]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/inode.c
Merge tag 'rtc-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[thirdparty/linux.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
348332e0 9#include <linux/blk-cgroup.h>
f2eb0a24 10#include <linux/file.h>
39279cc3
CM
11#include <linux/fs.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
39279cc3 17#include <linux/backing-dev.h>
39279cc3 18#include <linux/writeback.h>
39279cc3 19#include <linux/compat.h>
5103e947 20#include <linux/xattr.h>
33268eaf 21#include <linux/posix_acl.h>
d899e052 22#include <linux/falloc.h>
5a0e3ad6 23#include <linux/slab.h>
7a36ddec 24#include <linux/ratelimit.h>
55e301fd 25#include <linux/btrfs.h>
53b381b3 26#include <linux/blkdev.h>
f23b5a59 27#include <linux/posix_acl_xattr.h>
e2e40f2c 28#include <linux/uio.h>
69fe2d75 29#include <linux/magic.h>
ae5e165d 30#include <linux/iversion.h>
ed46ff3d 31#include <linux/swap.h>
f8e66081 32#include <linux/migrate.h>
b1c16ac9 33#include <linux/sched/mm.h>
f85781fb 34#include <linux/iomap.h>
92d32170 35#include <asm/unaligned.h>
14605409 36#include <linux/fsverity.h>
602cbe91 37#include "misc.h"
39279cc3
CM
38#include "ctree.h"
39#include "disk-io.h"
40#include "transaction.h"
41#include "btrfs_inode.h"
39279cc3 42#include "print-tree.h"
e6dcd2dc 43#include "ordered-data.h"
95819c05 44#include "xattr.h"
e02119d5 45#include "tree-log.h"
103c1972 46#include "bio.h"
c8b97818 47#include "compression.h"
b4ce94de 48#include "locking.h"
dc89e982 49#include "free-space-cache.h"
63541927 50#include "props.h"
31193213 51#include "qgroup.h"
86736342 52#include "delalloc-space.h"
aac0023c 53#include "block-group.h"
467dc47e 54#include "space-info.h"
d8e3fb10 55#include "zoned.h"
b945a463 56#include "subpage.h"
26c2c454 57#include "inode-item.h"
c7f13d42 58#include "fs.h"
ad1ac501 59#include "accessors.h"
a0231804 60#include "extent-tree.h"
45c40c8f 61#include "root-tree.h"
59b818e0 62#include "defrag.h"
f2b39277 63#include "dir-item.h"
7c8ede16 64#include "file-item.h"
c7a03b52 65#include "uuid-tree.h"
7572dec8 66#include "ioctl.h"
af142b6f 67#include "file.h"
33cf97a7 68#include "acl.h"
67707479 69#include "relocation.h"
5c11adcc 70#include "verity.h"
7f0add25 71#include "super.h"
aa5d3003 72#include "orphan.h"
b9a9a850 73#include "backref.h"
02c372e1 74#include "raid-stripe-tree.h"
39279cc3
CM
75
76struct btrfs_iget_args {
0202e83f 77 u64 ino;
39279cc3
CM
78 struct btrfs_root *root;
79};
80
f28a4928 81struct btrfs_dio_data {
f85781fb
GR
82 ssize_t submitted;
83 struct extent_changeset *data_reserved;
53f2c206 84 struct btrfs_ordered_extent *ordered;
f5585f4f
FM
85 bool data_space_reserved;
86 bool nocow_done;
f28a4928
FM
87};
88
a3e171a0 89struct btrfs_dio_private {
67d66982 90 /* Range of I/O */
a3e171a0 91 u64 file_offset;
a3e171a0
CH
92 u32 bytes;
93
642c5d34 94 /* This must be last */
67d66982 95 struct btrfs_bio bbio;
a3e171a0
CH
96};
97
642c5d34
CH
98static struct bio_set btrfs_dio_bioset;
99
88d2beec
FM
100struct btrfs_rename_ctx {
101 /* Output field. Stores the index number of the old directory entry. */
102 u64 index;
103};
104
b9a9a850
QW
105/*
106 * Used by data_reloc_print_warning_inode() to pass needed info for filename
107 * resolution and output of error message.
108 */
109struct data_reloc_warn {
110 struct btrfs_path path;
111 struct btrfs_fs_info *fs_info;
112 u64 extent_item_size;
113 u64 logical;
114 int mirror_num;
115};
116
516095cd
DS
117/*
118 * For the file_extent_tree, we want to hold the inode lock when we lookup and
119 * update the disk_i_size, but lockdep will complain because our io_tree we hold
120 * the tree lock and get the inode lock when setting delalloc. These two things
121 * are unrelated, so make a class for the file_extent_tree so we don't get the
122 * two locking patterns mixed up.
123 */
124static struct lock_class_key file_extent_tree_class;
125
6e1d5dcc
AD
126static const struct inode_operations btrfs_dir_inode_operations;
127static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
128static const struct inode_operations btrfs_special_inode_operations;
129static const struct inode_operations btrfs_file_inode_operations;
7f09410b 130static const struct address_space_operations btrfs_aops;
828c0950 131static const struct file_operations btrfs_dir_file_operations;
39279cc3
CM
132
133static struct kmem_cache *btrfs_inode_cachep;
39279cc3 134
3972f260 135static int btrfs_setsize(struct inode *inode, struct iattr *attr);
d9dcae67 136static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
ba9145ad 137
256b0cf9
CH
138static noinline int run_delalloc_cow(struct btrfs_inode *inode,
139 struct page *locked_page, u64 start,
140 u64 end, struct writeback_control *wbc,
141 bool pages_dirty);
4b67c11d
NB
142static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
143 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
144 u64 block_len, u64 orig_block_len,
145 u64 ram_bytes, int compress_type,
146 int type);
7b128766 147
b9a9a850
QW
148static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
149 u64 root, void *warn_ctx)
150{
151 struct data_reloc_warn *warn = warn_ctx;
152 struct btrfs_fs_info *fs_info = warn->fs_info;
153 struct extent_buffer *eb;
154 struct btrfs_inode_item *inode_item;
155 struct inode_fs_paths *ipath = NULL;
156 struct btrfs_root *local_root;
157 struct btrfs_key key;
158 unsigned int nofs_flag;
159 u32 nlink;
160 int ret;
161
162 local_root = btrfs_get_fs_root(fs_info, root, true);
163 if (IS_ERR(local_root)) {
164 ret = PTR_ERR(local_root);
165 goto err;
166 }
167
168 /* This makes the path point to (inum INODE_ITEM ioff). */
169 key.objectid = inum;
170 key.type = BTRFS_INODE_ITEM_KEY;
171 key.offset = 0;
172
173 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
174 if (ret) {
175 btrfs_put_root(local_root);
176 btrfs_release_path(&warn->path);
177 goto err;
178 }
179
180 eb = warn->path.nodes[0];
181 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
182 nlink = btrfs_inode_nlink(eb, inode_item);
183 btrfs_release_path(&warn->path);
184
185 nofs_flag = memalloc_nofs_save();
186 ipath = init_ipath(4096, local_root, &warn->path);
187 memalloc_nofs_restore(nofs_flag);
188 if (IS_ERR(ipath)) {
189 btrfs_put_root(local_root);
190 ret = PTR_ERR(ipath);
191 ipath = NULL;
192 /*
193 * -ENOMEM, not a critical error, just output an generic error
194 * without filename.
195 */
196 btrfs_warn(fs_info,
197"checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
198 warn->logical, warn->mirror_num, root, inum, offset);
199 return ret;
200 }
201 ret = paths_from_inode(inum, ipath);
202 if (ret < 0)
203 goto err;
204
205 /*
206 * We deliberately ignore the bit ipath might have been too small to
207 * hold all of the paths here
208 */
209 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
210 btrfs_warn(fs_info,
211"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
212 warn->logical, warn->mirror_num, root, inum, offset,
213 fs_info->sectorsize, nlink,
214 (char *)(unsigned long)ipath->fspath->val[i]);
215 }
216
217 btrfs_put_root(local_root);
218 free_ipath(ipath);
219 return 0;
220
221err:
222 btrfs_warn(fs_info,
223"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
224 warn->logical, warn->mirror_num, root, inum, offset, ret);
225
226 free_ipath(ipath);
227 return ret;
228}
229
230/*
231 * Do extra user-friendly error output (e.g. lookup all the affected files).
232 *
233 * Return true if we succeeded doing the backref lookup.
234 * Return false if such lookup failed, and has to fallback to the old error message.
235 */
236static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
237 const u8 *csum, const u8 *csum_expected,
238 int mirror_num)
239{
240 struct btrfs_fs_info *fs_info = inode->root->fs_info;
241 struct btrfs_path path = { 0 };
242 struct btrfs_key found_key = { 0 };
243 struct extent_buffer *eb;
244 struct btrfs_extent_item *ei;
245 const u32 csum_size = fs_info->csum_size;
246 u64 logical;
247 u64 flags;
248 u32 item_size;
249 int ret;
250
251 mutex_lock(&fs_info->reloc_mutex);
252 logical = btrfs_get_reloc_bg_bytenr(fs_info);
253 mutex_unlock(&fs_info->reloc_mutex);
254
255 if (logical == U64_MAX) {
256 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
257 btrfs_warn_rl(fs_info,
258"csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
260 CSUM_FMT_VALUE(csum_size, csum),
261 CSUM_FMT_VALUE(csum_size, csum_expected),
262 mirror_num);
263 return;
264 }
265
266 logical += file_off;
267 btrfs_warn_rl(fs_info,
268"csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
269 inode->root->root_key.objectid,
270 btrfs_ino(inode), file_off, logical,
271 CSUM_FMT_VALUE(csum_size, csum),
272 CSUM_FMT_VALUE(csum_size, csum_expected),
273 mirror_num);
274
275 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
276 if (ret < 0) {
277 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
278 logical, ret);
279 return;
280 }
281 eb = path.nodes[0];
282 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
283 item_size = btrfs_item_size(eb, path.slots[0]);
284 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
285 unsigned long ptr = 0;
286 u64 ref_root;
287 u8 ref_level;
288
b7f9945a 289 while (true) {
b9a9a850
QW
290 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
291 item_size, &ref_root,
292 &ref_level);
b7f9945a
QW
293 if (ret < 0) {
294 btrfs_warn_rl(fs_info,
295 "failed to resolve tree backref for logical %llu: %d",
296 logical, ret);
297 break;
298 }
299 if (ret > 0)
300 break;
301
b9a9a850
QW
302 btrfs_warn_rl(fs_info,
303"csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
304 logical, mirror_num,
305 (ref_level ? "node" : "leaf"),
b7f9945a
QW
306 ref_level, ref_root);
307 }
b9a9a850
QW
308 btrfs_release_path(&path);
309 } else {
310 struct btrfs_backref_walk_ctx ctx = { 0 };
311 struct data_reloc_warn reloc_warn = { 0 };
312
313 btrfs_release_path(&path);
314
315 ctx.bytenr = found_key.objectid;
316 ctx.extent_item_pos = logical - found_key.objectid;
317 ctx.fs_info = fs_info;
318
319 reloc_warn.logical = logical;
320 reloc_warn.extent_item_size = found_key.offset;
321 reloc_warn.mirror_num = mirror_num;
322 reloc_warn.fs_info = fs_info;
323
324 iterate_extent_inodes(&ctx, true,
325 data_reloc_print_warning_inode, &reloc_warn);
326 }
327}
328
f60acad3
JB
329static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
330 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
331{
332 struct btrfs_root *root = inode->root;
333 const u32 csum_size = root->fs_info->csum_size;
334
b9a9a850
QW
335 /* For data reloc tree, it's better to do a backref lookup instead. */
336 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
337 return print_data_reloc_error(inode, logical_start, csum,
338 csum_expected, mirror_num);
339
f60acad3
JB
340 /* Output without objectid, which is more meaningful */
341 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
342 btrfs_warn_rl(root->fs_info,
343"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
344 root->root_key.objectid, btrfs_ino(inode),
345 logical_start,
346 CSUM_FMT_VALUE(csum_size, csum),
347 CSUM_FMT_VALUE(csum_size, csum_expected),
348 mirror_num);
349 } else {
350 btrfs_warn_rl(root->fs_info,
351"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
352 root->root_key.objectid, btrfs_ino(inode),
353 logical_start,
354 CSUM_FMT_VALUE(csum_size, csum),
355 CSUM_FMT_VALUE(csum_size, csum_expected),
356 mirror_num);
357 }
358}
359
a14b78ad 360/*
9580503b 361 * Lock inode i_rwsem based on arguments passed.
a14b78ad
GR
362 *
363 * ilock_flags can have the following bit set:
364 *
365 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
366 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
367 * return -EAGAIN
8318ba79 368 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
a14b78ad 369 */
29b6352b 370int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
a14b78ad
GR
371{
372 if (ilock_flags & BTRFS_ILOCK_SHARED) {
373 if (ilock_flags & BTRFS_ILOCK_TRY) {
29b6352b 374 if (!inode_trylock_shared(&inode->vfs_inode))
a14b78ad
GR
375 return -EAGAIN;
376 else
377 return 0;
378 }
29b6352b 379 inode_lock_shared(&inode->vfs_inode);
a14b78ad
GR
380 } else {
381 if (ilock_flags & BTRFS_ILOCK_TRY) {
29b6352b 382 if (!inode_trylock(&inode->vfs_inode))
a14b78ad
GR
383 return -EAGAIN;
384 else
385 return 0;
386 }
29b6352b 387 inode_lock(&inode->vfs_inode);
a14b78ad 388 }
8318ba79 389 if (ilock_flags & BTRFS_ILOCK_MMAP)
29b6352b 390 down_write(&inode->i_mmap_lock);
a14b78ad
GR
391 return 0;
392}
393
394/*
9580503b 395 * Unock inode i_rwsem.
a14b78ad
GR
396 *
397 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
398 * to decide whether the lock acquired is shared or exclusive.
399 */
e5d4d75b 400void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
a14b78ad 401{
8318ba79 402 if (ilock_flags & BTRFS_ILOCK_MMAP)
e5d4d75b 403 up_write(&inode->i_mmap_lock);
a14b78ad 404 if (ilock_flags & BTRFS_ILOCK_SHARED)
e5d4d75b 405 inode_unlock_shared(&inode->vfs_inode);
a14b78ad 406 else
e5d4d75b 407 inode_unlock(&inode->vfs_inode);
a14b78ad
GR
408}
409
52427260
QW
410/*
411 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 412 * from the btrfs_run_delalloc_range() callback.
52427260
QW
413 *
414 * NOTE: caller must ensure that when an error happens, it can not call
415 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
416 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
417 * to be released, which we want to happen only when finishing the ordered
d1051d6e 418 * extent (btrfs_finish_ordered_io()).
52427260 419 */
64e1db56 420static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
421 struct page *locked_page,
422 u64 offset, u64 bytes)
52427260 423{
63d71450
NA
424 unsigned long index = offset >> PAGE_SHIFT;
425 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
0e47b25c 426 u64 page_start = 0, page_end = 0;
63d71450
NA
427 struct page *page;
428
99826e4c
NA
429 if (locked_page) {
430 page_start = page_offset(locked_page);
431 page_end = page_start + PAGE_SIZE - 1;
432 }
433
63d71450 434 while (index <= end_index) {
968f2566 435 /*
9783e4de
CH
436 * For locked page, we will call btrfs_mark_ordered_io_finished
437 * through btrfs_mark_ordered_io_finished() on it
438 * in run_delalloc_range() for the error handling, which will
439 * clear page Ordered and run the ordered extent accounting.
968f2566
QW
440 *
441 * Here we can't just clear the Ordered bit, or
442 * btrfs_mark_ordered_io_finished() would skip the accounting
443 * for the page range, and the ordered extent will never finish.
444 */
99826e4c 445 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
968f2566
QW
446 index++;
447 continue;
448 }
64e1db56 449 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
450 index++;
451 if (!page)
452 continue;
968f2566
QW
453
454 /*
455 * Here we just clear all Ordered bits for every page in the
711f447b 456 * range, then btrfs_mark_ordered_io_finished() will handle
968f2566
QW
457 * the ordered extent accounting for the range.
458 */
55151ea9
QW
459 btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
460 page_folio(page), offset, bytes);
63d71450
NA
461 put_page(page);
462 }
d1051d6e 463
99826e4c
NA
464 if (locked_page) {
465 /* The locked page covers the full range, nothing needs to be done */
466 if (bytes + offset <= page_start + PAGE_SIZE)
467 return;
468 /*
469 * In case this page belongs to the delalloc range being
470 * instantiated then skip it, since the first page of a range is
471 * going to be properly cleaned up by the caller of
472 * run_delalloc_range
473 */
474 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
475 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
476 offset = page_offset(locked_page) + PAGE_SIZE;
477 }
d1051d6e
NB
478 }
479
711f447b 480 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
52427260
QW
481}
482
7152b425 483static int btrfs_dirty_inode(struct btrfs_inode *inode);
7b128766 484
f34f57a3 485static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
3538d68d 486 struct btrfs_new_inode_args *args)
0279b4cd
JO
487{
488 int err;
489
3538d68d
OS
490 if (args->default_acl) {
491 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
492 ACL_TYPE_DEFAULT);
493 if (err)
494 return err;
495 }
496 if (args->acl) {
497 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
498 if (err)
499 return err;
500 }
501 if (!args->default_acl && !args->acl)
502 cache_no_acl(args->inode);
503 return btrfs_xattr_security_init(trans, args->inode, args->dir,
504 &args->dentry->d_name);
0279b4cd
JO
505}
506
c8b97818
CM
507/*
508 * this does all the hard work for inserting an inline extent into
509 * the btree. The caller should have done a btrfs_drop_extents so that
510 * no overlapping inline items exist in the btree
511 */
40f76580 512static int insert_inline_extent(struct btrfs_trans_handle *trans,
8dd9872d
OS
513 struct btrfs_path *path,
514 struct btrfs_inode *inode, bool extent_inserted,
515 size_t size, size_t compressed_size,
fe3f566c 516 int compress_type,
d9496e8a
OS
517 struct page **compressed_pages,
518 bool update_i_size)
c8b97818 519{
8dd9872d 520 struct btrfs_root *root = inode->root;
c8b97818
CM
521 struct extent_buffer *leaf;
522 struct page *page = NULL;
523 char *kaddr;
524 unsigned long ptr;
525 struct btrfs_file_extent_item *ei;
c8b97818
CM
526 int ret;
527 size_t cur_size = size;
d9496e8a 528 u64 i_size;
c8b97818 529
982f1f5d
JJB
530 ASSERT((compressed_size > 0 && compressed_pages) ||
531 (compressed_size == 0 && !compressed_pages));
532
fe3f566c 533 if (compressed_size && compressed_pages)
c8b97818 534 cur_size = compressed_size;
c8b97818 535
1acae57b
FDBM
536 if (!extent_inserted) {
537 struct btrfs_key key;
538 size_t datasize;
c8b97818 539
8dd9872d
OS
540 key.objectid = btrfs_ino(inode);
541 key.offset = 0;
962a298f 542 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 543
1acae57b 544 datasize = btrfs_file_extent_calc_inline_size(cur_size);
1acae57b
FDBM
545 ret = btrfs_insert_empty_item(trans, root, path, &key,
546 datasize);
79b4f4c6 547 if (ret)
1acae57b 548 goto fail;
c8b97818
CM
549 }
550 leaf = path->nodes[0];
551 ei = btrfs_item_ptr(leaf, path->slots[0],
552 struct btrfs_file_extent_item);
553 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
554 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
555 btrfs_set_file_extent_encryption(leaf, ei, 0);
556 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
557 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
558 ptr = btrfs_file_extent_inline_start(ei);
559
261507a0 560 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
561 struct page *cpage;
562 int i = 0;
d397712b 563 while (compressed_size > 0) {
c8b97818 564 cpage = compressed_pages[i];
5b050f04 565 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 566 PAGE_SIZE);
c8b97818 567
4cb2e5e8 568 kaddr = kmap_local_page(cpage);
c8b97818 569 write_extent_buffer(leaf, kaddr, ptr, cur_size);
4cb2e5e8 570 kunmap_local(kaddr);
c8b97818
CM
571
572 i++;
573 ptr += cur_size;
574 compressed_size -= cur_size;
575 }
576 btrfs_set_file_extent_compression(leaf, ei,
261507a0 577 compress_type);
c8b97818 578 } else {
8dd9872d 579 page = find_get_page(inode->vfs_inode.i_mapping, 0);
c8b97818 580 btrfs_set_file_extent_compression(leaf, ei, 0);
4cb2e5e8 581 kaddr = kmap_local_page(page);
8dd9872d 582 write_extent_buffer(leaf, kaddr, ptr, size);
4cb2e5e8 583 kunmap_local(kaddr);
09cbfeaf 584 put_page(page);
c8b97818 585 }
50564b65 586 btrfs_mark_buffer_dirty(trans, leaf);
1acae57b 587 btrfs_release_path(path);
c8b97818 588
9ddc959e
JB
589 /*
590 * We align size to sectorsize for inline extents just for simplicity
591 * sake.
592 */
8dd9872d
OS
593 ret = btrfs_inode_set_file_extent_range(inode, 0,
594 ALIGN(size, root->fs_info->sectorsize));
9ddc959e
JB
595 if (ret)
596 goto fail;
597
c2167754 598 /*
d9496e8a
OS
599 * We're an inline extent, so nobody can extend the file past i_size
600 * without locking a page we already have locked.
c2167754 601 *
d9496e8a
OS
602 * We must do any i_size and inode updates before we unlock the pages.
603 * Otherwise we could end up racing with unlink.
c2167754 604 */
d9496e8a
OS
605 i_size = i_size_read(&inode->vfs_inode);
606 if (update_i_size && size > i_size) {
607 i_size_write(&inode->vfs_inode, size);
608 i_size = size;
609 }
610 inode->disk_i_size = i_size;
8dd9872d 611
c8b97818 612fail:
79b4f4c6 613 return ret;
c8b97818
CM
614}
615
616
617/*
618 * conditionally insert an inline extent into the file. This
619 * does the checks required to make sure the data is small enough
620 * to fit as an inline extent.
621 */
8dd9872d
OS
622static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
623 size_t compressed_size,
00361589 624 int compress_type,
d9496e8a
OS
625 struct page **compressed_pages,
626 bool update_i_size)
c8b97818 627{
5893dfb9 628 struct btrfs_drop_extents_args drop_args = { 0 };
a0349401 629 struct btrfs_root *root = inode->root;
0b246afa 630 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 631 struct btrfs_trans_handle *trans;
8dd9872d 632 u64 data_len = (compressed_size ?: size);
c8b97818 633 int ret;
1acae57b 634 struct btrfs_path *path;
c8b97818 635
8dd9872d
OS
636 /*
637 * We can create an inline extent if it ends at or beyond the current
638 * i_size, is no larger than a sector (decompressed), and the (possibly
639 * compressed) data fits in a leaf and the configured maximum inline
640 * size.
641 */
642 if (size < i_size_read(&inode->vfs_inode) ||
643 size > fs_info->sectorsize ||
0b246afa 644 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8dd9872d 645 data_len > fs_info->max_inline)
c8b97818 646 return 1;
c8b97818 647
1acae57b
FDBM
648 path = btrfs_alloc_path();
649 if (!path)
650 return -ENOMEM;
651
00361589 652 trans = btrfs_join_transaction(root);
1acae57b
FDBM
653 if (IS_ERR(trans)) {
654 btrfs_free_path(path);
00361589 655 return PTR_ERR(trans);
1acae57b 656 }
a0349401 657 trans->block_rsv = &inode->block_rsv;
00361589 658
5893dfb9 659 drop_args.path = path;
8dd9872d
OS
660 drop_args.start = 0;
661 drop_args.end = fs_info->sectorsize;
5893dfb9
FM
662 drop_args.drop_cache = true;
663 drop_args.replace_extent = true;
8dd9872d 664 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
5893dfb9 665 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
00361589 666 if (ret) {
66642832 667 btrfs_abort_transaction(trans, ret);
00361589
JB
668 goto out;
669 }
c8b97818 670
8dd9872d
OS
671 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
672 size, compressed_size, compress_type,
d9496e8a 673 compressed_pages, update_i_size);
2adcac1a 674 if (ret && ret != -ENOSPC) {
66642832 675 btrfs_abort_transaction(trans, ret);
00361589 676 goto out;
2adcac1a 677 } else if (ret == -ENOSPC) {
00361589
JB
678 ret = 1;
679 goto out;
79787eaa 680 }
2adcac1a 681
8dd9872d 682 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
8b9d0322 683 ret = btrfs_update_inode(trans, inode);
2766ff61
FM
684 if (ret && ret != -ENOSPC) {
685 btrfs_abort_transaction(trans, ret);
686 goto out;
687 } else if (ret == -ENOSPC) {
688 ret = 1;
689 goto out;
690 }
691
23e3337f 692 btrfs_set_inode_full_sync(inode);
00361589 693out:
94ed938a
QW
694 /*
695 * Don't forget to free the reserved space, as for inlined extent
696 * it won't count as data extent, free them directly here.
697 * And at reserve time, it's always aligned to page size, so
698 * just free one page here.
699 */
9e65bfca 700 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
1acae57b 701 btrfs_free_path(path);
3a45bb20 702 btrfs_end_transaction(trans);
00361589 703 return ret;
c8b97818
CM
704}
705
771ed689
CM
706struct async_extent {
707 u64 start;
708 u64 ram_size;
709 u64 compressed_size;
710 struct page **pages;
711 unsigned long nr_pages;
261507a0 712 int compress_type;
771ed689
CM
713 struct list_head list;
714};
715
97db1204 716struct async_chunk {
99a81a44 717 struct btrfs_inode *inode;
771ed689
CM
718 struct page *locked_page;
719 u64 start;
720 u64 end;
bf9486d6 721 blk_opf_t write_flags;
771ed689 722 struct list_head extents;
ec39f769 723 struct cgroup_subsys_state *blkcg_css;
771ed689 724 struct btrfs_work work;
9e895a8f 725 struct async_cow *async_cow;
771ed689
CM
726};
727
97db1204 728struct async_cow {
97db1204
NB
729 atomic_t num_chunks;
730 struct async_chunk chunks[];
771ed689
CM
731};
732
97db1204 733static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
734 u64 start, u64 ram_size,
735 u64 compressed_size,
736 struct page **pages,
261507a0
LZ
737 unsigned long nr_pages,
738 int compress_type)
771ed689
CM
739{
740 struct async_extent *async_extent;
741
742 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 743 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
744 async_extent->start = start;
745 async_extent->ram_size = ram_size;
746 async_extent->compressed_size = compressed_size;
747 async_extent->pages = pages;
748 async_extent->nr_pages = nr_pages;
261507a0 749 async_extent->compress_type = compress_type;
771ed689
CM
750 list_add_tail(&async_extent->list, &cow->extents);
751 return 0;
752}
753
42c16da6
QW
754/*
755 * Check if the inode needs to be submitted to compression, based on mount
756 * options, defragmentation, properties or heuristics.
757 */
808a1292
NB
758static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
759 u64 end)
f79707b0 760{
808a1292 761 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 762
e6f9d696 763 if (!btrfs_inode_can_compress(inode)) {
42c16da6
QW
764 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
765 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 766 btrfs_ino(inode));
42c16da6
QW
767 return 0;
768 }
0cf9b244
QW
769 /*
770 * Special check for subpage.
771 *
772 * We lock the full page then run each delalloc range in the page, thus
773 * for the following case, we will hit some subpage specific corner case:
774 *
775 * 0 32K 64K
776 * | |///////| |///////|
777 * \- A \- B
778 *
779 * In above case, both range A and range B will try to unlock the full
780 * page [0, 64K), causing the one finished later will have page
781 * unlocked already, triggering various page lock requirement BUG_ON()s.
782 *
783 * So here we add an artificial limit that subpage compression can only
784 * if the range is fully page aligned.
785 *
786 * In theory we only need to ensure the first page is fully covered, but
787 * the tailing partial page will be locked until the full compression
788 * finishes, delaying the write of other range.
789 *
790 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
791 * first to prevent any submitted async extent to unlock the full page.
792 * By this, we can ensure for subpage case that only the last async_cow
793 * will unlock the full page.
794 */
795 if (fs_info->sectorsize < PAGE_SIZE) {
1280d2d1
FK
796 if (!PAGE_ALIGNED(start) ||
797 !PAGE_ALIGNED(end + 1))
0cf9b244
QW
798 return 0;
799 }
800
f79707b0 801 /* force compress */
0b246afa 802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 803 return 1;
eec63c65 804 /* defrag ioctl */
808a1292 805 if (inode->defrag_compress)
eec63c65 806 return 1;
f79707b0 807 /* bad compression ratios */
808a1292 808 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 809 return 0;
0b246afa 810 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
811 inode->flags & BTRFS_INODE_COMPRESS ||
812 inode->prop_compress)
813 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
814 return 0;
815}
816
6158e1ce 817static inline void inode_should_defrag(struct btrfs_inode *inode,
558732df 818 u64 start, u64 end, u64 num_bytes, u32 small_write)
26d30f85
AJ
819{
820 /* If this is a small write inside eof, kick off a defrag */
821 if (num_bytes < small_write &&
6158e1ce 822 (start > 0 || end + 1 < inode->disk_i_size))
558732df 823 btrfs_add_inode_defrag(NULL, inode, small_write);
26d30f85
AJ
824}
825
d352ac68 826/*
c15d8cf2 827 * Work queue call back to started compression on a file and pages.
c8b97818 828 *
c15d8cf2
CH
829 * This is done inside an ordered work queue, and the compression is spread
830 * across many cpus. The actual IO submission is step two, and the ordered work
831 * queue takes care of making sure that happens in the same order things were
832 * put onto the queue by writepages and friends.
c8b97818 833 *
c15d8cf2
CH
834 * If this code finds it can't get good compression, it puts an entry onto the
835 * work queue to write the uncompressed bytes. This makes sure that both
836 * compressed inodes and uncompressed inodes are written in the same order that
837 * the flusher thread sent them down.
d352ac68 838 */
c15d8cf2 839static void compress_file_range(struct btrfs_work *work)
b888db2b 840{
c15d8cf2
CH
841 struct async_chunk *async_chunk =
842 container_of(work, struct async_chunk, work);
99a01bd6
DS
843 struct btrfs_inode *inode = async_chunk->inode;
844 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a994310a 845 struct address_space *mapping = inode->vfs_inode.i_mapping;
0b246afa 846 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
847 u64 start = async_chunk->start;
848 u64 end = async_chunk->end;
c8b97818 849 u64 actual_end;
d98da499 850 u64 i_size;
e6dcd2dc 851 int ret = 0;
e94e54e8 852 struct page **pages;
c8b97818 853 unsigned long nr_pages;
c8b97818
CM
854 unsigned long total_compressed = 0;
855 unsigned long total_in = 0;
e94e54e8 856 unsigned int poff;
c8b97818 857 int i;
0b246afa 858 int compress_type = fs_info->compress_type;
b888db2b 859
99a01bd6 860 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
4cb5300b 861
44962ca3
CH
862 /*
863 * We need to call clear_page_dirty_for_io on each page in the range.
864 * Otherwise applications with the file mmap'd can wander in and change
865 * the page contents while we are compressing them.
866 */
867 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
868
d98da499
JB
869 /*
870 * We need to save i_size before now because it could change in between
871 * us evaluating the size and assigning it. This is because we lock and
872 * unlock the page in truncate and fallocate, and then modify the i_size
873 * later on.
874 *
875 * The barriers are to emulate READ_ONCE, remove that once i_size_read
876 * does that for us.
877 */
878 barrier();
99a01bd6 879 i_size = i_size_read(&inode->vfs_inode);
d98da499
JB
880 barrier();
881 actual_end = min_t(u64, i_size, end + 1);
c8b97818 882again:
e94e54e8 883 pages = NULL;
09cbfeaf 884 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
544fe4a9 885 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
be20aa9d 886
f03d9301
CM
887 /*
888 * we don't want to send crud past the end of i_size through
889 * compression, that's just a waste of CPU time. So, if the
890 * end of the file is before the start of our current
891 * requested range of bytes, we bail out to the uncompressed
892 * cleanup code that can deal with all of this.
893 *
894 * It isn't really the fastest way to fix things, but this is a
895 * very uncommon corner.
896 */
897 if (actual_end <= start)
898 goto cleanup_and_bail_uncompressed;
899
c8b97818
CM
900 total_compressed = actual_end - start;
901
4bcbb332 902 /*
0cf9b244 903 * Skip compression for a small file range(<=blocksize) that
01327610 904 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
905 */
906 if (total_compressed <= blocksize &&
99a01bd6 907 (start > 0 || end + 1 < inode->disk_i_size))
4bcbb332
SW
908 goto cleanup_and_bail_uncompressed;
909
0cf9b244
QW
910 /*
911 * For subpage case, we require full page alignment for the sector
912 * aligned range.
913 * Thus we must also check against @actual_end, not just @end.
914 */
915 if (blocksize < PAGE_SIZE) {
1280d2d1
FK
916 if (!PAGE_ALIGNED(start) ||
917 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
0cf9b244
QW
918 goto cleanup_and_bail_uncompressed;
919 }
920
069eac78
DS
921 total_compressed = min_t(unsigned long, total_compressed,
922 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
923 total_in = 0;
924 ret = 0;
db94535d 925
771ed689 926 /*
e94e54e8
CH
927 * We do compression for mount -o compress and when the inode has not
928 * been flagged as NOCOMPRESS. This flag can change at any time if we
929 * discover bad compression ratios.
c8b97818 930 */
e94e54e8 931 if (!inode_need_compress(inode, start, end))
6a7167bf 932 goto cleanup_and_bail_uncompressed;
261507a0 933
e94e54e8
CH
934 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
935 if (!pages) {
4adaa611 936 /*
e94e54e8
CH
937 * Memory allocation failure is not a fatal error, we can fall
938 * back to uncompressed code.
4adaa611 939 */
6a7167bf 940 goto cleanup_and_bail_uncompressed;
e94e54e8 941 }
f51d2b59 942
e94e54e8
CH
943 if (inode->defrag_compress)
944 compress_type = inode->defrag_compress;
945 else if (inode->prop_compress)
946 compress_type = inode->prop_compress;
947
e94e54e8
CH
948 /* Compression level is applied here. */
949 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
950 mapping, start, pages, &nr_pages, &total_in,
951 &total_compressed);
952 if (ret)
184aa1ff 953 goto mark_incompressible;
c8b97818 954
e94e54e8
CH
955 /*
956 * Zero the tail end of the last page, as we might be sending it down
957 * to disk.
958 */
959 poff = offset_in_page(total_compressed);
960 if (poff)
961 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
c8b97818 962
7367253a 963 /*
6a7167bf
CH
964 * Try to create an inline extent.
965 *
966 * If we didn't compress the entire range, try to create an uncompressed
967 * inline extent, else a compressed one.
968 *
7367253a 969 * Check cow_file_range() for why we don't even try to create inline
e94e54e8 970 * extent for the subpage case.
7367253a
QW
971 */
972 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
6a7167bf
CH
973 if (total_in < actual_end) {
974 ret = cow_file_range_inline(inode, actual_end, 0,
975 BTRFS_COMPRESS_NONE, NULL,
976 false);
c8b97818 977 } else {
99a01bd6 978 ret = cow_file_range_inline(inode, actual_end,
fe3f566c 979 total_compressed,
d9496e8a
OS
980 compress_type, pages,
981 false);
c8b97818 982 }
79787eaa 983 if (ret <= 0) {
151a41bc 984 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING;
e6eb4314 987
a994310a
CH
988 if (ret < 0)
989 mapping_set_error(mapping, -EIO);
151a41bc 990
771ed689 991 /*
79787eaa
JM
992 * inline extent creation worked or returned error,
993 * we don't need to create any more async work items.
994 * Unlock and free up our temp pages.
8b62f87b
JB
995 *
996 * We use DO_ACCOUNTING here because we need the
997 * delalloc_release_metadata to be done _after_ we drop
998 * our outstanding extent for clearing delalloc for this
999 * range.
771ed689 1000 */
99a01bd6 1001 extent_clear_unlock_delalloc(inode, start, end,
ad7ff17b 1002 NULL,
74e9194a 1003 clear_flags,
ba8b04c1 1004 PAGE_UNLOCK |
6869b0a8 1005 PAGE_START_WRITEBACK |
c2790a2e 1006 PAGE_END_WRITEBACK);
f778b6b8 1007 goto free_pages;
c8b97818
CM
1008 }
1009 }
1010
e94e54e8
CH
1011 /*
1012 * We aren't doing an inline extent. Round the compressed size up to a
1013 * block size boundary so the allocator does sane things.
1014 */
1015 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818 1016
e94e54e8
CH
1017 /*
1018 * One last check to make sure the compression is really a win, compare
1019 * the page count read with the blocks on disk, compression must free at
1020 * least one sector.
1021 */
1022 total_in = round_up(total_in, fs_info->sectorsize);
1023 if (total_compressed + blocksize > total_in)
184aa1ff 1024 goto mark_incompressible;
c8bb0c8b 1025
e94e54e8
CH
1026 /*
1027 * The async work queues will take care of doing actual allocation on
1028 * disk for these compressed pages, and will submit the bios.
