]> git.ipfire.org Git - people/ms/linux.git/blame - fs/btrfs/ctree.c
Btrfs: if we aren't committing just end the transaction if we error out
[people/ms/linux.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
143bede5 40static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
0e411ece 41 struct btrfs_path *path, int level, int slot);
f230475e
JS
42static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 u32 blocksize, u64 parent_transid,
46 u64 time_seq);
47struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 u64 bytenr, u32 blocksize,
49 u64 time_seq);
d97e63b6 50
df24a2b9 51struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 52{
df24a2b9 53 struct btrfs_path *path;
e00f7308 54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 55 return path;
2c90e5d6
CM
56}
57
b4ce94de
CM
58/*
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
61 */
62noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63{
64 int i;
65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
66 if (!p->nodes[i] || !p->locks[i])
67 continue;
68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 if (p->locks[i] == BTRFS_READ_LOCK)
70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
73 }
74}
75
76/*
77 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
78 *
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
82 * for held
b4ce94de 83 */
4008c04a 84noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 85 struct extent_buffer *held, int held_rw)
b4ce94de
CM
86{
87 int i;
4008c04a
CM
88
89#ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
94 * the path blocking.
95 */
bd681513
CM
96 if (held) {
97 btrfs_set_lock_blocking_rw(held, held_rw);
98 if (held_rw == BTRFS_WRITE_LOCK)
99 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 else if (held_rw == BTRFS_READ_LOCK)
101 held_rw = BTRFS_READ_LOCK_BLOCKING;
102 }
4008c04a
CM
103 btrfs_set_path_blocking(p);
104#endif
105
106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
107 if (p->nodes[i] && p->locks[i]) {
108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 p->locks[i] = BTRFS_WRITE_LOCK;
111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 p->locks[i] = BTRFS_READ_LOCK;
113 }
b4ce94de 114 }
4008c04a
CM
115
116#ifdef CONFIG_DEBUG_LOCK_ALLOC
117 if (held)
bd681513 118 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 119#endif
b4ce94de
CM
120}
121
d352ac68 122/* this also releases the path */
df24a2b9 123void btrfs_free_path(struct btrfs_path *p)
be0e5c09 124{
ff175d57
JJ
125 if (!p)
126 return;
b3b4aa74 127 btrfs_release_path(p);
df24a2b9 128 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
129}
130
d352ac68
CM
131/*
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
134 *
135 * It is safe to call this on paths that no locks or extent buffers held.
136 */
b3b4aa74 137noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
138{
139 int i;
a2135011 140
234b63a0 141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 142 p->slots[i] = 0;
eb60ceac 143 if (!p->nodes[i])
925baedd
CM
144 continue;
145 if (p->locks[i]) {
bd681513 146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
147 p->locks[i] = 0;
148 }
5f39d397 149 free_extent_buffer(p->nodes[i]);
3f157a2f 150 p->nodes[i] = NULL;
eb60ceac
CM
151 }
152}
153
d352ac68
CM
154/*
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
158 * looping required.
159 *
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
163 */
925baedd
CM
164struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165{
166 struct extent_buffer *eb;
240f62c8 167
3083ee2e
JB
168 while (1) {
169 rcu_read_lock();
170 eb = rcu_dereference(root->node);
171
172 /*
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
177 */
178 if (atomic_inc_not_zero(&eb->refs)) {
179 rcu_read_unlock();
180 break;
181 }
182 rcu_read_unlock();
183 synchronize_rcu();
184 }
925baedd
CM
185 return eb;
186}
187
d352ac68
CM
188/* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
191 */
925baedd
CM
192struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193{
194 struct extent_buffer *eb;
195
d397712b 196 while (1) {
925baedd
CM
197 eb = btrfs_root_node(root);
198 btrfs_tree_lock(eb);
240f62c8 199 if (eb == root->node)
925baedd 200 break;
925baedd
CM
201 btrfs_tree_unlock(eb);
202 free_extent_buffer(eb);
203 }
204 return eb;
205}
206
bd681513
CM
207/* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
210 */
211struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212{
213 struct extent_buffer *eb;
214
215 while (1) {
216 eb = btrfs_root_node(root);
217 btrfs_tree_read_lock(eb);
218 if (eb == root->node)
219 break;
220 btrfs_tree_read_unlock(eb);
221 free_extent_buffer(eb);
222 }
223 return eb;
224}
225
d352ac68
CM
226/* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
229 */
0b86a832
CM
230static void add_root_to_dirty_list(struct btrfs_root *root)
231{
e5846fc6 232 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
233 if (root->track_dirty && list_empty(&root->dirty_list)) {
234 list_add(&root->dirty_list,
235 &root->fs_info->dirty_cowonly_roots);
236 }
e5846fc6 237 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
238}
239
d352ac68
CM
240/*
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
244 */
be20aa9d
CM
245int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer **cow_ret, u64 new_root_objectid)
249{
250 struct extent_buffer *cow;
be20aa9d
CM
251 int ret = 0;
252 int level;
5d4f98a2 253 struct btrfs_disk_key disk_key;
be20aa9d
CM
254
255 WARN_ON(root->ref_cows && trans->transid !=
256 root->fs_info->running_transaction->transid);
257 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259 level = btrfs_header_level(buf);
5d4f98a2
YZ
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
31840ae1 264
5d4f98a2
YZ
265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 new_root_objectid, &disk_key, level,
5581a51a 267 buf->start, 0);
5d4f98a2 268 if (IS_ERR(cow))
be20aa9d
CM
269 return PTR_ERR(cow);
270
271 copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 btrfs_set_header_bytenr(cow, cow->start);
273 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 BTRFS_HEADER_FLAG_RELOC);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 else
280 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 281
2b82032c
YZ
282 write_extent_buffer(cow, root->fs_info->fsid,
283 (unsigned long)btrfs_header_fsid(cow),
284 BTRFS_FSID_SIZE);
285
be20aa9d 286 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 288 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 289 else
66d7e7f0 290 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 291
be20aa9d
CM
292 if (ret)
293 return ret;
294
295 btrfs_mark_buffer_dirty(cow);
296 *cow_ret = cow;
297 return 0;
298}
299
bd989ba3
JS
300enum mod_log_op {
301 MOD_LOG_KEY_REPLACE,
302 MOD_LOG_KEY_ADD,
303 MOD_LOG_KEY_REMOVE,
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 MOD_LOG_MOVE_KEYS,
307 MOD_LOG_ROOT_REPLACE,
308};
309
310struct tree_mod_move {
311 int dst_slot;
312 int nr_items;
313};
314
315struct tree_mod_root {
316 u64 logical;
317 u8 level;
318};
319
320struct tree_mod_elem {
321 struct rb_node node;
322 u64 index; /* shifted logical */
097b8a7c 323 u64 seq;
bd989ba3
JS
324 enum mod_log_op op;
325
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 int slot;
328
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 u64 generation;
331
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key;
334 u64 blockptr;
335
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move;
338
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root;
341};
342
097b8a7c 343static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 344{
097b8a7c 345 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
346}
347
097b8a7c
JS
348static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349{
350 read_unlock(&fs_info->tree_mod_log_lock);
351}
352
353static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354{
355 write_lock(&fs_info->tree_mod_log_lock);
356}
357
358static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359{
360 write_unlock(&fs_info->tree_mod_log_lock);
361}
362
363/*
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
370 */
371u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
bd989ba3 373{
097b8a7c
JS
374 u64 seq;
375
376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
382 seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 383 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
384 tree_mod_log_write_unlock(fs_info);
385
386 return seq;
bd989ba3
JS
387}
388
389void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391{
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
bd989ba3
JS
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
097b8a7c 405 elem->seq = 0;
bd989ba3
JS
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 408 if (cur_elem->seq < min_seq) {
bd989ba3
JS
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
097b8a7c
JS
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
bd989ba3
JS
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
097b8a7c
JS
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
bd989ba3
JS
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
097b8a7c 426 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 431 if (tm->seq > min_seq)
bd989ba3
JS
432 continue;
433 rb_erase(node, tm_root);
bd989ba3
JS
434 kfree(tm);
435 }
097b8a7c 436 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
437}
438
439/*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
446 */
447static noinline int
448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449{
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
bd989ba3 454
097b8a7c 455 BUG_ON(!tm || !tm->seq);
bd989ba3 456
bd989ba3
JS
457 tm_root = &fs_info->tree_mod_log;
458 new = &tm_root->rb_node;
459 while (*new) {
460 cur = container_of(*new, struct tree_mod_elem, node);
461 parent = *new;
462 if (cur->index < tm->index)
463 new = &((*new)->rb_left);
464 else if (cur->index > tm->index)
465 new = &((*new)->rb_right);
097b8a7c 466 else if (cur->seq < tm->seq)
bd989ba3 467 new = &((*new)->rb_left);
097b8a7c 468 else if (cur->seq > tm->seq)
bd989ba3
JS
469 new = &((*new)->rb_right);
470 else {
471 kfree(tm);
097b8a7c 472 return -EEXIST;
bd989ba3
JS
473 }
474 }
475
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
097b8a7c 478 return 0;
bd989ba3
JS
479}
480
097b8a7c
JS
481/*
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
486 */
e9b7fd4d
JS
487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
097b8a7c
JS
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
494
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&fs_info->tree_mod_seq_list)) {
497 /*
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
500 */
501 tree_mod_log_write_unlock(fs_info);
e9b7fd4d 502 return 1;
097b8a7c
JS
503 }
504
e9b7fd4d
JS
505 return 0;
506}
507
3310c36e 508/*
097b8a7c 509 * This allocates memory and gets a tree modification sequence number.
3310c36e 510 *
097b8a7c
JS
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
3310c36e 513 */
926dd8a6
JS
514static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 struct tree_mod_elem **tm_ret)
bd989ba3
JS
516{
517 struct tree_mod_elem *tm;
bd989ba3 518
097b8a7c
JS
519 /*
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
522 */
523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
bd989ba3
JS
524 if (!tm)
525 return -ENOMEM;
526
097b8a7c
JS
527 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 return tm->seq;
bd989ba3
JS
529}
530
097b8a7c
JS
531static inline int
532__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb, int slot,
534 enum mod_log_op op, gfp_t flags)
bd989ba3 535{
bd989ba3 536 int ret;
097b8a7c 537 struct tree_mod_elem *tm;
bd989ba3
JS
538
539 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c 540 if (ret < 0)
bd989ba3
JS
541 return ret;
542
543 tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 if (op != MOD_LOG_KEY_ADD) {
545 btrfs_node_key(eb, &tm->key, slot);
546 tm->blockptr = btrfs_node_blockptr(eb, slot);
547 }
548 tm->op = op;
549 tm->slot = slot;
550 tm->generation = btrfs_node_ptr_generation(eb, slot);
551
097b8a7c
JS
552 return __tree_mod_log_insert(fs_info, tm);
553}
554
555static noinline int
556tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 struct extent_buffer *eb, int slot,
558 enum mod_log_op op, gfp_t flags)
559{
560 int ret;
561
562 if (tree_mod_dont_log(fs_info, eb))
563 return 0;
564
565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567 tree_mod_log_write_unlock(fs_info);
3310c36e 568 return ret;
bd989ba3
JS
569}
570
571static noinline int
572tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 int slot, enum mod_log_op op)
574{
575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576}
577
097b8a7c
JS
578static noinline int
579tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *eb, int slot,
581 enum mod_log_op op)
582{
583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584}
585
bd989ba3
JS
586static noinline int
587tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 struct extent_buffer *eb, int dst_slot, int src_slot,
589 int nr_items, gfp_t flags)
590{
591 struct tree_mod_elem *tm;
592 int ret;
593 int i;
594
f395694c
JS
595 if (tree_mod_dont_log(fs_info, eb))
596 return 0;
bd989ba3 597
01763a2e
JS
598 /*
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
602 */
bd989ba3 603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
097b8a7c 604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
bd989ba3
JS
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 BUG_ON(ret < 0);
607 }
608
f395694c 609 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
610 if (ret < 0)
611 goto out;
f395694c 612
bd989ba3
JS
613 tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 tm->slot = src_slot;
615 tm->move.dst_slot = dst_slot;
616 tm->move.nr_items = nr_items;
617 tm->op = MOD_LOG_MOVE_KEYS;
618
3310c36e 619 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
620out:
621 tree_mod_log_write_unlock(fs_info);
3310c36e 622 return ret;
bd989ba3
JS
623}
624
097b8a7c
JS
625static inline void
626__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627{
628 int i;
629 u32 nritems;
630 int ret;
631
b12a3b1e
CM
632 if (btrfs_header_level(eb) == 0)
633 return;
634
097b8a7c
JS
635 nritems = btrfs_header_nritems(eb);
636 for (i = nritems - 1; i >= 0; i--) {
637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 BUG_ON(ret < 0);
640 }
641}
642
bd989ba3
JS
643static noinline int
644tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 struct extent_buffer *old_root,
646 struct extent_buffer *new_root, gfp_t flags)
647{
648 struct tree_mod_elem *tm;
649 int ret;
650
097b8a7c
JS
651 if (tree_mod_dont_log(fs_info, NULL))
652 return 0;
653
bd989ba3 654 ret = tree_mod_alloc(fs_info, flags, &tm);
097b8a7c
JS
655 if (ret < 0)
656 goto out;
bd989ba3
JS
657
658 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
659 tm->old_root.logical = old_root->start;
660 tm->old_root.level = btrfs_header_level(old_root);
661 tm->generation = btrfs_header_generation(old_root);
662 tm->op = MOD_LOG_ROOT_REPLACE;
663
3310c36e 664 ret = __tree_mod_log_insert(fs_info, tm);
097b8a7c
JS
665out:
666 tree_mod_log_write_unlock(fs_info);
3310c36e 667 return ret;
bd989ba3
JS
668}
669
670static struct tree_mod_elem *
671__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
672 int smallest)
673{
674 struct rb_root *tm_root;
675 struct rb_node *node;
676 struct tree_mod_elem *cur = NULL;
677 struct tree_mod_elem *found = NULL;
678 u64 index = start >> PAGE_CACHE_SHIFT;
679
097b8a7c 680 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
681 tm_root = &fs_info->tree_mod_log;
682 node = tm_root->rb_node;
683 while (node) {
684 cur = container_of(node, struct tree_mod_elem, node);
685 if (cur->index < index) {
686 node = node->rb_left;
687 } else if (cur->index > index) {
688 node = node->rb_right;
097b8a7c 689 } else if (cur->seq < min_seq) {
bd989ba3
JS
690 node = node->rb_left;
691 } else if (!smallest) {
692 /* we want the node with the highest seq */
693 if (found)
097b8a7c 694 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
695 found = cur;
696 node = node->rb_left;
097b8a7c 697 } else if (cur->seq > min_seq) {
bd989ba3
JS
698 /* we want the node with the smallest seq */
699 if (found)
097b8a7c 700 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
701 found = cur;
702 node = node->rb_right;
703 } else {
704 found = cur;
705 break;
706 }
707 }
097b8a7c 708 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
709
710 return found;
711}
712
713/*
714 * this returns the element from the log with the smallest time sequence
715 * value that's in the log (the oldest log item). any element with a time
716 * sequence lower than min_seq will be ignored.
717 */
718static struct tree_mod_elem *
719tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
720 u64 min_seq)
721{
722 return __tree_mod_log_search(fs_info, start, min_seq, 1);
723}
724
725/*
726 * this returns the element from the log with the largest time sequence
727 * value that's in the log (the most recent log item). any element with
728 * a time sequence lower than min_seq will be ignored.
729 */
730static struct tree_mod_elem *
731tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
732{
733 return __tree_mod_log_search(fs_info, start, min_seq, 0);
734}
735
097b8a7c 736static noinline void
bd989ba3
JS
737tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
738 struct extent_buffer *src, unsigned long dst_offset,
739 unsigned long src_offset, int nr_items)
740{
741 int ret;
742 int i;
743
e9b7fd4d 744 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
745 return;
746
097b8a7c
JS
747 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
748 tree_mod_log_write_unlock(fs_info);
bd989ba3 749 return;
097b8a7c 750 }
bd989ba3 751
bd989ba3 752 for (i = 0; i < nr_items; i++) {
097b8a7c
JS
753 ret = tree_mod_log_insert_key_locked(fs_info, src,
754 i + src_offset,
755 MOD_LOG_KEY_REMOVE);
bd989ba3 756 BUG_ON(ret < 0);
097b8a7c
JS
757 ret = tree_mod_log_insert_key_locked(fs_info, dst,
758 i + dst_offset,
759 MOD_LOG_KEY_ADD);
bd989ba3
JS
760 BUG_ON(ret < 0);
761 }
097b8a7c
JS
762
763 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
764}
765
766static inline void
767tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
768 int dst_offset, int src_offset, int nr_items)
769{
770 int ret;
771 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
772 nr_items, GFP_NOFS);
773 BUG_ON(ret < 0);
774}
775
097b8a7c 776static noinline void
bd989ba3 777tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 778 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
779{
780 int ret;
781
782 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
783 MOD_LOG_KEY_REPLACE,
784 atomic ? GFP_ATOMIC : GFP_NOFS);
785 BUG_ON(ret < 0);
786}
787
097b8a7c
JS
788static noinline void
789tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 790{
e9b7fd4d 791 if (tree_mod_dont_log(fs_info, eb))
bd989ba3
JS
792 return;
793
097b8a7c
JS
794 __tree_mod_log_free_eb(fs_info, eb);
795
796 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
797}
798
097b8a7c 799static noinline void
bd989ba3
JS
800tree_mod_log_set_root_pointer(struct btrfs_root *root,
801 struct extent_buffer *new_root_node)
802{
803 int ret;
bd989ba3
JS
804 ret = tree_mod_log_insert_root(root->fs_info, root->node,
805 new_root_node, GFP_NOFS);
806 BUG_ON(ret < 0);
807}
808
5d4f98a2
YZ
809/*
810 * check if the tree block can be shared by multiple trees
811 */
812int btrfs_block_can_be_shared(struct btrfs_root *root,
813 struct extent_buffer *buf)
814{
815 /*
816 * Tree blocks not in refernece counted trees and tree roots
817 * are never shared. If a block was allocated after the last
818 * snapshot and the block was not allocated by tree relocation,
819 * we know the block is not shared.
820 */
821 if (root->ref_cows &&
822 buf != root->node && buf != root->commit_root &&
823 (btrfs_header_generation(buf) <=
824 btrfs_root_last_snapshot(&root->root_item) ||
825 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
826 return 1;
827#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 if (root->ref_cows &&
829 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
830 return 1;
831#endif
832 return 0;
833}
834
835static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
836 struct btrfs_root *root,
837 struct extent_buffer *buf,
f0486c68
YZ
838 struct extent_buffer *cow,
839 int *last_ref)
5d4f98a2
YZ
840{
841 u64 refs;
842 u64 owner;
843 u64 flags;
844 u64 new_flags = 0;
845 int ret;
846
847 /*
848 * Backrefs update rules:
849 *
850 * Always use full backrefs for extent pointers in tree block
851 * allocated by tree relocation.
852 *
853 * If a shared tree block is no longer referenced by its owner
854 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855 * use full backrefs for extent pointers in tree block.
856 *
857 * If a tree block is been relocating
858 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859 * use full backrefs for extent pointers in tree block.
860 * The reason for this is some operations (such as drop tree)
861 * are only allowed for blocks use full backrefs.
862 */
863
864 if (btrfs_block_can_be_shared(root, buf)) {
865 ret = btrfs_lookup_extent_info(trans, root, buf->start,
866 buf->len, &refs, &flags);
be1a5564
MF
867 if (ret)
868 return ret;
e5df9573
MF
869 if (refs == 0) {
870 ret = -EROFS;
871 btrfs_std_error(root->fs_info, ret);
872 return ret;
873 }
5d4f98a2
YZ
874 } else {
875 refs = 1;
876 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
877 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
878 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
879 else
880 flags = 0;
881 }
882
883 owner = btrfs_header_owner(buf);
884 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
885 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
886
887 if (refs > 1) {
888 if ((owner == root->root_key.objectid ||
889 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
890 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 891 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 892 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
893
894 if (root->root_key.objectid ==
895 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 896 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 897 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 898 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 899 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
900 }
901 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
902 } else {
903
904 if (root->root_key.objectid ==
905 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 906 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 907 else
66d7e7f0 908 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 909 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
910 }
911 if (new_flags != 0) {
912 ret = btrfs_set_disk_extent_flags(trans, root,
913 buf->start,
914 buf->len,
915 new_flags, 0);
be1a5564
MF
916 if (ret)
917 return ret;
5d4f98a2
YZ
918 }
919 } else {
920 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
921 if (root->root_key.objectid ==
922 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 923 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 924 else
66d7e7f0 925 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 926 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 927 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 928 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 929 }
ba1bfbd5 930 tree_mod_log_free_eb(root->fs_info, buf);
5d4f98a2 931 clean_tree_block(trans, root, buf);
f0486c68 932 *last_ref = 1;
5d4f98a2
YZ
933 }
934 return 0;
935}
936
d352ac68 937/*
d397712b
CM
938 * does the dirty work in cow of a single block. The parent block (if
939 * supplied) is updated to point to the new cow copy. The new buffer is marked
940 * dirty and returned locked. If you modify the block it needs to be marked
941 * dirty again.
d352ac68
CM
942 *
943 * search_start -- an allocation hint for the new block
944 *
d397712b
CM
945 * empty_size -- a hint that you plan on doing more cow. This is the size in
946 * bytes the allocator should try to find free next to the block it returns.
947 * This is just a hint and may be ignored by the allocator.
d352ac68 948 */
d397712b 949static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
950 struct btrfs_root *root,
951 struct extent_buffer *buf,
952 struct extent_buffer *parent, int parent_slot,
953 struct extent_buffer **cow_ret,
9fa8cfe7 954 u64 search_start, u64 empty_size)
02217ed2 955{
5d4f98a2 956 struct btrfs_disk_key disk_key;
5f39d397 957 struct extent_buffer *cow;
be1a5564 958 int level, ret;
f0486c68 959 int last_ref = 0;
925baedd 960 int unlock_orig = 0;
5d4f98a2 961 u64 parent_start;
7bb86316 962
925baedd
CM
963 if (*cow_ret == buf)
964 unlock_orig = 1;
965
b9447ef8 966 btrfs_assert_tree_locked(buf);
925baedd 967
7bb86316
CM
968 WARN_ON(root->ref_cows && trans->transid !=
969 root->fs_info->running_transaction->transid);
6702ed49 970 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 971
7bb86316 972 level = btrfs_header_level(buf);
31840ae1 973
5d4f98a2
YZ
974 if (level == 0)
975 btrfs_item_key(buf, &disk_key, 0);
976 else
977 btrfs_node_key(buf, &disk_key, 0);
978
979 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
980 if (parent)
981 parent_start = parent->start;
982 else
983 parent_start = 0;
984 } else
985 parent_start = 0;
986
987 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
988 root->root_key.objectid, &disk_key,
5581a51a 989 level, search_start, empty_size);
54aa1f4d
CM
990 if (IS_ERR(cow))
991 return PTR_ERR(cow);
6702ed49 992
b4ce94de
CM
993 /* cow is set to blocking by btrfs_init_new_buffer */
994
5f39d397 995 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 996 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 997 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
998 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
999 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1000 BTRFS_HEADER_FLAG_RELOC);
1001 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1002 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1003 else
1004 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1005
2b82032c
YZ
1006 write_extent_buffer(cow, root->fs_info->fsid,
1007 (unsigned long)btrfs_header_fsid(cow),
1008 BTRFS_FSID_SIZE);
1009
be1a5564 1010 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1011 if (ret) {
79787eaa 1012 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1013 return ret;
1014 }
1a40e23b 1015
3fd0a558
YZ
1016 if (root->ref_cows)
1017 btrfs_reloc_cow_block(trans, root, buf, cow);
1018
02217ed2 1019 if (buf == root->node) {
925baedd 1020 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023 parent_start = buf->start;
1024 else
1025 parent_start = 0;
925baedd 1026
5f39d397 1027 extent_buffer_get(cow);
f230475e 1028 tree_mod_log_set_root_pointer(root, cow);
240f62c8 1029 rcu_assign_pointer(root->node, cow);
925baedd 1030
f0486c68 1031 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1032 last_ref);
5f39d397 1033 free_extent_buffer(buf);
0b86a832 1034 add_root_to_dirty_list(root);
02217ed2 1035 } else {
5d4f98a2
YZ
1036 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1037 parent_start = parent->start;
1038 else
1039 parent_start = 0;
1040
1041 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e
JS
1042 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1043 MOD_LOG_KEY_REPLACE);
5f39d397 1044 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1045 cow->start);
74493f7a
CM
1046 btrfs_set_node_ptr_generation(parent, parent_slot,
1047 trans->transid);
d6025579 1048 btrfs_mark_buffer_dirty(parent);
f0486c68 1049 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1050 last_ref);
02217ed2 1051 }
925baedd
CM
1052 if (unlock_orig)
1053 btrfs_tree_unlock(buf);
3083ee2e 1054 free_extent_buffer_stale(buf);
ccd467d6 1055 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1056 *cow_ret = cow;
02217ed2
CM
1057 return 0;
1058}
1059
5d9e75c4
JS
1060/*
1061 * returns the logical address of the oldest predecessor of the given root.
