]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/extent_io.c
btrfs: add helpers to get fs_info from page/folio pointers
[thirdparty/linux.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
395cb57e 9#include <linux/sched/mm.h>
d1310b2e
CM
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
d1310b2e
CM
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
268bb0ce 15#include <linux/prefetch.h>
14605409 16#include <linux/fsverity.h>
d1310b2e 17#include "extent_io.h"
9c7d3a54 18#include "extent-io-tree.h"
d1310b2e 19#include "extent_map.h"
902b22f3
DW
20#include "ctree.h"
21#include "btrfs_inode.h"
103c1972 22#include "bio.h"
0b32f4bb 23#include "locking.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
760f991f 26#include "subpage.h"
d3575156 27#include "zoned.h"
0bc09ca1 28#include "block-group.h"
2a5232a8 29#include "compression.h"
ec8eb376 30#include "fs.h"
07e81dc9 31#include "accessors.h"
7c8ede16 32#include "file-item.h"
af142b6f 33#include "file.h"
77407dc0 34#include "dev-replace.h"
7f0add25 35#include "super.h"
98c8d683 36#include "transaction.h"
d1310b2e 37
d1310b2e
CM
38static struct kmem_cache *extent_buffer_cache;
39
6d49ba1b 40#ifdef CONFIG_BTRFS_DEBUG
a40246e8
JB
41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42{
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49}
50
a40246e8
JB
51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52{
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
6d49ba1b
ES
59}
60
3fd63727 61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 62{
6d49ba1b 63 struct extent_buffer *eb;
3fd63727 64 unsigned long flags;
6d49ba1b 65
8c38938c
JB
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
b95b78e6 73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
3fd63727
JB
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
8c38938c 78 pr_err(
84cda1a6 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
8c38938c
JB
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
33ca832f 82 list_del(&eb->leak_list);
8fd2b12e 83 WARN_ON_ONCE(1);
33ca832f
JB
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
3fd63727 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f 87}
6d49ba1b 88#else
a40246e8 89#define btrfs_leak_debug_add_eb(eb) do {} while (0)
a40246e8 90#define btrfs_leak_debug_del_eb(eb) do {} while (0)
4bef0848 91#endif
d1310b2e 92
7aab8b32
CH
93/*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97struct btrfs_bio_ctrl {
9dfde1b4 98 struct btrfs_bio *bbio;
0f07003b 99 enum btrfs_compression_type compress_type;
7aab8b32 100 u32 len_to_oe_boundary;
c000bc04 101 blk_opf_t opf;
5467abba 102 btrfs_bio_end_io_t end_io_func;
72b505dc 103 struct writeback_control *wbc;
d1310b2e
CM
104};
105
722c82ac 106static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
bb58eb9e 107{
9dfde1b4 108 struct btrfs_bio *bbio = bio_ctrl->bbio;
722c82ac 109
9dfde1b4 110 if (!bbio)
722c82ac 111 return;
bb58eb9e 112
e0eefe07 113 /* Caller should ensure the bio has at least some range added */
9dfde1b4 114 ASSERT(bbio->bio.bi_iter.bi_size);
c9583ada 115
9dfde1b4 116 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
35a8d7da 117 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
e1949310 118 btrfs_submit_compressed_read(bbio);
35a8d7da 119 else
b78b98e0 120 btrfs_submit_bio(bbio, 0);
35a8d7da 121
9dfde1b4
CH
122 /* The bbio is owned by the end_io handler now */
123 bio_ctrl->bbio = NULL;
3065976b
QW
124}
125
f4340622 126/*
ee5f017d 127 * Submit or fail the current bio in the bio_ctrl structure.
f4340622 128 */
ee5f017d 129static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
bb58eb9e 130{
9dfde1b4 131 struct btrfs_bio *bbio = bio_ctrl->bbio;
bb58eb9e 132
9dfde1b4 133 if (!bbio)
9845e5dd
CH
134 return;
135
136 if (ret) {
137 ASSERT(ret < 0);
9dfde1b4 138 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
917f32a2 139 /* The bio is owned by the end_io handler now */
9dfde1b4 140 bio_ctrl->bbio = NULL;
9845e5dd 141 } else {
ee5f017d 142 submit_one_bio(bio_ctrl);
bb58eb9e
QW
143 }
144}
e2932ee0 145
a62a3bd9
JB
146int __init extent_buffer_init_cachep(void)
147{
837e1972 148 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 149 sizeof(struct extent_buffer), 0,
fba4b697 150 SLAB_MEM_SPREAD, NULL);
a62a3bd9 151 if (!extent_buffer_cache)
6f0d04f8 152 return -ENOMEM;
b208c2f7 153
d1310b2e 154 return 0;
d1310b2e
CM
155}
156
a62a3bd9 157void __cold extent_buffer_free_cachep(void)
d1310b2e 158{
8c0a8537
KS
159 /*
160 * Make sure all delayed rcu free are flushed before we
161 * destroy caches.
162 */
163 rcu_barrier();
5598e900 164 kmem_cache_destroy(extent_buffer_cache);
d1310b2e
CM
165}
166
bd1fa4f0 167void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 168{
09cbfeaf
KS
169 unsigned long index = start >> PAGE_SHIFT;
170 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
171 struct page *page;
172
173 while (index <= end_index) {
174 page = find_get_page(inode->i_mapping, index);
175 BUG_ON(!page); /* Pages should be in the extent_io_tree */
176 clear_page_dirty_for_io(page);
09cbfeaf 177 put_page(page);
4adaa611
CM
178 index++;
179 }
4adaa611
CM
180}
181
ef4e88e6
CH
182static void process_one_page(struct btrfs_fs_info *fs_info,
183 struct page *page, struct page *locked_page,
184 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 185{
55151ea9 186 struct folio *folio = page_folio(page);
e38992be
QW
187 u32 len;
188
189 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
190 len = end + 1 - start;
191
ed8f13bf 192 if (page_ops & PAGE_SET_ORDERED)
55151ea9 193 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
ed8f13bf 194 if (page_ops & PAGE_START_WRITEBACK) {
55151ea9
QW
195 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
196 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
ed8f13bf
QW
197 }
198 if (page_ops & PAGE_END_WRITEBACK)
55151ea9 199 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
a33a8e9a 200
ef4e88e6 201 if (page != locked_page && (page_ops & PAGE_UNLOCK))
55151ea9 202 btrfs_folio_end_writer_lock(fs_info, folio, start, len);
ed8f13bf
QW
203}
204
ef4e88e6
CH
205static void __process_pages_contig(struct address_space *mapping,
206 struct page *locked_page, u64 start, u64 end,
207 unsigned long page_ops)
ed8f13bf 208{
e38992be 209 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
210 pgoff_t start_index = start >> PAGE_SHIFT;
211 pgoff_t end_index = end >> PAGE_SHIFT;
212 pgoff_t index = start_index;
04c6b79a 213 struct folio_batch fbatch;
ed8f13bf
QW
214 int i;
215
04c6b79a
VMO
216 folio_batch_init(&fbatch);
217 while (index <= end_index) {
218 int found_folios;
219
220 found_folios = filemap_get_folios_contig(mapping, &index,
221 end_index, &fbatch);
04c6b79a 222 for (i = 0; i < found_folios; i++) {
04c6b79a 223 struct folio *folio = fbatch.folios[i];
ef4e88e6
CH
224
225 process_one_page(fs_info, &folio->page, locked_page,
226 page_ops, start, end);
ed8f13bf 227 }
04c6b79a 228 folio_batch_release(&fbatch);
ed8f13bf
QW
229 cond_resched();
230 }
ed8f13bf 231}
da2c7009 232
143bede5
JM
233static noinline void __unlock_for_delalloc(struct inode *inode,
234 struct page *locked_page,
235 u64 start, u64 end)
c8b97818 236{
09cbfeaf
KS
237 unsigned long index = start >> PAGE_SHIFT;
238 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 239
76c0021d 240 ASSERT(locked_page);
c8b97818 241 if (index == locked_page->index && end_index == index)
143bede5 242 return;
c8b97818 243
98af9ab1 244 __process_pages_contig(inode->i_mapping, locked_page, start, end,
ef4e88e6 245 PAGE_UNLOCK);
c8b97818
CM
246}
247
248static noinline int lock_delalloc_pages(struct inode *inode,
249 struct page *locked_page,
ef4e88e6
CH
250 u64 start,
251 u64 end)
c8b97818 252{
ef4e88e6
CH
253 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
254 struct address_space *mapping = inode->i_mapping;
255 pgoff_t start_index = start >> PAGE_SHIFT;
256 pgoff_t end_index = end >> PAGE_SHIFT;
257 pgoff_t index = start_index;
258 u64 processed_end = start;
259 struct folio_batch fbatch;
c8b97818 260
c8b97818
CM
261 if (index == locked_page->index && index == end_index)
262 return 0;
263
ef4e88e6
CH
264 folio_batch_init(&fbatch);
265 while (index <= end_index) {
266 unsigned int found_folios, i;
267
268 found_folios = filemap_get_folios_contig(mapping, &index,
269 end_index, &fbatch);
270 if (found_folios == 0)
271 goto out;
272
273 for (i = 0; i < found_folios; i++) {
55151ea9
QW
274 struct folio *folio = fbatch.folios[i];
275 struct page *page = folio_page(folio, 0);
ef4e88e6
CH
276 u32 len = end + 1 - start;
277
278 if (page == locked_page)
279 continue;
280
55151ea9
QW
281 if (btrfs_folio_start_writer_lock(fs_info, folio, start,
282 len))
ef4e88e6
CH
283 goto out;
284
285 if (!PageDirty(page) || page->mapping != mapping) {
55151ea9
QW
286 btrfs_folio_end_writer_lock(fs_info, folio, start,
287 len);
ef4e88e6
CH
288 goto out;
289 }
290
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
292 }
293 folio_batch_release(&fbatch);
294 cond_resched();
295 }
296
297 return 0;
298out:
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
302 return -EAGAIN;
c8b97818
CM
303}
304
305/*
3522e903 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 307 * more than @max_bytes.
c8b97818 308 *
2749f7ef
QW
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 319 */
ce9f967f 320EXPORT_FOR_TESTS
3522e903 321noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 322 struct page *locked_page, u64 *start,
917aacec 323 u64 *end)
c8b97818 324{
f7b12a62 325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9978059b 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
f7b12a62
NA
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
331 u64 delalloc_start;
332 u64 delalloc_end;
3522e903 333 bool found;
9655d298 334 struct extent_state *cached_state = NULL;
c8b97818
CM
335 int ret;
336 int loops = 0;
337
2749f7ef
QW
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
340
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
c8b97818
CM
344again:
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
347 delalloc_end = 0;
083e75e7
JB
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
2749f7ef 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 351 *start = delalloc_start;
2749f7ef
QW
352
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
c2a128d2 355 free_extent_state(cached_state);
3522e903 356 return false;
c8b97818
CM
357 }
358
70b99e69
CM
359 /*
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
362 * locked_page
363 */
d397712b 364 if (delalloc_start < *start)
70b99e69 365 delalloc_start = *start;
70b99e69 366
c8b97818
CM
367 /*
368 * make sure to limit the number of pages we try to lock down
c8b97818 369 */
7bf811a5
JB
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 372
c8b97818
CM
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
9bfd61d9 376 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
380 */
9655d298 381 free_extent_state(cached_state);
7d788742 382 cached_state = NULL;
c8b97818 383 if (!loops) {
09cbfeaf 384 max_bytes = PAGE_SIZE;
c8b97818
CM
385 loops = 1;
386 goto again;
387 } else {
3522e903 388 found = false;
c8b97818
CM
389 goto out_failed;
390 }
391 }
c8b97818
CM
392
393 /* step three, lock the state bits for the whole range */
570eb97b 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
395
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
893fe243 398 EXTENT_DELALLOC, cached_state);
c8b97818 399 if (!ret) {
570eb97b
JB
400 unlock_extent(tree, delalloc_start, delalloc_end,
401 &cached_state);
c8b97818
CM
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
404 cond_resched();
405 goto again;
406 }
9655d298 407 free_extent_state(cached_state);
c8b97818
CM
408 *start = delalloc_start;
409 *end = delalloc_end;
410out_failed:
411 return found;
412}
413
ad7ff17b 414void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 415 struct page *locked_page,
f97e27e9 416 u32 clear_bits, unsigned long page_ops)
873695b3 417{
bd015294 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
873695b3 419
ad7ff17b 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
ef4e88e6 421 start, end, page_ops);
873695b3
LB
422}
423
ed9ee98e
CH
424static bool btrfs_verify_page(struct page *page, u64 start)
425{
426 if (!fsverity_active(page->mapping->host) ||
57201ddd 427 PageUptodate(page) ||
ed9ee98e
CH
428 start >= i_size_read(page->mapping->host))
429 return true;
430 return fsverity_verify_page(page);
431}
432
150e4b05
QW
433static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434{
b33d2e53 435 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
55151ea9 436 struct folio *folio = page_folio(page);
150e4b05
QW
437
438 ASSERT(page_offset(page) <= start &&
439 start + len <= page_offset(page) + PAGE_SIZE);
440
2b2553f1 441 if (uptodate && btrfs_verify_page(page, start))
55151ea9 442 btrfs_folio_set_uptodate(fs_info, folio, start, len);
2b2553f1 443 else
55151ea9 444 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
150e4b05 445
13df3775 446 if (!btrfs_is_subpage(fs_info, page->mapping))
150e4b05 447 unlock_page(page);
3d078efa 448 else
55151ea9 449 btrfs_subpage_end_reader(fs_info, folio, start, len);
150e4b05
QW
450}
451
d1310b2e 452/*
a700ca5e
QW
453 * After a write IO is done, we need to:
454 *
455 * - clear the uptodate bits on error
456 * - clear the writeback bits in the extent tree for the range
457 * - filio_end_writeback() if there is no more pending io for the folio
d1310b2e
CM
458 *
459 * Scheduling is not allowed, so the extent state tree is expected
460 * to have one and only one object corresponding to this IO.
461 */
a700ca5e 462static void end_bbio_data_write(struct btrfs_bio *bbio)
d1310b2e 463{
917f32a2 464 struct bio *bio = &bbio->bio;
4e4cbee9 465 int error = blk_status_to_errno(bio->bi_status);
a700ca5e 466 struct folio_iter fi;
d1310b2e 467
c09abff8 468 ASSERT(!bio_flagged(bio, BIO_CLONED));
a700ca5e
QW
469 bio_for_each_folio_all(fi, bio) {
470 struct folio *folio = fi.folio;
471 struct inode *inode = folio->mapping->host;
0b246afa 472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db 473 const u32 sectorsize = fs_info->sectorsize;
a700ca5e
QW
474 u64 start = folio_pos(folio) + fi.offset;
475 u32 len = fi.length;
476
477 /* Only order 0 (single page) folios are allowed for data. */
478 ASSERT(folio_order(folio) == 0);
321a02db
QW
479
480 /* Our read/write should always be sector aligned. */
a700ca5e 481 if (!IS_ALIGNED(fi.offset, sectorsize))
321a02db 482 btrfs_err(fs_info,
a700ca5e
QW
483 "partial page write in btrfs with offset %zu and length %zu",
484 fi.offset, fi.length);
485 else if (!IS_ALIGNED(fi.length, sectorsize))
321a02db 486 btrfs_info(fs_info,
a700ca5e
QW
487 "incomplete page write with offset %zu and length %zu",
488 fi.offset, fi.length);
321a02db 489
a700ca5e
QW
490 btrfs_finish_ordered_extent(bbio->ordered,
491 folio_page(folio, 0), start, len, !error);
b595d259 492 if (error)
a700ca5e
QW
493 mapping_set_error(folio->mapping, error);
494 btrfs_folio_clear_writeback(fs_info, folio, start, len);
2c30c71b 495 }
2b1f55b0 496
d1310b2e 497 bio_put(bio);
d1310b2e
CM
498}
499
94e8c95c
QW
500/*
501 * Record previously processed extent range
502 *
503 * For endio_readpage_release_extent() to handle a full extent range, reducing
504 * the extent io operations.
505 */
506struct processed_extent {
507 struct btrfs_inode *inode;
508 /* Start of the range in @inode */
509 u64 start;
2e626e56 510 /* End of the range in @inode */
94e8c95c
QW
511 u64 end;
512 bool uptodate;
513};
514
515/*
516 * Try to release processed extent range
517 *
518 * May not release the extent range right now if the current range is
519 * contiguous to processed extent.
520 *
521 * Will release processed extent when any of @inode, @uptodate, the range is
522 * no longer contiguous to the processed range.
523 *
524 * Passing @inode == NULL will force processed extent to be released.
525 */
526static void endio_readpage_release_extent(struct processed_extent *processed,
527 struct btrfs_inode *inode, u64 start, u64 end,
528 bool uptodate)
883d0de4
MX
529{
530 struct extent_state *cached = NULL;
94e8c95c
QW
531 struct extent_io_tree *tree;
532
533 /* The first extent, initialize @processed */
534 if (!processed->inode)
535 goto update;
883d0de4 536
94e8c95c
QW
537 /*
538 * Contiguous to processed extent, just uptodate the end.
539 *
540 * Several things to notice:
541 *
542 * - bio can be merged as long as on-disk bytenr is contiguous
543 * This means we can have page belonging to other inodes, thus need to
544 * check if the inode still matches.
545 * - bvec can contain range beyond current page for multi-page bvec
546 * Thus we need to do processed->end + 1 >= start check
547 */
548 if (processed->inode == inode && processed->uptodate == uptodate &&
549 processed->end + 1 >= start && end >= processed->end) {
550 processed->end = end;
551 return;
552 }
553
554 tree = &processed->inode->io_tree;
555 /*
556 * Now we don't have range contiguous to the processed range, release
557 * the processed range now.
558 */
48acc47d 559 unlock_extent(tree, processed->start, processed->end, &cached);
94e8c95c
QW
560
561update:
562 /* Update processed to current range */
563 processed->inode = inode;
564 processed->start = start;
565 processed->end = end;
566 processed->uptodate = uptodate;
883d0de4
MX
567}
568
92082d40
QW
569static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
570{
cfbf07e2
QW
571 struct folio *folio = page_folio(page);
572
55151ea9
QW
573 ASSERT(folio_test_locked(folio));
574 if (!btrfs_is_subpage(fs_info, folio->mapping))
92082d40
QW
575 return;
576
cfbf07e2 577 ASSERT(folio_test_private(folio));
55151ea9 578 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
92082d40
QW
579}
580
d1310b2e 581/*
a700ca5e
QW
582 * After a data read IO is done, we need to:
583 *
584 * - clear the uptodate bits on error
585 * - set the uptodate bits if things worked
586 * - set the folio up to date if all extents in the tree are uptodate
587 * - clear the lock bit in the extent tree
588 * - unlock the folio if there are no other extents locked for it
d1310b2e
CM
589 *
590 * Scheduling is not allowed, so the extent state tree is expected
591 * to have one and only one object corresponding to this IO.
592 */
a700ca5e 593static void end_bbio_data_read(struct btrfs_bio *bbio)
d1310b2e 594{
917f32a2 595 struct bio *bio = &bbio->bio;
94e8c95c 596 struct processed_extent processed = { 0 };
a700ca5e 597 struct folio_iter fi;
d1310b2e 598
c09abff8 599 ASSERT(!bio_flagged(bio, BIO_CLONED));
a700ca5e 600 bio_for_each_folio_all(fi, &bbio->bio) {
150e4b05 601 bool uptodate = !bio->bi_status;
a700ca5e
QW
602 struct folio *folio = fi.folio;
603 struct inode *inode = folio->mapping->host;
ab8d0fc4 604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3
QW
605 const u32 sectorsize = fs_info->sectorsize;
606 u64 start;
607 u64 end;
608 u32 len;
507903b8 609
a700ca5e
QW
610 /* For now only order 0 folios are supported for data. */
611 ASSERT(folio_order(folio) == 0);
ab8d0fc4 612 btrfs_debug(fs_info,
a700ca5e
QW
613 "%s: bi_sector=%llu, err=%d, mirror=%u",
614 __func__, bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 615 bbio->mirror_num);
902b22f3 616
8b8bbd46
QW
617 /*
618 * We always issue full-sector reads, but if some block in a
a700ca5e 619 * folio fails to read, blk_update_request() will advance
8b8bbd46
QW
620 * bv_offset and adjust bv_len to compensate. Print a warning
621 * for unaligned offsets, and an error if they don't add up to
622 * a full sector.
623 */
a700ca5e 624 if (!IS_ALIGNED(fi.offset, sectorsize))
8b8bbd46 625 btrfs_err(fs_info,
a700ca5e
QW
626 "partial page read in btrfs with offset %zu and length %zu",
627 fi.offset, fi.length);
628 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
8b8bbd46 629 btrfs_info(fs_info,
a700ca5e
QW
630 "incomplete page read with offset %zu and length %zu",
631 fi.offset, fi.length);
8b8bbd46 632
a700ca5e
QW
633 start = folio_pos(folio) + fi.offset;
634 end = start + fi.length - 1;
635 len = fi.length;
d1310b2e 636
883d0de4 637 if (likely(uptodate)) {
a71754fc 638 loff_t i_size = i_size_read(inode);
a700ca5e 639 pgoff_t end_index = i_size >> folio_shift(folio);
a71754fc 640
c28ea613
QW
641 /*
642 * Zero out the remaining part if this range straddles
643 * i_size.
644 *
a700ca5e 645 * Here we should only zero the range inside the folio,
c28ea613
QW
646 * not touch anything else.
647 *
648 * NOTE: i_size is exclusive while end is inclusive.
649 */
a700ca5e
QW
650 if (folio_index(folio) == end_index && i_size <= end) {
651 u32 zero_start = max(offset_in_folio(folio, i_size),
652 offset_in_folio(folio, start));
653 u32 zero_len = offset_in_folio(folio, end) + 1 -
654 zero_start;
c28ea613 655
a700ca5e 656 folio_zero_range(folio, zero_start, zero_len);
c28ea613 657 }
70dec807 658 }
97861cd1 659
7609afac 660 /* Update page status and unlock. */
a700ca5e 661 end_page_read(folio_page(folio, 0), uptodate, start, len);
7609afac 662 endio_readpage_release_extent(&processed, BTRFS_I(inode),
31dd8c81 663 start, end, uptodate);
2c30c71b 664 }
94e8c95c
QW
665 /* Release the last extent */
666 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
d1310b2e 667 bio_put(bio);
d1310b2e
CM
668}
669
43dd529a 670/*
dd137dd1
STD
671 * Populate every free slot in a provided array with pages.
672 *
673 * @nr_pages: number of pages to allocate
674 * @page_array: the array to fill with pages; any existing non-null entries in
675 * the array will be skipped
09e6cef1 676 * @extra_gfp: the extra GFP flags for the allocation.
dd137dd1
STD
677 *
678 * Return: 0 if all pages were able to be allocated;
94dbf7c0
QW
679 * -ENOMEM otherwise, the partially allocated pages would be freed and
680 * the array slots zeroed
dd137dd1 681 */
09e6cef1
QW
682int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
683 gfp_t extra_gfp)
dd137dd1 684{
91d6ac1d 685 unsigned int allocated;
dd137dd1 686
91d6ac1d
STD
687 for (allocated = 0; allocated < nr_pages;) {
688 unsigned int last = allocated;
dd137dd1 689
09e6cef1
QW
690 allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp,
691 nr_pages, page_array);
91d6ac1d 692
395cb57e
STD
693 if (allocated == nr_pages)
694 return 0;
695
91d6ac1d
STD
696 /*
697 * During this iteration, no page could be allocated, even
698 * though alloc_pages_bulk_array() falls back to alloc_page()
699 * if it could not bulk-allocate. So we must be out of memory.