1029 */
1030 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1031 nr_pages, compress_type);
1032 if (start + total_in < end) {
1033 start += total_in;
1034 cond_resched();
1035 goto again;
c8b97818 1036 }
e94e54e8
CH
1037 return;
1038
184aa1ff
CH
1039mark_incompressible:
1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 inode->flags |= BTRFS_INODE_NOCOMPRESS;
e94e54e8 1042cleanup_and_bail_uncompressed:
b5326271 1043 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 1044 BTRFS_COMPRESS_NONE);
f778b6b8 1045free_pages:
c8bb0c8b 1046 if (pages) {
4d3a800e 1047 for (i = 0; i < nr_pages; i++) {
70b99e69 1048 WARN_ON(pages[i]->mapping);
9ba965dc 1049 btrfs_free_compr_page(pages[i]);
c8b97818
CM
1050 }
1051 kfree(pages);
c8b97818 1052 }
771ed689 1053}
771ed689 1054
40ae837b
FM
1055static void free_async_extent_pages(struct async_extent *async_extent)
1056{
1057 int i;
1058
1059 if (!async_extent->pages)
1060 return;
1061
1062 for (i = 0; i < async_extent->nr_pages; i++) {
1063 WARN_ON(async_extent->pages[i]->mapping);
9ba965dc 1064 btrfs_free_compr_page(async_extent->pages[i]);
40ae837b
FM
1065 }
1066 kfree(async_extent->pages);
1067 async_extent->nr_pages = 0;
1068 async_extent->pages = NULL;
771ed689
CM
1069}
1070
ff20d6a4
CH
1071static void submit_uncompressed_range(struct btrfs_inode *inode,
1072 struct async_extent *async_extent,
1073 struct page *locked_page)
771ed689 1074{
2b83a0ee
QW
1075 u64 start = async_extent->start;
1076 u64 end = async_extent->start + async_extent->ram_size - 1;
2b83a0ee 1077 int ret;
7027f871
CH
1078 struct writeback_control wbc = {
1079 .sync_mode = WB_SYNC_ALL,
1080 .range_start = start,
1081 .range_end = end,
1082 .no_cgroup_owner = 1,
1083 };
771ed689 1084
256b0cf9
CH
1085 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1086 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1087 wbc_detach_inode(&wbc);
2b83a0ee 1088 if (ret < 0) {
71aa147b
NA
1089 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1090 if (locked_page) {
1091 const u64 page_start = page_offset(locked_page);
71aa147b 1092
71aa147b
NA
1093 set_page_writeback(locked_page);
1094 end_page_writeback(locked_page);
9783e4de
CH
1095 btrfs_mark_ordered_io_finished(inode, locked_page,
1096 page_start, PAGE_SIZE,
1097 !ret);
9783e4de 1098 mapping_set_error(locked_page->mapping, ret);
2b83a0ee 1099 unlock_page(locked_page);
71aa147b 1100 }
2b83a0ee 1101 }
2b83a0ee 1102}
79787eaa 1103
84f262f0
CH
1104static void submit_one_async_extent(struct async_chunk *async_chunk,
1105 struct async_extent *async_extent,
1106 u64 *alloc_hint)
771ed689 1107{
84f262f0 1108 struct btrfs_inode *inode = async_chunk->inode;
b4ccace8
QW
1109 struct extent_io_tree *io_tree = &inode->io_tree;
1110 struct btrfs_root *root = inode->root;
1111 struct btrfs_fs_info *fs_info = root->fs_info;
d611935b 1112 struct btrfs_ordered_extent *ordered;
771ed689 1113 struct btrfs_key ins;
2b83a0ee 1114 struct page *locked_page = NULL;
771ed689 1115 struct extent_map *em;
f5a84ee3 1116 int ret = 0;
b4ccace8
QW
1117 u64 start = async_extent->start;
1118 u64 end = async_extent->start + async_extent->ram_size - 1;
771ed689 1119
896d7c1a
CH
1120 if (async_chunk->blkcg_css)
1121 kthread_associate_blkcg(async_chunk->blkcg_css);
1122
2b83a0ee
QW
1123 /*
1124 * If async_chunk->locked_page is in the async_extent range, we need to
1125 * handle it.
1126 */
1127 if (async_chunk->locked_page) {
1128 u64 locked_page_start = page_offset(async_chunk->locked_page);
1129 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
3e04e7f1 1130
2b83a0ee
QW
1131 if (!(start >= locked_page_end || end <= locked_page_start))
1132 locked_page = async_chunk->locked_page;
b4ccace8 1133 }
570eb97b 1134 lock_extent(io_tree, start, end, NULL);
ce62003f 1135
67583468 1136 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
ff20d6a4 1137 submit_uncompressed_range(inode, async_extent, locked_page);
e43a6210
CH
1138 goto done;
1139 }
ce62003f 1140
b4ccace8
QW
1141 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1142 async_extent->compressed_size,
1143 async_extent->compressed_size,
1144 0, *alloc_hint, &ins, 1, 1);
1145 if (ret) {
c2167754 1146 /*
b4ccace8
QW
1147 * Here we used to try again by going back to non-compressed
1148 * path for ENOSPC. But we can't reserve space even for
1149 * compressed size, how could it work for uncompressed size
1150 * which requires larger size? So here we directly go error
1151 * path.
c2167754 1152 */
b4ccace8
QW
1153 goto out_free;
1154 }
1155
1156 /* Here we're doing allocation and writeback of the compressed pages */
1157 em = create_io_em(inode, start,
1158 async_extent->ram_size, /* len */
1159 start, /* orig_start */
1160 ins.objectid, /* block_start */
1161 ins.offset, /* block_len */
1162 ins.offset, /* orig_block_len */
1163 async_extent->ram_size, /* ram_bytes */
1164 async_extent->compress_type,
1165 BTRFS_ORDERED_COMPRESSED);
1166 if (IS_ERR(em)) {
1167 ret = PTR_ERR(em);
1168 goto out_free_reserve;
1169 }
1170 free_extent_map(em);
771ed689 1171
d611935b 1172 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
cb36a9bb
OS
1173 async_extent->ram_size, /* num_bytes */
1174 async_extent->ram_size, /* ram_bytes */
1175 ins.objectid, /* disk_bytenr */
1176 ins.offset, /* disk_num_bytes */
1177 0, /* offset */
1178 1 << BTRFS_ORDERED_COMPRESSED,
1179 async_extent->compress_type);
d611935b 1180 if (IS_ERR(ordered)) {
4c0c8cfc 1181 btrfs_drop_extent_map_range(inode, start, end, false);
d611935b 1182 ret = PTR_ERR(ordered);
b4ccace8 1183 goto out_free_reserve;
771ed689 1184 }
b4ccace8
QW
1185 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1186
1187 /* Clear dirty, set writeback and unlock the pages. */
1188 extent_clear_unlock_delalloc(inode, start, end,
1189 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1190 PAGE_UNLOCK | PAGE_START_WRITEBACK);
d611935b 1191 btrfs_submit_compressed_write(ordered,
b4ccace8
QW
1192 async_extent->pages, /* compressed_pages */
1193 async_extent->nr_pages,
05d06a5c 1194 async_chunk->write_flags, true);
b4ccace8 1195 *alloc_hint = ins.objectid + ins.offset;
e43a6210 1196done:
896d7c1a
CH
1197 if (async_chunk->blkcg_css)
1198 kthread_associate_blkcg(NULL);
b4ccace8 1199 kfree(async_extent);
84f262f0 1200 return;
b4ccace8 1201
3e04e7f1 1202out_free_reserve:
0b246afa 1203 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1204 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1205out_free:
a994310a 1206 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
b4ccace8 1207 extent_clear_unlock_delalloc(inode, start, end,
c2790a2e 1208 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 1209 EXTENT_DELALLOC_NEW |
151a41bc 1210 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
6869b0a8 1211 PAGE_UNLOCK | PAGE_START_WRITEBACK |
a994310a 1212 PAGE_END_WRITEBACK);
40ae837b 1213 free_async_extent_pages(async_extent);
84f262f0
CH
1214 if (async_chunk->blkcg_css)
1215 kthread_associate_blkcg(NULL);
1216 btrfs_debug(fs_info,
b4ccace8 1217"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
84f262f0
CH
1218 root->root_key.objectid, btrfs_ino(inode), start,
1219 async_extent->ram_size, ret);
1220 kfree(async_extent);
771ed689
CM
1221}
1222
43c69849 1223static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
1224 u64 num_bytes)
1225{
43c69849 1226 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
1227 struct extent_map *em;
1228 u64 alloc_hint = 0;
1229
1230 read_lock(&em_tree->lock);
1231 em = search_extent_mapping(em_tree, start, num_bytes);
1232 if (em) {
1233 /*
1234 * if block start isn't an actual block number then find the
1235 * first block in this inode and use that as a hint. If that
1236 * block is also bogus then just don't worry about it.
1237 */
1238 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1239 free_extent_map(em);
1240 em = search_extent_mapping(em_tree, 0, 0);
1241 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1242 alloc_hint = em->block_start;
1243 if (em)
1244 free_extent_map(em);
1245 } else {
1246 alloc_hint = em->block_start;
1247 free_extent_map(em);
1248 }
1249 }
1250 read_unlock(&em_tree->lock);
1251
1252 return alloc_hint;
1253}
1254
771ed689
CM
1255/*
1256 * when extent_io.c finds a delayed allocation range in the file,
1257 * the call backs end up in this code. The basic idea is to
1258 * allocate extents on disk for the range, and create ordered data structs
1259 * in ram to track those extents.
1260 *
1261 * locked_page is the page that writepage had locked already. We use
1262 * it to make sure we don't do extra locks or unlocks.
1263 *
ba9145ad 1264 * When this function fails, it unlocks all pages except @locked_page.
9ce7466f 1265 *
c56cbe90
CH
1266 * When this function successfully creates an inline extent, it returns 1 and
1267 * unlocks all pages including locked_page and starts I/O on them.
ba9145ad
CH
1268 * (In reality inline extents are limited to a single page, so locked_page is
1269 * the only page handled anyway).
9ce7466f 1270 *
ba9145ad
CH
1271 * When this function succeed and creates a normal extent, the page locking
1272 * status depends on the passed in flags:
9ce7466f 1273 *
ba9145ad
CH
1274 * - If @keep_locked is set, all pages are kept locked.
1275 * - Else all pages except for @locked_page are unlocked.
9ce7466f
NA
1276 *
1277 * When a failure happens in the second or later iteration of the
1278 * while-loop, the ordered extents created in previous iterations are kept
1279 * intact. So, the caller must clean them up by calling
1280 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1281 * example.
771ed689 1282 */
6e26c442 1283static noinline int cow_file_range(struct btrfs_inode *inode,
c56cbe90
CH
1284 struct page *locked_page, u64 start, u64 end,
1285 u64 *done_offset,
53ffb30a 1286 bool keep_locked, bool no_inline)
771ed689 1287{
6e26c442
NB
1288 struct btrfs_root *root = inode->root;
1289 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689 1290 u64 alloc_hint = 0;
9ce7466f 1291 u64 orig_start = start;
771ed689
CM
1292 u64 num_bytes;
1293 unsigned long ram_size;
a315e68f 1294 u64 cur_alloc_size = 0;
432cd2a1 1295 u64 min_alloc_size;
0b246afa 1296 u64 blocksize = fs_info->sectorsize;
771ed689
CM
1297 struct btrfs_key ins;
1298 struct extent_map *em;
a315e68f
FM
1299 unsigned clear_bits;
1300 unsigned long page_ops;
1301 bool extent_reserved = false;
771ed689
CM
1302 int ret = 0;
1303
6e26c442 1304 if (btrfs_is_free_space_inode(inode)) {
29bce2f3
JB
1305 ret = -EINVAL;
1306 goto out_unlock;
02ecd2c2 1307 }
771ed689 1308
fda2832f 1309 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1310 num_bytes = max(blocksize, num_bytes);
566b1760 1311 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1312
6e26c442 1313 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1314
7367253a
QW
1315 /*
1316 * Due to the page size limit, for subpage we can only trigger the
1317 * writeback for the dirty sectors of page, that means data writeback
1318 * is doing more writeback than what we want.
1319 *
1320 * This is especially unexpected for some call sites like fallocate,
1321 * where we only increase i_size after everything is done.
1322 * This means we can trigger inline extent even if we didn't want to.
1323 * So here we skip inline extent creation completely.
1324 */
53ffb30a 1325 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
8dd9872d
OS
1326 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1327 end + 1);
1328
771ed689 1329 /* lets try to make an inline extent */
8dd9872d 1330 ret = cow_file_range_inline(inode, actual_end, 0,
d9496e8a 1331 BTRFS_COMPRESS_NONE, NULL, false);
771ed689 1332 if (ret == 0) {
8b62f87b
JB
1333 /*
1334 * We use DO_ACCOUNTING here because we need the
1335 * delalloc_release_metadata to be run _after_ we drop
1336 * our outstanding extent for clearing delalloc for this
1337 * range.
1338 */
4750af3b
QW
1339 extent_clear_unlock_delalloc(inode, start, end,
1340 locked_page,
c2790a2e 1341 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1342 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1343 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 1344 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
4750af3b
QW
1345 /*
1346 * locked_page is locked by the caller of
1347 * writepage_delalloc(), not locked by
1348 * __process_pages_contig().
1349 *
1350 * We can't let __process_pages_contig() to unlock it,
1351 * as it doesn't have any subpage::writers recorded.
1352 *
1353 * Here we manually unlock the page, since the caller
c56cbe90
CH
1354 * can't determine if it's an inline extent or a
1355 * compressed extent.
4750af3b
QW
1356 */
1357 unlock_page(locked_page);
6e144bf1
CH
1358 ret = 1;
1359 goto done;
79787eaa 1360 } else if (ret < 0) {
79787eaa 1361 goto out_unlock;
771ed689
CM
1362 }
1363 }
1364
6e26c442 1365 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689 1366
432cd2a1
FM
1367 /*
1368 * Relocation relies on the relocated extents to have exactly the same
1369 * size as the original extents. Normally writeback for relocation data
1370 * extents follows a NOCOW path because relocation preallocates the
1371 * extents. However, due to an operation such as scrub turning a block
1372 * group to RO mode, it may fallback to COW mode, so we must make sure
1373 * an extent allocated during COW has exactly the requested size and can
1374 * not be split into smaller extents, otherwise relocation breaks and
1375 * fails during the stage where it updates the bytenr of file extent
1376 * items.
1377 */
37f00a6d 1378 if (btrfs_is_data_reloc_root(root))
432cd2a1
FM
1379 min_alloc_size = num_bytes;
1380 else
1381 min_alloc_size = fs_info->sectorsize;
1382
3752d22f 1383 while (num_bytes > 0) {
34bfaf15
CH
1384 struct btrfs_ordered_extent *ordered;
1385
3752d22f 1386 cur_alloc_size = num_bytes;
18513091 1387 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1388 min_alloc_size, 0, alloc_hint,
e570fd27 1389 &ins, 1, 1);
6e144bf1
CH
1390 if (ret == -EAGAIN) {
1391 /*
1392 * btrfs_reserve_extent only returns -EAGAIN for zoned
1393 * file systems, which is an indication that there are
1394 * no active zones to allocate from at the moment.
1395 *
1396 * If this is the first loop iteration, wait for at
1397 * least one zone to finish before retrying the
1398 * allocation. Otherwise ask the caller to write out
1399 * the already allocated blocks before coming back to
1400 * us, or return -ENOSPC if it can't handle retries.
1401 */
1402 ASSERT(btrfs_is_zoned(fs_info));
1403 if (start == orig_start) {
1404 wait_on_bit_io(&inode->root->fs_info->flags,
1405 BTRFS_FS_NEED_ZONE_FINISH,
1406 TASK_UNINTERRUPTIBLE);
1407 continue;
1408 }
1409 if (done_offset) {
1410 *done_offset = start - 1;
1411 return 0;
1412 }
1413 ret = -ENOSPC;
1414 }
00361589 1415 if (ret < 0)
79787eaa 1416 goto out_unlock;
a315e68f
FM
1417 cur_alloc_size = ins.offset;
1418 extent_reserved = true;
d397712b 1419
771ed689 1420 ram_size = ins.offset;
6e26c442 1421 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1422 start, /* orig_start */
1423 ins.objectid, /* block_start */
1424 ins.offset, /* block_len */
1425 ins.offset, /* orig_block_len */
1426 ram_size, /* ram_bytes */
1427 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1428 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1429 if (IS_ERR(em)) {
1430 ret = PTR_ERR(em);
ace68bac 1431 goto out_reserve;
090a127a 1432 }
6f9994db 1433 free_extent_map(em);
e6dcd2dc 1434
34bfaf15
CH
1435 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1436 ram_size, ins.objectid, cur_alloc_size,
1437 0, 1 << BTRFS_ORDERED_REGULAR,
1438 BTRFS_COMPRESS_NONE);
1439 if (IS_ERR(ordered)) {
1440 ret = PTR_ERR(ordered);
d9f85963 1441 goto out_drop_extent_cache;
34bfaf15 1442 }
c8b97818 1443
37f00a6d 1444 if (btrfs_is_data_reloc_root(root)) {
34bfaf15
CH
1445 ret = btrfs_reloc_clone_csums(ordered);
1446
4dbd80fb
QW
1447 /*
1448 * Only drop cache here, and process as normal.
1449 *
1450 * We must not allow extent_clear_unlock_delalloc()
1451 * at out_unlock label to free meta of this ordered
1452 * extent, as its meta should be freed by
1453 * btrfs_finish_ordered_io().
1454 *
1455 * So we must continue until @start is increased to
1456 * skip current ordered extent.
1457 */
00361589 1458 if (ret)
4c0c8cfc
FM
1459 btrfs_drop_extent_map_range(inode, start,
1460 start + ram_size - 1,
1461 false);
17d217fe 1462 }
34bfaf15 1463 btrfs_put_ordered_extent(ordered);
17d217fe 1464
0b246afa 1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1466
f57ad937
QW
1467 /*
1468 * We're not doing compressed IO, don't unlock the first page
1469 * (which the caller expects to stay locked), don't clear any
1470 * dirty bits and don't set any writeback bits
8b62b72b 1471 *
f57ad937
QW
1472 * Do set the Ordered (Private2) bit so we know this page was
1473 * properly setup for writepage.
c8b97818 1474 */
ba9145ad 1475 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
f57ad937 1476 page_ops |= PAGE_SET_ORDERED;
a791e35e 1477
6e26c442 1478 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1479 locked_page,
c2790a2e 1480 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1481 page_ops);
3752d22f
AJ
1482 if (num_bytes < cur_alloc_size)
1483 num_bytes = 0;
4dbd80fb 1484 else
3752d22f 1485 num_bytes -= cur_alloc_size;
c59f8951
CM
1486 alloc_hint = ins.objectid + ins.offset;
1487 start += cur_alloc_size;
a315e68f 1488 extent_reserved = false;
4dbd80fb
QW
1489
1490 /*
1491 * btrfs_reloc_clone_csums() error, since start is increased
1492 * extent_clear_unlock_delalloc() at out_unlock label won't
1493 * free metadata of current ordered extent, we're OK to exit.
1494 */
1495 if (ret)
1496 goto out_unlock;
b888db2b 1497 }
6e144bf1
CH
1498done:
1499 if (done_offset)
1500 *done_offset = end;
be20aa9d 1501 return ret;
b7d5b0a8 1502
d9f85963 1503out_drop_extent_cache:
4c0c8cfc 1504 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
ace68bac 1505out_reserve:
0b246afa 1506 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1508out_unlock:
9ce7466f
NA
1509 /*
1510 * Now, we have three regions to clean up:
1511 *
1512 * |-------(1)----|---(2)---|-------------(3)----------|
1513 * `- orig_start `- start `- start + cur_alloc_size `- end
1514 *
1515 * We process each region below.
1516 */
1517
a7e3b975
FM
1518 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1519 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
6869b0a8 1520 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
9ce7466f 1521
a315e68f 1522 /*
9ce7466f
NA
1523 * For the range (1). We have already instantiated the ordered extents
1524 * for this region. They are cleaned up by
1525 * btrfs_cleanup_ordered_extents() in e.g,
1526 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1527 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1528 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1529 * function.
1530 *
ba9145ad 1531 * However, in case of @keep_locked, we still need to unlock the pages
9ce7466f
NA
1532 * (except @locked_page) to ensure all the pages are unlocked.
1533 */
ba9145ad 1534 if (keep_locked && orig_start < start) {
71aa147b
NA
1535 if (!locked_page)
1536 mapping_set_error(inode->vfs_inode.i_mapping, ret);
9ce7466f
NA
1537 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1538 locked_page, 0, page_ops);
71aa147b 1539 }
9ce7466f 1540
a315e68f 1541 /*
9ce7466f
NA
1542 * For the range (2). If we reserved an extent for our delalloc range
1543 * (or a subrange) and failed to create the respective ordered extent,
1544 * then it means that when we reserved the extent we decremented the
1545 * extent's size from the data space_info's bytes_may_use counter and
1546 * incremented the space_info's bytes_reserved counter by the same
1547 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1548 * to decrement again the data space_info's bytes_may_use counter,
1549 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
a315e68f
FM
1550 */
1551 if (extent_reserved) {
6e26c442 1552 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1553 start + cur_alloc_size - 1,
a315e68f
FM
1554 locked_page,
1555 clear_bits,
1556 page_ops);
1557 start += cur_alloc_size;
a315e68f 1558 }
9ce7466f
NA
1559
1560 /*
1561 * For the range (3). We never touched the region. In addition to the
1562 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1563 * space_info's bytes_may_use counter, reserved in
1564 * btrfs_check_data_free_space().
1565 */
12b2d64e
CH
1566 if (start < end) {
1567 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1568 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1569 clear_bits, page_ops);
1570 }
aaafa1eb 1571 return ret;
771ed689 1572}
c8b97818 1573
771ed689 1574/*
c15d8cf2
CH
1575 * Phase two of compressed writeback. This is the ordered portion of the code,
1576 * which only gets called in the order the work was queued. We walk all the
1577 * async extents created by compress_file_range and send them down to the disk.
078b8b90
DS
1578 *
1579 * If called with @do_free == true then it'll try to finish the work and free
1580 * the work struct eventually.
771ed689 1581 */
078b8b90 1582static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
771ed689 1583{
c5a68aec
NB
1584 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1585 work);
1586 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
00d31d17 1587 struct async_extent *async_extent;
771ed689 1588 unsigned long nr_pages;
00d31d17 1589 u64 alloc_hint = 0;
771ed689 1590
078b8b90
DS
1591 if (do_free) {
1592 struct async_chunk *async_chunk;
1593 struct async_cow *async_cow;
1594
1595 async_chunk = container_of(work, struct async_chunk, work);
1596 btrfs_add_delayed_iput(async_chunk->inode);
1597 if (async_chunk->blkcg_css)
1598 css_put(async_chunk->blkcg_css);
1599
1600 async_cow = async_chunk->async_cow;
1601 if (atomic_dec_and_test(&async_cow->num_chunks))
1602 kvfree(async_cow);
1603 return;
1604 }
1605
b5326271 1606 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1607 PAGE_SHIFT;
771ed689 1608
00d31d17
CH
1609 while (!list_empty(&async_chunk->extents)) {
1610 async_extent = list_entry(async_chunk->extents.next,
1611 struct async_extent, list);
1612 list_del(&async_extent->list);
1613 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1614 }
ac98141d
JB
1615
1616 /* atomic_sub_return implies a barrier */
1617 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1618 5 * SZ_1M)
1619 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1620}
c8b97818 1621
bb7b05fe 1622static bool run_delalloc_compressed(struct btrfs_inode *inode,
c56cbe90
CH
1623 struct page *locked_page, u64 start,
1624 u64 end, struct writeback_control *wbc)
771ed689 1625{
751b6431 1626 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1627 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1628 struct async_cow *ctx;
1629 struct async_chunk *async_chunk;
771ed689 1630 unsigned long nr_pages;
97db1204
NB
1631 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1632 int i;
b1c16ac9 1633 unsigned nofs_flag;
bf9486d6 1634 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
771ed689 1635
b1c16ac9
NB
1636 nofs_flag = memalloc_nofs_save();
1637 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1638 memalloc_nofs_restore(nofs_flag);
973fb26e
CH
1639 if (!ctx)
1640 return false;
b1c16ac9 1641
973fb26e
CH
1642 unlock_extent(&inode->io_tree, start, end, NULL);
1643 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
97db1204
NB
1644
1645 async_chunk = ctx->chunks;
1646 atomic_set(&ctx->num_chunks, num_chunks);
1647
1648 for (i = 0; i < num_chunks; i++) {
973fb26e 1649 u64 cur_end = min(end, start + SZ_512K - 1);
771ed689 1650
bd4691a0
NB
1651 /*
1652 * igrab is called higher up in the call chain, take only the
1653 * lightweight reference for the callback lifetime
1654 */
751b6431 1655 ihold(&inode->vfs_inode);
9e895a8f 1656 async_chunk[i].async_cow = ctx;
99a81a44 1657 async_chunk[i].inode = inode;
97db1204
NB
1658 async_chunk[i].start = start;
1659 async_chunk[i].end = cur_end;
97db1204
NB
1660 async_chunk[i].write_flags = write_flags;
1661 INIT_LIST_HEAD(&async_chunk[i].extents);
1662
1d53c9e6
CM
1663 /*
1664 * The locked_page comes all the way from writepage and its
1665 * the original page we were actually given. As we spread
1666 * this large delalloc region across multiple async_chunk
1667 * structs, only the first struct needs a pointer to locked_page
1668 *
1669 * This way we don't need racey decisions about who is supposed
1670 * to unlock it.
1671 */
1672 if (locked_page) {
ec39f769
CM
1673 /*
1674 * Depending on the compressibility, the pages might or
1675 * might not go through async. We want all of them to
1676 * be accounted against wbc once. Let's do it here
1677 * before the paths diverge. wbc accounting is used
1678 * only for foreign writeback detection and doesn't
1679 * need full accuracy. Just account the whole thing
1680 * against the first page.
1681 */
1682 wbc_account_cgroup_owner(wbc, locked_page,
1683 cur_end - start);
1d53c9e6
CM
1684 async_chunk[i].locked_page = locked_page;
1685 locked_page = NULL;
1686 } else {
1687 async_chunk[i].locked_page = NULL;
1688 }
1689
ec39f769
CM
1690 if (blkcg_css != blkcg_root_css) {
1691 css_get(blkcg_css);
1692 async_chunk[i].blkcg_css = blkcg_css;
3480373e 1693 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
ec39f769
CM
1694 } else {
1695 async_chunk[i].blkcg_css = NULL;
1696 }
1697
c15d8cf2 1698 btrfs_init_work(&async_chunk[i].work, compress_file_range,
078b8b90 1699 submit_compressed_extents);
771ed689 1700
97db1204 1701 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1702 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1703
97db1204 1704 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1705
771ed689
CM
1706 start = cur_end + 1;
1707 }
973fb26e 1708 return true;
be20aa9d
CM
1709}
1710
256b0cf9
CH
1711/*
1712 * Run the delalloc range from start to end, and write back any dirty pages
1713 * covered by the range.
1714 */
1715static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1716 struct page *locked_page, u64 start,
1717 u64 end, struct writeback_control *wbc,
1718 bool pages_dirty)
42c01100 1719{
898793d9 1720 u64 done_offset = end;
42c01100
NA
1721 int ret;
1722
898793d9 1723 while (start <= end) {
c56cbe90
CH
1724 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1725 true, false);
6e144bf1 1726 if (ret)
898793d9 1727 return ret;
778b8785 1728 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
256b0cf9 1729 done_offset, wbc, pages_dirty);
898793d9
NA
1730 start = done_offset + 1;
1731 }
42c01100 1732
c56cbe90 1733 return 1;
42c01100
NA
1734}
1735
2ff7e61e 1736static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
26ce9114 1737 u64 bytenr, u64 num_bytes, bool nowait)
17d217fe 1738{
fc28b25e 1739 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
17d217fe 1740 struct btrfs_ordered_sum *sums;
fc28b25e 1741 int ret;
17d217fe
YZ
1742 LIST_HEAD(list);
1743
97e38239
QW
1744 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1745 &list, 0, nowait);
17d217fe
YZ
1746 if (ret == 0 && list_empty(&list))
1747 return 0;
1748
1749 while (!list_empty(&list)) {
1750 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1751 list_del(&sums->list);
1752 kfree(sums);
1753 }
58113753
LB
1754 if (ret < 0)
1755 return ret;
17d217fe
YZ
1756 return 1;
1757}
1758
8ba96f3d 1759static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
53ffb30a 1760 const u64 start, const u64 end)
467dc47e 1761{
8ba96f3d 1762 const bool is_space_ino = btrfs_is_free_space_inode(inode);
37f00a6d 1763 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
2166e5ed 1764 const u64 range_bytes = end + 1 - start;
8ba96f3d 1765 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1766 u64 range_start = start;
1767 u64 count;
53ffb30a 1768 int ret;
467dc47e
FM
1769
1770 /*
1771 * If EXTENT_NORESERVE is set it means that when the buffered write was
1772 * made we had not enough available data space and therefore we did not
1773 * reserve data space for it, since we though we could do NOCOW for the
1774 * respective file range (either there is prealloc extent or the inode
1775 * has the NOCOW bit set).
1776 *
1777 * However when we need to fallback to COW mode (because for example the
1778 * block group for the corresponding extent was turned to RO mode by a
1779 * scrub or relocation) we need to do the following:
1780 *
1781 * 1) We increment the bytes_may_use counter of the data space info.
1782 * If COW succeeds, it allocates a new data extent and after doing
1783 * that it decrements the space info's bytes_may_use counter and
1784 * increments its bytes_reserved counter by the same amount (we do
1785 * this at btrfs_add_reserved_bytes()). So we need to increment the
1786 * bytes_may_use counter to compensate (when space is reserved at
1787 * buffered write time, the bytes_may_use counter is incremented);
1788 *
1789 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1790 * that if the COW path fails for any reason, it decrements (through
1791 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1792 * data space info, which we incremented in the step above.
2166e5ed
FM
1793 *
1794 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1795 * space cache inode or an inode of the data relocation tree, we must
1796 * also increment bytes_may_use of the data space_info for the same
1797 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1798 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1799 * group that contains that extent to RO mode and therefore force COW
1800 * when starting writeback.
467dc47e 1801 */
2166e5ed 1802 count = count_range_bits(io_tree, &range_start, end, range_bytes,
8c6e53a7 1803 EXTENT_NORESERVE, 0, NULL);
6bd335b4
FM
1804 if (count > 0 || is_space_ino || is_reloc_ino) {
1805 u64 bytes = count;
8ba96f3d 1806 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1807 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1808
6bd335b4
FM
1809 if (is_space_ino || is_reloc_ino)
1810 bytes = range_bytes;
1811
467dc47e 1812 spin_lock(&sinfo->lock);
2166e5ed 1813 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1814 spin_unlock(&sinfo->lock);
1815
2166e5ed
FM
1816 if (count > 0)
1817 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
bd015294 1818 NULL);
467dc47e
FM
1819 }
1820
53ffb30a
CH
1821 /*
1822 * Don't try to create inline extents, as a mix of inline extent that
1823 * is written out and unlocked directly and a normal NOCOW extent
1824 * doesn't work.
1825 */
c56cbe90
CH
1826 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1827 ASSERT(ret != 1);
53ffb30a 1828 return ret;
467dc47e
FM
1829}
1830
619104ba
FM
1831struct can_nocow_file_extent_args {
1832 /* Input fields. */
1833
1834 /* Start file offset of the range we want to NOCOW. */
1835 u64 start;
1836 /* End file offset (inclusive) of the range we want to NOCOW. */
1837 u64 end;
1838 bool writeback_path;
1839 bool strict;
1840 /*
1841 * Free the path passed to can_nocow_file_extent() once it's not needed
1842 * anymore.
1843 */
1844 bool free_path;
1845
1846 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1847
1848 u64 disk_bytenr;
1849 u64 disk_num_bytes;
1850 u64 extent_offset;
1851 /* Number of bytes that can be written to in NOCOW mode. */
1852 u64 num_bytes;
1853};
1854
1855/*
1856 * Check if we can NOCOW the file extent that the path points to.
1857 * This function may return with the path released, so the caller should check
1858 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1859 *
1860 * Returns: < 0 on error
1861 * 0 if we can not NOCOW
1862 * 1 if we can NOCOW
1863 */
1864static int can_nocow_file_extent(struct btrfs_path *path,
1865 struct btrfs_key *key,
1866 struct btrfs_inode *inode,
1867 struct can_nocow_file_extent_args *args)
1868{
1869 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1870 struct extent_buffer *leaf = path->nodes[0];
1871 struct btrfs_root *root = inode->root;
1872 struct btrfs_file_extent_item *fi;
1873 u64 extent_end;
1874 u8 extent_type;
1875 int can_nocow = 0;
1876 int ret = 0;
26ce9114 1877 bool nowait = path->nowait;
619104ba
FM
1878
1879 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1880 extent_type = btrfs_file_extent_type(leaf, fi);
1881
1882 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1883 goto out;
1884
1885 /* Can't access these fields unless we know it's not an inline extent. */
1886 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1887 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1888 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1889
1890 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1891 extent_type == BTRFS_FILE_EXTENT_REG)
1892 goto out;
1893
1894 /*
1895 * If the extent was created before the generation where the last snapshot
1896 * for its subvolume was created, then this implies the extent is shared,
1897 * hence we must COW.
1898 */
a7bb6bd4 1899 if (!args->strict &&
619104ba
FM
1900 btrfs_file_extent_generation(leaf, fi) <=
1901 btrfs_root_last_snapshot(&root->root_item))
1902 goto out;
1903
1904 /* An explicit hole, must COW. */
1905 if (args->disk_bytenr == 0)
1906 goto out;
1907
1908 /* Compressed/encrypted/encoded extents must be COWed. */
1909 if (btrfs_file_extent_compression(leaf, fi) ||
1910 btrfs_file_extent_encryption(leaf, fi) ||
1911 btrfs_file_extent_other_encoding(leaf, fi))
1912 goto out;
1913
1914 extent_end = btrfs_file_extent_end(path);
1915
1916 /*
1917 * The following checks can be expensive, as they need to take other
1918 * locks and do btree or rbtree searches, so release the path to avoid
1919 * blocking other tasks for too long.
1920 */
1921 btrfs_release_path(path);
1922
1923 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1924 key->offset - args->extent_offset,
deccae40 1925 args->disk_bytenr, args->strict, path);
619104ba
FM
1926 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1927 if (ret != 0)
1928 goto out;
1929
1930 if (args->free_path) {
1931 /*
1932 * We don't need the path anymore, plus through the
1933 * csum_exist_in_range() call below we will end up allocating
1934 * another path. So free the path to avoid unnecessary extra
1935 * memory usage.
1936 */
1937 btrfs_free_path(path);
1938 path = NULL;
1939 }
1940
1941 /* If there are pending snapshots for this root, we must COW. */
1942 if (args->writeback_path && !is_freespace_inode &&
1943 atomic_read(&root->snapshot_force_cow))
1944 goto out;
1945
1946 args->disk_bytenr += args->extent_offset;
1947 args->disk_bytenr += args->start - key->offset;
1948 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1949
1950 /*
1951 * Force COW if csums exist in the range. This ensures that csums for a
1952 * given extent are either valid or do not exist.
1953 */
26ce9114
JB
1954 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1955 nowait);
619104ba
FM
1956 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1957 if (ret != 0)
1958 goto out;
1959
1960 can_nocow = 1;
1961 out:
1962 if (args->free_path && path)
1963 btrfs_free_path(path);
1964
1965 return ret < 0 ? ret : can_nocow;
1966}
1967
d352ac68
CM
1968/*
1969 * when nowcow writeback call back. This checks for snapshots or COW copies
1970 * of the extents that exist in the file, and COWs the file as required.
1971 *
1972 * If no cow copies or snapshots exist, we write directly to the existing
1973 * blocks on disk
1974 */
968322c8 1975static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1976 struct page *locked_page,
53ffb30a 1977 const u64 start, const u64 end)
be20aa9d 1978{
968322c8
NB
1979 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1980 struct btrfs_root *root = inode->root;
be20aa9d 1981 struct btrfs_path *path;
3e024846
NB
1982 u64 cow_start = (u64)-1;
1983 u64 cur_offset = start;
8ecebf4d 1984 int ret;
3e024846 1985 bool check_prev = true;
968322c8 1986 u64 ino = btrfs_ino(inode);
619104ba 1987 struct can_nocow_file_extent_args nocow_args = { 0 };
be20aa9d 1988
76c5126e
CH
1989 /*
1990 * Normally on a zoned device we're only doing COW writes, but in case
1991 * of relocation on a zoned filesystem serializes I/O so that we're only
1992 * writing sequentially and can end up here as well.
1993 */
1994 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1995
be20aa9d 1996 path = btrfs_alloc_path();
17ca04af 1997 if (!path) {
38dc8889
CH
1998 ret = -ENOMEM;
1999 goto error;
17ca04af 2000 }
82d5902d 2001
619104ba
FM
2002 nocow_args.end = end;
2003 nocow_args.writeback_path = true;
2004
80ff3856 2005 while (1) {
18f62b86 2006 struct btrfs_block_group *nocow_bg = NULL;
34bfaf15 2007 struct btrfs_ordered_extent *ordered;
3e024846
NB
2008 struct btrfs_key found_key;
2009 struct btrfs_file_extent_item *fi;
2010 struct extent_buffer *leaf;
2011 u64 extent_end;
3e024846 2012 u64 ram_bytes;
619104ba 2013 u64 nocow_end;
3e024846 2014 int extent_type;
3daea5fd 2015 bool is_prealloc;
762bf098 2016
e4c3b2dc 2017 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 2018 cur_offset, 0);
d788a349 2019 if (ret < 0)
79787eaa 2020 goto error;
a6bd9cd1
NB
2021
2022 /*
2023 * If there is no extent for our range when doing the initial
2024 * search, then go back to the previous slot as it will be the
2025 * one containing the search offset
2026 */
80ff3856
YZ
2027 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2028 leaf = path->nodes[0];
2029 btrfs_item_key_to_cpu(leaf, &found_key,
2030 path->slots[0] - 1);
33345d01 2031 if (found_key.objectid == ino &&
80ff3856
YZ
2032 found_key.type == BTRFS_EXTENT_DATA_KEY)
2033 path->slots[0]--;
2034 }
3e024846 2035 check_prev = false;
80ff3856 2036next_slot:
a6bd9cd1 2037 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
2038 leaf = path->nodes[0];
2039 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2040 ret = btrfs_next_leaf(root, path);
953fa5ce 2041 if (ret < 0)
79787eaa 2042 goto error;
80ff3856
YZ
2043 if (ret > 0)
2044 break;
2045 leaf = path->nodes[0];
2046 }
be20aa9d 2047
80ff3856
YZ
2048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2049
a6bd9cd1 2050 /* Didn't find anything for our INO */
1d512cb7
FM
2051 if (found_key.objectid > ino)
2052 break;
a6bd9cd1
NB
2053 /*
2054 * Keep searching until we find an EXTENT_ITEM or there are no
2055 * more extents for this inode
2056 */
1d512cb7
FM
2057 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2058 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2059 path->slots[0]++;
2060 goto next_slot;
2061 }
a6bd9cd1
NB
2062
2063 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 2064 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
2065 found_key.offset > end)
2066 break;
2067
a6bd9cd1
NB
2068 /*
2069 * If the found extent starts after requested offset, then
2070 * adjust extent_end to be right before this extent begins
2071 */
80ff3856
YZ
2072 if (found_key.offset > cur_offset) {
2073 extent_end = found_key.offset;
e9061e21 2074 extent_type = 0;
18f62b86 2075 goto must_cow;
80ff3856
YZ
2076 }
2077
a6bd9cd1
NB
2078 /*
2079 * Found extent which begins before our range and potentially
2080 * intersect it
2081 */
80ff3856
YZ
2082 fi = btrfs_item_ptr(leaf, path->slots[0],
2083 struct btrfs_file_extent_item);
2084 extent_type = btrfs_file_extent_type(leaf, fi);
619104ba
FM
2085 /* If this is triggered then we have a memory corruption. */
2086 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2087 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2088 ret = -EUCLEAN;
2089 goto error;
2090 }
cc95bef6 2091 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
619104ba 2092 extent_end = btrfs_file_extent_end(path);
c65ca98f 2093
619104ba
FM
2094 /*
2095 * If the extent we got ends before our current offset, skip to
2096 * the next extent.
