5f39d397 1046 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1047 cow->start);
74493f7a
CM
1048 btrfs_set_node_ptr_generation(parent, parent_slot,
1049 trans->transid);
d6025579 1050 btrfs_mark_buffer_dirty(parent);
f0486c68 1051 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1052 last_ref);
02217ed2 1053 }
925baedd
CM
1054 if (unlock_orig)
1055 btrfs_tree_unlock(buf);
3083ee2e 1056 free_extent_buffer_stale(buf);
ccd467d6 1057 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1058 *cow_ret = cow;
02217ed2
CM
1059 return 0;
1060}
1061
5d9e75c4
JS
1062/*
1063 * returns the logical address of the oldest predecessor of the given root.
1064 * entries older than time_seq are ignored.
1065 */
1066static struct tree_mod_elem *
1067__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1068 struct btrfs_root *root, u64 time_seq)
1069{
1070 struct tree_mod_elem *tm;
1071 struct tree_mod_elem *found = NULL;
1072 u64 root_logical = root->node->start;
1073 int looped = 0;
1074
1075 if (!time_seq)
1076 return 0;
1077
1078 /*
1079 * the very last operation that's logged for a root is the replacement
1080 * operation (if it is replaced at all). this has the index of the *new*
1081 * root, making it the very first operation that's logged for this root.
1082 */
1083 while (1) {
1084 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1085 time_seq);
1086 if (!looped && !tm)
1087 return 0;
1088 /*
28da9fb4
JS
1089 * if there are no tree operation for the oldest root, we simply
1090 * return it. this should only happen if that (old) root is at
1091 * level 0.
5d9e75c4 1092 */
28da9fb4
JS
1093 if (!tm)
1094 break;
5d9e75c4 1095
28da9fb4
JS
1096 /*
1097 * if there's an operation that's not a root replacement, we
1098 * found the oldest version of our root. normally, we'll find a
1099 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1100 */
5d9e75c4
JS
1101 if (tm->op != MOD_LOG_ROOT_REPLACE)
1102 break;
1103
1104 found = tm;
1105 root_logical = tm->old_root.logical;
1106 BUG_ON(root_logical == root->node->start);
1107 looped = 1;
1108 }
1109
a95236d9
JS
1110 /* if there's no old root to return, return what we found instead */
1111 if (!found)
1112 found = tm;
1113
5d9e75c4
JS
1114 return found;
1115}
1116
1117/*
1118 * tm is a pointer to the first operation to rewind within eb. then, all
1119 * previous operations will be rewinded (until we reach something older than
1120 * time_seq).
1121 */
1122static void
1123__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1124 struct tree_mod_elem *first_tm)
1125{
1126 u32 n;
1127 struct rb_node *next;
1128 struct tree_mod_elem *tm = first_tm;
1129 unsigned long o_dst;
1130 unsigned long o_src;
1131 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1132
1133 n = btrfs_header_nritems(eb);
097b8a7c 1134 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1135 /*
1136 * all the operations are recorded with the operator used for
1137 * the modification. as we're going backwards, we do the
1138 * opposite of each operation here.
1139 */
1140 switch (tm->op) {
1141 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1142 BUG_ON(tm->slot < n);
1143 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1144 case MOD_LOG_KEY_REMOVE:
1145 btrfs_set_node_key(eb, &tm->key, tm->slot);
1146 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1147 btrfs_set_node_ptr_generation(eb, tm->slot,
1148 tm->generation);
1149 n++;
1150 break;
1151 case MOD_LOG_KEY_REPLACE:
1152 BUG_ON(tm->slot >= n);
1153 btrfs_set_node_key(eb, &tm->key, tm->slot);
1154 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1155 btrfs_set_node_ptr_generation(eb, tm->slot,
1156 tm->generation);
1157 break;
1158 case MOD_LOG_KEY_ADD:
19956c7e 1159 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1160 n--;
1161 break;
1162 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1163 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1164 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1165 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1166 tm->move.nr_items * p_size);
1167 break;
1168 case MOD_LOG_ROOT_REPLACE:
1169 /*
1170 * this operation is special. for roots, this must be
1171 * handled explicitly before rewinding.
1172 * for non-roots, this operation may exist if the node
1173 * was a root: root A -> child B; then A gets empty and
1174 * B is promoted to the new root. in the mod log, we'll
1175 * have a root-replace operation for B, a tree block
1176 * that is no root. we simply ignore that operation.
1177 */
1178 break;
1179 }
1180 next = rb_next(&tm->node);
1181 if (!next)
1182 break;
1183 tm = container_of(next, struct tree_mod_elem, node);
1184 if (tm->index != first_tm->index)
1185 break;
1186 }
1187 btrfs_set_header_nritems(eb, n);
1188}
1189
1190static struct extent_buffer *
1191tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1192 u64 time_seq)
1193{
1194 struct extent_buffer *eb_rewin;
1195 struct tree_mod_elem *tm;
1196
1197 if (!time_seq)
1198 return eb;
1199
1200 if (btrfs_header_level(eb) == 0)
1201 return eb;
1202
1203 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1204 if (!tm)
1205 return eb;
1206
1207 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1208 BUG_ON(tm->slot != 0);
1209 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1210 fs_info->tree_root->nodesize);
1211 BUG_ON(!eb_rewin);
1212 btrfs_set_header_bytenr(eb_rewin, eb->start);
1213 btrfs_set_header_backref_rev(eb_rewin,
1214 btrfs_header_backref_rev(eb));
1215 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1216 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1217 } else {
1218 eb_rewin = btrfs_clone_extent_buffer(eb);
1219 BUG_ON(!eb_rewin);
1220 }
1221
1222 extent_buffer_get(eb_rewin);
1223 free_extent_buffer(eb);
1224
1225 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
57911b8b
JS
1226 WARN_ON(btrfs_header_nritems(eb_rewin) >
1227 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
5d9e75c4
JS
1228
1229 return eb_rewin;
1230}
1231
8ba97a15
JS
1232/*
1233 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1234 * value. If there are no changes, the current root->root_node is returned. If
1235 * anything changed in between, there's a fresh buffer allocated on which the
1236 * rewind operations are done. In any case, the returned buffer is read locked.
1237 * Returns NULL on error (with no locks held).
1238 */
5d9e75c4
JS
1239static inline struct extent_buffer *
1240get_old_root(struct btrfs_root *root, u64 time_seq)
1241{
1242 struct tree_mod_elem *tm;
1243 struct extent_buffer *eb;
7bfdcf7f 1244 struct extent_buffer *old;
a95236d9 1245 struct tree_mod_root *old_root = NULL;
4325edd0 1246 u64 old_generation = 0;
a95236d9 1247 u64 logical;
834328a8 1248 u32 blocksize;
5d9e75c4 1249
8ba97a15 1250 eb = btrfs_read_lock_root_node(root);
5d9e75c4
JS
1251 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1252 if (!tm)
1253 return root->node;
1254
a95236d9
JS
1255 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1256 old_root = &tm->old_root;
1257 old_generation = tm->generation;
1258 logical = old_root->logical;
1259 } else {
1260 logical = root->node->start;
1261 }
5d9e75c4 1262
a95236d9 1263 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8
JS
1264 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1265 btrfs_tree_read_unlock(root->node);
1266 free_extent_buffer(root->node);
1267 blocksize = btrfs_level_size(root, old_root->level);
7bfdcf7f
LB
1268 old = read_tree_block(root, logical, blocksize, 0);
1269 if (!old) {
834328a8
JS
1270 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1271 logical);
1272 WARN_ON(1);
1273 } else {
7bfdcf7f
LB
1274 eb = btrfs_clone_extent_buffer(old);
1275 free_extent_buffer(old);
834328a8
JS
1276 }
1277 } else if (old_root) {
1278 btrfs_tree_read_unlock(root->node);
1279 free_extent_buffer(root->node);
28da9fb4 1280 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1281 } else {
a95236d9 1282 eb = btrfs_clone_extent_buffer(root->node);
834328a8
JS
1283 btrfs_tree_read_unlock(root->node);
1284 free_extent_buffer(root->node);
1285 }
1286
8ba97a15
JS
1287 if (!eb)
1288 return NULL;
d6381084 1289 extent_buffer_get(eb);
8ba97a15 1290 btrfs_tree_read_lock(eb);
a95236d9 1291 if (old_root) {
5d9e75c4
JS
1292 btrfs_set_header_bytenr(eb, eb->start);
1293 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1294 btrfs_set_header_owner(eb, root->root_key.objectid);
a95236d9
JS
1295 btrfs_set_header_level(eb, old_root->level);
1296 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1297 }
28da9fb4
JS
1298 if (tm)
1299 __tree_mod_log_rewind(eb, time_seq, tm);
1300 else
1301 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1302 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1303
1304 return eb;
1305}
1306
5b6602e7
JS
1307int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1308{
1309 struct tree_mod_elem *tm;
1310 int level;
1311
1312 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1313 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1314 level = tm->old_root.level;
1315 } else {
1316 rcu_read_lock();
1317 level = btrfs_header_level(root->node);
1318 rcu_read_unlock();
1319 }
1320
1321 return level;
1322}
1323
5d4f98a2
YZ
1324static inline int should_cow_block(struct btrfs_trans_handle *trans,
1325 struct btrfs_root *root,
1326 struct extent_buffer *buf)
1327{
f1ebcc74
LB
1328 /* ensure we can see the force_cow */
1329 smp_rmb();
1330
1331 /*
1332 * We do not need to cow a block if
1333 * 1) this block is not created or changed in this transaction;
1334 * 2) this block does not belong to TREE_RELOC tree;
1335 * 3) the root is not forced COW.
1336 *
1337 * What is forced COW:
1338 * when we create snapshot during commiting the transaction,
1339 * after we've finished coping src root, we must COW the shared
1340 * block to ensure the metadata consistency.
1341 */
5d4f98a2
YZ
1342 if (btrfs_header_generation(buf) == trans->transid &&
1343 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1344 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1345 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1346 !root->force_cow)
5d4f98a2
YZ
1347 return 0;
1348 return 1;
1349}
1350
d352ac68
CM
1351/*
1352 * cows a single block, see __btrfs_cow_block for the real work.
1353 * This version of it has extra checks so that a block isn't cow'd more than
1354 * once per transaction, as long as it hasn't been written yet
1355 */
d397712b 1356noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1357 struct btrfs_root *root, struct extent_buffer *buf,
1358 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1359 struct extent_buffer **cow_ret)
6702ed49
CM
1360{
1361 u64 search_start;
f510cfec 1362 int ret;
dc17ff8f 1363
6702ed49 1364 if (trans->transaction != root->fs_info->running_transaction) {
d397712b
CM
1365 printk(KERN_CRIT "trans %llu running %llu\n",
1366 (unsigned long long)trans->transid,
1367 (unsigned long long)
6702ed49
CM
1368 root->fs_info->running_transaction->transid);
1369 WARN_ON(1);
1370 }
1371 if (trans->transid != root->fs_info->generation) {
d397712b
CM
1372 printk(KERN_CRIT "trans %llu running %llu\n",
1373 (unsigned long long)trans->transid,
1374 (unsigned long long)root->fs_info->generation);
6702ed49
CM
1375 WARN_ON(1);
1376 }
dc17ff8f 1377
5d4f98a2 1378 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1379 *cow_ret = buf;
1380 return 0;
1381 }
c487685d 1382
0b86a832 1383 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1384
1385 if (parent)
1386 btrfs_set_lock_blocking(parent);
1387 btrfs_set_lock_blocking(buf);
1388
f510cfec 1389 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1390 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1391
1392 trace_btrfs_cow_block(root, buf, *cow_ret);
1393
f510cfec 1394 return ret;
6702ed49
CM
1395}
1396
d352ac68
CM
1397/*
1398 * helper function for defrag to decide if two blocks pointed to by a
1399 * node are actually close by
1400 */
6b80053d 1401static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1402{
6b80053d 1403 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1404 return 1;
6b80053d 1405 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1406 return 1;
1407 return 0;
1408}
1409
081e9573
CM
1410/*
1411 * compare two keys in a memcmp fashion
1412 */
1413static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1414{
1415 struct btrfs_key k1;
1416
1417 btrfs_disk_key_to_cpu(&k1, disk);
1418
20736aba 1419 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1420}
1421
f3465ca4
JB
1422/*
1423 * same as comp_keys only with two btrfs_key's
1424 */
5d4f98a2 1425int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1426{
1427 if (k1->objectid > k2->objectid)
1428 return 1;
1429 if (k1->objectid < k2->objectid)
1430 return -1;
1431 if (k1->type > k2->type)
1432 return 1;
1433 if (k1->type < k2->type)
1434 return -1;
1435 if (k1->offset > k2->offset)
1436 return 1;
1437 if (k1->offset < k2->offset)
1438 return -1;
1439 return 0;
1440}
081e9573 1441
d352ac68
CM
1442/*
1443 * this is used by the defrag code to go through all the
1444 * leaves pointed to by a node and reallocate them so that
1445 * disk order is close to key order
1446 */
6702ed49 1447int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1448 struct btrfs_root *root, struct extent_buffer *parent,
a6b6e75e
CM
1449 int start_slot, int cache_only, u64 *last_ret,
1450 struct btrfs_key *progress)
6702ed49 1451{
6b80053d 1452 struct extent_buffer *cur;
6702ed49 1453 u64 blocknr;
ca7a79ad 1454 u64 gen;
e9d0b13b
CM
1455 u64 search_start = *last_ret;
1456 u64 last_block = 0;
6702ed49
CM
1457 u64 other;
1458 u32 parent_nritems;
6702ed49
CM
1459 int end_slot;
1460 int i;
1461 int err = 0;
f2183bde 1462 int parent_level;
6b80053d
CM
1463 int uptodate;
1464 u32 blocksize;
081e9573
CM
1465 int progress_passed = 0;
1466 struct btrfs_disk_key disk_key;
6702ed49 1467
5708b959
CM
1468 parent_level = btrfs_header_level(parent);
1469 if (cache_only && parent_level != 1)
1470 return 0;
1471
d397712b 1472 if (trans->transaction != root->fs_info->running_transaction)
6702ed49 1473 WARN_ON(1);
d397712b 1474 if (trans->transid != root->fs_info->generation)
6702ed49 1475 WARN_ON(1);
86479a04 1476
6b80053d 1477 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1478 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1479 end_slot = parent_nritems;
1480
1481 if (parent_nritems == 1)
1482 return 0;
1483
b4ce94de
CM
1484 btrfs_set_lock_blocking(parent);
1485
6702ed49
CM
1486 for (i = start_slot; i < end_slot; i++) {
1487 int close = 1;
a6b6e75e 1488
081e9573
CM
1489 btrfs_node_key(parent, &disk_key, i);
1490 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1491 continue;
1492
1493 progress_passed = 1;
6b80053d 1494 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1495 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1496 if (last_block == 0)
1497 last_block = blocknr;
5708b959 1498
6702ed49 1499 if (i > 0) {
6b80053d
CM
1500 other = btrfs_node_blockptr(parent, i - 1);
1501 close = close_blocks(blocknr, other, blocksize);
6702ed49 1502 }
0ef3e66b 1503 if (!close && i < end_slot - 2) {
6b80053d
CM
1504 other = btrfs_node_blockptr(parent, i + 1);
1505 close = close_blocks(blocknr, other, blocksize);
6702ed49 1506 }
e9d0b13b
CM
1507 if (close) {
1508 last_block = blocknr;
6702ed49 1509 continue;
e9d0b13b 1510 }
6702ed49 1511
6b80053d
CM
1512 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1513 if (cur)
b9fab919 1514 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1515 else
1516 uptodate = 0;
5708b959 1517 if (!cur || !uptodate) {
6702ed49 1518 if (cache_only) {
6b80053d 1519 free_extent_buffer(cur);
6702ed49
CM
1520 continue;
1521 }
6b80053d
CM
1522 if (!cur) {
1523 cur = read_tree_block(root, blocknr,
ca7a79ad 1524 blocksize, gen);
97d9a8a4
TI
1525 if (!cur)
1526 return -EIO;
6b80053d 1527 } else if (!uptodate) {
018642a1
TI
1528 err = btrfs_read_buffer(cur, gen);
1529 if (err) {
1530 free_extent_buffer(cur);
1531 return err;
1532 }
f2183bde 1533 }
6702ed49 1534 }
e9d0b13b 1535 if (search_start == 0)
6b80053d 1536 search_start = last_block;
e9d0b13b 1537
e7a84565 1538 btrfs_tree_lock(cur);
b4ce94de 1539 btrfs_set_lock_blocking(cur);
6b80053d 1540 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1541 &cur, search_start,
6b80053d 1542 min(16 * blocksize,
9fa8cfe7 1543 (end_slot - i) * blocksize));
252c38f0 1544 if (err) {
e7a84565 1545 btrfs_tree_unlock(cur);
6b80053d 1546 free_extent_buffer(cur);
6702ed49 1547 break;
252c38f0 1548 }
e7a84565
CM
1549 search_start = cur->start;
1550 last_block = cur->start;
f2183bde 1551 *last_ret = search_start;
e7a84565
CM
1552 btrfs_tree_unlock(cur);
1553 free_extent_buffer(cur);
6702ed49
CM
1554 }
1555 return err;
1556}
1557
74123bd7
CM
1558/*
1559 * The leaf data grows from end-to-front in the node.
1560 * this returns the address of the start of the last item,
1561 * which is the stop of the leaf data stack
1562 */
123abc88 1563static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1564 struct extent_buffer *leaf)
be0e5c09 1565{
5f39d397 1566 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1567 if (nr == 0)
123abc88 1568 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1569 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1570}
1571
aa5d6bed 1572
74123bd7 1573/*
5f39d397
CM
1574 * search for key in the extent_buffer. The items start at offset p,
1575 * and they are item_size apart. There are 'max' items in p.
1576 *
74123bd7
CM
1577 * the slot in the array is returned via slot, and it points to
1578 * the place where you would insert key if it is not found in
1579 * the array.
1580 *
1581 * slot may point to max if the key is bigger than all of the keys
1582 */
e02119d5
CM
1583static noinline int generic_bin_search(struct extent_buffer *eb,
1584 unsigned long p,
1585 int item_size, struct btrfs_key *key,
1586 int max, int *slot)
be0e5c09
CM
1587{
1588 int low = 0;
1589 int high = max;
1590 int mid;
1591 int ret;
479965d6 1592 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1593 struct btrfs_disk_key unaligned;
1594 unsigned long offset;
5f39d397
CM
1595 char *kaddr = NULL;
1596 unsigned long map_start = 0;
1597 unsigned long map_len = 0;
479965d6 1598 int err;
be0e5c09 1599
d397712b 1600 while (low < high) {
be0e5c09 1601 mid = (low + high) / 2;
5f39d397
CM
1602 offset = p + mid * item_size;
1603
a6591715 1604 if (!kaddr || offset < map_start ||
5f39d397
CM
1605 (offset + sizeof(struct btrfs_disk_key)) >
1606 map_start + map_len) {
934d375b
CM
1607
1608 err = map_private_extent_buffer(eb, offset,
479965d6 1609 sizeof(struct btrfs_disk_key),
a6591715 1610 &kaddr, &map_start, &map_len);
479965d6
CM
1611
1612 if (!err) {
1613 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1614 map_start);
1615 } else {
1616 read_extent_buffer(eb, &unaligned,
1617 offset, sizeof(unaligned));
1618 tmp = &unaligned;
1619 }
5f39d397 1620
5f39d397
CM
1621 } else {
1622 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1623 map_start);
1624 }
be0e5c09
CM
1625 ret = comp_keys(tmp, key);
1626
1627 if (ret < 0)
1628 low = mid + 1;
1629 else if (ret > 0)
1630 high = mid;
1631 else {
1632 *slot = mid;
1633 return 0;
1634 }
1635 }
1636 *slot = low;
1637 return 1;
1638}
1639
97571fd0
CM
1640/*
1641 * simple bin_search frontend that does the right thing for
1642 * leaves vs nodes
1643 */
5f39d397
CM
1644static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1645 int level, int *slot)
be0e5c09 1646{
f775738f 1647 if (level == 0)
5f39d397
CM
1648 return generic_bin_search(eb,
1649 offsetof(struct btrfs_leaf, items),
0783fcfc 1650 sizeof(struct btrfs_item),
5f39d397 1651 key, btrfs_header_nritems(eb),
7518a238 1652 slot);
f775738f 1653 else
5f39d397
CM
1654 return generic_bin_search(eb,
1655 offsetof(struct btrfs_node, ptrs),
123abc88 1656 sizeof(struct btrfs_key_ptr),
5f39d397 1657 key, btrfs_header_nritems(eb),
7518a238 1658 slot);
be0e5c09
CM
1659}
1660
5d4f98a2
YZ
1661int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1662 int level, int *slot)
1663{
1664 return bin_search(eb, key, level, slot);
1665}
1666
f0486c68
YZ
1667static void root_add_used(struct btrfs_root *root, u32 size)
1668{
1669 spin_lock(&root->accounting_lock);
1670 btrfs_set_root_used(&root->root_item,
1671 btrfs_root_used(&root->root_item) + size);
1672 spin_unlock(&root->accounting_lock);
1673}
1674
1675static void root_sub_used(struct btrfs_root *root, u32 size)
1676{
1677 spin_lock(&root->accounting_lock);
1678 btrfs_set_root_used(&root->root_item,
1679 btrfs_root_used(&root->root_item) - size);
1680 spin_unlock(&root->accounting_lock);
1681}
1682
d352ac68
CM
1683/* given a node and slot number, this reads the blocks it points to. The
1684 * extent buffer is returned with a reference taken (but unlocked).