700 */
94dbf7c0
QW
701 if (allocated == last) {
702 for (int i = 0; i < allocated; i++) {
703 __free_page(page_array[i]);
704 page_array[i] = NULL;
705 }
dd137dd1 706 return -ENOMEM;
94dbf7c0 707 }
395cb57e
STD
708
709 memalloc_retry_wait(GFP_NOFS);
dd137dd1
STD
710 }
711 return 0;
712}
713
082d5bb9
QW
714/*
715 * Populate needed folios for the extent buffer.
716 *
717 * For now, the folios populated are always in order 0 (aka, single page).
718 */
719static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
720{
721 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
722 int num_pages = num_extent_pages(eb);
723 int ret;
724
725 ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
726 if (ret < 0)
727 return ret;
728
729 for (int i = 0; i < num_pages; i++)
730 eb->folios[i] = page_folio(page_array[i]);
84cda1a6
QW
731 eb->folio_size = PAGE_SIZE;
732 eb->folio_shift = PAGE_SHIFT;
082d5bb9
QW
733 return 0;
734}
735
78a2ef1b
CH
736static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
737 struct page *page, u64 disk_bytenr,
738 unsigned int pg_offset)
739{
9dfde1b4 740 struct bio *bio = &bio_ctrl->bbio->bio;
78a2ef1b
CH
741 struct bio_vec *bvec = bio_last_bvec_all(bio);
742 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
743
744 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
745 /*
746 * For compression, all IO should have its logical bytenr set
747 * to the starting bytenr of the compressed extent.
748 */
749 return bio->bi_iter.bi_sector == sector;
750 }
751
752 /*
753 * The contig check requires the following conditions to be met:
754 *
755 * 1) The pages are belonging to the same inode
756 * This is implied by the call chain.
757 *
758 * 2) The range has adjacent logical bytenr
759 *
760 * 3) The range has adjacent file offset
761 * This is required for the usage of btrfs_bio->file_offset.
762 */
763 return bio_end_sector(bio) == sector &&
764 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
765 page_offset(page) + pg_offset;
766}
767
198bd49e
JT
768static void alloc_new_bio(struct btrfs_inode *inode,
769 struct btrfs_bio_ctrl *bio_ctrl,
770 u64 disk_bytenr, u64 file_offset)
390ed29b 771{
198bd49e 772 struct btrfs_fs_info *fs_info = inode->root->fs_info;
b41bbd29 773 struct btrfs_bio *bbio;
198bd49e 774
4317ff00 775 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
b41bbd29
CH
776 bio_ctrl->end_io_func, NULL);
777 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 778 bbio->inode = inode;
b41bbd29
CH
779 bbio->file_offset = file_offset;
780 bio_ctrl->bbio = bbio;
198bd49e 781 bio_ctrl->len_to_oe_boundary = U32_MAX;
390ed29b 782
a39da514
CH
783 /* Limit data write bios to the ordered boundary. */
784 if (bio_ctrl->wbc) {
198bd49e
JT
785 struct btrfs_ordered_extent *ordered;
786
2380220e
QW
787 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
788 if (ordered) {
789 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
72fcf1a4
CH
790 ordered->file_offset +
791 ordered->disk_num_bytes - file_offset);
ec63b84d 792 bbio->ordered = ordered;
2380220e 793 }
390ed29b 794
50f1cff3 795 /*
d5e4377d
CH
796 * Pick the last added device to support cgroup writeback. For
797 * multi-device file systems this means blk-cgroup policies have
798 * to always be set on the last added/replaced device.
799 * This is a bit odd but has been like that for a long time.
50f1cff3 800 */
b41bbd29
CH
801 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
802 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
e0eefe07 803 }
e0eefe07
QW
804}
805
4b81ba48 806/*
0c64c33c 807 * @disk_bytenr: logical bytenr where the write will be
209ecde5 808 * @page: page to add to the bio
0c64c33c 809 * @size: portion of page that we want to write to
b8b3d625
DS
810 * @pg_offset: offset of the new bio or to check whether we are adding
811 * a contiguous page to the previous one
814b6f91 812 *
9dfde1b4
CH
813 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
814 * new one in @bio_ctrl->bbio.
814b6f91
QW
815 * The mirror number for this IO should already be initizlied in
816 * @bio_ctrl->mirror_num.
4b81ba48 817 */
55173337
CH
818static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
819 u64 disk_bytenr, struct page *page,
820 size_t size, unsigned long pg_offset)
d1310b2e 821{
c8293894 822 struct btrfs_inode *inode = page_to_inode(page);
5467abba 823
24e6c808 824 ASSERT(pg_offset + size <= PAGE_SIZE);
5467abba
QW
825 ASSERT(bio_ctrl->end_io_func);
826
9dfde1b4 827 if (bio_ctrl->bbio &&
78a2ef1b
CH
828 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
829 submit_one_bio(bio_ctrl);
830
24e6c808
CH
831 do {
832 u32 len = size;
e0eefe07
QW
833
834 /* Allocate new bio if needed */
9dfde1b4 835 if (!bio_ctrl->bbio) {
72b505dc 836 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
24e6c808 837 page_offset(page) + pg_offset);
e0eefe07 838 }
24e6c808
CH
839
840 /* Cap to the current ordered extent boundary if there is one. */
841 if (len > bio_ctrl->len_to_oe_boundary) {
842 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
843 ASSERT(is_data_inode(&inode->vfs_inode));
844 len = bio_ctrl->len_to_oe_boundary;
845 }
846
9dfde1b4 847 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
24e6c808 848 /* bio full: move on to a new one */
722c82ac 849 submit_one_bio(bio_ctrl);
24e6c808 850 continue;
d1310b2e 851 }
24e6c808
CH
852
853 if (bio_ctrl->wbc)
854 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
855
856 size -= len;
857 pg_offset += len;
858 disk_bytenr += len;
09c3717c
CM
859
860 /*
861 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
862 * sector aligned. alloc_new_bio() then sets it to the end of
863 * our ordered extent for writes into zoned devices.
864 *
865 * When len_to_oe_boundary is tracking an ordered extent, we
866 * trust the ordered extent code to align things properly, and
867 * the check above to cap our write to the ordered extent
868 * boundary is correct.
869 *
870 * When len_to_oe_boundary is U32_MAX, the cap above would
871 * result in a 4095 byte IO for the last page right before
872 * we hit the bio limit of UINT_MAX. bio_add_page() has all
873 * the checks required to make sure we don't overflow the bio,
874 * and we should just ignore len_to_oe_boundary completely
875 * unless we're using it to track an ordered extent.
876 *
877 * It's pretty hard to make a bio sized U32_MAX, but it can
878 * happen when the page cache is able to feed us contiguous
879 * pages for large extents.
880 */
881 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
882 bio_ctrl->len_to_oe_boundary -= len;
24e6c808
CH
883
884 /* Ordered extent boundary: move on to a new bio. */
885 if (bio_ctrl->len_to_oe_boundary == 0)
886 submit_one_bio(bio_ctrl);
887 } while (size);
d1310b2e
CM
888}
889
13df3775
QW
890static int attach_extent_buffer_folio(struct extent_buffer *eb,
891 struct folio *folio,
892 struct btrfs_subpage *prealloc)
d1310b2e 893{
760f991f
QW
894 struct btrfs_fs_info *fs_info = eb->fs_info;
895 int ret = 0;
896
0d01e247
QW
897 /*
898 * If the page is mapped to btree inode, we should hold the private
899 * lock to prevent race.
900 * For cloned or dummy extent buffers, their pages are not mapped and
901 * will not race with any other ebs.
902 */
13df3775 903 if (folio->mapping)
affc5af3 904 lockdep_assert_held(&folio->mapping->i_private_lock);
0d01e247 905
fbca46eb 906 if (fs_info->nodesize >= PAGE_SIZE) {
cfbf07e2
QW
907 if (!folio_test_private(folio))
908 folio_attach_private(folio, eb);
760f991f 909 else
cfbf07e2 910 WARN_ON(folio_get_private(folio) != eb);
760f991f
QW
911 return 0;
912 }
913
914 /* Already mapped, just free prealloc */
cfbf07e2 915 if (folio_test_private(folio)) {
760f991f
QW
916 btrfs_free_subpage(prealloc);
917 return 0;
918 }
919
920 if (prealloc)
921 /* Has preallocated memory for subpage */
cfbf07e2 922 folio_attach_private(folio, prealloc);
d1b89bc0 923 else
760f991f 924 /* Do new allocation to attach subpage */
55151ea9 925 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
760f991f 926 return ret;
d1310b2e
CM
927}
928
32443de3 929int set_page_extent_mapped(struct page *page)
d1310b2e 930{
dfba9f47
MWO
931 return set_folio_extent_mapped(page_folio(page));
932}
933
934int set_folio_extent_mapped(struct folio *folio)
935{
32443de3
QW
936 struct btrfs_fs_info *fs_info;
937
dfba9f47 938 ASSERT(folio->mapping);
32443de3 939
cfbf07e2 940 if (folio_test_private(folio))
32443de3
QW
941 return 0;
942
b33d2e53 943 fs_info = folio_to_fs_info(folio);
32443de3 944
dfba9f47 945 if (btrfs_is_subpage(fs_info, folio->mapping))
55151ea9 946 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
32443de3 947
cfbf07e2 948 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
32443de3
QW
949 return 0;
950}
951
952void clear_page_extent_mapped(struct page *page)
953{
cfbf07e2 954 struct folio *folio = page_folio(page);
32443de3
QW
955 struct btrfs_fs_info *fs_info;
956
957 ASSERT(page->mapping);
958
cfbf07e2 959 if (!folio_test_private(folio))
32443de3
QW
960 return;
961
b33d2e53 962 fs_info = page_to_fs_info(page);
13df3775 963 if (btrfs_is_subpage(fs_info, page->mapping))
55151ea9 964 return btrfs_detach_subpage(fs_info, folio);
32443de3 965
cfbf07e2 966 folio_detach_private(folio);
d1310b2e
CM
967}
968
8bab0a30 969static struct extent_map *__get_extent_map(struct inode *inode, struct page *page,
1a5ee1e6 970 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
971{
972 struct extent_map *em;
973
974 if (em_cached && *em_cached) {
975 em = *em_cached;
cbc0e928 976 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 977 start < extent_map_end(em)) {
490b54d6 978 refcount_inc(&em->refs);
125bac01
MX
979 return em;
980 }
981
982 free_extent_map(em);
983 *em_cached = NULL;
984 }
985
8bab0a30 986 em = btrfs_get_extent(BTRFS_I(inode), page, start, len);
c0347550 987 if (em_cached && !IS_ERR(em)) {
125bac01 988 BUG_ON(*em_cached);
490b54d6 989 refcount_inc(&em->refs);
125bac01
MX
990 *em_cached = em;
991 }
992 return em;
993}
d1310b2e
CM
994/*
995 * basic readpage implementation. Locked extent state structs are inserted
996 * into the tree that are removed when the IO is done (by the end_io
997 * handlers)
79787eaa 998 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 999 * return 0 on success, otherwise return error
d1310b2e 1000 */
7aab8b32 1001static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
c000bc04 1002 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
d1310b2e
CM
1003{
1004 struct inode *inode = page->mapping->host;
92082d40 1005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 1006 u64 start = page_offset(page);
8eec8296 1007 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
1008 u64 cur = start;
1009 u64 extent_offset;
1010 u64 last_byte = i_size_read(inode);
1011 u64 block_start;
d1310b2e 1012 struct extent_map *em;
baf863b9 1013 int ret = 0;
306e16ce 1014 size_t pg_offset = 0;
d1310b2e 1015 size_t iosize;
4e00422e 1016 size_t blocksize = fs_info->sectorsize;
f657a31c 1017 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 1018
32443de3
QW
1019 ret = set_page_extent_mapped(page);
1020 if (ret < 0) {
570eb97b 1021 unlock_extent(tree, start, end, NULL);
92082d40 1022 unlock_page(page);
55173337 1023 return ret;
32443de3 1024 }
d1310b2e 1025
09cbfeaf 1026 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 1027 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
1028
1029 if (zero_offset) {
09cbfeaf 1030 iosize = PAGE_SIZE - zero_offset;
d048b9c2 1031 memzero_page(page, zero_offset, iosize);
c8b97818
CM
1032 }
1033 }
a700ca5e 1034 bio_ctrl->end_io_func = end_bbio_data_read;
92082d40 1035 begin_page_read(fs_info, page);
d1310b2e 1036 while (cur <= end) {
a140453b 1037 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
005efedf 1038 bool force_bio_submit = false;
0c64c33c 1039 u64 disk_bytenr;
c8f2f24b 1040
6a404910 1041 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 1042 if (cur >= last_byte) {
09cbfeaf 1043 iosize = PAGE_SIZE - pg_offset;
d048b9c2 1044 memzero_page(page, pg_offset, iosize);
2c8f5e8c 1045 unlock_extent(tree, cur, cur + iosize - 1, NULL);
92082d40 1046 end_page_read(page, true, cur, iosize);
d1310b2e
CM
1047 break;
1048 }
8bab0a30 1049 em = __get_extent_map(inode, page, cur, end - cur + 1, em_cached);
c0347550 1050 if (IS_ERR(em)) {
570eb97b 1051 unlock_extent(tree, cur, end, NULL);
92082d40 1052 end_page_read(page, false, cur, end + 1 - cur);
55173337 1053 return PTR_ERR(em);
d1310b2e 1054 }
d1310b2e
CM
1055 extent_offset = cur - em->start;
1056 BUG_ON(extent_map_end(em) <= cur);
1057 BUG_ON(end < cur);
1058
f86f7a75 1059 compress_type = extent_map_compression(em);
c8b97818 1060
d1310b2e 1061 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 1062 iosize = ALIGN(iosize, blocksize);
a140453b 1063 if (compress_type != BTRFS_COMPRESS_NONE)
0c64c33c 1064 disk_bytenr = em->block_start;
949b3273 1065 else
0c64c33c 1066 disk_bytenr = em->block_start + extent_offset;
d1310b2e 1067 block_start = em->block_start;
f86f7a75 1068 if (em->flags & EXTENT_FLAG_PREALLOC)
d899e052 1069 block_start = EXTENT_MAP_HOLE;
005efedf
FM
1070
1071 /*
1072 * If we have a file range that points to a compressed extent
260db43c 1073 * and it's followed by a consecutive file range that points
005efedf
FM
1074 * to the same compressed extent (possibly with a different
1075 * offset and/or length, so it either points to the whole extent
1076 * or only part of it), we must make sure we do not submit a
1077 * single bio to populate the pages for the 2 ranges because
1078 * this makes the compressed extent read zero out the pages
1079 * belonging to the 2nd range. Imagine the following scenario:
1080 *
1081 * File layout
1082 * [0 - 8K] [8K - 24K]
1083 * | |
1084 * | |
1085 * points to extent X, points to extent X,
1086 * offset 4K, length of 8K offset 0, length 16K
1087 *
1088 * [extent X, compressed length = 4K uncompressed length = 16K]
1089 *
1090 * If the bio to read the compressed extent covers both ranges,
1091 * it will decompress extent X into the pages belonging to the
1092 * first range and then it will stop, zeroing out the remaining
1093 * pages that belong to the other range that points to extent X.
1094 * So here we make sure we submit 2 bios, one for the first
1095 * range and another one for the third range. Both will target
1096 * the same physical extent from disk, but we can't currently
1097 * make the compressed bio endio callback populate the pages
1098 * for both ranges because each compressed bio is tightly
1099 * coupled with a single extent map, and each range can have
1100 * an extent map with a different offset value relative to the
1101 * uncompressed data of our extent and different lengths. This
1102 * is a corner case so we prioritize correctness over
1103 * non-optimal behavior (submitting 2 bios for the same extent).
1104 */
f86f7a75 1105 if (compress_type != BTRFS_COMPRESS_NONE &&
005efedf 1106 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 1107 *prev_em_start != em->start)
005efedf
FM
1108 force_bio_submit = true;
1109
1110 if (prev_em_start)
8e928218 1111 *prev_em_start = em->start;
005efedf 1112
d1310b2e
CM
1113 free_extent_map(em);
1114 em = NULL;
1115
1116 /* we've found a hole, just zero and go on */
1117 if (block_start == EXTENT_MAP_HOLE) {
d048b9c2 1118 memzero_page(page, pg_offset, iosize);
d1310b2e 1119
2c8f5e8c 1120 unlock_extent(tree, cur, cur + iosize - 1, NULL);
92082d40 1121 end_page_read(page, true, cur, iosize);
d1310b2e 1122 cur = cur + iosize;
306e16ce 1123 pg_offset += iosize;
d1310b2e
CM
1124 continue;
1125 }
1126 /* the get_extent function already copied into the page */
70dec807 1127 if (block_start == EXTENT_MAP_INLINE) {
570eb97b 1128 unlock_extent(tree, cur, cur + iosize - 1, NULL);
52b029f4 1129 end_page_read(page, true, cur, iosize);
70dec807 1130 cur = cur + iosize;
306e16ce 1131 pg_offset += iosize;
70dec807
CM
1132 continue;
1133 }
d1310b2e 1134
f8ed4852 1135 if (bio_ctrl->compress_type != compress_type) {
c9bc621f 1136 submit_one_bio(bio_ctrl);
f8ed4852
CH
1137 bio_ctrl->compress_type = compress_type;
1138 }
c9bc621f 1139
eb8d0c6d
CH
1140 if (force_bio_submit)
1141 submit_one_bio(bio_ctrl);
55173337
CH
1142 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1143 pg_offset);
d1310b2e 1144 cur = cur + iosize;
306e16ce 1145 pg_offset += iosize;
d1310b2e 1146 }
55173337
CH
1147
1148 return 0;
d1310b2e
CM
1149}
1150
fdaf9a58 1151int btrfs_read_folio(struct file *file, struct folio *folio)
7aab8b32 1152{
fdaf9a58 1153 struct page *page = &folio->page;
c8293894 1154 struct btrfs_inode *inode = page_to_inode(page);
7aab8b32
CH
1155 u64 start = page_offset(page);
1156 u64 end = start + PAGE_SIZE - 1;
c000bc04 1157 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
7aab8b32
CH
1158 int ret;
1159
1160 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1161
c000bc04 1162 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
7aab8b32
CH
1163 /*
1164 * If btrfs_do_readpage() failed we will want to submit the assembled
1165 * bio to do the cleanup.
1166 */
722c82ac 1167 submit_one_bio(&bio_ctrl);
7aab8b32
CH
1168 return ret;
1169}
1170
b6660e80 1171static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
1172 u64 start, u64 end,
1173 struct extent_map **em_cached,
1174 struct btrfs_bio_ctrl *bio_ctrl,
1175 u64 *prev_em_start)
9974090b 1176{
c8293894 1177 struct btrfs_inode *inode = page_to_inode(pages[0]);
9974090b
MX
1178 int index;
1179
b272ae22 1180 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
1181
1182 for (index = 0; index < nr_pages; index++) {
390ed29b 1183 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
c000bc04 1184 prev_em_start);
09cbfeaf 1185 put_page(pages[index]);
9974090b
MX
1186 }
1187}
1188
d1310b2e 1189/*
40f76580
CM
1190 * helper for __extent_writepage, doing all of the delayed allocation setup.
1191 *
5eaad97a 1192 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
1193 * to write the page (copy into inline extent). In this case the IO has
1194 * been started and the page is already unlocked.
1195 *
1196 * This returns 0 if all went well (page still locked)
1197 * This returns < 0 if there were errors (page still locked)
d1310b2e 1198 */
cd4c0bf9 1199static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 1200 struct page *page, struct writeback_control *wbc)
40f76580 1201{
2c73162d
CH
1202 const u64 page_start = page_offset(page);
1203 const u64 page_end = page_start + PAGE_SIZE - 1;
1204 u64 delalloc_start = page_start;
1205 u64 delalloc_end = page_end;
40f76580 1206 u64 delalloc_to_write = 0;
c56cbe90 1207 int ret = 0;
40f76580 1208
2749f7ef 1209 while (delalloc_start < page_end) {
2c73162d
CH
1210 delalloc_end = page_end;
1211 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1212 &delalloc_start, &delalloc_end)) {
40f76580
CM
1213 delalloc_start = delalloc_end + 1;
1214 continue;
1215 }
c56cbe90 1216
cd4c0bf9 1217 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
c56cbe90
CH
1218 delalloc_end, wbc);
1219 if (ret < 0)
7361b4ae 1220 return ret;
2b2553f1 1221
40f76580
CM
1222 delalloc_start = delalloc_end + 1;
1223 }
2c73162d
CH
1224
1225 /*
1226 * delalloc_end is already one less than the total length, so
1227 * we don't subtract one from PAGE_SIZE
1228 */
1229 delalloc_to_write +=
1230 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
c56cbe90
CH
1231
1232 /*
1233 * If btrfs_run_dealloc_range() already started I/O and unlocked
1234 * the pages, we just need to account for them here.
1235 */
1236 if (ret == 1) {
1237 wbc->nr_to_write -= delalloc_to_write;
1238 return 1;
1239 }
1240
40f76580
CM
1241 if (wbc->nr_to_write < delalloc_to_write) {
1242 int thresh = 8192;
1243
1244 if (delalloc_to_write < thresh * 2)
1245 thresh = delalloc_to_write;
1246 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1247 thresh);
1248 }
1249
b69d1ee9 1250 return 0;
40f76580
CM
1251}
1252
c5ef5c6c
QW
1253/*
1254 * Find the first byte we need to write.
1255 *
1256 * For subpage, one page can contain several sectors, and
1257 * __extent_writepage_io() will just grab all extent maps in the page
1258 * range and try to submit all non-inline/non-compressed extents.
1259 *
1260 * This is a big problem for subpage, we shouldn't re-submit already written
1261 * data at all.
1262 * This function will lookup subpage dirty bit to find which range we really
1263 * need to submit.
1264 *
1265 * Return the next dirty range in [@start, @end).
1266 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1267 */
1268static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1269 struct page *page, u64 *start, u64 *end)
1270{
cfbf07e2
QW
1271 struct folio *folio = page_folio(page);
1272 struct btrfs_subpage *subpage = folio_get_private(folio);
72a69cd0 1273 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
1274 u64 orig_start = *start;
1275 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 1276 unsigned long flags;
72a69cd0 1277 int range_start_bit;
c5ef5c6c
QW
1278 int range_end_bit;
1279
1280 /*
1281 * For regular sector size == page size case, since one page only
1282 * contains one sector, we return the page offset directly.