2097 */
2098 if (extent_end <= cur_offset) {
2099 path->slots[0]++;
2100 goto next_slot;
2101 }
c65ca98f 2102
619104ba
FM
2103 nocow_args.start = cur_offset;
2104 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
953fa5ce 2105 if (ret < 0)
619104ba 2106 goto error;
953fa5ce 2107 if (ret == 0)
18f62b86 2108 goto must_cow;
58113753 2109
619104ba 2110 ret = 0;
18f62b86
CH
2111 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2112 if (!nocow_bg) {
2113must_cow:
2114 /*
2115 * If we can't perform NOCOW writeback for the range,
2116 * then record the beginning of the range that needs to
2117 * be COWed. It will be written out before the next
2118 * NOCOW range if we find one, or when exiting this
2119 * loop.
2120 */
80ff3856
YZ
2121 if (cow_start == (u64)-1)
2122 cow_start = cur_offset;
2123 cur_offset = extent_end;
2124 if (cur_offset > end)
2125 break;
c65ca98f
FM
2126 if (!path->nodes[0])
2127 continue;
80ff3856
YZ
2128 path->slots[0]++;
2129 goto next_slot;
7ea394f1
YZ
2130 }
2131
a6bd9cd1
NB
2132 /*
2133 * COW range from cow_start to found_key.offset - 1. As the key
2134 * will contain the beginning of the first extent that can be
2135 * NOCOW, following one which needs to be COW'ed
2136 */
80ff3856 2137 if (cow_start != (u64)-1) {
968322c8 2138 ret = fallback_to_cow(inode, locked_page,
53ffb30a 2139 cow_start, found_key.offset - 1);
80ff3856 2140 cow_start = (u64)-1;
18f62b86
CH
2141 if (ret) {
2142 btrfs_dec_nocow_writers(nocow_bg);
79787eaa 2143 goto error;
18f62b86 2144 }
7ea394f1 2145 }
80ff3856 2146
619104ba 2147 nocow_end = cur_offset + nocow_args.num_bytes - 1;
3daea5fd
CH
2148 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2149 if (is_prealloc) {
619104ba 2150 u64 orig_start = found_key.offset - nocow_args.extent_offset;
3e024846 2151 struct extent_map *em;
6f9994db 2152
619104ba 2153 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
6f9994db 2154 orig_start,
619104ba
FM
2155 nocow_args.disk_bytenr, /* block_start */
2156 nocow_args.num_bytes, /* block_len */
2157 nocow_args.disk_num_bytes, /* orig_block_len */
6f9994db
LB
2158 ram_bytes, BTRFS_COMPRESS_NONE,
2159 BTRFS_ORDERED_PREALLOC);
2160 if (IS_ERR(em)) {
18f62b86 2161 btrfs_dec_nocow_writers(nocow_bg);
6f9994db
LB
2162 ret = PTR_ERR(em);
2163 goto error;
d899e052 2164 }
6f9994db 2165 free_extent_map(em);
3daea5fd
CH
2166 }
2167
34bfaf15 2168 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
3daea5fd
CH
2169 nocow_args.num_bytes, nocow_args.num_bytes,
2170 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2171 is_prealloc
2172 ? (1 << BTRFS_ORDERED_PREALLOC)
2173 : (1 << BTRFS_ORDERED_NOCOW),
2174 BTRFS_COMPRESS_NONE);
18f62b86 2175 btrfs_dec_nocow_writers(nocow_bg);
34bfaf15 2176 if (IS_ERR(ordered)) {
3daea5fd 2177 if (is_prealloc) {
4c0c8cfc
FM
2178 btrfs_drop_extent_map_range(inode, cur_offset,
2179 nocow_end, false);
762bf098 2180 }
34bfaf15 2181 ret = PTR_ERR(ordered);
3daea5fd 2182 goto error;
d899e052 2183 }
80ff3856 2184
37f00a6d 2185 if (btrfs_is_data_reloc_root(root))
4dbd80fb
QW
2186 /*
2187 * Error handled later, as we must prevent
2188 * extent_clear_unlock_delalloc() in error handler
2189 * from freeing metadata of created ordered extent.
2190 */
34bfaf15
CH
2191 ret = btrfs_reloc_clone_csums(ordered);
2192 btrfs_put_ordered_extent(ordered);
efa56464 2193
619104ba 2194 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
c2790a2e 2195 locked_page, EXTENT_LOCKED |
18513091
WX
2196 EXTENT_DELALLOC |
2197 EXTENT_CLEAR_DATA_RESV,
f57ad937 2198 PAGE_UNLOCK | PAGE_SET_ORDERED);
18513091 2199
80ff3856 2200 cur_offset = extent_end;
4dbd80fb
QW
2201
2202 /*
2203 * btrfs_reloc_clone_csums() error, now we're OK to call error
2204 * handler, as metadata for created ordered extent will only
2205 * be freed by btrfs_finish_ordered_io().
2206 */
2207 if (ret)
2208 goto error;
80ff3856
YZ
2209 if (cur_offset > end)
2210 break;
be20aa9d 2211 }
b3b4aa74 2212 btrfs_release_path(path);
80ff3856 2213
506481b2 2214 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 2215 cow_start = cur_offset;
17ca04af 2216
80ff3856 2217 if (cow_start != (u64)-1) {
506481b2 2218 cur_offset = end;
53ffb30a 2219 ret = fallback_to_cow(inode, locked_page, cow_start, end);
953fa5ce 2220 cow_start = (u64)-1;
d788a349 2221 if (ret)
79787eaa 2222 goto error;
80ff3856
YZ
2223 }
2224
18f62b86
CH
2225 btrfs_free_path(path);
2226 return 0;
762bf098 2227
18f62b86 2228error:
953fa5ce
CH
2229 /*
2230 * If an error happened while a COW region is outstanding, cur_offset
2231 * needs to be reset to cow_start to ensure the COW region is unlocked
2232 * as well.
2233 */
2234 if (cow_start != (u64)-1)
2235 cur_offset = cow_start;
18f62b86 2236 if (cur_offset < end)
968322c8 2237 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 2238 locked_page, EXTENT_LOCKED |
151a41bc
JB
2239 EXTENT_DELALLOC | EXTENT_DEFRAG |
2240 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 2241 PAGE_START_WRITEBACK |
c2790a2e 2242 PAGE_END_WRITEBACK);
7ea394f1 2243 btrfs_free_path(path);
79787eaa 2244 return ret;
be20aa9d
CM
2245}
2246
6e65ae76 2247static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93 2248{
6e65ae76
GR
2249 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2250 if (inode->defrag_bytes &&
99be1a66 2251 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
6e65ae76
GR
2252 return false;
2253 return true;
2254 }
2255 return false;
47059d93
WS
2256}
2257
d352ac68 2258/*
5eaad97a
NB
2259 * Function to process delayed allocation (create CoW) for ranges which are
2260 * being touched for the first time.
d352ac68 2261 */
98456b9c 2262int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
c56cbe90 2263 u64 start, u64 end, struct writeback_control *wbc)
be20aa9d 2264{
42c01100 2265 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
c56cbe90 2266 int ret;
a2135011 2267
2749f7ef 2268 /*
c56cbe90
CH
2269 * The range must cover part of the @locked_page, or a return of 1
2270 * can confuse the caller.
2749f7ef
QW
2271 */
2272 ASSERT(!(end <= page_offset(locked_page) ||
2273 start >= page_offset(locked_page) + PAGE_SIZE));
2274
6e65ae76 2275 if (should_nocow(inode, start, end)) {
53ffb30a 2276 ret = run_delalloc_nocow(inode, locked_page, start, end);
973fb26e 2277 goto out;
7ddf5a42 2278 }
973fb26e
CH
2279
2280 if (btrfs_inode_can_compress(inode) &&
2281 inode_need_compress(inode, start, end) &&
c56cbe90
CH
2282 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2283 return 1;
973fb26e
CH
2284
2285 if (zoned)
256b0cf9
CH
2286 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2287 true);
973fb26e 2288 else
c56cbe90
CH
2289 ret = cow_file_range(inode, locked_page, start, end, NULL,
2290 false, false);
973fb26e
CH
2291
2292out:
c56cbe90 2293 if (ret < 0)
98456b9c 2294 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 2295 end - start + 1);
b888db2b
CM
2296 return ret;
2297}
2298
62798a49 2299void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
abbb55f4 2300 struct extent_state *orig, u64 split)
9ed74f2d 2301{
62798a49 2302 struct btrfs_fs_info *fs_info = inode->root->fs_info;
dcab6a3b
JB
2303 u64 size;
2304
0ca1f7ce 2305 /* not delalloc, ignore it */
9ed74f2d 2306 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 2307 return;
9ed74f2d 2308
dcab6a3b 2309 size = orig->end - orig->start + 1;
f7b12a62 2310 if (size > fs_info->max_extent_size) {
823bb20a 2311 u32 num_extents;
dcab6a3b
JB
2312 u64 new_size;
2313
2314 /*
5c848198 2315 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 2316 * applies here, just in reverse.
dcab6a3b
JB
2317 */
2318 new_size = orig->end - split + 1;
7d7672bc 2319 num_extents = count_max_extents(fs_info, new_size);
ba117213 2320 new_size = split - orig->start;
7d7672bc
NA
2321 num_extents += count_max_extents(fs_info, new_size);
2322 if (count_max_extents(fs_info, size) >= num_extents)
dcab6a3b
JB
2323 return;
2324 }
2325
62798a49
DS
2326 spin_lock(&inode->lock);
2327 btrfs_mod_outstanding_extents(inode, 1);
2328 spin_unlock(&inode->lock);
9ed74f2d
JB
2329}
2330
2331/*
5c848198
NB
2332 * Handle merged delayed allocation extents so we can keep track of new extents
2333 * that are just merged onto old extents, such as when we are doing sequential
2334 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 2335 */
2454151c 2336void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
5c848198 2337 struct extent_state *other)
9ed74f2d 2338{
2454151c 2339 struct btrfs_fs_info *fs_info = inode->root->fs_info;
dcab6a3b 2340 u64 new_size, old_size;
823bb20a 2341 u32 num_extents;
dcab6a3b 2342
9ed74f2d
JB
2343 /* not delalloc, ignore it */
2344 if (!(other->state & EXTENT_DELALLOC))
1bf85046 2345 return;
9ed74f2d 2346
8461a3de
JB
2347 if (new->start > other->start)
2348 new_size = new->end - other->start + 1;
2349 else
2350 new_size = other->end - new->start + 1;
dcab6a3b
JB
2351
2352 /* we're not bigger than the max, unreserve the space and go */
f7b12a62 2353 if (new_size <= fs_info->max_extent_size) {
2454151c
DS
2354 spin_lock(&inode->lock);
2355 btrfs_mod_outstanding_extents(inode, -1);
2356 spin_unlock(&inode->lock);
dcab6a3b
JB
2357 return;
2358 }
2359
2360 /*
ba117213
JB
2361 * We have to add up either side to figure out how many extents were
2362 * accounted for before we merged into one big extent. If the number of
2363 * extents we accounted for is <= the amount we need for the new range
2364 * then we can return, otherwise drop. Think of it like this
2365 *
2366 * [ 4k][MAX_SIZE]
2367 *
2368 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2369 * need 2 outstanding extents, on one side we have 1 and the other side
2370 * we have 1 so they are == and we can return. But in this case
2371 *
2372 * [MAX_SIZE+4k][MAX_SIZE+4k]
2373 *
2374 * Each range on their own accounts for 2 extents, but merged together
2375 * they are only 3 extents worth of accounting, so we need to drop in
2376 * this case.
dcab6a3b 2377 */
ba117213 2378 old_size = other->end - other->start + 1;
7d7672bc 2379 num_extents = count_max_extents(fs_info, old_size);
ba117213 2380 old_size = new->end - new->start + 1;
7d7672bc
NA
2381 num_extents += count_max_extents(fs_info, old_size);
2382 if (count_max_extents(fs_info, new_size) >= num_extents)
dcab6a3b
JB
2383 return;
2384
2454151c
DS
2385 spin_lock(&inode->lock);
2386 btrfs_mod_outstanding_extents(inode, -1);
2387 spin_unlock(&inode->lock);
9ed74f2d
JB
2388}
2389
eb73c1b7 2390static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
82ca5a04 2391 struct btrfs_inode *inode)
eb73c1b7 2392{
82ca5a04 2393 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0b246afa 2394
eb73c1b7 2395 spin_lock(&root->delalloc_lock);
82ca5a04
DS
2396 if (list_empty(&inode->delalloc_inodes)) {
2397 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2398 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
eb73c1b7
MX
2399 root->nr_delalloc_inodes++;
2400 if (root->nr_delalloc_inodes == 1) {
0b246afa 2401 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2402 BUG_ON(!list_empty(&root->delalloc_root));
2403 list_add_tail(&root->delalloc_root,
0b246afa
JM
2404 &fs_info->delalloc_roots);
2405 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2406 }
2407 }
2408 spin_unlock(&root->delalloc_lock);
2409}
2410
2b877331
NB
2411void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2412 struct btrfs_inode *inode)
eb73c1b7 2413{
3ffbd68c 2414 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 2415
9e3e97f4
NB
2416 if (!list_empty(&inode->delalloc_inodes)) {
2417 list_del_init(&inode->delalloc_inodes);
eb73c1b7 2418 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2419 &inode->runtime_flags);
eb73c1b7
MX
2420 root->nr_delalloc_inodes--;
2421 if (!root->nr_delalloc_inodes) {
7c8a0d36 2422 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 2423 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2424 BUG_ON(list_empty(&root->delalloc_root));
2425 list_del_init(&root->delalloc_root);
0b246afa 2426 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2427 }
2428 }
2b877331
NB
2429}
2430
2431static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2432 struct btrfs_inode *inode)
2433{
2434 spin_lock(&root->delalloc_lock);
2435 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
2436 spin_unlock(&root->delalloc_lock);
2437}
2438
d352ac68 2439/*
e06a1fc9
NB
2440 * Properly track delayed allocation bytes in the inode and to maintain the
2441 * list of inodes that have pending delalloc work to be done.
d352ac68 2442 */
4c5d166f 2443void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
6d92b304 2444 u32 bits)
291d673e 2445{
4c5d166f 2446 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0b246afa 2447
6d92b304 2448 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
47059d93 2449 WARN_ON(1);
75eff68e
CM
2450 /*
2451 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2452 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2453 * bit, which is only set or cleared with irqs on
2454 */
6d92b304 2455 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
4c5d166f 2456 struct btrfs_root *root = inode->root;
0ca1f7ce 2457 u64 len = state->end + 1 - state->start;
7d7672bc 2458 u32 num_extents = count_max_extents(fs_info, len);
4c5d166f 2459 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 2460
4c5d166f
DS
2461 spin_lock(&inode->lock);
2462 btrfs_mod_outstanding_extents(inode, num_extents);
2463 spin_unlock(&inode->lock);
287a0ab9 2464
6a3891c5 2465 /* For sanity tests */
0b246afa 2466 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2467 return;
2468
104b4e51
NB
2469 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2470 fs_info->delalloc_batch);
4c5d166f
DS
2471 spin_lock(&inode->lock);
2472 inode->delalloc_bytes += len;
6d92b304 2473 if (bits & EXTENT_DEFRAG)
4c5d166f 2474 inode->defrag_bytes += len;
df0af1a5 2475 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4c5d166f 2476 &inode->runtime_flags))
eb73c1b7 2477 btrfs_add_delalloc_inodes(root, inode);
4c5d166f 2478 spin_unlock(&inode->lock);
291d673e 2479 }
a7e3b975
FM
2480
2481 if (!(state->state & EXTENT_DELALLOC_NEW) &&
6d92b304 2482 (bits & EXTENT_DELALLOC_NEW)) {
4c5d166f
DS
2483 spin_lock(&inode->lock);
2484 inode->new_delalloc_bytes += state->end + 1 - state->start;
2485 spin_unlock(&inode->lock);
a7e3b975 2486 }
291d673e
CM
2487}
2488
d352ac68 2489/*
a36bb5f9
NB
2490 * Once a range is no longer delalloc this function ensures that proper
2491 * accounting happens.
d352ac68 2492 */
bd54766e 2493void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
6d92b304 2494 struct extent_state *state, u32 bits)
291d673e 2495{
bd54766e 2496 struct btrfs_fs_info *fs_info = inode->root->fs_info;
47059d93 2497 u64 len = state->end + 1 - state->start;
7d7672bc 2498 u32 num_extents = count_max_extents(fs_info, len);
47059d93 2499
6d92b304 2500 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
4a4b964f 2501 spin_lock(&inode->lock);
6fc0ef68 2502 inode->defrag_bytes -= len;
4a4b964f
FM
2503 spin_unlock(&inode->lock);
2504 }
47059d93 2505
75eff68e
CM
2506 /*
2507 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2508 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2509 * bit, which is only set or cleared with irqs on
2510 */
6d92b304 2511 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
6fc0ef68 2512 struct btrfs_root *root = inode->root;
83eea1f1 2513 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2514
8b62f87b
JB
2515 spin_lock(&inode->lock);
2516 btrfs_mod_outstanding_extents(inode, -num_extents);
2517 spin_unlock(&inode->lock);
0ca1f7ce 2518
b6d08f06
JB
2519 /*
2520 * We don't reserve metadata space for space cache inodes so we
52042d8e 2521 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2522 * error.
2523 */
6d92b304 2524 if (bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2525 root != fs_info->tree_root)
43b18595 2526 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2527
6a3891c5 2528 /* For sanity tests. */
0b246afa 2529 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2530 return;
2531
37f00a6d 2532 if (!btrfs_is_data_reloc_root(root) &&
a315e68f 2533 do_list && !(state->state & EXTENT_NORESERVE) &&
6d92b304 2534 (bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2535 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2536
104b4e51
NB
2537 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2538 fs_info->delalloc_batch);
6fc0ef68
NB
2539 spin_lock(&inode->lock);
2540 inode->delalloc_bytes -= len;
2541 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2542 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2543 &inode->runtime_flags))
eb73c1b7 2544 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2545 spin_unlock(&inode->lock);
291d673e 2546 }
a7e3b975
FM
2547
2548 if ((state->state & EXTENT_DELALLOC_NEW) &&
6d92b304 2549 (bits & EXTENT_DELALLOC_NEW)) {
a7e3b975
FM
2550 spin_lock(&inode->lock);
2551 ASSERT(inode->new_delalloc_bytes >= len);
2552 inode->new_delalloc_bytes -= len;
6d92b304 2553 if (bits & EXTENT_ADD_INODE_BYTES)
2766ff61 2554 inode_add_bytes(&inode->vfs_inode, len);
a7e3b975
FM
2555 spin_unlock(&inode->lock);
2556 }
291d673e
CM
2557}
2558
71df088c
CH
2559static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2560 struct btrfs_ordered_extent *ordered)
d22002fd 2561{
69ccf3f4
CH
2562 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2563 u64 len = bbio->bio.bi_iter.bi_size;
b0307e28 2564 struct btrfs_ordered_extent *new;
ebdb44a0 2565 int ret;
d22002fd 2566
11d33ab6 2567 /* Must always be called for the beginning of an ordered extent. */
7edd339c
CH
2568 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2569 return -EINVAL;
d22002fd 2570
11d33ab6 2571 /* No need to split if the ordered extent covers the entire bio. */
ec63b84d
CH
2572 if (ordered->disk_num_bytes == len) {
2573 refcount_inc(&ordered->refs);
2574 bbio->ordered = ordered;
7edd339c 2575 return 0;
ec63b84d 2576 }
d22002fd 2577
f0f5329a
BB
2578 /*
2579 * Don't split the extent_map for NOCOW extents, as we're writing into
2580 * a pre-existing one.
2581 */
ebdb44a0
CH
2582 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2583 ret = split_extent_map(bbio->inode, bbio->file_offset,
f000bc6f
CH
2584 ordered->num_bytes, len,
2585 ordered->disk_bytenr);
ebdb44a0
CH
2586 if (ret)
2587 return ret;
2588 }
f0f5329a 2589
b0307e28
CH
2590 new = btrfs_split_ordered_extent(ordered, len);
2591 if (IS_ERR(new))
2592 return PTR_ERR(new);
ec63b84d 2593 bbio->ordered = new;
b0307e28 2594 return 0;
d22002fd
NA
2595}
2596
d352ac68
CM
2597/*
2598 * given a list of ordered sums record them in the inode. This happens
2599 * at IO completion time based on sums calculated at bio submission time.
2600 */
510f85ed
NB
2601static int add_pending_csums(struct btrfs_trans_handle *trans,
2602 struct list_head *list)
e6dcd2dc 2603{
e6dcd2dc 2604 struct btrfs_ordered_sum *sum;
fc28b25e 2605 struct btrfs_root *csum_root = NULL;
ac01f26a 2606 int ret;
e6dcd2dc 2607
c6e30871 2608 list_for_each_entry(sum, list, list) {
7c2871a2 2609 trans->adding_csums = true;
fc28b25e
JB
2610 if (!csum_root)
2611 csum_root = btrfs_csum_root(trans->fs_info,
5cfe76f8 2612 sum->logical);
fc28b25e 2613 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
7c2871a2 2614 trans->adding_csums = false;
ac01f26a
NB
2615 if (ret)
2616 return ret;
e6dcd2dc
CM
2617 }
2618 return 0;
2619}
2620
c3347309
FM
2621static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2622 const u64 start,
2623 const u64 len,
2624 struct extent_state **cached_state)
2625{
2626 u64 search_start = start;
2627 const u64 end = start + len - 1;
2628
2629 while (search_start < end) {
2630 const u64 search_len = end - search_start + 1;
2631 struct extent_map *em;
2632 u64 em_len;
2633 int ret = 0;
2634
2635 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2636 if (IS_ERR(em))
2637 return PTR_ERR(em);
2638
2639 if (em->block_start != EXTENT_MAP_HOLE)
2640 goto next;
2641
2642 em_len = em->len;
2643 if (em->start < search_start)
2644 em_len -= search_start - em->start;
2645 if (em_len > search_len)
2646 em_len = search_len;
2647
2648 ret = set_extent_bit(&inode->io_tree, search_start,
2649 search_start + em_len - 1,
1d126800 2650 EXTENT_DELALLOC_NEW, cached_state);
c3347309
FM
2651next:
2652 search_start = extent_map_end(em);
2653 free_extent_map(em);
2654 if (ret)
2655 return ret;
2656 }
2657 return 0;
2658}
2659
c2566f22 2660int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2661 unsigned int extra_bits,
330a5827 2662 struct extent_state **cached_state)
ea8c2819 2663{
fdb1e121 2664 WARN_ON(PAGE_ALIGNED(end));
c3347309
FM
2665
2666 if (start >= i_size_read(&inode->vfs_inode) &&
2667 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2668 /*
2669 * There can't be any extents following eof in this case so just
2670 * set the delalloc new bit for the range directly.
2671 */
2672 extra_bits |= EXTENT_DELALLOC_NEW;
2673 } else {
2674 int ret;
2675
2676 ret = btrfs_find_new_delalloc_bytes(inode, start,
2677 end + 1 - start,
2678 cached_state);
2679 if (ret)
2680 return ret;
2681 }
2682
66240ab1 2683 return set_extent_bit(&inode->io_tree, start, end,
1d126800 2684 EXTENT_DELALLOC | extra_bits, cached_state);
ea8c2819
CM
2685}
2686
d352ac68 2687/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2688struct btrfs_writepage_fixup {
2689 struct page *page;
36eeaef5 2690 struct btrfs_inode *inode;
247e743c
CM
2691 struct btrfs_work work;
2692};
2693
b2950863 2694static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c 2695{
9783e4de
CH
2696 struct btrfs_writepage_fixup *fixup =
2697 container_of(work, struct btrfs_writepage_fixup, work);
247e743c 2698 struct btrfs_ordered_extent *ordered;
2ac55d41 2699 struct extent_state *cached_state = NULL;
364ecf36 2700 struct extent_changeset *data_reserved = NULL;
9783e4de
CH
2701 struct page *page = fixup->page;
2702 struct btrfs_inode *inode = fixup->inode;
2703 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2704 u64 page_start = page_offset(page);
2705 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
25f3c502 2706 int ret = 0;
f4b1363c 2707 bool free_delalloc_space = true;
247e743c 2708
f4b1363c
JB
2709 /*
2710 * This is similar to page_mkwrite, we need to reserve the space before
2711 * we take the page lock.
2712 */
65d87f79
NB
2713 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2714 PAGE_SIZE);
4a096752 2715again:
247e743c 2716 lock_page(page);
25f3c502
CM
2717
2718 /*
2719 * Before we queued this fixup, we took a reference on the page.
2720 * page->mapping may go NULL, but it shouldn't be moved to a different
2721 * address space.
2722 */
f4b1363c
JB
2723 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2724 /*
2725 * Unfortunately this is a little tricky, either
2726 *
2727 * 1) We got here and our page had already been dealt with and
2728 * we reserved our space, thus ret == 0, so we need to just
2729 * drop our space reservation and bail. This can happen the
2730 * first time we come into the fixup worker, or could happen
2731 * while waiting for the ordered extent.
2732 * 2) Our page was already dealt with, but we happened to get an
2733 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2734 * this case we obviously don't have anything to release, but
2735 * because the page was already dealt with we don't want to
2736 * mark the page with an error, so make sure we're resetting
2737 * ret to 0. This is why we have this check _before_ the ret
2738 * check, because we do not want to have a surprise ENOSPC
2739 * when the page was already properly dealt with.
2740 */
2741 if (!ret) {
65d87f79
NB
2742 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2743 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2744 page_start, PAGE_SIZE,
2745 true);
2746 }
2747 ret = 0;
247e743c 2748 goto out_page;
f4b1363c 2749 }
247e743c 2750
25f3c502 2751 /*
f4b1363c
JB
2752 * We can't mess with the page state unless it is locked, so now that
2753 * it is locked bail if we failed to make our space reservation.
25f3c502 2754 */
f4b1363c
JB
2755 if (ret)
2756 goto out_page;
247e743c 2757
570eb97b 2758 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2759
2760 /* already ordered? We're done */
f57ad937 2761 if (PageOrdered(page))
f4b1363c 2762 goto out_reserved;
4a096752 2763
65d87f79 2764 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2765 if (ordered) {
570eb97b
JB
2766 unlock_extent(&inode->io_tree, page_start, page_end,
2767 &cached_state);
4a096752 2768 unlock_page(page);
36d45567 2769 btrfs_start_ordered_extent(ordered);
87826df0 2770 btrfs_put_ordered_extent(ordered);
4a096752
CM
2771 goto again;
2772 }
247e743c 2773
65d87f79 2774 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2775 &cached_state);
25f3c502 2776 if (ret)
53687007 2777 goto out_reserved;
f3038ee3 2778
25f3c502
CM
2779 /*
2780 * Everything went as planned, we're now the owner of a dirty page with
2781 * delayed allocation bits set and space reserved for our COW
2782 * destination.
2783 *
2784 * The page was dirty when we started, nothing should have cleaned it.
2785 */
2786 BUG_ON(!PageDirty(page));
f4b1363c 2787 free_delalloc_space = false;
53687007 2788out_reserved:
65d87f79 2789 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2790 if (free_delalloc_space)
65d87f79
NB
2791 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2792 PAGE_SIZE, true);
570eb97b 2793 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
247e743c 2794out_page:
25f3c502
CM
2795 if (ret) {
2796 /*
2797 * We hit ENOSPC or other errors. Update the mapping and page
2798 * to reflect the errors and clean the page.
2799 */
2800 mapping_set_error(page->mapping, ret);
9783e4de
CH
2801 btrfs_mark_ordered_io_finished(inode, page, page_start,
2802 PAGE_SIZE, !ret);
25f3c502 2803 clear_page_dirty_for_io(page);
25f3c502 2804 }
55151ea9 2805 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
247e743c 2806 unlock_page(page);
09cbfeaf 2807 put_page(page);
b897abec 2808 kfree(fixup);
364ecf36 2809 extent_changeset_free(data_reserved);
f4b1363c
JB
2810 /*
2811 * As a precaution, do a delayed iput in case it would be the last iput
2812 * that could need flushing space. Recursing back to fixup worker would
2813 * deadlock.
2814 */
e55cf7ca 2815 btrfs_add_delayed_iput(inode);
247e743c
CM
2816}
2817
2818/*
2819 * There are a few paths in the higher layers of the kernel that directly
2820 * set the page dirty bit without asking the filesystem if it is a
2821 * good idea. This causes problems because we want to make sure COW
2822 * properly happens and the data=ordered rules are followed.
2823 *
c8b97818 2824 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2825 * hasn't been properly setup for IO. We kick off an async process
2826 * to fix it up. The async helper will wait for ordered extents, set
2827 * the delalloc bit and make it safe to write the page.
2828 */
a129ffb8 2829int btrfs_writepage_cow_fixup(struct page *page)
247e743c
CM
2830{
2831 struct inode *inode = page->mapping->host;
0b246afa 2832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2833 struct btrfs_writepage_fixup *fixup;
247e743c 2834
f57ad937
QW
2835 /* This page has ordered extent covering it already */
2836 if (PageOrdered(page))
247e743c
CM
2837 return 0;
2838
25f3c502
CM
2839 /*
2840 * PageChecked is set below when we create a fixup worker for this page,
2841 * don't try to create another one if we're already PageChecked()
2842 *
2843 * The extent_io writepage code will redirty the page if we send back
2844 * EAGAIN.
2845 */
247e743c
CM
2846 if (PageChecked(page))
2847 return -EAGAIN;
2848
2849 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2850 if (!fixup)
2851 return -EAGAIN;
f421950f 2852
f4b1363c
JB
2853 /*
2854 * We are already holding a reference to this inode from
2855 * write_cache_pages. We need to hold it because the space reservation
2856 * takes place outside of the page lock, and we can't trust
2857 * page->mapping outside of the page lock.
2858 */
2859 ihold(inode);
55151ea9 2860 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
09cbfeaf 2861 get_page(page);
078b8b90 2862 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
247e743c 2863 fixup->page = page;
36eeaef5 2864 fixup->inode = BTRFS_I(inode);
0b246afa 2865 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2866
2867 return -EAGAIN;
247e743c
CM
2868}
2869
d899e052 2870static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2871 struct btrfs_inode *inode, u64 file_pos,
9729f10a 2872 struct btrfs_file_extent_item *stack_fi,
2766ff61 2873 const bool update_inode_bytes,
9729f10a 2874 u64 qgroup_reserved)
d899e052 2875{
c553f94d 2876 struct btrfs_root *root = inode->root;
2766ff61 2877 const u64 sectorsize = root->fs_info->sectorsize;
d899e052
YZ
2878 struct btrfs_path *path;
2879 struct extent_buffer *leaf;
2880 struct btrfs_key ins;
203f44c5
QW
2881 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2882 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
cb36a9bb 2883 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
203f44c5
QW
2884 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2885 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
5893dfb9 2886 struct btrfs_drop_extents_args drop_args = { 0 };
d899e052
YZ
2887 int ret;
2888
2889 path = btrfs_alloc_path();
d8926bb3
MF
2890 if (!path)
2891 return -ENOMEM;
d899e052 2892
a1ed835e
CM
2893 /*
2894 * we may be replacing one extent in the tree with another.
2895 * The new extent is pinned in the extent map, and we don't want
2896 * to drop it from the cache until it is completely in the btree.
2897 *
2898 * So, tell btrfs_drop_extents to leave this extent in the cache.
2899 * the caller is expected to unpin it and allow it to be merged
2900 * with the others.
2901 */
5893dfb9
FM
2902 drop_args.path = path;
2903 drop_args.start = file_pos;
2904 drop_args.end = file_pos + num_bytes;
2905 drop_args.replace_extent = true;
2906 drop_args.extent_item_size = sizeof(*stack_fi);
2907 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
79787eaa
JM
2908 if (ret)
2909 goto out;
d899e052 2910
5893dfb9 2911 if (!drop_args.extent_inserted) {
c553f94d 2912 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2913 ins.offset = file_pos;
2914 ins.type = BTRFS_EXTENT_DATA_KEY;
2915
1acae57b 2916 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2917 sizeof(*stack_fi));
1acae57b
FDBM
2918 if (ret)
2919 goto out;
2920 }
d899e052 2921 leaf = path->nodes[0];
203f44c5
QW
2922 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2923 write_extent_buffer(leaf, stack_fi,
2924 btrfs_item_ptr_offset(leaf, path->slots[0]),
2925 sizeof(struct btrfs_file_extent_item));
b9473439 2926
50564b65 2927 btrfs_mark_buffer_dirty(trans, leaf);
ce195332 2928 btrfs_release_path(path);
d899e052 2929
2766ff61
FM
2930 /*
2931 * If we dropped an inline extent here, we know the range where it is
2932 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
1a9fd417 2933 * number of bytes only for that range containing the inline extent.
2766ff61
FM
2934 * The remaining of the range will be processed when clearning the
2935 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2936 */
2937 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2938 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2939
2940 inline_size = drop_args.bytes_found - inline_size;
2941 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2942 drop_args.bytes_found -= inline_size;
2943 num_bytes -= sectorsize;
2944 }
2945
2946 if (update_inode_bytes)
2947 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
d899e052
YZ
2948
2949 ins.objectid = disk_bytenr;
2950 ins.offset = disk_num_bytes;
2951 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2952
c553f94d 2953 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2954 if (ret)
2955 goto out;
2956
c553f94d 2957 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
cb36a9bb
OS
2958 file_pos - offset,
2959 qgroup_reserved, &ins);
79787eaa 2960out:
d899e052 2961 btrfs_free_path(path);
b9473439 2962
79787eaa 2963 return ret;
d899e052
YZ
2964}
2965
2ff7e61e 2966static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2967 u64 start, u64 len)
2968{
32da5386 2969 struct btrfs_block_group *cache;
e570fd27 2970
0b246afa 2971 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2972 ASSERT(cache);
2973
2974 spin_lock(&cache->lock);
2975 cache->delalloc_bytes -= len;
2976 spin_unlock(&cache->lock);
2977
2978 btrfs_put_block_group(cache);
2979}
2980
203f44c5 2981static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
203f44c5
QW
2982 struct btrfs_ordered_extent *oe)
2983{
2984 struct btrfs_file_extent_item stack_fi;
2766ff61 2985 bool update_inode_bytes;
cb36a9bb
OS
2986 u64 num_bytes = oe->num_bytes;
2987 u64 ram_bytes = oe->ram_bytes;
203f44c5
QW
2988
2989 memset(&stack_fi, 0, sizeof(stack_fi));
2990 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2991 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2992 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2993 oe->disk_num_bytes);
cb36a9bb 2994 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
c1867eb3
DS
2995 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2996 num_bytes = oe->truncated_len;
2997 ram_bytes = num_bytes;
2998 }
cb36a9bb
OS
2999 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3000 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
203f44c5
QW
3001 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3002 /* Encryption and other encoding is reserved and all 0 */
3003
2766ff61
FM
3004 /*
3005 * For delalloc, when completing an ordered extent we update the inode's
3006 * bytes when clearing the range in the inode's io tree, so pass false
3007 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3008 * except if the ordered extent was truncated.
3009 */
3010 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
7c0c7269 3011 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
2766ff61
FM
3012 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3013
3c38c877
NB
3014 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3015 oe->file_offset, &stack_fi,
2766ff61 3016 update_inode_bytes, oe->qgroup_rsv);
203f44c5
QW
3017}
3018
3019/*
3020 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
3021 * an ordered extent if the range of bytes in the file it covers are
3022 * fully written.