1685 * NULL is returned on error.
1686 */
e02119d5 1687static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1688 struct extent_buffer *parent, int slot)
bb803951 1689{
ca7a79ad 1690 int level = btrfs_header_level(parent);
bb803951
CM
1691 if (slot < 0)
1692 return NULL;
5f39d397 1693 if (slot >= btrfs_header_nritems(parent))
bb803951 1694 return NULL;
ca7a79ad
CM
1695
1696 BUG_ON(level == 0);
1697
db94535d 1698 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
ca7a79ad
CM
1699 btrfs_level_size(root, level - 1),
1700 btrfs_node_ptr_generation(parent, slot));
bb803951
CM
1701}
1702
d352ac68
CM
1703/*
1704 * node level balancing, used to make sure nodes are in proper order for
1705 * item deletion. We balance from the top down, so we have to make sure
1706 * that a deletion won't leave an node completely empty later on.
1707 */
e02119d5 1708static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1709 struct btrfs_root *root,
1710 struct btrfs_path *path, int level)
bb803951 1711{
5f39d397
CM
1712 struct extent_buffer *right = NULL;
1713 struct extent_buffer *mid;
1714 struct extent_buffer *left = NULL;
1715 struct extent_buffer *parent = NULL;
bb803951
CM
1716 int ret = 0;
1717 int wret;
1718 int pslot;
bb803951 1719 int orig_slot = path->slots[level];
79f95c82 1720 u64 orig_ptr;
bb803951
CM
1721
1722 if (level == 0)
1723 return 0;
1724
5f39d397 1725 mid = path->nodes[level];
b4ce94de 1726
bd681513
CM
1727 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1728 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1729 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1730
1d4f8a0c 1731 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1732
a05a9bb1 1733 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1734 parent = path->nodes[level + 1];
a05a9bb1
LZ
1735 pslot = path->slots[level + 1];
1736 }
bb803951 1737
40689478
CM
1738 /*
1739 * deal with the case where there is only one pointer in the root
1740 * by promoting the node below to a root
1741 */
5f39d397
CM
1742 if (!parent) {
1743 struct extent_buffer *child;
bb803951 1744
5f39d397 1745 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1746 return 0;
1747
1748 /* promote the child to a root */
5f39d397 1749 child = read_node_slot(root, mid, 0);
305a26af
MF
1750 if (!child) {
1751 ret = -EROFS;
1752 btrfs_std_error(root->fs_info, ret);
1753 goto enospc;
1754 }
1755
925baedd 1756 btrfs_tree_lock(child);
b4ce94de 1757 btrfs_set_lock_blocking(child);
9fa8cfe7 1758 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1759 if (ret) {
1760 btrfs_tree_unlock(child);
1761 free_extent_buffer(child);
1762 goto enospc;
1763 }
2f375ab9 1764
ba1bfbd5 1765 tree_mod_log_free_eb(root->fs_info, root->node);
f230475e 1766 tree_mod_log_set_root_pointer(root, child);
240f62c8 1767 rcu_assign_pointer(root->node, child);
925baedd 1768
0b86a832 1769 add_root_to_dirty_list(root);
925baedd 1770 btrfs_tree_unlock(child);
b4ce94de 1771
925baedd 1772 path->locks[level] = 0;
bb803951 1773 path->nodes[level] = NULL;
5f39d397 1774 clean_tree_block(trans, root, mid);
925baedd 1775 btrfs_tree_unlock(mid);
bb803951 1776 /* once for the path */
5f39d397 1777 free_extent_buffer(mid);
f0486c68
YZ
1778
1779 root_sub_used(root, mid->len);
5581a51a 1780 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1781 /* once for the root ptr */
3083ee2e 1782 free_extent_buffer_stale(mid);
f0486c68 1783 return 0;
bb803951 1784 }
5f39d397 1785 if (btrfs_header_nritems(mid) >
123abc88 1786 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1787 return 0;
1788
5f39d397
CM
1789 left = read_node_slot(root, parent, pslot - 1);
1790 if (left) {
925baedd 1791 btrfs_tree_lock(left);
b4ce94de 1792 btrfs_set_lock_blocking(left);
5f39d397 1793 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1794 parent, pslot - 1, &left);
54aa1f4d
CM
1795 if (wret) {
1796 ret = wret;
1797 goto enospc;
1798 }
2cc58cf2 1799 }
5f39d397
CM
1800 right = read_node_slot(root, parent, pslot + 1);
1801 if (right) {
925baedd 1802 btrfs_tree_lock(right);
b4ce94de 1803 btrfs_set_lock_blocking(right);
5f39d397 1804 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1805 parent, pslot + 1, &right);
2cc58cf2
CM
1806 if (wret) {
1807 ret = wret;
1808 goto enospc;
1809 }
1810 }
1811
1812 /* first, try to make some room in the middle buffer */
5f39d397
CM
1813 if (left) {
1814 orig_slot += btrfs_header_nritems(left);
bce4eae9 1815 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1816 if (wret < 0)
1817 ret = wret;
bb803951 1818 }
79f95c82
CM
1819
1820 /*
1821 * then try to empty the right most buffer into the middle
1822 */
5f39d397 1823 if (right) {
971a1f66 1824 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1825 if (wret < 0 && wret != -ENOSPC)
79f95c82 1826 ret = wret;
5f39d397 1827 if (btrfs_header_nritems(right) == 0) {
5f39d397 1828 clean_tree_block(trans, root, right);
925baedd 1829 btrfs_tree_unlock(right);
f3ea38da 1830 del_ptr(trans, root, path, level + 1, pslot + 1, 1);
f0486c68 1831 root_sub_used(root, right->len);
5581a51a 1832 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1833 free_extent_buffer_stale(right);
f0486c68 1834 right = NULL;
bb803951 1835 } else {
5f39d397
CM
1836 struct btrfs_disk_key right_key;
1837 btrfs_node_key(right, &right_key, 0);
f230475e
JS
1838 tree_mod_log_set_node_key(root->fs_info, parent,
1839 &right_key, pslot + 1, 0);
5f39d397
CM
1840 btrfs_set_node_key(parent, &right_key, pslot + 1);
1841 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1842 }
1843 }
5f39d397 1844 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1845 /*
1846 * we're not allowed to leave a node with one item in the
1847 * tree during a delete. A deletion from lower in the tree
1848 * could try to delete the only pointer in this node.
1849 * So, pull some keys from the left.
1850 * There has to be a left pointer at this point because
1851 * otherwise we would have pulled some pointers from the
1852 * right
1853 */
305a26af
MF
1854 if (!left) {
1855 ret = -EROFS;
1856 btrfs_std_error(root->fs_info, ret);
1857 goto enospc;
1858 }
5f39d397 1859 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1860 if (wret < 0) {
79f95c82 1861 ret = wret;
54aa1f4d
CM
1862 goto enospc;
1863 }
bce4eae9
CM
1864 if (wret == 1) {
1865 wret = push_node_left(trans, root, left, mid, 1);
1866 if (wret < 0)
1867 ret = wret;
1868 }
79f95c82
CM
1869 BUG_ON(wret == 1);
1870 }
5f39d397 1871 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1872 clean_tree_block(trans, root, mid);
925baedd 1873 btrfs_tree_unlock(mid);
f3ea38da 1874 del_ptr(trans, root, path, level + 1, pslot, 1);
f0486c68 1875 root_sub_used(root, mid->len);
5581a51a 1876 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1877 free_extent_buffer_stale(mid);
f0486c68 1878 mid = NULL;
79f95c82
CM
1879 } else {
1880 /* update the parent key to reflect our changes */
5f39d397
CM
1881 struct btrfs_disk_key mid_key;
1882 btrfs_node_key(mid, &mid_key, 0);
f230475e
JS
1883 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1884 pslot, 0);
5f39d397
CM
1885 btrfs_set_node_key(parent, &mid_key, pslot);
1886 btrfs_mark_buffer_dirty(parent);
79f95c82 1887 }
bb803951 1888
79f95c82 1889 /* update the path */
5f39d397
CM
1890 if (left) {
1891 if (btrfs_header_nritems(left) > orig_slot) {
1892 extent_buffer_get(left);
925baedd 1893 /* left was locked after cow */
5f39d397 1894 path->nodes[level] = left;
bb803951
CM
1895 path->slots[level + 1] -= 1;
1896 path->slots[level] = orig_slot;
925baedd
CM
1897 if (mid) {
1898 btrfs_tree_unlock(mid);
5f39d397 1899 free_extent_buffer(mid);
925baedd 1900 }
bb803951 1901 } else {
5f39d397 1902 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1903 path->slots[level] = orig_slot;
1904 }
1905 }
79f95c82 1906 /* double check we haven't messed things up */
e20d96d6 1907 if (orig_ptr !=
5f39d397 1908 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1909 BUG();
54aa1f4d 1910enospc:
925baedd
CM
1911 if (right) {
1912 btrfs_tree_unlock(right);
5f39d397 1913 free_extent_buffer(right);
925baedd
CM
1914 }
1915 if (left) {
1916 if (path->nodes[level] != left)
1917 btrfs_tree_unlock(left);
5f39d397 1918 free_extent_buffer(left);
925baedd 1919 }
bb803951
CM
1920 return ret;
1921}
1922
d352ac68
CM
1923/* Node balancing for insertion. Here we only split or push nodes around
1924 * when they are completely full. This is also done top down, so we
1925 * have to be pessimistic.
1926 */
d397712b 1927static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1928 struct btrfs_root *root,
1929 struct btrfs_path *path, int level)
e66f709b 1930{
5f39d397
CM
1931 struct extent_buffer *right = NULL;
1932 struct extent_buffer *mid;
1933 struct extent_buffer *left = NULL;
1934 struct extent_buffer *parent = NULL;
e66f709b
CM
1935 int ret = 0;
1936 int wret;
1937 int pslot;
1938 int orig_slot = path->slots[level];
e66f709b
CM
1939
1940 if (level == 0)
1941 return 1;
1942
5f39d397 1943 mid = path->nodes[level];
7bb86316 1944 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1945
a05a9bb1 1946 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1947 parent = path->nodes[level + 1];
a05a9bb1
LZ
1948 pslot = path->slots[level + 1];
1949 }
e66f709b 1950
5f39d397 1951 if (!parent)
e66f709b 1952 return 1;
e66f709b 1953
5f39d397 1954 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1955
1956 /* first, try to make some room in the middle buffer */
5f39d397 1957 if (left) {
e66f709b 1958 u32 left_nr;
925baedd
CM
1959
1960 btrfs_tree_lock(left);
b4ce94de
CM
1961 btrfs_set_lock_blocking(left);
1962
5f39d397 1963 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1964 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1965 wret = 1;
1966 } else {
5f39d397 1967 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1968 pslot - 1, &left);
54aa1f4d
CM
1969 if (ret)
1970 wret = 1;
1971 else {
54aa1f4d 1972 wret = push_node_left(trans, root,
971a1f66 1973 left, mid, 0);
54aa1f4d 1974 }
33ade1f8 1975 }
e66f709b
CM
1976 if (wret < 0)
1977 ret = wret;
1978 if (wret == 0) {
5f39d397 1979 struct btrfs_disk_key disk_key;
e66f709b 1980 orig_slot += left_nr;
5f39d397 1981 btrfs_node_key(mid, &disk_key, 0);
f230475e
JS
1982 tree_mod_log_set_node_key(root->fs_info, parent,
1983 &disk_key, pslot, 0);
5f39d397
CM
1984 btrfs_set_node_key(parent, &disk_key, pslot);
1985 btrfs_mark_buffer_dirty(parent);
1986 if (btrfs_header_nritems(left) > orig_slot) {
1987 path->nodes[level] = left;
e66f709b
CM
1988 path->slots[level + 1] -= 1;
1989 path->slots[level] = orig_slot;
925baedd 1990 btrfs_tree_unlock(mid);
5f39d397 1991 free_extent_buffer(mid);
e66f709b
CM
1992 } else {
1993 orig_slot -=
5f39d397 1994 btrfs_header_nritems(left);
e66f709b 1995 path->slots[level] = orig_slot;
925baedd 1996 btrfs_tree_unlock(left);
5f39d397 1997 free_extent_buffer(left);
e66f709b 1998 }
e66f709b
CM
1999 return 0;
2000 }
925baedd 2001 btrfs_tree_unlock(left);
5f39d397 2002 free_extent_buffer(left);
e66f709b 2003 }
925baedd 2004 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
2005
2006 /*
2007 * then try to empty the right most buffer into the middle
2008 */
5f39d397 2009 if (right) {
33ade1f8 2010 u32 right_nr;
b4ce94de 2011
925baedd 2012 btrfs_tree_lock(right);
b4ce94de
CM
2013 btrfs_set_lock_blocking(right);
2014
5f39d397 2015 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2016 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2017 wret = 1;
2018 } else {
5f39d397
CM
2019 ret = btrfs_cow_block(trans, root, right,
2020 parent, pslot + 1,
9fa8cfe7 2021 &right);
54aa1f4d
CM
2022 if (ret)
2023 wret = 1;
2024 else {
54aa1f4d 2025 wret = balance_node_right(trans, root,
5f39d397 2026 right, mid);
54aa1f4d 2027 }
33ade1f8 2028 }
e66f709b
CM
2029 if (wret < 0)
2030 ret = wret;
2031 if (wret == 0) {
5f39d397
CM
2032 struct btrfs_disk_key disk_key;
2033
2034 btrfs_node_key(right, &disk_key, 0);
f230475e
JS
2035 tree_mod_log_set_node_key(root->fs_info, parent,
2036 &disk_key, pslot + 1, 0);
5f39d397
CM
2037 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2038 btrfs_mark_buffer_dirty(parent);
2039
2040 if (btrfs_header_nritems(mid) <= orig_slot) {
2041 path->nodes[level] = right;
e66f709b
CM
2042 path->slots[level + 1] += 1;
2043 path->slots[level] = orig_slot -
5f39d397 2044 btrfs_header_nritems(mid);
925baedd 2045 btrfs_tree_unlock(mid);
5f39d397 2046 free_extent_buffer(mid);
e66f709b 2047 } else {
925baedd 2048 btrfs_tree_unlock(right);
5f39d397 2049 free_extent_buffer(right);
e66f709b 2050 }
e66f709b
CM
2051 return 0;
2052 }
925baedd 2053 btrfs_tree_unlock(right);
5f39d397 2054 free_extent_buffer(right);
e66f709b 2055 }
e66f709b
CM
2056 return 1;
2057}
2058
3c69faec 2059/*
d352ac68
CM
2060 * readahead one full node of leaves, finding things that are close
2061 * to the block in 'slot', and triggering ra on them.
3c69faec 2062 */
c8c42864
CM
2063static void reada_for_search(struct btrfs_root *root,
2064 struct btrfs_path *path,
2065 int level, int slot, u64 objectid)
3c69faec 2066{
5f39d397 2067 struct extent_buffer *node;
01f46658 2068 struct btrfs_disk_key disk_key;
3c69faec 2069 u32 nritems;
3c69faec 2070 u64 search;
a7175319 2071 u64 target;
6b80053d 2072 u64 nread = 0;
cb25c2ea 2073 u64 gen;
3c69faec 2074 int direction = path->reada;
5f39d397 2075 struct extent_buffer *eb;
6b80053d
CM
2076 u32 nr;
2077 u32 blocksize;
2078 u32 nscan = 0;
db94535d 2079
a6b6e75e 2080 if (level != 1)
6702ed49
CM
2081 return;
2082
2083 if (!path->nodes[level])
3c69faec
CM
2084 return;
2085
5f39d397 2086 node = path->nodes[level];
925baedd 2087
3c69faec 2088 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
2089 blocksize = btrfs_level_size(root, level - 1);
2090 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
2091 if (eb) {
2092 free_extent_buffer(eb);
3c69faec
CM
2093 return;
2094 }
2095
a7175319 2096 target = search;
6b80053d 2097
5f39d397 2098 nritems = btrfs_header_nritems(node);
6b80053d 2099 nr = slot;
25b8b936 2100
d397712b 2101 while (1) {
6b80053d
CM
2102 if (direction < 0) {
2103 if (nr == 0)
2104 break;
2105 nr--;
2106 } else if (direction > 0) {
2107 nr++;
2108 if (nr >= nritems)
2109 break;
3c69faec 2110 }
01f46658
CM
2111 if (path->reada < 0 && objectid) {
2112 btrfs_node_key(node, &disk_key, nr);
2113 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2114 break;
2115 }
6b80053d 2116 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2117 if ((search <= target && target - search <= 65536) ||
2118 (search > target && search - target <= 65536)) {
cb25c2ea 2119 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2120 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2121 nread += blocksize;
2122 }
2123 nscan++;
a7175319 2124 if ((nread > 65536 || nscan > 32))
6b80053d 2125 break;
3c69faec
CM
2126 }
2127}
925baedd 2128
b4ce94de
CM
2129/*
2130 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2131 * cache
2132 */
2133static noinline int reada_for_balance(struct btrfs_root *root,
2134 struct btrfs_path *path, int level)
2135{
2136 int slot;
2137 int nritems;
2138 struct extent_buffer *parent;
2139 struct extent_buffer *eb;
2140 u64 gen;
2141 u64 block1 = 0;
2142 u64 block2 = 0;
2143 int ret = 0;
2144 int blocksize;
2145
8c594ea8 2146 parent = path->nodes[level + 1];
b4ce94de
CM
2147 if (!parent)
2148 return 0;
2149
2150 nritems = btrfs_header_nritems(parent);
8c594ea8 2151 slot = path->slots[level + 1];
b4ce94de
CM
2152 blocksize = btrfs_level_size(root, level);
2153
2154 if (slot > 0) {
2155 block1 = btrfs_node_blockptr(parent, slot - 1);
2156 gen = btrfs_node_ptr_generation(parent, slot - 1);
2157 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2158 /*
2159 * if we get -eagain from btrfs_buffer_uptodate, we
2160 * don't want to return eagain here. That will loop
2161 * forever
2162 */
2163 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2164 block1 = 0;
2165 free_extent_buffer(eb);
2166 }
8c594ea8 2167 if (slot + 1 < nritems) {
b4ce94de
CM
2168 block2 = btrfs_node_blockptr(parent, slot + 1);
2169 gen = btrfs_node_ptr_generation(parent, slot + 1);
2170 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2171 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2172 block2 = 0;
2173 free_extent_buffer(eb);
2174 }
2175 if (block1 || block2) {
2176 ret = -EAGAIN;
8c594ea8
CM
2177
2178 /* release the whole path */
b3b4aa74 2179 btrfs_release_path(path);
8c594ea8
CM
2180
2181 /* read the blocks */
b4ce94de
CM
2182 if (block1)
2183 readahead_tree_block(root, block1, blocksize, 0);
2184 if (block2)
2185 readahead_tree_block(root, block2, blocksize, 0);
2186
2187 if (block1) {
2188 eb = read_tree_block(root, block1, blocksize, 0);
2189 free_extent_buffer(eb);
2190 }
8c594ea8 2191 if (block2) {
b4ce94de
CM
2192 eb = read_tree_block(root, block2, blocksize, 0);
2193 free_extent_buffer(eb);
2194 }
2195 }
2196 return ret;
2197}
2198
2199
d352ac68 2200/*
d397712b
CM
2201 * when we walk down the tree, it is usually safe to unlock the higher layers
2202 * in the tree. The exceptions are when our path goes through slot 0, because
2203 * operations on the tree might require changing key pointers higher up in the
2204 * tree.
d352ac68 2205 *
d397712b
CM
2206 * callers might also have set path->keep_locks, which tells this code to keep
2207 * the lock if the path points to the last slot in the block. This is part of
2208 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2209 *
d397712b
CM
2210 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2211 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2212 */
e02119d5 2213static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2214 int lowest_unlock, int min_write_lock_level,
2215 int *write_lock_level)
925baedd
CM
2216{
2217 int i;
2218 int skip_level = level;
051e1b9f 2219 int no_skips = 0;
925baedd
CM
2220 struct extent_buffer *t;
2221
2222 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2223 if (!path->nodes[i])
2224 break;
2225 if (!path->locks[i])
2226 break;
051e1b9f 2227 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2228 skip_level = i + 1;
2229 continue;
2230 }
051e1b9f 2231 if (!no_skips && path->keep_locks) {
925baedd
CM
2232 u32 nritems;
2233 t = path->nodes[i];
2234 nritems = btrfs_header_nritems(t);
051e1b9f 2235 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2236 skip_level = i + 1;
2237 continue;
2238 }
2239 }
051e1b9f
CM
2240 if (skip_level < i && i >= lowest_unlock)
2241 no_skips = 1;
2242
925baedd
CM
2243 t = path->nodes[i];
2244 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2245 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2246 path->locks[i] = 0;
f7c79f30
CM
2247 if (write_lock_level &&
2248 i > min_write_lock_level &&
2249 i <= *write_lock_level) {
2250 *write_lock_level = i - 1;
2251 }
925baedd
CM
2252 }
2253 }
2254}
2255
b4ce94de
CM
2256/*
2257 * This releases any locks held in the path starting at level and
2258 * going all the way up to the root.