1062 * entries older than time_seq are ignored.
1063 */
1064static struct tree_mod_elem *
1065__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1066 struct btrfs_root *root, u64 time_seq)
1067{
1068 struct tree_mod_elem *tm;
1069 struct tree_mod_elem *found = NULL;
1070 u64 root_logical = root->node->start;
1071 int looped = 0;
1072
1073 if (!time_seq)
1074 return 0;
1075
1076 /*
1077 * the very last operation that's logged for a root is the replacement
1078 * operation (if it is replaced at all). this has the index of the *new*
1079 * root, making it the very first operation that's logged for this root.
1080 */
1081 while (1) {
1082 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1083 time_seq);
1084 if (!looped && !tm)
1085 return 0;
1086 /*
28da9fb4
JS
1087 * if there are no tree operation for the oldest root, we simply
1088 * return it. this should only happen if that (old) root is at
1089 * level 0.
5d9e75c4 1090 */
28da9fb4
JS
1091 if (!tm)
1092 break;
5d9e75c4 1093
28da9fb4
JS
1094 /*
1095 * if there's an operation that's not a root replacement, we
1096 * found the oldest version of our root. normally, we'll find a
1097 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1098 */
5d9e75c4
JS
1099 if (tm->op != MOD_LOG_ROOT_REPLACE)
1100 break;
1101
1102 found = tm;
1103 root_logical = tm->old_root.logical;
1104 BUG_ON(root_logical == root->node->start);
1105 looped = 1;
1106 }
1107
a95236d9
JS
1108 /* if there's no old root to return, return what we found instead */
1109 if (!found)
1110 found = tm;
1111
5d9e75c4
JS
1112 return found;
1113}
1114
1115/*
1116 * tm is a pointer to the first operation to rewind within eb. then, all
1117 * previous operations will be rewinded (until we reach something older than
1118 * time_seq).
1119 */
1120static void
1121__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1122 struct tree_mod_elem *first_tm)
1123{
1124 u32 n;
1125 struct rb_node *next;
1126 struct tree_mod_elem *tm = first_tm;
1127 unsigned long o_dst;
1128 unsigned long o_src;
1129 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1130
1131 n = btrfs_header_nritems(eb);
097b8a7c 1132 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1133 /*
1134 * all the operations are recorded with the operator used for
1135 * the modification. as we're going backwards, we do the
1136 * opposite of each operation here.
1137 */
1138 switch (tm->op) {
1139 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1140 BUG_ON(tm->slot < n);
1c697d4a 1141 /* Fallthrough */
95c80bb1 1142 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1143 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1144 btrfs_set_node_key(eb, &tm->key, tm->slot);
1145 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1146 btrfs_set_node_ptr_generation(eb, tm->slot,
1147 tm->generation);
4c3e6969 1148 n++;
5d9e75c4
JS
1149 break;
1150 case MOD_LOG_KEY_REPLACE:
1151 BUG_ON(tm->slot >= n);
1152 btrfs_set_node_key(eb, &tm->key, tm->slot);
1153 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1154 btrfs_set_node_ptr_generation(eb, tm->slot,
1155 tm->generation);
1156 break;
1157 case MOD_LOG_KEY_ADD:
19956c7e 1158 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1159 n--;
1160 break;
1161 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1162 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1163 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1164 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1165 tm->move.nr_items * p_size);
1166 break;
1167 case MOD_LOG_ROOT_REPLACE:
1168 /*
1169 * this operation is special. for roots, this must be
1170 * handled explicitly before rewinding.
1171 * for non-roots, this operation may exist if the node
1172 * was a root: root A -> child B; then A gets empty and
1173 * B is promoted to the new root. in the mod log, we'll
1174 * have a root-replace operation for B, a tree block
1175 * that is no root. we simply ignore that operation.
1176 */
1177 break;
1178 }
1179 next = rb_next(&tm->node);
1180 if (!next)
1181 break;
1182 tm = container_of(next, struct tree_mod_elem, node);
1183 if (tm->index != first_tm->index)
1184 break;
1185 }
1186 btrfs_set_header_nritems(eb, n);
1187}
1188
1189static struct extent_buffer *
1190tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1191 u64 time_seq)
1192{
1193 struct extent_buffer *eb_rewin;
1194 struct tree_mod_elem *tm;
1195
1196 if (!time_seq)
1197 return eb;
1198
1199 if (btrfs_header_level(eb) == 0)
1200 return eb;
1201
1202 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1203 if (!tm)
1204 return eb;
1205
1206 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1207 BUG_ON(tm->slot != 0);
1208 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1209 fs_info->tree_root->nodesize);
1210 BUG_ON(!eb_rewin);
1211 btrfs_set_header_bytenr(eb_rewin, eb->start);
1212 btrfs_set_header_backref_rev(eb_rewin,
1213 btrfs_header_backref_rev(eb));
1214 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1215 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1216 } else {
1217 eb_rewin = btrfs_clone_extent_buffer(eb);
1218 BUG_ON(!eb_rewin);
1219 }
1220
1221 extent_buffer_get(eb_rewin);
1222 free_extent_buffer(eb);
1223
1224 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
57911b8b 1225 WARN_ON(btrfs_header_nritems(eb_rewin) >
2a745b14 1226 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
5d9e75c4
JS
1227
1228 return eb_rewin;
1229}
1230
8ba97a15
JS
1231/*
1232 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1233 * value. If there are no changes, the current root->root_node is returned. If
1234 * anything changed in between, there's a fresh buffer allocated on which the
1235 * rewind operations are done. In any case, the returned buffer is read locked.
1236 * Returns NULL on error (with no locks held).
1237 */
5d9e75c4
JS
1238static inline struct extent_buffer *
1239get_old_root(struct btrfs_root *root, u64 time_seq)
1240{
1241 struct tree_mod_elem *tm;
1242 struct extent_buffer *eb;
7bfdcf7f 1243 struct extent_buffer *old;
a95236d9 1244 struct tree_mod_root *old_root = NULL;
4325edd0 1245 u64 old_generation = 0;
a95236d9 1246 u64 logical;
834328a8 1247 u32 blocksize;
5d9e75c4 1248
8ba97a15 1249 eb = btrfs_read_lock_root_node(root);
5d9e75c4
JS
1250 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1251 if (!tm)
1252 return root->node;
1253
a95236d9
JS
1254 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1255 old_root = &tm->old_root;
1256 old_generation = tm->generation;
1257 logical = old_root->logical;
1258 } else {
1259 logical = root->node->start;
1260 }
5d9e75c4 1261
a95236d9 1262 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8
JS
1263 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1264 btrfs_tree_read_unlock(root->node);
1265 free_extent_buffer(root->node);
1266 blocksize = btrfs_level_size(root, old_root->level);
7bfdcf7f
LB
1267 old = read_tree_block(root, logical, blocksize, 0);
1268 if (!old) {
834328a8
JS
1269 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1270 logical);
1271 WARN_ON(1);
1272 } else {
7bfdcf7f
LB
1273 eb = btrfs_clone_extent_buffer(old);
1274 free_extent_buffer(old);
834328a8
JS
1275 }
1276 } else if (old_root) {
1277 btrfs_tree_read_unlock(root->node);
1278 free_extent_buffer(root->node);
28da9fb4 1279 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1280 } else {
a95236d9 1281 eb = btrfs_clone_extent_buffer(root->node);
834328a8
JS
1282 btrfs_tree_read_unlock(root->node);
1283 free_extent_buffer(root->node);
1284 }
1285
8ba97a15
JS
1286 if (!eb)
1287 return NULL;
d6381084 1288 extent_buffer_get(eb);
8ba97a15 1289 btrfs_tree_read_lock(eb);
a95236d9 1290 if (old_root) {
5d9e75c4
JS
1291 btrfs_set_header_bytenr(eb, eb->start);
1292 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1293 btrfs_set_header_owner(eb, root->root_key.objectid);
a95236d9
JS
1294 btrfs_set_header_level(eb, old_root->level);
1295 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1296 }
28da9fb4
JS
1297 if (tm)
1298 __tree_mod_log_rewind(eb, time_seq, tm);
1299 else
1300 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1301 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1302
1303 return eb;
1304}
1305
5b6602e7
JS
1306int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1307{
1308 struct tree_mod_elem *tm;
1309 int level;
1310
1311 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1312 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1313 level = tm->old_root.level;
1314 } else {
1315 rcu_read_lock();
1316 level = btrfs_header_level(root->node);
1317 rcu_read_unlock();
1318 }
1319
1320 return level;
1321}
1322
5d4f98a2
YZ
1323static inline int should_cow_block(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *root,
1325 struct extent_buffer *buf)
1326{
f1ebcc74
LB
1327 /* ensure we can see the force_cow */
1328 smp_rmb();
1329
1330 /*
1331 * We do not need to cow a block if
1332 * 1) this block is not created or changed in this transaction;
1333 * 2) this block does not belong to TREE_RELOC tree;
1334 * 3) the root is not forced COW.
1335 *
1336 * What is forced COW:
1337 * when we create snapshot during commiting the transaction,
1338 * after we've finished coping src root, we must COW the shared
1339 * block to ensure the metadata consistency.
1340 */
5d4f98a2
YZ
1341 if (btrfs_header_generation(buf) == trans->transid &&
1342 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1343 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1344 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1345 !root->force_cow)
5d4f98a2
YZ
1346 return 0;
1347 return 1;
1348}
1349
d352ac68
CM
1350/*
1351 * cows a single block, see __btrfs_cow_block for the real work.
1352 * This version of it has extra checks so that a block isn't cow'd more than
1353 * once per transaction, as long as it hasn't been written yet
1354 */
d397712b 1355noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1356 struct btrfs_root *root, struct extent_buffer *buf,
1357 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1358 struct extent_buffer **cow_ret)
6702ed49
CM
1359{
1360 u64 search_start;
f510cfec 1361 int ret;
dc17ff8f 1362
31b1a2bd
JL
1363 if (trans->transaction != root->fs_info->running_transaction)
1364 WARN(1, KERN_CRIT "trans %llu running %llu\n",
d397712b
CM
1365 (unsigned long long)trans->transid,
1366 (unsigned long long)
6702ed49 1367 root->fs_info->running_transaction->transid);
31b1a2bd
JL
1368
1369 if (trans->transid != root->fs_info->generation)
1370 WARN(1, KERN_CRIT "trans %llu running %llu\n",
d397712b
CM
1371 (unsigned long long)trans->transid,
1372 (unsigned long long)root->fs_info->generation);
dc17ff8f 1373
5d4f98a2 1374 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1375 *cow_ret = buf;
1376 return 0;
1377 }
c487685d 1378
0b86a832 1379 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1380
1381 if (parent)
1382 btrfs_set_lock_blocking(parent);
1383 btrfs_set_lock_blocking(buf);
1384
f510cfec 1385 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1386 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1387
1388 trace_btrfs_cow_block(root, buf, *cow_ret);
1389
f510cfec 1390 return ret;
6702ed49
CM
1391}
1392
d352ac68
CM
1393/*
1394 * helper function for defrag to decide if two blocks pointed to by a
1395 * node are actually close by
1396 */
6b80053d 1397static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1398{
6b80053d 1399 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1400 return 1;
6b80053d 1401 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1402 return 1;
1403 return 0;
1404}
1405
081e9573
CM
1406/*
1407 * compare two keys in a memcmp fashion
1408 */
1409static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1410{
1411 struct btrfs_key k1;
1412
1413 btrfs_disk_key_to_cpu(&k1, disk);
1414
20736aba 1415 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1416}
1417
f3465ca4
JB
1418/*
1419 * same as comp_keys only with two btrfs_key's
1420 */
5d4f98a2 1421int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1422{
1423 if (k1->objectid > k2->objectid)
1424 return 1;
1425 if (k1->objectid < k2->objectid)
1426 return -1;
1427 if (k1->type > k2->type)
1428 return 1;
1429 if (k1->type < k2->type)
1430 return -1;
1431 if (k1->offset > k2->offset)
1432 return 1;
1433 if (k1->offset < k2->offset)
1434 return -1;
1435 return 0;
1436}
081e9573 1437
d352ac68
CM
1438/*
1439 * this is used by the defrag code to go through all the
1440 * leaves pointed to by a node and reallocate them so that
1441 * disk order is close to key order
1442 */
6702ed49 1443int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1444 struct btrfs_root *root, struct extent_buffer *parent,
a6b6e75e
CM
1445 int start_slot, int cache_only, u64 *last_ret,
1446 struct btrfs_key *progress)
6702ed49 1447{
6b80053d 1448 struct extent_buffer *cur;
6702ed49 1449 u64 blocknr;
ca7a79ad 1450 u64 gen;
e9d0b13b
CM
1451 u64 search_start = *last_ret;
1452 u64 last_block = 0;
6702ed49
CM
1453 u64 other;
1454 u32 parent_nritems;
6702ed49
CM
1455 int end_slot;
1456 int i;
1457 int err = 0;
f2183bde 1458 int parent_level;
6b80053d
CM
1459 int uptodate;
1460 u32 blocksize;
081e9573
CM
1461 int progress_passed = 0;
1462 struct btrfs_disk_key disk_key;
6702ed49 1463
5708b959
CM
1464 parent_level = btrfs_header_level(parent);
1465 if (cache_only && parent_level != 1)
1466 return 0;
1467
6c1500f2
JL
1468 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1469 WARN_ON(trans->transid != root->fs_info->generation);
86479a04 1470
6b80053d 1471 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1472 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1473 end_slot = parent_nritems;
1474
1475 if (parent_nritems == 1)
1476 return 0;
1477
b4ce94de
CM
1478 btrfs_set_lock_blocking(parent);
1479
6702ed49
CM
1480 for (i = start_slot; i < end_slot; i++) {
1481 int close = 1;
a6b6e75e 1482
081e9573
CM
1483 btrfs_node_key(parent, &disk_key, i);
1484 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1485 continue;
1486
1487 progress_passed = 1;
6b80053d 1488 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1489 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1490 if (last_block == 0)
1491 last_block = blocknr;
5708b959 1492
6702ed49 1493 if (i > 0) {
6b80053d
CM
1494 other = btrfs_node_blockptr(parent, i - 1);
1495 close = close_blocks(blocknr, other, blocksize);
6702ed49 1496 }
0ef3e66b 1497 if (!close && i < end_slot - 2) {
6b80053d
CM
1498 other = btrfs_node_blockptr(parent, i + 1);
1499 close = close_blocks(blocknr, other, blocksize);
6702ed49 1500 }
e9d0b13b
CM
1501 if (close) {
1502 last_block = blocknr;
6702ed49 1503 continue;
e9d0b13b 1504 }
6702ed49 1505
6b80053d
CM
1506 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1507 if (cur)
b9fab919 1508 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1509 else
1510 uptodate = 0;
5708b959 1511 if (!cur || !uptodate) {
6702ed49 1512 if (cache_only) {
6b80053d 1513 free_extent_buffer(cur);
6702ed49
CM
1514 continue;
1515 }
6b80053d
CM
1516 if (!cur) {
1517 cur = read_tree_block(root, blocknr,
ca7a79ad 1518 blocksize, gen);
97d9a8a4
TI
1519 if (!cur)
1520 return -EIO;
6b80053d 1521 } else if (!uptodate) {
018642a1
TI
1522 err = btrfs_read_buffer(cur, gen);
1523 if (err) {
1524 free_extent_buffer(cur);
1525 return err;
1526 }
f2183bde 1527 }
6702ed49 1528 }
e9d0b13b 1529 if (search_start == 0)
6b80053d 1530 search_start = last_block;
e9d0b13b 1531
e7a84565 1532 btrfs_tree_lock(cur);
b4ce94de 1533 btrfs_set_lock_blocking(cur);
6b80053d 1534 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1535 &cur, search_start,
6b80053d 1536 min(16 * blocksize,
9fa8cfe7 1537 (end_slot - i) * blocksize));
252c38f0 1538 if (err) {
e7a84565 1539 btrfs_tree_unlock(cur);
6b80053d 1540 free_extent_buffer(cur);
6702ed49 1541 break;
252c38f0 1542 }
e7a84565
CM
1543 search_start = cur->start;
1544 last_block = cur->start;
f2183bde 1545 *last_ret = search_start;
e7a84565
CM
1546 btrfs_tree_unlock(cur);
1547 free_extent_buffer(cur);
6702ed49
CM
1548 }
1549 return err;
1550}
1551
74123bd7
CM
1552/*
1553 * The leaf data grows from end-to-front in the node.
1554 * this returns the address of the start of the last item,
1555 * which is the stop of the leaf data stack
1556 */
123abc88 1557static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1558 struct extent_buffer *leaf)
be0e5c09 1559{
5f39d397 1560 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1561 if (nr == 0)
123abc88 1562 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1563 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1564}
1565
aa5d6bed 1566
74123bd7 1567/*
5f39d397
CM
1568 * search for key in the extent_buffer. The items start at offset p,
1569 * and they are item_size apart. There are 'max' items in p.
1570 *
74123bd7
CM
1571 * the slot in the array is returned via slot, and it points to
1572 * the place where you would insert key if it is not found in
1573 * the array.
1574 *
1575 * slot may point to max if the key is bigger than all of the keys
1576 */
e02119d5
CM
1577static noinline int generic_bin_search(struct extent_buffer *eb,
1578 unsigned long p,
1579 int item_size, struct btrfs_key *key,
1580 int max, int *slot)
be0e5c09
CM
1581{
1582 int low = 0;
1583 int high = max;
1584 int mid;
1585 int ret;
479965d6 1586 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1587 struct btrfs_disk_key unaligned;
1588 unsigned long offset;
5f39d397
CM
1589 char *kaddr = NULL;
1590 unsigned long map_start = 0;
1591 unsigned long map_len = 0;
479965d6 1592 int err;
be0e5c09 1593
d397712b 1594 while (low < high) {
be0e5c09 1595 mid = (low + high) / 2;
5f39d397
CM
1596 offset = p + mid * item_size;
1597
a6591715 1598 if (!kaddr || offset < map_start ||
5f39d397
CM
1599 (offset + sizeof(struct btrfs_disk_key)) >
1600 map_start + map_len) {
934d375b
CM
1601
1602 err = map_private_extent_buffer(eb, offset,
479965d6 1603 sizeof(struct btrfs_disk_key),
a6591715 1604 &kaddr, &map_start, &map_len);
479965d6
CM
1605
1606 if (!err) {
1607 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1608 map_start);
1609 } else {
1610 read_extent_buffer(eb, &unaligned,
1611 offset, sizeof(unaligned));
1612 tmp = &unaligned;
1613 }
5f39d397 1614
5f39d397
CM
1615 } else {
1616 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1617 map_start);
1618 }
be0e5c09
CM
1619 ret = comp_keys(tmp, key);
1620
1621 if (ret < 0)
1622 low = mid + 1;
1623 else if (ret > 0)
1624 high = mid;
1625 else {
1626 *slot = mid;
1627 return 0;
1628 }
1629 }
1630 *slot = low;
1631 return 1;
1632}
1633
97571fd0
CM
1634/*
1635 * simple bin_search frontend that does the right thing for
1636 * leaves vs nodes
1637 */
5f39d397
CM
1638static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1639 int level, int *slot)
be0e5c09 1640{
f775738f 1641 if (level == 0)
5f39d397
CM
1642 return generic_bin_search(eb,
1643 offsetof(struct btrfs_leaf, items),
0783fcfc 1644 sizeof(struct btrfs_item),
5f39d397 1645 key, btrfs_header_nritems(eb),
7518a238 1646 slot);
f775738f 1647 else
5f39d397
CM
1648 return generic_bin_search(eb,
1649 offsetof(struct btrfs_node, ptrs),
123abc88 1650 sizeof(struct btrfs_key_ptr),
5f39d397 1651 key, btrfs_header_nritems(eb),
7518a238 1652 slot);
be0e5c09
CM
1653}
1654
5d4f98a2
YZ
1655int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1656 int level, int *slot)
1657{
1658 return bin_search(eb, key, level, slot);
1659}
1660
f0486c68
YZ
1661static void root_add_used(struct btrfs_root *root, u32 size)
1662{
1663 spin_lock(&root->accounting_lock);
1664 btrfs_set_root_used(&root->root_item,
1665 btrfs_root_used(&root->root_item) + size);
1666 spin_unlock(&root->accounting_lock);
1667}
1668
1669static void root_sub_used(struct btrfs_root *root, u32 size)
1670{
1671 spin_lock(&root->accounting_lock);
1672 btrfs_set_root_used(&root->root_item,
1673 btrfs_root_used(&root->root_item) - size);
1674 spin_unlock(&root->accounting_lock);
1675}
1676
d352ac68
CM
1677/* given a node and slot number, this reads the blocks it points to. The
1678 * extent buffer is returned with a reference taken (but unlocked).
1679 * NULL is returned on error.
1680 */
e02119d5 1681static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1682 struct extent_buffer *parent, int slot)
bb803951 1683{
ca7a79ad 1684 int level = btrfs_header_level(parent);
bb803951
CM
1685 if (slot < 0)
1686 return NULL;
5f39d397 1687 if (slot >= btrfs_header_nritems(parent))
bb803951 1688 return NULL;
ca7a79ad
CM
1689
1690 BUG_ON(level == 0);
1691
db94535d 1692 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
ca7a79ad
CM
1693 btrfs_level_size(root, level - 1),
1694 btrfs_node_ptr_generation(parent, slot));
bb803951
CM
1695}
1696
d352ac68
CM
1697/*
1698 * node level balancing, used to make sure nodes are in proper order for
1699 * item deletion. We balance from the top down, so we have to make sure
1700 * that a deletion won't leave an node completely empty later on.