1283 */
13df3775 1284 if (!btrfs_is_subpage(fs_info, page->mapping)) {
c5ef5c6c
QW
1285 *start = page_offset(page);
1286 *end = page_offset(page) + PAGE_SIZE;
1287 return;
1288 }
1289
72a69cd0
QW
1290 range_start_bit = spi->dirty_offset +
1291 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1292
c5ef5c6c
QW
1293 /* We should have the page locked, but just in case */
1294 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
1295 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1296 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
1297 spin_unlock_irqrestore(&subpage->lock, flags);
1298
72a69cd0
QW
1299 range_start_bit -= spi->dirty_offset;
1300 range_end_bit -= spi->dirty_offset;
1301
c5ef5c6c
QW
1302 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1303 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1304}
1305
40f76580
CM
1306/*
1307 * helper for __extent_writepage. This calls the writepage start hooks,
1308 * and does the loop to map the page into extents and bios.
1309 *
1310 * We return 1 if the IO is started and the page is unlocked,
1311 * 0 if all went well (page still locked)
1312 * < 0 if there were errors (page still locked)
1313 */
d4580fe2 1314static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580 1315 struct page *page,
ee5f017d 1316 struct btrfs_bio_ctrl *bio_ctrl,
40f76580 1317 loff_t i_size,
57e5ffeb 1318 int *nr_ret)
d1310b2e 1319{
6bc5636a 1320 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
1321 u64 cur = page_offset(page);
1322 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 1323 u64 extent_offset;
d1310b2e 1324 u64 block_start;
d1310b2e 1325 struct extent_map *em;
40f76580
CM
1326 int ret = 0;
1327 int nr = 0;
c8b97818 1328
a129ffb8 1329 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
1330 if (ret) {
1331 /* Fixup worker will requeue */
72b505dc 1332 redirty_page_for_writepage(bio_ctrl->wbc, page);
d75855b4
NB
1333 unlock_page(page);
1334 return 1;
247e743c
CM
1335 }
1336
a700ca5e 1337 bio_ctrl->end_io_func = end_bbio_data_write;
d1310b2e 1338 while (cur <= end) {
6648cedd 1339 u32 len = end - cur + 1;
0c64c33c 1340 u64 disk_bytenr;
40f76580 1341 u64 em_end;
c5ef5c6c
QW
1342 u64 dirty_range_start = cur;
1343 u64 dirty_range_end;
6bc5636a 1344 u32 iosize;
58409edd 1345
40f76580 1346 if (cur >= i_size) {
6648cedd
CH
1347 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1348 true);
cc1d0d93
QW
1349 /*
1350 * This range is beyond i_size, thus we don't need to
1351 * bother writing back.
1352 * But we still need to clear the dirty subpage bit, or
1353 * the next time the page gets dirtied, we will try to
1354 * writeback the sectors with subpage dirty bits,
1355 * causing writeback without ordered extent.
1356 */
55151ea9 1357 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
d1310b2e
CM
1358 break;
1359 }
c5ef5c6c
QW
1360
1361 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1362 &dirty_range_end);
1363 if (cur < dirty_range_start) {
1364 cur = dirty_range_start;
1365 continue;
1366 }
1367
8bab0a30 1368 em = btrfs_get_extent(inode, NULL, cur, len);
c0347550 1369 if (IS_ERR(em)) {
61391d56 1370 ret = PTR_ERR_OR_ZERO(em);
5380311f 1371 goto out_error;
d1310b2e
CM
1372 }
1373
1374 extent_offset = cur - em->start;
40f76580 1375 em_end = extent_map_end(em);
6bc5636a
QW
1376 ASSERT(cur <= em_end);
1377 ASSERT(cur < end);
1378 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1379 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
f22b5dcb 1380
d1310b2e 1381 block_start = em->block_start;
6bc5636a
QW
1382 disk_bytenr = em->block_start + extent_offset;
1383
f86f7a75 1384 ASSERT(!extent_map_is_compressed(em));
f22b5dcb
CH
1385 ASSERT(block_start != EXTENT_MAP_HOLE);
1386 ASSERT(block_start != EXTENT_MAP_INLINE);
1387
c5ef5c6c
QW
1388 /*
1389 * Note that em_end from extent_map_end() and dirty_range_end from
1390 * find_next_dirty_byte() are all exclusive
1391 */
1392 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d1310b2e
CM
1393 free_extent_map(em);
1394 em = NULL;
1395
d2a91064 1396 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 1397 if (!PageWriteback(page)) {
d4580fe2 1398 btrfs_err(inode->root->fs_info,
58409edd
DS
1399 "page %lu not writeback, cur %llu end %llu",
1400 page->index, cur, end);
d1310b2e 1401 }
7f3c74fb 1402
c5ef5c6c
QW
1403 /*
1404 * Although the PageDirty bit is cleared before entering this
1405 * function, subpage dirty bit is not cleared.
1406 * So clear subpage dirty bit here so next time we won't submit
1407 * page for range already written to disk.
1408 */
55151ea9 1409 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
c5ef5c6c 1410
55173337
CH
1411 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1412 cur - page_offset(page));
6bc5636a 1413 cur += iosize;
d1310b2e
CM
1414 nr++;
1415 }
5380311f 1416
55151ea9 1417 btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
5380311f
CH
1418 *nr_ret = nr;
1419 return 0;
1420
1421out_error:
cc1d0d93
QW
1422 /*
1423 * If we finish without problem, we should not only clear page dirty,
1424 * but also empty subpage dirty bits
1425 */
40f76580 1426 *nr_ret = nr;
40f76580
CM
1427 return ret;
1428}
1429
1430/*
1431 * the writepage semantics are similar to regular writepage. extent
1432 * records are inserted to lock ranges in the tree, and as dirty areas
1433 * are found, they are marked writeback. Then the lock bits are removed
1434 * and the end_io handler clears the writeback ranges
3065976b
QW
1435 *
1436 * Return 0 if everything goes well.
1437 * Return <0 for error.
40f76580 1438 */
72b505dc 1439static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
40f76580 1440{
8e1dec8e 1441 struct folio *folio = page_folio(page);
40f76580 1442 struct inode *inode = page->mapping->host;
cf3075fb 1443 const u64 page_start = page_offset(page);
40f76580
CM
1444 int ret;
1445 int nr = 0;
eb70d222 1446 size_t pg_offset;
40f76580 1447 loff_t i_size = i_size_read(inode);
09cbfeaf 1448 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 1449
72b505dc 1450 trace___extent_writepage(page, inode, bio_ctrl->wbc);
40f76580
CM
1451
1452 WARN_ON(!PageLocked(page));
1453
7073017a 1454 pg_offset = offset_in_page(i_size);
40f76580
CM
1455 if (page->index > end_index ||
1456 (page->index == end_index && !pg_offset)) {
8e1dec8e
MWO
1457 folio_invalidate(folio, 0, folio_size(folio));
1458 folio_unlock(folio);
40f76580
CM
1459 return 0;
1460 }
1461
21a8935e 1462 if (page->index == end_index)
d048b9c2 1463 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580 1464
32443de3 1465 ret = set_page_extent_mapped(page);
2b2553f1 1466 if (ret < 0)
32443de3 1467 goto done;
40f76580 1468
eb34dcea
CH
1469 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1470 if (ret == 1)
1471 return 0;
1472 if (ret)
1473 goto done;
40f76580 1474
72b505dc 1475 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
40f76580 1476 if (ret == 1)
169d2c87 1477 return 0;
40f76580 1478
9ecdbee8
CH
1479 bio_ctrl->wbc->nr_to_write--;
1480
d1310b2e
CM
1481done:
1482 if (nr == 0) {
1483 /* make sure the mapping tag for page dirty gets cleared */
1484 set_page_writeback(page);
1485 end_page_writeback(page);
1486 }
9783e4de
CH
1487 if (ret) {
1488 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1489 PAGE_SIZE, !ret);
9783e4de
CH
1490 mapping_set_error(page->mapping, ret);
1491 }
eb34dcea 1492 unlock_page(page);
3065976b 1493 ASSERT(ret <= 0);
40f76580 1494 return ret;
d1310b2e
CM
1495}
1496
fd8b2b61 1497void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 1498{
74316201
N
1499 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1500 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
1501}
1502
2e3c2513 1503/*
a3efb2f0 1504 * Lock extent buffer status and pages for writeback.
2e3c2513 1505 *
9fdd1601
CH
1506 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1507 * extent buffer is not dirty)
1508 * Return %true is the extent buffer is submitted to bio.
2e3c2513 1509 */
9fdd1601 1510static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
50b21d7a 1511 struct writeback_control *wbc)
0b32f4bb 1512{
9df76fb5 1513 struct btrfs_fs_info *fs_info = eb->fs_info;
9fdd1601 1514 bool ret = false;
0b32f4bb 1515
50b21d7a
CH
1516 btrfs_tree_lock(eb);
1517 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
0b32f4bb 1518 btrfs_tree_unlock(eb);
50b21d7a 1519 if (wbc->sync_mode != WB_SYNC_ALL)
9fdd1601 1520 return false;
50b21d7a
CH
1521 wait_on_extent_buffer_writeback(eb);
1522 btrfs_tree_lock(eb);
0b32f4bb
JB
1523 }
1524
51561ffe
JB
1525 /*
1526 * We need to do this to prevent races in people who check if the eb is
1527 * under IO since we can end up having no IO bits set for a short period
1528 * of time.
1529 */
1530 spin_lock(&eb->refs_lock);
0b32f4bb
JB
1531 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1532 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 1533 spin_unlock(&eb->refs_lock);
0b32f4bb 1534 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
1535 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1536 -eb->len,
1537 fs_info->dirty_metadata_batch);
9fdd1601 1538 ret = true;
51561ffe
JB
1539 } else {
1540 spin_unlock(&eb->refs_lock);
0b32f4bb 1541 }
0b32f4bb 1542 btrfs_tree_unlock(eb);
2e3c2513 1543 return ret;
0b32f4bb
JB
1544}
1545
cd88a4fd 1546static void set_btree_ioerr(struct extent_buffer *eb)
656f30db 1547{
5a2c6075 1548 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 1549
cd88a4fd 1550 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
656f30db 1551
c2e39305
JB
1552 /*
1553 * A read may stumble upon this buffer later, make sure that it gets an
1554 * error and knows there was an error.
1555 */
1556 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1557
68b85589
JB
1558 /*
1559 * We need to set the mapping with the io error as well because a write
1560 * error will flip the file system readonly, and then syncfs() will
1561 * return a 0 because we are readonly if we don't modify the err seq for
1562 * the superblock.
1563 */
cd88a4fd 1564 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
68b85589 1565
656f30db
FM
1566 /*
1567 * If writeback for a btree extent that doesn't belong to a log tree
1568 * failed, increment the counter transaction->eb_write_errors.
1569 * We do this because while the transaction is running and before it's
1570 * committing (when we call filemap_fdata[write|wait]_range against
1571 * the btree inode), we might have
1572 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1573 * returns an error or an error happens during writeback, when we're
1574 * committing the transaction we wouldn't know about it, since the pages
1575 * can be no longer dirty nor marked anymore for writeback (if a
1576 * subsequent modification to the extent buffer didn't happen before the
1577 * transaction commit), which makes filemap_fdata[write|wait]_range not
1578 * able to find the pages tagged with SetPageError at transaction
1579 * commit time. So if this happens we must abort the transaction,
1580 * otherwise we commit a super block with btree roots that point to
1581 * btree nodes/leafs whose content on disk is invalid - either garbage
1582 * or the content of some node/leaf from a past generation that got
1583 * cowed or deleted and is no longer valid.
1584 *
1585 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1586 * not be enough - we need to distinguish between log tree extents vs
1587 * non-log tree extents, and the next filemap_fdatawait_range() call
1588 * will catch and clear such errors in the mapping - and that call might
1589 * be from a log sync and not from a transaction commit. Also, checking
1590 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1591 * not done and would not be reliable - the eb might have been released
1592 * from memory and reading it back again means that flag would not be
1593 * set (since it's a runtime flag, not persisted on disk).
1594 *
1595 * Using the flags below in the btree inode also makes us achieve the
1596 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1597 * writeback for all dirty pages and before filemap_fdatawait_range()
1598 * is called, the writeback for all dirty pages had already finished
1599 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1600 * filemap_fdatawait_range() would return success, as it could not know
1601 * that writeback errors happened (the pages were no longer tagged for
1602 * writeback).
1603 */
1604 switch (eb->log_index) {
1605 case -1:
5a2c6075 1606 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
1607 break;
1608 case 0:
5a2c6075 1609 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
1610 break;
1611 case 1:
5a2c6075 1612 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
1613 break;
1614 default:
1615 BUG(); /* unexpected, logic error */
1616 }
1617}
1618
2f3186d8
QW
1619/*
1620 * The endio specific version which won't touch any unsafe spinlock in endio
1621 * context.
1622 */
1623static struct extent_buffer *find_extent_buffer_nolock(
1624 struct btrfs_fs_info *fs_info, u64 start)
1625{
1626 struct extent_buffer *eb;
1627
1628 rcu_read_lock();
01cd3909
DS
1629 eb = radix_tree_lookup(&fs_info->buffer_radix,
1630 start >> fs_info->sectorsize_bits);
2f3186d8
QW
1631 if (eb && atomic_inc_not_zero(&eb->refs)) {
1632 rcu_read_unlock();
1633 return eb;
1634 }
1635 rcu_read_unlock();
1636 return NULL;
1637}
1638
a700ca5e 1639static void end_bbio_meta_write(struct btrfs_bio *bbio)
2f3186d8 1640{
cd88a4fd
CH
1641 struct extent_buffer *eb = bbio->private;
1642 struct btrfs_fs_info *fs_info = eb->fs_info;
1643 bool uptodate = !bbio->bio.bi_status;
a700ca5e 1644 struct folio_iter fi;
cd88a4fd 1645 u32 bio_offset = 0;
2f3186d8 1646
cd88a4fd
CH
1647 if (!uptodate)
1648 set_btree_ioerr(eb);
fa04c165 1649
a700ca5e 1650 bio_for_each_folio_all(fi, &bbio->bio) {
cd88a4fd 1651 u64 start = eb->start + bio_offset;
a700ca5e
QW
1652 struct folio *folio = fi.folio;
1653 u32 len = fi.length;
2f3186d8 1654
a700ca5e 1655 btrfs_folio_clear_writeback(fs_info, folio, start, len);
cd88a4fd 1656 bio_offset += len;
2f3186d8 1657 }
0b32f4bb 1658
cd88a4fd
CH
1659 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1660 smp_mb__after_atomic();
1661 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
0b32f4bb 1662
cd88a4fd 1663 bio_put(&bbio->bio);
0b32f4bb
JB
1664}
1665
fa04c165
QW
1666static void prepare_eb_write(struct extent_buffer *eb)
1667{
1668 u32 nritems;
1669 unsigned long start;
1670 unsigned long end;
1671
1672 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
fa04c165
QW
1673
1674 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1675 nritems = btrfs_header_nritems(eb);
1676 if (btrfs_header_level(eb) > 0) {
e23efd8e 1677 end = btrfs_node_key_ptr_offset(eb, nritems);
fa04c165
QW
1678 memzero_extent_buffer(eb, end, eb->len - end);
1679 } else {
1680 /*
1681 * Leaf:
1682 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1683 */
42c9419a 1684 start = btrfs_item_nr_offset(eb, nritems);
8009adf3 1685 end = btrfs_item_nr_offset(eb, 0);
3a3178c7
JB
1686 if (nritems == 0)
1687 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1688 else
1689 end += btrfs_item_offset(eb, nritems - 1);
fa04c165
QW
1690 memzero_extent_buffer(eb, start, end - start);
1691 }
1692}
1693
55173337 1694static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
50b21d7a 1695 struct writeback_control *wbc)
0b32f4bb 1696{
46672a44 1697 struct btrfs_fs_info *fs_info = eb->fs_info;
b51e6b4b 1698 struct btrfs_bio *bbio;
0b32f4bb 1699
fa04c165 1700 prepare_eb_write(eb);
35b6ddfa 1701
b51e6b4b
CH
1702 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1703 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
a700ca5e 1704 eb->fs_info, end_bbio_meta_write, eb);
b51e6b4b 1705 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
46672a44 1706 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
b51e6b4b
CH
1707 wbc_init_bio(wbc, &bbio->bio);
1708 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1709 bbio->file_offset = eb->start;
46672a44 1710 if (fs_info->nodesize < PAGE_SIZE) {
55151ea9
QW
1711 struct folio *folio = eb->folios[0];
1712 bool ret;
0b32f4bb 1713
55151ea9
QW
1714 folio_lock(folio);
1715 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1716 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
46672a44 1717 eb->len)) {
55151ea9 1718 folio_clear_dirty_for_io(folio);
46672a44
CH
1719 wbc->nr_to_write--;
1720 }
55151ea9
QW
1721 ret = bio_add_folio(&bbio->bio, folio, eb->len,
1722 eb->start - folio_pos(folio));
1723 ASSERT(ret);
1724 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1725 folio_unlock(folio);
46672a44 1726 } else {
13df3775
QW
1727 int num_folios = num_extent_folios(eb);
1728
1729 for (int i = 0; i < num_folios; i++) {
1730 struct folio *folio = eb->folios[i];
1731 bool ret;
1732
1733 folio_lock(folio);
1734 folio_clear_dirty_for_io(folio);
1735 folio_start_writeback(folio);
84cda1a6 1736 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
13df3775
QW
1737 ASSERT(ret);
1738 wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
84cda1a6 1739 eb->folio_size);
13df3775
QW
1740 wbc->nr_to_write -= folio_nr_pages(folio);
1741 folio_unlock(folio);
46672a44 1742 }
0b32f4bb 1743 }
b51e6b4b 1744 btrfs_submit_bio(bbio, 0);
0b32f4bb
JB
1745}
1746
c4aec299
QW
1747/*
1748 * Submit one subpage btree page.
1749 *
1750 * The main difference to submit_eb_page() is:
1751 * - Page locking
1752 * For subpage, we don't rely on page locking at all.
1753 *
1754 * - Flush write bio
1755 * We only flush bio if we may be unable to fit current extent buffers into
1756 * current bio.
1757 *
1758 * Return >=0 for the number of submitted extent buffers.
1759 * Return <0 for fatal error.
1760 */
50b21d7a 1761static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
c4aec299 1762{
b33d2e53 1763 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
cfbf07e2 1764 struct folio *folio = page_folio(page);
c4aec299
QW
1765 int submitted = 0;
1766 u64 page_start = page_offset(page);
1767 int bit_start = 0;
c4aec299 1768 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
c4aec299
QW
1769
1770 /* Lock and write each dirty extent buffers in the range */
72a69cd0 1771 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
cfbf07e2 1772 struct btrfs_subpage *subpage = folio_get_private(folio);
c4aec299
QW
1773 struct extent_buffer *eb;
1774 unsigned long flags;
1775 u64 start;
1776
1777 /*
1778 * Take private lock to ensure the subpage won't be detached
1779 * in the meantime.
1780 */
600f111e 1781 spin_lock(&page->mapping->i_private_lock);
cfbf07e2 1782 if (!folio_test_private(folio)) {
600f111e 1783 spin_unlock(&page->mapping->i_private_lock);
c4aec299
QW
1784 break;
1785 }
1786 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
1787 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1788 subpage->bitmaps)) {
c4aec299 1789 spin_unlock_irqrestore(&subpage->lock, flags);
600f111e 1790 spin_unlock(&page->mapping->i_private_lock);
c4aec299
QW
1791 bit_start++;
1792 continue;
1793 }
1794
1795 start = page_start + bit_start * fs_info->sectorsize;
1796 bit_start += sectors_per_node;
1797
1798 /*
1799 * Here we just want to grab the eb without touching extra
1800 * spin locks, so call find_extent_buffer_nolock().
1801 */
1802 eb = find_extent_buffer_nolock(fs_info, start);
1803 spin_unlock_irqrestore(&subpage->lock, flags);
600f111e 1804 spin_unlock(&page->mapping->i_private_lock);
c4aec299
QW
1805
1806 /*
1807 * The eb has already reached 0 refs thus find_extent_buffer()
1808 * doesn't return it. We don't need to write back such eb
1809 * anyway.
1810 */
1811 if (!eb)
1812 continue;
1813
50b21d7a 1814 if (lock_extent_buffer_for_io(eb, wbc)) {
46672a44 1815 write_one_eb(eb, wbc);
9fdd1601 1816 submitted++;
c4aec299 1817 }
c4aec299 1818 free_extent_buffer(eb);
c4aec299
QW
1819 }
1820 return submitted;
c4aec299
QW
1821}
1822
f91e0d0c
QW
1823/*
1824 * Submit all page(s) of one extent buffer.
1825 *
1826 * @page: the page of one extent buffer
1827 * @eb_context: to determine if we need to submit this page, if current page
1828 * belongs to this eb, we don't need to submit
1829 *
1830 * The caller should pass each page in their bytenr order, and here we use
1831 * @eb_context to determine if we have submitted pages of one extent buffer.
1832 *
1833 * If we have, we just skip until we hit a new page that doesn't belong to
1834 * current @eb_context.
1835 *
1836 * If not, we submit all the page(s) of the extent buffer.
1837 *
1838 * Return >0 if we have submitted the extent buffer successfully.
1839 * Return 0 if we don't need to submit the page, as it's already submitted by
1840 * previous call.
1841 * Return <0 for fatal error.
1842 */
861093ef 1843static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
f91e0d0c 1844{
861093ef 1845 struct writeback_control *wbc = ctx->wbc;
f91e0d0c 1846 struct address_space *mapping = page->mapping;
cfbf07e2 1847 struct folio *folio = page_folio(page);
f91e0d0c
QW
1848 struct extent_buffer *eb;
1849 int ret;
1850
cfbf07e2 1851 if (!folio_test_private(folio))
f91e0d0c
QW
1852 return 0;
1853
b33d2e53 1854 if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
50b21d7a 1855 return submit_eb_subpage(page, wbc);
c4aec299 1856
600f111e 1857 spin_lock(&mapping->i_private_lock);
cfbf07e2 1858 if (!folio_test_private(folio)) {
600f111e 1859 spin_unlock(&mapping->i_private_lock);
f91e0d0c
QW
1860 return 0;
1861 }
1862
cfbf07e2 1863 eb = folio_get_private(folio);
f91e0d0c
QW
1864
1865 /*
1866 * Shouldn't happen and normally this would be a BUG_ON but no point
1867 * crashing the machine for something we can survive anyway.