3023 */
71df088c 3024int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 3025{
72e7e6ed
NB
3026 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3027 struct btrfs_root *root = inode->root;
3028 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 3029 struct btrfs_trans_handle *trans = NULL;
72e7e6ed 3030 struct extent_io_tree *io_tree = &inode->io_tree;
2ac55d41 3031 struct extent_state *cached_state = NULL;
bffe633e 3032 u64 start, end;
261507a0 3033 int compress_type = 0;
77cef2ec 3034 int ret = 0;
bffe633e 3035 u64 logical_len = ordered_extent->num_bytes;
8d510121 3036 bool freespace_inode;
77cef2ec 3037 bool truncated = false;
49940bdd 3038 bool clear_reserved_extent = true;
2766ff61 3039 unsigned int clear_bits = EXTENT_DEFRAG;
a7e3b975 3040
bffe633e
OS
3041 start = ordered_extent->file_offset;
3042 end = start + ordered_extent->num_bytes - 1;
3043
a7e3b975
FM
3044 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3045 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
7c0c7269
OS
3046 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3047 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
2766ff61 3048 clear_bits |= EXTENT_DELALLOC_NEW;
e6dcd2dc 3049
72e7e6ed 3050 freespace_inode = btrfs_is_free_space_inode(inode);
5f4403e1
IA
3051 if (!freespace_inode)
3052 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
0cb59c99 3053
5fd02043
JB
3054 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3055 ret = -EIO;
3056 goto out;
3057 }
3058
71df088c 3059 if (btrfs_is_zoned(fs_info))
be1a1d7a
NA
3060 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3061 ordered_extent->disk_num_bytes);
d8e3fb10 3062
77cef2ec
JB
3063 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3064 truncated = true;
3065 logical_len = ordered_extent->truncated_len;
3066 /* Truncated the entire extent, don't bother adding */
3067 if (!logical_len)
3068 goto out;
3069 }
3070
c2167754 3071 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3072 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 3073
72e7e6ed 3074 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
3075 if (freespace_inode)
3076 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
3077 else
3078 trans = btrfs_join_transaction(root);
3079 if (IS_ERR(trans)) {
3080 ret = PTR_ERR(trans);
3081 trans = NULL;
3082 goto out;
c2167754 3083 }
72e7e6ed 3084 trans->block_rsv = &inode->block_rsv;
0a5d0dc5 3085 ret = btrfs_update_inode_fallback(trans, inode);
6c760c07 3086 if (ret) /* -ENOMEM or corruption */
66642832 3087 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3088 goto out;
3089 }
e6dcd2dc 3090
2766ff61 3091 clear_bits |= EXTENT_LOCKED;
570eb97b 3092 lock_extent(io_tree, start, end, &cached_state);
e6dcd2dc 3093
8d510121
NB
3094 if (freespace_inode)
3095 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 3096 else
7a7eaa40 3097 trans = btrfs_join_transaction(root);
79787eaa
JM
3098 if (IS_ERR(trans)) {
3099 ret = PTR_ERR(trans);
3100 trans = NULL;
a7e3b975 3101 goto out;
79787eaa 3102 }
a79b7d4b 3103
72e7e6ed 3104 trans->block_rsv = &inode->block_rsv;
c2167754 3105
02c372e1
JT
3106 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3107 if (ret)
3108 goto out;
3109
c8b97818 3110 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3111 compress_type = ordered_extent->compress_type;
d899e052 3112 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3113 BUG_ON(compress_type);
72e7e6ed 3114 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
3115 ordered_extent->file_offset,
3116 ordered_extent->file_offset +
77cef2ec 3117 logical_len);
343d8a30
NA
3118 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3119 ordered_extent->disk_num_bytes);
d899e052 3120 } else {
0b246afa 3121 BUG_ON(root == fs_info->tree_root);
3c38c877 3122 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
49940bdd
JB
3123 if (!ret) {
3124 clear_reserved_extent = false;
2ff7e61e 3125 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
3126 ordered_extent->disk_bytenr,
3127 ordered_extent->disk_num_bytes);
49940bdd 3128 }
d899e052 3129 }
00deaf04 3130 unpin_extent_cache(inode, ordered_extent->file_offset,
bffe633e 3131 ordered_extent->num_bytes, trans->transid);
79787eaa 3132 if (ret < 0) {
66642832 3133 btrfs_abort_transaction(trans, ret);
a7e3b975 3134 goto out;
79787eaa 3135 }
2ac55d41 3136
510f85ed 3137 ret = add_pending_csums(trans, &ordered_extent->list);
ac01f26a
NB
3138 if (ret) {
3139 btrfs_abort_transaction(trans, ret);
3140 goto out;
3141 }
e6dcd2dc 3142
2766ff61
FM
3143 /*
3144 * If this is a new delalloc range, clear its new delalloc flag to
3145 * update the inode's number of bytes. This needs to be done first
3146 * before updating the inode item.
3147 */
3148 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3149 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
72e7e6ed 3150 clear_extent_bit(&inode->io_tree, start, end,
2766ff61 3151 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
bd015294 3152 &cached_state);
2766ff61 3153
72e7e6ed 3154 btrfs_inode_safe_disk_i_size_write(inode, 0);
0a5d0dc5 3155 ret = btrfs_update_inode_fallback(trans, inode);
6c760c07 3156 if (ret) { /* -ENOMEM or corruption */
66642832 3157 btrfs_abort_transaction(trans, ret);
a7e3b975 3158 goto out;
1ef30be1
JB
3159 }
3160 ret = 0;
c2167754 3161out:
bd015294 3162 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
313facc5 3163 &cached_state);
a7e3b975 3164
a698d075 3165 if (trans)
3a45bb20 3166 btrfs_end_transaction(trans);
0cb59c99 3167
77cef2ec 3168 if (ret || truncated) {
bffe633e 3169 u64 unwritten_start = start;
77cef2ec 3170
d61bec08
JB
3171 /*
3172 * If we failed to finish this ordered extent for any reason we
3173 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3174 * extent, and mark the inode with the error if it wasn't
3175 * already set. Any error during writeback would have already
3176 * set the mapping error, so we need to set it if we're the ones
3177 * marking this ordered extent as failed.
3178 */
3179 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3180 &ordered_extent->flags))
3181 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3182
77cef2ec 3183 if (truncated)
bffe633e
OS
3184 unwritten_start += logical_len;
3185 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec 3186
4c0c8cfc
FM
3187 /* Drop extent maps for the part of the extent we didn't write. */
3188 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
5fd02043 3189
0bec9ef5
JB
3190 /*
3191 * If the ordered extent had an IOERR or something else went
3192 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3193 * back to the allocator. We only free the extent in the
3194 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3195 *
3196 * If we made it past insert_reserved_file_extent before we
3197 * errored out then we don't need to do this as the accounting
3198 * has already been done.
0bec9ef5 3199 */
77cef2ec 3200 if ((ret || !logical_len) &&
49940bdd 3201 clear_reserved_extent &&
77cef2ec 3202 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
3203 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3204 /*
3205 * Discard the range before returning it back to the
3206 * free space pool
3207 */
46b27f50 3208 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 3209 btrfs_discard_extent(fs_info,
bffe633e
OS
3210 ordered_extent->disk_bytenr,
3211 ordered_extent->disk_num_bytes,
3212 NULL);
2ff7e61e 3213 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
3214 ordered_extent->disk_bytenr,
3215 ordered_extent->disk_num_bytes, 1);
e28b0211
BB
3216 /*
3217 * Actually free the qgroup rsv which was released when
3218 * the ordered extent was created.
3219 */
3220 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3221 ordered_extent->qgroup_rsv,
3222 BTRFS_QGROUP_RSV_DATA);
4eaaec24 3223 }
0bec9ef5
JB
3224 }
3225
5fd02043 3226 /*
8bad3c02
LB
3227 * This needs to be done to make sure anybody waiting knows we are done
3228 * updating everything for this ordered extent.
5fd02043 3229 */
72e7e6ed 3230 btrfs_remove_ordered_extent(inode, ordered_extent);
5fd02043 3231
e6dcd2dc
CM
3232 /* once for us */
3233 btrfs_put_ordered_extent(ordered_extent);
3234 /* once for the tree */
3235 btrfs_put_ordered_extent(ordered_extent);
3236
5fd02043
JB
3237 return ret;
3238}
3239
71df088c
CH
3240int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3241{
3242 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
02c372e1
JT
3243 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3244 list_empty(&ordered->bioc_list))
71df088c
CH
3245 btrfs_finish_ordered_zoned(ordered);
3246 return btrfs_finish_one_ordered(ordered);
3247}
3248
ae643a74
QW
3249/*
3250 * Verify the checksum for a single sector without any extra action that depend
3251 * on the type of I/O.
3252 */
3253int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3254 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3255{
3256 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3257 char *kaddr;
3258
3259 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3260
3261 shash->tfm = fs_info->csum_shash;
3262
3263 kaddr = kmap_local_page(page) + pgoff;
3264 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3265 kunmap_local(kaddr);
3266
3267 if (memcmp(csum, csum_expected, fs_info->csum_size))
3268 return -EIO;
3269 return 0;
211f90e6
CM
3270}
3271
265d4ac0 3272/*
e5219044
CH
3273 * Verify the checksum of a single data sector.
3274 *
3275 * @bbio: btrfs_io_bio which contains the csum
3276 * @dev: device the sector is on
7ffd27e3 3277 * @bio_offset: offset to the beginning of the bio (in bytes)
e5219044 3278 * @bv: bio_vec to check
265d4ac0 3279 *
e5219044
CH
3280 * Check if the checksum on a data block is valid. When a checksum mismatch is
3281 * detected, report the error and fill the corrupted range with zero.
ae643a74 3282 *
e5219044 3283 * Return %true if the sector is ok or had no checksum to start with, else %false.
265d4ac0 3284 */
e5219044
CH
3285bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3286 u32 bio_offset, struct bio_vec *bv)
dc380aea 3287{
e5219044 3288 struct btrfs_inode *inode = bbio->inode;
621af94a 3289 struct btrfs_fs_info *fs_info = inode->root->fs_info;
e5219044
CH
3290 u64 file_offset = bbio->file_offset + bio_offset;
3291 u64 end = file_offset + bv->bv_len - 1;
d5178578
JT
3292 u8 *csum_expected;
3293 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3294
3d49d0d3 3295 ASSERT(bv->bv_len == fs_info->sectorsize);
265d4ac0 3296
e5219044
CH
3297 if (!bbio->csum)
3298 return true;
d5178578 3299
e5219044
CH
3300 if (btrfs_is_data_reloc_root(inode->root) &&
3301 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
893fe243 3302 NULL)) {
e5219044
CH
3303 /* Skip the range without csum for data reloc inode */
3304 clear_extent_bits(&inode->io_tree, file_offset, end,
3305 EXTENT_NODATASUM);
3306 return true;
3307 }
3308
fa13661c
JT
3309 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3310 fs_info->csum_size;
3d49d0d3
CH
3311 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3312 csum_expected))
dc380aea 3313 goto zeroit;
e5219044 3314 return true;
ae643a74 3315
dc380aea 3316zeroit:
3d49d0d3
CH
3317 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3318 bbio->mirror_num);
3319 if (dev)
3320 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3321 memzero_bvec(bv);
3322 return false;
07157aac 3323}
b888db2b 3324
c1c3fac2 3325/*
9580503b 3326 * Perform a delayed iput on @inode.
c1c3fac2
NB
3327 *
3328 * @inode: The inode we want to perform iput on
3329 *
3330 * This function uses the generic vfs_inode::i_count to track whether we should
3331 * just decrement it (in case it's > 1) or if this is the last iput then link
3332 * the inode to the delayed iput machinery. Delayed iputs are processed at
3333 * transaction commit time/superblock commit/cleaner kthread.
3334 */
e55cf7ca 3335void btrfs_add_delayed_iput(struct btrfs_inode *inode)
24bbcf04 3336{
e55cf7ca 3337 struct btrfs_fs_info *fs_info = inode->root->fs_info;
866e98a4 3338 unsigned long flags;
24bbcf04 3339
e55cf7ca 3340 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
24bbcf04
YZ
3341 return;
3342
034f784d 3343 atomic_inc(&fs_info->nr_delayed_iputs);
866e98a4
FM
3344 /*
3345 * Need to be irq safe here because we can be called from either an irq
3346 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3347 * context.
3348 */
3349 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
e55cf7ca
DS
3350 ASSERT(list_empty(&inode->delayed_iput));
3351 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
866e98a4 3352 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
fd340d0f
JB
3353 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3354 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3355}
3356
63611e73
JB
3357static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3358 struct btrfs_inode *inode)
3359{
3360 list_del_init(&inode->delayed_iput);
866e98a4 3361 spin_unlock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3362 iput(&inode->vfs_inode);
3363 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3364 wake_up(&fs_info->delayed_iputs_wait);
866e98a4 3365 spin_lock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3366}
3367
3368static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3369 struct btrfs_inode *inode)
3370{
3371 if (!list_empty(&inode->delayed_iput)) {
866e98a4 3372 spin_lock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3373 if (!list_empty(&inode->delayed_iput))
3374 run_delayed_iput_locked(fs_info, inode);
866e98a4 3375 spin_unlock_irq(&fs_info->delayed_iput_lock);
63611e73
JB
3376 }
3377}
3378
2ff7e61e 3379void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3380{
866e98a4
FM
3381 /*
3382 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3383 * calls btrfs_add_delayed_iput() and that needs to lock
3384 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3385 * prevent a deadlock.
3386 */
3387 spin_lock_irq(&fs_info->delayed_iput_lock);
8089fe62
DS
3388 while (!list_empty(&fs_info->delayed_iputs)) {
3389 struct btrfs_inode *inode;
3390
3391 inode = list_first_entry(&fs_info->delayed_iputs,
3392 struct btrfs_inode, delayed_iput);
63611e73 3393 run_delayed_iput_locked(fs_info, inode);
866e98a4
FM
3394 if (need_resched()) {
3395 spin_unlock_irq(&fs_info->delayed_iput_lock);
3396 cond_resched();
3397 spin_lock_irq(&fs_info->delayed_iput_lock);
3398 }
24bbcf04 3399 }
866e98a4 3400 spin_unlock_irq(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3401}
3402
e43eec81 3403/*
2639631d
NB
3404 * Wait for flushing all delayed iputs
3405 *
3406 * @fs_info: the filesystem
034f784d
JB
3407 *
3408 * This will wait on any delayed iputs that are currently running with KILLABLE
3409 * set. Once they are all done running we will return, unless we are killed in
3410 * which case we return EINTR. This helps in user operations like fallocate etc
3411 * that might get blocked on the iputs.
2639631d
NB
3412 *
3413 * Return EINTR if we were killed, 0 if nothing's pending
034f784d
JB
3414 */
3415int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3416{
3417 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3418 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3419 if (ret)
3420 return -EINTR;
3421 return 0;
3422}
3423
7b128766 3424/*
f7e9e8fc
OS
3425 * This creates an orphan entry for the given inode in case something goes wrong
3426 * in the middle of an unlink.
7b128766 3427 */
73f2e545 3428int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3429 struct btrfs_inode *inode)
7b128766 3430{
d68fc57b 3431 int ret;
7b128766 3432
27919067
OS
3433 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3434 if (ret && ret != -EEXIST) {
3435 btrfs_abort_transaction(trans, ret);
3436 return ret;
d68fc57b
YZ
3437 }
3438
d68fc57b 3439 return 0;
7b128766
JB
3440}
3441
3442/*
f7e9e8fc
OS
3443 * We have done the delete so we can go ahead and remove the orphan item for
3444 * this particular inode.
7b128766 3445 */
48a3b636 3446static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3447 struct btrfs_inode *inode)
7b128766 3448{
27919067 3449 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3450}
3451
3452/*
3453 * this cleans up any orphans that may be left on the list from the last use
3454 * of this root.
3455 */
66b4ffd1 3456int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3457{
0b246afa 3458 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3459 struct btrfs_path *path;
3460 struct extent_buffer *leaf;
7b128766
JB
3461 struct btrfs_key key, found_key;
3462 struct btrfs_trans_handle *trans;
3463 struct inode *inode;
8f6d7f4f 3464 u64 last_objectid = 0;
f7e9e8fc 3465 int ret = 0, nr_unlink = 0;
7b128766 3466
54230013 3467 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
66b4ffd1 3468 return 0;
c71bf099
YZ
3469
3470 path = btrfs_alloc_path();
66b4ffd1
JB
3471 if (!path) {
3472 ret = -ENOMEM;
3473 goto out;
3474 }
e4058b54 3475 path->reada = READA_BACK;
7b128766
JB
3476
3477 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3478 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3479 key.offset = (u64)-1;
3480
7b128766
JB
3481 while (1) {
3482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3483 if (ret < 0)
3484 goto out;
7b128766
JB
3485
3486 /*
3487 * if ret == 0 means we found what we were searching for, which
25985edc 3488 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3489 * find the key and see if we have stuff that matches
3490 */
3491 if (ret > 0) {
66b4ffd1 3492 ret = 0;
7b128766
JB
3493 if (path->slots[0] == 0)
3494 break;
3495 path->slots[0]--;
3496 }
3497
3498 /* pull out the item */
3499 leaf = path->nodes[0];
7b128766
JB
3500 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3501
3502 /* make sure the item matches what we want */
3503 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3504 break;
962a298f 3505 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3506 break;
3507
3508 /* release the path since we're done with it */
b3b4aa74 3509 btrfs_release_path(path);
7b128766
JB
3510
3511 /*
3512 * this is where we are basically btrfs_lookup, without the
3513 * crossing root thing. we store the inode number in the
3514 * offset of the orphan item.
3515 */
8f6d7f4f
JB
3516
3517 if (found_key.offset == last_objectid) {
a7f8de50
FM
3518 /*
3519 * We found the same inode as before. This means we were
3520 * not able to remove its items via eviction triggered
3521 * by an iput(). A transaction abort may have happened,
3522 * due to -ENOSPC for example, so try to grab the error
3523 * that lead to a transaction abort, if any.
3524 */
0b246afa
JM
3525 btrfs_err(fs_info,
3526 "Error removing orphan entry, stopping orphan cleanup");
a7f8de50 3527 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
8f6d7f4f
JB
3528 goto out;
3529 }
3530
3531 last_objectid = found_key.offset;
3532
5d4f98a2
YZ
3533 found_key.objectid = found_key.offset;
3534 found_key.type = BTRFS_INODE_ITEM_KEY;
3535 found_key.offset = 0;
0202e83f 3536 inode = btrfs_iget(fs_info->sb, last_objectid, root);
cbaee87f
FM
3537 if (IS_ERR(inode)) {
3538 ret = PTR_ERR(inode);
3539 inode = NULL;
3540 if (ret != -ENOENT)
3541 goto out;
3542 }
7b128766 3543
cbaee87f 3544 if (!inode && root == fs_info->tree_root) {
f8e9e0b0 3545 struct btrfs_root *dead_root;
f8e9e0b0
AJ
3546 int is_dead_root = 0;
3547
3548 /*
0c0218e9 3549 * This is an orphan in the tree root. Currently these
f8e9e0b0 3550 * could come from 2 sources:
0c0218e9 3551 * a) a root (snapshot/subvolume) deletion in progress
f8e9e0b0 3552 * b) a free space cache inode
0c0218e9
FM
3553 * We need to distinguish those two, as the orphan item
3554 * for a root must not get deleted before the deletion
3555 * of the snapshot/subvolume's tree completes.
3556 *
3557 * btrfs_find_orphan_roots() ran before us, which has
3558 * found all deleted roots and loaded them into
fc7cbcd4 3559 * fs_info->fs_roots_radix. So here we can find if an
0c0218e9 3560 * orphan item corresponds to a deleted root by looking
fc7cbcd4 3561 * up the root from that radix tree.
f8e9e0b0 3562 */
a619b3c7 3563
fc7cbcd4
DS
3564 spin_lock(&fs_info->fs_roots_radix_lock);
3565 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3566 (unsigned long)found_key.objectid);
a619b3c7
RK
3567 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3568 is_dead_root = 1;
fc7cbcd4 3569 spin_unlock(&fs_info->fs_roots_radix_lock);
a619b3c7 3570
f8e9e0b0
AJ
3571 if (is_dead_root) {
3572 /* prevent this orphan from being found again */
3573 key.offset = found_key.objectid - 1;
3574 continue;
3575 }
f7e9e8fc 3576
f8e9e0b0 3577 }
f7e9e8fc 3578
7b128766 3579 /*
f7e9e8fc 3580 * If we have an inode with links, there are a couple of
70524253
BB
3581 * possibilities:
3582 *
3583 * 1. We were halfway through creating fsverity metadata for the
3584 * file. In that case, the orphan item represents incomplete
3585 * fsverity metadata which must be cleaned up with
3586 * btrfs_drop_verity_items and deleting the orphan item.
3587
3588 * 2. Old kernels (before v3.12) used to create an
f7e9e8fc
OS
3589 * orphan item for truncate indicating that there were possibly
3590 * extent items past i_size that needed to be deleted. In v3.12,
3591 * truncate was changed to update i_size in sync with the extent
3592 * items, but the (useless) orphan item was still created. Since
3593 * v4.18, we don't create the orphan item for truncate at all.
3594 *
3595 * So, this item could mean that we need to do a truncate, but
3596 * only if this filesystem was last used on a pre-v3.12 kernel
3597 * and was not cleanly unmounted. The odds of that are quite
3598 * slim, and it's a pain to do the truncate now, so just delete
3599 * the orphan item.
3600 *
3601 * It's also possible that this orphan item was supposed to be
3602 * deleted but wasn't. The inode number may have been reused,
3603 * but either way, we can delete the orphan item.
7b128766 3604 */
cbaee87f
FM
3605 if (!inode || inode->i_nlink) {
3606 if (inode) {
70524253 3607 ret = btrfs_drop_verity_items(BTRFS_I(inode));
f7e9e8fc 3608 iput(inode);
b777d279 3609 inode = NULL;
70524253
BB
3610 if (ret)
3611 goto out;
3612 }
a8c9e576 3613 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3614 if (IS_ERR(trans)) {
3615 ret = PTR_ERR(trans);
3616 goto out;
3617 }
0b246afa
JM
3618 btrfs_debug(fs_info, "auto deleting %Lu",
3619 found_key.objectid);
a8c9e576
JB
3620 ret = btrfs_del_orphan_item(trans, root,
3621 found_key.objectid);
3a45bb20 3622 btrfs_end_transaction(trans);
cbaee87f 3623 if (ret)
4ef31a45 3624 goto out;
7b128766
JB
3625 continue;
3626 }
3627
f7e9e8fc 3628 nr_unlink++;
7b128766
JB
3629
3630 /* this will do delete_inode and everything for us */
3631 iput(inode);
3632 }
3254c876
MX
3633 /* release the path since we're done with it */
3634 btrfs_release_path(path);
3635
a575ceeb 3636 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3637 trans = btrfs_join_transaction(root);
66b4ffd1 3638 if (!IS_ERR(trans))
3a45bb20 3639 btrfs_end_transaction(trans);
d68fc57b 3640 }
7b128766
JB
3641
3642 if (nr_unlink)
0b246afa 3643 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3644
3645out:
3646 if (ret)
0b246afa 3647 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3648 btrfs_free_path(path);
3649 return ret;
7b128766
JB
3650}
3651
46a53cca
CM
3652/*
3653 * very simple check to peek ahead in the leaf looking for xattrs. If we
3654 * don't find any xattrs, we know there can't be any acls.
3655 *
3656 * slot is the slot the inode is in, objectid is the objectid of the inode
3657 */
3658static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3659 int slot, u64 objectid,
3660 int *first_xattr_slot)
46a53cca
CM
3661{
3662 u32 nritems = btrfs_header_nritems(leaf);
3663 struct btrfs_key found_key;
f23b5a59
JB
3664 static u64 xattr_access = 0;
3665 static u64 xattr_default = 0;
46a53cca
CM
3666 int scanned = 0;
3667
f23b5a59 3668 if (!xattr_access) {
97d79299
AG
3669 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3670 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3671 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3672 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3673 }
3674
46a53cca 3675 slot++;
63541927 3676 *first_xattr_slot = -1;
46a53cca
CM
3677 while (slot < nritems) {
3678 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3679
3680 /* we found a different objectid, there must not be acls */
3681 if (found_key.objectid != objectid)
3682 return 0;
3683
3684 /* we found an xattr, assume we've got an acl */
f23b5a59 3685 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3686 if (*first_xattr_slot == -1)
3687 *first_xattr_slot = slot;
f23b5a59
JB
3688 if (found_key.offset == xattr_access ||
3689 found_key.offset == xattr_default)
3690 return 1;
3691 }
46a53cca
CM
3692
3693 /*
3694 * we found a key greater than an xattr key, there can't
3695 * be any acls later on
3696 */
3697 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3698 return 0;
3699
3700 slot++;
3701 scanned++;
3702
3703 /*
3704 * it goes inode, inode backrefs, xattrs, extents,
3705 * so if there are a ton of hard links to an inode there can
3706 * be a lot of backrefs. Don't waste time searching too hard,
3707 * this is just an optimization
3708 */
3709 if (scanned >= 8)
3710 break;
3711 }
3712 /* we hit the end of the leaf before we found an xattr or
3713 * something larger than an xattr. We have to assume the inode
3714 * has acls
3715 */
63541927
FDBM
3716 if (*first_xattr_slot == -1)
3717 *first_xattr_slot = slot;
46a53cca
CM
3718 return 1;
3719}
3720
d352ac68
CM
3721/*
3722 * read an inode from the btree into the in-memory inode
3723 */
4222ea71
FM
3724static int btrfs_read_locked_inode(struct inode *inode,
3725 struct btrfs_path *in_path)
39279cc3 3726{
0b246afa 3727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3728 struct btrfs_path *path = in_path;
5f39d397 3729 struct extent_buffer *leaf;
39279cc3
CM
3730 struct btrfs_inode_item *inode_item;
3731 struct btrfs_root *root = BTRFS_I(inode)->root;
3732 struct btrfs_key location;
67de1176 3733 unsigned long ptr;
46a53cca 3734 int maybe_acls;
618e21d5 3735 u32 rdev;
39279cc3 3736 int ret;
2f7e33d4 3737 bool filled = false;
63541927 3738 int first_xattr_slot;
2f7e33d4
MX
3739
3740 ret = btrfs_fill_inode(inode, &rdev);
3741 if (!ret)
3742 filled = true;
39279cc3 3743
4222ea71
FM
3744 if (!path) {
3745 path = btrfs_alloc_path();
3746 if (!path)
3747 return -ENOMEM;
3748 }
1748f843 3749
39279cc3 3750 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3751
39279cc3 3752 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3753 if (ret) {
4222ea71
FM
3754 if (path != in_path)
3755 btrfs_free_path(path);
f5b3a417 3756 return ret;
67710892 3757 }
39279cc3 3758
5f39d397 3759 leaf = path->nodes[0];
2f7e33d4
MX
3760
3761 if (filled)
67de1176 3762 goto cache_index;
2f7e33d4 3763
5f39d397
CM
3764 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3765 struct btrfs_inode_item);
5f39d397 3766 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3767 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3768 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3769 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3770 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3771 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3772 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3773
b1c38a13
JL
3774 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3775 btrfs_timespec_nsec(leaf, &inode_item->atime));
5f39d397 3776
b1c38a13
JL
3777 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3778 btrfs_timespec_nsec(leaf, &inode_item->mtime));
5f39d397 3779
2a9462de
JL
3780 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3781 btrfs_timespec_nsec(leaf, &inode_item->ctime));
5f39d397 3782
c6e8f898
DS
3783 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3784 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3785
a76a3cd4 3786 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3787 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3788 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3789
c7f88c4e
JL
3790 inode_set_iversion_queried(inode,
3791 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3792 inode->i_generation = BTRFS_I(inode)->generation;
3793 inode->i_rdev = 0;
3794 rdev = btrfs_inode_rdev(leaf, inode_item);
3795
3796 BTRFS_I(inode)->index_cnt = (u64)-1;
77eea05e
BB
3797 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3798 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
6e17d30b
YD
3799
3800cache_index:
5dc562c5
JB
3801 /*
3802 * If we were modified in the current generation and evicted from memory
3803 * and then re-read we need to do a full sync since we don't have any
3804 * idea about which extents were modified before we were evicted from
3805 * cache.
6e17d30b
YD
3806 *
3807 * This is required for both inode re-read from disk and delayed inode
6140ba8a 3808 * in the delayed_nodes xarray.
5dc562c5 3809 */
4a4f8fe2 3810 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
5dc562c5
JB
3811 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3812 &BTRFS_I(inode)->runtime_flags);
3813
bde6c242
FM
3814 /*
3815 * We don't persist the id of the transaction where an unlink operation
3816 * against the inode was last made. So here we assume the inode might
3817 * have been evicted, and therefore the exact value of last_unlink_trans
3818 * lost, and set it to last_trans to avoid metadata inconsistencies
3819 * between the inode and its parent if the inode is fsync'ed and the log
3820 * replayed. For example, in the scenario:
3821 *
3822 * touch mydir/foo
3823 * ln mydir/foo mydir/bar
3824 * sync
3825 * unlink mydir/bar
3826 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3827 * xfs_io -c fsync mydir/foo
3828 * <power failure>
3829 * mount fs, triggers fsync log replay
3830 *
3831 * We must make sure that when we fsync our inode foo we also log its
3832 * parent inode, otherwise after log replay the parent still has the
3833 * dentry with the "bar" name but our inode foo has a link count of 1
3834 * and doesn't have an inode ref with the name "bar" anymore.
3835 *
3836 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3837 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3838 * transaction commits on fsync if our inode is a directory, or if our
3839 * inode is not a directory, logging its parent unnecessarily.
3840 */
3841 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3842
3ebac17c
FM
3843 /*
3844 * Same logic as for last_unlink_trans. We don't persist the generation
3845 * of the last transaction where this inode was used for a reflink
3846 * operation, so after eviction and reloading the inode we must be
3847 * pessimistic and assume the last transaction that modified the inode.
3848 */
3849 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3850
67de1176
MX
3851 path->slots[0]++;
3852 if (inode->i_nlink != 1 ||
3853 path->slots[0] >= btrfs_header_nritems(leaf))
3854 goto cache_acl;
3855
3856 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3857 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3858 goto cache_acl;
3859
3860 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3861 if (location.type == BTRFS_INODE_REF_KEY) {
3862 struct btrfs_inode_ref *ref;
3863
3864 ref = (struct btrfs_inode_ref *)ptr;
3865 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3866 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3867 struct btrfs_inode_extref *extref;
3868
3869 extref = (struct btrfs_inode_extref *)ptr;
3870 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3871 extref);
3872 }
2f7e33d4 3873cache_acl:
46a53cca
CM
3874 /*
3875 * try to precache a NULL acl entry for files that don't have
3876 * any xattrs or acls
3877 */
33345d01 3878 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3879 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3880 if (first_xattr_slot != -1) {
3881 path->slots[0] = first_xattr_slot;
3882 ret = btrfs_load_inode_props(inode, path);
3883 if (ret)
0b246afa 3884 btrfs_err(fs_info,
351fd353 3885 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3886 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3887 root->root_key.objectid, ret);
3888 }
4222ea71
FM
3889 if (path != in_path)
3890 btrfs_free_path(path);
63541927 3891
72c04902
AV
3892 if (!maybe_acls)
3893 cache_no_acl(inode);
46a53cca 3894
39279cc3 3895 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3896 case S_IFREG:
3897 inode->i_mapping->a_ops = &btrfs_aops;
3898 inode->i_fop = &btrfs_file_operations;
3899 inode->i_op = &btrfs_file_inode_operations;
3900 break;
3901 case S_IFDIR:
3902 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3903 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3904 break;
3905 case S_IFLNK:
3906 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3907 inode_nohighmem(inode);
4779cc04 3908 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3909 break;
618e21d5 3910 default:
0279b4cd 3911 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3912 init_special_inode(inode, inode->i_mode, rdev);
3913 break;
39279cc3 3914 }
6cbff00f 3915
7b6a221e 3916 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3917 return 0;
39279cc3
CM
3918}
3919
d352ac68
CM
3920/*
3921 * given a leaf and an inode, copy the inode fields into the leaf
3922 */
e02119d5
CM
3923static void fill_inode_item(struct btrfs_trans_handle *trans,
3924 struct extent_buffer *leaf,
5f39d397 3925 struct btrfs_inode_item *item,
39279cc3
CM
3926 struct inode *inode)
3927{
51fab693 3928 struct btrfs_map_token token;
77eea05e 3929 u64 flags;
51fab693 3930
c82f823c 3931 btrfs_init_map_token(&token, leaf);
5f39d397 3932
cc4c13d5
DS
3933 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3934 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3935 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3936 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3937 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3938
3939 btrfs_set_token_timespec_sec(&token, &item->atime,
b1c38a13 3940 inode_get_atime_sec(inode));
cc4c13d5 3941 btrfs_set_token_timespec_nsec(&token, &item->atime,
b1c38a13 3942 inode_get_atime_nsec(inode));
cc4c13d5
DS
3943
3944 btrfs_set_token_timespec_sec(&token, &item->mtime,
b1c38a13 3945 inode_get_mtime_sec(inode));
cc4c13d5 3946 btrfs_set_token_timespec_nsec(&token, &item->mtime,
b1c38a13 3947 inode_get_mtime_nsec(inode));
cc4c13d5
DS
3948
3949 btrfs_set_token_timespec_sec(&token, &item->ctime,
b1c38a13 3950 inode_get_ctime_sec(inode));
cc4c13d5 3951 btrfs_set_token_timespec_nsec(&token, &item->ctime,
b1c38a13 3952 inode_get_ctime_nsec(inode));
cc4c13d5 3953
c6e8f898
DS
3954 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3955 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
cc4c13d5
DS
3956
3957 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3958 btrfs_set_token_inode_generation(&token, item,
3959 BTRFS_I(inode)->generation);
3960 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3961 btrfs_set_token_inode_transid(&token, item, trans->transid);
3962 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
3963 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3964 BTRFS_I(inode)->ro_flags);
3965 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 3966 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3967}
3968
d352ac68
CM
3969/*
3970 * copy everything in the in-memory inode into the btree.
3971 */
2115133f 3972static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
07a274a8 3973 struct btrfs_inode *inode)
39279cc3
CM
3974{
3975 struct btrfs_inode_item *inode_item;
3976 struct btrfs_path *path;
5f39d397 3977 struct extent_buffer *leaf;
39279cc3
CM
3978 int ret;
3979
3980 path = btrfs_alloc_path();
16cdcec7
MX
3981 if (!path)
3982 return -ENOMEM;
3983
07a274a8 3984 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
39279cc3
CM
3985 if (ret) {
3986 if (ret > 0)
3987 ret = -ENOENT;
3988 goto failed;
3989 }
3990
5f39d397
CM
3991 leaf = path->nodes[0];
3992 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3993 struct btrfs_inode_item);
39279cc3 3994
dfeb9e7c 3995 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
50564b65 3996 btrfs_mark_buffer_dirty(trans, leaf);
dfeb9e7c 3997 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3998 ret = 0;
3999failed:
39279cc3
CM
4000 btrfs_free_path(path);
4001 return ret;
4002}
4003
2115133f
CM
4004/*
4005 * copy everything in the in-memory inode into the btree.
4006 */
cddaaacc 4007int btrfs_update_inode(struct btrfs_trans_handle *trans,
cddaaacc 4008 struct btrfs_inode *inode)
2115133f 4009{
8b9d0322 4010 struct btrfs_root *root = inode->root;
0b246afa 4011 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4012 int ret;
4013
4014 /*
4015 * If the inode is a free space inode, we can deadlock during commit
4016 * if we put it into the delayed code.
4017 *
4018 * The data relocation inode should also be directly updated
4019 * without delay
4020 */
9a56fcd1 4021 if (!btrfs_is_free_space_inode(inode)
37f00a6d 4022 && !btrfs_is_data_reloc_root(root)
0b246afa 4023 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4024 btrfs_update_root_times(trans, root);
4025
04bd8e94 4026 ret = btrfs_delayed_update_inode(trans, inode);
2115133f 4027 if (!ret)
9a56fcd1 4028 btrfs_set_inode_last_trans(trans, inode);
2115133f
CM
4029 return ret;
4030 }
4031
07a274a8 4032 return btrfs_update_inode_item(trans, inode);
2115133f
CM
4033}
4034
729f7961 4035int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
0a5d0dc5 4036 struct btrfs_inode *inode)
2115133f
CM
4037{
4038 int ret;
4039
8b9d0322 4040 ret = btrfs_update_inode(trans, inode);
2115133f 4041 if (ret == -ENOSPC)
07a274a8 4042 return btrfs_update_inode_item(trans, inode);
2115133f
CM
4043 return ret;
4044}
4045
d352ac68
CM
4046/*
4047 * unlink helper that gets used here in inode.c and in the tree logging
4048 * recovery code. It remove a link in a directory with a given name, and
4049 * also drops the back refs in the inode to the directory
4050 */
92986796 4051static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e
NB
4052 struct btrfs_inode *dir,
4053 struct btrfs_inode *inode,
6db75318 4054 const struct fscrypt_str *name,
88d2beec 4055 struct btrfs_rename_ctx *rename_ctx)
39279cc3 4056{
4467af88 4057 struct btrfs_root *root = dir->root;
0b246afa 4058 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4059 struct btrfs_path *path;
39279cc3 4060 int ret = 0;
39279cc3 4061 struct btrfs_dir_item *di;
aec7477b 4062 u64 index;
33345d01
LZ
4063 u64 ino = btrfs_ino(inode);
4064 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4065
4066 path = btrfs_alloc_path();
54aa1f4d
CM
4067 if (!path) {
4068 ret = -ENOMEM;
554233a6 4069 goto out;
54aa1f4d
CM
4070 }
4071
e43eec81 4072 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
3cf5068f
LB
4073 if (IS_ERR_OR_NULL(di)) {
4074 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
4075 goto err;
4076 }
39279cc3 4077 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4078 if (ret)
4079 goto err;
b3b4aa74 4080 btrfs_release_path(path);
39279cc3 4081
67de1176
MX
4082 /*
4083 * If we don't have dir index, we have to get it by looking up
4084 * the inode ref, since we get the inode ref, remove it directly,
4085 * it is unnecessary to do delayed deletion.
4086 *
4087 * But if we have dir index, needn't search inode ref to get it.
4088 * Since the inode ref is close to the inode item, it is better
4089 * that we delay to delete it, and just do this deletion when
4090 * we update the inode item.
4091 */
4ec5934e 4092 if (inode->dir_index) {
67de1176
MX
4093 ret = btrfs_delayed_delete_inode_ref(inode);
4094 if (!ret) {
4ec5934e 4095 index = inode->dir_index;
67de1176
MX
4096 goto skip_backref;
4097 }
4098 }
4099
e43eec81 4100 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
aec7477b 4101 if (ret) {
0b246afa 4102 btrfs_info(fs_info,
c2cf52eb 4103 "failed to delete reference to %.*s, inode %llu parent %llu",
e43eec81 4104 name->len, name->name, ino, dir_ino);
66642832 4105 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4106 goto err;
4107 }
67de1176 4108skip_backref:
88d2beec
FM
4109 if (rename_ctx)
4110 rename_ctx->index = index;
4111
9add2945 4112 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4113 if (ret) {
66642832 4114 btrfs_abort_transaction(trans, ret);
39279cc3 4115 goto err;
79787eaa 4116 }
39279cc3 4117
259c4b96
FM
4118 /*
4119 * If we are in a rename context, we don't need to update anything in the
4120 * log. That will be done later during the rename by btrfs_log_new_name().
143823cf 4121 * Besides that, doing it here would only cause extra unnecessary btree
259c4b96
FM
4122 * operations on the log tree, increasing latency for applications.
4123 */
4124 if (!rename_ctx) {
e43eec81
STD
4125 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4126 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
259c4b96 4127 }
63611e73
JB
4128
4129 /*
4130 * If we have a pending delayed iput we could end up with the final iput
4131 * being run in btrfs-cleaner context. If we have enough of these built
4132 * up we can end up burning a lot of time in btrfs-cleaner without any
4133 * way to throttle the unlinks. Since we're currently holding a ref on
4134 * the inode we can run the delayed iput here without any issues as the
4135 * final iput won't be done until after we drop the ref we're currently
4136 * holding.