1701 */
e02119d5 1702static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1703 struct btrfs_root *root,
1704 struct btrfs_path *path, int level)
bb803951 1705{
5f39d397
CM
1706 struct extent_buffer *right = NULL;
1707 struct extent_buffer *mid;
1708 struct extent_buffer *left = NULL;
1709 struct extent_buffer *parent = NULL;
bb803951
CM
1710 int ret = 0;
1711 int wret;
1712 int pslot;
bb803951 1713 int orig_slot = path->slots[level];
79f95c82 1714 u64 orig_ptr;
bb803951
CM
1715
1716 if (level == 0)
1717 return 0;
1718
5f39d397 1719 mid = path->nodes[level];
b4ce94de 1720
bd681513
CM
1721 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1722 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1723 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1724
1d4f8a0c 1725 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1726
a05a9bb1 1727 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1728 parent = path->nodes[level + 1];
a05a9bb1
LZ
1729 pslot = path->slots[level + 1];
1730 }
bb803951 1731
40689478
CM
1732 /*
1733 * deal with the case where there is only one pointer in the root
1734 * by promoting the node below to a root
1735 */
5f39d397
CM
1736 if (!parent) {
1737 struct extent_buffer *child;
bb803951 1738
5f39d397 1739 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1740 return 0;
1741
1742 /* promote the child to a root */
5f39d397 1743 child = read_node_slot(root, mid, 0);
305a26af
MF
1744 if (!child) {
1745 ret = -EROFS;
1746 btrfs_std_error(root->fs_info, ret);
1747 goto enospc;
1748 }
1749
925baedd 1750 btrfs_tree_lock(child);
b4ce94de 1751 btrfs_set_lock_blocking(child);
9fa8cfe7 1752 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1753 if (ret) {
1754 btrfs_tree_unlock(child);
1755 free_extent_buffer(child);
1756 goto enospc;
1757 }
2f375ab9 1758
ba1bfbd5 1759 tree_mod_log_free_eb(root->fs_info, root->node);
f230475e 1760 tree_mod_log_set_root_pointer(root, child);
240f62c8 1761 rcu_assign_pointer(root->node, child);
925baedd 1762
0b86a832 1763 add_root_to_dirty_list(root);
925baedd 1764 btrfs_tree_unlock(child);
b4ce94de 1765
925baedd 1766 path->locks[level] = 0;
bb803951 1767 path->nodes[level] = NULL;
5f39d397 1768 clean_tree_block(trans, root, mid);
925baedd 1769 btrfs_tree_unlock(mid);
bb803951 1770 /* once for the path */
5f39d397 1771 free_extent_buffer(mid);
f0486c68
YZ
1772
1773 root_sub_used(root, mid->len);
5581a51a 1774 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1775 /* once for the root ptr */
3083ee2e 1776 free_extent_buffer_stale(mid);
f0486c68 1777 return 0;
bb803951 1778 }
5f39d397 1779 if (btrfs_header_nritems(mid) >
123abc88 1780 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1781 return 0;
1782
5f39d397
CM
1783 left = read_node_slot(root, parent, pslot - 1);
1784 if (left) {
925baedd 1785 btrfs_tree_lock(left);
b4ce94de 1786 btrfs_set_lock_blocking(left);
5f39d397 1787 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1788 parent, pslot - 1, &left);
54aa1f4d
CM
1789 if (wret) {
1790 ret = wret;
1791 goto enospc;
1792 }
2cc58cf2 1793 }
5f39d397
CM
1794 right = read_node_slot(root, parent, pslot + 1);
1795 if (right) {
925baedd 1796 btrfs_tree_lock(right);
b4ce94de 1797 btrfs_set_lock_blocking(right);
5f39d397 1798 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1799 parent, pslot + 1, &right);
2cc58cf2
CM
1800 if (wret) {
1801 ret = wret;
1802 goto enospc;
1803 }
1804 }
1805
1806 /* first, try to make some room in the middle buffer */
5f39d397
CM
1807 if (left) {
1808 orig_slot += btrfs_header_nritems(left);
bce4eae9 1809 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1810 if (wret < 0)
1811 ret = wret;
bb803951 1812 }
79f95c82
CM
1813
1814 /*
1815 * then try to empty the right most buffer into the middle
1816 */
5f39d397 1817 if (right) {
971a1f66 1818 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1819 if (wret < 0 && wret != -ENOSPC)
79f95c82 1820 ret = wret;
5f39d397 1821 if (btrfs_header_nritems(right) == 0) {
5f39d397 1822 clean_tree_block(trans, root, right);
925baedd 1823 btrfs_tree_unlock(right);
0e411ece 1824 del_ptr(trans, root, path, level + 1, pslot + 1);
f0486c68 1825 root_sub_used(root, right->len);
5581a51a 1826 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1827 free_extent_buffer_stale(right);
f0486c68 1828 right = NULL;
bb803951 1829 } else {
5f39d397
CM
1830 struct btrfs_disk_key right_key;
1831 btrfs_node_key(right, &right_key, 0);
f230475e 1832 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 1833 pslot + 1, 0);
5f39d397
CM
1834 btrfs_set_node_key(parent, &right_key, pslot + 1);
1835 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1836 }
1837 }
5f39d397 1838 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1839 /*
1840 * we're not allowed to leave a node with one item in the
1841 * tree during a delete. A deletion from lower in the tree
1842 * could try to delete the only pointer in this node.
1843 * So, pull some keys from the left.
1844 * There has to be a left pointer at this point because
1845 * otherwise we would have pulled some pointers from the
1846 * right
1847 */
305a26af
MF
1848 if (!left) {
1849 ret = -EROFS;
1850 btrfs_std_error(root->fs_info, ret);
1851 goto enospc;
1852 }
5f39d397 1853 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1854 if (wret < 0) {
79f95c82 1855 ret = wret;
54aa1f4d
CM
1856 goto enospc;
1857 }
bce4eae9
CM
1858 if (wret == 1) {
1859 wret = push_node_left(trans, root, left, mid, 1);
1860 if (wret < 0)
1861 ret = wret;
1862 }
79f95c82
CM
1863 BUG_ON(wret == 1);
1864 }
5f39d397 1865 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1866 clean_tree_block(trans, root, mid);
925baedd 1867 btrfs_tree_unlock(mid);
0e411ece 1868 del_ptr(trans, root, path, level + 1, pslot);
f0486c68 1869 root_sub_used(root, mid->len);
5581a51a 1870 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1871 free_extent_buffer_stale(mid);
f0486c68 1872 mid = NULL;
79f95c82
CM
1873 } else {
1874 /* update the parent key to reflect our changes */
5f39d397
CM
1875 struct btrfs_disk_key mid_key;
1876 btrfs_node_key(mid, &mid_key, 0);
32adf090 1877 tree_mod_log_set_node_key(root->fs_info, parent,
f230475e 1878 pslot, 0);
5f39d397
CM
1879 btrfs_set_node_key(parent, &mid_key, pslot);
1880 btrfs_mark_buffer_dirty(parent);
79f95c82 1881 }
bb803951 1882
79f95c82 1883 /* update the path */
5f39d397
CM
1884 if (left) {
1885 if (btrfs_header_nritems(left) > orig_slot) {
1886 extent_buffer_get(left);
925baedd 1887 /* left was locked after cow */
5f39d397 1888 path->nodes[level] = left;
bb803951
CM
1889 path->slots[level + 1] -= 1;
1890 path->slots[level] = orig_slot;
925baedd
CM
1891 if (mid) {
1892 btrfs_tree_unlock(mid);
5f39d397 1893 free_extent_buffer(mid);
925baedd 1894 }
bb803951 1895 } else {
5f39d397 1896 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1897 path->slots[level] = orig_slot;
1898 }
1899 }
79f95c82 1900 /* double check we haven't messed things up */
e20d96d6 1901 if (orig_ptr !=
5f39d397 1902 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1903 BUG();
54aa1f4d 1904enospc:
925baedd
CM
1905 if (right) {
1906 btrfs_tree_unlock(right);
5f39d397 1907 free_extent_buffer(right);
925baedd
CM
1908 }
1909 if (left) {
1910 if (path->nodes[level] != left)
1911 btrfs_tree_unlock(left);
5f39d397 1912 free_extent_buffer(left);
925baedd 1913 }
bb803951
CM
1914 return ret;
1915}
1916
d352ac68
CM
1917/* Node balancing for insertion. Here we only split or push nodes around
1918 * when they are completely full. This is also done top down, so we
1919 * have to be pessimistic.
1920 */
d397712b 1921static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1922 struct btrfs_root *root,
1923 struct btrfs_path *path, int level)
e66f709b 1924{
5f39d397
CM
1925 struct extent_buffer *right = NULL;
1926 struct extent_buffer *mid;
1927 struct extent_buffer *left = NULL;
1928 struct extent_buffer *parent = NULL;
e66f709b
CM
1929 int ret = 0;
1930 int wret;
1931 int pslot;
1932 int orig_slot = path->slots[level];
e66f709b
CM
1933
1934 if (level == 0)
1935 return 1;
1936
5f39d397 1937 mid = path->nodes[level];
7bb86316 1938 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1939
a05a9bb1 1940 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1941 parent = path->nodes[level + 1];
a05a9bb1
LZ
1942 pslot = path->slots[level + 1];
1943 }
e66f709b 1944
5f39d397 1945 if (!parent)
e66f709b 1946 return 1;
e66f709b 1947
5f39d397 1948 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1949
1950 /* first, try to make some room in the middle buffer */
5f39d397 1951 if (left) {
e66f709b 1952 u32 left_nr;
925baedd
CM
1953
1954 btrfs_tree_lock(left);
b4ce94de
CM
1955 btrfs_set_lock_blocking(left);
1956
5f39d397 1957 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1958 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1959 wret = 1;
1960 } else {
5f39d397 1961 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1962 pslot - 1, &left);
54aa1f4d
CM
1963 if (ret)
1964 wret = 1;
1965 else {
54aa1f4d 1966 wret = push_node_left(trans, root,
971a1f66 1967 left, mid, 0);
54aa1f4d 1968 }
33ade1f8 1969 }
e66f709b
CM
1970 if (wret < 0)
1971 ret = wret;
1972 if (wret == 0) {
5f39d397 1973 struct btrfs_disk_key disk_key;
e66f709b 1974 orig_slot += left_nr;
5f39d397 1975 btrfs_node_key(mid, &disk_key, 0);
f230475e 1976 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 1977 pslot, 0);
5f39d397
CM
1978 btrfs_set_node_key(parent, &disk_key, pslot);
1979 btrfs_mark_buffer_dirty(parent);
1980 if (btrfs_header_nritems(left) > orig_slot) {
1981 path->nodes[level] = left;
e66f709b
CM
1982 path->slots[level + 1] -= 1;
1983 path->slots[level] = orig_slot;
925baedd 1984 btrfs_tree_unlock(mid);
5f39d397 1985 free_extent_buffer(mid);
e66f709b
CM
1986 } else {
1987 orig_slot -=
5f39d397 1988 btrfs_header_nritems(left);
e66f709b 1989 path->slots[level] = orig_slot;
925baedd 1990 btrfs_tree_unlock(left);
5f39d397 1991 free_extent_buffer(left);
e66f709b 1992 }
e66f709b
CM
1993 return 0;
1994 }
925baedd 1995 btrfs_tree_unlock(left);
5f39d397 1996 free_extent_buffer(left);
e66f709b 1997 }
925baedd 1998 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
1999
2000 /*
2001 * then try to empty the right most buffer into the middle
2002 */
5f39d397 2003 if (right) {
33ade1f8 2004 u32 right_nr;
b4ce94de 2005
925baedd 2006 btrfs_tree_lock(right);
b4ce94de
CM
2007 btrfs_set_lock_blocking(right);
2008
5f39d397 2009 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2010 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2011 wret = 1;
2012 } else {
5f39d397
CM
2013 ret = btrfs_cow_block(trans, root, right,
2014 parent, pslot + 1,
9fa8cfe7 2015 &right);
54aa1f4d
CM
2016 if (ret)
2017 wret = 1;
2018 else {
54aa1f4d 2019 wret = balance_node_right(trans, root,
5f39d397 2020 right, mid);
54aa1f4d 2021 }
33ade1f8 2022 }
e66f709b
CM
2023 if (wret < 0)
2024 ret = wret;
2025 if (wret == 0) {
5f39d397
CM
2026 struct btrfs_disk_key disk_key;
2027
2028 btrfs_node_key(right, &disk_key, 0);
f230475e 2029 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2030 pslot + 1, 0);
5f39d397
CM
2031 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2032 btrfs_mark_buffer_dirty(parent);
2033
2034 if (btrfs_header_nritems(mid) <= orig_slot) {
2035 path->nodes[level] = right;
e66f709b
CM
2036 path->slots[level + 1] += 1;
2037 path->slots[level] = orig_slot -
5f39d397 2038 btrfs_header_nritems(mid);
925baedd 2039 btrfs_tree_unlock(mid);
5f39d397 2040 free_extent_buffer(mid);
e66f709b 2041 } else {
925baedd 2042 btrfs_tree_unlock(right);
5f39d397 2043 free_extent_buffer(right);
e66f709b 2044 }
e66f709b
CM
2045 return 0;
2046 }
925baedd 2047 btrfs_tree_unlock(right);
5f39d397 2048 free_extent_buffer(right);
e66f709b 2049 }
e66f709b
CM
2050 return 1;
2051}
2052
3c69faec 2053/*
d352ac68
CM
2054 * readahead one full node of leaves, finding things that are close
2055 * to the block in 'slot', and triggering ra on them.
3c69faec 2056 */
c8c42864
CM
2057static void reada_for_search(struct btrfs_root *root,
2058 struct btrfs_path *path,
2059 int level, int slot, u64 objectid)
3c69faec 2060{
5f39d397 2061 struct extent_buffer *node;
01f46658 2062 struct btrfs_disk_key disk_key;
3c69faec 2063 u32 nritems;
3c69faec 2064 u64 search;
a7175319 2065 u64 target;
6b80053d 2066 u64 nread = 0;
cb25c2ea 2067 u64 gen;
3c69faec 2068 int direction = path->reada;
5f39d397 2069 struct extent_buffer *eb;
6b80053d
CM
2070 u32 nr;
2071 u32 blocksize;
2072 u32 nscan = 0;
db94535d 2073
a6b6e75e 2074 if (level != 1)
6702ed49
CM
2075 return;
2076
2077 if (!path->nodes[level])
3c69faec
CM
2078 return;
2079
5f39d397 2080 node = path->nodes[level];
925baedd 2081
3c69faec 2082 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
2083 blocksize = btrfs_level_size(root, level - 1);
2084 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
2085 if (eb) {
2086 free_extent_buffer(eb);
3c69faec
CM
2087 return;
2088 }
2089
a7175319 2090 target = search;
6b80053d 2091
5f39d397 2092 nritems = btrfs_header_nritems(node);
6b80053d 2093 nr = slot;
25b8b936 2094
d397712b 2095 while (1) {
6b80053d
CM
2096 if (direction < 0) {
2097 if (nr == 0)
2098 break;
2099 nr--;
2100 } else if (direction > 0) {
2101 nr++;
2102 if (nr >= nritems)
2103 break;
3c69faec 2104 }
01f46658
CM
2105 if (path->reada < 0 && objectid) {
2106 btrfs_node_key(node, &disk_key, nr);
2107 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2108 break;
2109 }
6b80053d 2110 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2111 if ((search <= target && target - search <= 65536) ||
2112 (search > target && search - target <= 65536)) {
cb25c2ea 2113 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2114 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2115 nread += blocksize;
2116 }
2117 nscan++;
a7175319 2118 if ((nread > 65536 || nscan > 32))
6b80053d 2119 break;
3c69faec
CM
2120 }
2121}
925baedd 2122
b4ce94de
CM
2123/*
2124 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2125 * cache
2126 */
2127static noinline int reada_for_balance(struct btrfs_root *root,
2128 struct btrfs_path *path, int level)
2129{
2130 int slot;
2131 int nritems;
2132 struct extent_buffer *parent;
2133 struct extent_buffer *eb;
2134 u64 gen;
2135 u64 block1 = 0;
2136 u64 block2 = 0;
2137 int ret = 0;
2138 int blocksize;
2139
8c594ea8 2140 parent = path->nodes[level + 1];
b4ce94de
CM
2141 if (!parent)
2142 return 0;
2143
2144 nritems = btrfs_header_nritems(parent);
8c594ea8 2145 slot = path->slots[level + 1];
b4ce94de
CM
2146 blocksize = btrfs_level_size(root, level);
2147
2148 if (slot > 0) {
2149 block1 = btrfs_node_blockptr(parent, slot - 1);
2150 gen = btrfs_node_ptr_generation(parent, slot - 1);
2151 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2152 /*
2153 * if we get -eagain from btrfs_buffer_uptodate, we
2154 * don't want to return eagain here. That will loop
2155 * forever
2156 */
2157 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2158 block1 = 0;
2159 free_extent_buffer(eb);
2160 }
8c594ea8 2161 if (slot + 1 < nritems) {
b4ce94de
CM
2162 block2 = btrfs_node_blockptr(parent, slot + 1);
2163 gen = btrfs_node_ptr_generation(parent, slot + 1);
2164 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2165 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2166 block2 = 0;
2167 free_extent_buffer(eb);
2168 }
2169 if (block1 || block2) {
2170 ret = -EAGAIN;
8c594ea8
CM
2171
2172 /* release the whole path */
b3b4aa74 2173 btrfs_release_path(path);
8c594ea8
CM
2174
2175 /* read the blocks */
b4ce94de
CM
2176 if (block1)
2177 readahead_tree_block(root, block1, blocksize, 0);
2178 if (block2)
2179 readahead_tree_block(root, block2, blocksize, 0);
2180
2181 if (block1) {
2182 eb = read_tree_block(root, block1, blocksize, 0);
2183 free_extent_buffer(eb);
2184 }
8c594ea8 2185 if (block2) {
b4ce94de
CM
2186 eb = read_tree_block(root, block2, blocksize, 0);
2187 free_extent_buffer(eb);
2188 }
2189 }
2190 return ret;
2191}
2192
2193
d352ac68 2194/*
d397712b
CM
2195 * when we walk down the tree, it is usually safe to unlock the higher layers
2196 * in the tree. The exceptions are when our path goes through slot 0, because
2197 * operations on the tree might require changing key pointers higher up in the
2198 * tree.
d352ac68 2199 *
d397712b
CM
2200 * callers might also have set path->keep_locks, which tells this code to keep
2201 * the lock if the path points to the last slot in the block. This is part of
2202 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2203 *
d397712b
CM
2204 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2205 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2206 */
e02119d5 2207static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2208 int lowest_unlock, int min_write_lock_level,
2209 int *write_lock_level)
925baedd
CM
2210{
2211 int i;
2212 int skip_level = level;
051e1b9f 2213 int no_skips = 0;
925baedd
CM
2214 struct extent_buffer *t;
2215
d6393786
JB
2216 if (path->really_keep_locks)
2217 return;
2218
925baedd
CM
2219 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2220 if (!path->nodes[i])
2221 break;
2222 if (!path->locks[i])
2223 break;
051e1b9f 2224 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2225 skip_level = i + 1;
2226 continue;
2227 }
051e1b9f 2228 if (!no_skips && path->keep_locks) {
925baedd
CM
2229 u32 nritems;
2230 t = path->nodes[i];
2231 nritems = btrfs_header_nritems(t);
051e1b9f 2232 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2233 skip_level = i + 1;
2234 continue;
2235 }
2236 }
051e1b9f
CM
2237 if (skip_level < i && i >= lowest_unlock)
2238 no_skips = 1;
2239
925baedd
CM
2240 t = path->nodes[i];
2241 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2242 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2243 path->locks[i] = 0;
f7c79f30
CM
2244 if (write_lock_level &&
2245 i > min_write_lock_level &&
2246 i <= *write_lock_level) {
2247 *write_lock_level = i - 1;
2248 }
925baedd
CM
2249 }
2250 }
2251}
2252
b4ce94de
CM
2253/*
2254 * This releases any locks held in the path starting at level and
2255 * going all the way up to the root.
2256 *
2257 * btrfs_search_slot will keep the lock held on higher nodes in a few
2258 * corner cases, such as COW of the block at slot zero in the node. This
2259 * ignores those rules, and it should only be called when there are no
2260 * more updates to be done higher up in the tree.
2261 */
2262noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2263{
2264 int i;
2265
d6393786 2266 if (path->keep_locks || path->really_keep_locks)
b4ce94de
CM
2267 return;
2268
2269 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2270 if (!path->nodes[i])
12f4dacc 2271 continue;
b4ce94de 2272 if (!path->locks[i])
12f4dacc 2273 continue;
bd681513 2274 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2275 path->locks[i] = 0;
2276 }
2277}
2278
c8c42864
CM
2279/*
2280 * helper function for btrfs_search_slot. The goal is to find a block
2281 * in cache without setting the path to blocking. If we find the block
2282 * we return zero and the path is unchanged.
2283 *
2284 * If we can't find the block, we set the path blocking and do some
2285 * reada. -EAGAIN is returned and the search must be repeated.
2286 */
2287static int
2288read_block_for_search(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root, struct btrfs_path *p,
2290 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2291 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2292{
2293 u64 blocknr;
2294 u64 gen;
2295 u32 blocksize;
2296 struct extent_buffer *b = *eb_ret;
2297 struct extent_buffer *tmp;
76a05b35 2298 int ret;
c8c42864
CM
2299
2300 blocknr = btrfs_node_blockptr(b, slot);
2301 gen = btrfs_node_ptr_generation(b, slot);
2302 blocksize = btrfs_level_size(root, level - 1);
2303
2304 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2305 if (tmp) {
b9fab919
CM
2306 /* first we do an atomic uptodate check */
2307 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2308 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
cb44921a
CM
2309 /*
2310 * we found an up to date block without
2311 * sleeping, return
2312 * right away
2313 */
2314 *eb_ret = tmp;
2315 return 0;
2316 }
2317 /* the pages were up to date, but we failed
2318 * the generation number check. Do a full
2319 * read for the generation number that is correct.
2320 * We must do this without dropping locks so
2321 * we can trust our generation number
2322 */
2323 free_extent_buffer(tmp);
bd681513
CM
2324 btrfs_set_path_blocking(p);
2325
b9fab919 2326 /* now we're allowed to do a blocking uptodate check */
cb44921a 2327 tmp = read_tree_block(root, blocknr, blocksize, gen);
b9fab919 2328 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
cb44921a
CM
2329 *eb_ret = tmp;
2330 return 0;
2331 }
2332 free_extent_buffer(tmp);
b3b4aa74 2333 btrfs_release_path(p);
cb44921a
CM
2334 return -EIO;
2335 }
c8c42864
CM
2336 }
2337
2338 /*
2339 * reduce lock contention at high levels
2340 * of the btree by dropping locks before
76a05b35
CM
2341 * we read. Don't release the lock on the current
2342 * level because we need to walk this node to figure
2343 * out which blocks to read.
c8c42864 2344 */
8c594ea8
CM
2345 btrfs_unlock_up_safe(p, level + 1);
2346 btrfs_set_path_blocking(p);
2347
cb44921a 2348 free_extent_buffer(tmp);
c8c42864
CM
2349 if (p->reada)
2350 reada_for_search(root, p, level, slot, key->objectid);
2351
b3b4aa74 2352 btrfs_release_path(p);
76a05b35
CM
2353
2354 ret = -EAGAIN;
5bdd3536 2355 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2356 if (tmp) {
2357 /*
2358 * If the read above didn't mark this buffer up to date,
2359 * it will never end up being up to date. Set ret to EIO now
2360 * and give up so that our caller doesn't loop forever
2361 * on our EAGAINs.
2362 */
b9fab919 2363 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2364 ret = -EIO;
c8c42864 2365 free_extent_buffer(tmp);
76a05b35
CM
2366 }
2367 return ret;
c8c42864
CM
2368}
2369
2370/*
2371 * helper function for btrfs_search_slot. This does all of the checks
2372 * for node-level blocks and does any balancing required based on
2373 * the ins_len.