2259 *
2260 * btrfs_search_slot will keep the lock held on higher nodes in a few
2261 * corner cases, such as COW of the block at slot zero in the node. This
2262 * ignores those rules, and it should only be called when there are no
2263 * more updates to be done higher up in the tree.
2264 */
2265noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2266{
2267 int i;
2268
5d4f98a2 2269 if (path->keep_locks)
b4ce94de
CM
2270 return;
2271
2272 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2273 if (!path->nodes[i])
12f4dacc 2274 continue;
b4ce94de 2275 if (!path->locks[i])
12f4dacc 2276 continue;
bd681513 2277 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2278 path->locks[i] = 0;
2279 }
2280}
2281
c8c42864
CM
2282/*
2283 * helper function for btrfs_search_slot. The goal is to find a block
2284 * in cache without setting the path to blocking. If we find the block
2285 * we return zero and the path is unchanged.
2286 *
2287 * If we can't find the block, we set the path blocking and do some
2288 * reada. -EAGAIN is returned and the search must be repeated.
2289 */
2290static int
2291read_block_for_search(struct btrfs_trans_handle *trans,
2292 struct btrfs_root *root, struct btrfs_path *p,
2293 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2294 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2295{
2296 u64 blocknr;
2297 u64 gen;
2298 u32 blocksize;
2299 struct extent_buffer *b = *eb_ret;
2300 struct extent_buffer *tmp;
76a05b35 2301 int ret;
c8c42864
CM
2302
2303 blocknr = btrfs_node_blockptr(b, slot);
2304 gen = btrfs_node_ptr_generation(b, slot);
2305 blocksize = btrfs_level_size(root, level - 1);
2306
2307 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2308 if (tmp) {
b9fab919
CM
2309 /* first we do an atomic uptodate check */
2310 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2311 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
cb44921a
CM
2312 /*
2313 * we found an up to date block without
2314 * sleeping, return
2315 * right away
2316 */
2317 *eb_ret = tmp;
2318 return 0;
2319 }
2320 /* the pages were up to date, but we failed
2321 * the generation number check. Do a full
2322 * read for the generation number that is correct.
2323 * We must do this without dropping locks so
2324 * we can trust our generation number
2325 */
2326 free_extent_buffer(tmp);
bd681513
CM
2327 btrfs_set_path_blocking(p);
2328
b9fab919 2329 /* now we're allowed to do a blocking uptodate check */
cb44921a 2330 tmp = read_tree_block(root, blocknr, blocksize, gen);
b9fab919 2331 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
cb44921a
CM
2332 *eb_ret = tmp;
2333 return 0;
2334 }
2335 free_extent_buffer(tmp);
b3b4aa74 2336 btrfs_release_path(p);
cb44921a
CM
2337 return -EIO;
2338 }
c8c42864
CM
2339 }
2340
2341 /*
2342 * reduce lock contention at high levels
2343 * of the btree by dropping locks before
76a05b35
CM
2344 * we read. Don't release the lock on the current
2345 * level because we need to walk this node to figure
2346 * out which blocks to read.
c8c42864 2347 */
8c594ea8
CM
2348 btrfs_unlock_up_safe(p, level + 1);
2349 btrfs_set_path_blocking(p);
2350
cb44921a 2351 free_extent_buffer(tmp);
c8c42864
CM
2352 if (p->reada)
2353 reada_for_search(root, p, level, slot, key->objectid);
2354
b3b4aa74 2355 btrfs_release_path(p);
76a05b35
CM
2356
2357 ret = -EAGAIN;
5bdd3536 2358 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2359 if (tmp) {
2360 /*
2361 * If the read above didn't mark this buffer up to date,
2362 * it will never end up being up to date. Set ret to EIO now
2363 * and give up so that our caller doesn't loop forever
2364 * on our EAGAINs.
2365 */
b9fab919 2366 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2367 ret = -EIO;
c8c42864 2368 free_extent_buffer(tmp);
76a05b35
CM
2369 }
2370 return ret;
c8c42864
CM
2371}
2372
2373/*
2374 * helper function for btrfs_search_slot. This does all of the checks
2375 * for node-level blocks and does any balancing required based on
2376 * the ins_len.
2377 *
2378 * If no extra work was required, zero is returned. If we had to
2379 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2380 * start over
2381 */
2382static int
2383setup_nodes_for_search(struct btrfs_trans_handle *trans,
2384 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2385 struct extent_buffer *b, int level, int ins_len,
2386 int *write_lock_level)
c8c42864
CM
2387{
2388 int ret;
2389 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2390 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2391 int sret;
2392
bd681513
CM
2393 if (*write_lock_level < level + 1) {
2394 *write_lock_level = level + 1;
2395 btrfs_release_path(p);
2396 goto again;
2397 }
2398
c8c42864
CM
2399 sret = reada_for_balance(root, p, level);
2400 if (sret)
2401 goto again;
2402
2403 btrfs_set_path_blocking(p);
2404 sret = split_node(trans, root, p, level);
bd681513 2405 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2406
2407 BUG_ON(sret > 0);
2408 if (sret) {
2409 ret = sret;
2410 goto done;
2411 }
2412 b = p->nodes[level];
2413 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2414 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2415 int sret;
2416
bd681513
CM
2417 if (*write_lock_level < level + 1) {
2418 *write_lock_level = level + 1;
2419 btrfs_release_path(p);
2420 goto again;
2421 }
2422
c8c42864
CM
2423 sret = reada_for_balance(root, p, level);
2424 if (sret)
2425 goto again;
2426
2427 btrfs_set_path_blocking(p);
2428 sret = balance_level(trans, root, p, level);
bd681513 2429 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2430
2431 if (sret) {
2432 ret = sret;
2433 goto done;
2434 }
2435 b = p->nodes[level];
2436 if (!b) {
b3b4aa74 2437 btrfs_release_path(p);
c8c42864
CM
2438 goto again;
2439 }
2440 BUG_ON(btrfs_header_nritems(b) == 1);
2441 }
2442 return 0;
2443
2444again:
2445 ret = -EAGAIN;
2446done:
2447 return ret;
2448}
2449
74123bd7
CM
2450/*
2451 * look for key in the tree. path is filled in with nodes along the way
2452 * if key is found, we return zero and you can find the item in the leaf
2453 * level of the path (level 0)
2454 *
2455 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2456 * be inserted, and 1 is returned. If there are other errors during the
2457 * search a negative error number is returned.
97571fd0
CM
2458 *
2459 * if ins_len > 0, nodes and leaves will be split as we walk down the
2460 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2461 * possible)
74123bd7 2462 */
e089f05c
CM
2463int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2464 *root, struct btrfs_key *key, struct btrfs_path *p, int
2465 ins_len, int cow)
be0e5c09 2466{
5f39d397 2467 struct extent_buffer *b;
be0e5c09
CM
2468 int slot;
2469 int ret;
33c66f43 2470 int err;
be0e5c09 2471 int level;
925baedd 2472 int lowest_unlock = 1;
bd681513
CM
2473 int root_lock;
2474 /* everything at write_lock_level or lower must be write locked */
2475 int write_lock_level = 0;
9f3a7427 2476 u8 lowest_level = 0;
f7c79f30 2477 int min_write_lock_level;
9f3a7427 2478
6702ed49 2479 lowest_level = p->lowest_level;
323ac95b 2480 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2481 WARN_ON(p->nodes[0] != NULL);
25179201 2482
bd681513 2483 if (ins_len < 0) {
925baedd 2484 lowest_unlock = 2;
65b51a00 2485
bd681513
CM
2486 /* when we are removing items, we might have to go up to level
2487 * two as we update tree pointers Make sure we keep write
2488 * for those levels as well
2489 */
2490 write_lock_level = 2;
2491 } else if (ins_len > 0) {
2492 /*
2493 * for inserting items, make sure we have a write lock on
2494 * level 1 so we can update keys
2495 */
2496 write_lock_level = 1;
2497 }
2498
2499 if (!cow)
2500 write_lock_level = -1;
2501
2502 if (cow && (p->keep_locks || p->lowest_level))
2503 write_lock_level = BTRFS_MAX_LEVEL;
2504
f7c79f30
CM
2505 min_write_lock_level = write_lock_level;
2506
bb803951 2507again:
bd681513
CM
2508 /*
2509 * we try very hard to do read locks on the root
2510 */
2511 root_lock = BTRFS_READ_LOCK;
2512 level = 0;
5d4f98a2 2513 if (p->search_commit_root) {
bd681513
CM
2514 /*
2515 * the commit roots are read only
2516 * so we always do read locks
2517 */
5d4f98a2
YZ
2518 b = root->commit_root;
2519 extent_buffer_get(b);
bd681513 2520 level = btrfs_header_level(b);
5d4f98a2 2521 if (!p->skip_locking)
bd681513 2522 btrfs_tree_read_lock(b);
5d4f98a2 2523 } else {
bd681513 2524 if (p->skip_locking) {
5d4f98a2 2525 b = btrfs_root_node(root);
bd681513
CM
2526 level = btrfs_header_level(b);
2527 } else {
2528 /* we don't know the level of the root node
2529 * until we actually have it read locked
2530 */
2531 b = btrfs_read_lock_root_node(root);
2532 level = btrfs_header_level(b);
2533 if (level <= write_lock_level) {
2534 /* whoops, must trade for write lock */
2535 btrfs_tree_read_unlock(b);
2536 free_extent_buffer(b);
2537 b = btrfs_lock_root_node(root);
2538 root_lock = BTRFS_WRITE_LOCK;
2539
2540 /* the level might have changed, check again */
2541 level = btrfs_header_level(b);
2542 }
2543 }
5d4f98a2 2544 }
bd681513
CM
2545 p->nodes[level] = b;
2546 if (!p->skip_locking)
2547 p->locks[level] = root_lock;
925baedd 2548
eb60ceac 2549 while (b) {
5f39d397 2550 level = btrfs_header_level(b);
65b51a00
CM
2551
2552 /*
2553 * setup the path here so we can release it under lock
2554 * contention with the cow code
2555 */
02217ed2 2556 if (cow) {
c8c42864
CM
2557 /*
2558 * if we don't really need to cow this block
2559 * then we don't want to set the path blocking,
2560 * so we test it here
2561 */
5d4f98a2 2562 if (!should_cow_block(trans, root, b))
65b51a00 2563 goto cow_done;
5d4f98a2 2564
b4ce94de
CM
2565 btrfs_set_path_blocking(p);
2566
bd681513
CM
2567 /*
2568 * must have write locks on this node and the
2569 * parent
2570 */
2571 if (level + 1 > write_lock_level) {
2572 write_lock_level = level + 1;
2573 btrfs_release_path(p);
2574 goto again;
2575 }
2576
33c66f43
YZ
2577 err = btrfs_cow_block(trans, root, b,
2578 p->nodes[level + 1],
2579 p->slots[level + 1], &b);
2580 if (err) {
33c66f43 2581 ret = err;
65b51a00 2582 goto done;
54aa1f4d 2583 }
02217ed2 2584 }
65b51a00 2585cow_done:
02217ed2 2586 BUG_ON(!cow && ins_len);
65b51a00 2587
eb60ceac 2588 p->nodes[level] = b;
bd681513 2589 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2590
2591 /*
2592 * we have a lock on b and as long as we aren't changing
2593 * the tree, there is no way to for the items in b to change.
2594 * It is safe to drop the lock on our parent before we
2595 * go through the expensive btree search on b.
2596 *
2597 * If cow is true, then we might be changing slot zero,
2598 * which may require changing the parent. So, we can't
2599 * drop the lock until after we know which slot we're
2600 * operating on.
2601 */
2602 if (!cow)
2603 btrfs_unlock_up_safe(p, level + 1);
2604
5f39d397 2605 ret = bin_search(b, key, level, &slot);
b4ce94de 2606
5f39d397 2607 if (level != 0) {
33c66f43
YZ
2608 int dec = 0;
2609 if (ret && slot > 0) {
2610 dec = 1;
be0e5c09 2611 slot -= 1;
33c66f43 2612 }
be0e5c09 2613 p->slots[level] = slot;
33c66f43 2614 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2615 ins_len, &write_lock_level);
33c66f43 2616 if (err == -EAGAIN)
c8c42864 2617 goto again;
33c66f43
YZ
2618 if (err) {
2619 ret = err;
c8c42864 2620 goto done;
33c66f43 2621 }
c8c42864
CM
2622 b = p->nodes[level];
2623 slot = p->slots[level];
b4ce94de 2624
bd681513
CM
2625 /*
2626 * slot 0 is special, if we change the key
2627 * we have to update the parent pointer
2628 * which means we must have a write lock
2629 * on the parent
2630 */
2631 if (slot == 0 && cow &&
2632 write_lock_level < level + 1) {
2633 write_lock_level = level + 1;
2634 btrfs_release_path(p);
2635 goto again;
2636 }
2637
f7c79f30
CM
2638 unlock_up(p, level, lowest_unlock,
2639 min_write_lock_level, &write_lock_level);
f9efa9c7 2640
925baedd 2641 if (level == lowest_level) {
33c66f43
YZ
2642 if (dec)
2643 p->slots[level]++;
5b21f2ed 2644 goto done;
925baedd 2645 }
ca7a79ad 2646
33c66f43 2647 err = read_block_for_search(trans, root, p,
5d9e75c4 2648 &b, level, slot, key, 0);
33c66f43 2649 if (err == -EAGAIN)
c8c42864 2650 goto again;
33c66f43
YZ
2651 if (err) {
2652 ret = err;
76a05b35 2653 goto done;
33c66f43 2654 }
76a05b35 2655
b4ce94de 2656 if (!p->skip_locking) {
bd681513
CM
2657 level = btrfs_header_level(b);
2658 if (level <= write_lock_level) {
2659 err = btrfs_try_tree_write_lock(b);
2660 if (!err) {
2661 btrfs_set_path_blocking(p);
2662 btrfs_tree_lock(b);
2663 btrfs_clear_path_blocking(p, b,
2664 BTRFS_WRITE_LOCK);
2665 }
2666 p->locks[level] = BTRFS_WRITE_LOCK;
2667 } else {
2668 err = btrfs_try_tree_read_lock(b);
2669 if (!err) {
2670 btrfs_set_path_blocking(p);
2671 btrfs_tree_read_lock(b);
2672 btrfs_clear_path_blocking(p, b,
2673 BTRFS_READ_LOCK);
2674 }
2675 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2676 }
bd681513 2677 p->nodes[level] = b;
b4ce94de 2678 }
be0e5c09
CM
2679 } else {
2680 p->slots[level] = slot;
87b29b20
YZ
2681 if (ins_len > 0 &&
2682 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2683 if (write_lock_level < 1) {
2684 write_lock_level = 1;
2685 btrfs_release_path(p);
2686 goto again;
2687 }
2688
b4ce94de 2689 btrfs_set_path_blocking(p);
33c66f43
YZ
2690 err = split_leaf(trans, root, key,
2691 p, ins_len, ret == 0);
bd681513 2692 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2693
33c66f43
YZ
2694 BUG_ON(err > 0);
2695 if (err) {
2696 ret = err;
65b51a00
CM
2697 goto done;
2698 }
5c680ed6 2699 }
459931ec 2700 if (!p->search_for_split)
f7c79f30
CM
2701 unlock_up(p, level, lowest_unlock,
2702 min_write_lock_level, &write_lock_level);
65b51a00 2703 goto done;
be0e5c09
CM
2704 }
2705 }
65b51a00
CM
2706 ret = 1;
2707done:
b4ce94de
CM
2708 /*
2709 * we don't really know what they plan on doing with the path
2710 * from here on, so for now just mark it as blocking
2711 */
b9473439
CM
2712 if (!p->leave_spinning)
2713 btrfs_set_path_blocking(p);
76a05b35 2714 if (ret < 0)
b3b4aa74 2715 btrfs_release_path(p);
65b51a00 2716 return ret;
be0e5c09
CM
2717}
2718
5d9e75c4
JS
2719/*
2720 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2721 * current state of the tree together with the operations recorded in the tree
2722 * modification log to search for the key in a previous version of this tree, as
2723 * denoted by the time_seq parameter.
2724 *
2725 * Naturally, there is no support for insert, delete or cow operations.
2726 *
2727 * The resulting path and return value will be set up as if we called
2728 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2729 */
2730int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2731 struct btrfs_path *p, u64 time_seq)
2732{
2733 struct extent_buffer *b;
2734 int slot;
2735 int ret;
2736 int err;
2737 int level;
2738 int lowest_unlock = 1;
2739 u8 lowest_level = 0;
2740
2741 lowest_level = p->lowest_level;
2742 WARN_ON(p->nodes[0] != NULL);
2743
2744 if (p->search_commit_root) {
2745 BUG_ON(time_seq);
2746 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2747 }
2748
2749again:
5d9e75c4 2750 b = get_old_root(root, time_seq);
5d9e75c4 2751 level = btrfs_header_level(b);
5d9e75c4
JS
2752 p->locks[level] = BTRFS_READ_LOCK;
2753
2754 while (b) {
2755 level = btrfs_header_level(b);
2756 p->nodes[level] = b;
2757 btrfs_clear_path_blocking(p, NULL, 0);
2758
2759 /*
2760 * we have a lock on b and as long as we aren't changing
2761 * the tree, there is no way to for the items in b to change.
2762 * It is safe to drop the lock on our parent before we
2763 * go through the expensive btree search on b.