4137 */
4138 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
4139err:
4140 btrfs_free_path(path);
e02119d5
CM
4141 if (ret)
4142 goto out;
4143
e43eec81 4144 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4ec5934e
NB
4145 inode_inc_iversion(&inode->vfs_inode);
4146 inode_inc_iversion(&dir->vfs_inode);
b1c38a13 4147 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
8b9d0322 4148 ret = btrfs_update_inode(trans, dir);
e02119d5 4149out:
39279cc3
CM
4150 return ret;
4151}
4152
92986796 4153int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e 4154 struct btrfs_inode *dir, struct btrfs_inode *inode,
6db75318 4155 const struct fscrypt_str *name)
92986796
AV
4156{
4157 int ret;
e43eec81
STD
4158
4159 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
92986796 4160 if (!ret) {
4ec5934e 4161 drop_nlink(&inode->vfs_inode);
8b9d0322 4162 ret = btrfs_update_inode(trans, inode);
92986796
AV
4163 }
4164 return ret;
4165}
39279cc3 4166
a22285a6
YZ
4167/*
4168 * helper to start transaction for unlink and rmdir.
4169 *
d52be818
JB
4170 * unlink and rmdir are special in btrfs, they do not always free space, so
4171 * if we cannot make our reservations the normal way try and see if there is
4172 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4173 * allow the unlink to occur.
a22285a6 4174 */
e569b1d5 4175static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4df27c4d 4176{
e569b1d5 4177 struct btrfs_root *root = dir->root;
4df27c4d 4178
5630e2bc
FM
4179 return btrfs_start_transaction_fallback_global_rsv(root,
4180 BTRFS_UNLINK_METADATA_UNITS);
a22285a6
YZ
4181}
4182
4183static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4184{
a22285a6 4185 struct btrfs_trans_handle *trans;
2b0143b5 4186 struct inode *inode = d_inode(dentry);
a22285a6 4187 int ret;
ab3c5c18 4188 struct fscrypt_name fname;
a22285a6 4189
ab3c5c18
STD
4190 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4191 if (ret)
4192 return ret;
ab3c5c18
STD
4193
4194 /* This needs to handle no-key deletions later on */
a22285a6 4195
e569b1d5 4196 trans = __unlink_start_trans(BTRFS_I(dir));
ab3c5c18
STD
4197 if (IS_ERR(trans)) {
4198 ret = PTR_ERR(trans);
4199 goto fscrypt_free;
4200 }
5f39d397 4201
4ec5934e 4202 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
59fcf388 4203 false);
12fcfd22 4204
e43eec81 4205 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
6db75318 4206 &fname.disk_name);
b532402e 4207 if (ret)
ab3c5c18 4208 goto end_trans;
7b128766 4209
a22285a6 4210 if (inode->i_nlink == 0) {
73f2e545 4211 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e 4212 if (ret)
ab3c5c18 4213 goto end_trans;
a22285a6 4214 }
7b128766 4215
ab3c5c18 4216end_trans:
3a45bb20 4217 btrfs_end_transaction(trans);
4467af88 4218 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
ab3c5c18
STD
4219fscrypt_free:
4220 fscrypt_free_filename(&fname);
39279cc3
CM
4221 return ret;
4222}
4223
f60a2364 4224static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
5b7544cb 4225 struct btrfs_inode *dir, struct dentry *dentry)
4df27c4d 4226{
5b7544cb 4227 struct btrfs_root *root = dir->root;
045d3967 4228 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
4229 struct btrfs_path *path;
4230 struct extent_buffer *leaf;
4231 struct btrfs_dir_item *di;
4232 struct btrfs_key key;
4233 u64 index;
4234 int ret;
045d3967 4235 u64 objectid;
5b7544cb 4236 u64 dir_ino = btrfs_ino(dir);
ab3c5c18
STD
4237 struct fscrypt_name fname;
4238
5b7544cb 4239 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
ab3c5c18
STD
4240 if (ret)
4241 return ret;
ab3c5c18
STD
4242
4243 /* This needs to handle no-key deletions later on */
4df27c4d 4244
045d3967
JB
4245 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4246 objectid = inode->root->root_key.objectid;
4247 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4248 objectid = inode->location.objectid;
4249 } else {
4250 WARN_ON(1);
ab3c5c18 4251 fscrypt_free_filename(&fname);
045d3967
JB
4252 return -EINVAL;
4253 }
4254
4df27c4d 4255 path = btrfs_alloc_path();
ab3c5c18
STD
4256 if (!path) {
4257 ret = -ENOMEM;
4258 goto out;
4259 }
4df27c4d 4260
33345d01 4261 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
6db75318 4262 &fname.disk_name, -1);
79787eaa 4263 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4264 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4265 goto out;
4266 }
4df27c4d
YZ
4267
4268 leaf = path->nodes[0];
4269 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4270 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4271 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4272 if (ret) {
66642832 4273 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4274 goto out;
4275 }
b3b4aa74 4276 btrfs_release_path(path);
4df27c4d 4277
d49d3287
JB
4278 /*
4279 * This is a placeholder inode for a subvolume we didn't have a
4280 * reference to at the time of the snapshot creation. In the meantime
4281 * we could have renamed the real subvol link into our snapshot, so
1a9fd417 4282 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
d49d3287
JB
4283 * Instead simply lookup the dir_index_item for this entry so we can
4284 * remove it. Otherwise we know we have a ref to the root and we can
4285 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4286 */
4287 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
6db75318 4288 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
79787eaa
JM
4289 if (IS_ERR_OR_NULL(di)) {
4290 if (!di)
4291 ret = -ENOENT;
4292 else
4293 ret = PTR_ERR(di);
66642832 4294 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4295 goto out;
4296 }
4df27c4d
YZ
4297
4298 leaf = path->nodes[0];
4299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 4300 index = key.offset;
d49d3287
JB
4301 btrfs_release_path(path);
4302 } else {
4303 ret = btrfs_del_root_ref(trans, objectid,
4304 root->root_key.objectid, dir_ino,
6db75318 4305 &index, &fname.disk_name);
d49d3287
JB
4306 if (ret) {
4307 btrfs_abort_transaction(trans, ret);
4308 goto out;
4309 }
4df27c4d
YZ
4310 }
4311
5b7544cb 4312 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4313 if (ret) {
66642832 4314 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4315 goto out;
4316 }
4df27c4d 4317
5b7544cb
DS
4318 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4319 inode_inc_iversion(&dir->vfs_inode);
b1c38a13 4320 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
0a5d0dc5 4321 ret = btrfs_update_inode_fallback(trans, dir);
79787eaa 4322 if (ret)
66642832 4323 btrfs_abort_transaction(trans, ret);
79787eaa 4324out:
71d7aed0 4325 btrfs_free_path(path);
ab3c5c18 4326 fscrypt_free_filename(&fname);
79787eaa 4327 return ret;
4df27c4d
YZ
4328}
4329
ec42f167
MT
4330/*
4331 * Helper to check if the subvolume references other subvolumes or if it's
4332 * default.
4333 */
f60a2364 4334static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4335{
4336 struct btrfs_fs_info *fs_info = root->fs_info;
4337 struct btrfs_path *path;
4338 struct btrfs_dir_item *di;
4339 struct btrfs_key key;
6db75318 4340 struct fscrypt_str name = FSTR_INIT("default", 7);
ec42f167
MT
4341 u64 dir_id;
4342 int ret;
4343
4344 path = btrfs_alloc_path();
4345 if (!path)
4346 return -ENOMEM;
4347
4348 /* Make sure this root isn't set as the default subvol */
4349 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4350 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
e43eec81 4351 dir_id, &name, 0);
ec42f167
MT
4352 if (di && !IS_ERR(di)) {
4353 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4354 if (key.objectid == root->root_key.objectid) {
4355 ret = -EPERM;
4356 btrfs_err(fs_info,
4357 "deleting default subvolume %llu is not allowed",
4358 key.objectid);
4359 goto out;
4360 }
4361 btrfs_release_path(path);
4362 }
4363
4364 key.objectid = root->root_key.objectid;
4365 key.type = BTRFS_ROOT_REF_KEY;
4366 key.offset = (u64)-1;
4367
4368 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4369 if (ret < 0)
4370 goto out;
4371 BUG_ON(ret == 0);
4372
4373 ret = 0;
4374 if (path->slots[0] > 0) {
4375 path->slots[0]--;
4376 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4377 if (key.objectid == root->root_key.objectid &&
4378 key.type == BTRFS_ROOT_REF_KEY)
4379 ret = -ENOTEMPTY;
4380 }
4381out:
4382 btrfs_free_path(path);
4383 return ret;
4384}
4385
20a68004
NB
4386/* Delete all dentries for inodes belonging to the root */
4387static void btrfs_prune_dentries(struct btrfs_root *root)
4388{
4389 struct btrfs_fs_info *fs_info = root->fs_info;
4390 struct rb_node *node;
4391 struct rb_node *prev;
4392 struct btrfs_inode *entry;
4393 struct inode *inode;
4394 u64 objectid = 0;
4395
84961539 4396 if (!BTRFS_FS_ERROR(fs_info))
20a68004
NB
4397 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4398
4399 spin_lock(&root->inode_lock);
4400again:
4401 node = root->inode_tree.rb_node;
4402 prev = NULL;
4403 while (node) {
4404 prev = node;
4405 entry = rb_entry(node, struct btrfs_inode, rb_node);
4406
37508515 4407 if (objectid < btrfs_ino(entry))
20a68004 4408 node = node->rb_left;
37508515 4409 else if (objectid > btrfs_ino(entry))
20a68004
NB
4410 node = node->rb_right;
4411 else
4412 break;
4413 }
4414 if (!node) {
4415 while (prev) {
4416 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4417 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4418 node = prev;
4419 break;
4420 }
4421 prev = rb_next(prev);
4422 }
4423 }
4424 while (node) {
4425 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4426 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4427 inode = igrab(&entry->vfs_inode);
4428 if (inode) {
4429 spin_unlock(&root->inode_lock);
4430 if (atomic_read(&inode->i_count) > 1)
4431 d_prune_aliases(inode);
4432 /*
4433 * btrfs_drop_inode will have it removed from the inode
4434 * cache when its usage count hits zero.
4435 */
4436 iput(inode);
4437 cond_resched();
4438 spin_lock(&root->inode_lock);
4439 goto again;
4440 }
4441
4442 if (cond_resched_lock(&root->inode_lock))
4443 goto again;
4444
4445 node = rb_next(node);
4446 }
4447 spin_unlock(&root->inode_lock);
4448}
4449
3c4f91e2 4450int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
f60a2364
MT
4451{
4452 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3c4f91e2 4453 struct btrfs_root *root = dir->root;
f60a2364
MT
4454 struct inode *inode = d_inode(dentry);
4455 struct btrfs_root *dest = BTRFS_I(inode)->root;
4456 struct btrfs_trans_handle *trans;
4457 struct btrfs_block_rsv block_rsv;
4458 u64 root_flags;
f60a2364 4459 int ret;
f60a2364
MT
4460
4461 /*
4462 * Don't allow to delete a subvolume with send in progress. This is
4463 * inside the inode lock so the error handling that has to drop the bit
4464 * again is not run concurrently.
4465 */
4466 spin_lock(&dest->root_item_lock);
a7176f74 4467 if (dest->send_in_progress) {
f60a2364
MT
4468 spin_unlock(&dest->root_item_lock);
4469 btrfs_warn(fs_info,
4470 "attempt to delete subvolume %llu during send",
4471 dest->root_key.objectid);
4472 return -EPERM;
4473 }
60021bd7
KH
4474 if (atomic_read(&dest->nr_swapfiles)) {
4475 spin_unlock(&dest->root_item_lock);
4476 btrfs_warn(fs_info,
4477 "attempt to delete subvolume %llu with active swapfile",
4478 root->root_key.objectid);
4479 return -EPERM;
4480 }
a7176f74
LF
4481 root_flags = btrfs_root_flags(&dest->root_item);
4482 btrfs_set_root_flags(&dest->root_item,
4483 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4484 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4485
4486 down_write(&fs_info->subvol_sem);
4487
ee0d904f
NB
4488 ret = may_destroy_subvol(dest);
4489 if (ret)
f60a2364
MT
4490 goto out_up_write;
4491
4492 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4493 /*
4494 * One for dir inode,
4495 * two for dir entries,
4496 * two for root ref/backref.
4497 */
ee0d904f
NB
4498 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4499 if (ret)
f60a2364
MT
4500 goto out_up_write;
4501
4502 trans = btrfs_start_transaction(root, 0);
4503 if (IS_ERR(trans)) {
ee0d904f 4504 ret = PTR_ERR(trans);
f60a2364
MT
4505 goto out_release;
4506 }
4507 trans->block_rsv = &block_rsv;
4508 trans->bytes_reserved = block_rsv.size;
4509
3c4f91e2 4510 btrfs_record_snapshot_destroy(trans, dir);
f60a2364 4511
045d3967 4512 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364 4513 if (ret) {
f60a2364
MT
4514 btrfs_abort_transaction(trans, ret);
4515 goto out_end_trans;
4516 }
4517
2731f518
JB
4518 ret = btrfs_record_root_in_trans(trans, dest);
4519 if (ret) {
4520 btrfs_abort_transaction(trans, ret);
4521 goto out_end_trans;
4522 }
f60a2364
MT
4523
4524 memset(&dest->root_item.drop_progress, 0,
4525 sizeof(dest->root_item.drop_progress));
c8422684 4526 btrfs_set_root_drop_level(&dest->root_item, 0);
f60a2364
MT
4527 btrfs_set_root_refs(&dest->root_item, 0);
4528
4529 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4530 ret = btrfs_insert_orphan_item(trans,
4531 fs_info->tree_root,
4532 dest->root_key.objectid);
4533 if (ret) {
4534 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4535 goto out_end_trans;
4536 }
4537 }
4538
d1957791 4539 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4540 BTRFS_UUID_KEY_SUBVOL,
4541 dest->root_key.objectid);
4542 if (ret && ret != -ENOENT) {
4543 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4544 goto out_end_trans;
4545 }
4546 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4547 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4548 dest->root_item.received_uuid,
4549 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4550 dest->root_key.objectid);
4551 if (ret && ret != -ENOENT) {
4552 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4553 goto out_end_trans;
4554 }
4555 }
4556
082b6c97
QW
4557 free_anon_bdev(dest->anon_dev);
4558 dest->anon_dev = 0;
f60a2364
MT
4559out_end_trans:
4560 trans->block_rsv = NULL;
4561 trans->bytes_reserved = 0;
4562 ret = btrfs_end_transaction(trans);
f60a2364
MT
4563 inode->i_flags |= S_DEAD;
4564out_release:
e85fde51 4565 btrfs_subvolume_release_metadata(root, &block_rsv);
f60a2364
MT
4566out_up_write:
4567 up_write(&fs_info->subvol_sem);
ee0d904f 4568 if (ret) {
f60a2364
MT
4569 spin_lock(&dest->root_item_lock);
4570 root_flags = btrfs_root_flags(&dest->root_item);
4571 btrfs_set_root_flags(&dest->root_item,
4572 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4573 spin_unlock(&dest->root_item_lock);
4574 } else {
4575 d_invalidate(dentry);
20a68004 4576 btrfs_prune_dentries(dest);
f60a2364 4577 ASSERT(dest->send_in_progress == 0);
f60a2364
MT
4578 }
4579
ee0d904f 4580 return ret;
f60a2364
MT
4581}
4582
39279cc3
CM
4583static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4584{
2b0143b5 4585 struct inode *inode = d_inode(dentry);
813febdb 4586 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1832a6d5 4587 int err = 0;
39279cc3 4588 struct btrfs_trans_handle *trans;
44f714da 4589 u64 last_unlink_trans;
ab3c5c18 4590 struct fscrypt_name fname;
39279cc3 4591
b3ae244e 4592 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4593 return -ENOTEMPTY;
813febdb
JB
4594 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4595 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4596 btrfs_err(fs_info,
4597 "extent tree v2 doesn't support snapshot deletion yet");
4598 return -EOPNOTSUPP;
4599 }
3c4f91e2 4600 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
813febdb 4601 }
134d4512 4602
ab3c5c18
STD
4603 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4604 if (err)
4605 return err;
ab3c5c18
STD
4606
4607 /* This needs to handle no-key deletions later on */
4608
e569b1d5 4609 trans = __unlink_start_trans(BTRFS_I(dir));
ab3c5c18
STD
4610 if (IS_ERR(trans)) {
4611 err = PTR_ERR(trans);
4612 goto out_notrans;
4613 }
5df6a9f6 4614
4a0cc7ca 4615 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5b7544cb 4616 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4df27c4d
YZ
4617 goto out;
4618 }
4619
73f2e545 4620 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4621 if (err)
4df27c4d 4622 goto out;
7b128766 4623
44f714da
FM
4624 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4625
39279cc3 4626 /* now the directory is empty */
e43eec81 4627 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
6db75318 4628 &fname.disk_name);
44f714da 4629 if (!err) {
6ef06d27 4630 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4631 /*
4632 * Propagate the last_unlink_trans value of the deleted dir to
4633 * its parent directory. This is to prevent an unrecoverable
4634 * log tree in the case we do something like this:
4635 * 1) create dir foo
4636 * 2) create snapshot under dir foo
4637 * 3) delete the snapshot
4638 * 4) rmdir foo
4639 * 5) mkdir foo
4640 * 6) fsync foo or some file inside foo
4641 */
4642 if (last_unlink_trans >= trans->transid)
4643 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4644 }
4df27c4d 4645out:
3a45bb20 4646 btrfs_end_transaction(trans);
ab3c5c18 4647out_notrans:
813febdb 4648 btrfs_btree_balance_dirty(fs_info);
ab3c5c18 4649 fscrypt_free_filename(&fname);
3954401f 4650
39279cc3
CM
4651 return err;
4652}
4653
39279cc3 4654/*
9580503b
DS
4655 * Read, zero a chunk and write a block.
4656 *
2aaa6655
JB
4657 * @inode - inode that we're zeroing
4658 * @from - the offset to start zeroing
4659 * @len - the length to zero, 0 to zero the entire range respective to the
4660 * offset
4661 * @front - zero up to the offset instead of from the offset on
4662 *
9703fefe 4663 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4664 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4665 */
217f42eb
NB
4666int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4667 int front)
39279cc3 4668{
217f42eb
NB
4669 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4670 struct address_space *mapping = inode->vfs_inode.i_mapping;
4671 struct extent_io_tree *io_tree = &inode->io_tree;
e6dcd2dc 4672 struct btrfs_ordered_extent *ordered;
2ac55d41 4673 struct extent_state *cached_state = NULL;
364ecf36 4674 struct extent_changeset *data_reserved = NULL;
6d4572a9 4675 bool only_release_metadata = false;
0b246afa 4676 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4677 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4678 unsigned offset = from & (blocksize - 1);
39279cc3 4679 struct page *page;
3b16a4e3 4680 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4681 size_t write_bytes = blocksize;
39279cc3 4682 int ret = 0;
9703fefe
CR
4683 u64 block_start;
4684 u64 block_end;
39279cc3 4685
b03ebd99
NB
4686 if (IS_ALIGNED(offset, blocksize) &&
4687 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4688 goto out;
9703fefe 4689
8b62f87b
JB
4690 block_start = round_down(from, blocksize);
4691 block_end = block_start + blocksize - 1;
4692
217f42eb 4693 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
1daedb1d 4694 blocksize, false);
6d4572a9 4695 if (ret < 0) {
80f9d241 4696 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
6d4572a9
QW
4697 /* For nocow case, no need to reserve data space */
4698 only_release_metadata = true;
4699 } else {
4700 goto out;
4701 }
4702 }
d4135134 4703 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
6d4572a9
QW
4704 if (ret < 0) {
4705 if (!only_release_metadata)
217f42eb
NB
4706 btrfs_free_reserved_data_space(inode, data_reserved,
4707 block_start, blocksize);
6d4572a9
QW
4708 goto out;
4709 }
211c17f5 4710again:
3b16a4e3 4711 page = find_or_create_page(mapping, index, mask);
5d5e103a 4712 if (!page) {
217f42eb
NB
4713 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4714 blocksize, true);
4715 btrfs_delalloc_release_extents(inode, blocksize);
ac6a2b36 4716 ret = -ENOMEM;
39279cc3 4717 goto out;
5d5e103a 4718 }
e6dcd2dc 4719
39279cc3 4720 if (!PageUptodate(page)) {
fb12489b 4721 ret = btrfs_read_folio(NULL, page_folio(page));
39279cc3 4722 lock_page(page);
211c17f5
CM
4723 if (page->mapping != mapping) {
4724 unlock_page(page);
09cbfeaf 4725 put_page(page);
211c17f5
CM
4726 goto again;
4727 }
39279cc3
CM
4728 if (!PageUptodate(page)) {
4729 ret = -EIO;
89642229 4730 goto out_unlock;
39279cc3
CM
4731 }
4732 }
17b17fcd
JB
4733
4734 /*
4735 * We unlock the page after the io is completed and then re-lock it
4736 * above. release_folio() could have come in between that and cleared
cfbf07e2 4737 * folio private, but left the page in the mapping. Set the page mapped
17b17fcd
JB
4738 * here to make sure it's properly set for the subpage stuff.
4739 */
4740 ret = set_page_extent_mapped(page);
4741 if (ret < 0)
4742 goto out_unlock;
4743
211c17f5 4744 wait_on_page_writeback(page);
e6dcd2dc 4745
570eb97b 4746 lock_extent(io_tree, block_start, block_end, &cached_state);
e6dcd2dc 4747
217f42eb 4748 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4749 if (ordered) {
570eb97b 4750 unlock_extent(io_tree, block_start, block_end, &cached_state);
e6dcd2dc 4751 unlock_page(page);
09cbfeaf 4752 put_page(page);
36d45567 4753 btrfs_start_ordered_extent(ordered);
e6dcd2dc
CM
4754 btrfs_put_ordered_extent(ordered);
4755 goto again;
4756 }
4757
217f42eb 4758 clear_extent_bit(&inode->io_tree, block_start, block_end,
e182163d 4759 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 4760 &cached_state);
5d5e103a 4761
217f42eb 4762 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 4763 &cached_state);
9ed74f2d 4764 if (ret) {
570eb97b 4765 unlock_extent(io_tree, block_start, block_end, &cached_state);
9ed74f2d
JB
4766 goto out_unlock;
4767 }
4768
9703fefe 4769 if (offset != blocksize) {
2aaa6655 4770 if (!len)
9703fefe 4771 len = blocksize - offset;
2aaa6655 4772 if (front)
d048b9c2
IW
4773 memzero_page(page, (block_start - page_offset(page)),
4774 offset);
2aaa6655 4775 else
d048b9c2
IW
4776 memzero_page(page, (block_start - page_offset(page)) + offset,
4777 len);
e6dcd2dc 4778 }
55151ea9
QW
4779 btrfs_folio_clear_checked(fs_info, page_folio(page), block_start,
4780 block_end + 1 - block_start);
4781 btrfs_folio_set_dirty(fs_info, page_folio(page), block_start,
4782 block_end + 1 - block_start);
570eb97b 4783 unlock_extent(io_tree, block_start, block_end, &cached_state);
39279cc3 4784
6d4572a9 4785 if (only_release_metadata)
217f42eb 4786 set_extent_bit(&inode->io_tree, block_start, block_end,
1d126800 4787 EXTENT_NORESERVE, NULL);
6d4572a9 4788
89642229 4789out_unlock:
6d4572a9
QW
4790 if (ret) {
4791 if (only_release_metadata)
217f42eb 4792 btrfs_delalloc_release_metadata(inode, blocksize, true);
6d4572a9 4793 else
217f42eb 4794 btrfs_delalloc_release_space(inode, data_reserved,
6d4572a9
QW
4795 block_start, blocksize, true);
4796 }
217f42eb 4797 btrfs_delalloc_release_extents(inode, blocksize);
39279cc3 4798 unlock_page(page);
09cbfeaf 4799 put_page(page);
39279cc3 4800out:
6d4572a9 4801 if (only_release_metadata)
217f42eb 4802 btrfs_check_nocow_unlock(inode);
364ecf36 4803 extent_changeset_free(data_reserved);
39279cc3
CM
4804 return ret;
4805}
4806
0a325e62 4807static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
16e7549f 4808{
0a325e62 4809 struct btrfs_root *root = inode->root;
a4ba6cc0 4810 struct btrfs_fs_info *fs_info = root->fs_info;
16e7549f 4811 struct btrfs_trans_handle *trans;
5893dfb9 4812 struct btrfs_drop_extents_args drop_args = { 0 };
16e7549f
JB
4813 int ret;
4814
4815 /*
cceaa89f
FM
4816 * If NO_HOLES is enabled, we don't need to do anything.
4817 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4818 * or btrfs_update_inode() will be called, which guarantee that the next
4819 * fsync will know this inode was changed and needs to be logged.
16e7549f 4820 */
cceaa89f 4821 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f 4822 return 0;
16e7549f
JB
4823
4824 /*
4825 * 1 - for the one we're dropping
4826 * 1 - for the one we're adding
4827 * 1 - for updating the inode.
4828 */
4829 trans = btrfs_start_transaction(root, 3);
4830 if (IS_ERR(trans))
4831 return PTR_ERR(trans);
4832
5893dfb9
FM
4833 drop_args.start = offset;
4834 drop_args.end = offset + len;
4835 drop_args.drop_cache = true;
4836
a4ba6cc0 4837 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
16e7549f 4838 if (ret) {
66642832 4839 btrfs_abort_transaction(trans, ret);
3a45bb20 4840 btrfs_end_transaction(trans);
16e7549f
JB
4841 return ret;
4842 }
4843
d1f68ba0 4844 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
2766ff61 4845 if (ret) {
66642832 4846 btrfs_abort_transaction(trans, ret);
2766ff61 4847 } else {
a4ba6cc0 4848 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
8b9d0322 4849 btrfs_update_inode(trans, inode);
2766ff61 4850 }
3a45bb20 4851 btrfs_end_transaction(trans);
16e7549f
JB
4852 return ret;
4853}
4854
695a0d0d
JB
4855/*
4856 * This function puts in dummy file extents for the area we're creating a hole
4857 * for. So if we are truncating this file to a larger size we need to insert
4858 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4859 * the range between oldsize and size
4860 */
b06359a3 4861int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
39279cc3 4862{
b06359a3
NB
4863 struct btrfs_root *root = inode->root;
4864 struct btrfs_fs_info *fs_info = root->fs_info;
4865 struct extent_io_tree *io_tree = &inode->io_tree;
a22285a6 4866 struct extent_map *em = NULL;
2ac55d41 4867 struct extent_state *cached_state = NULL;
0b246afa
JM
4868 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4869 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4870 u64 last_byte;
4871 u64 cur_offset;
4872 u64 hole_size;
9ed74f2d 4873 int err = 0;
39279cc3 4874
a71754fc 4875 /*
9703fefe
CR
4876 * If our size started in the middle of a block we need to zero out the
4877 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4878 * expose stale data.
4879 */
b06359a3 4880 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4881 if (err)
4882 return err;
4883
9036c102
YZ
4884 if (size <= hole_start)
4885 return 0;
4886
b06359a3
NB
4887 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4888 &cached_state);
9036c102
YZ
4889 cur_offset = hole_start;
4890 while (1) {
b06359a3 4891 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
39b07b5d 4892 block_end - cur_offset);
79787eaa
JM
4893 if (IS_ERR(em)) {
4894 err = PTR_ERR(em);
f2767956 4895 em = NULL;
79787eaa
JM
4896 break;
4897 }
9036c102 4898 last_byte = min(extent_map_end(em), block_end);
0b246afa 4899 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4900 hole_size = last_byte - cur_offset;
4901
f86f7a75 4902 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5dc562c5 4903 struct extent_map *hole_em;
9ed74f2d 4904
0a325e62 4905 err = maybe_insert_hole(inode, cur_offset, hole_size);
16e7549f 4906 if (err)
3893e33b 4907 break;
9ddc959e 4908
b06359a3 4909 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
4910 cur_offset, hole_size);
4911 if (err)
4912 break;
4913
5dc562c5
JB
4914 hole_em = alloc_extent_map();
4915 if (!hole_em) {
a1ba4c08
FM
4916 btrfs_drop_extent_map_range(inode, cur_offset,
4917 cur_offset + hole_size - 1,
4918 false);
23e3337f 4919 btrfs_set_inode_full_sync(inode);
5dc562c5
JB
4920 goto next;
4921 }
4922 hole_em->start = cur_offset;
4923 hole_em->len = hole_size;
4924 hole_em->orig_start = cur_offset;
8082510e 4925
5dc562c5
JB
4926 hole_em->block_start = EXTENT_MAP_HOLE;
4927 hole_em->block_len = 0;
b4939680 4928 hole_em->orig_block_len = 0;
cc95bef6 4929 hole_em->ram_bytes = hole_size;
4a4f8fe2 4930 hole_em->generation = btrfs_get_fs_generation(fs_info);
8082510e 4931
a1ba4c08 4932 err = btrfs_replace_extent_map_range(inode, hole_em, true);
5dc562c5 4933 free_extent_map(hole_em);
9ddc959e 4934 } else {
b06359a3 4935 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
4936 cur_offset, hole_size);
4937 if (err)
4938 break;
9036c102 4939 }
16e7549f 4940next:
9036c102 4941 free_extent_map(em);
a22285a6 4942 em = NULL;
9036c102 4943 cur_offset = last_byte;
8082510e 4944 if (cur_offset >= block_end)
9036c102
YZ
4945 break;
4946 }
a22285a6 4947 free_extent_map(em);
570eb97b 4948 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4949 return err;
4950}
39279cc3 4951
3972f260 4952static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4953{
f4a2f4c5
MX
4954 struct btrfs_root *root = BTRFS_I(inode)->root;
4955 struct btrfs_trans_handle *trans;
a41ad394 4956 loff_t oldsize = i_size_read(inode);
3972f260
ES
4957 loff_t newsize = attr->ia_size;
4958 int mask = attr->ia_valid;
8082510e
YZ
4959 int ret;
4960
3972f260
ES
4961 /*
4962 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4963 * special case where we need to update the times despite not having
4964 * these flags set. For all other operations the VFS set these flags
4965 * explicitly if it wants a timestamp update.
4966 */
dff6efc3
CH
4967 if (newsize != oldsize) {
4968 inode_inc_iversion(inode);
c1867eb3 4969 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
b1c38a13
JL
4970 inode_set_mtime_to_ts(inode,
4971 inode_set_ctime_current(inode));
c1867eb3 4972 }
dff6efc3 4973 }
3972f260 4974
a41ad394 4975 if (newsize > oldsize) {
9ea24bbe 4976 /*
ea14b57f 4977 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4978 * This is to ensure the snapshot captures a fully consistent
4979 * state of this file - if the snapshot captures this expanding
4980 * truncation, it must capture all writes that happened before
4981 * this truncation.
4982 */
dcc3eb96 4983 btrfs_drew_write_lock(&root->snapshot_lock);
b06359a3 4984 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
9ea24bbe 4985 if (ret) {
dcc3eb96 4986 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4987 return ret;
9ea24bbe 4988 }
8082510e 4989
f4a2f4c5 4990 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4991 if (IS_ERR(trans)) {
dcc3eb96 4992 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4993 return PTR_ERR(trans);
9ea24bbe 4994 }
f4a2f4c5
MX
4995
4996 i_size_write(inode, newsize);
76aea537 4997 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
27772b68 4998 pagecache_isize_extended(inode, oldsize, newsize);
8b9d0322 4999 ret = btrfs_update_inode(trans, BTRFS_I(inode));
dcc3eb96 5000 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 5001 btrfs_end_transaction(trans);
a41ad394 5002 } else {
24c0a722
NA
5003 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5004
5005 if (btrfs_is_zoned(fs_info)) {
5006 ret = btrfs_wait_ordered_range(inode,
5007 ALIGN(newsize, fs_info->sectorsize),
5008 (u64)-1);
5009 if (ret)
5010 return ret;
5011 }
8082510e 5012
a41ad394
JB
5013 /*
5014 * We're truncating a file that used to have good data down to
1fd4033d
NB
5015 * zero. Make sure any new writes to the file get on disk
5016 * on close.
a41ad394
JB
5017 */
5018 if (newsize == 0)
1fd4033d 5019 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
72ac3c0d 5020 &BTRFS_I(inode)->runtime_flags);
8082510e 5021
a41ad394 5022 truncate_setsize(inode, newsize);
2e60a51e 5023
2e60a51e 5024 inode_dio_wait(inode);
2e60a51e 5025
d9dcae67 5026 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
7f4f6e0a
JB
5027 if (ret && inode->i_nlink) {
5028 int err;
5029
5030 /*
f7e9e8fc
OS
5031 * Truncate failed, so fix up the in-memory size. We
5032 * adjusted disk_i_size down as we removed extents, so
5033 * wait for disk_i_size to be stable and then update the
5034 * in-memory size to match.
7f4f6e0a 5035 */
f7e9e8fc 5036 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5037 if (err)
f7e9e8fc
OS
5038 return err;
5039 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5040 }
8082510e
YZ
5041 }
5042
a41ad394 5043 return ret;
8082510e
YZ
5044}
5045
c1632a0f 5046static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
549c7297 5047 struct iattr *attr)
9036c102 5048{
2b0143b5 5049 struct inode *inode = d_inode(dentry);
b83cc969 5050 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5051 int err;
39279cc3 5052
b83cc969
LZ
5053 if (btrfs_root_readonly(root))
5054 return -EROFS;
5055
c1632a0f 5056 err = setattr_prepare(idmap, dentry, attr);
9036c102
YZ
5057 if (err)
5058 return err;
2bf5a725 5059
5a3f23d5 5060 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5061 err = btrfs_setsize(inode, attr);
8082510e
YZ
5062 if (err)
5063 return err;
39279cc3 5064 }
9036c102 5065
1025774c 5066 if (attr->ia_valid) {
c1632a0f 5067 setattr_copy(idmap, inode, attr);
0c4d2d95 5068 inode_inc_iversion(inode);
7152b425 5069 err = btrfs_dirty_inode(BTRFS_I(inode));
1025774c 5070
22c44fe6 5071 if (!err && attr->ia_valid & ATTR_MODE)
13e83a49 5072 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
1025774c 5073 }
33268eaf 5074
39279cc3
CM
5075 return err;
5076}
61295eb8 5077
131e404a 5078/*
895586eb
MWO
5079 * While truncating the inode pages during eviction, we get the VFS
5080 * calling btrfs_invalidate_folio() against each folio of the inode. This
5081 * is slow because the calls to btrfs_invalidate_folio() result in a
570eb97b 5082 * huge amount of calls to lock_extent() and clear_extent_bit(),
895586eb
MWO
5083 * which keep merging and splitting extent_state structures over and over,
5084 * wasting lots of time.
131e404a 5085 *
895586eb
MWO
5086 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5087 * skip all those expensive operations on a per folio basis and do only
5088 * the ordered io finishing, while we release here the extent_map and
5089 * extent_state structures, without the excessive merging and splitting.
131e404a
FDBM
5090 */
5091static void evict_inode_truncate_pages(struct inode *inode)
5092{
5093 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
131e404a
FDBM
5094 struct rb_node *node;
5095
5096 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5097 truncate_inode_pages_final(&inode->i_data);
131e404a 5098
9c9d1b4f 5099 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
131e404a 5100
6ca07097
FM
5101 /*
5102 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
5103 * We can have ongoing bios started by readahead that have
5104 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
5105 * still in progress (unlocked the pages in the bio but did not yet
5106 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5107 * ranges can still be locked and eviction started because before
5108 * submitting those bios, which are executed by a separate task (work
5109 * queue kthread), inode references (inode->i_count) were not taken
5110 * (which would be dropped in the end io callback of each bio).
5111 * Therefore here we effectively end up waiting for those bios and
5112 * anyone else holding locked ranges without having bumped the inode's
5113 * reference count - if we don't do it, when they access the inode's
5114 * io_tree to unlock a range it may be too late, leading to an
5115 * use-after-free issue.
5116 */
131e404a
FDBM
5117 spin_lock(&io_tree->lock);
5118 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5119 struct extent_state *state;
5120 struct extent_state *cached_state = NULL;
6ca07097
FM
5121 u64 start;
5122 u64 end;
421f0922 5123 unsigned state_flags;
131e404a
FDBM
5124
5125 node = rb_first(&io_tree->state);
5126 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5127 start = state->start;
5128 end = state->end;
421f0922 5129 state_flags = state->state;
131e404a
FDBM
5130 spin_unlock(&io_tree->lock);
5131
570eb97b 5132 lock_extent(io_tree, start, end, &cached_state);
b9d0b389
QW
5133
5134 /*
5135 * If still has DELALLOC flag, the extent didn't reach disk,
5136 * and its reserved space won't be freed by delayed_ref.
5137 * So we need to free its reserved space here.
895586eb 5138 * (Refer to comment in btrfs_invalidate_folio, case 2)
b9d0b389
QW
5139 *
5140 * Note, end is the bytenr of last byte, so we need + 1 here.
5141 */
421f0922 5142 if (state_flags & EXTENT_DELALLOC)
8b8a979f 5143 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
9e65bfca 5144 end - start + 1, NULL);
b9d0b389 5145
6ca07097 5146 clear_extent_bit(io_tree, start, end,
bd015294 5147 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
e182163d 5148 &cached_state);
131e404a 5149
7064dd5c 5150 cond_resched();
131e404a
FDBM
5151 spin_lock(&io_tree->lock);
5152 }
5153 spin_unlock(&io_tree->lock);
5154}
5155
4b9d7b59 5156static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5157 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5158{
5159 struct btrfs_fs_info *fs_info = root->fs_info;
d3984c90 5160 struct btrfs_trans_handle *trans;
b13d57db 5161 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
d3984c90 5162 int ret;
4b9d7b59 5163
d3984c90
JB
5164 /*
5165 * Eviction should be taking place at some place safe because of our
5166 * delayed iputs. However the normal flushing code will run delayed
5167 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5168 *
5169 * We reserve the delayed_refs_extra here again because we can't use
5170 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5171 * above. We reserve our extra bit here because we generate a ton of
5172 * delayed refs activity by truncating.