1868 */
1869 if (WARN_ON(!eb)) {
600f111e 1870 spin_unlock(&mapping->i_private_lock);
f91e0d0c
QW
1871 return 0;
1872 }
1873
861093ef 1874 if (eb == ctx->eb) {
600f111e 1875 spin_unlock(&mapping->i_private_lock);
f91e0d0c
QW
1876 return 0;
1877 }
1878 ret = atomic_inc_not_zero(&eb->refs);
600f111e 1879 spin_unlock(&mapping->i_private_lock);
f91e0d0c
QW
1880 if (!ret)
1881 return 0;
1882
861093ef
NA
1883 ctx->eb = eb;
1884
2ad8c051
NA
1885 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1886 if (ret) {
1887 if (ret == -EBUSY)
0bc09ca1
NA
1888 ret = 0;
1889 free_extent_buffer(eb);
1890 return ret;
1891 }
1892
50b21d7a 1893 if (!lock_extent_buffer_for_io(eb, wbc)) {
f91e0d0c 1894 free_extent_buffer(eb);
50b21d7a 1895 return 0;
f91e0d0c 1896 }
0356ad41 1897 /* Implies write in zoned mode. */
7db94301 1898 if (ctx->zoned_bg) {
0356ad41 1899 /* Mark the last eb in the block group. */
7db94301 1900 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
0356ad41 1901 ctx->zoned_bg->meta_write_pointer += eb->len;
be1a1d7a 1902 }
50b21d7a 1903 write_one_eb(eb, wbc);
f91e0d0c 1904 free_extent_buffer(eb);
f91e0d0c
QW
1905 return 1;
1906}
1907
0b32f4bb
JB
1908int btree_write_cache_pages(struct address_space *mapping,
1909 struct writeback_control *wbc)
1910{
861093ef 1911 struct btrfs_eb_write_context ctx = { .wbc = wbc };
b3ff8f1d 1912 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
1913 int ret = 0;
1914 int done = 0;
1915 int nr_to_write_done = 0;
51c5cd3b
VMO
1916 struct folio_batch fbatch;
1917 unsigned int nr_folios;
0b32f4bb
JB
1918 pgoff_t index;
1919 pgoff_t end; /* Inclusive */
1920 int scanned = 0;
10bbd235 1921 xa_mark_t tag;
0b32f4bb 1922
51c5cd3b 1923 folio_batch_init(&fbatch);
0b32f4bb
JB
1924 if (wbc->range_cyclic) {
1925 index = mapping->writeback_index; /* Start from prev offset */
1926 end = -1;
556755a8
JB
1927 /*
1928 * Start from the beginning does not need to cycle over the
1929 * range, mark it as scanned.
1930 */
1931 scanned = (index == 0);
0b32f4bb 1932 } else {
09cbfeaf
KS
1933 index = wbc->range_start >> PAGE_SHIFT;
1934 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
1935 scanned = 1;
1936 }
1937 if (wbc->sync_mode == WB_SYNC_ALL)
1938 tag = PAGECACHE_TAG_TOWRITE;
1939 else
1940 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 1941 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
1942retry:
1943 if (wbc->sync_mode == WB_SYNC_ALL)
1944 tag_pages_for_writeback(mapping, index, end);
1945 while (!done && !nr_to_write_done && (index <= end) &&
51c5cd3b
VMO
1946 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1947 tag, &fbatch))) {
0b32f4bb
JB
1948 unsigned i;
1949
51c5cd3b
VMO
1950 for (i = 0; i < nr_folios; i++) {
1951 struct folio *folio = fbatch.folios[i];
0b32f4bb 1952
861093ef 1953 ret = submit_eb_page(&folio->page, &ctx);
f91e0d0c 1954 if (ret == 0)
0b32f4bb 1955 continue;
f91e0d0c 1956 if (ret < 0) {
0b32f4bb 1957 done = 1;
0b32f4bb
JB
1958 break;
1959 }
0b32f4bb
JB
1960
1961 /*
1962 * the filesystem may choose to bump up nr_to_write.
1963 * We have to make sure to honor the new nr_to_write
1964 * at any time
1965 */
1966 nr_to_write_done = wbc->nr_to_write <= 0;
1967 }
51c5cd3b 1968 folio_batch_release(&fbatch);
0b32f4bb
JB
1969 cond_resched();
1970 }
1971 if (!scanned && !done) {
1972 /*
1973 * We hit the last page and there is more work to be done: wrap
1974 * back to the start of the file
1975 */
1976 scanned = 1;
1977 index = 0;
1978 goto retry;
1979 }
b3ff8f1d
QW
1980 /*
1981 * If something went wrong, don't allow any metadata write bio to be
1982 * submitted.
1983 *
1984 * This would prevent use-after-free if we had dirty pages not
1985 * cleaned up, which can still happen by fuzzed images.
1986 *
1987 * - Bad extent tree
1988 * Allowing existing tree block to be allocated for other trees.
1989 *
1990 * - Log tree operations
1991 * Exiting tree blocks get allocated to log tree, bumps its
1992 * generation, then get cleaned in tree re-balance.
1993 * Such tree block will not be written back, since it's clean,
1994 * thus no WRITTEN flag set.
1995 * And after log writes back, this tree block is not traced by
1996 * any dirty extent_io_tree.
1997 *
1998 * - Offending tree block gets re-dirtied from its original owner
1999 * Since it has bumped generation, no WRITTEN flag, it can be
2000 * reused without COWing. This tree block will not be traced
2001 * by btrfs_transaction::dirty_pages.
2002 *
2003 * Now such dirty tree block will not be cleaned by any dirty
2004 * extent io tree. Thus we don't want to submit such wild eb
2005 * if the fs already has error.
9845e5dd 2006 *
c9583ada
QW
2007 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2008 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2009 */
2010 if (ret > 0)
2011 ret = 0;
9845e5dd
CH
2012 if (!ret && BTRFS_FS_ERROR(fs_info))
2013 ret = -EROFS;
7db94301
NA
2014
2015 if (ctx.zoned_bg)
2016 btrfs_put_block_group(ctx.zoned_bg);
9845e5dd 2017 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
2018 return ret;
2019}
2020
43dd529a 2021/*
3bed2da1
NB
2022 * Walk the list of dirty pages of the given address space and write all of them.
2023 *
ee5f017d
DS
2024 * @mapping: address space structure to write
2025 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2026 * @bio_ctrl: holds context for the write, namely the bio
d1310b2e
CM
2027 *
2028 * If a page is already under I/O, write_cache_pages() skips it, even
2029 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2030 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2031 * and msync() need to guarantee that all the data which was dirty at the time
2032 * the call was made get new I/O started against them. If wbc->sync_mode is
2033 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2034 * existing IO to complete.
2035 */
4242b64a 2036static int extent_write_cache_pages(struct address_space *mapping,
ee5f017d 2037 struct btrfs_bio_ctrl *bio_ctrl)
d1310b2e 2038{
72b505dc 2039 struct writeback_control *wbc = bio_ctrl->wbc;
7fd1a3f7 2040 struct inode *inode = mapping->host;
d1310b2e
CM
2041 int ret = 0;
2042 int done = 0;
f85d7d6c 2043 int nr_to_write_done = 0;
9f50fd2e
VMO
2044 struct folio_batch fbatch;
2045 unsigned int nr_folios;
d1310b2e
CM
2046 pgoff_t index;
2047 pgoff_t end; /* Inclusive */
a9132667
LB
2048 pgoff_t done_index;
2049 int range_whole = 0;
d1310b2e 2050 int scanned = 0;
10bbd235 2051 xa_mark_t tag;
d1310b2e 2052
7fd1a3f7
JB
2053 /*
2054 * We have to hold onto the inode so that ordered extents can do their
2055 * work when the IO finishes. The alternative to this is failing to add
2056 * an ordered extent if the igrab() fails there and that is a huge pain
2057 * to deal with, so instead just hold onto the inode throughout the
2058 * writepages operation. If it fails here we are freeing up the inode
2059 * anyway and we'd rather not waste our time writing out stuff that is
2060 * going to be truncated anyway.
2061 */
2062 if (!igrab(inode))
2063 return 0;
2064
9f50fd2e 2065 folio_batch_init(&fbatch);
d1310b2e
CM
2066 if (wbc->range_cyclic) {
2067 index = mapping->writeback_index; /* Start from prev offset */
2068 end = -1;
556755a8
JB
2069 /*
2070 * Start from the beginning does not need to cycle over the
2071 * range, mark it as scanned.
2072 */
2073 scanned = (index == 0);
d1310b2e 2074 } else {
09cbfeaf
KS
2075 index = wbc->range_start >> PAGE_SHIFT;
2076 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
2077 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2078 range_whole = 1;
d1310b2e
CM
2079 scanned = 1;
2080 }
3cd24c69
EL
2081
2082 /*
2083 * We do the tagged writepage as long as the snapshot flush bit is set
2084 * and we are the first one who do the filemap_flush() on this inode.
2085 *
2086 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2087 * not race in and drop the bit.
2088 */
2089 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2090 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2091 &BTRFS_I(inode)->runtime_flags))
2092 wbc->tagged_writepages = 1;
2093
2094 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
2095 tag = PAGECACHE_TAG_TOWRITE;
2096 else
2097 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 2098retry:
3cd24c69 2099 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 2100 tag_pages_for_writeback(mapping, index, end);
a9132667 2101 done_index = index;
f85d7d6c 2102 while (!done && !nr_to_write_done && (index <= end) &&
9f50fd2e
VMO
2103 (nr_folios = filemap_get_folios_tag(mapping, &index,
2104 end, tag, &fbatch))) {
d1310b2e
CM
2105 unsigned i;
2106
9f50fd2e
VMO
2107 for (i = 0; i < nr_folios; i++) {
2108 struct folio *folio = fbatch.folios[i];
d1310b2e 2109
7b365a2a 2110 done_index = folio_next_index(folio);
d1310b2e 2111 /*
b93b0163
MW
2112 * At this point we hold neither the i_pages lock nor
2113 * the page lock: the page may be truncated or
2114 * invalidated (changing page->mapping to NULL),
2115 * or even swizzled back from swapper_space to
2116 * tmpfs file mapping
d1310b2e 2117 */
9f50fd2e 2118 if (!folio_trylock(folio)) {
ee5f017d 2119 submit_write_bio(bio_ctrl, 0);
9f50fd2e 2120 folio_lock(folio);
01d658f2 2121 }
d1310b2e 2122
9f50fd2e
VMO
2123 if (unlikely(folio->mapping != mapping)) {
2124 folio_unlock(folio);
d1310b2e
CM
2125 continue;
2126 }
2127
5c256998
CH
2128 if (!folio_test_dirty(folio)) {
2129 /* Someone wrote it for us. */
2130 folio_unlock(folio);
2131 continue;
2132 }
2133
d2c3f4f6 2134 if (wbc->sync_mode != WB_SYNC_NONE) {
9f50fd2e 2135 if (folio_test_writeback(folio))
ee5f017d 2136 submit_write_bio(bio_ctrl, 0);
9f50fd2e 2137 folio_wait_writeback(folio);
d2c3f4f6 2138 }
d1310b2e 2139
9f50fd2e
VMO
2140 if (folio_test_writeback(folio) ||
2141 !folio_clear_dirty_for_io(folio)) {
2142 folio_unlock(folio);
d1310b2e
CM
2143 continue;
2144 }
2145
72b505dc 2146 ret = __extent_writepage(&folio->page, bio_ctrl);
a9132667 2147 if (ret < 0) {
a9132667
LB
2148 done = 1;
2149 break;
2150 }
f85d7d6c
CM
2151
2152 /*
effa24f6 2153 * The filesystem may choose to bump up nr_to_write.
f85d7d6c 2154 * We have to make sure to honor the new nr_to_write
effa24f6 2155 * at any time.
f85d7d6c 2156 */
effa24f6
CH
2157 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2158 wbc->nr_to_write <= 0);
d1310b2e 2159 }
9f50fd2e 2160 folio_batch_release(&fbatch);
d1310b2e
CM
2161 cond_resched();
2162 }
894b36e3 2163 if (!scanned && !done) {
d1310b2e
CM
2164 /*
2165 * We hit the last page and there is more work to be done: wrap
2166 * back to the start of the file
2167 */
2168 scanned = 1;
2169 index = 0;
42ffb0bf
JB
2170
2171 /*
2172 * If we're looping we could run into a page that is locked by a
2173 * writer and that writer could be waiting on writeback for a
2174 * page in our current bio, and thus deadlock, so flush the
2175 * write bio here.
2176 */
ee5f017d 2177 submit_write_bio(bio_ctrl, 0);
c9583ada 2178 goto retry;
d1310b2e 2179 }
a9132667
LB
2180
2181 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2182 mapping->writeback_index = done_index;
2183
e55cf7ca 2184 btrfs_add_delayed_iput(BTRFS_I(inode));
894b36e3 2185 return ret;
d1310b2e 2186}
d1310b2e 2187
2bd0fc93
QW
2188/*
2189 * Submit the pages in the range to bio for call sites which delalloc range has
2190 * already been ran (aka, ordered extent inserted) and all pages are still
2191 * locked.
2192 */
778b8785
CH
2193void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2194 u64 start, u64 end, struct writeback_control *wbc,
2195 bool pages_dirty)
771ed689 2196{
2bd0fc93 2197 bool found_error = false;
771ed689
CM
2198 int ret = 0;
2199 struct address_space *mapping = inode->i_mapping;
eb34dcea
CH
2200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2201 const u32 sectorsize = fs_info->sectorsize;
2202 loff_t i_size = i_size_read(inode);
2bd0fc93 2203 u64 cur = start;
c000bc04 2204 struct btrfs_bio_ctrl bio_ctrl = {
7027f871
CH
2205 .wbc = wbc,
2206 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
c000bc04 2207 };
771ed689 2208
7027f871
CH
2209 if (wbc->no_cgroup_owner)
2210 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2211
66448b9d 2212 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
66448b9d 2213
2bd0fc93 2214 while (cur <= end) {
66448b9d 2215 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
9783e4de 2216 u32 cur_len = cur_end + 1 - cur;
eb34dcea
CH
2217 struct page *page;
2218 int nr = 0;
66448b9d 2219
2bd0fc93 2220 page = find_get_page(mapping, cur >> PAGE_SHIFT);
66448b9d 2221 ASSERT(PageLocked(page));
778b8785 2222 if (pages_dirty && page != locked_page) {
44962ca3
CH
2223 ASSERT(PageDirty(page));
2224 clear_page_dirty_for_io(page);
2225 }
eb34dcea
CH
2226
2227 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2228 i_size, &nr);
2229 if (ret == 1)
2230 goto next_page;
2231
2232 /* Make sure the mapping tag for page dirty gets cleared. */
2233 if (nr == 0) {
2234 set_page_writeback(page);
2235 end_page_writeback(page);
2236 }
9783e4de
CH
2237 if (ret) {
2238 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2239 cur, cur_len, !ret);
9783e4de
CH
2240 mapping_set_error(page->mapping, ret);
2241 }
55151ea9 2242 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
0835d1e6 2243 if (ret < 0)
2bd0fc93 2244 found_error = true;
eb34dcea 2245next_page:
09cbfeaf 2246 put_page(page);
66448b9d 2247 cur = cur_end + 1;
771ed689
CM
2248 }
2249
ee5f017d 2250 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
771ed689 2251}
d1310b2e 2252
8ae225a8 2253int extent_writepages(struct address_space *mapping,
d1310b2e
CM
2254 struct writeback_control *wbc)
2255{
35156d85 2256 struct inode *inode = mapping->host;
d1310b2e 2257 int ret = 0;
ee5f017d 2258 struct btrfs_bio_ctrl bio_ctrl = {
72b505dc 2259 .wbc = wbc,
c000bc04 2260 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
d1310b2e
CM
2261 };
2262
35156d85
JT
2263 /*
2264 * Allow only a single thread to do the reloc work in zoned mode to
2265 * protect the write pointer updates.
2266 */
869f4cdc 2267 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
72b505dc 2268 ret = extent_write_cache_pages(mapping, &bio_ctrl);
ee5f017d 2269 submit_write_bio(&bio_ctrl, ret);
19ab78ca 2270 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
d1310b2e
CM
2271 return ret;
2272}
d1310b2e 2273
ba206a02 2274void extent_readahead(struct readahead_control *rac)
d1310b2e 2275{
c000bc04 2276 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
67c9684f 2277 struct page *pagepool[16];
125bac01 2278 struct extent_map *em_cached = NULL;
808f80b4 2279 u64 prev_em_start = (u64)-1;
ba206a02 2280 int nr;
d1310b2e 2281
ba206a02 2282 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
2283 u64 contig_start = readahead_pos(rac);
2284 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 2285
ba206a02 2286 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 2287 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 2288 }
67c9684f 2289
125bac01
MX
2290 if (em_cached)
2291 free_extent_map(em_cached);
722c82ac 2292 submit_one_bio(&bio_ctrl);
d1310b2e 2293}
d1310b2e
CM
2294
2295/*
895586eb
MWO
2296 * basic invalidate_folio code, this waits on any locked or writeback
2297 * ranges corresponding to the folio, and then deletes any extent state
d1310b2e
CM
2298 * records from the tree
2299 */
895586eb
MWO
2300int extent_invalidate_folio(struct extent_io_tree *tree,
2301 struct folio *folio, size_t offset)
d1310b2e 2302{
2ac55d41 2303 struct extent_state *cached_state = NULL;
895586eb
MWO
2304 u64 start = folio_pos(folio);
2305 u64 end = start + folio_size(folio) - 1;
b33d2e53 2306 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
d1310b2e 2307
829ddec9
QW
2308 /* This function is only called for the btree inode */
2309 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2310
fda2832f 2311 start += ALIGN(offset, blocksize);
d1310b2e
CM
2312 if (start > end)
2313 return 0;
2314
570eb97b 2315 lock_extent(tree, start, end, &cached_state);
895586eb 2316 folio_wait_writeback(folio);
829ddec9
QW
2317
2318 /*
2319 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2320 * so here we only need to unlock the extent range to free any
2321 * existing extent state.
2322 */
570eb97b 2323 unlock_extent(tree, start, end, &cached_state);
d1310b2e
CM
2324 return 0;
2325}
d1310b2e 2326
7b13b7b1 2327/*
f913cff3 2328 * a helper for release_folio, this tests for areas of the page that
7b13b7b1
CM
2329 * are locked or under IO and drops the related state bits if it is safe
2330 * to drop the page.
2331 */
29c68b2d 2332static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 2333 struct page *page, gfp_t mask)
7b13b7b1 2334{
4eee4fa4 2335 u64 start = page_offset(page);
09cbfeaf 2336 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
2337 int ret = 1;
2338
99be1a66 2339 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
7b13b7b1 2340 ret = 0;
8882679e 2341 } else {
b71fb16b 2342 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
a8680550
BB
2343 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2344 EXTENT_QGROUP_RESERVED);
b71fb16b 2345
11ef160f 2346 /*
2766ff61
FM
2347 * At this point we can safely clear everything except the
2348 * locked bit, the nodatasum bit and the delalloc new bit.
2349 * The delalloc new bit will be cleared by ordered extent
2350 * completion.
11ef160f 2351 */
1d126800 2352 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
e3f24cc5
CM
2353
2354 /* if clear_extent_bit failed for enomem reasons,
2355 * we can't allow the release to continue.
2356 */
2357 if (ret < 0)
2358 ret = 0;
2359 else
2360 ret = 1;
7b13b7b1
CM
2361 }
2362 return ret;
2363}
7b13b7b1 2364
d1310b2e 2365/*
f913cff3 2366 * a helper for release_folio. As long as there are no locked extents
d1310b2e
CM
2367 * in the range corresponding to the page, both state records and extent
2368 * map records are removed
2369 */
477a30ba 2370int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
2371{
2372 struct extent_map *em;
4eee4fa4 2373 u64 start = page_offset(page);
09cbfeaf 2374 u64 end = start + PAGE_SIZE - 1;
c8293894 2375 struct btrfs_inode *btrfs_inode = page_to_inode(page);
bd3599a0
FM
2376 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2377 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 2378
d0164adc 2379 if (gfpflags_allow_blocking(mask) &&
ee22184b 2380 page->mapping->host->i_size > SZ_16M) {
39b5637f 2381 u64 len;
70dec807 2382 while (start <= end) {
fbc2bd7e
FM
2383 struct btrfs_fs_info *fs_info;
2384 u64 cur_gen;
2385
39b5637f 2386 len = end - start + 1;
890871be 2387 write_lock(&map->lock);
39b5637f 2388 em = lookup_extent_mapping(map, start, len);
285190d9 2389 if (!em) {
890871be 2390 write_unlock(&map->lock);
70dec807
CM
2391 break;
2392 }
f86f7a75 2393 if ((em->flags & EXTENT_FLAG_PINNED) ||
7f3c74fb 2394 em->start != start) {
890871be 2395 write_unlock(&map->lock);
70dec807
CM
2396 free_extent_map(em);
2397 break;
2398 }
99be1a66
DS
2399 if (test_range_bit_exists(tree, em->start,
2400 extent_map_end(em) - 1,
2401 EXTENT_LOCKED))
3d6448e6
FM
2402 goto next;
2403 /*
2404 * If it's not in the list of modified extents, used
2405 * by a fast fsync, we can remove it. If it's being
2406 * logged we can safely remove it since fsync took an
2407 * extra reference on the em.
2408 */
2409 if (list_empty(&em->list) ||
f86f7a75 2410 (em->flags & EXTENT_FLAG_LOGGING))
fbc2bd7e
FM
2411 goto remove_em;
2412 /*
2413 * If it's in the list of modified extents, remove it
2414 * only if its generation is older then the current one,
2415 * in which case we don't need it for a fast fsync.
2416 * Otherwise don't remove it, we could be racing with an
2417 * ongoing fast fsync that could miss the new extent.
2418 */
2419 fs_info = btrfs_inode->root->fs_info;
2420 spin_lock(&fs_info->trans_lock);
2421 cur_gen = fs_info->generation;
2422 spin_unlock(&fs_info->trans_lock);
2423 if (em->generation >= cur_gen)
2424 goto next;
2425remove_em:
5e548b32
FM
2426 /*
2427 * We only remove extent maps that are not in the list of
2428 * modified extents or that are in the list but with a
2429 * generation lower then the current generation, so there
2430 * is no need to set the full fsync flag on the inode (it
2431 * hurts the fsync performance for workloads with a data
2432 * size that exceeds or is close to the system's memory).
2433 */
fbc2bd7e
FM
2434 remove_extent_mapping(map, em);
2435 /* once for the rb tree */
2436 free_extent_map(em);
3d6448e6 2437next:
70dec807 2438 start = extent_map_end(em);
890871be 2439 write_unlock(&map->lock);
70dec807
CM
2440
2441 /* once for us */
d1310b2e 2442 free_extent_map(em);
9f47eb54
PM
2443
2444 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 2445 }
d1310b2e 2446 }
29c68b2d 2447 return try_release_extent_state(tree, page, mask);
d1310b2e 2448}
d1310b2e 2449
4751832d
QW
2450/*
2451 * To cache previous fiemap extent
2452 *
2453 * Will be used for merging fiemap extent
2454 */
2455struct fiemap_cache {
2456 u64 offset;
2457 u64 phys;
2458 u64 len;
2459 u32 flags;
2460 bool cached;
2461};
2462
2463/*
2464 * Helper to submit fiemap extent.
2465 *
2466 * Will try to merge current fiemap extent specified by @offset, @phys,
2467 * @len and @flags with cached one.
2468 * And only when we fails to merge, cached one will be submitted as
2469 * fiemap extent.
2470 *
2471 * Return value is the same as fiemap_fill_next_extent().
2472 */
2473static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2474 struct fiemap_cache *cache,
2475 u64 offset, u64 phys, u64 len, u32 flags)
2476{
a1a4a9ca 2477 u64 cache_end;
4751832d
QW
2478 int ret = 0;
2479
ac3c0d36
FM
2480 /* Set at the end of extent_fiemap(). */
2481 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2482
4751832d
QW
2483 if (!cache->cached)
2484 goto assign;
2485
2486 /*
a1a4a9ca
FM
2487 * When iterating the extents of the inode, at extent_fiemap(), we may
2488 * find an extent that starts at an offset behind the end offset of the
2489 * previous extent we processed. This happens if fiemap is called
2490 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2491 * while we call btrfs_next_leaf() (through fiemap_next_leaf_item()).