2764 */
2765 btrfs_unlock_up_safe(p, level + 1);
2766
2767 ret = bin_search(b, key, level, &slot);
2768
2769 if (level != 0) {
2770 int dec = 0;
2771 if (ret && slot > 0) {
2772 dec = 1;
2773 slot -= 1;
2774 }
2775 p->slots[level] = slot;
2776 unlock_up(p, level, lowest_unlock, 0, NULL);
2777
2778 if (level == lowest_level) {
2779 if (dec)
2780 p->slots[level]++;
2781 goto done;
2782 }
2783
2784 err = read_block_for_search(NULL, root, p, &b, level,
2785 slot, key, time_seq);
2786 if (err == -EAGAIN)
2787 goto again;
2788 if (err) {
2789 ret = err;
2790 goto done;
2791 }
2792
2793 level = btrfs_header_level(b);
2794 err = btrfs_try_tree_read_lock(b);
2795 if (!err) {
2796 btrfs_set_path_blocking(p);
2797 btrfs_tree_read_lock(b);
2798 btrfs_clear_path_blocking(p, b,
2799 BTRFS_READ_LOCK);
2800 }
2801 p->locks[level] = BTRFS_READ_LOCK;
2802 p->nodes[level] = b;
2803 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2804 if (b != p->nodes[level]) {
2805 btrfs_tree_unlock_rw(p->nodes[level],
2806 p->locks[level]);
2807 p->locks[level] = 0;
2808 p->nodes[level] = b;
2809 }
2810 } else {
2811 p->slots[level] = slot;
2812 unlock_up(p, level, lowest_unlock, 0, NULL);
2813 goto done;
2814 }
2815 }
2816 ret = 1;
2817done:
2818 if (!p->leave_spinning)
2819 btrfs_set_path_blocking(p);
2820 if (ret < 0)
2821 btrfs_release_path(p);
2822
2823 return ret;
2824}
2825
2f38b3e1
AJ
2826/*
2827 * helper to use instead of search slot if no exact match is needed but
2828 * instead the next or previous item should be returned.
2829 * When find_higher is true, the next higher item is returned, the next lower
2830 * otherwise.
2831 * When return_any and find_higher are both true, and no higher item is found,
2832 * return the next lower instead.
2833 * When return_any is true and find_higher is false, and no lower item is found,
2834 * return the next higher instead.
2835 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2836 * < 0 on error
2837 */
2838int btrfs_search_slot_for_read(struct btrfs_root *root,
2839 struct btrfs_key *key, struct btrfs_path *p,
2840 int find_higher, int return_any)
2841{
2842 int ret;
2843 struct extent_buffer *leaf;
2844
2845again:
2846 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2847 if (ret <= 0)
2848 return ret;
2849 /*
2850 * a return value of 1 means the path is at the position where the
2851 * item should be inserted. Normally this is the next bigger item,
2852 * but in case the previous item is the last in a leaf, path points
2853 * to the first free slot in the previous leaf, i.e. at an invalid
2854 * item.
2855 */
2856 leaf = p->nodes[0];
2857
2858 if (find_higher) {
2859 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2860 ret = btrfs_next_leaf(root, p);
2861 if (ret <= 0)
2862 return ret;
2863 if (!return_any)
2864 return 1;
2865 /*
2866 * no higher item found, return the next
2867 * lower instead
2868 */
2869 return_any = 0;
2870 find_higher = 0;
2871 btrfs_release_path(p);
2872 goto again;
2873 }
2874 } else {
e6793769
AJ
2875 if (p->slots[0] == 0) {
2876 ret = btrfs_prev_leaf(root, p);
2877 if (ret < 0)
2878 return ret;
2879 if (!ret) {
2880 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2881 return 0;
2f38b3e1 2882 }
e6793769
AJ
2883 if (!return_any)
2884 return 1;
2885 /*
2886 * no lower item found, return the next
2887 * higher instead
2888 */
2889 return_any = 0;
2890 find_higher = 1;
2891 btrfs_release_path(p);
2892 goto again;
2893 } else {
2f38b3e1
AJ
2894 --p->slots[0];
2895 }
2896 }
2897 return 0;
2898}
2899
74123bd7
CM
2900/*
2901 * adjust the pointers going up the tree, starting at level
2902 * making sure the right key of each node is points to 'key'.
2903 * This is used after shifting pointers to the left, so it stops
2904 * fixing up pointers when a given leaf/node is not in slot 0 of the
2905 * higher levels
aa5d6bed 2906 *
74123bd7 2907 */
143bede5
JM
2908static void fixup_low_keys(struct btrfs_trans_handle *trans,
2909 struct btrfs_root *root, struct btrfs_path *path,
2910 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2911{
2912 int i;
5f39d397
CM
2913 struct extent_buffer *t;
2914
234b63a0 2915 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2916 int tslot = path->slots[i];
eb60ceac 2917 if (!path->nodes[i])
be0e5c09 2918 break;
5f39d397 2919 t = path->nodes[i];
f230475e 2920 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
5f39d397 2921 btrfs_set_node_key(t, key, tslot);
d6025579 2922 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2923 if (tslot != 0)
2924 break;
2925 }
2926}
2927
31840ae1
ZY
2928/*
2929 * update item key.
2930 *
2931 * This function isn't completely safe. It's the caller's responsibility
2932 * that the new key won't break the order
2933 */
143bede5
JM
2934void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root, struct btrfs_path *path,
2936 struct btrfs_key *new_key)
31840ae1
ZY
2937{
2938 struct btrfs_disk_key disk_key;
2939 struct extent_buffer *eb;
2940 int slot;
2941
2942 eb = path->nodes[0];
2943 slot = path->slots[0];
2944 if (slot > 0) {
2945 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2946 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2947 }
2948 if (slot < btrfs_header_nritems(eb) - 1) {
2949 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2950 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2951 }
2952
2953 btrfs_cpu_key_to_disk(&disk_key, new_key);
2954 btrfs_set_item_key(eb, &disk_key, slot);
2955 btrfs_mark_buffer_dirty(eb);
2956 if (slot == 0)
2957 fixup_low_keys(trans, root, path, &disk_key, 1);
31840ae1
ZY
2958}
2959
74123bd7
CM
2960/*
2961 * try to push data from one node into the next node left in the
79f95c82 2962 * tree.
aa5d6bed
CM
2963 *
2964 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2965 * error, and > 0 if there was no room in the left hand block.
74123bd7 2966 */
98ed5174
CM
2967static int push_node_left(struct btrfs_trans_handle *trans,
2968 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2969 struct extent_buffer *src, int empty)
be0e5c09 2970{
be0e5c09 2971 int push_items = 0;
bb803951
CM
2972 int src_nritems;
2973 int dst_nritems;
aa5d6bed 2974 int ret = 0;
be0e5c09 2975
5f39d397
CM
2976 src_nritems = btrfs_header_nritems(src);
2977 dst_nritems = btrfs_header_nritems(dst);
123abc88 2978 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2979 WARN_ON(btrfs_header_generation(src) != trans->transid);
2980 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2981
bce4eae9 2982 if (!empty && src_nritems <= 8)
971a1f66
CM
2983 return 1;
2984
d397712b 2985 if (push_items <= 0)
be0e5c09
CM
2986 return 1;
2987
bce4eae9 2988 if (empty) {
971a1f66 2989 push_items = min(src_nritems, push_items);
bce4eae9
CM
2990 if (push_items < src_nritems) {
2991 /* leave at least 8 pointers in the node if
2992 * we aren't going to empty it
2993 */
2994 if (src_nritems - push_items < 8) {
2995 if (push_items <= 8)
2996 return 1;
2997 push_items -= 8;
2998 }
2999 }
3000 } else
3001 push_items = min(src_nritems - 8, push_items);
79f95c82 3002
f230475e
JS
3003 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3004 push_items);
5f39d397
CM
3005 copy_extent_buffer(dst, src,
3006 btrfs_node_key_ptr_offset(dst_nritems),
3007 btrfs_node_key_ptr_offset(0),
d397712b 3008 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3009
bb803951 3010 if (push_items < src_nritems) {
57911b8b
JS
3011 /*
3012 * don't call tree_mod_log_eb_move here, key removal was already
3013 * fully logged by tree_mod_log_eb_copy above.
3014 */
5f39d397
CM
3015 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3016 btrfs_node_key_ptr_offset(push_items),
3017 (src_nritems - push_items) *
3018 sizeof(struct btrfs_key_ptr));
3019 }
3020 btrfs_set_header_nritems(src, src_nritems - push_items);
3021 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3022 btrfs_mark_buffer_dirty(src);
3023 btrfs_mark_buffer_dirty(dst);
31840ae1 3024
79f95c82
CM
3025 return ret;
3026}
3027
3028/*
3029 * try to push data from one node into the next node right in the
3030 * tree.
3031 *
3032 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3033 * error, and > 0 if there was no room in the right hand block.
3034 *
3035 * this will only push up to 1/2 the contents of the left node over
3036 */
5f39d397
CM
3037static int balance_node_right(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 struct extent_buffer *dst,
3040 struct extent_buffer *src)
79f95c82 3041{
79f95c82
CM
3042 int push_items = 0;
3043 int max_push;
3044 int src_nritems;
3045 int dst_nritems;
3046 int ret = 0;
79f95c82 3047
7bb86316
CM
3048 WARN_ON(btrfs_header_generation(src) != trans->transid);
3049 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3050
5f39d397
CM
3051 src_nritems = btrfs_header_nritems(src);
3052 dst_nritems = btrfs_header_nritems(dst);
123abc88 3053 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3054 if (push_items <= 0)
79f95c82 3055 return 1;
bce4eae9 3056
d397712b 3057 if (src_nritems < 4)
bce4eae9 3058 return 1;
79f95c82
CM
3059
3060 max_push = src_nritems / 2 + 1;
3061 /* don't try to empty the node */
d397712b 3062 if (max_push >= src_nritems)
79f95c82 3063 return 1;
252c38f0 3064
79f95c82
CM
3065 if (max_push < push_items)
3066 push_items = max_push;
3067
f230475e 3068 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3069 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3070 btrfs_node_key_ptr_offset(0),
3071 (dst_nritems) *
3072 sizeof(struct btrfs_key_ptr));
d6025579 3073
f230475e
JS
3074 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3075 src_nritems - push_items, push_items);
5f39d397
CM
3076 copy_extent_buffer(dst, src,
3077 btrfs_node_key_ptr_offset(0),
3078 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3079 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3080
5f39d397
CM
3081 btrfs_set_header_nritems(src, src_nritems - push_items);
3082 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3083
5f39d397
CM
3084 btrfs_mark_buffer_dirty(src);
3085 btrfs_mark_buffer_dirty(dst);
31840ae1 3086
aa5d6bed 3087 return ret;
be0e5c09
CM
3088}
3089
97571fd0
CM
3090/*
3091 * helper function to insert a new root level in the tree.
3092 * A new node is allocated, and a single item is inserted to
3093 * point to the existing root
aa5d6bed
CM
3094 *
3095 * returns zero on success or < 0 on failure.
97571fd0 3096 */
d397712b 3097static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397
CM
3098 struct btrfs_root *root,
3099 struct btrfs_path *path, int level)
5c680ed6 3100{
7bb86316 3101 u64 lower_gen;
5f39d397
CM
3102 struct extent_buffer *lower;
3103 struct extent_buffer *c;
925baedd 3104 struct extent_buffer *old;
5f39d397 3105 struct btrfs_disk_key lower_key;
5c680ed6
CM
3106
3107 BUG_ON(path->nodes[level]);
3108 BUG_ON(path->nodes[level-1] != root->node);
3109
7bb86316
CM
3110 lower = path->nodes[level-1];
3111 if (level == 1)
3112 btrfs_item_key(lower, &lower_key, 0);
3113 else
3114 btrfs_node_key(lower, &lower_key, 0);
3115
31840ae1 3116 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3117 root->root_key.objectid, &lower_key,
5581a51a 3118 level, root->node->start, 0);
5f39d397
CM
3119 if (IS_ERR(c))
3120 return PTR_ERR(c);
925baedd 3121
f0486c68
YZ
3122 root_add_used(root, root->nodesize);
3123
5d4f98a2 3124 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3125 btrfs_set_header_nritems(c, 1);
3126 btrfs_set_header_level(c, level);
db94535d 3127 btrfs_set_header_bytenr(c, c->start);
5f39d397 3128 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3129 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3130 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397
CM
3131
3132 write_extent_buffer(c, root->fs_info->fsid,
3133 (unsigned long)btrfs_header_fsid(c),
3134 BTRFS_FSID_SIZE);
e17cade2
CM
3135
3136 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3137 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3138 BTRFS_UUID_SIZE);
3139
5f39d397 3140 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3141 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3142 lower_gen = btrfs_header_generation(lower);
31840ae1 3143 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3144
3145 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3146
5f39d397 3147 btrfs_mark_buffer_dirty(c);
d5719762 3148
925baedd 3149 old = root->node;
f230475e 3150 tree_mod_log_set_root_pointer(root, c);
240f62c8 3151 rcu_assign_pointer(root->node, c);
925baedd
CM
3152
3153 /* the super has an extra ref to root->node */
3154 free_extent_buffer(old);
3155
0b86a832 3156 add_root_to_dirty_list(root);
5f39d397
CM
3157 extent_buffer_get(c);
3158 path->nodes[level] = c;
bd681513 3159 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3160 path->slots[level] = 0;
3161 return 0;
3162}
3163
74123bd7
CM
3164/*
3165 * worker function to insert a single pointer in a node.
3166 * the node should have enough room for the pointer already
97571fd0 3167 *
74123bd7
CM
3168 * slot and level indicate where you want the key to go, and
3169 * blocknr is the block the key points to.
3170 */
143bede5
JM
3171static void insert_ptr(struct btrfs_trans_handle *trans,
3172 struct btrfs_root *root, struct btrfs_path *path,
3173 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3174 int slot, int level)
74123bd7 3175{
5f39d397 3176 struct extent_buffer *lower;
74123bd7 3177 int nritems;
f3ea38da 3178 int ret;
5c680ed6
CM
3179
3180 BUG_ON(!path->nodes[level]);
f0486c68 3181 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3182 lower = path->nodes[level];
3183 nritems = btrfs_header_nritems(lower);
c293498b 3184 BUG_ON(slot > nritems);
143bede5 3185 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3186 if (slot != nritems) {
c3e06965 3187 if (level)
f3ea38da
JS
3188 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3189 slot, nritems - slot);
5f39d397
CM
3190 memmove_extent_buffer(lower,
3191 btrfs_node_key_ptr_offset(slot + 1),
3192 btrfs_node_key_ptr_offset(slot),
d6025579 3193 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3194 }
c3e06965 3195 if (level) {
f3ea38da
JS
3196 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3197 MOD_LOG_KEY_ADD);
3198 BUG_ON(ret < 0);
3199 }
5f39d397 3200 btrfs_set_node_key(lower, key, slot);
db94535d 3201 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3202 WARN_ON(trans->transid == 0);
3203 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3204 btrfs_set_header_nritems(lower, nritems + 1);
3205 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3206}
3207
97571fd0
CM
3208/*
3209 * split the node at the specified level in path in two.