5173 *
ee6adbfd
JB
5174 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5175 * if we fail to make this reservation we can re-try without the
5176 * delayed_refs_extra so we can make some forward progress.
d3984c90 5177 */
9270501c 5178 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
d3984c90
JB
5179 BTRFS_RESERVE_FLUSH_EVICT);
5180 if (ret) {
9270501c 5181 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
ee6adbfd
JB
5182 BTRFS_RESERVE_FLUSH_EVICT);
5183 if (ret) {
d3984c90
JB
5184 btrfs_warn(fs_info,
5185 "could not allocate space for delete; will truncate on mount");
5186 return ERR_PTR(-ENOSPC);
5187 }
5188 delayed_refs_extra = 0;
5189 }
4b9d7b59 5190
d3984c90
JB
5191 trans = btrfs_join_transaction(root);
5192 if (IS_ERR(trans))
5193 return trans;
5194
5195 if (delayed_refs_extra) {
5196 trans->block_rsv = &fs_info->trans_block_rsv;
5197 trans->bytes_reserved = delayed_refs_extra;
5198 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
4e0527de 5199 delayed_refs_extra, true);
4b9d7b59 5200 }
d3984c90 5201 return trans;
4b9d7b59
OS
5202}
5203
bd555975 5204void btrfs_evict_inode(struct inode *inode)
39279cc3 5205{
0b246afa 5206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5207 struct btrfs_trans_handle *trans;
5208 struct btrfs_root *root = BTRFS_I(inode)->root;
b7b1167c 5209 struct btrfs_block_rsv *rsv = NULL;
39279cc3
CM
5210 int ret;
5211
1abe9b8a 5212 trace_btrfs_inode_evict(inode);
5213
3d48d981 5214 if (!root) {
14605409 5215 fsverity_cleanup_inode(inode);
e8f1bc14 5216 clear_inode(inode);
3d48d981
NB
5217 return;
5218 }
5219
131e404a
FDBM
5220 evict_inode_truncate_pages(inode);
5221
69e9c6c6
SB
5222 if (inode->i_nlink &&
5223 ((btrfs_root_refs(&root->root_item) != 0 &&
5224 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5225 btrfs_is_free_space_inode(BTRFS_I(inode))))
b7b1167c 5226 goto out;
bd555975 5227
27919067 5228 if (is_bad_inode(inode))
b7b1167c 5229 goto out;
5f39d397 5230
7b40b695 5231 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
b7b1167c 5232 goto out;
c71bf099 5233
76dda93c 5234 if (inode->i_nlink > 0) {
69e9c6c6
SB
5235 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5236 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
b7b1167c 5237 goto out;
76dda93c
YZ
5238 }
5239
2adc75d6
JB
5240 /*
5241 * This makes sure the inode item in tree is uptodate and the space for
5242 * the inode update is released.
5243 */
aa79021f 5244 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5245 if (ret)
b7b1167c 5246 goto out;
0e8c36a9 5247
2adc75d6
JB
5248 /*
5249 * This drops any pending insert or delete operations we have for this
5250 * inode. We could have a delayed dir index deletion queued up, but
5251 * we're removing the inode completely so that'll be taken care of in
5252 * the truncate.
5253 */
5254 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5255
2ff7e61e 5256 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5257 if (!rsv)
b7b1167c 5258 goto out;
2bd36e7b 5259 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
710d5921 5260 rsv->failfast = true;
4289a667 5261
6ef06d27 5262 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5263
8082510e 5264 while (1) {
d9ac19c3 5265 struct btrfs_truncate_control control = {
71d18b53 5266 .inode = BTRFS_I(inode),
487e81d2 5267 .ino = btrfs_ino(BTRFS_I(inode)),
d9ac19c3
JB
5268 .new_size = 0,
5269 .min_type = 0,
5270 };
5271
ad80cf50 5272 trans = evict_refill_and_join(root, rsv);
27919067 5273 if (IS_ERR(trans))
b7b1167c 5274 goto out;
7b128766 5275
4289a667
JB
5276 trans->block_rsv = rsv;
5277
71d18b53 5278 ret = btrfs_truncate_inode_items(trans, root, &control);
27919067
OS
5279 trans->block_rsv = &fs_info->trans_block_rsv;
5280 btrfs_end_transaction(trans);
afa4b0af
FM
5281 /*
5282 * We have not added new delayed items for our inode after we
5283 * have flushed its delayed items, so no need to throttle on
5284 * delayed items. However we have modified extent buffers.
5285 */
5286 btrfs_btree_balance_dirty_nodelay(fs_info);
27919067 5287 if (ret && ret != -ENOSPC && ret != -EAGAIN)
b7b1167c 5288 goto out;
27919067 5289 else if (!ret)
8082510e 5290 break;
8082510e 5291 }
5f39d397 5292
4ef31a45 5293 /*
27919067
OS
5294 * Errors here aren't a big deal, it just means we leave orphan items in
5295 * the tree. They will be cleaned up on the next mount. If the inode
5296 * number gets reused, cleanup deletes the orphan item without doing
5297 * anything, and unlink reuses the existing orphan item.
5298 *
5299 * If it turns out that we are dropping too many of these, we might want
5300 * to add a mechanism for retrying these after a commit.
4ef31a45 5301 */
ad80cf50 5302 trans = evict_refill_and_join(root, rsv);
27919067
OS
5303 if (!IS_ERR(trans)) {
5304 trans->block_rsv = rsv;
5305 btrfs_orphan_del(trans, BTRFS_I(inode));
5306 trans->block_rsv = &fs_info->trans_block_rsv;
5307 btrfs_end_transaction(trans);
5308 }
54aa1f4d 5309
b7b1167c 5310out:
27919067 5311 btrfs_free_block_rsv(fs_info, rsv);
27919067
OS
5312 /*
5313 * If we didn't successfully delete, the orphan item will still be in
5314 * the tree and we'll retry on the next mount. Again, we might also want
5315 * to retry these periodically in the future.
5316 */
f48d1cf5 5317 btrfs_remove_delayed_node(BTRFS_I(inode));
14605409 5318 fsverity_cleanup_inode(inode);
dbd5768f 5319 clear_inode(inode);
39279cc3
CM
5320}
5321
5322/*
6bf9e4bd
QW
5323 * Return the key found in the dir entry in the location pointer, fill @type
5324 * with BTRFS_FT_*, and return 0.
5325 *
005d6712
SY
5326 * If no dir entries were found, returns -ENOENT.
5327 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3 5328 */
d1de429b 5329static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
6bf9e4bd 5330 struct btrfs_key *location, u8 *type)
39279cc3 5331{
39279cc3
CM
5332 struct btrfs_dir_item *di;
5333 struct btrfs_path *path;
d1de429b 5334 struct btrfs_root *root = dir->root;
0d9f7f3e 5335 int ret = 0;
ab3c5c18 5336 struct fscrypt_name fname;
39279cc3
CM
5337
5338 path = btrfs_alloc_path();
d8926bb3
MF
5339 if (!path)
5340 return -ENOMEM;
3954401f 5341
d1de429b 5342 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
10a8857a 5343 if (ret < 0)
ab3c5c18 5344 goto out;
10a8857a
STD
5345 /*
5346 * fscrypt_setup_filename() should never return a positive value, but
5347 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5348 */
5349 ASSERT(ret == 0);
ab3c5c18 5350
ab3c5c18
STD
5351 /* This needs to handle no-key deletions later on */
5352
d1de429b 5353 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
6db75318 5354 &fname.disk_name, 0);
3cf5068f
LB
5355 if (IS_ERR_OR_NULL(di)) {
5356 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5357 goto out;
5358 }
d397712b 5359
5f39d397 5360 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5361 if (location->type != BTRFS_INODE_ITEM_KEY &&
5362 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5363 ret = -EUCLEAN;
56a0e706
LB
5364 btrfs_warn(root->fs_info,
5365"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
d1de429b 5366 __func__, fname.disk_name.name, btrfs_ino(dir),
56a0e706 5367 location->objectid, location->type, location->offset);
56a0e706 5368 }
6bf9e4bd 5369 if (!ret)
94a48aef 5370 *type = btrfs_dir_ftype(path->nodes[0], di);
39279cc3 5371out:
ab3c5c18 5372 fscrypt_free_filename(&fname);
39279cc3
CM
5373 btrfs_free_path(path);
5374 return ret;
5375}
5376
5377/*
5378 * when we hit a tree root in a directory, the btrfs part of the inode
5379 * needs to be changed to reflect the root directory of the tree root. This
5380 * is kind of like crossing a mount point.
5381 */
2ff7e61e 5382static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
3c1b1c4c 5383 struct btrfs_inode *dir,
4df27c4d
YZ
5384 struct dentry *dentry,
5385 struct btrfs_key *location,
5386 struct btrfs_root **sub_root)
39279cc3 5387{
4df27c4d
YZ
5388 struct btrfs_path *path;
5389 struct btrfs_root *new_root;
5390 struct btrfs_root_ref *ref;
5391 struct extent_buffer *leaf;
1d4c08e0 5392 struct btrfs_key key;
4df27c4d
YZ
5393 int ret;
5394 int err = 0;
ab3c5c18 5395 struct fscrypt_name fname;
ab3c5c18 5396
3c1b1c4c 5397 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
ab3c5c18
STD
5398 if (ret)
5399 return ret;
39279cc3 5400
4df27c4d
YZ
5401 path = btrfs_alloc_path();
5402 if (!path) {
5403 err = -ENOMEM;
5404 goto out;
5405 }
39279cc3 5406
4df27c4d 5407 err = -ENOENT;
3c1b1c4c 5408 key.objectid = dir->root->root_key.objectid;
1d4c08e0
DS
5409 key.type = BTRFS_ROOT_REF_KEY;
5410 key.offset = location->objectid;
5411
0b246afa 5412 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5413 if (ret) {
5414 if (ret < 0)
5415 err = ret;
5416 goto out;
5417 }
39279cc3 5418
4df27c4d
YZ
5419 leaf = path->nodes[0];
5420 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3c1b1c4c 5421 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
6db75318 5422 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
4df27c4d 5423 goto out;
39279cc3 5424
6db75318
STD
5425 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5426 (unsigned long)(ref + 1), fname.disk_name.len);
4df27c4d
YZ
5427 if (ret)
5428 goto out;
5429
b3b4aa74 5430 btrfs_release_path(path);
4df27c4d 5431
56e9357a 5432 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5433 if (IS_ERR(new_root)) {
5434 err = PTR_ERR(new_root);
5435 goto out;
5436 }
5437
4df27c4d
YZ
5438 *sub_root = new_root;
5439 location->objectid = btrfs_root_dirid(&new_root->root_item);
5440 location->type = BTRFS_INODE_ITEM_KEY;
5441 location->offset = 0;
5442 err = 0;
5443out:
5444 btrfs_free_path(path);
ab3c5c18 5445 fscrypt_free_filename(&fname);
4df27c4d 5446 return err;
39279cc3
CM
5447}
5448
4c45a4f4 5449static void inode_tree_add(struct btrfs_inode *inode)
5d4f98a2 5450{
4c45a4f4 5451 struct btrfs_root *root = inode->root;
5d4f98a2 5452 struct btrfs_inode *entry;
03e860bd
NP
5453 struct rb_node **p;
5454 struct rb_node *parent;
4c45a4f4
DS
5455 struct rb_node *new = &inode->rb_node;
5456 u64 ino = btrfs_ino(inode);
5d4f98a2 5457
4c45a4f4 5458 if (inode_unhashed(&inode->vfs_inode))
76dda93c 5459 return;
e1409cef 5460 parent = NULL;
5d4f98a2 5461 spin_lock(&root->inode_lock);
e1409cef 5462 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5463 while (*p) {
5464 parent = *p;
5465 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5466
37508515 5467 if (ino < btrfs_ino(entry))
03e860bd 5468 p = &parent->rb_left;
37508515 5469 else if (ino > btrfs_ino(entry))
03e860bd 5470 p = &parent->rb_right;
5d4f98a2
YZ
5471 else {
5472 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5473 (I_WILL_FREE | I_FREEING)));
cef21937 5474 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5475 RB_CLEAR_NODE(parent);
5476 spin_unlock(&root->inode_lock);
cef21937 5477 return;
5d4f98a2
YZ
5478 }
5479 }
cef21937
FDBM
5480 rb_link_node(new, parent, p);
5481 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5482 spin_unlock(&root->inode_lock);
5483}
5484
b79b7249 5485static void inode_tree_del(struct btrfs_inode *inode)
5d4f98a2 5486{
b79b7249 5487 struct btrfs_root *root = inode->root;
76dda93c 5488 int empty = 0;
5d4f98a2 5489
03e860bd 5490 spin_lock(&root->inode_lock);
b79b7249
NB
5491 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5492 rb_erase(&inode->rb_node, &root->inode_tree);
5493 RB_CLEAR_NODE(&inode->rb_node);
76dda93c 5494 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5495 }
03e860bd 5496 spin_unlock(&root->inode_lock);
76dda93c 5497
69e9c6c6 5498 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5499 spin_lock(&root->inode_lock);
5500 empty = RB_EMPTY_ROOT(&root->inode_tree);
5501 spin_unlock(&root->inode_lock);
5502 if (empty)
5503 btrfs_add_dead_root(root);
5504 }
5505}
5506
5d4f98a2 5507
e02119d5
CM
5508static int btrfs_init_locked_inode(struct inode *inode, void *p)
5509{
5510 struct btrfs_iget_args *args = p;
0202e83f
DS
5511
5512 inode->i_ino = args->ino;
5513 BTRFS_I(inode)->location.objectid = args->ino;
5514 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5515 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5516 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5517 BUG_ON(args->root && !BTRFS_I(inode)->root);
9b9b8854
JB
5518
5519 if (args->root && args->root == args->root->fs_info->tree_root &&
5520 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5521 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5522 &BTRFS_I(inode)->runtime_flags);
39279cc3
CM
5523 return 0;
5524}
5525
5526static int btrfs_find_actor(struct inode *inode, void *opaque)
5527{
5528 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5529
5530 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5531 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5532}
5533
0202e83f 5534static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5535 struct btrfs_root *root)
39279cc3
CM
5536{
5537 struct inode *inode;
5538 struct btrfs_iget_args args;
0202e83f 5539 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5540
0202e83f 5541 args.ino = ino;
39279cc3
CM
5542 args.root = root;
5543
778ba82b 5544 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5545 btrfs_init_locked_inode,
5546 (void *)&args);
5547 return inode;
5548}
5549
4c66e0d4 5550/*
0202e83f 5551 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5552 * Path can be preallocated to prevent recursing back to iget through
5553 * allocator. NULL is also valid but may require an additional allocation
5554 * later.
1a54ef8c 5555 */
0202e83f 5556struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5557 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5558{
5559 struct inode *inode;
5560
0202e83f 5561 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5562 if (!inode)
5d4f98a2 5563 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5564
5565 if (inode->i_state & I_NEW) {
67710892
FM
5566 int ret;
5567
4222ea71 5568 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5569 if (!ret) {
4c45a4f4 5570 inode_tree_add(BTRFS_I(inode));
1748f843 5571 unlock_new_inode(inode);
1748f843 5572 } else {
f5b3a417
AV
5573 iget_failed(inode);
5574 /*
5575 * ret > 0 can come from btrfs_search_slot called by
5576 * btrfs_read_locked_inode, this means the inode item
5577 * was not found.
5578 */
5579 if (ret > 0)
5580 ret = -ENOENT;
5581 inode = ERR_PTR(ret);
1748f843
MF
5582 }
5583 }
5584
1a54ef8c
BR
5585 return inode;
5586}
5587
0202e83f 5588struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5589{
0202e83f 5590 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5591}
5592
94628ad9 5593static struct inode *new_simple_dir(struct inode *dir,
4df27c4d
YZ
5594 struct btrfs_key *key,
5595 struct btrfs_root *root)
5596{
d5acbc60 5597 struct timespec64 ts;
94628ad9 5598 struct inode *inode = new_inode(dir->i_sb);
4df27c4d
YZ
5599
5600 if (!inode)
5601 return ERR_PTR(-ENOMEM);
5602
5c8fd99f 5603 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5604 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5605 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5606
5607 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5608 /*
5609 * We only need lookup, the rest is read-only and there's no inode
5610 * associated with the dentry
5611 */
5612 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5613 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5614 inode->i_fop = &simple_dir_operations;
5615 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
d5acbc60
LT
5616
5617 ts = inode_set_ctime_current(inode);
5618 inode_set_mtime_to_ts(inode, ts);
b1c38a13 5619 inode_set_atime_to_ts(inode, inode_get_atime(dir));
d5acbc60
LT
5620 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5621 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5622
94628ad9
LT
5623 inode->i_uid = dir->i_uid;
5624 inode->i_gid = dir->i_gid;
4df27c4d
YZ
5625
5626 return inode;
5627}
5628
a55e65b8
DS
5629static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5630static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5631static_assert(BTRFS_FT_DIR == FT_DIR);
5632static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5633static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5634static_assert(BTRFS_FT_FIFO == FT_FIFO);
5635static_assert(BTRFS_FT_SOCK == FT_SOCK);
5636static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5637
6bf9e4bd
QW
5638static inline u8 btrfs_inode_type(struct inode *inode)
5639{
6bf9e4bd
QW
5640 return fs_umode_to_ftype(inode->i_mode);
5641}
5642
3de4586c 5643struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5644{
0b246afa 5645 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5646 struct inode *inode;
4df27c4d 5647 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5648 struct btrfs_root *sub_root = root;
5649 struct btrfs_key location;
6bf9e4bd 5650 u8 di_type = 0;
b4aff1f8 5651 int ret = 0;
39279cc3
CM
5652
5653 if (dentry->d_name.len > BTRFS_NAME_LEN)
5654 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5655
d1de429b 5656 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
39279cc3
CM
5657 if (ret < 0)
5658 return ERR_PTR(ret);
5f39d397 5659
4df27c4d 5660 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5661 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5662 if (IS_ERR(inode))
5663 return inode;
5664
5665 /* Do extra check against inode mode with di_type */
5666 if (btrfs_inode_type(inode) != di_type) {
5667 btrfs_crit(fs_info,
5668"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5669 inode->i_mode, btrfs_inode_type(inode),
5670 di_type);
5671 iput(inode);
5672 return ERR_PTR(-EUCLEAN);
5673 }
4df27c4d
YZ
5674 return inode;
5675 }
5676
3c1b1c4c 5677 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
4df27c4d
YZ
5678 &location, &sub_root);
5679 if (ret < 0) {
5680 if (ret != -ENOENT)
5681 inode = ERR_PTR(ret);
5682 else
94628ad9 5683 inode = new_simple_dir(dir, &location, root);
4df27c4d 5684 } else {
0202e83f 5685 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
00246528 5686 btrfs_put_root(sub_root);
76dda93c 5687
fc8b235f
NB
5688 if (IS_ERR(inode))
5689 return inode;
5690
0b246afa 5691 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5692 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5693 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5694 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5695 if (ret) {
5696 iput(inode);
66b4ffd1 5697 inode = ERR_PTR(ret);
01cd3367 5698 }
c71bf099
YZ
5699 }
5700
3de4586c
CM
5701 return inode;
5702}
5703
fe15ce44 5704static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5705{
5706 struct btrfs_root *root;
2b0143b5 5707 struct inode *inode = d_inode(dentry);
76dda93c 5708
848cce0d 5709 if (!inode && !IS_ROOT(dentry))
2b0143b5 5710 inode = d_inode(dentry->d_parent);
76dda93c 5711
848cce0d
LZ
5712 if (inode) {
5713 root = BTRFS_I(inode)->root;
efefb143
YZ
5714 if (btrfs_root_refs(&root->root_item) == 0)
5715 return 1;
848cce0d 5716
4a0cc7ca 5717 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5718 return 1;
efefb143 5719 }
76dda93c
YZ
5720 return 0;
5721}
5722
3de4586c 5723static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5724 unsigned int flags)
3de4586c 5725{
3837d208 5726 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5727
3837d208
AV
5728 if (inode == ERR_PTR(-ENOENT))
5729 inode = NULL;
41d28bca 5730 return d_splice_alias(inode, dentry);
39279cc3
CM
5731}
5732
9b378f6a
FM
5733/*
5734 * Find the highest existing sequence number in a directory and then set the
5735 * in-memory index_cnt variable to the first free sequence number.
5736 */
5737static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5738{
5739 struct btrfs_root *root = inode->root;
5740 struct btrfs_key key, found_key;
5741 struct btrfs_path *path;
5742 struct extent_buffer *leaf;
5743 int ret;
5744
5745 key.objectid = btrfs_ino(inode);
5746 key.type = BTRFS_DIR_INDEX_KEY;
5747 key.offset = (u64)-1;
5748
5749 path = btrfs_alloc_path();
5750 if (!path)
5751 return -ENOMEM;
5752
5753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5754 if (ret < 0)
5755 goto out;
5756 /* FIXME: we should be able to handle this */
5757 if (ret == 0)
5758 goto out;
5759 ret = 0;
5760
5761 if (path->slots[0] == 0) {
5762 inode->index_cnt = BTRFS_DIR_START_INDEX;
5763 goto out;
5764 }
5765
5766 path->slots[0]--;
5767
5768 leaf = path->nodes[0];
5769 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5770
5771 if (found_key.objectid != btrfs_ino(inode) ||
5772 found_key.type != BTRFS_DIR_INDEX_KEY) {
5773 inode->index_cnt = BTRFS_DIR_START_INDEX;
5774 goto out;
5775 }
5776
5777 inode->index_cnt = found_key.offset + 1;
5778out:
5779 btrfs_free_path(path);
5780 return ret;
5781}
5782
5783static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5784{
8e7f82de 5785 int ret = 0;
9b378f6a 5786
8e7f82de
FM
5787 btrfs_inode_lock(dir, 0);
5788 if (dir->index_cnt == (u64)-1) {
9b378f6a
FM
5789 ret = btrfs_inode_delayed_dir_index_count(dir);
5790 if (ret) {
5791 ret = btrfs_set_inode_index_count(dir);
5792 if (ret)
8e7f82de 5793 goto out;
9b378f6a
FM
5794 }
5795 }
5796
35795036
FM
5797 /* index_cnt is the index number of next new entry, so decrement it. */
5798 *index = dir->index_cnt - 1;
8e7f82de
FM
5799out:
5800 btrfs_inode_unlock(dir, 0);
9b378f6a 5801
8e7f82de 5802 return ret;
9b378f6a
FM
5803}
5804
23b5ec74
JB
5805/*
5806 * All this infrastructure exists because dir_emit can fault, and we are holding
5807 * the tree lock when doing readdir. For now just allocate a buffer and copy
5808 * our information into that, and then dir_emit from the buffer. This is
5809 * similar to what NFS does, only we don't keep the buffer around in pagecache
5810 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5811 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5812 * tree lock.
5813 */
5814static int btrfs_opendir(struct inode *inode, struct file *file)
5815{
5816 struct btrfs_file_private *private;
9b378f6a
FM
5817 u64 last_index;
5818 int ret;
5819
5820 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5821 if (ret)
5822 return ret;
23b5ec74
JB
5823
5824 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5825 if (!private)
5826 return -ENOMEM;
9b378f6a 5827 private->last_index = last_index;
23b5ec74
JB
5828 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5829 if (!private->filldir_buf) {
5830 kfree(private);
5831 return -ENOMEM;
5832 }
5833 file->private_data = private;
5834 return 0;
5835}
5836
e60aa5da
FM
5837static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5838{
5839 struct btrfs_file_private *private = file->private_data;
5840 int ret;
5841
5842 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5843 &private->last_index);
5844 if (ret)
5845 return ret;
5846
5847 return generic_file_llseek(file, offset, whence);
5848}
5849
23b5ec74
JB
5850struct dir_entry {
5851 u64 ino;
5852 u64 offset;
5853 unsigned type;
5854 int name_len;
5855};
5856
5857static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5858{
5859 while (entries--) {
5860 struct dir_entry *entry = addr;
5861 char *name = (char *)(entry + 1);
5862
92d32170
DS
5863 ctx->pos = get_unaligned(&entry->offset);
5864 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5865 get_unaligned(&entry->ino),
5866 get_unaligned(&entry->type)))
23b5ec74 5867 return 1;
92d32170
DS
5868 addr += sizeof(struct dir_entry) +
5869 get_unaligned(&entry->name_len);
23b5ec74
JB
5870 ctx->pos++;
5871 }
5872 return 0;
5873}
5874
9cdda8d3 5875static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5876{
9cdda8d3 5877 struct inode *inode = file_inode(file);
39279cc3 5878 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5879 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5880 struct btrfs_dir_item *di;
5881 struct btrfs_key key;
5f39d397 5882 struct btrfs_key found_key;
39279cc3 5883 struct btrfs_path *path;
23b5ec74 5884 void *addr;
84af994b
RJ
5885 LIST_HEAD(ins_list);
5886 LIST_HEAD(del_list);
39279cc3 5887 int ret;
5f39d397
CM
5888 char *name_ptr;
5889 int name_len;
23b5ec74
JB
5890 int entries = 0;
5891 int total_len = 0;
02dbfc99 5892 bool put = false;
c2951f32 5893 struct btrfs_key location;
5f39d397 5894
9cdda8d3
AV
5895 if (!dir_emit_dots(file, ctx))
5896 return 0;
5897
49593bfa 5898 path = btrfs_alloc_path();
16cdcec7
MX
5899 if (!path)
5900 return -ENOMEM;
ff5714cc 5901
23b5ec74 5902 addr = private->filldir_buf;
e4058b54 5903 path->reada = READA_FORWARD;
49593bfa 5904
9b378f6a
FM
5905 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5906 &ins_list, &del_list);
16cdcec7 5907
23b5ec74 5908again:
c2951f32 5909 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5910 key.offset = ctx->pos;
4a0cc7ca 5911 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5912
a8ce68fd 5913 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
23b5ec74 5914 struct dir_entry *entry;
a8ce68fd 5915 struct extent_buffer *leaf = path->nodes[0];
94a48aef 5916 u8 ftype;
5f39d397
CM
5917
5918 if (found_key.objectid != key.objectid)
39279cc3 5919 break;
c2951f32 5920 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5921 break;
9cdda8d3 5922 if (found_key.offset < ctx->pos)
a8ce68fd 5923 continue;
9b378f6a
FM
5924 if (found_key.offset > private->last_index)
5925 break;
c2951f32 5926 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
a8ce68fd
GN
5927 continue;
5928 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
c2951f32 5929 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5930 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5931 PAGE_SIZE) {
5932 btrfs_release_path(path);
5933 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5934 if (ret)
5935 goto nopos;
5936 addr = private->filldir_buf;
5937 entries = 0;
5938 total_len = 0;
5939 goto again;
c2951f32 5940 }
23b5ec74 5941
94a48aef 5942 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
23b5ec74 5943 entry = addr;
23b5ec74 5944 name_ptr = (char *)(entry + 1);
94a48aef
OS
5945 read_extent_buffer(leaf, name_ptr,
5946 (unsigned long)(di + 1), name_len);
5947 put_unaligned(name_len, &entry->name_len);
5948 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
c2951f32 5949 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5950 put_unaligned(location.objectid, &entry->ino);
5951 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5952 entries++;
5953 addr += sizeof(struct dir_entry) + name_len;
5954 total_len += sizeof(struct dir_entry) + name_len;
39279cc3 5955 }
a8ce68fd
GN
5956 /* Catch error encountered during iteration */
5957 if (ret < 0)
5958 goto err;
5959
23b5ec74
JB
5960 btrfs_release_path(path);
5961
5962 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5963 if (ret)
5964 goto nopos;
49593bfa 5965
d2fbb2b5 5966 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5967 if (ret)
bc4ef759
DS
5968 goto nopos;
5969
db62efbb
ZB
5970 /*
5971 * Stop new entries from being returned after we return the last
5972 * entry.
5973 *
5974 * New directory entries are assigned a strictly increasing
5975 * offset. This means that new entries created during readdir
5976 * are *guaranteed* to be seen in the future by that readdir.
5977 * This has broken buggy programs which operate on names as
5978 * they're returned by readdir. Until we re-use freed offsets
5979 * we have this hack to stop new entries from being returned
5980 * under the assumption that they'll never reach this huge
5981 * offset.
5982 *
5983 * This is being careful not to overflow 32bit loff_t unless the
5984 * last entry requires it because doing so has broken 32bit apps
5985 * in the past.
5986 */
c2951f32
JM
5987 if (ctx->pos >= INT_MAX)
5988 ctx->pos = LLONG_MAX;
5989 else
5990 ctx->pos = INT_MAX;
39279cc3
CM
5991nopos:
5992 ret = 0;
5993err:
02dbfc99
OS
5994 if (put)
5995 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5996 btrfs_free_path(path);
39279cc3
CM
5997 return ret;
5998}
5999
39279cc3 6000/*
54aa1f4d 6001 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6002 * inode changes. But, it is most likely to find the inode in cache.
6003 * FIXME, needs more benchmarking...there are no reasons other than performance
6004 * to keep or drop this code.
6005 */
7152b425 6006static int btrfs_dirty_inode(struct btrfs_inode *inode)
39279cc3 6007{
7152b425
DS
6008 struct btrfs_root *root = inode->root;
6009 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6010 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6011 int ret;
6012
7152b425 6013 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
22c44fe6 6014 return 0;
39279cc3 6015
7a7eaa40 6016 trans = btrfs_join_transaction(root);
22c44fe6
JB
6017 if (IS_ERR(trans))
6018 return PTR_ERR(trans);
8929ecfa 6019
8b9d0322 6020 ret = btrfs_update_inode(trans, inode);
2199cb0f 6021 if (ret == -ENOSPC || ret == -EDQUOT) {
94b60442 6022 /* whoops, lets try again with the full transaction */
3a45bb20 6023 btrfs_end_transaction(trans);
94b60442 6024 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6025 if (IS_ERR(trans))
6026 return PTR_ERR(trans);
8929ecfa 6027
8b9d0322 6028 ret = btrfs_update_inode(trans, inode);
94b60442 6029 }
3a45bb20 6030 btrfs_end_transaction(trans);
7152b425 6031 if (inode->delayed_node)
2ff7e61e 6032 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6033
6034 return ret;
6035}
6036
6037/*
6038 * This is a copy of file_update_time. We need this so we can return error on
6039 * ENOSPC for updating the inode in the case of file write and mmap writes.
6040 */
913e9928 6041static int btrfs_update_time(struct inode *inode, int flags)
22c44fe6 6042{
2bc55652 6043 struct btrfs_root *root = BTRFS_I(inode)->root;
a666ce9b 6044 bool dirty;
2bc55652
AB
6045
6046 if (btrfs_root_readonly(root))
6047 return -EROFS;
6048
bb7cc0a6 6049 dirty = inode_update_timestamps(inode, flags);
7152b425 6050 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
39279cc3
CM
6051}
6052
d352ac68
CM
6053/*
6054 * helper to find a free sequence number in a given directory. This current
6055 * code is very simple, later versions will do smarter things in the btree
6056 */
877574e2 6057int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6058{
6059 int ret = 0;
6060
877574e2
NB
6061 if (dir->index_cnt == (u64)-1) {
6062 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6063 if (ret) {
6064 ret = btrfs_set_inode_index_count(dir);
6065 if (ret)
6066 return ret;
6067 }
aec7477b
JB
6068 }
6069
877574e2
NB
6070 *index = dir->index_cnt;
6071 dir->index_cnt++;
aec7477b
JB
6072
6073 return ret;
6074}
6075
b0d5d10f
CM
6076static int btrfs_insert_inode_locked(struct inode *inode)
6077{
6078 struct btrfs_iget_args args;
0202e83f
DS
6079
6080 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
6081 args.root = BTRFS_I(inode)->root;
6082
6083 return insert_inode_locked4(inode,
6084 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6085 btrfs_find_actor, &args);
6086}
6087
3538d68d
OS
6088int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6089 unsigned int *trans_num_items)
6090{
6091 struct inode *dir = args->dir;
6092 struct inode *inode = args->inode;
6093 int ret;
6094
ab3c5c18
STD
6095 if (!args->orphan) {
6096 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6097 &args->fname);
6098 if (ret)
6099 return ret;
ab3c5c18
STD
6100 }
6101
3538d68d 6102 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
ab3c5c18
STD
6103 if (ret) {
6104 fscrypt_free_filename(&args->fname);
3538d68d 6105 return ret;
ab3c5c18 6106 }
3538d68d
OS
6107
6108 /* 1 to add inode item */
6109 *trans_num_items = 1;
6110 /* 1 to add compression property */
6111 if (BTRFS_I(dir)->prop_compress)
6112 (*trans_num_items)++;
6113 /* 1 to add default ACL xattr */
6114 if (args->default_acl)
6115 (*trans_num_items)++;
6116 /* 1 to add access ACL xattr */
6117 if (args->acl)
6118 (*trans_num_items)++;
6119#ifdef CONFIG_SECURITY
6120 /* 1 to add LSM xattr */
6121 if (dir->i_security)
6122 (*trans_num_items)++;
6123#endif
6124 if (args->orphan) {
6125 /* 1 to add orphan item */
6126 (*trans_num_items)++;
6127 } else {
6128 /*
3538d68d
OS
6129 * 1 to add dir item
6130 * 1 to add dir index
6131 * 1 to update parent inode item
97bdf1a9
FM
6132 *
6133 * No need for 1 unit for the inode ref item because it is
6134 * inserted in a batch together with the inode item at
6135 * btrfs_create_new_inode().
3538d68d 6136 */
97bdf1a9 6137 *trans_num_items += 3;
3538d68d
OS
6138 }
6139 return 0;
6140}
6141
6142void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6143{
6144 posix_acl_release(args->acl);
6145 posix_acl_release(args->default_acl);
ab3c5c18 6146 fscrypt_free_filename(&args->fname);
3538d68d
OS
6147}
6148
19aee8de
AJ
6149/*
6150 * Inherit flags from the parent inode.
6151 *
6152 * Currently only the compression flags and the cow flags are inherited.
6153 */
7a0443f0 6154static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
19aee8de
AJ
6155{
6156 unsigned int flags;
6157
7a0443f0 6158 flags = dir->flags;
19aee8de
AJ
6159
6160 if (flags & BTRFS_INODE_NOCOMPRESS) {
7a0443f0
DS
6161 inode->flags &= ~BTRFS_INODE_COMPRESS;
6162 inode->flags |= BTRFS_INODE_NOCOMPRESS;
19aee8de 6163 } else if (flags & BTRFS_INODE_COMPRESS) {
7a0443f0
DS
6164 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6165 inode->flags |= BTRFS_INODE_COMPRESS;
19aee8de
AJ
6166 }
6167
6168 if (flags & BTRFS_INODE_NODATACOW) {
7a0443f0
DS
6169 inode->flags |= BTRFS_INODE_NODATACOW;
6170 if (S_ISREG(inode->vfs_inode.i_mode))
6171 inode->flags |= BTRFS_INODE_NODATASUM;
19aee8de
AJ
6172 }
6173
7a0443f0 6174 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
19aee8de
AJ
6175}
6176
3538d68d 6177int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
caae78e0 6178 struct btrfs_new_inode_args *args)
39279cc3 6179{
d5acbc60 6180 struct timespec64 ts;
caae78e0 6181 struct inode *dir = args->dir;
3538d68d 6182 struct inode *inode = args->inode;
6db75318 6183 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
caae78e0 6184 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
3538d68d 6185 struct btrfs_root *root;
5f39d397 6186 struct btrfs_inode_item *inode_item;
39279cc3 6187 struct btrfs_key *location;
5f39d397 6188 struct btrfs_path *path;
6437d458 6189 u64 objectid;
9c58309d
CM
6190 struct btrfs_inode_ref *ref;
6191 struct btrfs_key key[2];
6192 u32 sizes[2];
b7ef5f3a 6193 struct btrfs_item_batch batch;
9c58309d 6194 unsigned long ptr;
39279cc3 6195 int ret;
39279cc3 6196
5f39d397 6197 path = btrfs_alloc_path();
d8926bb3 6198 if (!path)
a1fd0c35 6199 return -ENOMEM;
39279cc3 6200
3538d68d
OS
6201 if (!args->subvol)
6202 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6203 root = BTRFS_I(inode)->root;
6204
6437d458 6205 ret = btrfs_get_free_objectid(root, &objectid);
caae78e0
OS
6206 if (ret)
6207 goto out;
581bb050
LZ
6208 inode->i_ino = objectid;
6209
caae78e0
OS
6210 if (args->orphan) {
6211 /*
6212 * O_TMPFILE, set link count to 0, so that after this point, we
6213 * fill in an inode item with the correct link count.
6214 */
6215 set_nlink(inode, 0);
6216 } else {
1abe9b8a 6217 trace_btrfs_inode_request(dir);
6218
caae78e0
OS
6219 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6220 if (ret)
6221 goto out;
aec7477b 6222 }
49024388
FM
6223 /* index_cnt is ignored for everything but a dir. */
6224 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
e02119d5 6225 BTRFS_I(inode)->generation = trans->transid;
76195853 6226 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6227
ed9b50a1
JB
6228 /*
6229 * We don't have any capability xattrs set here yet, shortcut any
6230 * queries for the xattrs here. If we add them later via the inode
6231 * security init path or any other path this flag will be cleared.
6232 */
6233 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6234
caae78e0
OS
6235 /*
6236 * Subvolumes don't inherit flags from their parent directory.
6237 * Originally this was probably by accident, but we probably can't
6238 * change it now without compatibility issues.
6239 */
6240 if (!args->subvol)
7a0443f0 6241 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
305eaac0 6242
a1fd0c35 6243 if (S_ISREG(inode->i_mode)) {
305eaac0
OS
6244 if (btrfs_test_opt(fs_info, NODATASUM))
6245 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6246 if (btrfs_test_opt(fs_info, NODATACOW))
6247 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6248 BTRFS_INODE_NODATASUM;
6249 }
6250
caae78e0
OS
6251 location = &BTRFS_I(inode)->location;
6252 location->objectid = objectid;
6253 location->offset = 0;
6254 location->type = BTRFS_INODE_ITEM_KEY;
6255
6256 ret = btrfs_insert_inode_locked(inode);
6257 if (ret < 0) {
6258 if (!args->orphan)
6259 BTRFS_I(dir)->index_cnt--;
6260 goto out;
6261 }
6262
5dc562c5
JB
6263 /*
6264 * We could have gotten an inode number from somebody who was fsynced
6265 * and then removed in this same transaction, so let's just set full
6266 * sync since it will be a full sync anyway and this will blow away the
6267 * old info in the log.