2374 *
2375 * If no extra work was required, zero is returned. If we had to
2376 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2377 * start over
2378 */
2379static int
2380setup_nodes_for_search(struct btrfs_trans_handle *trans,
2381 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2382 struct extent_buffer *b, int level, int ins_len,
2383 int *write_lock_level)
c8c42864
CM
2384{
2385 int ret;
2386 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2387 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2388 int sret;
2389
bd681513
CM
2390 if (*write_lock_level < level + 1) {
2391 *write_lock_level = level + 1;
2392 btrfs_release_path(p);
2393 goto again;
2394 }
2395
c8c42864
CM
2396 sret = reada_for_balance(root, p, level);
2397 if (sret)
2398 goto again;
2399
2400 btrfs_set_path_blocking(p);
2401 sret = split_node(trans, root, p, level);
bd681513 2402 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2403
2404 BUG_ON(sret > 0);
2405 if (sret) {
2406 ret = sret;
2407 goto done;
2408 }
2409 b = p->nodes[level];
2410 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2411 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2412 int sret;
2413
bd681513
CM
2414 if (*write_lock_level < level + 1) {
2415 *write_lock_level = level + 1;
2416 btrfs_release_path(p);
2417 goto again;
2418 }
2419
c8c42864
CM
2420 sret = reada_for_balance(root, p, level);
2421 if (sret)
2422 goto again;
2423
2424 btrfs_set_path_blocking(p);
2425 sret = balance_level(trans, root, p, level);
bd681513 2426 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2427
2428 if (sret) {
2429 ret = sret;
2430 goto done;
2431 }
2432 b = p->nodes[level];
2433 if (!b) {
b3b4aa74 2434 btrfs_release_path(p);
c8c42864
CM
2435 goto again;
2436 }
2437 BUG_ON(btrfs_header_nritems(b) == 1);
2438 }
2439 return 0;
2440
2441again:
2442 ret = -EAGAIN;
2443done:
2444 return ret;
2445}
2446
74123bd7
CM
2447/*
2448 * look for key in the tree. path is filled in with nodes along the way
2449 * if key is found, we return zero and you can find the item in the leaf
2450 * level of the path (level 0)
2451 *
2452 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2453 * be inserted, and 1 is returned. If there are other errors during the
2454 * search a negative error number is returned.
97571fd0
CM
2455 *
2456 * if ins_len > 0, nodes and leaves will be split as we walk down the
2457 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2458 * possible)
74123bd7 2459 */
e089f05c
CM
2460int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2461 *root, struct btrfs_key *key, struct btrfs_path *p, int
2462 ins_len, int cow)
be0e5c09 2463{
5f39d397 2464 struct extent_buffer *b;
be0e5c09
CM
2465 int slot;
2466 int ret;
33c66f43 2467 int err;
be0e5c09 2468 int level;
925baedd 2469 int lowest_unlock = 1;
bd681513
CM
2470 int root_lock;
2471 /* everything at write_lock_level or lower must be write locked */
2472 int write_lock_level = 0;
9f3a7427 2473 u8 lowest_level = 0;
f7c79f30 2474 int min_write_lock_level;
9f3a7427 2475
6702ed49 2476 lowest_level = p->lowest_level;
323ac95b 2477 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2478 WARN_ON(p->nodes[0] != NULL);
25179201 2479
bd681513 2480 if (ins_len < 0) {
925baedd 2481 lowest_unlock = 2;
65b51a00 2482
bd681513
CM
2483 /* when we are removing items, we might have to go up to level
2484 * two as we update tree pointers Make sure we keep write
2485 * for those levels as well
2486 */
2487 write_lock_level = 2;
2488 } else if (ins_len > 0) {
2489 /*
2490 * for inserting items, make sure we have a write lock on
2491 * level 1 so we can update keys
2492 */
2493 write_lock_level = 1;
2494 }
2495
2496 if (!cow)
2497 write_lock_level = -1;
2498
d6393786 2499 if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
bd681513
CM
2500 write_lock_level = BTRFS_MAX_LEVEL;
2501
f7c79f30
CM
2502 min_write_lock_level = write_lock_level;
2503
bb803951 2504again:
bd681513
CM
2505 /*
2506 * we try very hard to do read locks on the root
2507 */
2508 root_lock = BTRFS_READ_LOCK;
2509 level = 0;
5d4f98a2 2510 if (p->search_commit_root) {
bd681513
CM
2511 /*
2512 * the commit roots are read only
2513 * so we always do read locks
2514 */
5d4f98a2
YZ
2515 b = root->commit_root;
2516 extent_buffer_get(b);
bd681513 2517 level = btrfs_header_level(b);
5d4f98a2 2518 if (!p->skip_locking)
bd681513 2519 btrfs_tree_read_lock(b);
5d4f98a2 2520 } else {
bd681513 2521 if (p->skip_locking) {
5d4f98a2 2522 b = btrfs_root_node(root);
bd681513
CM
2523 level = btrfs_header_level(b);
2524 } else {
2525 /* we don't know the level of the root node
2526 * until we actually have it read locked
2527 */
2528 b = btrfs_read_lock_root_node(root);
2529 level = btrfs_header_level(b);
2530 if (level <= write_lock_level) {
2531 /* whoops, must trade for write lock */
2532 btrfs_tree_read_unlock(b);
2533 free_extent_buffer(b);
2534 b = btrfs_lock_root_node(root);
2535 root_lock = BTRFS_WRITE_LOCK;
2536
2537 /* the level might have changed, check again */
2538 level = btrfs_header_level(b);
2539 }
2540 }
5d4f98a2 2541 }
bd681513
CM
2542 p->nodes[level] = b;
2543 if (!p->skip_locking)
2544 p->locks[level] = root_lock;
925baedd 2545
eb60ceac 2546 while (b) {
5f39d397 2547 level = btrfs_header_level(b);
65b51a00
CM
2548
2549 /*
2550 * setup the path here so we can release it under lock
2551 * contention with the cow code
2552 */
02217ed2 2553 if (cow) {
c8c42864
CM
2554 /*
2555 * if we don't really need to cow this block
2556 * then we don't want to set the path blocking,
2557 * so we test it here
2558 */
5d4f98a2 2559 if (!should_cow_block(trans, root, b))
65b51a00 2560 goto cow_done;
5d4f98a2 2561
b4ce94de
CM
2562 btrfs_set_path_blocking(p);
2563
bd681513
CM
2564 /*
2565 * must have write locks on this node and the
2566 * parent
2567 */
5124e00e
JB
2568 if (level > write_lock_level ||
2569 (level + 1 > write_lock_level &&
2570 level + 1 < BTRFS_MAX_LEVEL &&
2571 p->nodes[level + 1])) {
bd681513
CM
2572 write_lock_level = level + 1;
2573 btrfs_release_path(p);
2574 goto again;
2575 }
2576
33c66f43
YZ
2577 err = btrfs_cow_block(trans, root, b,
2578 p->nodes[level + 1],
2579 p->slots[level + 1], &b);
2580 if (err) {
33c66f43 2581 ret = err;
65b51a00 2582 goto done;
54aa1f4d 2583 }
02217ed2 2584 }
65b51a00 2585cow_done:
02217ed2 2586 BUG_ON(!cow && ins_len);
65b51a00 2587
eb60ceac 2588 p->nodes[level] = b;
bd681513 2589 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2590
2591 /*
2592 * we have a lock on b and as long as we aren't changing
2593 * the tree, there is no way to for the items in b to change.
2594 * It is safe to drop the lock on our parent before we
2595 * go through the expensive btree search on b.
2596 *
2597 * If cow is true, then we might be changing slot zero,
2598 * which may require changing the parent. So, we can't
2599 * drop the lock until after we know which slot we're
2600 * operating on.
2601 */
2602 if (!cow)
2603 btrfs_unlock_up_safe(p, level + 1);
2604
5f39d397 2605 ret = bin_search(b, key, level, &slot);
b4ce94de 2606
5f39d397 2607 if (level != 0) {
33c66f43
YZ
2608 int dec = 0;
2609 if (ret && slot > 0) {
2610 dec = 1;
be0e5c09 2611 slot -= 1;
33c66f43 2612 }
be0e5c09 2613 p->slots[level] = slot;
33c66f43 2614 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2615 ins_len, &write_lock_level);
33c66f43 2616 if (err == -EAGAIN)
c8c42864 2617 goto again;
33c66f43
YZ
2618 if (err) {
2619 ret = err;
c8c42864 2620 goto done;
33c66f43 2621 }
c8c42864
CM
2622 b = p->nodes[level];
2623 slot = p->slots[level];
b4ce94de 2624
bd681513
CM
2625 /*
2626 * slot 0 is special, if we change the key
2627 * we have to update the parent pointer
2628 * which means we must have a write lock
2629 * on the parent
2630 */
2631 if (slot == 0 && cow &&
2632 write_lock_level < level + 1) {
2633 write_lock_level = level + 1;
2634 btrfs_release_path(p);
2635 goto again;
2636 }
2637
f7c79f30
CM
2638 unlock_up(p, level, lowest_unlock,
2639 min_write_lock_level, &write_lock_level);
f9efa9c7 2640
925baedd 2641 if (level == lowest_level) {
33c66f43
YZ
2642 if (dec)
2643 p->slots[level]++;
5b21f2ed 2644 goto done;
925baedd 2645 }
ca7a79ad 2646
33c66f43 2647 err = read_block_for_search(trans, root, p,
5d9e75c4 2648 &b, level, slot, key, 0);
33c66f43 2649 if (err == -EAGAIN)
c8c42864 2650 goto again;
33c66f43
YZ
2651 if (err) {
2652 ret = err;
76a05b35 2653 goto done;
33c66f43 2654 }
76a05b35 2655
b4ce94de 2656 if (!p->skip_locking) {
bd681513
CM
2657 level = btrfs_header_level(b);
2658 if (level <= write_lock_level) {
2659 err = btrfs_try_tree_write_lock(b);
2660 if (!err) {
2661 btrfs_set_path_blocking(p);
2662 btrfs_tree_lock(b);
2663 btrfs_clear_path_blocking(p, b,
2664 BTRFS_WRITE_LOCK);
2665 }
2666 p->locks[level] = BTRFS_WRITE_LOCK;
2667 } else {
2668 err = btrfs_try_tree_read_lock(b);
2669 if (!err) {
2670 btrfs_set_path_blocking(p);
2671 btrfs_tree_read_lock(b);
2672 btrfs_clear_path_blocking(p, b,
2673 BTRFS_READ_LOCK);
2674 }
2675 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2676 }
bd681513 2677 p->nodes[level] = b;
b4ce94de 2678 }
be0e5c09
CM
2679 } else {
2680 p->slots[level] = slot;
87b29b20
YZ
2681 if (ins_len > 0 &&
2682 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2683 if (write_lock_level < 1) {
2684 write_lock_level = 1;
2685 btrfs_release_path(p);
2686 goto again;
2687 }
2688
b4ce94de 2689 btrfs_set_path_blocking(p);
33c66f43
YZ
2690 err = split_leaf(trans, root, key,
2691 p, ins_len, ret == 0);
bd681513 2692 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2693
33c66f43
YZ
2694 BUG_ON(err > 0);
2695 if (err) {
2696 ret = err;
65b51a00
CM
2697 goto done;
2698 }
5c680ed6 2699 }
459931ec 2700 if (!p->search_for_split)
f7c79f30
CM
2701 unlock_up(p, level, lowest_unlock,
2702 min_write_lock_level, &write_lock_level);
65b51a00 2703 goto done;
be0e5c09
CM
2704 }
2705 }
65b51a00
CM
2706 ret = 1;
2707done:
b4ce94de
CM
2708 /*
2709 * we don't really know what they plan on doing with the path
2710 * from here on, so for now just mark it as blocking
2711 */
b9473439
CM
2712 if (!p->leave_spinning)
2713 btrfs_set_path_blocking(p);
76a05b35 2714 if (ret < 0)
b3b4aa74 2715 btrfs_release_path(p);
65b51a00 2716 return ret;
be0e5c09
CM
2717}
2718
5d9e75c4
JS
2719/*
2720 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2721 * current state of the tree together with the operations recorded in the tree
2722 * modification log to search for the key in a previous version of this tree, as
2723 * denoted by the time_seq parameter.
2724 *
2725 * Naturally, there is no support for insert, delete or cow operations.
2726 *
2727 * The resulting path and return value will be set up as if we called
2728 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2729 */
2730int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2731 struct btrfs_path *p, u64 time_seq)
2732{
2733 struct extent_buffer *b;
2734 int slot;
2735 int ret;
2736 int err;
2737 int level;
2738 int lowest_unlock = 1;
2739 u8 lowest_level = 0;
2740
2741 lowest_level = p->lowest_level;
2742 WARN_ON(p->nodes[0] != NULL);
2743
2744 if (p->search_commit_root) {
2745 BUG_ON(time_seq);
2746 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2747 }
2748
2749again:
5d9e75c4 2750 b = get_old_root(root, time_seq);
5d9e75c4 2751 level = btrfs_header_level(b);
5d9e75c4
JS
2752 p->locks[level] = BTRFS_READ_LOCK;
2753
2754 while (b) {
2755 level = btrfs_header_level(b);
2756 p->nodes[level] = b;
2757 btrfs_clear_path_blocking(p, NULL, 0);
2758
2759 /*
2760 * we have a lock on b and as long as we aren't changing
2761 * the tree, there is no way to for the items in b to change.
2762 * It is safe to drop the lock on our parent before we
2763 * go through the expensive btree search on b.
2764 */
2765 btrfs_unlock_up_safe(p, level + 1);
2766
2767 ret = bin_search(b, key, level, &slot);
2768
2769 if (level != 0) {
2770 int dec = 0;
2771 if (ret && slot > 0) {
2772 dec = 1;
2773 slot -= 1;
2774 }
2775 p->slots[level] = slot;
2776 unlock_up(p, level, lowest_unlock, 0, NULL);
2777
2778 if (level == lowest_level) {
2779 if (dec)
2780 p->slots[level]++;
2781 goto done;
2782 }
2783
2784 err = read_block_for_search(NULL, root, p, &b, level,
2785 slot, key, time_seq);
2786 if (err == -EAGAIN)
2787 goto again;
2788 if (err) {
2789 ret = err;
2790 goto done;
2791 }
2792
2793 level = btrfs_header_level(b);
2794 err = btrfs_try_tree_read_lock(b);
2795 if (!err) {
2796 btrfs_set_path_blocking(p);
2797 btrfs_tree_read_lock(b);
2798 btrfs_clear_path_blocking(p, b,
2799 BTRFS_READ_LOCK);
2800 }
2801 p->locks[level] = BTRFS_READ_LOCK;
2802 p->nodes[level] = b;
2803 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2804 if (b != p->nodes[level]) {
2805 btrfs_tree_unlock_rw(p->nodes[level],
2806 p->locks[level]);
2807 p->locks[level] = 0;
2808 p->nodes[level] = b;
2809 }
2810 } else {
2811 p->slots[level] = slot;
2812 unlock_up(p, level, lowest_unlock, 0, NULL);
2813 goto done;
2814 }
2815 }
2816 ret = 1;
2817done:
2818 if (!p->leave_spinning)
2819 btrfs_set_path_blocking(p);
2820 if (ret < 0)
2821 btrfs_release_path(p);
2822
2823 return ret;
2824}
2825
2f38b3e1
AJ
2826/*
2827 * helper to use instead of search slot if no exact match is needed but
2828 * instead the next or previous item should be returned.
2829 * When find_higher is true, the next higher item is returned, the next lower
2830 * otherwise.
2831 * When return_any and find_higher are both true, and no higher item is found,
2832 * return the next lower instead.
2833 * When return_any is true and find_higher is false, and no lower item is found,
2834 * return the next higher instead.
2835 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2836 * < 0 on error
2837 */
2838int btrfs_search_slot_for_read(struct btrfs_root *root,
2839 struct btrfs_key *key, struct btrfs_path *p,
2840 int find_higher, int return_any)
2841{
2842 int ret;
2843 struct extent_buffer *leaf;
2844
2845again:
2846 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2847 if (ret <= 0)
2848 return ret;
2849 /*
2850 * a return value of 1 means the path is at the position where the
2851 * item should be inserted. Normally this is the next bigger item,
2852 * but in case the previous item is the last in a leaf, path points
2853 * to the first free slot in the previous leaf, i.e. at an invalid
2854 * item.
2855 */
2856 leaf = p->nodes[0];
2857
2858 if (find_higher) {
2859 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2860 ret = btrfs_next_leaf(root, p);
2861 if (ret <= 0)
2862 return ret;
2863 if (!return_any)
2864 return 1;
2865 /*
2866 * no higher item found, return the next
2867 * lower instead
2868 */
2869 return_any = 0;
2870 find_higher = 0;
2871 btrfs_release_path(p);
2872 goto again;
2873 }
2874 } else {
e6793769
AJ
2875 if (p->slots[0] == 0) {
2876 ret = btrfs_prev_leaf(root, p);
2877 if (ret < 0)
2878 return ret;
2879 if (!ret) {
2880 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2881 return 0;
2f38b3e1 2882 }
e6793769
AJ
2883 if (!return_any)
2884 return 1;
2885 /*
2886 * no lower item found, return the next
2887 * higher instead
2888 */
2889 return_any = 0;
2890 find_higher = 1;
2891 btrfs_release_path(p);
2892 goto again;
2893 } else {
2f38b3e1
AJ
2894 --p->slots[0];
2895 }
2896 }
2897 return 0;
2898}
2899
74123bd7
CM
2900/*
2901 * adjust the pointers going up the tree, starting at level
2902 * making sure the right key of each node is points to 'key'.
2903 * This is used after shifting pointers to the left, so it stops
2904 * fixing up pointers when a given leaf/node is not in slot 0 of the
2905 * higher levels
aa5d6bed 2906 *
74123bd7 2907 */
143bede5
JM
2908static void fixup_low_keys(struct btrfs_trans_handle *trans,
2909 struct btrfs_root *root, struct btrfs_path *path,
2910 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2911{
2912 int i;
5f39d397
CM
2913 struct extent_buffer *t;
2914
234b63a0 2915 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2916 int tslot = path->slots[i];
eb60ceac 2917 if (!path->nodes[i])
be0e5c09 2918 break;
5f39d397 2919 t = path->nodes[i];
32adf090 2920 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
5f39d397 2921 btrfs_set_node_key(t, key, tslot);
d6025579 2922 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2923 if (tslot != 0)
2924 break;
2925 }
2926}
2927
31840ae1
ZY
2928/*
2929 * update item key.
2930 *
2931 * This function isn't completely safe. It's the caller's responsibility
2932 * that the new key won't break the order
2933 */
143bede5
JM
2934void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root, struct btrfs_path *path,
2936 struct btrfs_key *new_key)
31840ae1
ZY
2937{
2938 struct btrfs_disk_key disk_key;
2939 struct extent_buffer *eb;
2940 int slot;
2941
2942 eb = path->nodes[0];
2943 slot = path->slots[0];
2944 if (slot > 0) {
2945 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2946 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2947 }
2948 if (slot < btrfs_header_nritems(eb) - 1) {
2949 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2950 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2951 }
2952
2953 btrfs_cpu_key_to_disk(&disk_key, new_key);
2954 btrfs_set_item_key(eb, &disk_key, slot);
2955 btrfs_mark_buffer_dirty(eb);
2956 if (slot == 0)
2957 fixup_low_keys(trans, root, path, &disk_key, 1);
31840ae1
ZY
2958}
2959
74123bd7
CM
2960/*
2961 * try to push data from one node into the next node left in the
79f95c82 2962 * tree.
aa5d6bed
CM
2963 *
2964 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2965 * error, and > 0 if there was no room in the left hand block.
74123bd7 2966 */
98ed5174
CM
2967static int push_node_left(struct btrfs_trans_handle *trans,
2968 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2969 struct extent_buffer *src, int empty)
be0e5c09 2970{
be0e5c09 2971 int push_items = 0;
bb803951
CM
2972 int src_nritems;
2973 int dst_nritems;
aa5d6bed 2974 int ret = 0;
be0e5c09 2975
5f39d397
CM
2976 src_nritems = btrfs_header_nritems(src);
2977 dst_nritems = btrfs_header_nritems(dst);
123abc88 2978 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2979 WARN_ON(btrfs_header_generation(src) != trans->transid);
2980 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2981
bce4eae9 2982 if (!empty && src_nritems <= 8)
971a1f66
CM
2983 return 1;
2984
d397712b 2985 if (push_items <= 0)
be0e5c09
CM
2986 return 1;
2987
bce4eae9 2988 if (empty) {
971a1f66 2989 push_items = min(src_nritems, push_items);
bce4eae9
CM
2990 if (push_items < src_nritems) {
2991 /* leave at least 8 pointers in the node if
2992 * we aren't going to empty it
2993 */
2994 if (src_nritems - push_items < 8) {
2995 if (push_items <= 8)
2996 return 1;
2997 push_items -= 8;
2998 }
2999 }
3000 } else
3001 push_items = min(src_nritems - 8, push_items);
79f95c82 3002
f230475e
JS
3003 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3004 push_items);
5f39d397
CM
3005 copy_extent_buffer(dst, src,
3006 btrfs_node_key_ptr_offset(dst_nritems),
3007 btrfs_node_key_ptr_offset(0),
d397712b 3008 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3009
bb803951 3010 if (push_items < src_nritems) {
57911b8b
JS
3011 /*
3012 * don't call tree_mod_log_eb_move here, key removal was already
3013 * fully logged by tree_mod_log_eb_copy above.
3014 */
5f39d397
CM
3015 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3016 btrfs_node_key_ptr_offset(push_items),
3017 (src_nritems - push_items) *
3018 sizeof(struct btrfs_key_ptr));
3019 }
3020 btrfs_set_header_nritems(src, src_nritems - push_items);
3021 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3022 btrfs_mark_buffer_dirty(src);
3023 btrfs_mark_buffer_dirty(dst);
31840ae1 3024
79f95c82
CM
3025 return ret;
3026}
3027
3028/*
3029 * try to push data from one node into the next node right in the
3030 * tree.
3031 *
3032 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3033 * error, and > 0 if there was no room in the right hand block.
3034 *
3035 * this will only push up to 1/2 the contents of the left node over
3036 */
5f39d397
CM
3037static int balance_node_right(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 struct extent_buffer *dst,
3040 struct extent_buffer *src)
79f95c82 3041{
79f95c82
CM
3042 int push_items = 0;
3043 int max_push;
3044 int src_nritems;
3045 int dst_nritems;
3046 int ret = 0;
79f95c82 3047
7bb86316
CM
3048 WARN_ON(btrfs_header_generation(src) != trans->transid);
3049 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3050
5f39d397
CM
3051 src_nritems = btrfs_header_nritems(src);
3052 dst_nritems = btrfs_header_nritems(dst);
123abc88 3053 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3054 if (push_items <= 0)
79f95c82 3055 return 1;
bce4eae9 3056
d397712b 3057 if (src_nritems < 4)
bce4eae9 3058 return 1;
79f95c82
CM
3059
3060 max_push = src_nritems / 2 + 1;
3061 /* don't try to empty the node */
d397712b 3062 if (max_push >= src_nritems)
79f95c82 3063 return 1;
252c38f0 3064
79f95c82
CM
3065 if (max_push < push_items)
3066 push_items = max_push;
3067
f230475e 3068 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3069 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3070 btrfs_node_key_ptr_offset(0),
3071 (dst_nritems) *
3072 sizeof(struct btrfs_key_ptr));
d6025579 3073
f230475e
JS
3074 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3075 src_nritems - push_items, push_items);
5f39d397
CM
3076 copy_extent_buffer(dst, src,
3077 btrfs_node_key_ptr_offset(0),
3078 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3079 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3080
5f39d397
CM
3081 btrfs_set_header_nritems(src, src_nritems - push_items);
3082 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3083
5f39d397
CM
3084 btrfs_mark_buffer_dirty(src);
3085 btrfs_mark_buffer_dirty(dst);
31840ae1 3086
aa5d6bed 3087 return ret;
be0e5c09
CM
3088}
3089
97571fd0
CM
3090/*
3091 * helper function to insert a new root level in the tree.