3210 * The path is corrected to point to the appropriate node after the split
3211 *
3212 * Before splitting this tries to make some room in the node by pushing
3213 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3214 *
3215 * returns 0 on success and < 0 on failure
97571fd0 3216 */
e02119d5
CM
3217static noinline int split_node(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root,
3219 struct btrfs_path *path, int level)
be0e5c09 3220{
5f39d397
CM
3221 struct extent_buffer *c;
3222 struct extent_buffer *split;
3223 struct btrfs_disk_key disk_key;
be0e5c09 3224 int mid;
5c680ed6 3225 int ret;
7518a238 3226 u32 c_nritems;
eb60ceac 3227
5f39d397 3228 c = path->nodes[level];
7bb86316 3229 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3230 if (c == root->node) {
5c680ed6 3231 /* trying to split the root, lets make a new one */
e089f05c 3232 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3233 if (ret)
3234 return ret;
b3612421 3235 } else {
e66f709b 3236 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3237 c = path->nodes[level];
3238 if (!ret && btrfs_header_nritems(c) <
c448acf0 3239 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3240 return 0;
54aa1f4d
CM
3241 if (ret < 0)
3242 return ret;
be0e5c09 3243 }
e66f709b 3244
5f39d397 3245 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3246 mid = (c_nritems + 1) / 2;
3247 btrfs_node_key(c, &disk_key, mid);
7bb86316 3248
5d4f98a2 3249 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3250 root->root_key.objectid,
5581a51a 3251 &disk_key, level, c->start, 0);
5f39d397
CM
3252 if (IS_ERR(split))
3253 return PTR_ERR(split);
3254
f0486c68
YZ
3255 root_add_used(root, root->nodesize);
3256
5d4f98a2 3257 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3258 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3259 btrfs_set_header_bytenr(split, split->start);
5f39d397 3260 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3261 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3262 btrfs_set_header_owner(split, root->root_key.objectid);
3263 write_extent_buffer(split, root->fs_info->fsid,
3264 (unsigned long)btrfs_header_fsid(split),
3265 BTRFS_FSID_SIZE);
e17cade2
CM
3266 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3267 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3268 BTRFS_UUID_SIZE);
54aa1f4d 3269
f230475e 3270 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3271 copy_extent_buffer(split, c,
3272 btrfs_node_key_ptr_offset(0),
3273 btrfs_node_key_ptr_offset(mid),
3274 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3275 btrfs_set_header_nritems(split, c_nritems - mid);
3276 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3277 ret = 0;
3278
5f39d397
CM
3279 btrfs_mark_buffer_dirty(c);
3280 btrfs_mark_buffer_dirty(split);
3281
143bede5 3282 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3283 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3284
5de08d7d 3285 if (path->slots[level] >= mid) {
5c680ed6 3286 path->slots[level] -= mid;
925baedd 3287 btrfs_tree_unlock(c);
5f39d397
CM
3288 free_extent_buffer(c);
3289 path->nodes[level] = split;
5c680ed6
CM
3290 path->slots[level + 1] += 1;
3291 } else {
925baedd 3292 btrfs_tree_unlock(split);
5f39d397 3293 free_extent_buffer(split);
be0e5c09 3294 }
aa5d6bed 3295 return ret;
be0e5c09
CM
3296}
3297
74123bd7
CM
3298/*
3299 * how many bytes are required to store the items in a leaf. start
3300 * and nr indicate which items in the leaf to check. This totals up the
3301 * space used both by the item structs and the item data
3302 */
5f39d397 3303static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09
CM
3304{
3305 int data_len;
5f39d397 3306 int nritems = btrfs_header_nritems(l);
d4dbff95 3307 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3308
3309 if (!nr)
3310 return 0;
5f39d397
CM
3311 data_len = btrfs_item_end_nr(l, start);
3312 data_len = data_len - btrfs_item_offset_nr(l, end);
0783fcfc 3313 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3314 WARN_ON(data_len < 0);
be0e5c09
CM
3315 return data_len;
3316}
3317
d4dbff95
CM
3318/*
3319 * The space between the end of the leaf items and
3320 * the start of the leaf data. IOW, how much room
3321 * the leaf has left for both items and data
3322 */
d397712b 3323noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3324 struct extent_buffer *leaf)
d4dbff95 3325{
5f39d397
CM
3326 int nritems = btrfs_header_nritems(leaf);
3327 int ret;
3328 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3329 if (ret < 0) {
d397712b
CM
3330 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3331 "used %d nritems %d\n",
ae2f5411 3332 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3333 leaf_space_used(leaf, 0, nritems), nritems);
3334 }
3335 return ret;
d4dbff95
CM
3336}
3337
99d8f83c
CM
3338/*
3339 * min slot controls the lowest index we're willing to push to the
3340 * right. We'll push up to and including min_slot, but no lower
3341 */
44871b1b
CM
3342static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3343 struct btrfs_root *root,
3344 struct btrfs_path *path,
3345 int data_size, int empty,
3346 struct extent_buffer *right,
99d8f83c
CM
3347 int free_space, u32 left_nritems,
3348 u32 min_slot)
00ec4c51 3349{
5f39d397 3350 struct extent_buffer *left = path->nodes[0];
44871b1b 3351 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3352 struct btrfs_map_token token;
5f39d397 3353 struct btrfs_disk_key disk_key;
00ec4c51 3354 int slot;
34a38218 3355 u32 i;
00ec4c51
CM
3356 int push_space = 0;
3357 int push_items = 0;
0783fcfc 3358 struct btrfs_item *item;
34a38218 3359 u32 nr;
7518a238 3360 u32 right_nritems;
5f39d397 3361 u32 data_end;
db94535d 3362 u32 this_item_size;
00ec4c51 3363
cfed81a0
CM
3364 btrfs_init_map_token(&token);
3365
34a38218
CM
3366 if (empty)
3367 nr = 0;
3368 else
99d8f83c 3369 nr = max_t(u32, 1, min_slot);
34a38218 3370
31840ae1 3371 if (path->slots[0] >= left_nritems)
87b29b20 3372 push_space += data_size;
31840ae1 3373
44871b1b 3374 slot = path->slots[1];
34a38218
CM
3375 i = left_nritems - 1;
3376 while (i >= nr) {
5f39d397 3377 item = btrfs_item_nr(left, i);
db94535d 3378
31840ae1
ZY
3379 if (!empty && push_items > 0) {
3380 if (path->slots[0] > i)
3381 break;
3382 if (path->slots[0] == i) {
3383 int space = btrfs_leaf_free_space(root, left);
3384 if (space + push_space * 2 > free_space)
3385 break;
3386 }
3387 }
3388
00ec4c51 3389 if (path->slots[0] == i)
87b29b20 3390 push_space += data_size;
db94535d 3391
db94535d
CM
3392 this_item_size = btrfs_item_size(left, item);
3393 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3394 break;
31840ae1 3395
00ec4c51 3396 push_items++;
db94535d 3397 push_space += this_item_size + sizeof(*item);
34a38218
CM
3398 if (i == 0)
3399 break;
3400 i--;
db94535d 3401 }
5f39d397 3402
925baedd
CM
3403 if (push_items == 0)
3404 goto out_unlock;
5f39d397 3405
34a38218 3406 if (!empty && push_items == left_nritems)
a429e513 3407 WARN_ON(1);
5f39d397 3408
00ec4c51 3409 /* push left to right */
5f39d397 3410 right_nritems = btrfs_header_nritems(right);
34a38218 3411
5f39d397 3412 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3413 push_space -= leaf_data_end(root, left);
5f39d397 3414
00ec4c51 3415 /* make room in the right data area */
5f39d397
CM
3416 data_end = leaf_data_end(root, right);
3417 memmove_extent_buffer(right,
3418 btrfs_leaf_data(right) + data_end - push_space,
3419 btrfs_leaf_data(right) + data_end,
3420 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3421
00ec4c51 3422 /* copy from the left data area */
5f39d397 3423 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3424 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3425 btrfs_leaf_data(left) + leaf_data_end(root, left),
3426 push_space);
5f39d397
CM
3427
3428 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3429 btrfs_item_nr_offset(0),
3430 right_nritems * sizeof(struct btrfs_item));
3431
00ec4c51 3432 /* copy the items from left to right */
5f39d397
CM
3433 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3434 btrfs_item_nr_offset(left_nritems - push_items),
3435 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3436
3437 /* update the item pointers */
7518a238 3438 right_nritems += push_items;
5f39d397 3439 btrfs_set_header_nritems(right, right_nritems);
123abc88 3440 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3441 for (i = 0; i < right_nritems; i++) {
5f39d397 3442 item = btrfs_item_nr(right, i);
cfed81a0
CM
3443 push_space -= btrfs_token_item_size(right, item, &token);
3444 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3445 }
3446
7518a238 3447 left_nritems -= push_items;
5f39d397 3448 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3449
34a38218
CM
3450 if (left_nritems)
3451 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3452 else
3453 clean_tree_block(trans, root, left);
3454
5f39d397 3455 btrfs_mark_buffer_dirty(right);
a429e513 3456
5f39d397
CM
3457 btrfs_item_key(right, &disk_key, 0);
3458 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3459 btrfs_mark_buffer_dirty(upper);
02217ed2 3460
00ec4c51 3461 /* then fixup the leaf pointer in the path */
7518a238
CM
3462 if (path->slots[0] >= left_nritems) {
3463 path->slots[0] -= left_nritems;
925baedd
CM
3464 if (btrfs_header_nritems(path->nodes[0]) == 0)
3465 clean_tree_block(trans, root, path->nodes[0]);
3466 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3467 free_extent_buffer(path->nodes[0]);
3468 path->nodes[0] = right;
00ec4c51
CM
3469 path->slots[1] += 1;
3470 } else {
925baedd 3471 btrfs_tree_unlock(right);
5f39d397 3472 free_extent_buffer(right);
00ec4c51
CM
3473 }
3474 return 0;
925baedd
CM
3475
3476out_unlock:
3477 btrfs_tree_unlock(right);
3478 free_extent_buffer(right);
3479 return 1;
00ec4c51 3480}
925baedd 3481
44871b1b
CM
3482/*
3483 * push some data in the path leaf to the right, trying to free up at
3484 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3485 *
3486 * returns 1 if the push failed because the other node didn't have enough
3487 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3488 *
3489 * this will push starting from min_slot to the end of the leaf. It won't
3490 * push any slot lower than min_slot
44871b1b
CM
3491 */
3492static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3493 *root, struct btrfs_path *path,
3494 int min_data_size, int data_size,
3495 int empty, u32 min_slot)
44871b1b
CM
3496{
3497 struct extent_buffer *left = path->nodes[0];
3498 struct extent_buffer *right;
3499 struct extent_buffer *upper;
3500 int slot;
3501 int free_space;
3502 u32 left_nritems;
3503 int ret;
3504
3505 if (!path->nodes[1])
3506 return 1;
3507
3508 slot = path->slots[1];
3509 upper = path->nodes[1];
3510 if (slot >= btrfs_header_nritems(upper) - 1)
3511 return 1;
3512
3513 btrfs_assert_tree_locked(path->nodes[1]);
3514
3515 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3516 if (right == NULL)
3517 return 1;
3518
44871b1b
CM
3519 btrfs_tree_lock(right);
3520 btrfs_set_lock_blocking(right);
3521
3522 free_space = btrfs_leaf_free_space(root, right);
3523 if (free_space < data_size)
3524 goto out_unlock;
3525
3526 /* cow and double check */
3527 ret = btrfs_cow_block(trans, root, right, upper,
3528 slot + 1, &right);
3529 if (ret)
3530 goto out_unlock;
3531
3532 free_space = btrfs_leaf_free_space(root, right);
3533 if (free_space < data_size)
3534 goto out_unlock;
3535
3536 left_nritems = btrfs_header_nritems(left);
3537 if (left_nritems == 0)
3538 goto out_unlock;
3539
99d8f83c
CM
3540 return __push_leaf_right(trans, root, path, min_data_size, empty,
3541 right, free_space, left_nritems, min_slot);
44871b1b
CM
3542out_unlock:
3543 btrfs_tree_unlock(right);
3544 free_extent_buffer(right);
3545 return 1;
3546}
3547
74123bd7
CM
3548/*
3549 * push some data in the path leaf to the left, trying to free up at
3550 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3551 *
3552 * max_slot can put a limit on how far into the leaf we'll push items. The
3553 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3554 * items
74123bd7 3555 */
44871b1b
CM
3556static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3557 struct btrfs_root *root,
3558 struct btrfs_path *path, int data_size,
3559 int empty, struct extent_buffer *left,
99d8f83c
CM
3560 int free_space, u32 right_nritems,
3561 u32 max_slot)
be0e5c09 3562{
5f39d397
CM
3563 struct btrfs_disk_key disk_key;
3564 struct extent_buffer *right = path->nodes[0];
be0e5c09 3565 int i;
be0e5c09
CM
3566 int push_space = 0;
3567 int push_items = 0;
0783fcfc 3568 struct btrfs_item *item;
7518a238 3569 u32 old_left_nritems;
34a38218 3570 u32 nr;
aa5d6bed 3571 int ret = 0;
db94535d
CM
3572 u32 this_item_size;
3573 u32 old_left_item_size;
cfed81a0
CM
3574 struct btrfs_map_token token;
3575
3576 btrfs_init_map_token(&token);
be0e5c09 3577
34a38218 3578 if (empty)
99d8f83c 3579 nr = min(right_nritems, max_slot);
34a38218 3580 else
99d8f83c 3581 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3582
3583 for (i = 0; i < nr; i++) {
5f39d397 3584 item = btrfs_item_nr(right, i);
db94535d 3585
31840ae1
ZY
3586 if (!empty && push_items > 0) {
3587 if (path->slots[0] < i)
3588 break;
3589 if (path->slots[0] == i) {
3590 int space = btrfs_leaf_free_space(root, right);
3591 if (space + push_space * 2 > free_space)
3592 break;
3593 }
3594 }
3595
be0e5c09 3596 if (path->slots[0] == i)
87b29b20 3597 push_space += data_size;
db94535d
CM
3598
3599 this_item_size = btrfs_item_size(right, item);
3600 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3601 break;
db94535d 3602
be0e5c09 3603 push_items++;
db94535d
CM
3604 push_space += this_item_size + sizeof(*item);
3605 }
3606
be0e5c09 3607 if (push_items == 0) {
925baedd
CM
3608 ret = 1;
3609 goto out;
be0e5c09 3610 }
34a38218 3611 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3612 WARN_ON(1);
5f39d397 3613
be0e5c09 3614 /* push data from right to left */
5f39d397
CM
3615 copy_extent_buffer(left, right,
3616 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3617 btrfs_item_nr_offset(0),
3618 push_items * sizeof(struct btrfs_item));
3619
123abc88 3620 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3621 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3622
3623 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3624 leaf_data_end(root, left) - push_space,
3625 btrfs_leaf_data(right) +
5f39d397 3626 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3627 push_space);
5f39d397 3628 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3629 BUG_ON(old_left_nritems <= 0);
eb60ceac 3630
db94535d 3631 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3632 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3633 u32 ioff;
db94535d 3634
5f39d397 3635 item = btrfs_item_nr(left, i);
db94535d 3636
cfed81a0
CM
3637 ioff = btrfs_token_item_offset(left, item, &token);
3638 btrfs_set_token_item_offset(left, item,
3639 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3640 &token);
be0e5c09 3641 }
5f39d397 3642 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3643
3644 /* fixup right node */
34a38218 3645 if (push_items > right_nritems) {
d397712b
CM
3646 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3647 right_nritems);
34a38218
CM
3648 WARN_ON(1);
3649 }
3650
3651 if (push_items < right_nritems) {
3652 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3653 leaf_data_end(root, right);
3654 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3655 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3656 btrfs_leaf_data(right) +
3657 leaf_data_end(root, right), push_space);
3658
3659 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3660 btrfs_item_nr_offset(push_items),
3661 (btrfs_header_nritems(right) - push_items) *
3662 sizeof(struct btrfs_item));
34a38218 3663 }
eef1c494
Y
3664 right_nritems -= push_items;
3665 btrfs_set_header_nritems(right, right_nritems);
123abc88 3666 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3667 for (i = 0; i < right_nritems; i++) {
3668 item = btrfs_item_nr(right, i);
db94535d 3669
cfed81a0
CM
3670 push_space = push_space - btrfs_token_item_size(right,
3671 item, &token);
3672 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3673 }
eb60ceac 3674
5f39d397 3675 btrfs_mark_buffer_dirty(left);
34a38218
CM
3676 if (right_nritems)
3677 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3678 else
3679 clean_tree_block(trans, root, right);
098f59c2 3680
5f39d397 3681 btrfs_item_key(right, &disk_key, 0);
143bede5 3682 fixup_low_keys(trans, root, path, &disk_key, 1);
be0e5c09
CM
3683
3684 /* then fixup the leaf pointer in the path */
3685 if (path->slots[0] < push_items) {
3686 path->slots[0] += old_left_nritems;
925baedd 3687 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3688 free_extent_buffer(path->nodes[0]);
3689 path->nodes[0] = left;
be0e5c09
CM
3690 path->slots[1] -= 1;
3691 } else {
925baedd 3692 btrfs_tree_unlock(left);
5f39d397 3693 free_extent_buffer(left);
be0e5c09
CM
3694 path->slots[0] -= push_items;
3695 }
eb60ceac 3696 BUG_ON(path->slots[0] < 0);
aa5d6bed 3697 return ret;
925baedd
CM
3698out:
3699 btrfs_tree_unlock(left);
3700 free_extent_buffer(left);
3701 return ret;
be0e5c09
CM
3702}
3703
44871b1b
CM
3704/*
3705 * push some data in the path leaf to the left, trying to free up at
3706 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3707 *
3708 * max_slot can put a limit on how far into the leaf we'll push items. The
3709 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3710 * items
44871b1b
CM
3711 */
3712static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3713 *root, struct btrfs_path *path, int min_data_size,
3714 int data_size, int empty, u32 max_slot)
44871b1b
CM
3715{
3716 struct extent_buffer *right = path->nodes[0];
3717 struct extent_buffer *left;
3718 int slot;
3719 int free_space;
3720 u32 right_nritems;
3721 int ret = 0;
3722
3723 slot = path->slots[1];
3724 if (slot == 0)
3725 return 1;
3726 if (!path->nodes[1])
3727 return 1;
3728
3729 right_nritems = btrfs_header_nritems(right);
3730 if (right_nritems == 0)
3731 return 1;
3732
3733 btrfs_assert_tree_locked(path->nodes[1]);
3734
3735 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3736 if (left == NULL)
3737 return 1;
3738
44871b1b
CM
3739 btrfs_tree_lock(left);
3740 btrfs_set_lock_blocking(left);
3741
3742 free_space = btrfs_leaf_free_space(root, left);
3743 if (free_space < data_size) {
3744 ret = 1;
3745 goto out;
3746 }
3747
3748 /* cow and double check */
3749 ret = btrfs_cow_block(trans, root, left,
3750 path->nodes[1], slot - 1, &left);
3751 if (ret) {
3752 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3753 if (ret == -ENOSPC)
3754 ret = 1;
44871b1b
CM
3755 goto out;
3756 }
3757
3758 free_space = btrfs_leaf_free_space(root, left);
3759 if (free_space < data_size) {
3760 ret = 1;
3761 goto out;
3762 }
3763
99d8f83c
CM
3764 return __push_leaf_left(trans, root, path, min_data_size,
3765 empty, left, free_space, right_nritems,
3766 max_slot);
44871b1b
CM
3767out:
3768 btrfs_tree_unlock(left);
3769 free_extent_buffer(left);
3770 return ret;
3771}
3772
3773/*
3774 * split the path's leaf in two, making sure there is at least data_size
3775 * available for the resulting leaf level of the path.
44871b1b 3776 */
143bede5
JM
3777static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3778 struct btrfs_root *root,
3779 struct btrfs_path *path,
3780 struct extent_buffer *l,
3781 struct extent_buffer *right,
3782 int slot, int mid, int nritems)
44871b1b
CM
3783{
3784 int data_copy_size;
3785 int rt_data_off;
3786 int i;
44871b1b 3787 struct btrfs_disk_key disk_key;
cfed81a0
CM
3788 struct btrfs_map_token token;
3789
3790 btrfs_init_map_token(&token);
44871b1b
CM
3791
3792 nritems = nritems - mid;
3793 btrfs_set_header_nritems(right, nritems);
3794 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3795
3796 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3797 btrfs_item_nr_offset(mid),
3798 nritems * sizeof(struct btrfs_item));
3799
3800 copy_extent_buffer(right, l,
3801 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3802 data_copy_size, btrfs_leaf_data(l) +
3803 leaf_data_end(root, l), data_copy_size);
3804
3805 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3806 btrfs_item_end_nr(l, mid);
3807
3808 for (i = 0; i < nritems; i++) {
3809 struct btrfs_item *item = btrfs_item_nr(right, i);
3810 u32 ioff;
3811
cfed81a0
CM
3812 ioff = btrfs_token_item_offset(right, item, &token);
3813 btrfs_set_token_item_offset(right, item,
3814 ioff + rt_data_off, &token);
44871b1b
CM
3815 }
3816
44871b1b 3817 btrfs_set_header_nritems(l, mid);
44871b1b 3818 btrfs_item_key(right, &disk_key, 0);
143bede5 3819 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3820 path->slots[1] + 1, 1);
44871b1b
CM
3821
3822 btrfs_mark_buffer_dirty(right);
3823 btrfs_mark_buffer_dirty(l);
3824 BUG_ON(path->slots[0] != slot);
3825
44871b1b
CM
3826 if (mid <= slot) {
3827 btrfs_tree_unlock(path->nodes[0]);
3828 free_extent_buffer(path->nodes[0]);
3829 path->nodes[0] = right;
3830 path->slots[0] -= mid;
3831 path->slots[1] += 1;
3832 } else {
3833 btrfs_tree_unlock(right);
3834 free_extent_buffer(right);
3835 }
3836
3837 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3838}
3839
99d8f83c
CM
3840/*
3841 * double splits happen when we need to insert a big item in the middle
3842 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3843 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3844 * A B C
3845 *
3846 * We avoid this by trying to push the items on either side of our target
3847 * into the adjacent leaves. If all goes well we can avoid the double split
3848 * completely.
3849 */
3850static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3851 struct btrfs_root *root,
3852 struct btrfs_path *path,
3853 int data_size)
3854{
3855 int ret;
3856 int progress = 0;
3857 int slot;
3858 u32 nritems;
3859
3860 slot = path->slots[0];
3861
3862 /*
3863 * try to push all the items after our slot into the
3864 * right leaf
3865 */
3866 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3867 if (ret < 0)
3868 return ret;
3869
3870 if (ret == 0)
3871 progress++;
3872
3873 nritems = btrfs_header_nritems(path->nodes[0]);
3874 /*
3875 * our goal is to get our slot at the start or end of a leaf. If
3876 * we've done so we're done
3877 */
3878 if (path->slots[0] == 0 || path->slots[0] == nritems)
3879 return 0;
3880
3881 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3882 return 0;
3883
3884 /* try to push all the items before our slot into the next leaf */
3885 slot = path->slots[0];
3886 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3887 if (ret < 0)
3888 return ret;
3889
3890 if (ret == 0)
3891 progress++;
3892
3893 if (progress)
3894 return 0;
3895 return 1;
3896}
3897
74123bd7
CM
3898/*
3899 * split the path's leaf in two, making sure there is at least data_size
3900 * available for the resulting leaf level of the path.
aa5d6bed
CM
3901 *
3902 * returns 0 if all went well and < 0 on failure.