4751832d 2492 *
a1a4a9ca
FM
2493 * For example we are in leaf X processing its last item, which is the
2494 * file extent item for file range [512K, 1M[, and after
2495 * btrfs_next_leaf() releases the path, there's an ordered extent that
2496 * completes for the file range [768K, 2M[, and that results in trimming
2497 * the file extent item so that it now corresponds to the file range
2498 * [512K, 768K[ and a new file extent item is inserted for the file
2499 * range [768K, 2M[, which may end up as the last item of leaf X or as
2500 * the first item of the next leaf - in either case btrfs_next_leaf()
2501 * will leave us with a path pointing to the new extent item, for the
2502 * file range [768K, 2M[, since that's the first key that follows the
2503 * last one we processed. So in order not to report overlapping extents
2504 * to user space, we trim the length of the previously cached extent and
2505 * emit it.
2506 *
2507 * Upon calling btrfs_next_leaf() we may also find an extent with an
2508 * offset smaller than or equals to cache->offset, and this happens
2509 * when we had a hole or prealloc extent with several delalloc ranges in
2510 * it, but after btrfs_next_leaf() released the path, delalloc was
2511 * flushed and the resulting ordered extents were completed, so we can
2512 * now have found a file extent item for an offset that is smaller than
2513 * or equals to what we have in cache->offset. We deal with this as
2514 * described below.
4751832d 2515 */
a1a4a9ca
FM
2516 cache_end = cache->offset + cache->len;
2517 if (cache_end > offset) {
2518 if (offset == cache->offset) {
2519 /*
2520 * We cached a dealloc range (found in the io tree) for
2521 * a hole or prealloc extent and we have now found a
2522 * file extent item for the same offset. What we have
2523 * now is more recent and up to date, so discard what
2524 * we had in the cache and use what we have just found.
2525 */
2526 goto assign;
2527 } else if (offset > cache->offset) {
2528 /*
2529 * The extent range we previously found ends after the
2530 * offset of the file extent item we found and that
2531 * offset falls somewhere in the middle of that previous
2532 * extent range. So adjust the range we previously found
2533 * to end at the offset of the file extent item we have
2534 * just found, since this extent is more up to date.
2535 * Emit that adjusted range and cache the file extent
2536 * item we have just found. This corresponds to the case
2537 * where a previously found file extent item was split
2538 * due to an ordered extent completing.
2539 */
2540 cache->len = offset - cache->offset;
2541 goto emit;
2542 } else {
2543 const u64 range_end = offset + len;
2544
2545 /*
2546 * The offset of the file extent item we have just found
2547 * is behind the cached offset. This means we were
2548 * processing a hole or prealloc extent for which we
2549 * have found delalloc ranges (in the io tree), so what
2550 * we have in the cache is the last delalloc range we
2551 * found while the file extent item we found can be
2552 * either for a whole delalloc range we previously
2553 * emmitted or only a part of that range.
2554 *
2555 * We have two cases here:
2556 *
2557 * 1) The file extent item's range ends at or behind the
2558 * cached extent's end. In this case just ignore the
2559 * current file extent item because we don't want to
2560 * overlap with previous ranges that may have been
2561 * emmitted already;
2562 *
2563 * 2) The file extent item starts behind the currently
2564 * cached extent but its end offset goes beyond the
2565 * end offset of the cached extent. We don't want to
2566 * overlap with a previous range that may have been
2567 * emmitted already, so we emit the currently cached
2568 * extent and then partially store the current file
2569 * extent item's range in the cache, for the subrange
2570 * going the cached extent's end to the end of the
2571 * file extent item.
2572 */
2573 if (range_end <= cache_end)
2574 return 0;
2575
2576 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2577 phys += cache_end - offset;
2578
2579 offset = cache_end;
2580 len = range_end - cache_end;
2581 goto emit;
2582 }
4751832d
QW
2583 }
2584
2585 /*
2586 * Only merges fiemap extents if
2587 * 1) Their logical addresses are continuous
2588 *
2589 * 2) Their physical addresses are continuous
2590 * So truly compressed (physical size smaller than logical size)
2591 * extents won't get merged with each other
2592 *
ac3c0d36 2593 * 3) Share same flags
4751832d
QW
2594 */
2595 if (cache->offset + cache->len == offset &&
2596 cache->phys + cache->len == phys &&
ac3c0d36 2597 cache->flags == flags) {
4751832d 2598 cache->len += len;
ac3c0d36 2599 return 0;
4751832d
QW
2600 }
2601
a1a4a9ca 2602emit:
4751832d
QW
2603 /* Not mergeable, need to submit cached one */
2604 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2605 cache->len, cache->flags);
2606 cache->cached = false;
2607 if (ret)
2608 return ret;
2609assign:
2610 cache->cached = true;
2611 cache->offset = offset;
2612 cache->phys = phys;
2613 cache->len = len;
2614 cache->flags = flags;
ac3c0d36
FM
2615
2616 return 0;
4751832d
QW
2617}
2618
2619/*
848c23b7 2620 * Emit last fiemap cache
4751832d 2621 *
848c23b7
QW
2622 * The last fiemap cache may still be cached in the following case:
2623 * 0 4k 8k
2624 * |<- Fiemap range ->|
2625 * |<------------ First extent ----------->|
2626 *
2627 * In this case, the first extent range will be cached but not emitted.
2628 * So we must emit it before ending extent_fiemap().
4751832d 2629 */
5c5aff98 2630static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 2631 struct fiemap_cache *cache)
4751832d
QW
2632{
2633 int ret;
2634
2635 if (!cache->cached)
2636 return 0;
2637
4751832d
QW
2638 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2639 cache->len, cache->flags);
2640 cache->cached = false;
2641 if (ret > 0)
2642 ret = 0;
2643 return ret;
2644}
2645
ac3c0d36 2646static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
1506fcc8 2647{
ac3c0d36
FM
2648 struct extent_buffer *clone;
2649 struct btrfs_key key;
2650 int slot;
2651 int ret;
2652
2653 path->slots[0]++;
2654 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2655 return 0;
2656
2657 ret = btrfs_next_leaf(inode->root, path);
2658 if (ret != 0)
2659 return ret;
2660
2661 /*
2662 * Don't bother with cloning if there are no more file extent items for
2663 * our inode.
2664 */
2665 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2666 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2667 return 1;
2668
2669 /* See the comment at fiemap_search_slot() about why we clone. */
2670 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2671 if (!clone)
2672 return -ENOMEM;
2673
2674 slot = path->slots[0];
2675 btrfs_release_path(path);
2676 path->nodes[0] = clone;
2677 path->slots[0] = slot;
2678
2679 return 0;
2680}
2681
2682/*
2683 * Search for the first file extent item that starts at a given file offset or
2684 * the one that starts immediately before that offset.
2685 * Returns: 0 on success, < 0 on error, 1 if not found.
2686 */
2687static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2688 u64 file_offset)
2689{
2690 const u64 ino = btrfs_ino(inode);
facee0a0 2691 struct btrfs_root *root = inode->root;
ac3c0d36
FM
2692 struct extent_buffer *clone;
2693 struct btrfs_key key;
2694 int slot;
2695 int ret;
1506fcc8 2696
ac3c0d36
FM
2697 key.objectid = ino;
2698 key.type = BTRFS_EXTENT_DATA_KEY;
2699 key.offset = file_offset;
2700
2701 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2702 if (ret < 0)
2703 return ret;
2704
2705 if (ret > 0 && path->slots[0] > 0) {
2706 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2707 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2708 path->slots[0]--;
2709 }
2710
2711 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2712 ret = btrfs_next_leaf(root, path);
2713 if (ret != 0)
2714 return ret;
2715
2716 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2717 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2718 return 1;
5911c8fe
DS
2719 }
2720
15c7745c 2721 /*
ac3c0d36
FM
2722 * We clone the leaf and use it during fiemap. This is because while
2723 * using the leaf we do expensive things like checking if an extent is
2724 * shared, which can take a long time. In order to prevent blocking
2725 * other tasks for too long, we use a clone of the leaf. We have locked
2726 * the file range in the inode's io tree, so we know none of our file
2727 * extent items can change. This way we avoid blocking other tasks that
2728 * want to insert items for other inodes in the same leaf or b+tree
2729 * rebalance operations (triggered for example when someone is trying
2730 * to push items into this leaf when trying to insert an item in a
2731 * neighbour leaf).
2732 * We also need the private clone because holding a read lock on an
2733 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2734 * when we call fiemap_fill_next_extent(), because that may cause a page
2735 * fault when filling the user space buffer with fiemap data.
15c7745c 2736 */
ac3c0d36
FM
2737 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2738 if (!clone)
2739 return -ENOMEM;
2740
2741 slot = path->slots[0];
2742 btrfs_release_path(path);
2743 path->nodes[0] = clone;
2744 path->slots[0] = slot;
2745
2746 return 0;
2747}
2748
2749/*
2750 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2751 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2752 * extent. The end offset (@end) is inclusive.
2753 */
2754static int fiemap_process_hole(struct btrfs_inode *inode,
2755 struct fiemap_extent_info *fieinfo,
2756 struct fiemap_cache *cache,
b3e744fe 2757 struct extent_state **delalloc_cached_state,
61dbb952 2758 struct btrfs_backref_share_check_ctx *backref_ctx,
ac3c0d36
FM
2759 u64 disk_bytenr, u64 extent_offset,
2760 u64 extent_gen,
ac3c0d36
FM
2761 u64 start, u64 end)
2762{
2763 const u64 i_size = i_size_read(&inode->vfs_inode);
ac3c0d36
FM
2764 u64 cur_offset = start;
2765 u64 last_delalloc_end = 0;
2766 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2767 bool checked_extent_shared = false;
2768 int ret;
4d479cf0 2769
ec29ed5b 2770 /*
ac3c0d36
FM
2771 * There can be no delalloc past i_size, so don't waste time looking for
2772 * it beyond i_size.
ec29ed5b 2773 */
ac3c0d36 2774 while (cur_offset < end && cur_offset < i_size) {
b0ad381f 2775 struct extent_state *cached_state = NULL;
ac3c0d36
FM
2776 u64 delalloc_start;
2777 u64 delalloc_end;
2778 u64 prealloc_start;
b0ad381f
JB
2779 u64 lockstart;
2780 u64 lockend;
ac3c0d36
FM
2781 u64 prealloc_len = 0;
2782 bool delalloc;
2783
b0ad381f
JB
2784 lockstart = round_down(cur_offset, inode->root->fs_info->sectorsize);
2785 lockend = round_up(end, inode->root->fs_info->sectorsize);
2786
2787 /*
2788 * We are only locking for the delalloc range because that's the
2789 * only thing that can change here. With fiemap we have a lock
2790 * on the inode, so no buffered or direct writes can happen.
2791 *
2792 * However mmaps and normal page writeback will cause this to
2793 * change arbitrarily. We have to lock the extent lock here to
2794 * make sure that nobody messes with the tree while we're doing
2795 * btrfs_find_delalloc_in_range.
2796 */
2797 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
ac3c0d36 2798 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
b3e744fe 2799 delalloc_cached_state,
ac3c0d36
FM
2800 &delalloc_start,
2801 &delalloc_end);
b0ad381f 2802 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
ac3c0d36
FM
2803 if (!delalloc)
2804 break;
2d324f59 2805
ec29ed5b 2806 /*
ac3c0d36
FM
2807 * If this is a prealloc extent we have to report every section
2808 * of it that has no delalloc.
ec29ed5b 2809 */
ac3c0d36
FM
2810 if (disk_bytenr != 0) {
2811 if (last_delalloc_end == 0) {
2812 prealloc_start = start;
2813 prealloc_len = delalloc_start - start;
2814 } else {
2815 prealloc_start = last_delalloc_end + 1;
2816 prealloc_len = delalloc_start - prealloc_start;
2817 }
2818 }
2819
2820 if (prealloc_len > 0) {
2821 if (!checked_extent_shared && fieinfo->fi_extents_max) {
ceb707da 2822 ret = btrfs_is_data_extent_shared(inode,
84a7949d
FM
2823 disk_bytenr,
2824 extent_gen,
2825 backref_ctx);
ac3c0d36
FM
2826 if (ret < 0)
2827 return ret;
2828 else if (ret > 0)
2829 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2830
2831 checked_extent_shared = true;
2832 }
2833 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2834 disk_bytenr + extent_offset,
2835 prealloc_len, prealloc_flags);
2836 if (ret)
2837 return ret;
2838 extent_offset += prealloc_len;
2839 }
2840
2841 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2842 delalloc_end + 1 - delalloc_start,
2843 FIEMAP_EXTENT_DELALLOC |
2844 FIEMAP_EXTENT_UNKNOWN);
2845 if (ret)
2846 return ret;
2847
2848 last_delalloc_end = delalloc_end;
2849 cur_offset = delalloc_end + 1;
2850 extent_offset += cur_offset - delalloc_start;
2851 cond_resched();
2852 }
2853
2854 /*
2855 * Either we found no delalloc for the whole prealloc extent or we have
2856 * a prealloc extent that spans i_size or starts at or after i_size.
2857 */
2858 if (disk_bytenr != 0 && last_delalloc_end < end) {
2859 u64 prealloc_start;
2860 u64 prealloc_len;
2861
2862 if (last_delalloc_end == 0) {
2863 prealloc_start = start;
2864 prealloc_len = end + 1 - start;
2865 } else {
2866 prealloc_start = last_delalloc_end + 1;
2867 prealloc_len = end + 1 - prealloc_start;
2868 }
2869
2870 if (!checked_extent_shared && fieinfo->fi_extents_max) {
ceb707da
FM
2871 ret = btrfs_is_data_extent_shared(inode,
2872 disk_bytenr,
84a7949d 2873 extent_gen,
61dbb952 2874 backref_ctx);
ac3c0d36
FM
2875 if (ret < 0)
2876 return ret;
2877 else if (ret > 0)
2878 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2879 }
2880 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2881 disk_bytenr + extent_offset,
2882 prealloc_len, prealloc_flags);
2883 if (ret)
2884 return ret;
2885 }
2886
2887 return 0;
2888}
2889
2890static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2891 struct btrfs_path *path,
2892 u64 *last_extent_end_ret)
2893{
2894 const u64 ino = btrfs_ino(inode);
2895 struct btrfs_root *root = inode->root;
2896 struct extent_buffer *leaf;
2897 struct btrfs_file_extent_item *ei;
2898 struct btrfs_key key;
2899 u64 disk_bytenr;
2900 int ret;
2901
2902 /*
2903 * Lookup the last file extent. We're not using i_size here because
2904 * there might be preallocation past i_size.
2905 */
2906 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2907 /* There can't be a file extent item at offset (u64)-1 */
2908 ASSERT(ret != 0);
2909 if (ret < 0)
2910 return ret;
2911
2912 /*
2913 * For a non-existing key, btrfs_search_slot() always leaves us at a
2914 * slot > 0, except if the btree is empty, which is impossible because
2915 * at least it has the inode item for this inode and all the items for
2916 * the root inode 256.
2917 */
2918 ASSERT(path->slots[0] > 0);
2919 path->slots[0]--;
2920 leaf = path->nodes[0];
2921 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2922 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2923 /* No file extent items in the subvolume tree. */
2924 *last_extent_end_ret = 0;
2925 return 0;
975f84fe 2926 }
975f84fe 2927
ec29ed5b 2928 /*
ac3c0d36
FM
2929 * For an inline extent, the disk_bytenr is where inline data starts at,
2930 * so first check if we have an inline extent item before checking if we
2931 * have an implicit hole (disk_bytenr == 0).
ec29ed5b 2932 */
ac3c0d36
FM
2933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2934 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2935 *last_extent_end_ret = btrfs_file_extent_end(path);
2936 return 0;
ec29ed5b
CM
2937 }
2938
ac3c0d36
FM
2939 /*
2940 * Find the last file extent item that is not a hole (when NO_HOLES is
2941 * not enabled). This should take at most 2 iterations in the worst
2942 * case: we have one hole file extent item at slot 0 of a leaf and
2943 * another hole file extent item as the last item in the previous leaf.
2944 * This is because we merge file extent items that represent holes.
2945 */
2946 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2947 while (disk_bytenr == 0) {
2948 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2949 if (ret < 0) {
2950 return ret;
2951 } else if (ret > 0) {
2952 /* No file extent items that are not holes. */
2953 *last_extent_end_ret = 0;
2954 return 0;
2955 }
2956 leaf = path->nodes[0];
2957 ei = btrfs_item_ptr(leaf, path->slots[0],
2958 struct btrfs_file_extent_item);
2959 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2960 }
ec29ed5b 2961
ac3c0d36
FM
2962 *last_extent_end_ret = btrfs_file_extent_end(path);
2963 return 0;
2964}
2965
2966int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2967 u64 start, u64 len)
2968{
2969 const u64 ino = btrfs_ino(inode);
b3e744fe 2970 struct extent_state *delalloc_cached_state = NULL;
ac3c0d36 2971 struct btrfs_path *path;
ac3c0d36 2972 struct fiemap_cache cache = { 0 };
61dbb952 2973 struct btrfs_backref_share_check_ctx *backref_ctx;
ac3c0d36
FM
2974 u64 last_extent_end;
2975 u64 prev_extent_end;
b0ad381f
JB
2976 u64 range_start;
2977 u64 range_end;
2978 const u64 sectorsize = inode->root->fs_info->sectorsize;
ac3c0d36
FM
2979 bool stopped = false;
2980 int ret;
2981
84a7949d 2982 backref_ctx = btrfs_alloc_backref_share_check_ctx();
ac3c0d36 2983 path = btrfs_alloc_path();
84a7949d 2984 if (!backref_ctx || !path) {
ac3c0d36 2985 ret = -ENOMEM;
1506fcc8
YS
2986 goto out;
2987 }
975f84fe 2988
b0ad381f
JB
2989 range_start = round_down(start, sectorsize);
2990 range_end = round_up(start + len, sectorsize);
2991 prev_extent_end = range_start;
ea8efc74 2992
ac3c0d36
FM
2993 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2994 if (ret < 0)
418b0902 2995 goto out;
ac3c0d36 2996 btrfs_release_path(path);
1506fcc8 2997
ac3c0d36 2998 path->reada = READA_FORWARD;
b0ad381f 2999 ret = fiemap_search_slot(inode, path, range_start);
ac3c0d36 3000 if (ret < 0) {
418b0902 3001 goto out;
ac3c0d36 3002 } else if (ret > 0) {
ea8efc74 3003 /*
ac3c0d36
FM
3004 * No file extent item found, but we may have delalloc between
3005 * the current offset and i_size. So check for that.
ea8efc74 3006 */
ac3c0d36
FM
3007 ret = 0;
3008 goto check_eof_delalloc;
3009 }
3010
b0ad381f 3011 while (prev_extent_end < range_end) {
ac3c0d36
FM
3012 struct extent_buffer *leaf = path->nodes[0];
3013 struct btrfs_file_extent_item *ei;
3014 struct btrfs_key key;
3015 u64 extent_end;
3016 u64 extent_len;
3017 u64 extent_offset = 0;
3018 u64 extent_gen;
3019 u64 disk_bytenr = 0;
3020 u64 flags = 0;
3021 int extent_type;
3022 u8 compression;
3023
3024 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3025 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3026 break;
3027
3028 extent_end = btrfs_file_extent_end(path);
1506fcc8 3029
ea8efc74 3030 /*
ac3c0d36
FM
3031 * The first iteration can leave us at an extent item that ends
3032 * before our range's start. Move to the next item.
ea8efc74 3033 */
b0ad381f 3034 if (extent_end <= range_start)
ac3c0d36 3035 goto next_item;
fe09e16c 3036
877c1476
FM
3037 backref_ctx->curr_leaf_bytenr = leaf->start;
3038
ac3c0d36
FM
3039 /* We have in implicit hole (NO_HOLES feature enabled). */
3040 if (prev_extent_end < key.offset) {
b0ad381f 3041 const u64 hole_end = min(key.offset, range_end) - 1;
b8f164e3 3042
ac3c0d36 3043 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 3044 &delalloc_cached_state,
61dbb952 3045 backref_ctx, 0, 0, 0,
b0ad381f 3046 prev_extent_end, hole_end);
ac3c0d36 3047 if (ret < 0) {
418b0902 3048 goto out;
ac3c0d36
FM
3049 } else if (ret > 0) {
3050 /* fiemap_fill_next_extent() told us to stop. */
3051 stopped = true;
3052 break;
3053 }
1506fcc8 3054
ac3c0d36 3055 /* We've reached the end of the fiemap range, stop. */
b0ad381f 3056 if (key.offset >= range_end) {
ac3c0d36
FM
3057 stopped = true;
3058 break;
3059 }
1506fcc8
YS
3060 }
3061
ac3c0d36
FM
3062 extent_len = extent_end - key.offset;
3063 ei = btrfs_item_ptr(leaf, path->slots[0],
3064 struct btrfs_file_extent_item);
3065 compression = btrfs_file_extent_compression(leaf, ei);
3066 extent_type = btrfs_file_extent_type(leaf, ei);
3067 extent_gen = btrfs_file_extent_generation(leaf, ei);
3068
3069 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3070 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3071 if (compression == BTRFS_COMPRESS_NONE)
3072 extent_offset = btrfs_file_extent_offset(leaf, ei);
ec29ed5b 3073 }
ac3c0d36
FM
3074
3075 if (compression != BTRFS_COMPRESS_NONE)
3076 flags |= FIEMAP_EXTENT_ENCODED;
3077
3078 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3079 flags |= FIEMAP_EXTENT_DATA_INLINE;
3080 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3081 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3082 extent_len, flags);
3083 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3084 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 3085 &delalloc_cached_state,
61dbb952 3086 backref_ctx,
ac3c0d36 3087 disk_bytenr, extent_offset,
84a7949d
FM
3088 extent_gen, key.offset,
3089 extent_end - 1);
ac3c0d36
FM
3090 } else if (disk_bytenr == 0) {
3091 /* We have an explicit hole. */
3092 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 3093 &delalloc_cached_state,
61dbb952 3094 backref_ctx, 0, 0, 0,
ac3c0d36
FM
3095 key.offset, extent_end - 1);
3096 } else {
3097 /* We have a regular extent. */
3098 if (fieinfo->fi_extents_max) {
ceb707da 3099 ret = btrfs_is_data_extent_shared(inode,
ac3c0d36
FM
3100 disk_bytenr,
3101 extent_gen,
61dbb952 3102 backref_ctx);
ac3c0d36 3103 if (ret < 0)
418b0902 3104 goto out;
ac3c0d36
FM
3105 else if (ret > 0)
3106 flags |= FIEMAP_EXTENT_SHARED;
3107 }
3108
3109 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3110 disk_bytenr + extent_offset,
3111 extent_len, flags);
975f84fe 3112 }
ac3c0d36
FM
3113
3114 if (ret < 0) {
418b0902 3115 goto out;
ac3c0d36
FM
3116 } else if (ret > 0) {
3117 /* fiemap_fill_next_extent() told us to stop. */
3118 stopped = true;
3119 break;
26e726af 3120 }
09fbc1c8 3121
ac3c0d36
FM
3122 prev_extent_end = extent_end;
3123next_item:
09fbc1c8
FM
3124 if (fatal_signal_pending(current)) {
3125 ret = -EINTR;
418b0902 3126 goto out;
09fbc1c8 3127 }
ac3c0d36
FM
3128
3129 ret = fiemap_next_leaf_item(inode, path);
3130 if (ret < 0) {
418b0902 3131 goto out;
ac3c0d36
FM
3132 } else if (ret > 0) {
3133 /* No more file extent items for this inode. */
3134 break;
3135 }
3136 cond_resched();
1506fcc8 3137 }
5911c8fe 3138
ac3c0d36
FM
3139check_eof_delalloc:
3140 /*
3141 * Release (and free) the path before emitting any final entries to
3142 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3143 * once we find no more file extent items exist, we may have a
3144 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3145 * faults when copying data to the user space buffer.