3092 * A new node is allocated, and a single item is inserted to
3093 * point to the existing root
aa5d6bed
CM
3094 *
3095 * returns zero on success or < 0 on failure.
97571fd0 3096 */
d397712b 3097static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397
CM
3098 struct btrfs_root *root,
3099 struct btrfs_path *path, int level)
5c680ed6 3100{
7bb86316 3101 u64 lower_gen;
5f39d397
CM
3102 struct extent_buffer *lower;
3103 struct extent_buffer *c;
925baedd 3104 struct extent_buffer *old;
5f39d397 3105 struct btrfs_disk_key lower_key;
5c680ed6
CM
3106
3107 BUG_ON(path->nodes[level]);
3108 BUG_ON(path->nodes[level-1] != root->node);
3109
7bb86316
CM
3110 lower = path->nodes[level-1];
3111 if (level == 1)
3112 btrfs_item_key(lower, &lower_key, 0);
3113 else
3114 btrfs_node_key(lower, &lower_key, 0);
3115
31840ae1 3116 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3117 root->root_key.objectid, &lower_key,
5581a51a 3118 level, root->node->start, 0);
5f39d397
CM
3119 if (IS_ERR(c))
3120 return PTR_ERR(c);
925baedd 3121
f0486c68
YZ
3122 root_add_used(root, root->nodesize);
3123
5d4f98a2 3124 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3125 btrfs_set_header_nritems(c, 1);
3126 btrfs_set_header_level(c, level);
db94535d 3127 btrfs_set_header_bytenr(c, c->start);
5f39d397 3128 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3129 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3130 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397
CM
3131
3132 write_extent_buffer(c, root->fs_info->fsid,
3133 (unsigned long)btrfs_header_fsid(c),
3134 BTRFS_FSID_SIZE);
e17cade2
CM
3135
3136 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3137 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3138 BTRFS_UUID_SIZE);
3139
5f39d397 3140 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3141 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3142 lower_gen = btrfs_header_generation(lower);
31840ae1 3143 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3144
3145 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3146
5f39d397 3147 btrfs_mark_buffer_dirty(c);
d5719762 3148
925baedd 3149 old = root->node;
f230475e 3150 tree_mod_log_set_root_pointer(root, c);
240f62c8 3151 rcu_assign_pointer(root->node, c);
925baedd
CM
3152
3153 /* the super has an extra ref to root->node */
3154 free_extent_buffer(old);
3155
0b86a832 3156 add_root_to_dirty_list(root);
5f39d397
CM
3157 extent_buffer_get(c);
3158 path->nodes[level] = c;
bd681513 3159 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3160 path->slots[level] = 0;
3161 return 0;
3162}
3163
74123bd7
CM
3164/*
3165 * worker function to insert a single pointer in a node.
3166 * the node should have enough room for the pointer already
97571fd0 3167 *
74123bd7
CM
3168 * slot and level indicate where you want the key to go, and
3169 * blocknr is the block the key points to.
3170 */
143bede5
JM
3171static void insert_ptr(struct btrfs_trans_handle *trans,
3172 struct btrfs_root *root, struct btrfs_path *path,
3173 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3174 int slot, int level)
74123bd7 3175{
5f39d397 3176 struct extent_buffer *lower;
74123bd7 3177 int nritems;
f3ea38da 3178 int ret;
5c680ed6
CM
3179
3180 BUG_ON(!path->nodes[level]);
f0486c68 3181 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3182 lower = path->nodes[level];
3183 nritems = btrfs_header_nritems(lower);
c293498b 3184 BUG_ON(slot > nritems);
143bede5 3185 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3186 if (slot != nritems) {
c3e06965 3187 if (level)
f3ea38da
JS
3188 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3189 slot, nritems - slot);
5f39d397
CM
3190 memmove_extent_buffer(lower,
3191 btrfs_node_key_ptr_offset(slot + 1),
3192 btrfs_node_key_ptr_offset(slot),
d6025579 3193 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3194 }
c3e06965 3195 if (level) {
f3ea38da
JS
3196 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3197 MOD_LOG_KEY_ADD);
3198 BUG_ON(ret < 0);
3199 }
5f39d397 3200 btrfs_set_node_key(lower, key, slot);
db94535d 3201 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3202 WARN_ON(trans->transid == 0);
3203 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3204 btrfs_set_header_nritems(lower, nritems + 1);
3205 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3206}
3207
97571fd0
CM
3208/*
3209 * split the node at the specified level in path in two.
3210 * The path is corrected to point to the appropriate node after the split
3211 *
3212 * Before splitting this tries to make some room in the node by pushing
3213 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3214 *
3215 * returns 0 on success and < 0 on failure
97571fd0 3216 */
e02119d5
CM
3217static noinline int split_node(struct btrfs_trans_handle *trans,
3218 struct btrfs_root *root,
3219 struct btrfs_path *path, int level)
be0e5c09 3220{
5f39d397
CM
3221 struct extent_buffer *c;
3222 struct extent_buffer *split;
3223 struct btrfs_disk_key disk_key;
be0e5c09 3224 int mid;
5c680ed6 3225 int ret;
7518a238 3226 u32 c_nritems;
eb60ceac 3227
5f39d397 3228 c = path->nodes[level];
7bb86316 3229 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3230 if (c == root->node) {
5c680ed6 3231 /* trying to split the root, lets make a new one */
e089f05c 3232 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3233 if (ret)
3234 return ret;
b3612421 3235 } else {
e66f709b 3236 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3237 c = path->nodes[level];
3238 if (!ret && btrfs_header_nritems(c) <
c448acf0 3239 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3240 return 0;
54aa1f4d
CM
3241 if (ret < 0)
3242 return ret;
be0e5c09 3243 }
e66f709b 3244
5f39d397 3245 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3246 mid = (c_nritems + 1) / 2;
3247 btrfs_node_key(c, &disk_key, mid);
7bb86316 3248
5d4f98a2 3249 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3250 root->root_key.objectid,
5581a51a 3251 &disk_key, level, c->start, 0);
5f39d397
CM
3252 if (IS_ERR(split))
3253 return PTR_ERR(split);
3254
f0486c68
YZ
3255 root_add_used(root, root->nodesize);
3256
5d4f98a2 3257 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3258 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3259 btrfs_set_header_bytenr(split, split->start);
5f39d397 3260 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3261 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3262 btrfs_set_header_owner(split, root->root_key.objectid);
3263 write_extent_buffer(split, root->fs_info->fsid,
3264 (unsigned long)btrfs_header_fsid(split),
3265 BTRFS_FSID_SIZE);
e17cade2
CM
3266 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3267 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3268 BTRFS_UUID_SIZE);
54aa1f4d 3269
f230475e 3270 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3271 copy_extent_buffer(split, c,
3272 btrfs_node_key_ptr_offset(0),
3273 btrfs_node_key_ptr_offset(mid),
3274 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3275 btrfs_set_header_nritems(split, c_nritems - mid);
3276 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3277 ret = 0;
3278
5f39d397
CM
3279 btrfs_mark_buffer_dirty(c);
3280 btrfs_mark_buffer_dirty(split);
3281
143bede5 3282 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3283 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3284
5de08d7d 3285 if (path->slots[level] >= mid) {
5c680ed6 3286 path->slots[level] -= mid;
925baedd 3287 btrfs_tree_unlock(c);
5f39d397
CM
3288 free_extent_buffer(c);
3289 path->nodes[level] = split;
5c680ed6
CM
3290 path->slots[level + 1] += 1;
3291 } else {
925baedd 3292 btrfs_tree_unlock(split);
5f39d397 3293 free_extent_buffer(split);
be0e5c09 3294 }
aa5d6bed 3295 return ret;
be0e5c09
CM
3296}
3297
74123bd7
CM
3298/*
3299 * how many bytes are required to store the items in a leaf. start
3300 * and nr indicate which items in the leaf to check. This totals up the
3301 * space used both by the item structs and the item data
3302 */
5f39d397 3303static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3304{
41be1f3b
JB
3305 struct btrfs_item *start_item;
3306 struct btrfs_item *end_item;
3307 struct btrfs_map_token token;
be0e5c09 3308 int data_len;
5f39d397 3309 int nritems = btrfs_header_nritems(l);
d4dbff95 3310 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3311
3312 if (!nr)
3313 return 0;
41be1f3b
JB
3314 btrfs_init_map_token(&token);
3315 start_item = btrfs_item_nr(l, start);
3316 end_item = btrfs_item_nr(l, end);
3317 data_len = btrfs_token_item_offset(l, start_item, &token) +
3318 btrfs_token_item_size(l, start_item, &token);
3319 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3320 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3321 WARN_ON(data_len < 0);
be0e5c09
CM
3322 return data_len;
3323}
3324
d4dbff95
CM
3325/*
3326 * The space between the end of the leaf items and
3327 * the start of the leaf data. IOW, how much room
3328 * the leaf has left for both items and data
3329 */
d397712b 3330noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3331 struct extent_buffer *leaf)
d4dbff95 3332{
5f39d397
CM
3333 int nritems = btrfs_header_nritems(leaf);
3334 int ret;
3335 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3336 if (ret < 0) {
d397712b
CM
3337 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3338 "used %d nritems %d\n",
ae2f5411 3339 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3340 leaf_space_used(leaf, 0, nritems), nritems);
3341 }
3342 return ret;
d4dbff95
CM
3343}
3344
99d8f83c
CM
3345/*
3346 * min slot controls the lowest index we're willing to push to the
3347 * right. We'll push up to and including min_slot, but no lower
3348 */
44871b1b
CM
3349static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3350 struct btrfs_root *root,
3351 struct btrfs_path *path,
3352 int data_size, int empty,
3353 struct extent_buffer *right,
99d8f83c
CM
3354 int free_space, u32 left_nritems,
3355 u32 min_slot)
00ec4c51 3356{
5f39d397 3357 struct extent_buffer *left = path->nodes[0];
44871b1b 3358 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3359 struct btrfs_map_token token;
5f39d397 3360 struct btrfs_disk_key disk_key;
00ec4c51 3361 int slot;
34a38218 3362 u32 i;
00ec4c51
CM
3363 int push_space = 0;
3364 int push_items = 0;
0783fcfc 3365 struct btrfs_item *item;
34a38218 3366 u32 nr;
7518a238 3367 u32 right_nritems;
5f39d397 3368 u32 data_end;
db94535d 3369 u32 this_item_size;
00ec4c51 3370
cfed81a0
CM
3371 btrfs_init_map_token(&token);
3372
34a38218
CM
3373 if (empty)
3374 nr = 0;
3375 else
99d8f83c 3376 nr = max_t(u32, 1, min_slot);
34a38218 3377
31840ae1 3378 if (path->slots[0] >= left_nritems)
87b29b20 3379 push_space += data_size;
31840ae1 3380
44871b1b 3381 slot = path->slots[1];
34a38218
CM
3382 i = left_nritems - 1;
3383 while (i >= nr) {
5f39d397 3384 item = btrfs_item_nr(left, i);
db94535d 3385
31840ae1
ZY
3386 if (!empty && push_items > 0) {
3387 if (path->slots[0] > i)
3388 break;
3389 if (path->slots[0] == i) {
3390 int space = btrfs_leaf_free_space(root, left);
3391 if (space + push_space * 2 > free_space)
3392 break;
3393 }
3394 }
3395
00ec4c51 3396 if (path->slots[0] == i)
87b29b20 3397 push_space += data_size;
db94535d 3398
db94535d
CM
3399 this_item_size = btrfs_item_size(left, item);
3400 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3401 break;
31840ae1 3402
00ec4c51 3403 push_items++;
db94535d 3404 push_space += this_item_size + sizeof(*item);
34a38218
CM
3405 if (i == 0)
3406 break;
3407 i--;
db94535d 3408 }
5f39d397 3409
925baedd
CM
3410 if (push_items == 0)
3411 goto out_unlock;
5f39d397 3412
6c1500f2 3413 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3414
00ec4c51 3415 /* push left to right */
5f39d397 3416 right_nritems = btrfs_header_nritems(right);
34a38218 3417
5f39d397 3418 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3419 push_space -= leaf_data_end(root, left);
5f39d397 3420
00ec4c51 3421 /* make room in the right data area */
5f39d397
CM
3422 data_end = leaf_data_end(root, right);
3423 memmove_extent_buffer(right,
3424 btrfs_leaf_data(right) + data_end - push_space,
3425 btrfs_leaf_data(right) + data_end,
3426 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3427
00ec4c51 3428 /* copy from the left data area */
5f39d397 3429 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3430 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3431 btrfs_leaf_data(left) + leaf_data_end(root, left),
3432 push_space);
5f39d397
CM
3433
3434 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3435 btrfs_item_nr_offset(0),
3436 right_nritems * sizeof(struct btrfs_item));
3437
00ec4c51 3438 /* copy the items from left to right */
5f39d397
CM
3439 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3440 btrfs_item_nr_offset(left_nritems - push_items),
3441 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3442
3443 /* update the item pointers */
7518a238 3444 right_nritems += push_items;
5f39d397 3445 btrfs_set_header_nritems(right, right_nritems);
123abc88 3446 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3447 for (i = 0; i < right_nritems; i++) {
5f39d397 3448 item = btrfs_item_nr(right, i);
cfed81a0
CM
3449 push_space -= btrfs_token_item_size(right, item, &token);
3450 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3451 }
3452
7518a238 3453 left_nritems -= push_items;
5f39d397 3454 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3455
34a38218
CM
3456 if (left_nritems)
3457 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3458 else
3459 clean_tree_block(trans, root, left);
3460
5f39d397 3461 btrfs_mark_buffer_dirty(right);
a429e513 3462
5f39d397
CM
3463 btrfs_item_key(right, &disk_key, 0);
3464 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3465 btrfs_mark_buffer_dirty(upper);
02217ed2 3466
00ec4c51 3467 /* then fixup the leaf pointer in the path */
7518a238
CM
3468 if (path->slots[0] >= left_nritems) {
3469 path->slots[0] -= left_nritems;
925baedd
CM
3470 if (btrfs_header_nritems(path->nodes[0]) == 0)
3471 clean_tree_block(trans, root, path->nodes[0]);
3472 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3473 free_extent_buffer(path->nodes[0]);
3474 path->nodes[0] = right;
00ec4c51
CM
3475 path->slots[1] += 1;
3476 } else {
925baedd 3477 btrfs_tree_unlock(right);
5f39d397 3478 free_extent_buffer(right);
00ec4c51
CM
3479 }
3480 return 0;
925baedd
CM
3481
3482out_unlock:
3483 btrfs_tree_unlock(right);
3484 free_extent_buffer(right);
3485 return 1;
00ec4c51 3486}
925baedd 3487
44871b1b
CM
3488/*
3489 * push some data in the path leaf to the right, trying to free up at
3490 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3491 *
3492 * returns 1 if the push failed because the other node didn't have enough
3493 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3494 *
3495 * this will push starting from min_slot to the end of the leaf. It won't
3496 * push any slot lower than min_slot
44871b1b
CM
3497 */
3498static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3499 *root, struct btrfs_path *path,
3500 int min_data_size, int data_size,
3501 int empty, u32 min_slot)
44871b1b
CM
3502{
3503 struct extent_buffer *left = path->nodes[0];
3504 struct extent_buffer *right;
3505 struct extent_buffer *upper;
3506 int slot;
3507 int free_space;
3508 u32 left_nritems;
3509 int ret;
3510
3511 if (!path->nodes[1])
3512 return 1;
3513
3514 slot = path->slots[1];
3515 upper = path->nodes[1];
3516 if (slot >= btrfs_header_nritems(upper) - 1)
3517 return 1;
3518
3519 btrfs_assert_tree_locked(path->nodes[1]);
3520
3521 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3522 if (right == NULL)
3523 return 1;
3524
44871b1b
CM
3525 btrfs_tree_lock(right);
3526 btrfs_set_lock_blocking(right);
3527
3528 free_space = btrfs_leaf_free_space(root, right);
3529 if (free_space < data_size)
3530 goto out_unlock;
3531
3532 /* cow and double check */
3533 ret = btrfs_cow_block(trans, root, right, upper,
3534 slot + 1, &right);
3535 if (ret)
3536 goto out_unlock;
3537
3538 free_space = btrfs_leaf_free_space(root, right);
3539 if (free_space < data_size)
3540 goto out_unlock;
3541
3542 left_nritems = btrfs_header_nritems(left);
3543 if (left_nritems == 0)
3544 goto out_unlock;
3545
99d8f83c
CM
3546 return __push_leaf_right(trans, root, path, min_data_size, empty,
3547 right, free_space, left_nritems, min_slot);
44871b1b
CM
3548out_unlock:
3549 btrfs_tree_unlock(right);
3550 free_extent_buffer(right);
3551 return 1;
3552}
3553
74123bd7
CM
3554/*
3555 * push some data in the path leaf to the left, trying to free up at
3556 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3557 *
3558 * max_slot can put a limit on how far into the leaf we'll push items. The
3559 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3560 * items
74123bd7 3561 */
44871b1b
CM
3562static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3563 struct btrfs_root *root,
3564 struct btrfs_path *path, int data_size,
3565 int empty, struct extent_buffer *left,
99d8f83c
CM
3566 int free_space, u32 right_nritems,
3567 u32 max_slot)
be0e5c09 3568{
5f39d397
CM
3569 struct btrfs_disk_key disk_key;
3570 struct extent_buffer *right = path->nodes[0];
be0e5c09 3571 int i;
be0e5c09
CM
3572 int push_space = 0;
3573 int push_items = 0;
0783fcfc 3574 struct btrfs_item *item;
7518a238 3575 u32 old_left_nritems;
34a38218 3576 u32 nr;
aa5d6bed 3577 int ret = 0;
db94535d
CM
3578 u32 this_item_size;
3579 u32 old_left_item_size;
cfed81a0
CM
3580 struct btrfs_map_token token;
3581
3582 btrfs_init_map_token(&token);
be0e5c09 3583
34a38218 3584 if (empty)
99d8f83c 3585 nr = min(right_nritems, max_slot);
34a38218 3586 else
99d8f83c 3587 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3588
3589 for (i = 0; i < nr; i++) {
5f39d397 3590 item = btrfs_item_nr(right, i);
db94535d 3591
31840ae1
ZY
3592 if (!empty && push_items > 0) {
3593 if (path->slots[0] < i)
3594 break;
3595 if (path->slots[0] == i) {
3596 int space = btrfs_leaf_free_space(root, right);
3597 if (space + push_space * 2 > free_space)
3598 break;
3599 }
3600 }
3601
be0e5c09 3602 if (path->slots[0] == i)
87b29b20 3603 push_space += data_size;
db94535d
CM
3604
3605 this_item_size = btrfs_item_size(right, item);
3606 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3607 break;
db94535d 3608
be0e5c09 3609 push_items++;
db94535d
CM
3610 push_space += this_item_size + sizeof(*item);
3611 }
3612
be0e5c09 3613 if (push_items == 0) {
925baedd
CM
3614 ret = 1;
3615 goto out;
be0e5c09 3616 }
34a38218 3617 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3618 WARN_ON(1);
5f39d397 3619
be0e5c09 3620 /* push data from right to left */
5f39d397
CM
3621 copy_extent_buffer(left, right,
3622 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3623 btrfs_item_nr_offset(0),
3624 push_items * sizeof(struct btrfs_item));
3625
123abc88 3626 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3627 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3628
3629 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3630 leaf_data_end(root, left) - push_space,
3631 btrfs_leaf_data(right) +
5f39d397 3632 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3633 push_space);
5f39d397 3634 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3635 BUG_ON(old_left_nritems <= 0);
eb60ceac 3636
db94535d 3637 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3638 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3639 u32 ioff;
db94535d 3640
5f39d397 3641 item = btrfs_item_nr(left, i);
db94535d 3642
cfed81a0
CM
3643 ioff = btrfs_token_item_offset(left, item, &token);
3644 btrfs_set_token_item_offset(left, item,
3645 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3646 &token);
be0e5c09 3647 }
5f39d397 3648 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3649
3650 /* fixup right node */
31b1a2bd
JL
3651 if (push_items > right_nritems)
3652 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3653 right_nritems);
34a38218
CM
3654
3655 if (push_items < right_nritems) {
3656 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3657 leaf_data_end(root, right);
3658 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3659 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3660 btrfs_leaf_data(right) +
3661 leaf_data_end(root, right), push_space);
3662
3663 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3664 btrfs_item_nr_offset(push_items),
3665 (btrfs_header_nritems(right) - push_items) *
3666 sizeof(struct btrfs_item));
34a38218 3667 }
eef1c494
Y
3668 right_nritems -= push_items;
3669 btrfs_set_header_nritems(right, right_nritems);
123abc88 3670 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3671 for (i = 0; i < right_nritems; i++) {
3672 item = btrfs_item_nr(right, i);
db94535d 3673
cfed81a0
CM
3674 push_space = push_space - btrfs_token_item_size(right,
3675 item, &token);
3676 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3677 }
eb60ceac 3678
5f39d397 3679 btrfs_mark_buffer_dirty(left);
34a38218
CM
3680 if (right_nritems)
3681 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3682 else
3683 clean_tree_block(trans, root, right);
098f59c2 3684
5f39d397 3685 btrfs_item_key(right, &disk_key, 0);
143bede5 3686 fixup_low_keys(trans, root, path, &disk_key, 1);
be0e5c09
CM
3687
3688 /* then fixup the leaf pointer in the path */
3689 if (path->slots[0] < push_items) {
3690 path->slots[0] += old_left_nritems;
925baedd 3691 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3692 free_extent_buffer(path->nodes[0]);
3693 path->nodes[0] = left;
be0e5c09
CM
3694 path->slots[1] -= 1;
3695 } else {
925baedd 3696 btrfs_tree_unlock(left);
5f39d397 3697 free_extent_buffer(left);
be0e5c09
CM
3698 path->slots[0] -= push_items;
3699 }
eb60ceac 3700 BUG_ON(path->slots[0] < 0);
aa5d6bed 3701 return ret;
925baedd
CM
3702out:
3703 btrfs_tree_unlock(left);
3704 free_extent_buffer(left);
3705 return ret;
be0e5c09
CM
3706}
3707
44871b1b
CM
3708/*
3709 * push some data in the path leaf to the left, trying to free up at
3710 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3711 *
3712 * max_slot can put a limit on how far into the leaf we'll push items. The
3713 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3714 * items
44871b1b
CM
3715 */
3716static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3717 *root, struct btrfs_path *path, int min_data_size,
3718 int data_size, int empty, u32 max_slot)
44871b1b
CM
3719{
3720 struct extent_buffer *right = path->nodes[0];
3721 struct extent_buffer *left;
3722 int slot;
3723 int free_space;
3724 u32 right_nritems;
3725 int ret = 0;
3726
3727 slot = path->slots[1];
3728 if (slot == 0)
3729 return 1;
3730 if (!path->nodes[1])
3731 return 1;
3732
3733 right_nritems = btrfs_header_nritems(right);
3734 if (right_nritems == 0)
3735 return 1;
3736
3737 btrfs_assert_tree_locked(path->nodes[1]);
3738
3739 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3740 if (left == NULL)
3741 return 1;
3742
44871b1b
CM
3743 btrfs_tree_lock(left);
3744 btrfs_set_lock_blocking(left);
3745
3746 free_space = btrfs_leaf_free_space(root, left);
3747 if (free_space < data_size) {
3748 ret = 1;
3749 goto out;
3750 }
3751
3752 /* cow and double check */
3753 ret = btrfs_cow_block(trans, root, left,
3754 path->nodes[1], slot - 1, &left);
3755 if (ret) {
3756 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3757 if (ret == -ENOSPC)
3758 ret = 1;
44871b1b
CM
3759 goto out;
3760 }
3761
3762 free_space = btrfs_leaf_free_space(root, left);
3763 if (free_space < data_size) {
3764 ret = 1;
3765 goto out;
3766 }
3767
99d8f83c
CM
3768 return __push_leaf_left(trans, root, path, min_data_size,
3769 empty, left, free_space, right_nritems,
3770 max_slot);
44871b1b
CM
3771out:
3772 btrfs_tree_unlock(left);
3773 free_extent_buffer(left);
3774 return ret;
3775}
3776
3777/*
3778 * split the path's leaf in two, making sure there is at least data_size
3779 * available for the resulting leaf level of the path.