74123bd7 3903 */
e02119d5
CM
3904static noinline int split_leaf(struct btrfs_trans_handle *trans,
3905 struct btrfs_root *root,
3906 struct btrfs_key *ins_key,
3907 struct btrfs_path *path, int data_size,
3908 int extend)
be0e5c09 3909{
5d4f98a2 3910 struct btrfs_disk_key disk_key;
5f39d397 3911 struct extent_buffer *l;
7518a238 3912 u32 nritems;
eb60ceac
CM
3913 int mid;
3914 int slot;
5f39d397 3915 struct extent_buffer *right;
d4dbff95 3916 int ret = 0;
aa5d6bed 3917 int wret;
5d4f98a2 3918 int split;
cc0c5538 3919 int num_doubles = 0;
99d8f83c 3920 int tried_avoid_double = 0;
aa5d6bed 3921
a5719521
YZ
3922 l = path->nodes[0];
3923 slot = path->slots[0];
3924 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3925 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3926 return -EOVERFLOW;
3927
40689478 3928 /* first try to make some room by pushing left and right */
99d8f83c
CM
3929 if (data_size) {
3930 wret = push_leaf_right(trans, root, path, data_size,
3931 data_size, 0, 0);
d397712b 3932 if (wret < 0)
eaee50e8 3933 return wret;
3685f791 3934 if (wret) {
99d8f83c
CM
3935 wret = push_leaf_left(trans, root, path, data_size,
3936 data_size, 0, (u32)-1);
3685f791
CM
3937 if (wret < 0)
3938 return wret;
3939 }
3940 l = path->nodes[0];
aa5d6bed 3941
3685f791 3942 /* did the pushes work? */
87b29b20 3943 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3944 return 0;
3326d1b0 3945 }
aa5d6bed 3946
5c680ed6 3947 if (!path->nodes[1]) {
e089f05c 3948 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
3949 if (ret)
3950 return ret;
3951 }
cc0c5538 3952again:
5d4f98a2 3953 split = 1;
cc0c5538 3954 l = path->nodes[0];
eb60ceac 3955 slot = path->slots[0];
5f39d397 3956 nritems = btrfs_header_nritems(l);
d397712b 3957 mid = (nritems + 1) / 2;
54aa1f4d 3958
5d4f98a2
YZ
3959 if (mid <= slot) {
3960 if (nritems == 1 ||
3961 leaf_space_used(l, mid, nritems - mid) + data_size >
3962 BTRFS_LEAF_DATA_SIZE(root)) {
3963 if (slot >= nritems) {
3964 split = 0;
3965 } else {
3966 mid = slot;
3967 if (mid != nritems &&
3968 leaf_space_used(l, mid, nritems - mid) +
3969 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3970 if (data_size && !tried_avoid_double)
3971 goto push_for_double;
5d4f98a2
YZ
3972 split = 2;
3973 }
3974 }
3975 }
3976 } else {
3977 if (leaf_space_used(l, 0, mid) + data_size >
3978 BTRFS_LEAF_DATA_SIZE(root)) {
3979 if (!extend && data_size && slot == 0) {
3980 split = 0;
3981 } else if ((extend || !data_size) && slot == 0) {
3982 mid = 1;
3983 } else {
3984 mid = slot;
3985 if (mid != nritems &&
3986 leaf_space_used(l, mid, nritems - mid) +
3987 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3988 if (data_size && !tried_avoid_double)
3989 goto push_for_double;
5d4f98a2
YZ
3990 split = 2 ;
3991 }
3992 }
3993 }
3994 }
3995
3996 if (split == 0)
3997 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3998 else
3999 btrfs_item_key(l, &disk_key, mid);
4000
4001 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 4002 root->root_key.objectid,
5581a51a 4003 &disk_key, 0, l->start, 0);
f0486c68 4004 if (IS_ERR(right))
5f39d397 4005 return PTR_ERR(right);
f0486c68
YZ
4006
4007 root_add_used(root, root->leafsize);
5f39d397
CM
4008
4009 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4010 btrfs_set_header_bytenr(right, right->start);
5f39d397 4011 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4012 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4013 btrfs_set_header_owner(right, root->root_key.objectid);
4014 btrfs_set_header_level(right, 0);
4015 write_extent_buffer(right, root->fs_info->fsid,
4016 (unsigned long)btrfs_header_fsid(right),
4017 BTRFS_FSID_SIZE);
e17cade2
CM
4018
4019 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4020 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4021 BTRFS_UUID_SIZE);
44871b1b 4022
5d4f98a2
YZ
4023 if (split == 0) {
4024 if (mid <= slot) {
4025 btrfs_set_header_nritems(right, 0);
143bede5 4026 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4027 path->slots[1] + 1, 1);
5d4f98a2
YZ
4028 btrfs_tree_unlock(path->nodes[0]);
4029 free_extent_buffer(path->nodes[0]);
4030 path->nodes[0] = right;
4031 path->slots[0] = 0;
4032 path->slots[1] += 1;
4033 } else {
4034 btrfs_set_header_nritems(right, 0);
143bede5 4035 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4036 path->slots[1], 1);
5d4f98a2
YZ
4037 btrfs_tree_unlock(path->nodes[0]);
4038 free_extent_buffer(path->nodes[0]);
4039 path->nodes[0] = right;
4040 path->slots[0] = 0;
143bede5
JM
4041 if (path->slots[1] == 0)
4042 fixup_low_keys(trans, root, path,
4043 &disk_key, 1);
d4dbff95 4044 }
5d4f98a2
YZ
4045 btrfs_mark_buffer_dirty(right);
4046 return ret;
d4dbff95 4047 }
74123bd7 4048
143bede5 4049 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4050
5d4f98a2 4051 if (split == 2) {
cc0c5538
CM
4052 BUG_ON(num_doubles != 0);
4053 num_doubles++;
4054 goto again;
a429e513 4055 }
44871b1b 4056
143bede5 4057 return 0;
99d8f83c
CM
4058
4059push_for_double:
4060 push_for_double_split(trans, root, path, data_size);
4061 tried_avoid_double = 1;
4062 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4063 return 0;
4064 goto again;
be0e5c09
CM
4065}
4066
ad48fd75
YZ
4067static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4068 struct btrfs_root *root,
4069 struct btrfs_path *path, int ins_len)
459931ec 4070{
ad48fd75 4071 struct btrfs_key key;
459931ec 4072 struct extent_buffer *leaf;
ad48fd75
YZ
4073 struct btrfs_file_extent_item *fi;
4074 u64 extent_len = 0;
4075 u32 item_size;
4076 int ret;
459931ec
CM
4077
4078 leaf = path->nodes[0];
ad48fd75
YZ
4079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4080
4081 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4082 key.type != BTRFS_EXTENT_CSUM_KEY);
4083
4084 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4085 return 0;
459931ec
CM
4086
4087 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4088 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4089 fi = btrfs_item_ptr(leaf, path->slots[0],
4090 struct btrfs_file_extent_item);
4091 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4092 }
b3b4aa74 4093 btrfs_release_path(path);
459931ec 4094
459931ec 4095 path->keep_locks = 1;
ad48fd75
YZ
4096 path->search_for_split = 1;
4097 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4098 path->search_for_split = 0;
ad48fd75
YZ
4099 if (ret < 0)
4100 goto err;
459931ec 4101
ad48fd75
YZ
4102 ret = -EAGAIN;
4103 leaf = path->nodes[0];
459931ec 4104 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4105 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4106 goto err;
4107
109f6aef
CM
4108 /* the leaf has changed, it now has room. return now */
4109 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4110 goto err;
4111
ad48fd75
YZ
4112 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4113 fi = btrfs_item_ptr(leaf, path->slots[0],
4114 struct btrfs_file_extent_item);
4115 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4116 goto err;
459931ec
CM
4117 }
4118
b9473439 4119 btrfs_set_path_blocking(path);
ad48fd75 4120 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4121 if (ret)
4122 goto err;
459931ec 4123
ad48fd75 4124 path->keep_locks = 0;
b9473439 4125 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4126 return 0;
4127err:
4128 path->keep_locks = 0;
4129 return ret;
4130}
4131
4132static noinline int split_item(struct btrfs_trans_handle *trans,
4133 struct btrfs_root *root,
4134 struct btrfs_path *path,
4135 struct btrfs_key *new_key,
4136 unsigned long split_offset)
4137{
4138 struct extent_buffer *leaf;
4139 struct btrfs_item *item;
4140 struct btrfs_item *new_item;
4141 int slot;
4142 char *buf;
4143 u32 nritems;
4144 u32 item_size;
4145 u32 orig_offset;
4146 struct btrfs_disk_key disk_key;
4147
b9473439
CM
4148 leaf = path->nodes[0];
4149 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4150
b4ce94de
CM
4151 btrfs_set_path_blocking(path);
4152
459931ec
CM
4153 item = btrfs_item_nr(leaf, path->slots[0]);
4154 orig_offset = btrfs_item_offset(leaf, item);
4155 item_size = btrfs_item_size(leaf, item);
4156
459931ec 4157 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4158 if (!buf)
4159 return -ENOMEM;
4160
459931ec
CM
4161 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4162 path->slots[0]), item_size);
459931ec 4163
ad48fd75 4164 slot = path->slots[0] + 1;
459931ec 4165 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4166 if (slot != nritems) {
4167 /* shift the items */
4168 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4169 btrfs_item_nr_offset(slot),
4170 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4171 }
4172
4173 btrfs_cpu_key_to_disk(&disk_key, new_key);
4174 btrfs_set_item_key(leaf, &disk_key, slot);
4175
4176 new_item = btrfs_item_nr(leaf, slot);
4177
4178 btrfs_set_item_offset(leaf, new_item, orig_offset);
4179 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4180
4181 btrfs_set_item_offset(leaf, item,
4182 orig_offset + item_size - split_offset);
4183 btrfs_set_item_size(leaf, item, split_offset);
4184
4185 btrfs_set_header_nritems(leaf, nritems + 1);
4186
4187 /* write the data for the start of the original item */
4188 write_extent_buffer(leaf, buf,
4189 btrfs_item_ptr_offset(leaf, path->slots[0]),
4190 split_offset);
4191
4192 /* write the data for the new item */
4193 write_extent_buffer(leaf, buf + split_offset,
4194 btrfs_item_ptr_offset(leaf, slot),
4195 item_size - split_offset);
4196 btrfs_mark_buffer_dirty(leaf);
4197
ad48fd75 4198 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4199 kfree(buf);
ad48fd75
YZ
4200 return 0;
4201}
4202
4203/*
4204 * This function splits a single item into two items,
4205 * giving 'new_key' to the new item and splitting the
4206 * old one at split_offset (from the start of the item).
4207 *
4208 * The path may be released by this operation. After
4209 * the split, the path is pointing to the old item. The
4210 * new item is going to be in the same node as the old one.
4211 *
4212 * Note, the item being split must be smaller enough to live alone on
4213 * a tree block with room for one extra struct btrfs_item
4214 *
4215 * This allows us to split the item in place, keeping a lock on the
4216 * leaf the entire time.
4217 */
4218int btrfs_split_item(struct btrfs_trans_handle *trans,
4219 struct btrfs_root *root,
4220 struct btrfs_path *path,
4221 struct btrfs_key *new_key,
4222 unsigned long split_offset)
4223{
4224 int ret;
4225 ret = setup_leaf_for_split(trans, root, path,
4226 sizeof(struct btrfs_item));
4227 if (ret)
4228 return ret;
4229
4230 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4231 return ret;
4232}
4233
ad48fd75
YZ
4234/*
4235 * This function duplicate a item, giving 'new_key' to the new item.
4236 * It guarantees both items live in the same tree leaf and the new item
4237 * is contiguous with the original item.
4238 *
4239 * This allows us to split file extent in place, keeping a lock on the
4240 * leaf the entire time.
4241 */
4242int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4243 struct btrfs_root *root,
4244 struct btrfs_path *path,
4245 struct btrfs_key *new_key)
4246{
4247 struct extent_buffer *leaf;
4248 int ret;
4249 u32 item_size;
4250
4251 leaf = path->nodes[0];
4252 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4253 ret = setup_leaf_for_split(trans, root, path,
4254 item_size + sizeof(struct btrfs_item));
4255 if (ret)
4256 return ret;
4257
4258 path->slots[0]++;
143bede5
JM
4259 setup_items_for_insert(trans, root, path, new_key, &item_size,
4260 item_size, item_size +
4261 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4262 leaf = path->nodes[0];
4263 memcpy_extent_buffer(leaf,
4264 btrfs_item_ptr_offset(leaf, path->slots[0]),
4265 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4266 item_size);
4267 return 0;
4268}
4269
d352ac68
CM
4270/*
4271 * make the item pointed to by the path smaller. new_size indicates
4272 * how small to make it, and from_end tells us if we just chop bytes
4273 * off the end of the item or if we shift the item to chop bytes off
4274 * the front.
4275 */
143bede5
JM
4276void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4277 struct btrfs_root *root,
4278 struct btrfs_path *path,
4279 u32 new_size, int from_end)
b18c6685 4280{
b18c6685 4281 int slot;
5f39d397
CM
4282 struct extent_buffer *leaf;
4283 struct btrfs_item *item;
b18c6685
CM
4284 u32 nritems;
4285 unsigned int data_end;
4286 unsigned int old_data_start;
4287 unsigned int old_size;
4288 unsigned int size_diff;
4289 int i;
cfed81a0
CM
4290 struct btrfs_map_token token;
4291
4292 btrfs_init_map_token(&token);
b18c6685 4293
5f39d397 4294 leaf = path->nodes[0];
179e29e4
CM
4295 slot = path->slots[0];
4296
4297 old_size = btrfs_item_size_nr(leaf, slot);
4298 if (old_size == new_size)
143bede5 4299 return;
b18c6685 4300
5f39d397 4301 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4302 data_end = leaf_data_end(root, leaf);
4303
5f39d397 4304 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4305
b18c6685
CM
4306 size_diff = old_size - new_size;
4307
4308 BUG_ON(slot < 0);
4309 BUG_ON(slot >= nritems);
4310
4311 /*
4312 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4313 */
4314 /* first correct the data pointers */
4315 for (i = slot; i < nritems; i++) {
5f39d397
CM
4316 u32 ioff;
4317 item = btrfs_item_nr(leaf, i);
db94535d 4318
cfed81a0
CM
4319 ioff = btrfs_token_item_offset(leaf, item, &token);
4320 btrfs_set_token_item_offset(leaf, item,
4321 ioff + size_diff, &token);
b18c6685 4322 }
db94535d 4323
b18c6685 4324 /* shift the data */
179e29e4
CM
4325 if (from_end) {
4326 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4327 data_end + size_diff, btrfs_leaf_data(leaf) +
4328 data_end, old_data_start + new_size - data_end);
4329 } else {
4330 struct btrfs_disk_key disk_key;
4331 u64 offset;
4332
4333 btrfs_item_key(leaf, &disk_key, slot);
4334
4335 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4336 unsigned long ptr;
4337 struct btrfs_file_extent_item *fi;
4338
4339 fi = btrfs_item_ptr(leaf, slot,
4340 struct btrfs_file_extent_item);
4341 fi = (struct btrfs_file_extent_item *)(
4342 (unsigned long)fi - size_diff);
4343
4344 if (btrfs_file_extent_type(leaf, fi) ==
4345 BTRFS_FILE_EXTENT_INLINE) {
4346 ptr = btrfs_item_ptr_offset(leaf, slot);
4347 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4348 (unsigned long)fi,
4349 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4350 disk_bytenr));
4351 }
4352 }
4353
4354 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4355 data_end + size_diff, btrfs_leaf_data(leaf) +
4356 data_end, old_data_start - data_end);
4357
4358 offset = btrfs_disk_key_offset(&disk_key);
4359 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4360 btrfs_set_item_key(leaf, &disk_key, slot);
4361 if (slot == 0)
4362 fixup_low_keys(trans, root, path, &disk_key, 1);
4363 }
5f39d397
CM
4364
4365 item = btrfs_item_nr(leaf, slot);
4366 btrfs_set_item_size(leaf, item, new_size);
4367 btrfs_mark_buffer_dirty(leaf);
b18c6685 4368
5f39d397
CM
4369 if (btrfs_leaf_free_space(root, leaf) < 0) {
4370 btrfs_print_leaf(root, leaf);
b18c6685 4371 BUG();
5f39d397 4372 }
b18c6685
CM
4373}
4374
d352ac68
CM
4375/*
4376 * make the item pointed to by the path bigger, data_size is the new size.
4377 */
143bede5
JM
4378void btrfs_extend_item(struct btrfs_trans_handle *trans,
4379 struct btrfs_root *root, struct btrfs_path *path,
4380 u32 data_size)
6567e837 4381{
6567e837 4382 int slot;
5f39d397
CM
4383 struct extent_buffer *leaf;
4384 struct btrfs_item *item;
6567e837
CM
4385 u32 nritems;
4386 unsigned int data_end;
4387 unsigned int old_data;
4388 unsigned int old_size;
4389 int i;
cfed81a0
CM
4390 struct btrfs_map_token token;
4391
4392 btrfs_init_map_token(&token);
6567e837 4393
5f39d397 4394 leaf = path->nodes[0];
6567e837 4395
5f39d397 4396 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4397 data_end = leaf_data_end(root, leaf);
4398
5f39d397
CM
4399 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4400 btrfs_print_leaf(root, leaf);
6567e837 4401 BUG();
5f39d397 4402 }
6567e837 4403 slot = path->slots[0];
5f39d397 4404 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4405
4406 BUG_ON(slot < 0);
3326d1b0
CM
4407 if (slot >= nritems) {
4408 btrfs_print_leaf(root, leaf);
d397712b
CM
4409 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4410 slot, nritems);
3326d1b0
CM
4411 BUG_ON(1);
4412 }
6567e837
CM
4413
4414 /*
4415 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4416 */
4417 /* first correct the data pointers */
4418 for (i = slot; i < nritems; i++) {
5f39d397
CM
4419 u32 ioff;
4420 item = btrfs_item_nr(leaf, i);
db94535d 4421
cfed81a0
CM
4422 ioff = btrfs_token_item_offset(leaf, item, &token);
4423 btrfs_set_token_item_offset(leaf, item,
4424 ioff - data_size, &token);
6567e837 4425 }
5f39d397 4426
6567e837 4427 /* shift the data */
5f39d397 4428 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4429 data_end - data_size, btrfs_leaf_data(leaf) +
4430 data_end, old_data - data_end);
5f39d397 4431
6567e837 4432 data_end = old_data;
5f39d397
CM
4433 old_size = btrfs_item_size_nr(leaf, slot);
4434 item = btrfs_item_nr(leaf, slot);
4435 btrfs_set_item_size(leaf, item, old_size + data_size);
4436 btrfs_mark_buffer_dirty(leaf);
6567e837 4437
5f39d397
CM
4438 if (btrfs_leaf_free_space(root, leaf) < 0) {
4439 btrfs_print_leaf(root, leaf);
6567e837 4440 BUG();
5f39d397 4441 }
6567e837
CM
4442}
4443
74123bd7 4444/*
44871b1b
CM
4445 * this is a helper for btrfs_insert_empty_items, the main goal here is
4446 * to save stack depth by doing the bulk of the work in a function
4447 * that doesn't call btrfs_search_slot
74123bd7 4448 */
143bede5
JM
4449void setup_items_for_insert(struct btrfs_trans_handle *trans,
4450 struct btrfs_root *root, struct btrfs_path *path,
4451 struct btrfs_key *cpu_key, u32 *data_size,
4452 u32 total_data, u32 total_size, int nr)
be0e5c09 4453{
5f39d397 4454 struct btrfs_item *item;
9c58309d 4455 int i;
7518a238 4456 u32 nritems;
be0e5c09 4457 unsigned int data_end;
e2fa7227 4458 struct btrfs_disk_key disk_key;
44871b1b
CM
4459 struct extent_buffer *leaf;
4460 int slot;
cfed81a0
CM
4461 struct btrfs_map_token token;
4462
4463 btrfs_init_map_token(&token);
e2fa7227 4464
5f39d397 4465 leaf = path->nodes[0];
44871b1b 4466 slot = path->slots[0];
74123bd7 4467
5f39d397 4468 nritems = btrfs_header_nritems(leaf);
123abc88 4469 data_end = leaf_data_end(root, leaf);
eb60ceac 4470
f25956cc 4471 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4472 btrfs_print_leaf(root, leaf);
d397712b 4473 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4474 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4475 BUG();
d4dbff95 4476 }
5f39d397 4477
be0e5c09 4478 if (slot != nritems) {
5f39d397 4479 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4480
5f39d397
CM
4481 if (old_data < data_end) {
4482 btrfs_print_leaf(root, leaf);
d397712b 4483 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4484 slot, old_data, data_end);
4485 BUG_ON(1);
4486 }
be0e5c09
CM
4487 /*
4488 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4489 */
4490 /* first correct the data pointers */
0783fcfc 4491 for (i = slot; i < nritems; i++) {
5f39d397 4492 u32 ioff;
db94535d 4493
5f39d397 4494 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4495 ioff = btrfs_token_item_offset(leaf, item, &token);
4496 btrfs_set_token_item_offset(leaf, item,
4497 ioff - total_data, &token);
0783fcfc 4498 }
be0e5c09 4499 /* shift the items */
9c58309d 4500 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4501 btrfs_item_nr_offset(slot),
d6025579 4502 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4503
4504 /* shift the data */
5f39d397 4505 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4506 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4507 data_end, old_data - data_end);
be0e5c09
CM
4508 data_end = old_data;
4509 }
5f39d397 4510
62e2749e 4511 /* setup the item for the new data */
9c58309d
CM
4512 for (i = 0; i < nr; i++) {
4513 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4514 btrfs_set_item_key(leaf, &disk_key, slot + i);
4515 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4516 btrfs_set_token_item_offset(leaf, item,
4517 data_end - data_size[i], &token);
9c58309d 4518 data_end -= data_size[i];
cfed81a0 4519 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4520 }
44871b1b 4521
9c58309d 4522 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4523
5a01a2e3
CM
4524 if (slot == 0) {
4525 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4526 fixup_low_keys(trans, root, path, &disk_key, 1);
5a01a2e3 4527 }
b9473439
CM
4528 btrfs_unlock_up_safe(path, 1);
4529 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4530
5f39d397
CM
4531 if (btrfs_leaf_free_space(root, leaf) < 0) {
4532 btrfs_print_leaf(root, leaf);
be0e5c09 4533 BUG();
5f39d397 4534 }
44871b1b
CM
4535}
4536
4537/*
4538 * Given a key and some data, insert items into the tree.