6268 */
23e3337f 6269 btrfs_set_inode_full_sync(BTRFS_I(inode));
5dc562c5 6270
9c58309d 6271 key[0].objectid = objectid;
962a298f 6272 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6273 key[0].offset = 0;
6274
9c58309d 6275 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5 6276
caae78e0 6277 if (!args->orphan) {
ef3b9af5
FM
6278 /*
6279 * Start new inodes with an inode_ref. This is slightly more
6280 * efficient for small numbers of hard links since they will
6281 * be packed into one item. Extended refs will kick in if we
6282 * add more hard links than can fit in the ref item.
6283 */
6284 key[1].objectid = objectid;
962a298f 6285 key[1].type = BTRFS_INODE_REF_KEY;
caae78e0 6286 if (args->subvol) {
23c24ef8 6287 key[1].offset = objectid;
caae78e0
OS
6288 sizes[1] = 2 + sizeof(*ref);
6289 } else {
6290 key[1].offset = btrfs_ino(BTRFS_I(dir));
e43eec81 6291 sizes[1] = name->len + sizeof(*ref);
caae78e0 6292 }
ef3b9af5 6293 }
9c58309d 6294
b7ef5f3a
FM
6295 batch.keys = &key[0];
6296 batch.data_sizes = &sizes[0];
caae78e0
OS
6297 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6298 batch.nr = args->orphan ? 1 : 2;
b7ef5f3a 6299 ret = btrfs_insert_empty_items(trans, root, path, &batch);
caae78e0
OS
6300 if (ret != 0) {
6301 btrfs_abort_transaction(trans, ret);
6302 goto discard;
6303 }
5f39d397 6304
d5acbc60
LT
6305 ts = simple_inode_init_ts(inode);
6306 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6307 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
9cc97d64 6308
caae78e0
OS
6309 /*
6310 * We're going to fill the inode item now, so at this point the inode
6311 * must be fully initialized.
6312 */
6313
5f39d397
CM
6314 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6315 struct btrfs_inode_item);
b159fa28 6316 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6317 sizeof(*inode_item));
e02119d5 6318 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6319
caae78e0 6320 if (!args->orphan) {
ef3b9af5
FM
6321 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6322 struct btrfs_inode_ref);
ef3b9af5 6323 ptr = (unsigned long)(ref + 1);
caae78e0
OS
6324 if (args->subvol) {
6325 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6326 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6327 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6328 } else {
e43eec81
STD
6329 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6330 name->len);
caae78e0
OS
6331 btrfs_set_inode_ref_index(path->nodes[0], ref,
6332 BTRFS_I(inode)->dir_index);
e43eec81
STD
6333 write_extent_buffer(path->nodes[0], name->name, ptr,
6334 name->len);
caae78e0 6335 }
ef3b9af5 6336 }
9c58309d 6337
50564b65 6338 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
814e7718
FM
6339 /*
6340 * We don't need the path anymore, plus inheriting properties, adding
6341 * ACLs, security xattrs, orphan item or adding the link, will result in
6342 * allocating yet another path. So just free our path.
6343 */
6344 btrfs_free_path(path);
6345 path = NULL;
5f39d397 6346
6c3636eb
STD
6347 if (args->subvol) {
6348 struct inode *parent;
6349
6350 /*
6351 * Subvolumes inherit properties from their parent subvolume,
6352 * not the directory they were created in.
6353 */
6354 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6355 BTRFS_I(dir)->root);
6356 if (IS_ERR(parent)) {
6357 ret = PTR_ERR(parent);
6358 } else {
6359 ret = btrfs_inode_inherit_props(trans, inode, parent);
6360 iput(parent);
6361 }
6362 } else {
6363 ret = btrfs_inode_inherit_props(trans, inode, dir);
6364 }
6365 if (ret) {
6366 btrfs_err(fs_info,
6367 "error inheriting props for ino %llu (root %llu): %d",
6368 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6369 ret);
6370 }
6371
6372 /*
6373 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6374 * probably a bug.
6375 */
6376 if (!args->subvol) {
6377 ret = btrfs_init_inode_security(trans, args);
6378 if (ret) {
6379 btrfs_abort_transaction(trans, ret);
6380 goto discard;
6381 }
6382 }
6383
4c45a4f4 6384 inode_tree_add(BTRFS_I(inode));
1abe9b8a 6385
6386 trace_btrfs_inode_new(inode);
d9094414 6387 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6388
8ea05e3a
AB
6389 btrfs_update_root_times(trans, root);
6390
caae78e0
OS
6391 if (args->orphan) {
6392 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6393 } else {
6394 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 6395 0, BTRFS_I(inode)->dir_index);
caae78e0
OS
6396 }
6397 if (ret) {
6398 btrfs_abort_transaction(trans, ret);
6399 goto discard;
6400 }
63541927 6401
814e7718 6402 return 0;
b0d5d10f 6403
caae78e0 6404discard:
a1fd0c35
OS
6405 /*
6406 * discard_new_inode() calls iput(), but the caller owns the reference
6407 * to the inode.
6408 */
6409 ihold(inode);
32955c54 6410 discard_new_inode(inode);
caae78e0 6411out:
5f39d397 6412 btrfs_free_path(path);
a1fd0c35 6413 return ret;
39279cc3
CM
6414}
6415
d352ac68
CM
6416/*
6417 * utility function to add 'inode' into 'parent_inode' with
6418 * a give name and a given sequence number.
6419 * if 'add_backref' is true, also insert a backref from the
6420 * inode to the parent directory.
6421 */
e02119d5 6422int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6423 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6db75318 6424 const struct fscrypt_str *name, int add_backref, u64 index)
39279cc3 6425{
4df27c4d 6426 int ret = 0;
39279cc3 6427 struct btrfs_key key;
db0a669f
NB
6428 struct btrfs_root *root = parent_inode->root;
6429 u64 ino = btrfs_ino(inode);
6430 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6431
33345d01 6432 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6433 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6434 } else {
33345d01 6435 key.objectid = ino;
962a298f 6436 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6437 key.offset = 0;
6438 }
6439
33345d01 6440 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6441 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa 6442 root->root_key.objectid, parent_ino,
e43eec81 6443 index, name);
4df27c4d 6444 } else if (add_backref) {
e43eec81
STD
6445 ret = btrfs_insert_inode_ref(trans, root, name,
6446 ino, parent_ino, index);
4df27c4d 6447 }
39279cc3 6448
79787eaa
JM
6449 /* Nothing to clean up yet */
6450 if (ret)
6451 return ret;
4df27c4d 6452
e43eec81 6453 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
db0a669f 6454 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6455 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6456 goto fail_dir_item;
6457 else if (ret) {
66642832 6458 btrfs_abort_transaction(trans, ret);
79787eaa 6459 return ret;
39279cc3 6460 }
79787eaa 6461
db0a669f 6462 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
e43eec81 6463 name->len * 2);
db0a669f 6464 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6465 /*
6466 * If we are replaying a log tree, we do not want to update the mtime
6467 * and ctime of the parent directory with the current time, since the
6468 * log replay procedure is responsible for setting them to their correct
6469 * values (the ones it had when the fsync was done).
6470 */
2a9462de 6471 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
b1c38a13
JL
6472 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6473 inode_set_ctime_current(&parent_inode->vfs_inode));
5338e43a 6474
8b9d0322 6475 ret = btrfs_update_inode(trans, parent_inode);
79787eaa 6476 if (ret)
66642832 6477 btrfs_abort_transaction(trans, ret);
39279cc3 6478 return ret;
fe66a05a
CM
6479
6480fail_dir_item:
6481 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6482 u64 local_index;
6483 int err;
3ee1c553 6484 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa 6485 root->root_key.objectid, parent_ino,
e43eec81 6486 &local_index, name);
1690dd41
JT
6487 if (err)
6488 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6489 } else if (add_backref) {
6490 u64 local_index;
6491 int err;
6492
e43eec81
STD
6493 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6494 &local_index);
1690dd41
JT
6495 if (err)
6496 btrfs_abort_transaction(trans, err);
fe66a05a 6497 }
1690dd41
JT
6498
6499 /* Return the original error code */
fe66a05a 6500 return ret;
39279cc3
CM
6501}
6502
5f465bf1
OS
6503static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6504 struct inode *inode)
618e21d5 6505{
2ff7e61e 6506 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5 6507 struct btrfs_root *root = BTRFS_I(dir)->root;
3538d68d
OS
6508 struct btrfs_new_inode_args new_inode_args = {
6509 .dir = dir,
6510 .dentry = dentry,
6511 .inode = inode,
6512 };
6513 unsigned int trans_num_items;
5f465bf1 6514 struct btrfs_trans_handle *trans;
618e21d5 6515 int err;
618e21d5 6516
3538d68d 6517 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
6518 if (err)
6519 goto out_inode;
3538d68d
OS
6520
6521 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 6522 if (IS_ERR(trans)) {
3538d68d
OS
6523 err = PTR_ERR(trans);
6524 goto out_new_inode_args;
a1fd0c35 6525 }
1832a6d5 6526
caae78e0
OS
6527 err = btrfs_create_new_inode(trans, &new_inode_args);
6528 if (!err)
6529 d_instantiate_new(dentry, inode);
b0d5d10f 6530
3a45bb20 6531 btrfs_end_transaction(trans);
5f465bf1 6532 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
6533out_new_inode_args:
6534 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
6535out_inode:
6536 if (err)
6537 iput(inode);
618e21d5
JB
6538 return err;
6539}
6540
5ebb29be 6541static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
5f465bf1
OS
6542 struct dentry *dentry, umode_t mode, dev_t rdev)
6543{
6544 struct inode *inode;
6545
6546 inode = new_inode(dir->i_sb);
6547 if (!inode)
6548 return -ENOMEM;
f2d40141 6549 inode_init_owner(idmap, inode, dir, mode);
5f465bf1
OS
6550 inode->i_op = &btrfs_special_inode_operations;
6551 init_special_inode(inode, inode->i_mode, rdev);
6552 return btrfs_create_common(dir, dentry, inode);
6553}
6554
6c960e68 6555static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
549c7297 6556 struct dentry *dentry, umode_t mode, bool excl)
39279cc3 6557{
a1fd0c35 6558 struct inode *inode;
39279cc3 6559
a1fd0c35
OS
6560 inode = new_inode(dir->i_sb);
6561 if (!inode)
6562 return -ENOMEM;
f2d40141 6563 inode_init_owner(idmap, inode, dir, mode);
a1fd0c35
OS
6564 inode->i_fop = &btrfs_file_operations;
6565 inode->i_op = &btrfs_file_inode_operations;
6566 inode->i_mapping->a_ops = &btrfs_aops;
5f465bf1 6567 return btrfs_create_common(dir, dentry, inode);
39279cc3
CM
6568}
6569
6570static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6571 struct dentry *dentry)
6572{
271dba45 6573 struct btrfs_trans_handle *trans = NULL;
39279cc3 6574 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6575 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
ab3c5c18 6577 struct fscrypt_name fname;
00e4e6b3 6578 u64 index;
39279cc3
CM
6579 int err;
6580 int drop_inode = 0;
6581
4a8be425 6582 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6583 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6584 return -EXDEV;
4a8be425 6585
f186373f 6586 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6587 return -EMLINK;
4a8be425 6588
ab3c5c18
STD
6589 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6590 if (err)
6591 goto fail;
6592
877574e2 6593 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6594 if (err)
6595 goto fail;
6596
a22285a6 6597 /*
7e6b6465 6598 * 2 items for inode and inode ref
a22285a6 6599 * 2 items for dir items
7e6b6465 6600 * 1 item for parent inode
399b0bbf 6601 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6602 */
399b0bbf 6603 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6604 if (IS_ERR(trans)) {
6605 err = PTR_ERR(trans);
271dba45 6606 trans = NULL;
a22285a6
YZ
6607 goto fail;
6608 }
5f39d397 6609
67de1176
MX
6610 /* There are several dir indexes for this inode, clear the cache. */
6611 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6612 inc_nlink(inode);
0c4d2d95 6613 inode_inc_iversion(inode);
2a9462de 6614 inode_set_ctime_current(inode);
7de9c6ee 6615 ihold(inode);
e9976151 6616 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6617
81512e89 6618 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6db75318 6619 &fname.disk_name, 1, index);
5f39d397 6620
a5719521 6621 if (err) {
54aa1f4d 6622 drop_inode = 1;
a5719521 6623 } else {
10d9f309 6624 struct dentry *parent = dentry->d_parent;
d4682ba0 6625
8b9d0322 6626 err = btrfs_update_inode(trans, BTRFS_I(inode));
79787eaa
JM
6627 if (err)
6628 goto fail;
ef3b9af5
FM
6629 if (inode->i_nlink == 1) {
6630 /*
6631 * If new hard link count is 1, it's a file created
6632 * with open(2) O_TMPFILE flag.
6633 */
3d6ae7bb 6634 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6635 if (err)
6636 goto fail;
6637 }
08c422c2 6638 d_instantiate(dentry, inode);
88d2beec 6639 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
a5719521 6640 }
39279cc3 6641
1832a6d5 6642fail:
ab3c5c18 6643 fscrypt_free_filename(&fname);
271dba45 6644 if (trans)
3a45bb20 6645 btrfs_end_transaction(trans);
39279cc3
CM
6646 if (drop_inode) {
6647 inode_dec_link_count(inode);
6648 iput(inode);
6649 }
2ff7e61e 6650 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6651 return err;
6652}
6653
c54bd91e 6654static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
549c7297 6655 struct dentry *dentry, umode_t mode)
39279cc3 6656{
a1fd0c35 6657 struct inode *inode;
39279cc3 6658
a1fd0c35
OS
6659 inode = new_inode(dir->i_sb);
6660 if (!inode)
6661 return -ENOMEM;
f2d40141 6662 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
a1fd0c35
OS
6663 inode->i_op = &btrfs_dir_inode_operations;
6664 inode->i_fop = &btrfs_dir_file_operations;
5f465bf1 6665 return btrfs_create_common(dir, dentry, inode);
39279cc3
CM
6666}
6667
c8b97818 6668static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6669 struct page *page,
c8b97818
CM
6670 struct btrfs_file_extent_item *item)
6671{
6672 int ret;
6673 struct extent_buffer *leaf = path->nodes[0];
6674 char *tmp;
6675 size_t max_size;
6676 unsigned long inline_size;
6677 unsigned long ptr;
261507a0 6678 int compress_type;
c8b97818 6679
261507a0 6680 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818 6681 max_size = btrfs_file_extent_ram_bytes(leaf, item);
437bd07e 6682 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
c8b97818 6683 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6684 if (!tmp)
6685 return -ENOMEM;
c8b97818
CM
6686 ptr = btrfs_file_extent_inline_start(item);
6687
6688 read_extent_buffer(leaf, tmp, ptr, inline_size);
6689
09cbfeaf 6690 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
a982fc82 6691 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
e1699d2d
ZB
6692
6693 /*
6694 * decompression code contains a memset to fill in any space between the end
6695 * of the uncompressed data and the end of max_size in case the decompressed
6696 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6697 * the end of an inline extent and the beginning of the next block, so we
6698 * cover that region here.
6699 */
6700
a982fc82
QW
6701 if (max_size < PAGE_SIZE)
6702 memzero_page(page, max_size, PAGE_SIZE - max_size);
c8b97818 6703 kfree(tmp);
166ae5a4 6704 return ret;
c8b97818
CM
6705}
6706
a982fc82
QW
6707static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6708 struct page *page)
6709{
6710 struct btrfs_file_extent_item *fi;
6711 void *kaddr;
6712 size_t copy_size;
6713
6714 if (!page || PageUptodate(page))
6715 return 0;
6716
6717 ASSERT(page_offset(page) == 0);
6718
6719 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6720 struct btrfs_file_extent_item);
6721 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6722 return uncompress_inline(path, page, fi);
6723
6724 copy_size = min_t(u64, PAGE_SIZE,
6725 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6726 kaddr = kmap_local_page(page);
6727 read_extent_buffer(path->nodes[0], kaddr,
6728 btrfs_file_extent_inline_start(fi), copy_size);
6729 kunmap_local(kaddr);
6730 if (copy_size < PAGE_SIZE)
6731 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6732 return 0;
6733}
6734
43dd529a
DS
6735/*
6736 * Lookup the first extent overlapping a range in a file.
6737 *
39b07b5d
OS
6738 * @inode: file to search in
6739 * @page: page to read extent data into if the extent is inline
6740 * @pg_offset: offset into @page to copy to
6741 * @start: file offset
6742 * @len: length of range starting at @start
6743 *
43dd529a
DS
6744 * Return the first &struct extent_map which overlaps the given range, reading
6745 * it from the B-tree and caching it if necessary. Note that there may be more
6746 * extents which overlap the given range after the returned extent_map.
d352ac68 6747 *
39b07b5d
OS
6748 * If @page is not NULL and the extent is inline, this also reads the extent
6749 * data directly into the page and marks the extent up to date in the io_tree.
6750 *
6751 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6752 */
fc4f21b1 6753struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6754 struct page *page, size_t pg_offset,
6755 u64 start, u64 len)
a52d9a80 6756{
3ffbd68c 6757 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1028d1c4 6758 int ret = 0;
a52d9a80
CM
6759 u64 extent_start = 0;
6760 u64 extent_end = 0;
fc4f21b1 6761 u64 objectid = btrfs_ino(inode);
7e74e235 6762 int extent_type = -1;
f421950f 6763 struct btrfs_path *path = NULL;
fc4f21b1 6764 struct btrfs_root *root = inode->root;
a52d9a80 6765 struct btrfs_file_extent_item *item;
5f39d397
CM
6766 struct extent_buffer *leaf;
6767 struct btrfs_key found_key;
a52d9a80 6768 struct extent_map *em = NULL;
fc4f21b1 6769 struct extent_map_tree *em_tree = &inode->extent_tree;
a52d9a80 6770
890871be 6771 read_lock(&em_tree->lock);
d1310b2e 6772 em = lookup_extent_mapping(em_tree, start, len);
890871be 6773 read_unlock(&em_tree->lock);
d1310b2e 6774
a52d9a80 6775 if (em) {
e1c4b745
CM
6776 if (em->start > start || em->start + em->len <= start)
6777 free_extent_map(em);
6778 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6779 free_extent_map(em);
6780 else
6781 goto out;
a52d9a80 6782 }
172ddd60 6783 em = alloc_extent_map();
a52d9a80 6784 if (!em) {
1028d1c4 6785 ret = -ENOMEM;
d1310b2e 6786 goto out;
a52d9a80 6787 }
d1310b2e 6788 em->start = EXTENT_MAP_HOLE;
445a6944 6789 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6790 em->len = (u64)-1;
c8b97818 6791 em->block_len = (u64)-1;
f421950f 6792
bee6ec82 6793 path = btrfs_alloc_path();
f421950f 6794 if (!path) {
1028d1c4 6795 ret = -ENOMEM;
bee6ec82 6796 goto out;
f421950f
CM
6797 }
6798
bee6ec82
LB
6799 /* Chances are we'll be called again, so go ahead and do readahead */
6800 path->reada = READA_FORWARD;
4d7240f0
JB
6801
6802 /*
6803 * The same explanation in load_free_space_cache applies here as well,
6804 * we only read when we're loading the free space cache, and at that
6805 * point the commit_root has everything we need.
6806 */
6807 if (btrfs_is_free_space_inode(inode)) {
6808 path->search_commit_root = 1;
6809 path->skip_locking = 1;
6810 }
51899412 6811
5c9a702e 6812 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80 6813 if (ret < 0) {
a52d9a80 6814 goto out;
b8eeab7f 6815 } else if (ret > 0) {
a52d9a80
CM
6816 if (path->slots[0] == 0)
6817 goto not_found;
6818 path->slots[0]--;
1028d1c4 6819 ret = 0;
a52d9a80
CM
6820 }
6821
5f39d397
CM
6822 leaf = path->nodes[0];
6823 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6824 struct btrfs_file_extent_item);
5f39d397 6825 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6826 if (found_key.objectid != objectid ||
694c12ed 6827 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6828 /*
6829 * If we backup past the first extent we want to move forward
6830 * and see if there is an extent in front of us, otherwise we'll
6831 * say there is a hole for our whole search range which can
6832 * cause problems.
6833 */
6834 extent_end = start;
6835 goto next;
a52d9a80
CM
6836 }
6837
694c12ed 6838 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6839 extent_start = found_key.offset;
a5eeb3d1 6840 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6841 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6842 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6843 /* Only regular file could have regular/prealloc extent */
6844 if (!S_ISREG(inode->vfs_inode.i_mode)) {
1028d1c4 6845 ret = -EUCLEAN;
6bf9e4bd
QW
6846 btrfs_crit(fs_info,
6847 "regular/prealloc extent found for non-regular inode %llu",
6848 btrfs_ino(inode));
6849 goto out;
6850 }
09ed2f16
LB
6851 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6852 extent_start);
694c12ed 6853 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6854 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6855 path->slots[0],
6856 extent_start);
9036c102 6857 }
25a50341 6858next:
9036c102
YZ
6859 if (start >= extent_end) {
6860 path->slots[0]++;
6861 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6862 ret = btrfs_next_leaf(root, path);
1028d1c4 6863 if (ret < 0)
9036c102 6864 goto out;
1028d1c4 6865 else if (ret > 0)
9036c102 6866 goto not_found;
1028d1c4 6867
9036c102 6868 leaf = path->nodes[0];
a52d9a80 6869 }
9036c102
YZ
6870 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6871 if (found_key.objectid != objectid ||
6872 found_key.type != BTRFS_EXTENT_DATA_KEY)
6873 goto not_found;
6874 if (start + len <= found_key.offset)
6875 goto not_found;
e2eca69d
WS
6876 if (start > found_key.offset)
6877 goto next;
02a033df
NB
6878
6879 /* New extent overlaps with existing one */
9036c102 6880 em->start = start;
70c8a91c 6881 em->orig_start = start;
9036c102 6882 em->len = found_key.offset - start;
02a033df
NB
6883 em->block_start = EXTENT_MAP_HOLE;
6884 goto insert;
9036c102
YZ
6885 }
6886
280f15cb 6887 btrfs_extent_item_to_extent_map(inode, path, item, em);
7ffbb598 6888
694c12ed
NB
6889 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6890 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6891 goto insert;
694c12ed 6892 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
affc5424
QW
6893 /*
6894 * Inline extent can only exist at file offset 0. This is
6895 * ensured by tree-checker and inline extent creation path.
6896 * Thus all members representing file offsets should be zero.
6897 */
affc5424
QW
6898 ASSERT(pg_offset == 0);
6899 ASSERT(extent_start == 0);
6900 ASSERT(em->start == 0);
5f39d397 6901
a196a894
QW
6902 /*
6903 * btrfs_extent_item_to_extent_map() should have properly
6904 * initialized em members already.
6905 *
6906 * Other members are not utilized for inline extents.
6907 */
6908 ASSERT(em->block_start == EXTENT_MAP_INLINE);
946c2923 6909 ASSERT(em->len == fs_info->sectorsize);
e49aabd9 6910
a982fc82
QW
6911 ret = read_inline_extent(inode, path, page);
6912 if (ret < 0)
6913 goto out;
a52d9a80 6914 goto insert;
a52d9a80
CM
6915 }
6916not_found:
6917 em->start = start;
70c8a91c 6918 em->orig_start = start;
d1310b2e 6919 em->len = len;
5f39d397 6920 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6921insert:
1028d1c4 6922 ret = 0;
b3b4aa74 6923 btrfs_release_path(path);
d1310b2e 6924 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6925 btrfs_err(fs_info,
5d163e0e
JM
6926 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6927 em->start, em->len, start, len);
1028d1c4 6928 ret = -EIO;
a52d9a80
CM
6929 goto out;
6930 }
d1310b2e 6931
890871be 6932 write_lock(&em_tree->lock);
1028d1c4 6933 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6934 write_unlock(&em_tree->lock);
a52d9a80 6935out:
c6414280 6936 btrfs_free_path(path);
1abe9b8a 6937
fc4f21b1 6938 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6939
1028d1c4 6940 if (ret) {
a52d9a80 6941 free_extent_map(em);
1028d1c4 6942 return ERR_PTR(ret);
a52d9a80
CM
6943 }
6944 return em;
6945}
6946
64f54188 6947static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
53f2c206 6948 struct btrfs_dio_data *dio_data,
5f9a8a51
FM
6949 const u64 start,
6950 const u64 len,
6951 const u64 orig_start,
6952 const u64 block_start,
6953 const u64 block_len,
6954 const u64 orig_block_len,
6955 const u64 ram_bytes,
6956 const int type)
6957{
6958 struct extent_map *em = NULL;
53f2c206 6959 struct btrfs_ordered_extent *ordered;
5f9a8a51 6960
5f9a8a51 6961 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6962 em = create_io_em(inode, start, len, orig_start, block_start,
6963 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6964 BTRFS_COMPRESS_NONE, /* compress_type */
6965 type);
5f9a8a51
FM
6966 if (IS_ERR(em))
6967 goto out;
6968 }
53f2c206
BB
6969 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6970 block_start, block_len, 0,
6971 (1 << type) |
6972 (1 << BTRFS_ORDERED_DIRECT),
6973 BTRFS_COMPRESS_NONE);
6974 if (IS_ERR(ordered)) {
5f9a8a51
FM
6975 if (em) {
6976 free_extent_map(em);
4c0c8cfc
FM
6977 btrfs_drop_extent_map_range(inode, start,
6978 start + len - 1, false);
5f9a8a51 6979 }
53f2c206
BB
6980 em = ERR_CAST(ordered);
6981 } else {
6982 ASSERT(!dio_data->ordered);
6983 dio_data->ordered = ordered;
5f9a8a51
FM
6984 }
6985 out:
5f9a8a51
FM
6986
6987 return em;
6988}
6989
9fc6f911 6990static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
53f2c206 6991 struct btrfs_dio_data *dio_data,
4b46fce2
JB
6992 u64 start, u64 len)
6993{
9fc6f911
NB
6994 struct btrfs_root *root = inode->root;
6995 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 6996 struct extent_map *em;
4b46fce2
JB
6997 struct btrfs_key ins;
6998 u64 alloc_hint;
6999 int ret;
4b46fce2 7000
9fc6f911 7001 alloc_hint = get_extent_allocation_hint(inode, start, len);
776a838f 7002again:
0b246afa 7003 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7004 0, alloc_hint, &ins, 1, 1);
776a838f
NA
7005 if (ret == -EAGAIN) {
7006 ASSERT(btrfs_is_zoned(fs_info));
7007 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7008 TASK_UNINTERRUPTIBLE);
7009 goto again;
7010 }
00361589
JB
7011 if (ret)
7012 return ERR_PTR(ret);
4b46fce2 7013
53f2c206 7014 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
5f9a8a51 7015 ins.objectid, ins.offset, ins.offset,
6288d6ea 7016 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7017 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7018 if (IS_ERR(em))
9fc6f911
NB
7019 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7020 1);
de0ee0ed 7021
4b46fce2
JB
7022 return em;
7023}
7024
f4639636 7025static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
05947ae1
AJ
7026{
7027 struct btrfs_block_group *block_group;
f4639636 7028 bool readonly = false;
05947ae1
AJ
7029
7030 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7031 if (!block_group || block_group->ro)
f4639636 7032 readonly = true;
05947ae1
AJ
7033 if (block_group)
7034 btrfs_put_block_group(block_group);
7035 return readonly;
7036}
7037
46bfbb5c 7038/*
e4ecaf90
QW
7039 * Check if we can do nocow write into the range [@offset, @offset + @len)
7040 *
7041 * @offset: File offset
7042 * @len: The length to write, will be updated to the nocow writeable
7043 * range
7044 * @orig_start: (optional) Return the original file offset of the file extent
7045 * @orig_len: (optional) Return the original on-disk length of the file extent
7046 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
7047 * @strict: if true, omit optimizations that might force us into unnecessary
7048 * cow. e.g., don't trust generation number.
e4ecaf90 7049 *
e4ecaf90
QW
7050 * Return:
7051 * >0 and update @len if we can do nocow write
7052 * 0 if we can't do nocow write
7053 * <0 if error happened
7054 *
7055 * NOTE: This only checks the file extents, caller is responsible to wait for
7056 * any ordered extents.
46bfbb5c 7057 */
00361589 7058noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 7059 u64 *orig_start, u64 *orig_block_len,
26ce9114 7060 u64 *ram_bytes, bool nowait, bool strict)
46bfbb5c 7061{
2ff7e61e 7062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
619104ba 7063 struct can_nocow_file_extent_args nocow_args = { 0 };
46bfbb5c
CM
7064 struct btrfs_path *path;
7065 int ret;
7066 struct extent_buffer *leaf;
7067 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7068 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7069 struct btrfs_file_extent_item *fi;
7070 struct btrfs_key key;
46bfbb5c 7071 int found_type;
e77751aa 7072
46bfbb5c
CM
7073 path = btrfs_alloc_path();
7074 if (!path)
7075 return -ENOMEM;
26ce9114 7076 path->nowait = nowait;
46bfbb5c 7077
f85b7379
DS
7078 ret = btrfs_lookup_file_extent(NULL, root, path,
7079 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7080 if (ret < 0)
7081 goto out;
7082
46bfbb5c 7083 if (ret == 1) {
619104ba 7084 if (path->slots[0] == 0) {
46bfbb5c
CM
7085 /* can't find the item, must cow */
7086 ret = 0;
7087 goto out;
7088 }
619104ba 7089 path->slots[0]--;
46bfbb5c
CM
7090 }
7091 ret = 0;
7092 leaf = path->nodes[0];
619104ba 7093 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4a0cc7ca 7094 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7095 key.type != BTRFS_EXTENT_DATA_KEY) {
7096 /* not our file or wrong item type, must cow */
7097 goto out;
7098 }
7099
7100 if (key.offset > offset) {
7101 /* Wrong offset, must cow */
7102 goto out;
7103 }
7104
619104ba 7105 if (btrfs_file_extent_end(path) <= offset)
7ee9e440
JB
7106 goto out;
7107
619104ba
FM
7108 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7109 found_type = btrfs_file_extent_type(leaf, fi);
7110 if (ram_bytes)
7111 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
e77751aa 7112
619104ba
FM
7113 nocow_args.start = offset;
7114 nocow_args.end = offset + *len - 1;
7115 nocow_args.strict = strict;
7116 nocow_args.free_path = true;
7ee9e440 7117
619104ba
FM
7118 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7119 /* can_nocow_file_extent() has freed the path. */
7120 path = NULL;
7ee9e440 7121
619104ba
FM
7122 if (ret != 1) {
7123 /* Treat errors as not being able to NOCOW. */
7124 ret = 0;
78d4295b 7125 goto out;
7ee9e440 7126 }
eb384b55 7127
619104ba
FM
7128 ret = 0;
7129 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
46bfbb5c 7130 goto out;
7b2b7085 7131
619104ba
FM
7132 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7133 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7b2b7085
MX
7134 u64 range_end;
7135
619104ba 7136 range_end = round_up(offset + nocow_args.num_bytes,
da17066c 7137 root->fs_info->sectorsize) - 1;
99be1a66 7138 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7b2b7085
MX
7139 if (ret) {
7140 ret = -EAGAIN;
7141 goto out;
7142 }
7143 }
7144
619104ba
FM
7145 if (orig_start)
7146 *orig_start = key.offset - nocow_args.extent_offset;
7147 if (orig_block_len)
7148 *orig_block_len = nocow_args.disk_num_bytes;
00361589 7149
619104ba 7150 *len = nocow_args.num_bytes;
46bfbb5c
CM
7151 ret = 1;
7152out:
7153 btrfs_free_path(path);
7154 return ret;
7155}
7156
eb838e73 7157static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
59094403
FM
7158 struct extent_state **cached_state,
7159 unsigned int iomap_flags)
eb838e73 7160{
59094403
FM
7161 const bool writing = (iomap_flags & IOMAP_WRITE);
7162 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7163 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
eb838e73
JB
7164 struct btrfs_ordered_extent *ordered;
7165 int ret = 0;
7166
7167 while (1) {
59094403 7168 if (nowait) {
83ae4133
JB
7169 if (!try_lock_extent(io_tree, lockstart, lockend,
7170 cached_state))
59094403
FM
7171 return -EAGAIN;
7172 } else {
570eb97b 7173 lock_extent(io_tree, lockstart, lockend, cached_state);
59094403 7174 }
eb838e73
JB
7175 /*
7176 * We're concerned with the entire range that we're going to be
01327610 7177 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7178 * extents in this range.
7179 */
a776c6fa 7180 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7181 lockend - lockstart + 1);
7182
7183 /*
7184 * We need to make sure there are no buffered pages in this
7185 * range either, we could have raced between the invalidate in
7186 * generic_file_direct_write and locking the extent. The
7187 * invalidate needs to happen so that reads after a write do not
7188 * get stale data.
7189 */
fc4adbff 7190 if (!ordered &&
051c98eb
DS
7191 (!writing || !filemap_range_has_page(inode->i_mapping,
7192 lockstart, lockend)))
eb838e73
JB
7193 break;
7194
570eb97b 7195 unlock_extent(io_tree, lockstart, lockend, cached_state);
eb838e73
JB
7196
7197 if (ordered) {
59094403
FM
7198 if (nowait) {
7199 btrfs_put_ordered_extent(ordered);
7200 ret = -EAGAIN;
7201 break;
7202 }
ade77029
FM
7203 /*
7204 * If we are doing a DIO read and the ordered extent we
7205 * found is for a buffered write, we can not wait for it
7206 * to complete and retry, because if we do so we can
7207 * deadlock with concurrent buffered writes on page
7208 * locks. This happens only if our DIO read covers more
7209 * than one extent map, if at this point has already
7210 * created an ordered extent for a previous extent map
7211 * and locked its range in the inode's io tree, and a
7212 * concurrent write against that previous extent map's
7213 * range and this range started (we unlock the ranges
7214 * in the io tree only when the bios complete and
7215 * buffered writes always lock pages before attempting
7216 * to lock range in the io tree).
7217 */
7218 if (writing ||
7219 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
36d45567 7220 btrfs_start_ordered_extent(ordered);
ade77029 7221 else
59094403 7222 ret = nowait ? -EAGAIN : -ENOTBLK;
eb838e73
JB
7223 btrfs_put_ordered_extent(ordered);
7224 } else {
eb838e73 7225 /*
b850ae14
FM
7226 * We could trigger writeback for this range (and wait
7227 * for it to complete) and then invalidate the pages for
7228 * this range (through invalidate_inode_pages2_range()),
7229 * but that can lead us to a deadlock with a concurrent
ba206a02 7230 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7231 * triggered a readahead) on a page lock due to an
7232 * ordered dio extent we created before but did not have
7233 * yet a corresponding bio submitted (whence it can not
ba206a02 7234 * complete), which makes readahead wait for that
b850ae14
FM
7235 * ordered extent to complete while holding a lock on
7236 * that page.
eb838e73 7237 */
59094403 7238 ret = nowait ? -EAGAIN : -ENOTBLK;
eb838e73
JB
7239 }
7240
ade77029
FM
7241 if (ret)
7242 break;
7243
eb838e73
JB
7244 cond_resched();
7245 }
7246
7247 return ret;
7248}
7249
6f9994db 7250/* The callers of this must take lock_extent() */
4b67c11d
NB
7251static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7252 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7253 u64 block_len, u64 orig_block_len,
7254 u64 ram_bytes, int compress_type,
7255 int type)
69ffb543 7256{
69ffb543 7257 struct extent_map *em;
69ffb543
JB
7258 int ret;
7259
6f9994db
LB
7260 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7261 type == BTRFS_ORDERED_COMPRESSED ||
7262 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7263 type == BTRFS_ORDERED_REGULAR);
6f9994db 7264
69ffb543
JB
7265 em = alloc_extent_map();
7266 if (!em)
7267 return ERR_PTR(-ENOMEM);
7268
7269 em->start = start;
7270 em->orig_start = orig_start;
7271 em->len = len;
7272 em->block_len = block_len;
7273 em->block_start = block_start;
b4939680 7274 em->orig_block_len = orig_block_len;
cc95bef6 7275 em->ram_bytes = ram_bytes;
70c8a91c 7276 em->generation = -1;
f86f7a75
FM
7277 em->flags |= EXTENT_FLAG_PINNED;
7278 if (type == BTRFS_ORDERED_PREALLOC)
7279 em->flags |= EXTENT_FLAG_FILLING;
7280 else if (type == BTRFS_ORDERED_COMPRESSED)
7281 extent_map_set_compression(em, compress_type);
69ffb543 7282
a1ba4c08 7283 ret = btrfs_replace_extent_map_range(inode, em, true);
69ffb543
JB
7284 if (ret) {
7285 free_extent_map(em);
7286 return ERR_PTR(ret);
7287 }
7288
6f9994db 7289 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7290 return em;
7291}
7292
1c8d0175 7293
c5794e51 7294static int btrfs_get_blocks_direct_write(struct extent_map **map,
c5794e51
NB
7295 struct inode *inode,
7296 struct btrfs_dio_data *dio_data,
7833b865 7297 u64 start, u64 *lenp,
d7a8ab4e 7298 unsigned int iomap_flags)
c5794e51 7299{
d4135134 7300 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
c5794e51
NB
7301 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7302 struct extent_map *em = *map;
f0bfa76a
FM
7303 int type;
7304 u64 block_start, orig_start, orig_block_len, ram_bytes;
2306e83e 7305 struct btrfs_block_group *bg;
f0bfa76a
FM
7306 bool can_nocow = false;
7307 bool space_reserved = false;
7833b865 7308 u64 len = *lenp;
6d82ad13 7309 u64 prev_len;
c5794e51
NB
7310 int ret = 0;
7311
7312 /*
7313 * We don't allocate a new extent in the following cases
7314 *
7315 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7316 * existing extent.
7317 * 2) The extent is marked as PREALLOC. We're good to go here and can
7318 * just use the extent.