44871b1b 3780 */
143bede5
JM
3781static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3782 struct btrfs_root *root,
3783 struct btrfs_path *path,
3784 struct extent_buffer *l,
3785 struct extent_buffer *right,
3786 int slot, int mid, int nritems)
44871b1b
CM
3787{
3788 int data_copy_size;
3789 int rt_data_off;
3790 int i;
44871b1b 3791 struct btrfs_disk_key disk_key;
cfed81a0
CM
3792 struct btrfs_map_token token;
3793
3794 btrfs_init_map_token(&token);
44871b1b
CM
3795
3796 nritems = nritems - mid;
3797 btrfs_set_header_nritems(right, nritems);
3798 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3799
3800 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3801 btrfs_item_nr_offset(mid),
3802 nritems * sizeof(struct btrfs_item));
3803
3804 copy_extent_buffer(right, l,
3805 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3806 data_copy_size, btrfs_leaf_data(l) +
3807 leaf_data_end(root, l), data_copy_size);
3808
3809 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3810 btrfs_item_end_nr(l, mid);
3811
3812 for (i = 0; i < nritems; i++) {
3813 struct btrfs_item *item = btrfs_item_nr(right, i);
3814 u32 ioff;
3815
cfed81a0
CM
3816 ioff = btrfs_token_item_offset(right, item, &token);
3817 btrfs_set_token_item_offset(right, item,
3818 ioff + rt_data_off, &token);
44871b1b
CM
3819 }
3820
44871b1b 3821 btrfs_set_header_nritems(l, mid);
44871b1b 3822 btrfs_item_key(right, &disk_key, 0);
143bede5 3823 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3824 path->slots[1] + 1, 1);
44871b1b
CM
3825
3826 btrfs_mark_buffer_dirty(right);
3827 btrfs_mark_buffer_dirty(l);
3828 BUG_ON(path->slots[0] != slot);
3829
44871b1b
CM
3830 if (mid <= slot) {
3831 btrfs_tree_unlock(path->nodes[0]);
3832 free_extent_buffer(path->nodes[0]);
3833 path->nodes[0] = right;
3834 path->slots[0] -= mid;
3835 path->slots[1] += 1;
3836 } else {
3837 btrfs_tree_unlock(right);
3838 free_extent_buffer(right);
3839 }
3840
3841 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3842}
3843
99d8f83c
CM
3844/*
3845 * double splits happen when we need to insert a big item in the middle
3846 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3847 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3848 * A B C
3849 *
3850 * We avoid this by trying to push the items on either side of our target
3851 * into the adjacent leaves. If all goes well we can avoid the double split
3852 * completely.
3853 */
3854static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3855 struct btrfs_root *root,
3856 struct btrfs_path *path,
3857 int data_size)
3858{
3859 int ret;
3860 int progress = 0;
3861 int slot;
3862 u32 nritems;
3863
3864 slot = path->slots[0];
3865
3866 /*
3867 * try to push all the items after our slot into the
3868 * right leaf
3869 */
3870 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3871 if (ret < 0)
3872 return ret;
3873
3874 if (ret == 0)
3875 progress++;
3876
3877 nritems = btrfs_header_nritems(path->nodes[0]);
3878 /*
3879 * our goal is to get our slot at the start or end of a leaf. If
3880 * we've done so we're done
3881 */
3882 if (path->slots[0] == 0 || path->slots[0] == nritems)
3883 return 0;
3884
3885 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3886 return 0;
3887
3888 /* try to push all the items before our slot into the next leaf */
3889 slot = path->slots[0];
3890 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3891 if (ret < 0)
3892 return ret;
3893
3894 if (ret == 0)
3895 progress++;
3896
3897 if (progress)
3898 return 0;
3899 return 1;
3900}
3901
74123bd7
CM
3902/*
3903 * split the path's leaf in two, making sure there is at least data_size
3904 * available for the resulting leaf level of the path.
aa5d6bed
CM
3905 *
3906 * returns 0 if all went well and < 0 on failure.
74123bd7 3907 */
e02119d5
CM
3908static noinline int split_leaf(struct btrfs_trans_handle *trans,
3909 struct btrfs_root *root,
3910 struct btrfs_key *ins_key,
3911 struct btrfs_path *path, int data_size,
3912 int extend)
be0e5c09 3913{
5d4f98a2 3914 struct btrfs_disk_key disk_key;
5f39d397 3915 struct extent_buffer *l;
7518a238 3916 u32 nritems;
eb60ceac
CM
3917 int mid;
3918 int slot;
5f39d397 3919 struct extent_buffer *right;
d4dbff95 3920 int ret = 0;
aa5d6bed 3921 int wret;
5d4f98a2 3922 int split;
cc0c5538 3923 int num_doubles = 0;
99d8f83c 3924 int tried_avoid_double = 0;
aa5d6bed 3925
a5719521
YZ
3926 l = path->nodes[0];
3927 slot = path->slots[0];
3928 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3929 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3930 return -EOVERFLOW;
3931
40689478 3932 /* first try to make some room by pushing left and right */
99d8f83c
CM
3933 if (data_size) {
3934 wret = push_leaf_right(trans, root, path, data_size,
3935 data_size, 0, 0);
d397712b 3936 if (wret < 0)
eaee50e8 3937 return wret;
3685f791 3938 if (wret) {
99d8f83c
CM
3939 wret = push_leaf_left(trans, root, path, data_size,
3940 data_size, 0, (u32)-1);
3685f791
CM
3941 if (wret < 0)
3942 return wret;
3943 }
3944 l = path->nodes[0];
aa5d6bed 3945
3685f791 3946 /* did the pushes work? */
87b29b20 3947 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3948 return 0;
3326d1b0 3949 }
aa5d6bed 3950
5c680ed6 3951 if (!path->nodes[1]) {
e089f05c 3952 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
3953 if (ret)
3954 return ret;
3955 }
cc0c5538 3956again:
5d4f98a2 3957 split = 1;
cc0c5538 3958 l = path->nodes[0];
eb60ceac 3959 slot = path->slots[0];
5f39d397 3960 nritems = btrfs_header_nritems(l);
d397712b 3961 mid = (nritems + 1) / 2;
54aa1f4d 3962
5d4f98a2
YZ
3963 if (mid <= slot) {
3964 if (nritems == 1 ||
3965 leaf_space_used(l, mid, nritems - mid) + data_size >
3966 BTRFS_LEAF_DATA_SIZE(root)) {
3967 if (slot >= nritems) {
3968 split = 0;
3969 } else {
3970 mid = slot;
3971 if (mid != nritems &&
3972 leaf_space_used(l, mid, nritems - mid) +
3973 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3974 if (data_size && !tried_avoid_double)
3975 goto push_for_double;
5d4f98a2
YZ
3976 split = 2;
3977 }
3978 }
3979 }
3980 } else {
3981 if (leaf_space_used(l, 0, mid) + data_size >
3982 BTRFS_LEAF_DATA_SIZE(root)) {
3983 if (!extend && data_size && slot == 0) {
3984 split = 0;
3985 } else if ((extend || !data_size) && slot == 0) {
3986 mid = 1;
3987 } else {
3988 mid = slot;
3989 if (mid != nritems &&
3990 leaf_space_used(l, mid, nritems - mid) +
3991 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3992 if (data_size && !tried_avoid_double)
3993 goto push_for_double;
5d4f98a2
YZ
3994 split = 2 ;
3995 }
3996 }
3997 }
3998 }
3999
4000 if (split == 0)
4001 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4002 else
4003 btrfs_item_key(l, &disk_key, mid);
4004
4005 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 4006 root->root_key.objectid,
5581a51a 4007 &disk_key, 0, l->start, 0);
f0486c68 4008 if (IS_ERR(right))
5f39d397 4009 return PTR_ERR(right);
f0486c68
YZ
4010
4011 root_add_used(root, root->leafsize);
5f39d397
CM
4012
4013 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4014 btrfs_set_header_bytenr(right, right->start);
5f39d397 4015 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4016 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4017 btrfs_set_header_owner(right, root->root_key.objectid);
4018 btrfs_set_header_level(right, 0);
4019 write_extent_buffer(right, root->fs_info->fsid,
4020 (unsigned long)btrfs_header_fsid(right),
4021 BTRFS_FSID_SIZE);
e17cade2
CM
4022
4023 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4024 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4025 BTRFS_UUID_SIZE);
44871b1b 4026
5d4f98a2
YZ
4027 if (split == 0) {
4028 if (mid <= slot) {
4029 btrfs_set_header_nritems(right, 0);
143bede5 4030 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4031 path->slots[1] + 1, 1);
5d4f98a2
YZ
4032 btrfs_tree_unlock(path->nodes[0]);
4033 free_extent_buffer(path->nodes[0]);
4034 path->nodes[0] = right;
4035 path->slots[0] = 0;
4036 path->slots[1] += 1;
4037 } else {
4038 btrfs_set_header_nritems(right, 0);
143bede5 4039 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4040 path->slots[1], 1);
5d4f98a2
YZ
4041 btrfs_tree_unlock(path->nodes[0]);
4042 free_extent_buffer(path->nodes[0]);
4043 path->nodes[0] = right;
4044 path->slots[0] = 0;
143bede5
JM
4045 if (path->slots[1] == 0)
4046 fixup_low_keys(trans, root, path,
4047 &disk_key, 1);
d4dbff95 4048 }
5d4f98a2
YZ
4049 btrfs_mark_buffer_dirty(right);
4050 return ret;
d4dbff95 4051 }
74123bd7 4052
143bede5 4053 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4054
5d4f98a2 4055 if (split == 2) {
cc0c5538
CM
4056 BUG_ON(num_doubles != 0);
4057 num_doubles++;
4058 goto again;
a429e513 4059 }
44871b1b 4060
143bede5 4061 return 0;
99d8f83c
CM
4062
4063push_for_double:
4064 push_for_double_split(trans, root, path, data_size);
4065 tried_avoid_double = 1;
4066 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4067 return 0;
4068 goto again;
be0e5c09
CM
4069}
4070
ad48fd75
YZ
4071static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4072 struct btrfs_root *root,
4073 struct btrfs_path *path, int ins_len)
459931ec 4074{
ad48fd75 4075 struct btrfs_key key;
459931ec 4076 struct extent_buffer *leaf;
ad48fd75
YZ
4077 struct btrfs_file_extent_item *fi;
4078 u64 extent_len = 0;
4079 u32 item_size;
4080 int ret;
459931ec
CM
4081
4082 leaf = path->nodes[0];
ad48fd75
YZ
4083 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4084
4085 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4086 key.type != BTRFS_EXTENT_CSUM_KEY);
4087
4088 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4089 return 0;
459931ec
CM
4090
4091 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4092 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4093 fi = btrfs_item_ptr(leaf, path->slots[0],
4094 struct btrfs_file_extent_item);
4095 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4096 }
b3b4aa74 4097 btrfs_release_path(path);
459931ec 4098
459931ec 4099 path->keep_locks = 1;
ad48fd75
YZ
4100 path->search_for_split = 1;
4101 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4102 path->search_for_split = 0;
ad48fd75
YZ
4103 if (ret < 0)
4104 goto err;
459931ec 4105
ad48fd75
YZ
4106 ret = -EAGAIN;
4107 leaf = path->nodes[0];
459931ec 4108 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4109 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4110 goto err;
4111
109f6aef
CM
4112 /* the leaf has changed, it now has room. return now */
4113 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4114 goto err;
4115
ad48fd75
YZ
4116 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4117 fi = btrfs_item_ptr(leaf, path->slots[0],
4118 struct btrfs_file_extent_item);
4119 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4120 goto err;
459931ec
CM
4121 }
4122
b9473439 4123 btrfs_set_path_blocking(path);
ad48fd75 4124 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4125 if (ret)
4126 goto err;
459931ec 4127
ad48fd75 4128 path->keep_locks = 0;
b9473439 4129 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4130 return 0;
4131err:
4132 path->keep_locks = 0;
4133 return ret;
4134}
4135
4136static noinline int split_item(struct btrfs_trans_handle *trans,
4137 struct btrfs_root *root,
4138 struct btrfs_path *path,
4139 struct btrfs_key *new_key,
4140 unsigned long split_offset)
4141{
4142 struct extent_buffer *leaf;
4143 struct btrfs_item *item;
4144 struct btrfs_item *new_item;
4145 int slot;
4146 char *buf;
4147 u32 nritems;
4148 u32 item_size;
4149 u32 orig_offset;
4150 struct btrfs_disk_key disk_key;
4151
b9473439
CM
4152 leaf = path->nodes[0];
4153 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4154
b4ce94de
CM
4155 btrfs_set_path_blocking(path);
4156
459931ec
CM
4157 item = btrfs_item_nr(leaf, path->slots[0]);
4158 orig_offset = btrfs_item_offset(leaf, item);
4159 item_size = btrfs_item_size(leaf, item);
4160
459931ec 4161 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4162 if (!buf)
4163 return -ENOMEM;
4164
459931ec
CM
4165 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4166 path->slots[0]), item_size);
459931ec 4167
ad48fd75 4168 slot = path->slots[0] + 1;
459931ec 4169 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4170 if (slot != nritems) {
4171 /* shift the items */
4172 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4173 btrfs_item_nr_offset(slot),
4174 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4175 }
4176
4177 btrfs_cpu_key_to_disk(&disk_key, new_key);
4178 btrfs_set_item_key(leaf, &disk_key, slot);
4179
4180 new_item = btrfs_item_nr(leaf, slot);
4181
4182 btrfs_set_item_offset(leaf, new_item, orig_offset);
4183 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4184
4185 btrfs_set_item_offset(leaf, item,
4186 orig_offset + item_size - split_offset);
4187 btrfs_set_item_size(leaf, item, split_offset);
4188
4189 btrfs_set_header_nritems(leaf, nritems + 1);
4190
4191 /* write the data for the start of the original item */
4192 write_extent_buffer(leaf, buf,
4193 btrfs_item_ptr_offset(leaf, path->slots[0]),
4194 split_offset);
4195
4196 /* write the data for the new item */
4197 write_extent_buffer(leaf, buf + split_offset,
4198 btrfs_item_ptr_offset(leaf, slot),
4199 item_size - split_offset);
4200 btrfs_mark_buffer_dirty(leaf);
4201
ad48fd75 4202 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4203 kfree(buf);
ad48fd75
YZ
4204 return 0;
4205}
4206
4207/*
4208 * This function splits a single item into two items,
4209 * giving 'new_key' to the new item and splitting the
4210 * old one at split_offset (from the start of the item).
4211 *
4212 * The path may be released by this operation. After
4213 * the split, the path is pointing to the old item. The
4214 * new item is going to be in the same node as the old one.
4215 *
4216 * Note, the item being split must be smaller enough to live alone on
4217 * a tree block with room for one extra struct btrfs_item
4218 *
4219 * This allows us to split the item in place, keeping a lock on the
4220 * leaf the entire time.
4221 */
4222int btrfs_split_item(struct btrfs_trans_handle *trans,
4223 struct btrfs_root *root,
4224 struct btrfs_path *path,
4225 struct btrfs_key *new_key,
4226 unsigned long split_offset)
4227{
4228 int ret;
4229 ret = setup_leaf_for_split(trans, root, path,
4230 sizeof(struct btrfs_item));
4231 if (ret)
4232 return ret;
4233
4234 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4235 return ret;
4236}
4237
ad48fd75
YZ
4238/*
4239 * This function duplicate a item, giving 'new_key' to the new item.
4240 * It guarantees both items live in the same tree leaf and the new item
4241 * is contiguous with the original item.
4242 *
4243 * This allows us to split file extent in place, keeping a lock on the
4244 * leaf the entire time.
4245 */
4246int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4247 struct btrfs_root *root,
4248 struct btrfs_path *path,
4249 struct btrfs_key *new_key)
4250{
4251 struct extent_buffer *leaf;
4252 int ret;
4253 u32 item_size;
4254
4255 leaf = path->nodes[0];
4256 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4257 ret = setup_leaf_for_split(trans, root, path,
4258 item_size + sizeof(struct btrfs_item));
4259 if (ret)
4260 return ret;
4261
4262 path->slots[0]++;
143bede5
JM
4263 setup_items_for_insert(trans, root, path, new_key, &item_size,
4264 item_size, item_size +
4265 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4266 leaf = path->nodes[0];
4267 memcpy_extent_buffer(leaf,
4268 btrfs_item_ptr_offset(leaf, path->slots[0]),
4269 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4270 item_size);
4271 return 0;
4272}
4273
d352ac68
CM
4274/*
4275 * make the item pointed to by the path smaller. new_size indicates
4276 * how small to make it, and from_end tells us if we just chop bytes
4277 * off the end of the item or if we shift the item to chop bytes off
4278 * the front.
4279 */
143bede5
JM
4280void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4281 struct btrfs_root *root,
4282 struct btrfs_path *path,
4283 u32 new_size, int from_end)
b18c6685 4284{
b18c6685 4285 int slot;
5f39d397
CM
4286 struct extent_buffer *leaf;
4287 struct btrfs_item *item;
b18c6685
CM
4288 u32 nritems;
4289 unsigned int data_end;
4290 unsigned int old_data_start;
4291 unsigned int old_size;
4292 unsigned int size_diff;
4293 int i;
cfed81a0
CM
4294 struct btrfs_map_token token;
4295
4296 btrfs_init_map_token(&token);
b18c6685 4297
5f39d397 4298 leaf = path->nodes[0];
179e29e4
CM
4299 slot = path->slots[0];
4300
4301 old_size = btrfs_item_size_nr(leaf, slot);
4302 if (old_size == new_size)
143bede5 4303 return;
b18c6685 4304
5f39d397 4305 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4306 data_end = leaf_data_end(root, leaf);
4307
5f39d397 4308 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4309
b18c6685
CM
4310 size_diff = old_size - new_size;
4311
4312 BUG_ON(slot < 0);
4313 BUG_ON(slot >= nritems);
4314
4315 /*
4316 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4317 */
4318 /* first correct the data pointers */
4319 for (i = slot; i < nritems; i++) {
5f39d397
CM
4320 u32 ioff;
4321 item = btrfs_item_nr(leaf, i);
db94535d 4322
cfed81a0
CM
4323 ioff = btrfs_token_item_offset(leaf, item, &token);
4324 btrfs_set_token_item_offset(leaf, item,
4325 ioff + size_diff, &token);
b18c6685 4326 }
db94535d 4327
b18c6685 4328 /* shift the data */
179e29e4
CM
4329 if (from_end) {
4330 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4331 data_end + size_diff, btrfs_leaf_data(leaf) +
4332 data_end, old_data_start + new_size - data_end);
4333 } else {
4334 struct btrfs_disk_key disk_key;
4335 u64 offset;
4336
4337 btrfs_item_key(leaf, &disk_key, slot);
4338
4339 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4340 unsigned long ptr;
4341 struct btrfs_file_extent_item *fi;
4342
4343 fi = btrfs_item_ptr(leaf, slot,
4344 struct btrfs_file_extent_item);
4345 fi = (struct btrfs_file_extent_item *)(
4346 (unsigned long)fi - size_diff);
4347
4348 if (btrfs_file_extent_type(leaf, fi) ==
4349 BTRFS_FILE_EXTENT_INLINE) {
4350 ptr = btrfs_item_ptr_offset(leaf, slot);
4351 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4352 (unsigned long)fi,
4353 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4354 disk_bytenr));
4355 }
4356 }
4357
4358 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4359 data_end + size_diff, btrfs_leaf_data(leaf) +
4360 data_end, old_data_start - data_end);
4361
4362 offset = btrfs_disk_key_offset(&disk_key);
4363 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4364 btrfs_set_item_key(leaf, &disk_key, slot);
4365 if (slot == 0)
4366 fixup_low_keys(trans, root, path, &disk_key, 1);
4367 }
5f39d397
CM
4368
4369 item = btrfs_item_nr(leaf, slot);
4370 btrfs_set_item_size(leaf, item, new_size);
4371 btrfs_mark_buffer_dirty(leaf);
b18c6685 4372
5f39d397
CM
4373 if (btrfs_leaf_free_space(root, leaf) < 0) {
4374 btrfs_print_leaf(root, leaf);
b18c6685 4375 BUG();
5f39d397 4376 }
b18c6685
CM
4377}
4378
d352ac68
CM
4379/*
4380 * make the item pointed to by the path bigger, data_size is the new size.