3146 */
3147 btrfs_free_path(path);
3148 path = NULL;
3149
b0ad381f 3150 if (!stopped && prev_extent_end < range_end) {
b3e744fe
FM
3151 ret = fiemap_process_hole(inode, fieinfo, &cache,
3152 &delalloc_cached_state, backref_ctx,
b0ad381f 3153 0, 0, 0, prev_extent_end, range_end - 1);
ac3c0d36 3154 if (ret < 0)
418b0902 3155 goto out;
b0ad381f 3156 prev_extent_end = range_end;
ac3c0d36
FM
3157 }
3158
3159 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3160 const u64 i_size = i_size_read(&inode->vfs_inode);
3161
3162 if (prev_extent_end < i_size) {
b0ad381f 3163 struct extent_state *cached_state = NULL;
ac3c0d36
FM
3164 u64 delalloc_start;
3165 u64 delalloc_end;
b0ad381f
JB
3166 u64 lockstart;
3167 u64 lockend;
ac3c0d36
FM
3168 bool delalloc;
3169
b0ad381f
JB
3170 lockstart = round_down(prev_extent_end, sectorsize);
3171 lockend = round_up(i_size, sectorsize);
3172
3173 /*
3174 * See the comment in fiemap_process_hole as to why
3175 * we're doing the locking here.
3176 */
3177 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
ac3c0d36
FM
3178 delalloc = btrfs_find_delalloc_in_range(inode,
3179 prev_extent_end,
3180 i_size - 1,
b3e744fe 3181 &delalloc_cached_state,
ac3c0d36
FM
3182 &delalloc_start,
3183 &delalloc_end);
b0ad381f 3184 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
ac3c0d36
FM
3185 if (!delalloc)
3186 cache.flags |= FIEMAP_EXTENT_LAST;
3187 } else {
3188 cache.flags |= FIEMAP_EXTENT_LAST;
3189 }
3190 }
3191
3192 ret = emit_last_fiemap_cache(fieinfo, &cache);
ac3c0d36 3193out:
b3e744fe 3194 free_extent_state(delalloc_cached_state);
84a7949d 3195 btrfs_free_backref_share_ctx(backref_ctx);
e02d48ea 3196 btrfs_free_path(path);
1506fcc8
YS
3197 return ret;
3198}
3199
727011e0
CM
3200static void __free_extent_buffer(struct extent_buffer *eb)
3201{
727011e0
CM
3202 kmem_cache_free(extent_buffer_cache, eb);
3203}
3204
7f26fb1c 3205static int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436 3206{
113fa05c 3207 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
db7f3436
JB
3208 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3209}
3210
13df3775 3211static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
db7f3436 3212{
8ff8466d 3213 struct btrfs_subpage *subpage;
db7f3436 3214
affc5af3 3215 lockdep_assert_held(&folio->mapping->i_private_lock);
db7f3436 3216
cfbf07e2
QW
3217 if (folio_test_private(folio)) {
3218 subpage = folio_get_private(folio);
8ff8466d
QW
3219 if (atomic_read(&subpage->eb_refs))
3220 return true;
3d078efa
QW
3221 /*
3222 * Even there is no eb refs here, we may still have
3223 * end_page_read() call relying on page::private.
3224 */
3225 if (atomic_read(&subpage->readers))
3226 return true;
8ff8466d
QW
3227 }
3228 return false;
3229}
db7f3436 3230
13df3775 3231static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
8ff8466d
QW
3232{
3233 struct btrfs_fs_info *fs_info = eb->fs_info;
3234 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3235
3236 /*
cfbf07e2 3237 * For mapped eb, we're going to change the folio private, which should
600f111e 3238 * be done under the i_private_lock.
8ff8466d
QW
3239 */
3240 if (mapped)
affc5af3 3241 spin_lock(&folio->mapping->i_private_lock);
8ff8466d 3242
cfbf07e2 3243 if (!folio_test_private(folio)) {
5d2361db 3244 if (mapped)
affc5af3 3245 spin_unlock(&folio->mapping->i_private_lock);
8ff8466d
QW
3246 return;
3247 }
3248
fbca46eb 3249 if (fs_info->nodesize >= PAGE_SIZE) {
5d2361db
FL
3250 /*
3251 * We do this since we'll remove the pages after we've
3252 * removed the eb from the radix tree, so we could race
3253 * and have this page now attached to the new eb. So
cfbf07e2 3254 * only clear folio if it's still connected to
5d2361db
FL
3255 * this eb.
3256 */
cfbf07e2 3257 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
5d2361db 3258 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
13df3775
QW
3259 BUG_ON(folio_test_dirty(folio));
3260 BUG_ON(folio_test_writeback(folio));
cfbf07e2
QW
3261 /* We need to make sure we haven't be attached to a new eb. */
3262 folio_detach_private(folio);
db7f3436 3263 }
5d2361db 3264 if (mapped)
affc5af3 3265 spin_unlock(&folio->mapping->i_private_lock);
8ff8466d
QW
3266 return;
3267 }
3268
3269 /*
cfbf07e2
QW
3270 * For subpage, we can have dummy eb with folio private attached. In
3271 * this case, we can directly detach the private as such folio is only
3272 * attached to one dummy eb, no sharing.
8ff8466d
QW
3273 */
3274 if (!mapped) {
55151ea9 3275 btrfs_detach_subpage(fs_info, folio);
8ff8466d
QW
3276 return;
3277 }
3278
13df3775 3279 btrfs_folio_dec_eb_refs(fs_info, folio);
8ff8466d
QW
3280
3281 /*
cfbf07e2 3282 * We can only detach the folio private if there are no other ebs in the
3d078efa 3283 * page range and no unfinished IO.
8ff8466d 3284 */
13df3775 3285 if (!folio_range_has_eb(fs_info, folio))
55151ea9 3286 btrfs_detach_subpage(fs_info, folio);
8ff8466d 3287
affc5af3 3288 spin_unlock(&folio->mapping->i_private_lock);
8ff8466d
QW
3289}
3290
3291/* Release all pages attached to the extent buffer */
3292static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3293{
8ff8466d
QW
3294 ASSERT(!extent_buffer_under_io(eb));
3295
4a565c80 3296 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
13df3775 3297 struct folio *folio = eb->folios[i];
8ff8466d 3298
13df3775 3299 if (!folio)
8ff8466d
QW
3300 continue;
3301
13df3775 3302 detach_extent_buffer_folio(eb, folio);
5d2361db 3303
13df3775
QW
3304 /* One for when we allocated the folio. */
3305 folio_put(folio);
d64766fd 3306 }
db7f3436
JB
3307}
3308
3309/*
3310 * Helper for releasing the extent buffer.
3311 */
3312static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3313{
55ac0139 3314 btrfs_release_extent_buffer_pages(eb);
a40246e8 3315 btrfs_leak_debug_del_eb(eb);
db7f3436
JB
3316 __free_extent_buffer(eb);
3317}
3318
f28491e0
JB
3319static struct extent_buffer *
3320__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 3321 unsigned long len)
d1310b2e
CM
3322{
3323 struct extent_buffer *eb = NULL;
3324
d1b5c567 3325 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
3326 eb->start = start;
3327 eb->len = len;
f28491e0 3328 eb->fs_info = fs_info;
196d59ab 3329 init_rwsem(&eb->lock);
b4ce94de 3330
a40246e8 3331 btrfs_leak_debug_add_eb(eb);
6d49ba1b 3332
3083ee2e 3333 spin_lock_init(&eb->refs_lock);
d1310b2e 3334 atomic_set(&eb->refs, 1);
727011e0 3335
deb67895 3336 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
3337
3338 return eb;
3339}
3340
2b48966a 3341struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 3342{
815a51c7 3343 struct extent_buffer *new;
13df3775 3344 int num_folios = num_extent_folios(src);
dd137dd1 3345 int ret;
815a51c7 3346
3f556f78 3347 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
3348 if (new == NULL)
3349 return NULL;
3350
62c053fb
QW
3351 /*
3352 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3353 * btrfs_release_extent_buffer() have different behavior for
3354 * UNMAPPED subpage extent buffer.
3355 */
3356 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3357
082d5bb9 3358 ret = alloc_eb_folio_array(new, 0);
dd137dd1
STD
3359 if (ret) {
3360 btrfs_release_extent_buffer(new);
3361 return NULL;
3362 }
3363
13df3775
QW
3364 for (int i = 0; i < num_folios; i++) {
3365 struct folio *folio = new->folios[i];
760f991f
QW
3366 int ret;
3367
13df3775 3368 ret = attach_extent_buffer_folio(new, folio, NULL);
760f991f 3369 if (ret < 0) {
760f991f
QW
3370 btrfs_release_extent_buffer(new);
3371 return NULL;
3372 }
13df3775 3373 WARN_ON(folio_test_dirty(folio));
815a51c7 3374 }
682a0bc5 3375 copy_extent_buffer_full(new, src);
92d83e94 3376 set_extent_buffer_uptodate(new);
815a51c7
JS
3377
3378 return new;
3379}
3380
0f331229
OS
3381struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3382 u64 start, unsigned long len)
815a51c7
JS
3383{
3384 struct extent_buffer *eb;
13df3775 3385 int num_folios = 0;
dd137dd1 3386 int ret;
815a51c7 3387
3f556f78 3388 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
3389 if (!eb)
3390 return NULL;
3391
082d5bb9 3392 ret = alloc_eb_folio_array(eb, 0);
dd137dd1
STD
3393 if (ret)
3394 goto err;
3395
13df3775
QW
3396 num_folios = num_extent_folios(eb);
3397 for (int i = 0; i < num_folios; i++) {
3398 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
09bc1f0f
QW
3399 if (ret < 0)
3400 goto err;
815a51c7 3401 }
dd137dd1 3402
815a51c7
JS
3403 set_extent_buffer_uptodate(eb);
3404 btrfs_set_header_nritems(eb, 0);
b0132a3b 3405 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
3406
3407 return eb;
3408err:
13df3775 3409 for (int i = 0; i < num_folios; i++) {
082d5bb9 3410 if (eb->folios[i]) {
13df3775
QW
3411 detach_extent_buffer_folio(eb, eb->folios[i]);
3412 __folio_put(eb->folios[i]);
dd137dd1 3413 }
09bc1f0f 3414 }
815a51c7
JS
3415 __free_extent_buffer(eb);
3416 return NULL;
3417}
3418
0f331229 3419struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 3420 u64 start)
0f331229 3421{
da17066c 3422 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
3423}
3424
0b32f4bb
JB
3425static void check_buffer_tree_ref(struct extent_buffer *eb)
3426{
242e18c7 3427 int refs;
6bf9cd2e
BB
3428 /*
3429 * The TREE_REF bit is first set when the extent_buffer is added
3430 * to the radix tree. It is also reset, if unset, when a new reference
3431 * is created by find_extent_buffer.
0b32f4bb 3432 *
6bf9cd2e
BB
3433 * It is only cleared in two cases: freeing the last non-tree
3434 * reference to the extent_buffer when its STALE bit is set or
f913cff3 3435 * calling release_folio when the tree reference is the only reference.
0b32f4bb 3436 *
6bf9cd2e 3437 * In both cases, care is taken to ensure that the extent_buffer's
f913cff3 3438 * pages are not under io. However, release_folio can be concurrently
6bf9cd2e
BB
3439 * called with creating new references, which is prone to race
3440 * conditions between the calls to check_buffer_tree_ref in those
3441 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 3442 *
6bf9cd2e
BB
3443 * The actual lifetime of the extent_buffer in the radix tree is
3444 * adequately protected by the refcount, but the TREE_REF bit and
3445 * its corresponding reference are not. To protect against this
3446 * class of races, we call check_buffer_tree_ref from the codepaths
113fa05c
CH
3447 * which trigger io. Note that once io is initiated, TREE_REF can no
3448 * longer be cleared, so that is the moment at which any such race is
3449 * best fixed.
0b32f4bb 3450 */
242e18c7
CM
3451 refs = atomic_read(&eb->refs);
3452 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3453 return;
3454
594831c4
JB
3455 spin_lock(&eb->refs_lock);
3456 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 3457 atomic_inc(&eb->refs);
594831c4 3458 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3459}
3460
13df3775 3461static void mark_extent_buffer_accessed(struct extent_buffer *eb)
5df4235e 3462{
13df3775 3463 int num_folios= num_extent_folios(eb);
5df4235e 3464
0b32f4bb
JB
3465 check_buffer_tree_ref(eb);
3466
13df3775
QW
3467 for (int i = 0; i < num_folios; i++)
3468 folio_mark_accessed(eb->folios[i]);
5df4235e
JB
3469}
3470
f28491e0
JB
3471struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3472 u64 start)
452c75c3
CS
3473{
3474 struct extent_buffer *eb;
3475
2f3186d8
QW
3476 eb = find_extent_buffer_nolock(fs_info, start);
3477 if (!eb)
3478 return NULL;
3479 /*
3480 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3481 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3482 * another task running free_extent_buffer() might have seen that flag
3483 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3484 * writeback flags not set) and it's still in the tree (flag
3485 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3486 * decrementing the extent buffer's reference count twice. So here we
3487 * could race and increment the eb's reference count, clear its stale
3488 * flag, mark it as dirty and drop our reference before the other task
3489 * finishes executing free_extent_buffer, which would later result in
3490 * an attempt to free an extent buffer that is dirty.
3491 */
3492 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3493 spin_lock(&eb->refs_lock);
3494 spin_unlock(&eb->refs_lock);
452c75c3 3495 }
13df3775 3496 mark_extent_buffer_accessed(eb);
2f3186d8 3497 return eb;
452c75c3
CS
3498}
3499
faa2dbf0
JB
3500#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3501struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 3502 u64 start)
faa2dbf0
JB
3503{
3504 struct extent_buffer *eb, *exists = NULL;
3505 int ret;
3506
3507 eb = find_extent_buffer(fs_info, start);
3508 if (eb)
3509 return eb;
da17066c 3510 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 3511 if (!eb)
b6293c82 3512 return ERR_PTR(-ENOMEM);
faa2dbf0 3513 eb->fs_info = fs_info;
01cd3909
DS
3514again:
3515 ret = radix_tree_preload(GFP_NOFS);
3516 if (ret) {
3517 exists = ERR_PTR(ret);
3518 goto free_eb;
3519 }
3520 spin_lock(&fs_info->buffer_lock);
3521 ret = radix_tree_insert(&fs_info->buffer_radix,
3522 start >> fs_info->sectorsize_bits, eb);
3523 spin_unlock(&fs_info->buffer_lock);
3524 radix_tree_preload_end();
3525 if (ret == -EEXIST) {
3526 exists = find_extent_buffer(fs_info, start);
3527 if (exists)
faa2dbf0 3528 goto free_eb;
01cd3909
DS
3529 else
3530 goto again;
3531 }
faa2dbf0
JB
3532 check_buffer_tree_ref(eb);
3533 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3534
faa2dbf0
JB
3535 return eb;
3536free_eb:
3537 btrfs_release_extent_buffer(eb);
3538 return exists;
3539}
3540#endif
3541
81982210
QW
3542static struct extent_buffer *grab_extent_buffer(
3543 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7 3544{
cfbf07e2 3545 struct folio *folio = page_folio(page);
c0f0a9e7
QW
3546 struct extent_buffer *exists;
3547
81982210
QW
3548 /*
3549 * For subpage case, we completely rely on radix tree to ensure we
3550 * don't try to insert two ebs for the same bytenr. So here we always
3551 * return NULL and just continue.
3552 */
fbca46eb 3553 if (fs_info->nodesize < PAGE_SIZE)
81982210
QW
3554 return NULL;
3555
c0f0a9e7 3556 /* Page not yet attached to an extent buffer */
cfbf07e2 3557 if (!folio_test_private(folio))
c0f0a9e7
QW
3558 return NULL;
3559
3560 /*
3561 * We could have already allocated an eb for this page and attached one
3562 * so lets see if we can get a ref on the existing eb, and if we can we
3563 * know it's good and we can just return that one, else we know we can
cfbf07e2 3564 * just overwrite folio private.
c0f0a9e7 3565 */
cfbf07e2 3566 exists = folio_get_private(folio);
c0f0a9e7
QW
3567 if (atomic_inc_not_zero(&exists->refs))
3568 return exists;
3569
3570 WARN_ON(PageDirty(page));
cfbf07e2 3571 folio_detach_private(folio);
c0f0a9e7
QW
3572 return NULL;
3573}
3574
fbca46eb
QW
3575static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3576{
3577 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3578 btrfs_err(fs_info, "bad tree block start %llu", start);
3579 return -EINVAL;
3580 }
3581
3582 if (fs_info->nodesize < PAGE_SIZE &&
3583 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3584 btrfs_err(fs_info,
3585 "tree block crosses page boundary, start %llu nodesize %u",
3586 start, fs_info->nodesize);
3587 return -EINVAL;
3588 }
3589 if (fs_info->nodesize >= PAGE_SIZE &&
1280d2d1 3590 !PAGE_ALIGNED(start)) {
fbca46eb
QW
3591 btrfs_err(fs_info,
3592 "tree block is not page aligned, start %llu nodesize %u",
3593 start, fs_info->nodesize);
3594 return -EINVAL;
3595 }
6d3a6194
QW
3596 if (!IS_ALIGNED(start, fs_info->nodesize) &&
3597 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3598 btrfs_warn(fs_info,
3599"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3600 start, fs_info->nodesize);
3601 }
fbca46eb
QW
3602 return 0;
3603}
3604
09e6cef1
QW
3605
3606/*
082d5bb9
QW
3607 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3608 * Return >0 if there is already another extent buffer for the range,
09e6cef1 3609 * and @found_eb_ret would be updated.
13df3775
QW
3610 * Return -EAGAIN if the filemap has an existing folio but with different size
3611 * than @eb.
3612 * The caller needs to free the existing folios and retry using the same order.
09e6cef1 3613 */
13df3775
QW
3614static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3615 struct extent_buffer **found_eb_ret)
09e6cef1
QW
3616{
3617
3618 struct btrfs_fs_info *fs_info = eb->fs_info;
3619 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3620 const unsigned long index = eb->start >> PAGE_SHIFT;
3621 struct folio *existing_folio;
3622 int ret;
3623
3624 ASSERT(found_eb_ret);
3625
082d5bb9
QW
3626 /* Caller should ensure the folio exists. */
3627 ASSERT(eb->folios[i]);
09e6cef1
QW
3628
3629retry:
082d5bb9 3630 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
09e6cef1
QW
3631 GFP_NOFS | __GFP_NOFAIL);
3632 if (!ret)
3633 return 0;
3634
3635 existing_folio = filemap_lock_folio(mapping, index + i);
3636 /* The page cache only exists for a very short time, just retry. */
3637 if (IS_ERR(existing_folio))
3638 goto retry;
3639
3640 /* For now, we should only have single-page folios for btree inode. */
3641 ASSERT(folio_nr_pages(existing_folio) == 1);
3642
84cda1a6 3643 if (folio_size(existing_folio) != eb->folio_size) {
13df3775
QW
3644 folio_unlock(existing_folio);
3645 folio_put(existing_folio);
3646 return -EAGAIN;
3647 }
3648
09e6cef1
QW
3649 if (fs_info->nodesize < PAGE_SIZE) {
3650 /*
3651 * We're going to reuse the existing page, can drop our page
3652 * and subpage structure now.
3653 */
082d5bb9
QW
3654 __free_page(folio_page(eb->folios[i], 0));
3655 eb->folios[i] = existing_folio;
09e6cef1
QW
3656 } else {
3657 struct extent_buffer *existing_eb;
3658
3659 existing_eb = grab_extent_buffer(fs_info,
3660 folio_page(existing_folio, 0));
3661 if (existing_eb) {
3662 /* The extent buffer still exists, we can use it directly. */
3663 *found_eb_ret = existing_eb;
3664 folio_unlock(existing_folio);
3665 folio_put(existing_folio);
3666 return 1;
3667 }
3668 /* The extent buffer no longer exists, we can reuse the folio. */
082d5bb9
QW
3669 __free_page(folio_page(eb->folios[i], 0));
3670 eb->folios[i] = existing_folio;
09e6cef1
QW
3671 }
3672 return 0;
3673}
3674
f28491e0 3675struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 3676 u64 start, u64 owner_root, int level)
d1310b2e 3677{
da17066c 3678 unsigned long len = fs_info->nodesize;
13df3775 3679 int num_folios;
09e6cef1 3680 int attached = 0;
d1310b2e 3681 struct extent_buffer *eb;
09e6cef1 3682 struct extent_buffer *existing_eb = NULL;
f28491e0 3683 struct address_space *mapping = fs_info->btree_inode->i_mapping;
52ea5bfb 3684 struct btrfs_subpage *prealloc = NULL;
b40130b2 3685 u64 lockdep_owner = owner_root;
397239ed 3686 bool page_contig = true;
d1310b2e 3687 int uptodate = 1;
19fe0a8b 3688 int ret;
d1310b2e 3689
fbca46eb 3690 if (check_eb_alignment(fs_info, start))
c871b0f2 3691 return ERR_PTR(-EINVAL);
c871b0f2 3692
e9306ad4
QW
3693#if BITS_PER_LONG == 32
3694 if (start >= MAX_LFS_FILESIZE) {
3695 btrfs_err_rl(fs_info,
3696 "extent buffer %llu is beyond 32bit page cache limit", start);
3697 btrfs_err_32bit_limit(fs_info);
3698 return ERR_PTR(-EOVERFLOW);
3699 }
3700 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3701 btrfs_warn_32bit_limit(fs_info);
3702#endif
3703
f28491e0 3704 eb = find_extent_buffer(fs_info, start);
452c75c3 3705 if (eb)
6af118ce 3706 return eb;
6af118ce 3707
23d79d81 3708 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 3709 if (!eb)
c871b0f2 3710 return ERR_PTR(-ENOMEM);
b40130b2
JB
3711
3712 /*
3713 * The reloc trees are just snapshots, so we need them to appear to be
3714 * just like any other fs tree WRT lockdep.
3715 */
3716 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3717 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3718
3719 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
d1310b2e 3720
52ea5bfb 3721 /*
cfbf07e2 3722 * Preallocate folio private for subpage case, so that we won't
600f111e 3723 * allocate memory with i_private_lock nor page lock hold.
52ea5bfb
QW
3724 *
3725 * The memory will be freed by attach_extent_buffer_page() or freed
3726 * manually if we exit earlier.