4539 * This does all the path init required, making room in the tree if needed.
4540 */
4541int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4542 struct btrfs_root *root,
4543 struct btrfs_path *path,
4544 struct btrfs_key *cpu_key, u32 *data_size,
4545 int nr)
4546{
44871b1b
CM
4547 int ret = 0;
4548 int slot;
4549 int i;
4550 u32 total_size = 0;
4551 u32 total_data = 0;
4552
4553 for (i = 0; i < nr; i++)
4554 total_data += data_size[i];
4555
4556 total_size = total_data + (nr * sizeof(struct btrfs_item));
4557 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4558 if (ret == 0)
4559 return -EEXIST;
4560 if (ret < 0)
143bede5 4561 return ret;
44871b1b 4562
44871b1b
CM
4563 slot = path->slots[0];
4564 BUG_ON(slot < 0);
4565
143bede5 4566 setup_items_for_insert(trans, root, path, cpu_key, data_size,
44871b1b 4567 total_data, total_size, nr);
143bede5 4568 return 0;
62e2749e
CM
4569}
4570
4571/*
4572 * Given a key and some data, insert an item into the tree.
4573 * This does all the path init required, making room in the tree if needed.
4574 */
e089f05c
CM
4575int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4576 *root, struct btrfs_key *cpu_key, void *data, u32
4577 data_size)
62e2749e
CM
4578{
4579 int ret = 0;
2c90e5d6 4580 struct btrfs_path *path;
5f39d397
CM
4581 struct extent_buffer *leaf;
4582 unsigned long ptr;
62e2749e 4583
2c90e5d6 4584 path = btrfs_alloc_path();
db5b493a
TI
4585 if (!path)
4586 return -ENOMEM;
2c90e5d6 4587 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4588 if (!ret) {
5f39d397
CM
4589 leaf = path->nodes[0];
4590 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4591 write_extent_buffer(leaf, data, ptr, data_size);
4592 btrfs_mark_buffer_dirty(leaf);
62e2749e 4593 }
2c90e5d6 4594 btrfs_free_path(path);
aa5d6bed 4595 return ret;
be0e5c09
CM
4596}
4597
74123bd7 4598/*
5de08d7d 4599 * delete the pointer from a given node.
74123bd7 4600 *
d352ac68
CM
4601 * the tree should have been previously balanced so the deletion does not
4602 * empty a node.
74123bd7 4603 */
143bede5 4604static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
f3ea38da
JS
4605 struct btrfs_path *path, int level, int slot,
4606 int tree_mod_log)
be0e5c09 4607{
5f39d397 4608 struct extent_buffer *parent = path->nodes[level];
7518a238 4609 u32 nritems;
f3ea38da 4610 int ret;
be0e5c09 4611
5f39d397 4612 nritems = btrfs_header_nritems(parent);
d397712b 4613 if (slot != nritems - 1) {
f3ea38da
JS
4614 if (tree_mod_log && level)
4615 tree_mod_log_eb_move(root->fs_info, parent, slot,
4616 slot + 1, nritems - slot - 1);
5f39d397
CM
4617 memmove_extent_buffer(parent,
4618 btrfs_node_key_ptr_offset(slot),
4619 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4620 sizeof(struct btrfs_key_ptr) *
4621 (nritems - slot - 1));
f395694c 4622 } else if (tree_mod_log && level) {
f3ea38da
JS
4623 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4624 MOD_LOG_KEY_REMOVE);
4625 BUG_ON(ret < 0);
bb803951 4626 }
f3ea38da 4627
7518a238 4628 nritems--;
5f39d397 4629 btrfs_set_header_nritems(parent, nritems);
7518a238 4630 if (nritems == 0 && parent == root->node) {
5f39d397 4631 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4632 /* just turn the root into a leaf and break */
5f39d397 4633 btrfs_set_header_level(root->node, 0);
bb803951 4634 } else if (slot == 0) {
5f39d397
CM
4635 struct btrfs_disk_key disk_key;
4636
4637 btrfs_node_key(parent, &disk_key, 0);
143bede5 4638 fixup_low_keys(trans, root, path, &disk_key, level + 1);
be0e5c09 4639 }
d6025579 4640 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4641}
4642
323ac95b
CM
4643/*
4644 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4645 * path->nodes[1].
323ac95b
CM
4646 *
4647 * This deletes the pointer in path->nodes[1] and frees the leaf
4648 * block extent. zero is returned if it all worked out, < 0 otherwise.
4649 *
4650 * The path must have already been setup for deleting the leaf, including
4651 * all the proper balancing. path->nodes[1] must be locked.
4652 */
143bede5
JM
4653static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4654 struct btrfs_root *root,
4655 struct btrfs_path *path,
4656 struct extent_buffer *leaf)
323ac95b 4657{
5d4f98a2 4658 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
f3ea38da 4659 del_ptr(trans, root, path, 1, path->slots[1], 1);
323ac95b 4660
4d081c41
CM
4661 /*
4662 * btrfs_free_extent is expensive, we want to make sure we
4663 * aren't holding any locks when we call it
4664 */
4665 btrfs_unlock_up_safe(path, 0);
4666
f0486c68
YZ
4667 root_sub_used(root, leaf->len);
4668
3083ee2e 4669 extent_buffer_get(leaf);
5581a51a 4670 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4671 free_extent_buffer_stale(leaf);
323ac95b 4672}
74123bd7
CM
4673/*
4674 * delete the item at the leaf level in path. If that empties
4675 * the leaf, remove it from the tree
4676 */
85e21bac
CM
4677int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4678 struct btrfs_path *path, int slot, int nr)
be0e5c09 4679{
5f39d397
CM
4680 struct extent_buffer *leaf;
4681 struct btrfs_item *item;
85e21bac
CM
4682 int last_off;
4683 int dsize = 0;
aa5d6bed
CM
4684 int ret = 0;
4685 int wret;
85e21bac 4686 int i;
7518a238 4687 u32 nritems;
cfed81a0
CM
4688 struct btrfs_map_token token;
4689
4690 btrfs_init_map_token(&token);
be0e5c09 4691
5f39d397 4692 leaf = path->nodes[0];
85e21bac
CM
4693 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4694
4695 for (i = 0; i < nr; i++)
4696 dsize += btrfs_item_size_nr(leaf, slot + i);
4697
5f39d397 4698 nritems = btrfs_header_nritems(leaf);
be0e5c09 4699
85e21bac 4700 if (slot + nr != nritems) {
123abc88 4701 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4702
4703 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4704 data_end + dsize,
4705 btrfs_leaf_data(leaf) + data_end,
85e21bac 4706 last_off - data_end);
5f39d397 4707
85e21bac 4708 for (i = slot + nr; i < nritems; i++) {
5f39d397 4709 u32 ioff;
db94535d 4710
5f39d397 4711 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4712 ioff = btrfs_token_item_offset(leaf, item, &token);
4713 btrfs_set_token_item_offset(leaf, item,
4714 ioff + dsize, &token);
0783fcfc 4715 }
db94535d 4716
5f39d397 4717 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4718 btrfs_item_nr_offset(slot + nr),
d6025579 4719 sizeof(struct btrfs_item) *
85e21bac 4720 (nritems - slot - nr));
be0e5c09 4721 }
85e21bac
CM
4722 btrfs_set_header_nritems(leaf, nritems - nr);
4723 nritems -= nr;
5f39d397 4724
74123bd7 4725 /* delete the leaf if we've emptied it */
7518a238 4726 if (nritems == 0) {
5f39d397
CM
4727 if (leaf == root->node) {
4728 btrfs_set_header_level(leaf, 0);
9a8dd150 4729 } else {
f0486c68
YZ
4730 btrfs_set_path_blocking(path);
4731 clean_tree_block(trans, root, leaf);
143bede5 4732 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4733 }
be0e5c09 4734 } else {
7518a238 4735 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4736 if (slot == 0) {
5f39d397
CM
4737 struct btrfs_disk_key disk_key;
4738
4739 btrfs_item_key(leaf, &disk_key, 0);
143bede5 4740 fixup_low_keys(trans, root, path, &disk_key, 1);
aa5d6bed 4741 }
aa5d6bed 4742
74123bd7 4743 /* delete the leaf if it is mostly empty */
d717aa1d 4744 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4745 /* push_leaf_left fixes the path.
4746 * make sure the path still points to our leaf
4747 * for possible call to del_ptr below
4748 */
4920c9ac 4749 slot = path->slots[1];
5f39d397
CM
4750 extent_buffer_get(leaf);
4751
b9473439 4752 btrfs_set_path_blocking(path);
99d8f83c
CM
4753 wret = push_leaf_left(trans, root, path, 1, 1,
4754 1, (u32)-1);
54aa1f4d 4755 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4756 ret = wret;
5f39d397
CM
4757
4758 if (path->nodes[0] == leaf &&
4759 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4760 wret = push_leaf_right(trans, root, path, 1,
4761 1, 1, 0);
54aa1f4d 4762 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4763 ret = wret;
4764 }
5f39d397
CM
4765
4766 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4767 path->slots[1] = slot;
143bede5 4768 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4769 free_extent_buffer(leaf);
143bede5 4770 ret = 0;
5de08d7d 4771 } else {
925baedd
CM
4772 /* if we're still in the path, make sure
4773 * we're dirty. Otherwise, one of the
4774 * push_leaf functions must have already
4775 * dirtied this buffer
4776 */
4777 if (path->nodes[0] == leaf)
4778 btrfs_mark_buffer_dirty(leaf);
5f39d397 4779 free_extent_buffer(leaf);
be0e5c09 4780 }
d5719762 4781 } else {
5f39d397 4782 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4783 }
4784 }
aa5d6bed 4785 return ret;
be0e5c09
CM
4786}
4787
7bb86316 4788/*
925baedd 4789 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4790 * returns 0 if it found something or 1 if there are no lesser leaves.
4791 * returns < 0 on io errors.
d352ac68
CM
4792 *
4793 * This may release the path, and so you may lose any locks held at the
4794 * time you call it.
7bb86316
CM
4795 */
4796int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4797{
925baedd
CM
4798 struct btrfs_key key;
4799 struct btrfs_disk_key found_key;
4800 int ret;
7bb86316 4801
925baedd 4802 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4803
925baedd
CM
4804 if (key.offset > 0)
4805 key.offset--;
4806 else if (key.type > 0)
4807 key.type--;
4808 else if (key.objectid > 0)
4809 key.objectid--;
4810 else
4811 return 1;
7bb86316 4812
b3b4aa74 4813 btrfs_release_path(path);
925baedd
CM
4814 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4815 if (ret < 0)
4816 return ret;
4817 btrfs_item_key(path->nodes[0], &found_key, 0);
4818 ret = comp_keys(&found_key, &key);
4819 if (ret < 0)
4820 return 0;
4821 return 1;
7bb86316
CM
4822}
4823
3f157a2f
CM
4824/*
4825 * A helper function to walk down the tree starting at min_key, and looking
4826 * for nodes or leaves that are either in cache or have a minimum
d352ac68 4827 * transaction id. This is used by the btree defrag code, and tree logging
3f157a2f
CM
4828 *
4829 * This does not cow, but it does stuff the starting key it finds back
4830 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4831 * key and get a writable path.
4832 *
4833 * This does lock as it descends, and path->keep_locks should be set
4834 * to 1 by the caller.
4835 *
4836 * This honors path->lowest_level to prevent descent past a given level
4837 * of the tree.
4838 *
d352ac68
CM
4839 * min_trans indicates the oldest transaction that you are interested
4840 * in walking through. Any nodes or leaves older than min_trans are
4841 * skipped over (without reading them).
4842 *
3f157a2f
CM
4843 * returns zero if something useful was found, < 0 on error and 1 if there
4844 * was nothing in the tree that matched the search criteria.
4845 */
4846int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4847 struct btrfs_key *max_key,
3f157a2f
CM
4848 struct btrfs_path *path, int cache_only,
4849 u64 min_trans)
4850{
4851 struct extent_buffer *cur;
4852 struct btrfs_key found_key;
4853 int slot;
9652480b 4854 int sret;
3f157a2f
CM
4855 u32 nritems;
4856 int level;
4857 int ret = 1;
4858
934d375b 4859 WARN_ON(!path->keep_locks);
3f157a2f 4860again:
bd681513 4861 cur = btrfs_read_lock_root_node(root);
3f157a2f 4862 level = btrfs_header_level(cur);
e02119d5 4863 WARN_ON(path->nodes[level]);
3f157a2f 4864 path->nodes[level] = cur;
bd681513 4865 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4866
4867 if (btrfs_header_generation(cur) < min_trans) {
4868 ret = 1;
4869 goto out;
4870 }
d397712b 4871 while (1) {
3f157a2f
CM
4872 nritems = btrfs_header_nritems(cur);
4873 level = btrfs_header_level(cur);
9652480b 4874 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4875
323ac95b
CM
4876 /* at the lowest level, we're done, setup the path and exit */
4877 if (level == path->lowest_level) {
e02119d5
CM
4878 if (slot >= nritems)
4879 goto find_next_key;
3f157a2f
CM
4880 ret = 0;
4881 path->slots[level] = slot;
4882 btrfs_item_key_to_cpu(cur, &found_key, slot);
4883 goto out;
4884 }
9652480b
Y
4885 if (sret && slot > 0)
4886 slot--;
3f157a2f
CM
4887 /*
4888 * check this node pointer against the cache_only and
4889 * min_trans parameters. If it isn't in cache or is too
4890 * old, skip to the next one.
4891 */
d397712b 4892 while (slot < nritems) {
3f157a2f
CM
4893 u64 blockptr;
4894 u64 gen;
4895 struct extent_buffer *tmp;
e02119d5
CM
4896 struct btrfs_disk_key disk_key;
4897
3f157a2f
CM
4898 blockptr = btrfs_node_blockptr(cur, slot);
4899 gen = btrfs_node_ptr_generation(cur, slot);
4900 if (gen < min_trans) {
4901 slot++;
4902 continue;
4903 }
4904 if (!cache_only)
4905 break;
4906
e02119d5
CM
4907 if (max_key) {
4908 btrfs_node_key(cur, &disk_key, slot);
4909 if (comp_keys(&disk_key, max_key) >= 0) {
4910 ret = 1;
4911 goto out;
4912 }
4913 }
4914
3f157a2f
CM
4915 tmp = btrfs_find_tree_block(root, blockptr,
4916 btrfs_level_size(root, level - 1));
4917
b9fab919 4918 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
3f157a2f
CM
4919 free_extent_buffer(tmp);
4920 break;
4921 }
4922 if (tmp)
4923 free_extent_buffer(tmp);
4924 slot++;
4925 }
e02119d5 4926find_next_key:
3f157a2f
CM
4927 /*
4928 * we didn't find a candidate key in this node, walk forward
4929 * and find another one
4930 */
4931 if (slot >= nritems) {
e02119d5 4932 path->slots[level] = slot;
b4ce94de 4933 btrfs_set_path_blocking(path);
e02119d5 4934 sret = btrfs_find_next_key(root, path, min_key, level,
3f157a2f 4935 cache_only, min_trans);
e02119d5 4936 if (sret == 0) {
b3b4aa74 4937 btrfs_release_path(path);
3f157a2f
CM
4938 goto again;
4939 } else {
4940 goto out;
4941 }
4942 }
4943 /* save our key for returning back */
4944 btrfs_node_key_to_cpu(cur, &found_key, slot);
4945 path->slots[level] = slot;
4946 if (level == path->lowest_level) {
4947 ret = 0;
f7c79f30 4948 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4949 goto out;
4950 }
b4ce94de 4951 btrfs_set_path_blocking(path);
3f157a2f 4952 cur = read_node_slot(root, cur, slot);
79787eaa 4953 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4954
bd681513 4955 btrfs_tree_read_lock(cur);
b4ce94de 4956
bd681513 4957 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4958 path->nodes[level - 1] = cur;
f7c79f30 4959 unlock_up(path, level, 1, 0, NULL);
bd681513 4960 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
4961 }
4962out:
4963 if (ret == 0)
4964 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 4965 btrfs_set_path_blocking(path);
3f157a2f
CM
4966 return ret;
4967}
4968
7069830a
AB
4969static void tree_move_down(struct btrfs_root *root,
4970 struct btrfs_path *path,
4971 int *level, int root_level)
4972{
74dd17fb 4973 BUG_ON(*level == 0);
7069830a
AB
4974 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4975 path->slots[*level]);
4976 path->slots[*level - 1] = 0;
4977 (*level)--;
4978}
4979
4980static int tree_move_next_or_upnext(struct btrfs_root *root,
4981 struct btrfs_path *path,
4982 int *level, int root_level)
4983{
4984 int ret = 0;
4985 int nritems;
4986 nritems = btrfs_header_nritems(path->nodes[*level]);
4987
4988 path->slots[*level]++;
4989
74dd17fb 4990 while (path->slots[*level] >= nritems) {
7069830a
AB
4991 if (*level == root_level)
4992 return -1;
4993
4994 /* move upnext */
4995 path->slots[*level] = 0;
4996 free_extent_buffer(path->nodes[*level]);
4997 path->nodes[*level] = NULL;
4998 (*level)++;
4999 path->slots[*level]++;
5000
5001 nritems = btrfs_header_nritems(path->nodes[*level]);
5002 ret = 1;
5003 }
5004 return ret;
5005}
5006
5007/*
5008 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5009 * or down.
5010 */
5011static int tree_advance(struct btrfs_root *root,
5012 struct btrfs_path *path,
5013 int *level, int root_level,
5014 int allow_down,
5015 struct btrfs_key *key)
5016{
5017 int ret;
5018
5019 if (*level == 0 || !allow_down) {
5020 ret = tree_move_next_or_upnext(root, path, level, root_level);
5021 } else {
5022 tree_move_down(root, path, level, root_level);
5023 ret = 0;
5024 }
5025 if (ret >= 0) {
5026 if (*level == 0)
5027 btrfs_item_key_to_cpu(path->nodes[*level], key,
5028 path->slots[*level]);
5029 else
5030 btrfs_node_key_to_cpu(path->nodes[*level], key,
5031 path->slots[*level]);
5032 }
5033 return ret;
5034}
5035
5036static int tree_compare_item(struct btrfs_root *left_root,
5037 struct btrfs_path *left_path,
5038 struct btrfs_path *right_path,
5039 char *tmp_buf)
5040{
5041 int cmp;
5042 int len1, len2;
5043 unsigned long off1, off2;
5044
5045 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5046 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5047 if (len1 != len2)
5048 return 1;
5049
5050 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5051 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5052 right_path->slots[0]);
5053
5054 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5055
5056 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5057 if (cmp)
5058 return 1;
5059 return 0;
5060}
5061
5062#define ADVANCE 1
5063#define ADVANCE_ONLY_NEXT -1
5064
5065/*
5066 * This function compares two trees and calls the provided callback for
5067 * every changed/new/deleted item it finds.
5068 * If shared tree blocks are encountered, whole subtrees are skipped, making
5069 * the compare pretty fast on snapshotted subvolumes.
5070 *
5071 * This currently works on commit roots only. As commit roots are read only,
5072 * we don't do any locking. The commit roots are protected with transactions.
5073 * Transactions are ended and rejoined when a commit is tried in between.
5074 *
5075 * This function checks for modifications done to the trees while comparing.
5076 * If it detects a change, it aborts immediately.