4381 */
143bede5
JM
4382void btrfs_extend_item(struct btrfs_trans_handle *trans,
4383 struct btrfs_root *root, struct btrfs_path *path,
4384 u32 data_size)
6567e837 4385{
6567e837 4386 int slot;
5f39d397
CM
4387 struct extent_buffer *leaf;
4388 struct btrfs_item *item;
6567e837
CM
4389 u32 nritems;
4390 unsigned int data_end;
4391 unsigned int old_data;
4392 unsigned int old_size;
4393 int i;
cfed81a0
CM
4394 struct btrfs_map_token token;
4395
4396 btrfs_init_map_token(&token);
6567e837 4397
5f39d397 4398 leaf = path->nodes[0];
6567e837 4399
5f39d397 4400 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4401 data_end = leaf_data_end(root, leaf);
4402
5f39d397
CM
4403 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4404 btrfs_print_leaf(root, leaf);
6567e837 4405 BUG();
5f39d397 4406 }
6567e837 4407 slot = path->slots[0];
5f39d397 4408 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4409
4410 BUG_ON(slot < 0);
3326d1b0
CM
4411 if (slot >= nritems) {
4412 btrfs_print_leaf(root, leaf);
d397712b
CM
4413 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4414 slot, nritems);
3326d1b0
CM
4415 BUG_ON(1);
4416 }
6567e837
CM
4417
4418 /*
4419 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4420 */
4421 /* first correct the data pointers */
4422 for (i = slot; i < nritems; i++) {
5f39d397
CM
4423 u32 ioff;
4424 item = btrfs_item_nr(leaf, i);
db94535d 4425
cfed81a0
CM
4426 ioff = btrfs_token_item_offset(leaf, item, &token);
4427 btrfs_set_token_item_offset(leaf, item,
4428 ioff - data_size, &token);
6567e837 4429 }
5f39d397 4430
6567e837 4431 /* shift the data */
5f39d397 4432 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4433 data_end - data_size, btrfs_leaf_data(leaf) +
4434 data_end, old_data - data_end);
5f39d397 4435
6567e837 4436 data_end = old_data;
5f39d397
CM
4437 old_size = btrfs_item_size_nr(leaf, slot);
4438 item = btrfs_item_nr(leaf, slot);
4439 btrfs_set_item_size(leaf, item, old_size + data_size);
4440 btrfs_mark_buffer_dirty(leaf);
6567e837 4441
5f39d397
CM
4442 if (btrfs_leaf_free_space(root, leaf) < 0) {
4443 btrfs_print_leaf(root, leaf);
6567e837 4444 BUG();
5f39d397 4445 }
6567e837
CM
4446}
4447
74123bd7 4448/*
44871b1b
CM
4449 * this is a helper for btrfs_insert_empty_items, the main goal here is
4450 * to save stack depth by doing the bulk of the work in a function
4451 * that doesn't call btrfs_search_slot
74123bd7 4452 */
143bede5
JM
4453void setup_items_for_insert(struct btrfs_trans_handle *trans,
4454 struct btrfs_root *root, struct btrfs_path *path,
4455 struct btrfs_key *cpu_key, u32 *data_size,
4456 u32 total_data, u32 total_size, int nr)
be0e5c09 4457{
5f39d397 4458 struct btrfs_item *item;
9c58309d 4459 int i;
7518a238 4460 u32 nritems;
be0e5c09 4461 unsigned int data_end;
e2fa7227 4462 struct btrfs_disk_key disk_key;
44871b1b
CM
4463 struct extent_buffer *leaf;
4464 int slot;
cfed81a0
CM
4465 struct btrfs_map_token token;
4466
4467 btrfs_init_map_token(&token);
e2fa7227 4468
5f39d397 4469 leaf = path->nodes[0];
44871b1b 4470 slot = path->slots[0];
74123bd7 4471
5f39d397 4472 nritems = btrfs_header_nritems(leaf);
123abc88 4473 data_end = leaf_data_end(root, leaf);
eb60ceac 4474
f25956cc 4475 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4476 btrfs_print_leaf(root, leaf);
d397712b 4477 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4478 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4479 BUG();
d4dbff95 4480 }
5f39d397 4481
be0e5c09 4482 if (slot != nritems) {
5f39d397 4483 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4484
5f39d397
CM
4485 if (old_data < data_end) {
4486 btrfs_print_leaf(root, leaf);
d397712b 4487 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4488 slot, old_data, data_end);
4489 BUG_ON(1);
4490 }
be0e5c09
CM
4491 /*
4492 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4493 */
4494 /* first correct the data pointers */
0783fcfc 4495 for (i = slot; i < nritems; i++) {
5f39d397 4496 u32 ioff;
db94535d 4497
5f39d397 4498 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4499 ioff = btrfs_token_item_offset(leaf, item, &token);
4500 btrfs_set_token_item_offset(leaf, item,
4501 ioff - total_data, &token);
0783fcfc 4502 }
be0e5c09 4503 /* shift the items */
9c58309d 4504 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4505 btrfs_item_nr_offset(slot),
d6025579 4506 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4507
4508 /* shift the data */
5f39d397 4509 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4510 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4511 data_end, old_data - data_end);
be0e5c09
CM
4512 data_end = old_data;
4513 }
5f39d397 4514
62e2749e 4515 /* setup the item for the new data */
9c58309d
CM
4516 for (i = 0; i < nr; i++) {
4517 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4518 btrfs_set_item_key(leaf, &disk_key, slot + i);
4519 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4520 btrfs_set_token_item_offset(leaf, item,
4521 data_end - data_size[i], &token);
9c58309d 4522 data_end -= data_size[i];
cfed81a0 4523 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4524 }
44871b1b 4525
9c58309d 4526 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4527
5a01a2e3
CM
4528 if (slot == 0) {
4529 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
143bede5 4530 fixup_low_keys(trans, root, path, &disk_key, 1);
5a01a2e3 4531 }
b9473439
CM
4532 btrfs_unlock_up_safe(path, 1);
4533 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4534
5f39d397
CM
4535 if (btrfs_leaf_free_space(root, leaf) < 0) {
4536 btrfs_print_leaf(root, leaf);
be0e5c09 4537 BUG();
5f39d397 4538 }
44871b1b
CM
4539}
4540
4541/*
4542 * Given a key and some data, insert items into the tree.
4543 * This does all the path init required, making room in the tree if needed.
4544 */
4545int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4546 struct btrfs_root *root,
4547 struct btrfs_path *path,
4548 struct btrfs_key *cpu_key, u32 *data_size,
4549 int nr)
4550{
44871b1b
CM
4551 int ret = 0;
4552 int slot;
4553 int i;
4554 u32 total_size = 0;
4555 u32 total_data = 0;
4556
4557 for (i = 0; i < nr; i++)
4558 total_data += data_size[i];
4559
4560 total_size = total_data + (nr * sizeof(struct btrfs_item));
4561 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4562 if (ret == 0)
4563 return -EEXIST;
4564 if (ret < 0)
143bede5 4565 return ret;
44871b1b 4566
44871b1b
CM
4567 slot = path->slots[0];
4568 BUG_ON(slot < 0);
4569
143bede5 4570 setup_items_for_insert(trans, root, path, cpu_key, data_size,
44871b1b 4571 total_data, total_size, nr);
143bede5 4572 return 0;
62e2749e
CM
4573}
4574
4575/*
4576 * Given a key and some data, insert an item into the tree.
4577 * This does all the path init required, making room in the tree if needed.
4578 */
e089f05c
CM
4579int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4580 *root, struct btrfs_key *cpu_key, void *data, u32
4581 data_size)
62e2749e
CM
4582{
4583 int ret = 0;
2c90e5d6 4584 struct btrfs_path *path;
5f39d397
CM
4585 struct extent_buffer *leaf;
4586 unsigned long ptr;
62e2749e 4587
2c90e5d6 4588 path = btrfs_alloc_path();
db5b493a
TI
4589 if (!path)
4590 return -ENOMEM;
2c90e5d6 4591 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4592 if (!ret) {
5f39d397
CM
4593 leaf = path->nodes[0];
4594 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4595 write_extent_buffer(leaf, data, ptr, data_size);
4596 btrfs_mark_buffer_dirty(leaf);
62e2749e 4597 }
2c90e5d6 4598 btrfs_free_path(path);
aa5d6bed 4599 return ret;
be0e5c09
CM
4600}
4601
74123bd7 4602/*
5de08d7d 4603 * delete the pointer from a given node.
74123bd7 4604 *
d352ac68
CM
4605 * the tree should have been previously balanced so the deletion does not
4606 * empty a node.
74123bd7 4607 */
143bede5 4608static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
0e411ece 4609 struct btrfs_path *path, int level, int slot)
be0e5c09 4610{
5f39d397 4611 struct extent_buffer *parent = path->nodes[level];
7518a238 4612 u32 nritems;
f3ea38da 4613 int ret;
be0e5c09 4614
5f39d397 4615 nritems = btrfs_header_nritems(parent);
d397712b 4616 if (slot != nritems - 1) {
0e411ece 4617 if (level)
f3ea38da
JS
4618 tree_mod_log_eb_move(root->fs_info, parent, slot,
4619 slot + 1, nritems - slot - 1);
5f39d397
CM
4620 memmove_extent_buffer(parent,
4621 btrfs_node_key_ptr_offset(slot),
4622 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4623 sizeof(struct btrfs_key_ptr) *
4624 (nritems - slot - 1));
57ba86c0
CM
4625 } else if (level) {
4626 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4627 MOD_LOG_KEY_REMOVE);
4628 BUG_ON(ret < 0);
bb803951 4629 }
f3ea38da 4630
7518a238 4631 nritems--;
5f39d397 4632 btrfs_set_header_nritems(parent, nritems);
7518a238 4633 if (nritems == 0 && parent == root->node) {
5f39d397 4634 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4635 /* just turn the root into a leaf and break */
5f39d397 4636 btrfs_set_header_level(root->node, 0);
bb803951 4637 } else if (slot == 0) {
5f39d397
CM
4638 struct btrfs_disk_key disk_key;
4639
4640 btrfs_node_key(parent, &disk_key, 0);
143bede5 4641 fixup_low_keys(trans, root, path, &disk_key, level + 1);
be0e5c09 4642 }
d6025579 4643 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4644}
4645
323ac95b
CM
4646/*
4647 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4648 * path->nodes[1].
323ac95b
CM
4649 *
4650 * This deletes the pointer in path->nodes[1] and frees the leaf
4651 * block extent. zero is returned if it all worked out, < 0 otherwise.
4652 *
4653 * The path must have already been setup for deleting the leaf, including
4654 * all the proper balancing. path->nodes[1] must be locked.
4655 */
143bede5
JM
4656static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4657 struct btrfs_root *root,
4658 struct btrfs_path *path,
4659 struct extent_buffer *leaf)
323ac95b 4660{
5d4f98a2 4661 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
0e411ece 4662 del_ptr(trans, root, path, 1, path->slots[1]);
323ac95b 4663
4d081c41
CM
4664 /*
4665 * btrfs_free_extent is expensive, we want to make sure we
4666 * aren't holding any locks when we call it
4667 */
4668 btrfs_unlock_up_safe(path, 0);
4669
f0486c68
YZ
4670 root_sub_used(root, leaf->len);
4671
3083ee2e 4672 extent_buffer_get(leaf);
5581a51a 4673 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4674 free_extent_buffer_stale(leaf);
323ac95b 4675}
74123bd7
CM
4676/*
4677 * delete the item at the leaf level in path. If that empties
4678 * the leaf, remove it from the tree
4679 */
85e21bac
CM
4680int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4681 struct btrfs_path *path, int slot, int nr)
be0e5c09 4682{
5f39d397
CM
4683 struct extent_buffer *leaf;
4684 struct btrfs_item *item;
85e21bac
CM
4685 int last_off;
4686 int dsize = 0;
aa5d6bed
CM
4687 int ret = 0;
4688 int wret;
85e21bac 4689 int i;
7518a238 4690 u32 nritems;
cfed81a0
CM
4691 struct btrfs_map_token token;
4692
4693 btrfs_init_map_token(&token);
be0e5c09 4694
5f39d397 4695 leaf = path->nodes[0];
85e21bac
CM
4696 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4697
4698 for (i = 0; i < nr; i++)
4699 dsize += btrfs_item_size_nr(leaf, slot + i);
4700
5f39d397 4701 nritems = btrfs_header_nritems(leaf);
be0e5c09 4702
85e21bac 4703 if (slot + nr != nritems) {
123abc88 4704 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4705
4706 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4707 data_end + dsize,
4708 btrfs_leaf_data(leaf) + data_end,
85e21bac 4709 last_off - data_end);
5f39d397 4710
85e21bac 4711 for (i = slot + nr; i < nritems; i++) {
5f39d397 4712 u32 ioff;
db94535d 4713
5f39d397 4714 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4715 ioff = btrfs_token_item_offset(leaf, item, &token);
4716 btrfs_set_token_item_offset(leaf, item,
4717 ioff + dsize, &token);
0783fcfc 4718 }
db94535d 4719
5f39d397 4720 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4721 btrfs_item_nr_offset(slot + nr),
d6025579 4722 sizeof(struct btrfs_item) *
85e21bac 4723 (nritems - slot - nr));
be0e5c09 4724 }
85e21bac
CM
4725 btrfs_set_header_nritems(leaf, nritems - nr);
4726 nritems -= nr;
5f39d397 4727
74123bd7 4728 /* delete the leaf if we've emptied it */
7518a238 4729 if (nritems == 0) {
5f39d397
CM
4730 if (leaf == root->node) {
4731 btrfs_set_header_level(leaf, 0);
9a8dd150 4732 } else {
f0486c68
YZ
4733 btrfs_set_path_blocking(path);
4734 clean_tree_block(trans, root, leaf);
143bede5 4735 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4736 }
be0e5c09 4737 } else {
7518a238 4738 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4739 if (slot == 0) {
5f39d397
CM
4740 struct btrfs_disk_key disk_key;
4741
4742 btrfs_item_key(leaf, &disk_key, 0);
143bede5 4743 fixup_low_keys(trans, root, path, &disk_key, 1);
aa5d6bed 4744 }
aa5d6bed 4745
74123bd7 4746 /* delete the leaf if it is mostly empty */
d717aa1d 4747 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4748 /* push_leaf_left fixes the path.
4749 * make sure the path still points to our leaf
4750 * for possible call to del_ptr below
4751 */
4920c9ac 4752 slot = path->slots[1];
5f39d397
CM
4753 extent_buffer_get(leaf);
4754
b9473439 4755 btrfs_set_path_blocking(path);
99d8f83c
CM
4756 wret = push_leaf_left(trans, root, path, 1, 1,
4757 1, (u32)-1);
54aa1f4d 4758 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4759 ret = wret;
5f39d397
CM
4760
4761 if (path->nodes[0] == leaf &&
4762 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4763 wret = push_leaf_right(trans, root, path, 1,
4764 1, 1, 0);
54aa1f4d 4765 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4766 ret = wret;
4767 }
5f39d397
CM
4768
4769 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4770 path->slots[1] = slot;
143bede5 4771 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4772 free_extent_buffer(leaf);
143bede5 4773 ret = 0;
5de08d7d 4774 } else {
925baedd
CM
4775 /* if we're still in the path, make sure
4776 * we're dirty. Otherwise, one of the
4777 * push_leaf functions must have already
4778 * dirtied this buffer
4779 */
4780 if (path->nodes[0] == leaf)
4781 btrfs_mark_buffer_dirty(leaf);
5f39d397 4782 free_extent_buffer(leaf);
be0e5c09 4783 }
d5719762 4784 } else {
5f39d397 4785 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4786 }
4787 }
aa5d6bed 4788 return ret;
be0e5c09
CM
4789}
4790
7bb86316 4791/*
925baedd 4792 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4793 * returns 0 if it found something or 1 if there are no lesser leaves.
4794 * returns < 0 on io errors.
d352ac68
CM
4795 *
4796 * This may release the path, and so you may lose any locks held at the
4797 * time you call it.
7bb86316
CM
4798 */
4799int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4800{
925baedd
CM
4801 struct btrfs_key key;
4802 struct btrfs_disk_key found_key;
4803 int ret;
7bb86316 4804
925baedd 4805 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4806
925baedd
CM
4807 if (key.offset > 0)
4808 key.offset--;
4809 else if (key.type > 0)
4810 key.type--;
4811 else if (key.objectid > 0)
4812 key.objectid--;
4813 else
4814 return 1;
7bb86316 4815
b3b4aa74 4816 btrfs_release_path(path);
925baedd
CM
4817 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4818 if (ret < 0)
4819 return ret;
4820 btrfs_item_key(path->nodes[0], &found_key, 0);
4821 ret = comp_keys(&found_key, &key);
4822 if (ret < 0)
4823 return 0;
4824 return 1;
7bb86316
CM
4825}
4826
3f157a2f
CM
4827/*
4828 * A helper function to walk down the tree starting at min_key, and looking
4829 * for nodes or leaves that are either in cache or have a minimum
d352ac68 4830 * transaction id. This is used by the btree defrag code, and tree logging
3f157a2f
CM
4831 *
4832 * This does not cow, but it does stuff the starting key it finds back
4833 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4834 * key and get a writable path.
4835 *
4836 * This does lock as it descends, and path->keep_locks should be set
4837 * to 1 by the caller.
4838 *
4839 * This honors path->lowest_level to prevent descent past a given level
4840 * of the tree.
4841 *
d352ac68
CM
4842 * min_trans indicates the oldest transaction that you are interested
4843 * in walking through. Any nodes or leaves older than min_trans are
4844 * skipped over (without reading them).
4845 *
3f157a2f
CM
4846 * returns zero if something useful was found, < 0 on error and 1 if there
4847 * was nothing in the tree that matched the search criteria.
4848 */
4849int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4850 struct btrfs_key *max_key,
3f157a2f
CM
4851 struct btrfs_path *path, int cache_only,
4852 u64 min_trans)
4853{
4854 struct extent_buffer *cur;
4855 struct btrfs_key found_key;
4856 int slot;
9652480b 4857 int sret;
3f157a2f
CM
4858 u32 nritems;
4859 int level;
4860 int ret = 1;
4861
934d375b 4862 WARN_ON(!path->keep_locks);
3f157a2f 4863again:
bd681513 4864 cur = btrfs_read_lock_root_node(root);
3f157a2f 4865 level = btrfs_header_level(cur);
e02119d5 4866 WARN_ON(path->nodes[level]);
3f157a2f 4867 path->nodes[level] = cur;
bd681513 4868 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4869
4870 if (btrfs_header_generation(cur) < min_trans) {
4871 ret = 1;
4872 goto out;
4873 }
d397712b 4874 while (1) {
3f157a2f
CM
4875 nritems = btrfs_header_nritems(cur);
4876 level = btrfs_header_level(cur);
9652480b 4877 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4878
323ac95b
CM
4879 /* at the lowest level, we're done, setup the path and exit */
4880 if (level == path->lowest_level) {
e02119d5
CM
4881 if (slot >= nritems)
4882 goto find_next_key;
3f157a2f
CM
4883 ret = 0;
4884 path->slots[level] = slot;
4885 btrfs_item_key_to_cpu(cur, &found_key, slot);
4886 goto out;
4887 }
9652480b
Y
4888 if (sret && slot > 0)
4889 slot--;
3f157a2f
CM
4890 /*
4891 * check this node pointer against the cache_only and
4892 * min_trans parameters. If it isn't in cache or is too
4893 * old, skip to the next one.
4894 */
d397712b 4895 while (slot < nritems) {
3f157a2f
CM
4896 u64 blockptr;
4897 u64 gen;
4898 struct extent_buffer *tmp;
e02119d5
CM
4899 struct btrfs_disk_key disk_key;
4900
3f157a2f
CM
4901 blockptr = btrfs_node_blockptr(cur, slot);
4902 gen = btrfs_node_ptr_generation(cur, slot);
4903 if (gen < min_trans) {
4904 slot++;
4905 continue;
4906 }
4907 if (!cache_only)
4908 break;
4909
e02119d5
CM
4910 if (max_key) {
4911 btrfs_node_key(cur, &disk_key, slot);
4912 if (comp_keys(&disk_key, max_key) >= 0) {
4913 ret = 1;
4914 goto out;
4915 }
4916 }
4917
3f157a2f
CM
4918 tmp = btrfs_find_tree_block(root, blockptr,
4919 btrfs_level_size(root, level - 1));
4920
b9fab919 4921 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
3f157a2f
CM
4922 free_extent_buffer(tmp);
4923 break;
4924 }
4925 if (tmp)
4926 free_extent_buffer(tmp);
4927 slot++;
4928 }
e02119d5 4929find_next_key:
3f157a2f
CM
4930 /*
4931 * we didn't find a candidate key in this node, walk forward
4932 * and find another one
4933 */
4934 if (slot >= nritems) {
e02119d5 4935 path->slots[level] = slot;
b4ce94de 4936 btrfs_set_path_blocking(path);
e02119d5 4937 sret = btrfs_find_next_key(root, path, min_key, level,
3f157a2f 4938 cache_only, min_trans);
e02119d5 4939 if (sret == 0) {
b3b4aa74 4940 btrfs_release_path(path);
3f157a2f
CM
4941 goto again;
4942 } else {
4943 goto out;
4944 }
4945 }
4946 /* save our key for returning back */
4947 btrfs_node_key_to_cpu(cur, &found_key, slot);
4948 path->slots[level] = slot;
4949 if (level == path->lowest_level) {
4950 ret = 0;
f7c79f30 4951 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4952 goto out;
4953 }
b4ce94de 4954 btrfs_set_path_blocking(path);
3f157a2f 4955 cur = read_node_slot(root, cur, slot);
79787eaa 4956 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4957
bd681513 4958 btrfs_tree_read_lock(cur);
b4ce94de 4959
bd681513 4960 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4961 path->nodes[level - 1] = cur;
f7c79f30 4962 unlock_up(path, level, 1, 0, NULL);
bd681513 4963 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
4964 }
4965out:
4966 if (ret == 0)
4967 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 4968 btrfs_set_path_blocking(path);
3f157a2f
CM
4969 return ret;
4970}
4971
7069830a
AB
4972static void tree_move_down(struct btrfs_root *root,
4973 struct btrfs_path *path,
4974 int *level, int root_level)
4975{
74dd17fb 4976 BUG_ON(*level == 0);
7069830a
AB
4977 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4978 path->slots[*level]);
4979 path->slots[*level - 1] = 0;
4980 (*level)--;
4981}
4982
4983static int tree_move_next_or_upnext(struct btrfs_root *root,
4984 struct btrfs_path *path,
4985 int *level, int root_level)
4986{
4987 int ret = 0;
4988 int nritems;
4989 nritems = btrfs_header_nritems(path->nodes[*level]);
4990
4991 path->slots[*level]++;
4992
74dd17fb 4993 while (path->slots[*level] >= nritems) {
7069830a
AB
4994 if (*level == root_level)
4995 return -1;
4996
4997 /* move upnext */
4998 path->slots[*level] = 0;
4999 free_extent_buffer(path->nodes[*level]);
5000 path->nodes[*level] = NULL;
5001 (*level)++;
5002 path->slots[*level]++;
5003
5004 nritems = btrfs_header_nritems(path->nodes[*level]);
5005 ret = 1;
5006 }
5007 return ret;
5008}
5009
5010/*
5011 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5012 * or down.
5013 */
5014static int tree_advance(struct btrfs_root *root,
5015 struct btrfs_path *path,
5016 int *level, int root_level,
5017 int allow_down,
5018 struct btrfs_key *key)
5019{
5020 int ret;
5021
5022 if (*level == 0 || !allow_down) {
5023 ret = tree_move_next_or_upnext(root, path, level, root_level);
5024 } else {
5025 tree_move_down(root, path, level, root_level);
5026 ret = 0;
5027 }
5028 if (ret >= 0) {
5029 if (*level == 0)
5030 btrfs_item_key_to_cpu(path->nodes[*level], key,
5031 path->slots[*level]);
5032 else
5033 btrfs_node_key_to_cpu(path->nodes[*level], key,
5034 path->slots[*level]);
5035 }
5036 return ret;
5037}
5038
5039static int tree_compare_item(struct btrfs_root *left_root,
5040 struct btrfs_path *left_path,
5041 struct btrfs_path *right_path,
5042 char *tmp_buf)
5043{
5044 int cmp;
5045 int len1, len2;
5046 unsigned long off1, off2;
5047
5048 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5049 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5050 if (len1 != len2)
5051 return 1;
5052
5053 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5054 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5055 right_path->slots[0]);
5056
5057 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5058
5059 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5060 if (cmp)
5061 return 1;
5062 return 0;
5063}
5064
5065#define ADVANCE 1
5066#define ADVANCE_ONLY_NEXT -1
5067
5068/*
5069 * This function compares two trees and calls the provided callback for
5070 * every changed/new/deleted item it finds.
5071 * If shared tree blocks are encountered, whole subtrees are skipped, making
5072 * the compare pretty fast on snapshotted subvolumes.
5073 *
5074 * This currently works on commit roots only. As commit roots are read only,
5075 * we don't do any locking. The commit roots are protected with transactions.
5076 * Transactions are ended and rejoined when a commit is tried in between.
5077 *
5078 * This function checks for modifications done to the trees while comparing.
5079 * If it detects a change, it aborts immediately.