3727 */
3728 if (fs_info->nodesize < PAGE_SIZE) {
3729 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3730 if (IS_ERR(prealloc)) {
09e6cef1
QW
3731 ret = PTR_ERR(prealloc);
3732 goto out;
52ea5bfb
QW
3733 }
3734 }
3735
13df3775 3736reallocate:
09e6cef1 3737 /* Allocate all pages first. */
082d5bb9 3738 ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
09e6cef1
QW
3739 if (ret < 0) {
3740 btrfs_free_subpage(prealloc);
3741 goto out;
3742 }
3743
13df3775 3744 num_folios = num_extent_folios(eb);
09e6cef1 3745 /* Attach all pages to the filemap. */
13df3775
QW
3746 for (int i = 0; i < num_folios; i++) {
3747 struct folio *folio;
09e6cef1 3748
13df3775 3749 ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
09e6cef1
QW
3750 if (ret > 0) {
3751 ASSERT(existing_eb);
3752 goto out;
c871b0f2 3753 }
4f2de97a 3754
13df3775
QW
3755 /*
3756 * TODO: Special handling for a corner case where the order of
3757 * folios mismatch between the new eb and filemap.
3758 *
3759 * This happens when:
3760 *
3761 * - the new eb is using higher order folio
3762 *
3763 * - the filemap is still using 0-order folios for the range
3764 * This can happen at the previous eb allocation, and we don't
3765 * have higher order folio for the call.
3766 *
3767 * - the existing eb has already been freed
3768 *
3769 * In this case, we have to free the existing folios first, and
3770 * re-allocate using the same order.
3771 * Thankfully this is not going to happen yet, as we're still
3772 * using 0-order folios.
3773 */
3774 if (unlikely(ret == -EAGAIN)) {
3775 ASSERT(0);
3776 goto reallocate;
d1310b2e 3777 }
09e6cef1 3778 attached++;
4f2de97a 3779
09e6cef1 3780 /*
13df3775 3781 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
09e6cef1
QW
3782 * reliable, as we may choose to reuse the existing page cache
3783 * and free the allocated page.
3784 */
13df3775 3785 folio = eb->folios[i];
84cda1a6
QW
3786 eb->folio_size = folio_size(folio);
3787 eb->folio_shift = folio_shift(folio);
affc5af3 3788 spin_lock(&mapping->i_private_lock);
760f991f 3789 /* Should not fail, as we have preallocated the memory */
13df3775 3790 ret = attach_extent_buffer_folio(eb, folio, prealloc);
760f991f 3791 ASSERT(!ret);
8ff8466d
QW
3792 /*
3793 * To inform we have extra eb under allocation, so that
cfbf07e2 3794 * detach_extent_buffer_page() won't release the folio private
8ff8466d
QW
3795 * when the eb hasn't yet been inserted into radix tree.
3796 *
3797 * The ref will be decreased when the eb released the page, in
3798 * detach_extent_buffer_page().
3799 * Thus needs no special handling in error path.
3800 */
13df3775 3801 btrfs_folio_inc_eb_refs(fs_info, folio);
600f111e 3802 spin_unlock(&mapping->i_private_lock);
760f991f 3803
55151ea9 3804 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
397239ed
QW
3805
3806 /*
3807 * Check if the current page is physically contiguous with previous eb
3808 * page.
13df3775
QW
3809 * At this stage, either we allocated a large folio, thus @i
3810 * would only be 0, or we fall back to per-page allocation.
397239ed 3811 */
13df3775 3812 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
397239ed
QW
3813 page_contig = false;
3814
55151ea9 3815 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
d1310b2e 3816 uptodate = 0;
eb14ab8e
CM
3817
3818 /*
b16d011e
NB
3819 * We can't unlock the pages just yet since the extent buffer
3820 * hasn't been properly inserted in the radix tree, this
f913cff3 3821 * opens a race with btree_release_folio which can free a page
b16d011e
NB
3822 * while we are still filling in all pages for the buffer and
3823 * we could crash.
eb14ab8e 3824 */
d1310b2e
CM
3825 }
3826 if (uptodate)
b4ce94de 3827 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
397239ed
QW
3828 /* All pages are physically contiguous, can skip cross page handling. */
3829 if (page_contig)
082d5bb9 3830 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
01cd3909
DS
3831again:
3832 ret = radix_tree_preload(GFP_NOFS);
09e6cef1
QW
3833 if (ret)
3834 goto out;
01cd3909
DS
3835
3836 spin_lock(&fs_info->buffer_lock);
3837 ret = radix_tree_insert(&fs_info->buffer_radix,
3838 start >> fs_info->sectorsize_bits, eb);
3839 spin_unlock(&fs_info->buffer_lock);
3840 radix_tree_preload_end();
3841 if (ret == -EEXIST) {
09e6cef1
QW
3842 ret = 0;
3843 existing_eb = find_extent_buffer(fs_info, start);
3844 if (existing_eb)
3845 goto out;
01cd3909
DS
3846 else
3847 goto again;
3848 }
6af118ce 3849 /* add one reference for the tree */
0b32f4bb 3850 check_buffer_tree_ref(eb);
34b41ace 3851 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
3852
3853 /*
b16d011e 3854 * Now it's safe to unlock the pages because any calls to
f913cff3 3855 * btree_release_folio will correctly detect that a page belongs to a
b16d011e 3856 * live buffer and won't free them prematurely.
eb14ab8e 3857 */
13df3775 3858 for (int i = 0; i < num_folios; i++)
082d5bb9 3859 unlock_page(folio_page(eb->folios[i], 0));
d1310b2e
CM
3860 return eb;
3861
09e6cef1 3862out:
5ca64f45 3863 WARN_ON(!atomic_dec_and_test(&eb->refs));
4a565c80
JB
3864
3865 /*
3866 * Any attached folios need to be detached before we unlock them. This
3867 * is because when we're inserting our new folios into the mapping, and
3868 * then attaching our eb to that folio. If we fail to insert our folio
3869 * we'll lookup the folio for that index, and grab that EB. We do not
3870 * want that to grab this eb, as we're getting ready to free it. So we
3871 * have to detach it first and then unlock it.
3872 *
3873 * We have to drop our reference and NULL it out here because in the
3874 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3875 * Below when we call btrfs_release_extent_buffer() we will call
3876 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3877 * case. If we left eb->folios[i] populated in the subpage case we'd
3878 * double put our reference and be super sad.
3879 */
09e6cef1 3880 for (int i = 0; i < attached; i++) {
082d5bb9 3881 ASSERT(eb->folios[i]);
13df3775 3882 detach_extent_buffer_folio(eb, eb->folios[i]);
082d5bb9 3883 unlock_page(folio_page(eb->folios[i], 0));
4a565c80
JB
3884 folio_put(eb->folios[i]);
3885 eb->folios[i] = NULL;
727011e0 3886 }
09e6cef1
QW
3887 /*
3888 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3889 * so it can be cleaned up without utlizing page->mapping.
3890 */
3891 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
eb14ab8e 3892
897ca6e9 3893 btrfs_release_extent_buffer(eb);
09e6cef1
QW
3894 if (ret < 0)
3895 return ERR_PTR(ret);
3896 ASSERT(existing_eb);
3897 return existing_eb;
d1310b2e 3898}
d1310b2e 3899
3083ee2e
JB
3900static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3901{
3902 struct extent_buffer *eb =
3903 container_of(head, struct extent_buffer, rcu_head);
3904
3905 __free_extent_buffer(eb);
3906}
3907
f7a52a40 3908static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 3909 __releases(&eb->refs_lock)
3083ee2e 3910{
07e21c4d
NB
3911 lockdep_assert_held(&eb->refs_lock);
3912
3083ee2e
JB
3913 WARN_ON(atomic_read(&eb->refs) == 0);
3914 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 3915 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 3916 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 3917
815a51c7 3918 spin_unlock(&eb->refs_lock);
3083ee2e 3919
01cd3909
DS
3920 spin_lock(&fs_info->buffer_lock);
3921 radix_tree_delete(&fs_info->buffer_radix,
3922 eb->start >> fs_info->sectorsize_bits);
3923 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
3924 } else {
3925 spin_unlock(&eb->refs_lock);
815a51c7 3926 }
3083ee2e 3927
a40246e8 3928 btrfs_leak_debug_del_eb(eb);
3083ee2e 3929 /* Should be safe to release our pages at this point */
55ac0139 3930 btrfs_release_extent_buffer_pages(eb);
bcb7e449 3931#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 3932 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
3933 __free_extent_buffer(eb);
3934 return 1;
3935 }
3936#endif
3083ee2e 3937 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 3938 return 1;
3083ee2e
JB
3939 }
3940 spin_unlock(&eb->refs_lock);
e64860aa
JB
3941
3942 return 0;
3083ee2e
JB
3943}
3944
d1310b2e
CM
3945void free_extent_buffer(struct extent_buffer *eb)
3946{
242e18c7 3947 int refs;
d1310b2e
CM
3948 if (!eb)
3949 return;
3950
e5677f05 3951 refs = atomic_read(&eb->refs);
242e18c7 3952 while (1) {
46cc775e
NB
3953 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3954 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3955 refs == 1))
242e18c7 3956 break;
e5677f05 3957 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
242e18c7
CM
3958 return;
3959 }
3960
3083ee2e
JB
3961 spin_lock(&eb->refs_lock);
3962 if (atomic_read(&eb->refs) == 2 &&
3963 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 3964 !extent_buffer_under_io(eb) &&
3083ee2e
JB
3965 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3966 atomic_dec(&eb->refs);
3967
3968 /*
3969 * I know this is terrible, but it's temporary until we stop tracking
3970 * the uptodate bits and such for the extent buffers.
3971 */
f7a52a40 3972 release_extent_buffer(eb);
3083ee2e
JB
3973}
3974
3975void free_extent_buffer_stale(struct extent_buffer *eb)
3976{
3977 if (!eb)
d1310b2e
CM
3978 return;
3979
3083ee2e
JB
3980 spin_lock(&eb->refs_lock);
3981 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3982
0b32f4bb 3983 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
3984 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3985 atomic_dec(&eb->refs);
f7a52a40 3986 release_extent_buffer(eb);
d1310b2e 3987}
d1310b2e 3988
13df3775 3989static void btree_clear_folio_dirty(struct folio *folio)
0d27797e 3990{
13df3775
QW
3991 ASSERT(folio_test_dirty(folio));
3992 ASSERT(folio_test_locked(folio));
3993 folio_clear_dirty_for_io(folio);
3994 xa_lock_irq(&folio->mapping->i_pages);
3995 if (!folio_test_dirty(folio))
3996 __xa_clear_mark(&folio->mapping->i_pages,
3997 folio_index(folio), PAGECACHE_TAG_DIRTY);
3998 xa_unlock_irq(&folio->mapping->i_pages);
0d27797e
QW
3999}
4000
4001static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4002{
4003 struct btrfs_fs_info *fs_info = eb->fs_info;
13df3775 4004 struct folio *folio = eb->folios[0];
0d27797e
QW
4005 bool last;
4006
13df3775
QW
4007 /* btree_clear_folio_dirty() needs page locked. */
4008 folio_lock(folio);
55151ea9 4009 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
0d27797e 4010 if (last)
13df3775
QW
4011 btree_clear_folio_dirty(folio);
4012 folio_unlock(folio);
0d27797e
QW
4013 WARN_ON(atomic_read(&eb->refs) == 0);
4014}
4015
98c8d683
JB
4016void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4017 struct extent_buffer *eb)
d1310b2e 4018{
98c8d683 4019 struct btrfs_fs_info *fs_info = eb->fs_info;
13df3775 4020 int num_folios;
d1310b2e 4021
98c8d683
JB
4022 btrfs_assert_tree_write_locked(eb);
4023
4024 if (trans && btrfs_header_generation(eb) != trans->transid)
4025 return;
4026
aa6313e6
JT
4027 /*
4028 * Instead of clearing the dirty flag off of the buffer, mark it as
4029 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4030 * write-ordering in zoned mode, without the need to later re-dirty
4031 * the extent_buffer.
4032 *
4033 * The actual zeroout of the buffer will happen later in
4034 * btree_csum_one_bio.
4035 */
4036 if (btrfs_is_zoned(fs_info)) {
4037 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4038 return;
4039 }
4040
98c8d683
JB
4041 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4042 return;
4043
4044 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4045 fs_info->dirty_metadata_batch);
4046
fbca46eb 4047 if (eb->fs_info->nodesize < PAGE_SIZE)
0d27797e
QW
4048 return clear_subpage_extent_buffer_dirty(eb);
4049
13df3775
QW
4050 num_folios = num_extent_folios(eb);
4051 for (int i = 0; i < num_folios; i++) {
4052 struct folio *folio = eb->folios[i];
d1310b2e 4053
13df3775 4054 if (!folio_test_dirty(folio))
d2c3f4f6 4055 continue;
13df3775
QW
4056 folio_lock(folio);
4057 btree_clear_folio_dirty(folio);
4058 folio_unlock(folio);
d1310b2e 4059 }
0b32f4bb 4060 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4061}
d1310b2e 4062
f18cc978 4063void set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4064{
13df3775 4065 int num_folios;
abb57ef3 4066 bool was_dirty;
d1310b2e 4067
0b32f4bb
JB
4068 check_buffer_tree_ref(eb);
4069
b9473439 4070 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4071
13df3775 4072 num_folios = num_extent_folios(eb);
3083ee2e 4073 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4074 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4075
0d27797e 4076 if (!was_dirty) {
fbca46eb 4077 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
51995c39 4078
0d27797e
QW
4079 /*
4080 * For subpage case, we can have other extent buffers in the
4081 * same page, and in clear_subpage_extent_buffer_dirty() we
4082 * have to clear page dirty without subpage lock held.
4083 * This can cause race where our page gets dirty cleared after
4084 * we just set it.
4085 *
4086 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4087 * its page for other reasons, we can use page lock to prevent
4088 * the above race.
4089 */
4090 if (subpage)
082d5bb9 4091 lock_page(folio_page(eb->folios[0], 0));
13df3775 4092 for (int i = 0; i < num_folios; i++)
55151ea9
QW
4093 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4094 eb->start, eb->len);
0d27797e 4095 if (subpage)
082d5bb9 4096 unlock_page(folio_page(eb->folios[0], 0));
f18cc978
CH
4097 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4098 eb->len,
4099 eb->fs_info->dirty_metadata_batch);
0d27797e 4100 }
51995c39 4101#ifdef CONFIG_BTRFS_DEBUG
13df3775
QW
4102 for (int i = 0; i < num_folios; i++)
4103 ASSERT(folio_test_dirty(eb->folios[i]));
51995c39 4104#endif
d1310b2e 4105}
d1310b2e 4106
69ba3927 4107void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 4108{
251f2acc 4109 struct btrfs_fs_info *fs_info = eb->fs_info;
13df3775 4110 int num_folios = num_extent_folios(eb);
1259ab75 4111
b4ce94de 4112 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
13df3775
QW
4113 for (int i = 0; i < num_folios; i++) {
4114 struct folio *folio = eb->folios[i];
4115
4116 if (!folio)
fbca46eb
QW
4117 continue;
4118
4119 /*
4120 * This is special handling for metadata subpage, as regular
4121 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4122 */
4123 if (fs_info->nodesize >= PAGE_SIZE)
13df3775 4124 folio_clear_uptodate(folio);
fbca46eb 4125 else
55151ea9 4126 btrfs_subpage_clear_uptodate(fs_info, folio,
13df3775 4127 eb->start, eb->len);
1259ab75 4128 }
1259ab75
CM
4129}
4130
09c25a8c 4131void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4132{
251f2acc 4133 struct btrfs_fs_info *fs_info = eb->fs_info;
13df3775 4134 int num_folios = num_extent_folios(eb);
d1310b2e 4135
0b32f4bb 4136 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
13df3775
QW
4137 for (int i = 0; i < num_folios; i++) {
4138 struct folio *folio = eb->folios[i];
fbca46eb
QW
4139
4140 /*
4141 * This is special handling for metadata subpage, as regular
4142 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4143 */
4144 if (fs_info->nodesize >= PAGE_SIZE)
13df3775 4145 folio_mark_uptodate(folio);
fbca46eb 4146 else
55151ea9 4147 btrfs_subpage_set_uptodate(fs_info, folio,
13df3775 4148 eb->start, eb->len);
d1310b2e 4149 }
d1310b2e 4150}
d1310b2e 4151
a700ca5e 4152static void end_bbio_meta_read(struct btrfs_bio *bbio)
046b562b
CH
4153{
4154 struct extent_buffer *eb = bbio->private;
d7172f52 4155 struct btrfs_fs_info *fs_info = eb->fs_info;
046b562b 4156 bool uptodate = !bbio->bio.bi_status;
a700ca5e 4157 struct folio_iter fi;
046b562b
CH
4158 u32 bio_offset = 0;
4159
046b562b
CH
4160 eb->read_mirror = bbio->mirror_num;
4161
4162 if (uptodate &&
4163 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4164 uptodate = false;
4165
4166 if (uptodate) {
4167 set_extent_buffer_uptodate(eb);
4168 } else {
4169 clear_extent_buffer_uptodate(eb);
4170 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4171 }
4172
a700ca5e
QW
4173 bio_for_each_folio_all(fi, &bbio->bio) {
4174 struct folio *folio = fi.folio;
d7172f52 4175 u64 start = eb->start + bio_offset;
a700ca5e 4176 u32 len = fi.length;
046b562b 4177
d7172f52 4178 if (uptodate)
a700ca5e 4179 btrfs_folio_set_uptodate(fs_info, folio, start, len);
d7172f52 4180 else
a700ca5e 4181 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
d7172f52
CH
4182
4183 bio_offset += len;
3d66b4b2 4184 }
d7172f52
CH
4185
4186 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4187 smp_mb__after_atomic();
4188 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
046b562b
CH
4189 free_extent_buffer(eb);
4190
4191 bio_put(&bbio->bio);
4192}
4193
d7172f52
CH
4194int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4195 struct btrfs_tree_parent_check *check)
b78b98e0 4196{
b78b98e0 4197 struct btrfs_bio *bbio;
13df3775 4198 bool ret;
b78b98e0 4199
d7172f52
CH
4200 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4201 return 0;
4202
4203 /*
4204 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4205 * operation, which could potentially still be in flight. In this case
4206 * we simply want to return an error.
4207 */
4208 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4209 return -EIO;
4210
4211 /* Someone else is already reading the buffer, just wait for it. */
4212 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4213 goto done;
4214
b78b98e0
CH
4215 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4216 eb->read_mirror = 0;
b78b98e0 4217 check_buffer_tree_ref(eb);
113fa05c 4218 atomic_inc(&eb->refs);
b78b98e0
CH
4219
4220 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4221 REQ_OP_READ | REQ_META, eb->fs_info,
a700ca5e 4222 end_bbio_meta_read, eb);
b78b98e0
CH
4223 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4224 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4225 bbio->file_offset = eb->start;
4226 memcpy(&bbio->parent_check, check, sizeof(*check));
4227 if (eb->fs_info->nodesize < PAGE_SIZE) {
13df3775
QW
4228 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4229 eb->start - folio_pos(eb->folios[0]));
4230 ASSERT(ret);
b78b98e0 4231 } else {
13df3775
QW
4232 int num_folios = num_extent_folios(eb);
4233
4234 for (int i = 0; i < num_folios; i++) {
4235 struct folio *folio = eb->folios[i];
4236
84cda1a6 4237 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
13df3775
QW
4238 ASSERT(ret);
4239 }
b78b98e0
CH
4240 }
4241 btrfs_submit_bio(bbio, mirror_num);
b78b98e0 4242
d7172f52
CH
4243done:
4244 if (wait == WAIT_COMPLETE) {
4245 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4246 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
55173337 4247 return -EIO;
d1310b2e 4248 }
d397712b 4249
55173337 4250 return 0;
d1310b2e 4251}
d1310b2e 4252
f98b6215
QW
4253static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4254 unsigned long len)
4255{
4256 btrfs_warn(eb->fs_info,
84cda1a6 4257 "access to eb bytenr %llu len %u out of range start %lu len %lu",
f98b6215
QW
4258 eb->start, eb->len, start, len);
4259 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4260
4261 return true;
4262}
4263
4264/*
4265 * Check if the [start, start + len) range is valid before reading/writing
4266 * the eb.
4267 * NOTE: @start and @len are offset inside the eb, not logical address.
4268 *
4269 * Caller should not touch the dst/src memory if this function returns error.
4270 */
4271static inline int check_eb_range(const struct extent_buffer *eb,
4272 unsigned long start, unsigned long len)
4273{
4274 unsigned long offset;
4275
4276 /* start, start + len should not go beyond eb->len nor overflow */
4277 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4278 return report_eb_range(eb, start, len);
4279
4280 return false;
4281}
4282
1cbb1f45
JM
4283void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4284 unsigned long start, unsigned long len)
d1310b2e 4285{
84cda1a6 4286 const int unit_size = eb->folio_size;
d1310b2e
CM
4287 size_t cur;
4288 size_t offset;
d1310b2e 4289 char *dst = (char *)dstv;
8d993618 4290 unsigned long i = get_eb_folio_index(eb, start);
d1310b2e 4291
74ee7914
QW
4292 if (check_eb_range(eb, start, len)) {
4293 /*
4294 * Invalid range hit, reset the memory, so callers won't get
eefaf0a1 4295 * some random garbage for their uninitialized memory.
74ee7914
QW
4296 */
4297 memset(dstv, 0, len);
f716abd5 4298 return;
74ee7914 4299 }
d1310b2e 4300
397239ed
QW
4301 if (eb->addr) {
4302 memcpy(dstv, eb->addr + start, len);
4303 return;
4304 }
4305
8d993618 4306 offset = get_eb_offset_in_folio(eb, start);
d1310b2e 4307
d397712b 4308 while (len > 0) {
8d993618 4309 char *kaddr;
d1310b2e 4310
8d993618
QW
4311 cur = min(len, unit_size - offset);
4312 kaddr = folio_address(eb->folios[i]);
d1310b2e 4313 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4314
4315 dst += cur;
4316 len -= cur;
4317 offset = 0;
4318 i++;
4319 }
4320}
d1310b2e 4321
a48b73ec
JB
4322int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4323 void __user *dstv,
4324 unsigned long start, unsigned long len)
550ac1d8 4325{
84cda1a6 4326 const int unit_size = eb->folio_size;
550ac1d8
GH
4327 size_t cur;
4328 size_t offset;
550ac1d8 4329 char __user *dst = (char __user *)dstv;
8d993618 4330 unsigned long i = get_eb_folio_index(eb, start);
550ac1d8
GH
4331 int ret = 0;
4332
4333 WARN_ON(start > eb->len);
4334 WARN_ON(start + len > eb->start + eb->len);
4335
397239ed
QW
4336 if (eb->addr) {
4337 if (copy_to_user_nofault(dstv, eb->addr + start, len))
4338 ret = -EFAULT;
4339 return ret;
4340 }
4341
8d993618 4342 offset = get_eb_offset_in_folio(eb, start);
550ac1d8
GH
4343
4344 while (len > 0) {
8d993618 4345 char *kaddr;
550ac1d8 4346
8d993618
QW
4347 cur = min(len, unit_size - offset);
4348 kaddr = folio_address(eb->folios[i]);
a48b73ec 4349 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
4350 ret = -EFAULT;
4351 break;
4352 }
4353
4354 dst += cur;
4355 len -= cur;
4356 offset = 0;
4357 i++;
4358 }
4359
4360 return ret;
4361}
4362
1cbb1f45
JM
4363int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4364 unsigned long start, unsigned long len)
d1310b2e 4365{
84cda1a6 4366 const int unit_size = eb->folio_size;
d1310b2e
CM
4367 size_t cur;
4368 size_t offset;
d1310b2e
CM
4369 char *kaddr;
4370 char *ptr = (char *)ptrv;
8d993618 4371 unsigned long i = get_eb_folio_index(eb, start);
d1310b2e
CM
4372 int ret = 0;
4373
f98b6215
QW
4374 if (check_eb_range(eb, start, len))
4375 return -EINVAL;
d1310b2e 4376
397239ed
QW
4377 if (eb->addr)
4378 return memcmp(ptrv, eb->addr + start, len);
d1310b2e 4379
8d993618 4380 offset = get_eb_offset_in_folio(eb, start);
d1310b2e 4381
d397712b 4382 while (len > 0) {
8d993618
QW
4383 cur = min(len, unit_size - offset);
4384 kaddr = folio_address(eb->folios[i]);
d1310b2e 4385 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4386 if (ret)
4387 break;
4388
4389 ptr += cur;
4390 len -= cur;
4391 offset = 0;
4392 i++;
4393 }
4394 return ret;
4395}
d1310b2e 4396
b8f95771
QW
4397/*
4398 * Check that the extent buffer is uptodate.