5077 */
5078int btrfs_compare_trees(struct btrfs_root *left_root,
5079 struct btrfs_root *right_root,
5080 btrfs_changed_cb_t changed_cb, void *ctx)
5081{
5082 int ret;
5083 int cmp;
5084 struct btrfs_trans_handle *trans = NULL;
5085 struct btrfs_path *left_path = NULL;
5086 struct btrfs_path *right_path = NULL;
5087 struct btrfs_key left_key;
5088 struct btrfs_key right_key;
5089 char *tmp_buf = NULL;
5090 int left_root_level;
5091 int right_root_level;
5092 int left_level;
5093 int right_level;
5094 int left_end_reached;
5095 int right_end_reached;
5096 int advance_left;
5097 int advance_right;
5098 u64 left_blockptr;
5099 u64 right_blockptr;
5100 u64 left_start_ctransid;
5101 u64 right_start_ctransid;
5102 u64 ctransid;
5103
5104 left_path = btrfs_alloc_path();
5105 if (!left_path) {
5106 ret = -ENOMEM;
5107 goto out;
5108 }
5109 right_path = btrfs_alloc_path();
5110 if (!right_path) {
5111 ret = -ENOMEM;
5112 goto out;
5113 }
5114
5115 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5116 if (!tmp_buf) {
5117 ret = -ENOMEM;
5118 goto out;
5119 }
5120
5121 left_path->search_commit_root = 1;
5122 left_path->skip_locking = 1;
5123 right_path->search_commit_root = 1;
5124 right_path->skip_locking = 1;
5125
5126 spin_lock(&left_root->root_times_lock);
5127 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5128 spin_unlock(&left_root->root_times_lock);
5129
5130 spin_lock(&right_root->root_times_lock);
5131 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5132 spin_unlock(&right_root->root_times_lock);
5133
5134 trans = btrfs_join_transaction(left_root);
5135 if (IS_ERR(trans)) {
5136 ret = PTR_ERR(trans);
5137 trans = NULL;
5138 goto out;
5139 }
5140
5141 /*
5142 * Strategy: Go to the first items of both trees. Then do
5143 *
5144 * If both trees are at level 0
5145 * Compare keys of current items
5146 * If left < right treat left item as new, advance left tree
5147 * and repeat
5148 * If left > right treat right item as deleted, advance right tree
5149 * and repeat
5150 * If left == right do deep compare of items, treat as changed if
5151 * needed, advance both trees and repeat
5152 * If both trees are at the same level but not at level 0
5153 * Compare keys of current nodes/leafs
5154 * If left < right advance left tree and repeat
5155 * If left > right advance right tree and repeat
5156 * If left == right compare blockptrs of the next nodes/leafs
5157 * If they match advance both trees but stay at the same level
5158 * and repeat
5159 * If they don't match advance both trees while allowing to go
5160 * deeper and repeat
5161 * If tree levels are different
5162 * Advance the tree that needs it and repeat
5163 *
5164 * Advancing a tree means:
5165 * If we are at level 0, try to go to the next slot. If that's not
5166 * possible, go one level up and repeat. Stop when we found a level
5167 * where we could go to the next slot. We may at this point be on a
5168 * node or a leaf.
5169 *
5170 * If we are not at level 0 and not on shared tree blocks, go one
5171 * level deeper.
5172 *
5173 * If we are not at level 0 and on shared tree blocks, go one slot to
5174 * the right if possible or go up and right.
5175 */
5176
5177 left_level = btrfs_header_level(left_root->commit_root);
5178 left_root_level = left_level;
5179 left_path->nodes[left_level] = left_root->commit_root;
5180 extent_buffer_get(left_path->nodes[left_level]);
5181
5182 right_level = btrfs_header_level(right_root->commit_root);
5183 right_root_level = right_level;
5184 right_path->nodes[right_level] = right_root->commit_root;
5185 extent_buffer_get(right_path->nodes[right_level]);
5186
5187 if (left_level == 0)
5188 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5189 &left_key, left_path->slots[left_level]);
5190 else
5191 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5192 &left_key, left_path->slots[left_level]);
5193 if (right_level == 0)
5194 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5195 &right_key, right_path->slots[right_level]);
5196 else
5197 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5198 &right_key, right_path->slots[right_level]);
5199
5200 left_end_reached = right_end_reached = 0;
5201 advance_left = advance_right = 0;
5202
5203 while (1) {
5204 /*
5205 * We need to make sure the transaction does not get committed
5206 * while we do anything on commit roots. This means, we need to
5207 * join and leave transactions for every item that we process.
5208 */
5209 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5210 btrfs_release_path(left_path);
5211 btrfs_release_path(right_path);
5212
5213 ret = btrfs_end_transaction(trans, left_root);
5214 trans = NULL;
5215 if (ret < 0)
5216 goto out;
5217 }
5218 /* now rejoin the transaction */
5219 if (!trans) {
5220 trans = btrfs_join_transaction(left_root);
5221 if (IS_ERR(trans)) {
5222 ret = PTR_ERR(trans);
5223 trans = NULL;
5224 goto out;
5225 }
5226
5227 spin_lock(&left_root->root_times_lock);
5228 ctransid = btrfs_root_ctransid(&left_root->root_item);
5229 spin_unlock(&left_root->root_times_lock);
5230 if (ctransid != left_start_ctransid)
5231 left_start_ctransid = 0;
5232
5233 spin_lock(&right_root->root_times_lock);
5234 ctransid = btrfs_root_ctransid(&right_root->root_item);
5235 spin_unlock(&right_root->root_times_lock);
5236 if (ctransid != right_start_ctransid)
5237 right_start_ctransid = 0;
5238
5239 if (!left_start_ctransid || !right_start_ctransid) {
5240 WARN(1, KERN_WARNING
5241 "btrfs: btrfs_compare_tree detected "
5242 "a change in one of the trees while "
5243 "iterating. This is probably a "
5244 "bug.\n");
5245 ret = -EIO;
5246 goto out;
5247 }
5248
5249 /*
5250 * the commit root may have changed, so start again
5251 * where we stopped
5252 */
5253 left_path->lowest_level = left_level;
5254 right_path->lowest_level = right_level;
5255 ret = btrfs_search_slot(NULL, left_root,
5256 &left_key, left_path, 0, 0);
5257 if (ret < 0)
5258 goto out;
5259 ret = btrfs_search_slot(NULL, right_root,
5260 &right_key, right_path, 0, 0);
5261 if (ret < 0)
5262 goto out;
5263 }
5264
5265 if (advance_left && !left_end_reached) {
5266 ret = tree_advance(left_root, left_path, &left_level,
5267 left_root_level,
5268 advance_left != ADVANCE_ONLY_NEXT,
5269 &left_key);
5270 if (ret < 0)
5271 left_end_reached = ADVANCE;
5272 advance_left = 0;
5273 }
5274 if (advance_right && !right_end_reached) {
5275 ret = tree_advance(right_root, right_path, &right_level,
5276 right_root_level,
5277 advance_right != ADVANCE_ONLY_NEXT,
5278 &right_key);
5279 if (ret < 0)
5280 right_end_reached = ADVANCE;
5281 advance_right = 0;
5282 }
5283
5284 if (left_end_reached && right_end_reached) {
5285 ret = 0;
5286 goto out;
5287 } else if (left_end_reached) {
5288 if (right_level == 0) {
5289 ret = changed_cb(left_root, right_root,
5290 left_path, right_path,
5291 &right_key,
5292 BTRFS_COMPARE_TREE_DELETED,
5293 ctx);
5294 if (ret < 0)
5295 goto out;
5296 }
5297 advance_right = ADVANCE;
5298 continue;
5299 } else if (right_end_reached) {
5300 if (left_level == 0) {
5301 ret = changed_cb(left_root, right_root,
5302 left_path, right_path,
5303 &left_key,
5304 BTRFS_COMPARE_TREE_NEW,
5305 ctx);
5306 if (ret < 0)
5307 goto out;
5308 }
5309 advance_left = ADVANCE;
5310 continue;
5311 }
5312
5313 if (left_level == 0 && right_level == 0) {
5314 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5315 if (cmp < 0) {
5316 ret = changed_cb(left_root, right_root,
5317 left_path, right_path,
5318 &left_key,
5319 BTRFS_COMPARE_TREE_NEW,
5320 ctx);
5321 if (ret < 0)
5322 goto out;
5323 advance_left = ADVANCE;
5324 } else if (cmp > 0) {
5325 ret = changed_cb(left_root, right_root,
5326 left_path, right_path,
5327 &right_key,
5328 BTRFS_COMPARE_TREE_DELETED,
5329 ctx);
5330 if (ret < 0)
5331 goto out;
5332 advance_right = ADVANCE;
5333 } else {
74dd17fb 5334 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5335 ret = tree_compare_item(left_root, left_path,
5336 right_path, tmp_buf);
5337 if (ret) {
74dd17fb 5338 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5339 ret = changed_cb(left_root, right_root,
5340 left_path, right_path,
5341 &left_key,
5342 BTRFS_COMPARE_TREE_CHANGED,
5343 ctx);
5344 if (ret < 0)
5345 goto out;
5346 }
5347 advance_left = ADVANCE;
5348 advance_right = ADVANCE;
5349 }
5350 } else if (left_level == right_level) {
5351 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5352 if (cmp < 0) {
5353 advance_left = ADVANCE;
5354 } else if (cmp > 0) {
5355 advance_right = ADVANCE;
5356 } else {
5357 left_blockptr = btrfs_node_blockptr(
5358 left_path->nodes[left_level],
5359 left_path->slots[left_level]);
5360 right_blockptr = btrfs_node_blockptr(
5361 right_path->nodes[right_level],
5362 right_path->slots[right_level]);
5363 if (left_blockptr == right_blockptr) {
5364 /*
5365 * As we're on a shared block, don't
5366 * allow to go deeper.
5367 */
5368 advance_left = ADVANCE_ONLY_NEXT;
5369 advance_right = ADVANCE_ONLY_NEXT;
5370 } else {
5371 advance_left = ADVANCE;
5372 advance_right = ADVANCE;
5373 }
5374 }
5375 } else if (left_level < right_level) {
5376 advance_right = ADVANCE;
5377 } else {
5378 advance_left = ADVANCE;
5379 }
5380 }
5381
5382out:
5383 btrfs_free_path(left_path);
5384 btrfs_free_path(right_path);
5385 kfree(tmp_buf);
5386
5387 if (trans) {
5388 if (!ret)
5389 ret = btrfs_end_transaction(trans, left_root);
5390 else
5391 btrfs_end_transaction(trans, left_root);
5392 }
5393
5394 return ret;
5395}
5396
3f157a2f
CM
5397/*
5398 * this is similar to btrfs_next_leaf, but does not try to preserve
5399 * and fixup the path. It looks for and returns the next key in the
5400 * tree based on the current path and the cache_only and min_trans
5401 * parameters.
5402 *
5403 * 0 is returned if another key is found, < 0 if there are any errors
5404 * and 1 is returned if there are no higher keys in the tree
5405 *
5406 * path->keep_locks should be set to 1 on the search made before
5407 * calling this function.
5408 */
e7a84565 5409int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
33c66f43 5410 struct btrfs_key *key, int level,
3f157a2f 5411 int cache_only, u64 min_trans)
e7a84565 5412{
e7a84565
CM
5413 int slot;
5414 struct extent_buffer *c;
5415
934d375b 5416 WARN_ON(!path->keep_locks);
d397712b 5417 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5418 if (!path->nodes[level])
5419 return 1;
5420
5421 slot = path->slots[level] + 1;
5422 c = path->nodes[level];
3f157a2f 5423next:
e7a84565 5424 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5425 int ret;
5426 int orig_lowest;
5427 struct btrfs_key cur_key;
5428 if (level + 1 >= BTRFS_MAX_LEVEL ||
5429 !path->nodes[level + 1])
e7a84565 5430 return 1;
33c66f43
YZ
5431
5432 if (path->locks[level + 1]) {
5433 level++;
5434 continue;
5435 }
5436
5437 slot = btrfs_header_nritems(c) - 1;
5438 if (level == 0)
5439 btrfs_item_key_to_cpu(c, &cur_key, slot);
5440 else
5441 btrfs_node_key_to_cpu(c, &cur_key, slot);
5442
5443 orig_lowest = path->lowest_level;
b3b4aa74 5444 btrfs_release_path(path);
33c66f43
YZ
5445 path->lowest_level = level;
5446 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5447 0, 0);
5448 path->lowest_level = orig_lowest;
5449 if (ret < 0)
5450 return ret;
5451
5452 c = path->nodes[level];
5453 slot = path->slots[level];
5454 if (ret == 0)
5455 slot++;
5456 goto next;
e7a84565 5457 }
33c66f43 5458
e7a84565
CM
5459 if (level == 0)
5460 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f
CM
5461 else {
5462 u64 blockptr = btrfs_node_blockptr(c, slot);
5463 u64 gen = btrfs_node_ptr_generation(c, slot);
5464
5465 if (cache_only) {
5466 struct extent_buffer *cur;
5467 cur = btrfs_find_tree_block(root, blockptr,
5468 btrfs_level_size(root, level - 1));
b9fab919
CM
5469 if (!cur ||
5470 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
3f157a2f
CM
5471 slot++;
5472 if (cur)
5473 free_extent_buffer(cur);
5474 goto next;
5475 }
5476 free_extent_buffer(cur);
5477 }
5478 if (gen < min_trans) {
5479 slot++;
5480 goto next;
5481 }
e7a84565 5482 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5483 }
e7a84565
CM
5484 return 0;
5485 }
5486 return 1;
5487}
5488
97571fd0 5489/*
925baedd 5490 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5491 * returns 0 if it found something or 1 if there are no greater leaves.
5492 * returns < 0 on io errors.
97571fd0 5493 */
234b63a0 5494int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5495{
5496 return btrfs_next_old_leaf(root, path, 0);
5497}
5498
5499int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5500 u64 time_seq)
d97e63b6
CM
5501{
5502 int slot;
8e73f275 5503 int level;
5f39d397 5504 struct extent_buffer *c;
8e73f275 5505 struct extent_buffer *next;
925baedd
CM
5506 struct btrfs_key key;
5507 u32 nritems;
5508 int ret;
8e73f275 5509 int old_spinning = path->leave_spinning;
bd681513 5510 int next_rw_lock = 0;
925baedd
CM
5511
5512 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5513 if (nritems == 0)
925baedd 5514 return 1;
925baedd 5515
8e73f275
CM
5516 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5517again:
5518 level = 1;
5519 next = NULL;
bd681513 5520 next_rw_lock = 0;
b3b4aa74 5521 btrfs_release_path(path);
8e73f275 5522
a2135011 5523 path->keep_locks = 1;
31533fb2 5524 path->leave_spinning = 1;
8e73f275 5525
3d7806ec
JS
5526 if (time_seq)
5527 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5528 else
5529 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5530 path->keep_locks = 0;
5531
5532 if (ret < 0)
5533 return ret;
5534
a2135011 5535 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5536 /*
5537 * by releasing the path above we dropped all our locks. A balance
5538 * could have added more items next to the key that used to be
5539 * at the very end of the block. So, check again here and
5540 * advance the path if there are now more items available.
5541 */
a2135011 5542 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5543 if (ret == 0)
5544 path->slots[0]++;
8e73f275 5545 ret = 0;
925baedd
CM
5546 goto done;
5547 }
d97e63b6 5548
d397712b 5549 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5550 if (!path->nodes[level]) {
5551 ret = 1;
5552 goto done;
5553 }
5f39d397 5554
d97e63b6
CM
5555 slot = path->slots[level] + 1;
5556 c = path->nodes[level];
5f39d397 5557 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5558 level++;
8e73f275
CM
5559 if (level == BTRFS_MAX_LEVEL) {
5560 ret = 1;
5561 goto done;
5562 }
d97e63b6
CM
5563 continue;
5564 }
5f39d397 5565
925baedd 5566 if (next) {
bd681513 5567 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5568 free_extent_buffer(next);
925baedd 5569 }
5f39d397 5570
8e73f275 5571 next = c;
bd681513 5572 next_rw_lock = path->locks[level];
8e73f275 5573 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5574 slot, &key, 0);
8e73f275
CM
5575 if (ret == -EAGAIN)
5576 goto again;
5f39d397 5577
76a05b35 5578 if (ret < 0) {
b3b4aa74 5579 btrfs_release_path(path);
76a05b35
CM
5580 goto done;
5581 }
5582
5cd57b2c 5583 if (!path->skip_locking) {
bd681513 5584 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5585 if (!ret && time_seq) {
5586 /*
5587 * If we don't get the lock, we may be racing
5588 * with push_leaf_left, holding that lock while
5589 * itself waiting for the leaf we've currently
5590 * locked. To solve this situation, we give up
5591 * on our lock and cycle.
5592 */
cf538830 5593 free_extent_buffer(next);
d42244a0
JS
5594 btrfs_release_path(path);
5595 cond_resched();
5596 goto again;
5597 }
8e73f275
CM
5598 if (!ret) {
5599 btrfs_set_path_blocking(path);
bd681513 5600 btrfs_tree_read_lock(next);
31533fb2 5601 btrfs_clear_path_blocking(path, next,
bd681513 5602 BTRFS_READ_LOCK);
8e73f275 5603 }
31533fb2 5604 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5605 }
d97e63b6
CM
5606 break;
5607 }
5608 path->slots[level] = slot;
d397712b 5609 while (1) {
d97e63b6
CM
5610 level--;
5611 c = path->nodes[level];
925baedd 5612 if (path->locks[level])
bd681513 5613 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5614
5f39d397 5615 free_extent_buffer(c);
d97e63b6
CM
5616 path->nodes[level] = next;
5617 path->slots[level] = 0;
a74a4b97 5618 if (!path->skip_locking)
bd681513 5619 path->locks[level] = next_rw_lock;
d97e63b6
CM
5620 if (!level)
5621 break;
b4ce94de 5622
8e73f275 5623 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5624 0, &key, 0);
8e73f275
CM
5625 if (ret == -EAGAIN)
5626 goto again;
5627
76a05b35 5628 if (ret < 0) {
b3b4aa74 5629 btrfs_release_path(path);
76a05b35
CM
5630 goto done;
5631 }
5632
5cd57b2c 5633 if (!path->skip_locking) {
bd681513 5634 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5635 if (!ret) {
5636 btrfs_set_path_blocking(path);
bd681513 5637 btrfs_tree_read_lock(next);
31533fb2 5638 btrfs_clear_path_blocking(path, next,
bd681513
CM
5639 BTRFS_READ_LOCK);
5640 }
31533fb2 5641 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5642 }
d97e63b6 5643 }
8e73f275 5644 ret = 0;
925baedd 5645done:
f7c79f30 5646 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5647 path->leave_spinning = old_spinning;
5648 if (!old_spinning)
5649 btrfs_set_path_blocking(path);
5650
5651 return ret;
d97e63b6 5652}
0b86a832 5653
3f157a2f
CM
5654/*
5655 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5656 * searching until it gets past min_objectid or finds an item of 'type'
5657 *
5658 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5659 */
0b86a832
CM
5660int btrfs_previous_item(struct btrfs_root *root,
5661 struct btrfs_path *path, u64 min_objectid,
5662 int type)
5663{
5664 struct btrfs_key found_key;
5665 struct extent_buffer *leaf;
e02119d5 5666 u32 nritems;
0b86a832
CM
5667 int ret;
5668
d397712b 5669 while (1) {
0b86a832 5670 if (path->slots[0] == 0) {
b4ce94de 5671 btrfs_set_path_blocking(path);
0b86a832
CM
5672 ret = btrfs_prev_leaf(root, path);
5673 if (ret != 0)
5674 return ret;
5675 } else {
5676 path->slots[0]--;
5677 }
5678 leaf = path->nodes[0];
e02119d5
CM
5679 nritems = btrfs_header_nritems(leaf);
5680 if (nritems == 0)
5681 return 1;
5682 if (path->slots[0] == nritems)
5683 path->slots[0]--;
5684
0b86a832 5685 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5686 if (found_key.objectid < min_objectid)
5687 break;
0a4eefbb
YZ
5688 if (found_key.type == type)
5689 return 0;
e02119d5
CM
5690 if (found_key.objectid == min_objectid &&
5691 found_key.type < type)
5692 break;
0b86a832
CM
5693 }
5694 return 1;
5695}