5080 */
5081int btrfs_compare_trees(struct btrfs_root *left_root,
5082 struct btrfs_root *right_root,
5083 btrfs_changed_cb_t changed_cb, void *ctx)
5084{
5085 int ret;
5086 int cmp;
5087 struct btrfs_trans_handle *trans = NULL;
5088 struct btrfs_path *left_path = NULL;
5089 struct btrfs_path *right_path = NULL;
5090 struct btrfs_key left_key;
5091 struct btrfs_key right_key;
5092 char *tmp_buf = NULL;
5093 int left_root_level;
5094 int right_root_level;
5095 int left_level;
5096 int right_level;
5097 int left_end_reached;
5098 int right_end_reached;
5099 int advance_left;
5100 int advance_right;
5101 u64 left_blockptr;
5102 u64 right_blockptr;
5103 u64 left_start_ctransid;
5104 u64 right_start_ctransid;
5105 u64 ctransid;
5106
5107 left_path = btrfs_alloc_path();
5108 if (!left_path) {
5109 ret = -ENOMEM;
5110 goto out;
5111 }
5112 right_path = btrfs_alloc_path();
5113 if (!right_path) {
5114 ret = -ENOMEM;
5115 goto out;
5116 }
5117
5118 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5119 if (!tmp_buf) {
5120 ret = -ENOMEM;
5121 goto out;
5122 }
5123
5124 left_path->search_commit_root = 1;
5125 left_path->skip_locking = 1;
5126 right_path->search_commit_root = 1;
5127 right_path->skip_locking = 1;
5128
5f3ab90a 5129 spin_lock(&left_root->root_item_lock);
7069830a 5130 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5f3ab90a 5131 spin_unlock(&left_root->root_item_lock);
7069830a 5132
5f3ab90a 5133 spin_lock(&right_root->root_item_lock);
7069830a 5134 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5f3ab90a 5135 spin_unlock(&right_root->root_item_lock);
7069830a
AB
5136
5137 trans = btrfs_join_transaction(left_root);
5138 if (IS_ERR(trans)) {
5139 ret = PTR_ERR(trans);
5140 trans = NULL;
5141 goto out;
5142 }
5143
5144 /*
5145 * Strategy: Go to the first items of both trees. Then do
5146 *
5147 * If both trees are at level 0
5148 * Compare keys of current items
5149 * If left < right treat left item as new, advance left tree
5150 * and repeat
5151 * If left > right treat right item as deleted, advance right tree
5152 * and repeat
5153 * If left == right do deep compare of items, treat as changed if
5154 * needed, advance both trees and repeat
5155 * If both trees are at the same level but not at level 0
5156 * Compare keys of current nodes/leafs
5157 * If left < right advance left tree and repeat
5158 * If left > right advance right tree and repeat
5159 * If left == right compare blockptrs of the next nodes/leafs
5160 * If they match advance both trees but stay at the same level
5161 * and repeat
5162 * If they don't match advance both trees while allowing to go
5163 * deeper and repeat
5164 * If tree levels are different
5165 * Advance the tree that needs it and repeat
5166 *
5167 * Advancing a tree means:
5168 * If we are at level 0, try to go to the next slot. If that's not
5169 * possible, go one level up and repeat. Stop when we found a level
5170 * where we could go to the next slot. We may at this point be on a
5171 * node or a leaf.
5172 *
5173 * If we are not at level 0 and not on shared tree blocks, go one
5174 * level deeper.
5175 *
5176 * If we are not at level 0 and on shared tree blocks, go one slot to
5177 * the right if possible or go up and right.
5178 */
5179
5180 left_level = btrfs_header_level(left_root->commit_root);
5181 left_root_level = left_level;
5182 left_path->nodes[left_level] = left_root->commit_root;
5183 extent_buffer_get(left_path->nodes[left_level]);
5184
5185 right_level = btrfs_header_level(right_root->commit_root);
5186 right_root_level = right_level;
5187 right_path->nodes[right_level] = right_root->commit_root;
5188 extent_buffer_get(right_path->nodes[right_level]);
5189
5190 if (left_level == 0)
5191 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5192 &left_key, left_path->slots[left_level]);
5193 else
5194 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5195 &left_key, left_path->slots[left_level]);
5196 if (right_level == 0)
5197 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5198 &right_key, right_path->slots[right_level]);
5199 else
5200 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5201 &right_key, right_path->slots[right_level]);
5202
5203 left_end_reached = right_end_reached = 0;
5204 advance_left = advance_right = 0;
5205
5206 while (1) {
5207 /*
5208 * We need to make sure the transaction does not get committed
5209 * while we do anything on commit roots. This means, we need to
5210 * join and leave transactions for every item that we process.
5211 */
5212 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5213 btrfs_release_path(left_path);
5214 btrfs_release_path(right_path);
5215
5216 ret = btrfs_end_transaction(trans, left_root);
5217 trans = NULL;
5218 if (ret < 0)
5219 goto out;
5220 }
5221 /* now rejoin the transaction */
5222 if (!trans) {
5223 trans = btrfs_join_transaction(left_root);
5224 if (IS_ERR(trans)) {
5225 ret = PTR_ERR(trans);
5226 trans = NULL;
5227 goto out;
5228 }
5229
5f3ab90a 5230 spin_lock(&left_root->root_item_lock);
7069830a 5231 ctransid = btrfs_root_ctransid(&left_root->root_item);
5f3ab90a 5232 spin_unlock(&left_root->root_item_lock);
7069830a
AB
5233 if (ctransid != left_start_ctransid)
5234 left_start_ctransid = 0;
5235
5f3ab90a 5236 spin_lock(&right_root->root_item_lock);
7069830a 5237 ctransid = btrfs_root_ctransid(&right_root->root_item);
5f3ab90a 5238 spin_unlock(&right_root->root_item_lock);
7069830a
AB
5239 if (ctransid != right_start_ctransid)
5240 right_start_ctransid = 0;
5241
5242 if (!left_start_ctransid || !right_start_ctransid) {
5243 WARN(1, KERN_WARNING
5244 "btrfs: btrfs_compare_tree detected "
5245 "a change in one of the trees while "
5246 "iterating. This is probably a "
5247 "bug.\n");
5248 ret = -EIO;
5249 goto out;
5250 }
5251
5252 /*
5253 * the commit root may have changed, so start again
5254 * where we stopped
5255 */
5256 left_path->lowest_level = left_level;
5257 right_path->lowest_level = right_level;
5258 ret = btrfs_search_slot(NULL, left_root,
5259 &left_key, left_path, 0, 0);
5260 if (ret < 0)
5261 goto out;
5262 ret = btrfs_search_slot(NULL, right_root,
5263 &right_key, right_path, 0, 0);
5264 if (ret < 0)
5265 goto out;
5266 }
5267
5268 if (advance_left && !left_end_reached) {
5269 ret = tree_advance(left_root, left_path, &left_level,
5270 left_root_level,
5271 advance_left != ADVANCE_ONLY_NEXT,
5272 &left_key);
5273 if (ret < 0)
5274 left_end_reached = ADVANCE;
5275 advance_left = 0;
5276 }
5277 if (advance_right && !right_end_reached) {
5278 ret = tree_advance(right_root, right_path, &right_level,
5279 right_root_level,
5280 advance_right != ADVANCE_ONLY_NEXT,
5281 &right_key);
5282 if (ret < 0)
5283 right_end_reached = ADVANCE;
5284 advance_right = 0;
5285 }
5286
5287 if (left_end_reached && right_end_reached) {
5288 ret = 0;
5289 goto out;
5290 } else if (left_end_reached) {
5291 if (right_level == 0) {
5292 ret = changed_cb(left_root, right_root,
5293 left_path, right_path,
5294 &right_key,
5295 BTRFS_COMPARE_TREE_DELETED,
5296 ctx);
5297 if (ret < 0)
5298 goto out;
5299 }
5300 advance_right = ADVANCE;
5301 continue;
5302 } else if (right_end_reached) {
5303 if (left_level == 0) {
5304 ret = changed_cb(left_root, right_root,
5305 left_path, right_path,
5306 &left_key,
5307 BTRFS_COMPARE_TREE_NEW,
5308 ctx);
5309 if (ret < 0)
5310 goto out;
5311 }
5312 advance_left = ADVANCE;
5313 continue;
5314 }
5315
5316 if (left_level == 0 && right_level == 0) {
5317 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5318 if (cmp < 0) {
5319 ret = changed_cb(left_root, right_root,
5320 left_path, right_path,
5321 &left_key,
5322 BTRFS_COMPARE_TREE_NEW,
5323 ctx);
5324 if (ret < 0)
5325 goto out;
5326 advance_left = ADVANCE;
5327 } else if (cmp > 0) {
5328 ret = changed_cb(left_root, right_root,
5329 left_path, right_path,
5330 &right_key,
5331 BTRFS_COMPARE_TREE_DELETED,
5332 ctx);
5333 if (ret < 0)
5334 goto out;
5335 advance_right = ADVANCE;
5336 } else {
74dd17fb 5337 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5338 ret = tree_compare_item(left_root, left_path,
5339 right_path, tmp_buf);
5340 if (ret) {
74dd17fb 5341 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5342 ret = changed_cb(left_root, right_root,
5343 left_path, right_path,
5344 &left_key,
5345 BTRFS_COMPARE_TREE_CHANGED,
5346 ctx);
5347 if (ret < 0)
5348 goto out;
5349 }
5350 advance_left = ADVANCE;
5351 advance_right = ADVANCE;
5352 }
5353 } else if (left_level == right_level) {
5354 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5355 if (cmp < 0) {
5356 advance_left = ADVANCE;
5357 } else if (cmp > 0) {
5358 advance_right = ADVANCE;
5359 } else {
5360 left_blockptr = btrfs_node_blockptr(
5361 left_path->nodes[left_level],
5362 left_path->slots[left_level]);
5363 right_blockptr = btrfs_node_blockptr(
5364 right_path->nodes[right_level],
5365 right_path->slots[right_level]);
5366 if (left_blockptr == right_blockptr) {
5367 /*
5368 * As we're on a shared block, don't
5369 * allow to go deeper.
5370 */
5371 advance_left = ADVANCE_ONLY_NEXT;
5372 advance_right = ADVANCE_ONLY_NEXT;
5373 } else {
5374 advance_left = ADVANCE;
5375 advance_right = ADVANCE;
5376 }
5377 }
5378 } else if (left_level < right_level) {
5379 advance_right = ADVANCE;
5380 } else {
5381 advance_left = ADVANCE;
5382 }
5383 }
5384
5385out:
5386 btrfs_free_path(left_path);
5387 btrfs_free_path(right_path);
5388 kfree(tmp_buf);
5389
5390 if (trans) {
5391 if (!ret)
5392 ret = btrfs_end_transaction(trans, left_root);
5393 else
5394 btrfs_end_transaction(trans, left_root);
5395 }
5396
5397 return ret;
5398}
5399
3f157a2f
CM
5400/*
5401 * this is similar to btrfs_next_leaf, but does not try to preserve
5402 * and fixup the path. It looks for and returns the next key in the
5403 * tree based on the current path and the cache_only and min_trans
5404 * parameters.
5405 *
5406 * 0 is returned if another key is found, < 0 if there are any errors
5407 * and 1 is returned if there are no higher keys in the tree
5408 *
5409 * path->keep_locks should be set to 1 on the search made before
5410 * calling this function.
5411 */
e7a84565 5412int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
33c66f43 5413 struct btrfs_key *key, int level,
3f157a2f 5414 int cache_only, u64 min_trans)
e7a84565 5415{
e7a84565
CM
5416 int slot;
5417 struct extent_buffer *c;
5418
934d375b 5419 WARN_ON(!path->keep_locks);
d397712b 5420 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5421 if (!path->nodes[level])
5422 return 1;
5423
5424 slot = path->slots[level] + 1;
5425 c = path->nodes[level];
3f157a2f 5426next:
e7a84565 5427 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5428 int ret;
5429 int orig_lowest;
5430 struct btrfs_key cur_key;
5431 if (level + 1 >= BTRFS_MAX_LEVEL ||
5432 !path->nodes[level + 1])
e7a84565 5433 return 1;
33c66f43
YZ
5434
5435 if (path->locks[level + 1]) {
5436 level++;
5437 continue;
5438 }
5439
5440 slot = btrfs_header_nritems(c) - 1;
5441 if (level == 0)
5442 btrfs_item_key_to_cpu(c, &cur_key, slot);
5443 else
5444 btrfs_node_key_to_cpu(c, &cur_key, slot);
5445
5446 orig_lowest = path->lowest_level;
b3b4aa74 5447 btrfs_release_path(path);
33c66f43
YZ
5448 path->lowest_level = level;
5449 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5450 0, 0);
5451 path->lowest_level = orig_lowest;
5452 if (ret < 0)
5453 return ret;
5454
5455 c = path->nodes[level];
5456 slot = path->slots[level];
5457 if (ret == 0)
5458 slot++;
5459 goto next;
e7a84565 5460 }
33c66f43 5461
e7a84565
CM
5462 if (level == 0)
5463 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f
CM
5464 else {
5465 u64 blockptr = btrfs_node_blockptr(c, slot);
5466 u64 gen = btrfs_node_ptr_generation(c, slot);
5467
5468 if (cache_only) {
5469 struct extent_buffer *cur;
5470 cur = btrfs_find_tree_block(root, blockptr,
5471 btrfs_level_size(root, level - 1));
b9fab919
CM
5472 if (!cur ||
5473 btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
3f157a2f
CM
5474 slot++;
5475 if (cur)
5476 free_extent_buffer(cur);
5477 goto next;
5478 }
5479 free_extent_buffer(cur);
5480 }
5481 if (gen < min_trans) {
5482 slot++;
5483 goto next;
5484 }
e7a84565 5485 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5486 }
e7a84565
CM
5487 return 0;
5488 }
5489 return 1;
5490}
5491
97571fd0 5492/*
925baedd 5493 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5494 * returns 0 if it found something or 1 if there are no greater leaves.
5495 * returns < 0 on io errors.
97571fd0 5496 */
234b63a0 5497int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5498{
5499 return btrfs_next_old_leaf(root, path, 0);
5500}
5501
70c8a91c
JB
5502/* Release the path up to but not including the given level */
5503static void btrfs_release_level(struct btrfs_path *path, int level)
5504{
5505 int i;
5506
5507 for (i = 0; i < level; i++) {
5508 path->slots[i] = 0;
5509 if (!path->nodes[i])
5510 continue;
5511 if (path->locks[i]) {
5512 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5513 path->locks[i] = 0;
5514 }
5515 free_extent_buffer(path->nodes[i]);
5516 path->nodes[i] = NULL;
5517 }
5518}
5519
5520/*
5521 * This function assumes 2 things
5522 *
5523 * 1) You are using path->keep_locks
5524 * 2) You are not inserting items.
5525 *
5526 * If either of these are not true do not use this function. If you need a next
5527 * leaf with either of these not being true then this function can be easily
5528 * adapted to do that, but at the moment these are the limitations.
5529 */
5530int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5531 struct btrfs_root *root, struct btrfs_path *path,
5532 int del)
5533{
5534 struct extent_buffer *b;
5535 struct btrfs_key key;
5536 u32 nritems;
5537 int level = 1;
5538 int slot;
5539 int ret = 1;
5540 int write_lock_level = BTRFS_MAX_LEVEL;
5541 int ins_len = del ? -1 : 0;
5542
5543 WARN_ON(!(path->keep_locks || path->really_keep_locks));
5544
5545 nritems = btrfs_header_nritems(path->nodes[0]);
5546 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5547
5548 while (path->nodes[level]) {
5549 nritems = btrfs_header_nritems(path->nodes[level]);
5550 if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5551search:
5552 btrfs_release_path(path);
5553 ret = btrfs_search_slot(trans, root, &key, path,
5554 ins_len, 1);
5555 if (ret < 0)
5556 goto out;
5557 level = 1;
5558 continue;
5559 }
5560
5561 if (path->slots[level] >= nritems - 1) {
5562 level++;
5563 continue;
5564 }
5565
5566 btrfs_release_level(path, level);
5567 break;
5568 }
5569
5570 if (!path->nodes[level]) {
5571 ret = 1;
5572 goto out;
5573 }
5574
5575 path->slots[level]++;
5576 b = path->nodes[level];
5577
5578 while (b) {
5579 level = btrfs_header_level(b);
5580
5581 if (!should_cow_block(trans, root, b))
5582 goto cow_done;
5583
5584 btrfs_set_path_blocking(path);
5585 ret = btrfs_cow_block(trans, root, b,
5586 path->nodes[level + 1],
5587 path->slots[level + 1], &b);
5588 if (ret)
5589 goto out;
5590cow_done:
5591 path->nodes[level] = b;
5592 btrfs_clear_path_blocking(path, NULL, 0);
5593 if (level != 0) {
5594 ret = setup_nodes_for_search(trans, root, path, b,
5595 level, ins_len,
5596 &write_lock_level);
5597 if (ret == -EAGAIN)
5598 goto search;
5599 if (ret)
5600 goto out;
5601
5602 b = path->nodes[level];
5603 slot = path->slots[level];
5604
5605 ret = read_block_for_search(trans, root, path,
5606 &b, level, slot, &key, 0);
5607 if (ret == -EAGAIN)
5608 goto search;
5609 if (ret)
5610 goto out;
5611 level = btrfs_header_level(b);
5612 if (!btrfs_try_tree_write_lock(b)) {
5613 btrfs_set_path_blocking(path);
5614 btrfs_tree_lock(b);
5615 btrfs_clear_path_blocking(path, b,
5616 BTRFS_WRITE_LOCK);
5617 }
5618 path->locks[level] = BTRFS_WRITE_LOCK;
5619 path->nodes[level] = b;
5620 path->slots[level] = 0;
5621 } else {
5622 path->slots[level] = 0;
5623 ret = 0;
5624 break;
5625 }
5626 }
5627
5628out:
5629 if (ret)
5630 btrfs_release_path(path);
5631
5632 return ret;
5633}
5634
3d7806ec
JS
5635int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5636 u64 time_seq)
d97e63b6
CM
5637{
5638 int slot;
8e73f275 5639 int level;
5f39d397 5640 struct extent_buffer *c;
8e73f275 5641 struct extent_buffer *next;
925baedd
CM
5642 struct btrfs_key key;
5643 u32 nritems;
5644 int ret;
8e73f275 5645 int old_spinning = path->leave_spinning;
bd681513 5646 int next_rw_lock = 0;
925baedd
CM
5647
5648 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5649 if (nritems == 0)
925baedd 5650 return 1;
925baedd 5651
8e73f275
CM
5652 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5653again:
5654 level = 1;
5655 next = NULL;
bd681513 5656 next_rw_lock = 0;
b3b4aa74 5657 btrfs_release_path(path);
8e73f275 5658
a2135011 5659 path->keep_locks = 1;
31533fb2 5660 path->leave_spinning = 1;
8e73f275 5661
3d7806ec
JS
5662 if (time_seq)
5663 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5664 else
5665 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5666 path->keep_locks = 0;
5667
5668 if (ret < 0)
5669 return ret;
5670
a2135011 5671 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5672 /*
5673 * by releasing the path above we dropped all our locks. A balance
5674 * could have added more items next to the key that used to be
5675 * at the very end of the block. So, check again here and
5676 * advance the path if there are now more items available.
5677 */
a2135011 5678 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5679 if (ret == 0)
5680 path->slots[0]++;
8e73f275 5681 ret = 0;
925baedd
CM
5682 goto done;
5683 }
d97e63b6 5684
d397712b 5685 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5686 if (!path->nodes[level]) {
5687 ret = 1;
5688 goto done;
5689 }
5f39d397 5690
d97e63b6
CM
5691 slot = path->slots[level] + 1;
5692 c = path->nodes[level];
5f39d397 5693 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5694 level++;
8e73f275
CM
5695 if (level == BTRFS_MAX_LEVEL) {
5696 ret = 1;
5697 goto done;
5698 }
d97e63b6
CM
5699 continue;
5700 }
5f39d397 5701
925baedd 5702 if (next) {
bd681513 5703 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5704 free_extent_buffer(next);
925baedd 5705 }
5f39d397 5706
8e73f275 5707 next = c;
bd681513 5708 next_rw_lock = path->locks[level];
8e73f275 5709 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5710 slot, &key, 0);
8e73f275
CM
5711 if (ret == -EAGAIN)
5712 goto again;
5f39d397 5713
76a05b35 5714 if (ret < 0) {
b3b4aa74 5715 btrfs_release_path(path);
76a05b35
CM
5716 goto done;
5717 }
5718
5cd57b2c 5719 if (!path->skip_locking) {
bd681513 5720 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5721 if (!ret && time_seq) {
5722 /*
5723 * If we don't get the lock, we may be racing
5724 * with push_leaf_left, holding that lock while
5725 * itself waiting for the leaf we've currently
5726 * locked. To solve this situation, we give up
5727 * on our lock and cycle.
5728 */
cf538830 5729 free_extent_buffer(next);
d42244a0
JS
5730 btrfs_release_path(path);
5731 cond_resched();
5732 goto again;
5733 }
8e73f275
CM
5734 if (!ret) {
5735 btrfs_set_path_blocking(path);
bd681513 5736 btrfs_tree_read_lock(next);
31533fb2 5737 btrfs_clear_path_blocking(path, next,
bd681513 5738 BTRFS_READ_LOCK);
8e73f275 5739 }
31533fb2 5740 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5741 }
d97e63b6
CM
5742 break;
5743 }
5744 path->slots[level] = slot;
d397712b 5745 while (1) {
d97e63b6
CM
5746 level--;
5747 c = path->nodes[level];
925baedd 5748 if (path->locks[level])
bd681513 5749 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5750
5f39d397 5751 free_extent_buffer(c);
d97e63b6
CM
5752 path->nodes[level] = next;
5753 path->slots[level] = 0;
a74a4b97 5754 if (!path->skip_locking)
bd681513 5755 path->locks[level] = next_rw_lock;
d97e63b6
CM
5756 if (!level)
5757 break;
b4ce94de 5758
8e73f275 5759 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5760 0, &key, 0);
8e73f275
CM
5761 if (ret == -EAGAIN)
5762 goto again;
5763
76a05b35 5764 if (ret < 0) {
b3b4aa74 5765 btrfs_release_path(path);
76a05b35
CM
5766 goto done;
5767 }
5768
5cd57b2c 5769 if (!path->skip_locking) {
bd681513 5770 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5771 if (!ret) {
5772 btrfs_set_path_blocking(path);
bd681513 5773 btrfs_tree_read_lock(next);
31533fb2 5774 btrfs_clear_path_blocking(path, next,
bd681513
CM
5775 BTRFS_READ_LOCK);
5776 }
31533fb2 5777 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5778 }
d97e63b6 5779 }
8e73f275 5780 ret = 0;
925baedd 5781done:
f7c79f30 5782 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5783 path->leave_spinning = old_spinning;
5784 if (!old_spinning)
5785 btrfs_set_path_blocking(path);
5786
5787 return ret;
d97e63b6 5788}
0b86a832 5789
3f157a2f
CM
5790/*
5791 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5792 * searching until it gets past min_objectid or finds an item of 'type'
5793 *
5794 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5795 */
0b86a832
CM
5796int btrfs_previous_item(struct btrfs_root *root,
5797 struct btrfs_path *path, u64 min_objectid,
5798 int type)
5799{
5800 struct btrfs_key found_key;
5801 struct extent_buffer *leaf;
e02119d5 5802 u32 nritems;
0b86a832
CM
5803 int ret;
5804
d397712b 5805 while (1) {
0b86a832 5806 if (path->slots[0] == 0) {
b4ce94de 5807 btrfs_set_path_blocking(path);
0b86a832
CM
5808 ret = btrfs_prev_leaf(root, path);
5809 if (ret != 0)
5810 return ret;
5811 } else {
5812 path->slots[0]--;
5813 }
5814 leaf = path->nodes[0];
e02119d5
CM
5815 nritems = btrfs_header_nritems(leaf);
5816 if (nritems == 0)
5817 return 1;
5818 if (path->slots[0] == nritems)
5819 path->slots[0]--;
5820
0b86a832 5821 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5822 if (found_key.objectid < min_objectid)
5823 break;
0a4eefbb
YZ
5824 if (found_key.type == type)
5825 return 0;
e02119d5
CM
5826 if (found_key.objectid == min_objectid &&
5827 found_key.type < type)
5828 break;
0b86a832
CM
5829 }
5830 return 1;
5831}