4399 *
4400 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4401 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4402 */
8d993618 4403static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
b8f95771
QW
4404{
4405 struct btrfs_fs_info *fs_info = eb->fs_info;
8d993618
QW
4406 struct folio *folio = eb->folios[i];
4407
4408 ASSERT(folio);
b8f95771 4409
a50e1fcb
JB
4410 /*
4411 * If we are using the commit root we could potentially clear a page
4412 * Uptodate while we're using the extent buffer that we've previously
4413 * looked up. We don't want to complain in this case, as the page was
4414 * valid before, we just didn't write it out. Instead we want to catch
4415 * the case where we didn't actually read the block properly, which
011134f4 4416 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
a50e1fcb 4417 */
011134f4
CH
4418 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4419 return;
b8f95771 4420
011134f4 4421 if (fs_info->nodesize < PAGE_SIZE) {
55151ea9 4422 struct folio *folio = eb->folios[0];
8d993618 4423
55151ea9
QW
4424 ASSERT(i == 0);
4425 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
75258f20 4426 eb->start, eb->len)))
55151ea9 4427 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
b8f95771 4428 } else {
8d993618 4429 WARN_ON(!folio_test_uptodate(folio));
b8f95771
QW
4430 }
4431}
4432
13840f3f
QW
4433static void __write_extent_buffer(const struct extent_buffer *eb,
4434 const void *srcv, unsigned long start,
4435 unsigned long len, bool use_memmove)
d1310b2e 4436{
84cda1a6 4437 const int unit_size = eb->folio_size;
d1310b2e
CM
4438 size_t cur;
4439 size_t offset;
d1310b2e
CM
4440 char *kaddr;
4441 char *src = (char *)srcv;
8d993618 4442 unsigned long i = get_eb_folio_index(eb, start);
13840f3f
QW
4443 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4444 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
d1310b2e 4445
f98b6215
QW
4446 if (check_eb_range(eb, start, len))
4447 return;
d1310b2e 4448
397239ed
QW
4449 if (eb->addr) {
4450 if (use_memmove)
4451 memmove(eb->addr + start, srcv, len);
4452 else
4453 memcpy(eb->addr + start, srcv, len);
4454 return;
4455 }
4456
8d993618 4457 offset = get_eb_offset_in_folio(eb, start);
d1310b2e 4458
d397712b 4459 while (len > 0) {
13840f3f 4460 if (check_uptodate)
8d993618 4461 assert_eb_folio_uptodate(eb, i);
d1310b2e 4462
8d993618
QW
4463 cur = min(len, unit_size - offset);
4464 kaddr = folio_address(eb->folios[i]);
13840f3f
QW
4465 if (use_memmove)
4466 memmove(kaddr + offset, src, cur);
4467 else
4468 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4469
4470 src += cur;
4471 len -= cur;
4472 offset = 0;
4473 i++;
4474 }
4475}
d1310b2e 4476
13840f3f
QW
4477void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4478 unsigned long start, unsigned long len)
4479{
4480 return __write_extent_buffer(eb, srcv, start, len, false);
4481}
4482
cb22964f
QW
4483static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4484 unsigned long start, unsigned long len)
d1310b2e 4485{
84cda1a6 4486 const int unit_size = eb->folio_size;
cb22964f 4487 unsigned long cur = start;
d1310b2e 4488
397239ed
QW
4489 if (eb->addr) {
4490 memset(eb->addr + start, c, len);
4491 return;
4492 }
4493
cb22964f 4494 while (cur < start + len) {
8d993618
QW
4495 unsigned long index = get_eb_folio_index(eb, cur);
4496 unsigned int offset = get_eb_offset_in_folio(eb, cur);
4497 unsigned int cur_len = min(start + len - cur, unit_size - offset);
d1310b2e 4498
8d993618
QW
4499 assert_eb_folio_uptodate(eb, index);
4500 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
d1310b2e 4501
cb22964f 4502 cur += cur_len;
d1310b2e
CM
4503 }
4504}
d1310b2e 4505
cb22964f
QW
4506void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4507 unsigned long len)
4508{
4509 if (check_eb_range(eb, start, len))
4510 return;
4511 return memset_extent_buffer(eb, 0, start, len);
4512}
4513
2b48966a
DS
4514void copy_extent_buffer_full(const struct extent_buffer *dst,
4515 const struct extent_buffer *src)
58e8012c 4516{
84cda1a6 4517 const int unit_size = src->folio_size;
54948681 4518 unsigned long cur = 0;
58e8012c
DS
4519
4520 ASSERT(dst->len == src->len);
4521
54948681 4522 while (cur < src->len) {
8d993618
QW
4523 unsigned long index = get_eb_folio_index(src, cur);
4524 unsigned long offset = get_eb_offset_in_folio(src, cur);
4525 unsigned long cur_len = min(src->len, unit_size - offset);
082d5bb9 4526 void *addr = folio_address(src->folios[index]) + offset;
54948681
QW
4527
4528 write_extent_buffer(dst, addr, cur, cur_len);
884b07d0 4529
54948681 4530 cur += cur_len;
884b07d0 4531 }
58e8012c
DS
4532}
4533
2b48966a
DS
4534void copy_extent_buffer(const struct extent_buffer *dst,
4535 const struct extent_buffer *src,
d1310b2e
CM
4536 unsigned long dst_offset, unsigned long src_offset,
4537 unsigned long len)
4538{
84cda1a6 4539 const int unit_size = dst->folio_size;
d1310b2e
CM
4540 u64 dst_len = dst->len;
4541 size_t cur;
4542 size_t offset;
d1310b2e 4543 char *kaddr;
8d993618 4544 unsigned long i = get_eb_folio_index(dst, dst_offset);
d1310b2e 4545
f98b6215
QW
4546 if (check_eb_range(dst, dst_offset, len) ||
4547 check_eb_range(src, src_offset, len))
4548 return;
4549
d1310b2e
CM
4550 WARN_ON(src->len != dst_len);
4551
8d993618 4552 offset = get_eb_offset_in_folio(dst, dst_offset);
d1310b2e 4553
d397712b 4554 while (len > 0) {
8d993618 4555 assert_eb_folio_uptodate(dst, i);
d1310b2e 4556
8d993618 4557 cur = min(len, (unsigned long)(unit_size - offset));
d1310b2e 4558
8d993618 4559 kaddr = folio_address(dst->folios[i]);
d1310b2e 4560 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4561
4562 src_offset += cur;
4563 len -= cur;
4564 offset = 0;
4565 i++;
4566 }
4567}
d1310b2e 4568
3e1e8bb7 4569/*
f4521b01 4570 * Calculate the folio and offset of the byte containing the given bit number.
9580503b
DS
4571 *
4572 * @eb: the extent buffer
4573 * @start: offset of the bitmap item in the extent buffer
4574 * @nr: bit number
f4521b01 4575 * @folio_index: return index of the folio in the extent buffer that contains
9580503b 4576 * the given bit number
f4521b01 4577 * @folio_offset: return offset into the folio given by folio_index
3e1e8bb7
OS
4578 *
4579 * This helper hides the ugliness of finding the byte in an extent buffer which
4580 * contains a given bit.
4581 */
2b48966a 4582static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7 4583 unsigned long start, unsigned long nr,
f4521b01
QW
4584 unsigned long *folio_index,
4585 size_t *folio_offset)
3e1e8bb7 4586{
3e1e8bb7
OS
4587 size_t byte_offset = BIT_BYTE(nr);
4588 size_t offset;
4589
4590 /*
4591 * The byte we want is the offset of the extent buffer + the offset of
4592 * the bitmap item in the extent buffer + the offset of the byte in the
4593 * bitmap item.
4594 */
84cda1a6 4595 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3e1e8bb7 4596
84cda1a6
QW
4597 *folio_index = offset >> eb->folio_shift;
4598 *folio_offset = offset_in_eb_folio(eb, offset);
3e1e8bb7
OS
4599}
4600
43dd529a
DS
4601/*
4602 * Determine whether a bit in a bitmap item is set.
4603 *
4604 * @eb: the extent buffer
4605 * @start: offset of the bitmap item in the extent buffer
4606 * @nr: bit number to test
3e1e8bb7 4607 */
2b48966a 4608int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
4609 unsigned long nr)
4610{
3e1e8bb7
OS
4611 unsigned long i;
4612 size_t offset;
f4521b01 4613 u8 *kaddr;
3e1e8bb7
OS
4614
4615 eb_bitmap_offset(eb, start, nr, &i, &offset);
8d993618 4616 assert_eb_folio_uptodate(eb, i);
f4521b01 4617 kaddr = folio_address(eb->folios[i]);
3e1e8bb7
OS
4618 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4619}
4620
cb22964f
QW
4621static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4622{
8d993618 4623 unsigned long index = get_eb_folio_index(eb, bytenr);
cb22964f
QW
4624
4625 if (check_eb_range(eb, bytenr, 1))
4626 return NULL;
8d993618 4627 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
cb22964f
QW
4628}
4629
43dd529a
DS
4630/*
4631 * Set an area of a bitmap to 1.
4632 *
4633 * @eb: the extent buffer
4634 * @start: offset of the bitmap item in the extent buffer
4635 * @pos: bit number of the first bit
4636 * @len: number of bits to set
3e1e8bb7 4637 */
2b48966a 4638void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
4639 unsigned long pos, unsigned long len)
4640{
cb22964f
QW
4641 unsigned int first_byte = start + BIT_BYTE(pos);
4642 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4643 const bool same_byte = (first_byte == last_byte);
4644 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
2fe1d551 4645 u8 *kaddr;
3e1e8bb7 4646
cb22964f
QW
4647 if (same_byte)
4648 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
3e1e8bb7 4649
cb22964f
QW
4650 /* Handle the first byte. */
4651 kaddr = extent_buffer_get_byte(eb, first_byte);
4652 *kaddr |= mask;
4653 if (same_byte)
4654 return;
4655
4656 /* Handle the byte aligned part. */
4657 ASSERT(first_byte + 1 <= last_byte);
4658 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4659
4660 /* Handle the last byte. */
4661 kaddr = extent_buffer_get_byte(eb, last_byte);
4662 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
3e1e8bb7
OS
4663}
4664
4665
43dd529a
DS
4666/*
4667 * Clear an area of a bitmap.
4668 *
4669 * @eb: the extent buffer
4670 * @start: offset of the bitmap item in the extent buffer
4671 * @pos: bit number of the first bit
4672 * @len: number of bits to clear
3e1e8bb7 4673 */
2b48966a
DS
4674void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4675 unsigned long start, unsigned long pos,
4676 unsigned long len)
3e1e8bb7 4677{
cb22964f
QW
4678 unsigned int first_byte = start + BIT_BYTE(pos);
4679 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4680 const bool same_byte = (first_byte == last_byte);
4681 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
2fe1d551 4682 u8 *kaddr;
3e1e8bb7 4683
cb22964f
QW
4684 if (same_byte)
4685 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
3e1e8bb7 4686
cb22964f
QW
4687 /* Handle the first byte. */
4688 kaddr = extent_buffer_get_byte(eb, first_byte);
4689 *kaddr &= ~mask;
4690 if (same_byte)
4691 return;
4692
4693 /* Handle the byte aligned part. */
4694 ASSERT(first_byte + 1 <= last_byte);
4695 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4696
4697 /* Handle the last byte. */
4698 kaddr = extent_buffer_get_byte(eb, last_byte);
4699 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
3e1e8bb7
OS
4700}
4701
3387206f
ST
4702static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4703{
4704 unsigned long distance = (src > dst) ? src - dst : dst - src;
4705 return distance < len;
4706}
4707
2b48966a
DS
4708void memcpy_extent_buffer(const struct extent_buffer *dst,
4709 unsigned long dst_offset, unsigned long src_offset,
4710 unsigned long len)
d1310b2e 4711{
84cda1a6 4712 const int unit_size = dst->folio_size;
13840f3f 4713 unsigned long cur_off = 0;
d1310b2e 4714
f98b6215
QW
4715 if (check_eb_range(dst, dst_offset, len) ||
4716 check_eb_range(dst, src_offset, len))
4717 return;
d1310b2e 4718
397239ed
QW
4719 if (dst->addr) {
4720 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4721
4722 if (use_memmove)
4723 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4724 else
4725 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4726 return;
4727 }
4728
13840f3f
QW
4729 while (cur_off < len) {
4730 unsigned long cur_src = cur_off + src_offset;
8d993618
QW
4731 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4732 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
13840f3f 4733 unsigned long cur_len = min(src_offset + len - cur_src,
8d993618
QW
4734 unit_size - folio_off);
4735 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
13840f3f
QW
4736 const bool use_memmove = areas_overlap(src_offset + cur_off,
4737 dst_offset + cur_off, cur_len);
4738
4739 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4740 use_memmove);
4741 cur_off += cur_len;
d1310b2e
CM
4742 }
4743}
d1310b2e 4744
2b48966a
DS
4745void memmove_extent_buffer(const struct extent_buffer *dst,
4746 unsigned long dst_offset, unsigned long src_offset,
4747 unsigned long len)
d1310b2e 4748{
d1310b2e
CM
4749 unsigned long dst_end = dst_offset + len - 1;
4750 unsigned long src_end = src_offset + len - 1;
d1310b2e 4751
f98b6215
QW
4752 if (check_eb_range(dst, dst_offset, len) ||
4753 check_eb_range(dst, src_offset, len))
4754 return;
096d2301 4755
727011e0 4756 if (dst_offset < src_offset) {
d1310b2e
CM
4757 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4758 return;
4759 }
096d2301 4760
397239ed
QW
4761 if (dst->addr) {
4762 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4763 return;
4764 }
4765
d397712b 4766 while (len > 0) {
096d2301
QW
4767 unsigned long src_i;
4768 size_t cur;
8d993618
QW
4769 size_t dst_off_in_folio;
4770 size_t src_off_in_folio;
096d2301
QW
4771 void *src_addr;
4772 bool use_memmove;
4773
8d993618 4774 src_i = get_eb_folio_index(dst, src_end);
d1310b2e 4775
8d993618
QW
4776 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4777 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
d1310b2e 4778
8d993618
QW
4779 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4780 cur = min(cur, dst_off_in_folio + 1);
096d2301 4781
8d993618 4782 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
082d5bb9 4783 cur + 1;
096d2301
QW
4784 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4785 cur);
4786
4787 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4788 use_memmove);
d1310b2e
CM
4789
4790 dst_end -= cur;
4791 src_end -= cur;
4792 len -= cur;
4793 }
4794}
6af118ce 4795
01cd3909 4796#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
4797static struct extent_buffer *get_next_extent_buffer(
4798 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4799{
01cd3909
DS
4800 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4801 struct extent_buffer *found = NULL;
d1e86e3f 4802 u64 page_start = page_offset(page);
01cd3909 4803 u64 cur = page_start;
d1e86e3f
QW
4804
4805 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
4806 lockdep_assert_held(&fs_info->buffer_lock);
4807
01cd3909
DS
4808 while (cur < page_start + PAGE_SIZE) {
4809 int ret;
4810 int i;
4811
4812 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4813 (void **)gang, cur >> fs_info->sectorsize_bits,
4814 min_t(unsigned int, GANG_LOOKUP_SIZE,
4815 PAGE_SIZE / fs_info->nodesize));
4816 if (ret == 0)
4817 goto out;
4818 for (i = 0; i < ret; i++) {
4819 /* Already beyond page end */
4820 if (gang[i]->start >= page_start + PAGE_SIZE)
4821 goto out;
4822 /* Found one */
4823 if (gang[i]->start >= bytenr) {
4824 found = gang[i];
4825 goto out;
4826 }
4827 }
4828 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 4829 }
01cd3909
DS
4830out:
4831 return found;
d1e86e3f
QW
4832}
4833
4834static int try_release_subpage_extent_buffer(struct page *page)
4835{
b33d2e53 4836 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
d1e86e3f
QW
4837 u64 cur = page_offset(page);
4838 const u64 end = page_offset(page) + PAGE_SIZE;
4839 int ret;
4840
4841 while (cur < end) {
4842 struct extent_buffer *eb = NULL;
4843
4844 /*
cfbf07e2 4845 * Unlike try_release_extent_buffer() which uses folio private
d1e86e3f
QW
4846 * to grab buffer, for subpage case we rely on radix tree, thus
4847 * we need to ensure radix tree consistency.
4848 *
4849 * We also want an atomic snapshot of the radix tree, thus go
4850 * with spinlock rather than RCU.
4851 */
4852 spin_lock(&fs_info->buffer_lock);
4853 eb = get_next_extent_buffer(fs_info, page, cur);
4854 if (!eb) {
4855 /* No more eb in the page range after or at cur */
4856 spin_unlock(&fs_info->buffer_lock);
4857 break;
4858 }
4859 cur = eb->start + eb->len;
4860
4861 /*
4862 * The same as try_release_extent_buffer(), to ensure the eb
4863 * won't disappear out from under us.
4864 */
4865 spin_lock(&eb->refs_lock);
4866 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4867 spin_unlock(&eb->refs_lock);
4868 spin_unlock(&fs_info->buffer_lock);
4869 break;
4870 }
4871 spin_unlock(&fs_info->buffer_lock);
4872
4873 /*
4874 * If tree ref isn't set then we know the ref on this eb is a
4875 * real ref, so just return, this eb will likely be freed soon
4876 * anyway.
4877 */
4878 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4879 spin_unlock(&eb->refs_lock);
4880 break;
4881 }
4882
4883 /*
4884 * Here we don't care about the return value, we will always
cfbf07e2 4885 * check the folio private at the end. And
d1e86e3f
QW
4886 * release_extent_buffer() will release the refs_lock.
4887 */
4888 release_extent_buffer(eb);
4889 }
4890 /*
cfbf07e2
QW
4891 * Finally to check if we have cleared folio private, as if we have
4892 * released all ebs in the page, the folio private should be cleared now.
d1e86e3f 4893 */
600f111e 4894 spin_lock(&page->mapping->i_private_lock);
cfbf07e2 4895 if (!folio_test_private(page_folio(page)))
d1e86e3f
QW
4896 ret = 1;
4897 else
4898 ret = 0;
600f111e 4899 spin_unlock(&page->mapping->i_private_lock);
d1e86e3f
QW
4900 return ret;
4901
4902}
4903
f7a52a40 4904int try_release_extent_buffer(struct page *page)
19fe0a8b 4905{
cfbf07e2 4906 struct folio *folio = page_folio(page);
6af118ce 4907 struct extent_buffer *eb;
6af118ce 4908
b33d2e53 4909 if (page_to_fs_info(page)->nodesize < PAGE_SIZE)
d1e86e3f
QW
4910 return try_release_subpage_extent_buffer(page);
4911
3083ee2e 4912 /*
cfbf07e2
QW
4913 * We need to make sure nobody is changing folio private, as we rely on
4914 * folio private as the pointer to extent buffer.
3083ee2e 4915 */
600f111e 4916 spin_lock(&page->mapping->i_private_lock);
cfbf07e2 4917 if (!folio_test_private(folio)) {
600f111e 4918 spin_unlock(&page->mapping->i_private_lock);
4f2de97a 4919 return 1;
45f49bce 4920 }
6af118ce 4921
cfbf07e2 4922 eb = folio_get_private(folio);
3083ee2e 4923 BUG_ON(!eb);
19fe0a8b
MX
4924
4925 /*
3083ee2e
JB
4926 * This is a little awful but should be ok, we need to make sure that
4927 * the eb doesn't disappear out from under us while we're looking at
4928 * this page.
19fe0a8b 4929 */
3083ee2e 4930 spin_lock(&eb->refs_lock);
0b32f4bb 4931 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e 4932 spin_unlock(&eb->refs_lock);
600f111e 4933 spin_unlock(&page->mapping->i_private_lock);
3083ee2e 4934 return 0;
b9473439 4935 }
600f111e 4936 spin_unlock(&page->mapping->i_private_lock);
897ca6e9 4937
19fe0a8b 4938 /*
3083ee2e
JB
4939 * If tree ref isn't set then we know the ref on this eb is a real ref,
4940 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4941 */
3083ee2e
JB
4942 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4943 spin_unlock(&eb->refs_lock);
4944 return 0;
b9473439 4945 }
19fe0a8b 4946
f7a52a40 4947 return release_extent_buffer(eb);
6af118ce 4948}
bfb484d9
JB
4949
4950/*
9580503b
DS
4951 * Attempt to readahead a child block.
4952 *
bfb484d9
JB
4953 * @fs_info: the fs_info
4954 * @bytenr: bytenr to read
3fbaf258 4955 * @owner_root: objectid of the root that owns this eb
bfb484d9 4956 * @gen: generation for the uptodate check, can be 0
3fbaf258 4957 * @level: level for the eb
bfb484d9
JB
4958 *
4959 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4960 * normal uptodate check of the eb, without checking the generation. If we have
4961 * to read the block we will not block on anything.
4962 */
4963void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 4964 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9 4965{
947a6299
QW
4966 struct btrfs_tree_parent_check check = {
4967 .has_first_key = 0,
4968 .level = level,
4969 .transid = gen
4970 };
bfb484d9
JB
4971 struct extent_buffer *eb;
4972 int ret;
4973
3fbaf258 4974 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
4975 if (IS_ERR(eb))
4976 return;
4977
4978 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4979 free_extent_buffer(eb);
4980 return;
4981 }
4982
947a6299 4983 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
bfb484d9
JB
4984 if (ret < 0)
4985 free_extent_buffer_stale(eb);
4986 else
4987 free_extent_buffer(eb);
4988}
4989
4990/*
9580503b
DS
4991 * Readahead a node's child block.
4992 *
bfb484d9
JB
4993 * @node: parent node we're reading from
4994 * @slot: slot in the parent node for the child we want to read
4995 *
4996 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4997 * the slot in the node provided.
4998 */
4999void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5000{
5001 btrfs_readahead_tree_block(node->fs_info,
5002 btrfs_node_blockptr(node, slot),
3fbaf258
JB
5003 btrfs_header_owner(node),
5004 btrfs_node_ptr_generation(node, slot),
5005 btrfs_header_level(node) - 1);
bfb484d9 5006}