7319 *
7320 */
f86f7a75 7321 if ((em->flags & EXTENT_FLAG_PREALLOC) ||
c5794e51
NB
7322 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7323 em->block_start != EXTENT_MAP_HOLE)) {
f86f7a75 7324 if (em->flags & EXTENT_FLAG_PREALLOC)
c5794e51
NB
7325 type = BTRFS_ORDERED_PREALLOC;
7326 else
7327 type = BTRFS_ORDERED_NOCOW;
7328 len = min(len, em->len - (start - em->start));
7329 block_start = em->block_start + (start - em->start);
7330
7331 if (can_nocow_extent(inode, start, &len, &orig_start,
26ce9114 7332 &orig_block_len, &ram_bytes, false, false) == 1) {
2306e83e
FM
7333 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7334 if (bg)
7335 can_nocow = true;
7336 }
f0bfa76a 7337 }
c5794e51 7338
6d82ad13 7339 prev_len = len;
f0bfa76a
FM
7340 if (can_nocow) {
7341 struct extent_map *em2;
7342
7343 /* We can NOCOW, so only need to reserve metadata space. */
d4135134
FM
7344 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7345 nowait);
f0bfa76a
FM
7346 if (ret < 0) {
7347 /* Our caller expects us to free the input extent map. */
7348 free_extent_map(em);
7349 *map = NULL;
2306e83e 7350 btrfs_dec_nocow_writers(bg);
d4135134
FM
7351 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7352 ret = -EAGAIN;
f0bfa76a
FM
7353 goto out;
7354 }
7355 space_reserved = true;
7356
53f2c206 7357 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
f0bfa76a
FM
7358 orig_start, block_start,
7359 len, orig_block_len,
7360 ram_bytes, type);
2306e83e 7361 btrfs_dec_nocow_writers(bg);
f0bfa76a
FM
7362 if (type == BTRFS_ORDERED_PREALLOC) {
7363 free_extent_map(em);
c1867eb3
DS
7364 *map = em2;
7365 em = em2;
f0bfa76a 7366 }
c5794e51 7367
f0bfa76a
FM
7368 if (IS_ERR(em2)) {
7369 ret = PTR_ERR(em2);
7370 goto out;
c5794e51 7371 }
f5585f4f
FM
7372
7373 dio_data->nocow_done = true;
f0bfa76a 7374 } else {
f0bfa76a
FM
7375 /* Our caller expects us to free the input extent map. */
7376 free_extent_map(em);
7377 *map = NULL;
7378
7833b865
CH
7379 if (nowait) {
7380 ret = -EAGAIN;
7381 goto out;
7382 }
d7a8ab4e 7383
f5585f4f
FM
7384 /*
7385 * If we could not allocate data space before locking the file
7386 * range and we can't do a NOCOW write, then we have to fail.
7387 */
7833b865
CH
7388 if (!dio_data->data_space_reserved) {
7389 ret = -ENOSPC;
7390 goto out;
7391 }
f5585f4f
FM
7392
7393 /*
7394 * We have to COW and we have already reserved data space before,
7395 * so now we reserve only metadata.
7396 */
7397 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7398 false);
f0bfa76a
FM
7399 if (ret < 0)
7400 goto out;
7401 space_reserved = true;
7402
53f2c206 7403 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
f0bfa76a
FM
7404 if (IS_ERR(em)) {
7405 ret = PTR_ERR(em);
7406 goto out;
7407 }
7408 *map = em;
7409 len = min(len, em->len - (start - em->start));
7410 if (len < prev_len)
f5585f4f
FM
7411 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7412 prev_len - len, true);
c5794e51
NB
7413 }
7414
f0bfa76a
FM
7415 /*
7416 * We have created our ordered extent, so we can now release our reservation
7417 * for an outstanding extent.
7418 */
6d82ad13 7419 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
c5794e51 7420
c5794e51
NB
7421 /*
7422 * Need to update the i_size under the extent lock so buffered
7423 * readers will get the updated i_size when we unlock.
7424 */
f85781fb 7425 if (start + len > i_size_read(inode))
c5794e51 7426 i_size_write(inode, start + len);
c5794e51 7427out:
f0bfa76a
FM
7428 if (ret && space_reserved) {
7429 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
f5585f4f 7430 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
f0bfa76a 7431 }
7833b865 7432 *lenp = len;
c5794e51
NB
7433 return ret;
7434}
7435
f85781fb
GR
7436static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7437 loff_t length, unsigned int flags, struct iomap *iomap,
7438 struct iomap *srcmap)
4b46fce2 7439{
491a6d01 7440 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
0b246afa 7441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7442 struct extent_map *em;
eb838e73 7443 struct extent_state *cached_state = NULL;
491a6d01 7444 struct btrfs_dio_data *dio_data = iter->private;
eb838e73 7445 u64 lockstart, lockend;
f85781fb 7446 const bool write = !!(flags & IOMAP_WRITE);
0934856d 7447 int ret = 0;
f85781fb 7448 u64 len = length;
f5585f4f 7449 const u64 data_alloc_len = length;
f85781fb 7450 bool unlock_extents = false;
eb838e73 7451
79d3d1d1
JB
7452 /*
7453 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7454 * we're NOWAIT we may submit a bio for a partial range and return
7455 * EIOCBQUEUED, which would result in an errant short read.
7456 *
7457 * The best way to handle this would be to allow for partial completions
7458 * of iocb's, so we could submit the partial bio, return and fault in
7459 * the rest of the pages, and then submit the io for the rest of the
7460 * range. However we don't have that currently, so simply return
7461 * -EAGAIN at this point so that the normal path is used.
7462 */
7463 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7464 return -EAGAIN;
7465
ee5b46a3
CH
7466 /*
7467 * Cap the size of reads to that usually seen in buffered I/O as we need
7468 * to allocate a contiguous array for the checksums.
7469 */
f85781fb 7470 if (!write)
ee5b46a3 7471 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
eb838e73 7472
c329861d
JB
7473 lockstart = start;
7474 lockend = start + len - 1;
7475
f85781fb 7476 /*
b023e675
FM
7477 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7478 * enough if we've written compressed pages to this area, so we need to
7479 * flush the dirty pages again to make absolutely sure that any
7480 * outstanding dirty pages are on disk - the first flush only starts
7481 * compression on the data, while keeping the pages locked, so by the
7482 * time the second flush returns we know bios for the compressed pages
7483 * were submitted and finished, and the pages no longer under writeback.
7484 *
7485 * If we have a NOWAIT request and we have any pages in the range that
7486 * are locked, likely due to compression still in progress, we don't want
7487 * to block on page locks. We also don't want to block on pages marked as
7488 * dirty or under writeback (same as for the non-compression case).
7489 * iomap_dio_rw() did the same check, but after that and before we got
7490 * here, mmap'ed writes may have happened or buffered reads started
7491 * (readpage() and readahead(), which lock pages), as we haven't locked
7492 * the file range yet.
f85781fb
GR
7493 */
7494 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7495 &BTRFS_I(inode)->runtime_flags)) {
b023e675
FM
7496 if (flags & IOMAP_NOWAIT) {
7497 if (filemap_range_needs_writeback(inode->i_mapping,
7498 lockstart, lockend))
7499 return -EAGAIN;
7500 } else {
7501 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7502 start + length - 1);
7503 if (ret)
7504 return ret;
7505 }
f85781fb
GR
7506 }
7507
491a6d01 7508 memset(dio_data, 0, sizeof(*dio_data));
f85781fb 7509
f5585f4f
FM
7510 /*
7511 * We always try to allocate data space and must do it before locking
7512 * the file range, to avoid deadlocks with concurrent writes to the same
7513 * range if the range has several extents and the writes don't expand the
7514 * current i_size (the inode lock is taken in shared mode). If we fail to
7515 * allocate data space here we continue and later, after locking the
7516 * file range, we fail with ENOSPC only if we figure out we can not do a
7517 * NOCOW write.
7518 */
7519 if (write && !(flags & IOMAP_NOWAIT)) {
7520 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7521 &dio_data->data_reserved,
1daedb1d 7522 start, data_alloc_len, false);
f5585f4f
FM
7523 if (!ret)
7524 dio_data->data_space_reserved = true;
7525 else if (ret && !(BTRFS_I(inode)->flags &
7526 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7527 goto err;
7528 }
e1cbbfa5 7529
eb838e73
JB
7530 /*
7531 * If this errors out it's because we couldn't invalidate pagecache for
59094403
FM
7532 * this range and we need to fallback to buffered IO, or we are doing a
7533 * NOWAIT read/write and we need to block.
eb838e73 7534 */
59094403
FM
7535 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7536 if (ret < 0)
9c9464cc 7537 goto err;
eb838e73 7538
39b07b5d 7539 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7540 if (IS_ERR(em)) {
7541 ret = PTR_ERR(em);
7542 goto unlock_err;
7543 }
4b46fce2
JB
7544
7545 /*
7546 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7547 * io. INLINE is special, and we could probably kludge it in here, but
7548 * it's still buffered so for safety lets just fall back to the generic
7549 * buffered path.
7550 *
7551 * For COMPRESSED we _have_ to read the entire extent in so we can
7552 * decompress it, so there will be buffering required no matter what we
7553 * do, so go ahead and fallback to buffered.
7554 *
01327610 7555 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7556 * to buffered IO. Don't blame me, this is the price we pay for using
7557 * the generic code.
7558 */
f86f7a75 7559 if (extent_map_is_compressed(em) ||
4b46fce2
JB
7560 em->block_start == EXTENT_MAP_INLINE) {
7561 free_extent_map(em);
a4527e18
FM
7562 /*
7563 * If we are in a NOWAIT context, return -EAGAIN in order to
7564 * fallback to buffered IO. This is not only because we can
7565 * block with buffered IO (no support for NOWAIT semantics at
7566 * the moment) but also to avoid returning short reads to user
7567 * space - this happens if we were able to read some data from
7568 * previous non-compressed extents and then when we fallback to
7569 * buffered IO, at btrfs_file_read_iter() by calling
7570 * filemap_read(), we fail to fault in pages for the read buffer,
7571 * in which case filemap_read() returns a short read (the number
7572 * of bytes previously read is > 0, so it does not return -EFAULT).
7573 */
7574 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
eb838e73 7575 goto unlock_err;
4b46fce2
JB
7576 }
7577
f85781fb 7578 len = min(len, em->len - (start - em->start));
ca93e44b
FM
7579
7580 /*
7581 * If we have a NOWAIT request and the range contains multiple extents
7582 * (or a mix of extents and holes), then we return -EAGAIN to make the
7583 * caller fallback to a context where it can do a blocking (without
7584 * NOWAIT) request. This way we avoid doing partial IO and returning
7585 * success to the caller, which is not optimal for writes and for reads
7586 * it can result in unexpected behaviour for an application.
7587 *
7588 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7589 * iomap_dio_rw(), we can end up returning less data then what the caller
7590 * asked for, resulting in an unexpected, and incorrect, short read.
7591 * That is, the caller asked to read N bytes and we return less than that,
7592 * which is wrong unless we are crossing EOF. This happens if we get a
7593 * page fault error when trying to fault in pages for the buffer that is
7594 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7595 * have previously submitted bios for other extents in the range, in
7596 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7597 * those bios have completed by the time we get the page fault error,
7598 * which we return back to our caller - we should only return EIOCBQUEUED
7599 * after we have submitted bios for all the extents in the range.
7600 */
7601 if ((flags & IOMAP_NOWAIT) && len < length) {
7602 free_extent_map(em);
7603 ret = -EAGAIN;
7604 goto unlock_err;
7605 }
7606
f85781fb
GR
7607 if (write) {
7608 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7833b865 7609 start, &len, flags);
c5794e51
NB
7610 if (ret < 0)
7611 goto unlock_err;
f85781fb
GR
7612 unlock_extents = true;
7613 /* Recalc len in case the new em is smaller than requested */
7614 len = min(len, em->len - (start - em->start));
f5585f4f
FM
7615 if (dio_data->data_space_reserved) {
7616 u64 release_offset;
7617 u64 release_len = 0;
7618
7619 if (dio_data->nocow_done) {
7620 release_offset = start;
7621 release_len = data_alloc_len;
7622 } else if (len < data_alloc_len) {
7623 release_offset = start + len;
7624 release_len = data_alloc_len - len;
7625 }
7626
7627 if (release_len > 0)
7628 btrfs_free_reserved_data_space(BTRFS_I(inode),
7629 dio_data->data_reserved,
7630 release_offset,
7631 release_len);
7632 }
c5794e51 7633 } else {
1c8d0175
NB
7634 /*
7635 * We need to unlock only the end area that we aren't using.
7636 * The rest is going to be unlocked by the endio routine.
7637 */
f85781fb
GR
7638 lockstart = start + len;
7639 if (lockstart < lockend)
7640 unlock_extents = true;
7641 }
7642
7643 if (unlock_extents)
570eb97b
JB
7644 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7645 &cached_state);
f85781fb
GR
7646 else
7647 free_extent_state(cached_state);
7648
7649 /*
7650 * Translate extent map information to iomap.
7651 * We trim the extents (and move the addr) even though iomap code does
7652 * that, since we have locked only the parts we are performing I/O in.
7653 */
7654 if ((em->block_start == EXTENT_MAP_HOLE) ||
f86f7a75 7655 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
f85781fb
GR
7656 iomap->addr = IOMAP_NULL_ADDR;
7657 iomap->type = IOMAP_HOLE;
7658 } else {
7659 iomap->addr = em->block_start + (start - em->start);
7660 iomap->type = IOMAP_MAPPED;
a43a67a2 7661 }
f85781fb 7662 iomap->offset = start;
d24fa5c1 7663 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
f85781fb 7664 iomap->length = len;
4b46fce2
JB
7665 free_extent_map(em);
7666
7667 return 0;
eb838e73
JB
7668
7669unlock_err:
570eb97b
JB
7670 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7671 &cached_state);
9c9464cc 7672err:
f5585f4f
FM
7673 if (dio_data->data_space_reserved) {
7674 btrfs_free_reserved_data_space(BTRFS_I(inode),
7675 dio_data->data_reserved,
7676 start, data_alloc_len);
7677 extent_changeset_free(dio_data->data_reserved);
7678 }
7679
f85781fb
GR
7680 return ret;
7681}
7682
7683static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7684 ssize_t written, unsigned int flags, struct iomap *iomap)
7685{
491a6d01
CH
7686 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7687 struct btrfs_dio_data *dio_data = iter->private;
f85781fb
GR
7688 size_t submitted = dio_data->submitted;
7689 const bool write = !!(flags & IOMAP_WRITE);
491a6d01 7690 int ret = 0;
f85781fb
GR
7691
7692 if (!write && (iomap->type == IOMAP_HOLE)) {
7693 /* If reading from a hole, unlock and return */
570eb97b
JB
7694 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7695 NULL);
491a6d01 7696 return 0;
f85781fb
GR
7697 }
7698
7699 if (submitted < length) {
7700 pos += submitted;
7701 length -= submitted;
7702 if (write)
b41b6f69
CH
7703 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7704 pos, length, false);
f85781fb
GR
7705 else
7706 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
570eb97b 7707 pos + length - 1, NULL);
f85781fb
GR
7708 ret = -ENOTBLK;
7709 }
53f2c206
BB
7710 if (write) {
7711 btrfs_put_ordered_extent(dio_data->ordered);
7712 dio_data->ordered = NULL;
7713 }
f85781fb 7714
f0bfa76a 7715 if (write)
f85781fb 7716 extent_changeset_free(dio_data->data_reserved);
8b110e39
MX
7717 return ret;
7718}
7719
67d66982 7720static void btrfs_dio_end_io(struct btrfs_bio *bbio)
8b110e39 7721{
67d66982
CH
7722 struct btrfs_dio_private *dip =
7723 container_of(bbio, struct btrfs_dio_private, bbio);
7724 struct btrfs_inode *inode = bbio->inode;
917f32a2 7725 struct bio *bio = &bbio->bio;
e65e1535 7726
67d66982
CH
7727 if (bio->bi_status) {
7728 btrfs_warn(inode->root->fs_info,
7729 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7730 btrfs_ino(inode), bio->bi_opf,
7731 dip->file_offset, dip->bytes, bio->bi_status);
7609afac 7732 }
1ae39938 7733
b41b6f69
CH
7734 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7735 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7736 dip->file_offset, dip->bytes,
7737 !bio->bi_status);
7738 } else {
67d66982
CH
7739 unlock_extent(&inode->io_tree, dip->file_offset,
7740 dip->file_offset + dip->bytes - 1, NULL);
b41b6f69 7741 }
ea1f0ced 7742
67d66982
CH
7743 bbio->bio.bi_private = bbio->private;
7744 iomap_dio_bio_end_io(bio);
e65e1535
MX
7745}
7746
67d66982
CH
7747static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7748 loff_t file_offset)
c36cac28 7749{
67d66982 7750 struct btrfs_bio *bbio = btrfs_bio(bio);
642c5d34 7751 struct btrfs_dio_private *dip =
67d66982 7752 container_of(bbio, struct btrfs_dio_private, bbio);
491a6d01 7753 struct btrfs_dio_data *dio_data = iter->private;
544d24f9 7754
4317ff00
QW
7755 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7756 btrfs_dio_end_io, bio->bi_private);
7757 bbio->inode = BTRFS_I(iter->inode);
67d66982 7758 bbio->file_offset = file_offset;
e65e1535 7759
67d66982
CH
7760 dip->file_offset = file_offset;
7761 dip->bytes = bio->bi_iter.bi_size;
e65e1535 7762
67d66982 7763 dio_data->submitted += bio->bi_iter.bi_size;
b73a6fd1
BB
7764
7765 /*
7766 * Check if we are doing a partial write. If we are, we need to split
7767 * the ordered extent to match the submitted bio. Hang on to the
7768 * remaining unfinishable ordered_extent in dio_data so that it can be
7769 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7770 * remaining pages is blocked on the outstanding ordered extent.
7771 */
7772 if (iter->flags & IOMAP_WRITE) {
7773 int ret;
7774
7775 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7776 if (ret) {
7cad645e
CH
7777 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7778 file_offset, dip->bytes,
7779 !ret);
7780 bio->bi_status = errno_to_blk_status(ret);
7781 iomap_dio_bio_end_io(bio);
b73a6fd1
BB
7782 return;
7783 }
7784 }
7785
ae42a154 7786 btrfs_submit_bio(bbio, 0);
4b46fce2
JB
7787}
7788
36e8c622 7789static const struct iomap_ops btrfs_dio_iomap_ops = {
f85781fb
GR
7790 .iomap_begin = btrfs_dio_iomap_begin,
7791 .iomap_end = btrfs_dio_iomap_end,
7792};
7793
36e8c622 7794static const struct iomap_dio_ops btrfs_dio_ops = {
67d66982 7795 .submit_io = btrfs_dio_submit_io,
642c5d34 7796 .bio_set = &btrfs_dio_bioset,
f85781fb
GR
7797};
7798
8184620a 7799ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
36e8c622 7800{
53f2c206 7801 struct btrfs_dio_data data = { 0 };
491a6d01 7802
36e8c622 7803 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8184620a
FM
7804 IOMAP_DIO_PARTIAL, &data, done_before);
7805}
7806
7807struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7808 size_t done_before)
7809{
53f2c206 7810 struct btrfs_dio_data data = { 0 };
8184620a
FM
7811
7812 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7813 IOMAP_DIO_PARTIAL, &data, done_before);
36e8c622
CH
7814}
7815
1506fcc8 7816static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7817 u64 start, u64 len)
1506fcc8 7818{
05dadc09
TI
7819 int ret;
7820
45dd052e 7821 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
7822 if (ret)
7823 return ret;
7824
33a86cfa
FM
7825 /*
7826 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7827 * file range (0 to LLONG_MAX), but that is not enough if we have
7828 * compression enabled. The first filemap_fdatawrite_range() only kicks
7829 * in the compression of data (in an async thread) and will return
7830 * before the compression is done and writeback is started. A second
7831 * filemap_fdatawrite_range() is needed to wait for the compression to
ac3c0d36
FM
7832 * complete and writeback to start. We also need to wait for ordered
7833 * extents to complete, because our fiemap implementation uses mainly
7834 * file extent items to list the extents, searching for extent maps
7835 * only for file ranges with holes or prealloc extents to figure out
7836 * if we have delalloc in those ranges.
33a86cfa
FM
7837 */
7838 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
ac3c0d36 7839 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
33a86cfa
FM
7840 if (ret)
7841 return ret;
7842 }
7843
facee0a0 7844 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
1506fcc8
YS
7845}
7846
48a3b636
ES
7847static int btrfs_writepages(struct address_space *mapping,
7848 struct writeback_control *wbc)
b293f02e 7849{
8ae225a8 7850 return extent_writepages(mapping, wbc);
b293f02e
CM
7851}
7852
ba206a02 7853static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 7854{
ba206a02 7855 extent_readahead(rac);
3ab2fb5a 7856}
2a3ff0ad 7857
7c11d0ae 7858/*
f913cff3 7859 * For release_folio() and invalidate_folio() we have a race window where
895586eb 7860 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7c11d0ae
QW
7861 * If we continue to release/invalidate the page, we could cause use-after-free
7862 * for subpage spinlock. So this function is to spin and wait for subpage
7863 * spinlock.
7864 */
7865static void wait_subpage_spinlock(struct page *page)
7866{
7867 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
cfbf07e2 7868 struct folio *folio = page_folio(page);
7c11d0ae
QW
7869 struct btrfs_subpage *subpage;
7870
13df3775 7871 if (!btrfs_is_subpage(fs_info, page->mapping))
7c11d0ae
QW
7872 return;
7873
cfbf07e2
QW
7874 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7875 subpage = folio_get_private(folio);
7c11d0ae
QW
7876
7877 /*
7878 * This may look insane as we just acquire the spinlock and release it,
7879 * without doing anything. But we just want to make sure no one is
7880 * still holding the subpage spinlock.
7881 * And since the page is not dirty nor writeback, and we have page
7882 * locked, the only possible way to hold a spinlock is from the endio
7883 * function to clear page writeback.
7884 *
7885 * Here we just acquire the spinlock so that all existing callers
7886 * should exit and we're safe to release/invalidate the page.
7887 */
7888 spin_lock_irq(&subpage->lock);
7889 spin_unlock_irq(&subpage->lock);
7890}
7891
f913cff3 7892static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
9ebefb18 7893{
f913cff3 7894 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7c11d0ae
QW
7895
7896 if (ret == 1) {
f913cff3
MWO
7897 wait_subpage_spinlock(&folio->page);
7898 clear_page_extent_mapped(&folio->page);
7c11d0ae 7899 }
a52d9a80 7900 return ret;
39279cc3
CM
7901}
7902
f913cff3 7903static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
e6dcd2dc 7904{
f913cff3
MWO
7905 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7906 return false;
7907 return __btrfs_release_folio(folio, gfp_flags);
e6dcd2dc
CM
7908}
7909
f8e66081 7910#ifdef CONFIG_MIGRATION
e7a60a17
MWO
7911static int btrfs_migrate_folio(struct address_space *mapping,
7912 struct folio *dst, struct folio *src,
f8e66081
RG
7913 enum migrate_mode mode)
7914{
e7a60a17 7915 int ret = filemap_migrate_folio(mapping, dst, src, mode);
f8e66081 7916
f8e66081
RG
7917 if (ret != MIGRATEPAGE_SUCCESS)
7918 return ret;
7919
e7a60a17
MWO
7920 if (folio_test_ordered(src)) {
7921 folio_clear_ordered(src);
7922 folio_set_ordered(dst);
f8e66081
RG
7923 }
7924
f8e66081
RG
7925 return MIGRATEPAGE_SUCCESS;
7926}
e7a60a17
MWO
7927#else
7928#define btrfs_migrate_folio NULL
f8e66081
RG
7929#endif
7930
895586eb
MWO
7931static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7932 size_t length)
39279cc3 7933{
895586eb 7934 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
b945a463 7935 struct btrfs_fs_info *fs_info = inode->root->fs_info;
53ac7ead 7936 struct extent_io_tree *tree = &inode->io_tree;
2ac55d41 7937 struct extent_state *cached_state = NULL;
895586eb
MWO
7938 u64 page_start = folio_pos(folio);
7939 u64 page_end = page_start + folio_size(folio) - 1;
3b835840 7940 u64 cur;
53ac7ead 7941 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
39279cc3 7942
8b62b72b 7943 /*
895586eb
MWO
7944 * We have folio locked so no new ordered extent can be created on this
7945 * page, nor bio can be submitted for this folio.
8b62b72b 7946 *
895586eb
MWO
7947 * But already submitted bio can still be finished on this folio.
7948 * Furthermore, endio function won't skip folio which has Ordered
f57ad937 7949 * (Private2) already cleared, so it's possible for endio and
895586eb
MWO
7950 * invalidate_folio to do the same ordered extent accounting twice
7951 * on one folio.
266a2586
QW
7952 *
7953 * So here we wait for any submitted bios to finish, so that we won't
895586eb 7954 * do double ordered extent accounting on the same folio.
8b62b72b 7955 */
895586eb
MWO
7956 folio_wait_writeback(folio);
7957 wait_subpage_spinlock(&folio->page);
8b62b72b 7958
bcd77455
QW
7959 /*
7960 * For subpage case, we have call sites like
7961 * btrfs_punch_hole_lock_range() which passes range not aligned to
7962 * sectorsize.
895586eb
MWO
7963 * If the range doesn't cover the full folio, we don't need to and
7964 * shouldn't clear page extent mapped, as folio->private can still
bcd77455
QW
7965 * record subpage dirty bits for other part of the range.
7966 *
895586eb
MWO
7967 * For cases that invalidate the full folio even the range doesn't
7968 * cover the full folio, like invalidating the last folio, we're
bcd77455
QW
7969 * still safe to wait for ordered extent to finish.
7970 */
5a60542c 7971 if (!(offset == 0 && length == folio_size(folio))) {
f913cff3 7972 btrfs_release_folio(folio, GFP_NOFS);
e6dcd2dc
CM
7973 return;
7974 }
131e404a
FDBM
7975
7976 if (!inode_evicting)
570eb97b 7977 lock_extent(tree, page_start, page_end, &cached_state);
951c80f8 7978
3b835840
QW
7979 cur = page_start;
7980 while (cur < page_end) {
7981 struct btrfs_ordered_extent *ordered;
3b835840 7982 u64 range_end;
b945a463 7983 u32 range_len;
bd015294 7984 u32 extra_flags = 0;
3b835840
QW
7985
7986 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7987 page_end + 1 - cur);
7988 if (!ordered) {
7989 range_end = page_end;
7990 /*
7991 * No ordered extent covering this range, we are safe
7992 * to delete all extent states in the range.
7993 */
bd015294 7994 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
7995 goto next;
7996 }
7997 if (ordered->file_offset > cur) {
7998 /*
7999 * There is a range between [cur, oe->file_offset) not
8000 * covered by any ordered extent.
8001 * We are safe to delete all extent states, and handle
8002 * the ordered extent in the next iteration.
8003 */
8004 range_end = ordered->file_offset - 1;
bd015294 8005 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8006 goto next;
8007 }
8008
8009 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8010 page_end);
b945a463
QW
8011 ASSERT(range_end + 1 - cur < U32_MAX);
8012 range_len = range_end + 1 - cur;
55151ea9 8013 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
3b835840 8014 /*
f57ad937
QW
8015 * If Ordered (Private2) is cleared, it means endio has
8016 * already been executed for the range.
3b835840
QW
8017 * We can't delete the extent states as
8018 * btrfs_finish_ordered_io() may still use some of them.
8019 */
3b835840
QW
8020 goto next;
8021 }
55151ea9 8022 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
3b835840 8023
eb84ae03 8024 /*
2766ff61
FM
8025 * IO on this page will never be started, so we need to account
8026 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8027 * here, must leave that up for the ordered extent completion.
3b835840
QW
8028 *
8029 * This will also unlock the range for incoming
8030 * btrfs_finish_ordered_io().
eb84ae03 8031 */
131e404a 8032 if (!inode_evicting)
3b835840 8033 clear_extent_bit(tree, cur, range_end,
2766ff61 8034 EXTENT_DELALLOC |
131e404a 8035 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
bd015294 8036 EXTENT_DEFRAG, &cached_state);
3b835840 8037
54c65371 8038 spin_lock_irq(&inode->ordered_tree_lock);
3b835840
QW
8039 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8040 ordered->truncated_len = min(ordered->truncated_len,
8041 cur - ordered->file_offset);
54c65371 8042 spin_unlock_irq(&inode->ordered_tree_lock);
3b835840 8043
bd015294
JB
8044 /*
8045 * If the ordered extent has finished, we're safe to delete all
8046 * the extent states of the range, otherwise
8047 * btrfs_finish_ordered_io() will get executed by endio for
8048 * other pages, so we can't delete extent states.
8049 */
3b835840 8050 if (btrfs_dec_test_ordered_pending(inode, &ordered,
f41b6ba9 8051 cur, range_end + 1 - cur)) {
3b835840
QW
8052 btrfs_finish_ordered_io(ordered);
8053 /*
8054 * The ordered extent has finished, now we're again
8055 * safe to delete all extent states of the range.
8056 */
bd015294 8057 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8058 }
8059next:
8060 if (ordered)
8061 btrfs_put_ordered_extent(ordered);
8b62b72b 8062 /*
3b835840
QW
8063 * Qgroup reserved space handler
8064 * Sector(s) here will be either:
266a2586 8065 *
3b835840
QW
8066 * 1) Already written to disk or bio already finished
8067 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8068 * Qgroup will be handled by its qgroup_record then.
8069 * btrfs_qgroup_free_data() call will do nothing here.
8070 *
8071 * 2) Not written to disk yet
8072 * Then btrfs_qgroup_free_data() call will clear the
8073 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8074 * reserved data space.
8075 * Since the IO will never happen for this page.
8b62b72b 8076 */
9e65bfca 8077 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
131e404a 8078 if (!inode_evicting) {
3b835840
QW
8079 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8080 EXTENT_DELALLOC | EXTENT_UPTODATE |
bd015294
JB
8081 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8082 extra_flags, &cached_state);
131e404a 8083 }
3b835840 8084 cur = range_end + 1;
131e404a 8085 }
b9d0b389 8086 /*
3b835840 8087 * We have iterated through all ordered extents of the page, the page
f57ad937
QW
8088 * should not have Ordered (Private2) anymore, or the above iteration
8089 * did something wrong.
b9d0b389 8090 */
895586eb 8091 ASSERT(!folio_test_ordered(folio));
55151ea9 8092 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
3b835840 8093 if (!inode_evicting)
f913cff3 8094 __btrfs_release_folio(folio, GFP_NOFS);
895586eb 8095 clear_page_extent_mapped(&folio->page);
39279cc3
CM
8096}
8097
9ebefb18
CM
8098/*
8099 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8100 * called from a page fault handler when a page is first dirtied. Hence we must
8101 * be careful to check for EOF conditions here. We set the page up correctly
8102 * for a written page which means we get ENOSPC checking when writing into
8103 * holes and correct delalloc and unwritten extent mapping on filesystems that
8104 * support these features.
8105 *
8106 * We are not allowed to take the i_mutex here so we have to play games to
8107 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8108 * truncate_setsize() writes the inode size before removing pages, once we have
8109 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8110 * beyond EOF, then the page is guaranteed safe against truncation until we
8111 * unlock the page.
8112 */
a528a241 8113vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8114{
c2ec175c 8115 struct page *page = vmf->page;
55151ea9 8116 struct folio *folio = page_folio(page);
11bac800 8117 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8119 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8120 struct btrfs_ordered_extent *ordered;
2ac55d41 8121 struct extent_state *cached_state = NULL;
364ecf36 8122 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 8123 unsigned long zero_start;
9ebefb18 8124 loff_t size;
a528a241
SJ
8125 vm_fault_t ret;
8126 int ret2;
9998eb70 8127 int reserved = 0;
d0b7da88 8128 u64 reserved_space;
a52d9a80 8129 u64 page_start;
e6dcd2dc 8130 u64 page_end;
d0b7da88
CR
8131 u64 end;
8132
55151ea9
QW
8133 ASSERT(folio_order(folio) == 0);
8134
09cbfeaf 8135 reserved_space = PAGE_SIZE;
9ebefb18 8136
b2b5ef5c 8137 sb_start_pagefault(inode->i_sb);
df480633 8138 page_start = page_offset(page);
09cbfeaf 8139 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8140 end = page_end;
df480633 8141
d0b7da88
CR
8142 /*
8143 * Reserving delalloc space after obtaining the page lock can lead to
8144 * deadlock. For example, if a dirty page is locked by this function
8145 * and the call to btrfs_delalloc_reserve_space() ends up triggering
f3e90c1c 8146 * dirty page write out, then the btrfs_writepages() function could
d0b7da88
CR
8147 * end up waiting indefinitely to get a lock on the page currently
8148 * being processed by btrfs_page_mkwrite() function.
8149 */
e5b7231e
NB
8150 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8151 page_start, reserved_space);
a528a241
SJ
8152 if (!ret2) {
8153 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8154 reserved = 1;
8155 }
a528a241
SJ
8156 if (ret2) {
8157 ret = vmf_error(ret2);
9998eb70
CM
8158 if (reserved)
8159 goto out;
8160 goto out_noreserve;
56a76f82 8161 }
1832a6d5 8162
56a76f82 8163 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8164again:
8318ba79 8165 down_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8166 lock_page(page);
9ebefb18 8167 size = i_size_read(inode);
a52d9a80 8168
9ebefb18 8169 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8170 (page_start >= size)) {
9ebefb18
CM
8171 /* page got truncated out from underneath us */
8172 goto out_unlock;
8173 }
e6dcd2dc
CM
8174 wait_on_page_writeback(page);
8175
570eb97b 8176 lock_extent(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8177 ret2 = set_page_extent_mapped(page);
8178 if (ret2 < 0) {
8179 ret = vmf_error(ret2);
570eb97b 8180 unlock_extent(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8181 goto out_unlock;
8182 }
e6dcd2dc 8183
eb84ae03
CM
8184 /*
8185 * we can't set the delalloc bits if there are pending ordered
8186 * extents. Drop our locks and wait for them to finish
8187 */
a776c6fa
NB
8188 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8189 PAGE_SIZE);
e6dcd2dc 8190 if (ordered) {
570eb97b 8191 unlock_extent(io_tree, page_start, page_end, &cached_state);
e6dcd2dc 8192 unlock_page(page);
8318ba79 8193 up_read(&BTRFS_I(inode)->i_mmap_lock);
36d45567 8194 btrfs_start_ordered_extent(ordered);
e6dcd2dc
CM
8195 btrfs_put_ordered_extent(ordered);
8196 goto again;
8197 }
8198
09cbfeaf 8199 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8200 reserved_space = round_up(size - page_start,
0b246afa 8201 fs_info->sectorsize);
09cbfeaf 8202 if (reserved_space < PAGE_SIZE) {
d0b7da88 8203 end = page_start + reserved_space - 1;
86d52921
NB
8204 btrfs_delalloc_release_space(BTRFS_I(inode),
8205 data_reserved, page_start,
8206 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8207 }
8208 }
8209
fbf19087 8210 /*
5416034f
LB
8211 * page_mkwrite gets called when the page is firstly dirtied after it's
8212 * faulted in, but write(2) could also dirty a page and set delalloc
8213 * bits, thus in this case for space account reason, we still need to
8214 * clear any delalloc bits within this page range since we have to
8215 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8216 */
d0b7da88 8217 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d 8218 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
bd015294 8219 EXTENT_DEFRAG, &cached_state);
fbf19087 8220
c2566f22 8221 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8222 &cached_state);
a528a241 8223 if (ret2) {
570eb97b 8224 unlock_extent(io_tree, page_start, page_end, &cached_state);
9ed74f2d
JB
8225 ret = VM_FAULT_SIGBUS;
8226 goto out_unlock;
8227 }
9ebefb18
CM
8228
8229 /* page is wholly or partially inside EOF */
09cbfeaf 8230 if (page_start + PAGE_SIZE > size)
7073017a 8231 zero_start = offset_in_page(size);
9ebefb18 8232 else
09cbfeaf 8233 zero_start = PAGE_SIZE;
9ebefb18 8234
21a8935e 8235 if (zero_start != PAGE_SIZE)
d048b9c2 8236 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
21a8935e 8237
55151ea9
QW
8238 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
8239 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
8240 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
5a3f23d5 8241
bc0939fc 8242 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
257c62e1 8243
570eb97b 8244 unlock_extent(io_tree, page_start, page_end, &cached_state);
8318ba79 8245 up_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8246
76de60ed
YY
8247 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8248 sb_end_pagefault(inode->i_sb);
8249 extent_changeset_free(data_reserved);
8250 return VM_FAULT_LOCKED;
717beb96
CM
8251
8252out_unlock:
9ebefb18 8253 unlock_page(page);
8318ba79 8254 up_read(&BTRFS_I(inode)->i_mmap_lock);
1832a6d5 8255out:
8702ba93 8256 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8257 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8258 reserved_space, (ret != 0));
9998eb70 8259out_noreserve:
b2b5ef5c 8260 sb_end_pagefault(inode->i_sb);
364ecf36 8261 extent_changeset_free(data_reserved);
9ebefb18
CM
8262 return ret;
8263}
8264
d9dcae67 8265static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
39279cc3 8266{
d9ac19c3 8267 struct btrfs_truncate_control control = {
d9dcae67
DS
8268 .inode = inode,
8269 .ino = btrfs_ino(inode),
d9ac19c3 8270 .min_type = BTRFS_EXTENT_DATA_KEY,
655807b8 8271 .clear_extent_range = true,
d9ac19c3 8272 };
d9dcae67
DS
8273 struct btrfs_root *root = inode->root;
8274 struct btrfs_fs_info *fs_info = root->fs_info;
fcb80c2a 8275 struct btrfs_block_rsv *rsv;
ad7e1a74 8276 int ret;
39279cc3 8277 struct btrfs_trans_handle *trans;
0b246afa 8278 u64 mask = fs_info->sectorsize - 1;
6822b3f7 8279 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8280
213e8c55 8281 if (!skip_writeback) {
d9dcae67
DS
8282 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8283 inode->vfs_inode.i_size & (~mask),
213e8c55
FM
8284 (u64)-1);
8285 if (ret)
8286 return ret;
8287 }
39279cc3 8288
fcb80c2a 8289 /*
f7e9e8fc
OS
8290 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8291 * things going on here:
fcb80c2a 8292 *
f7e9e8fc 8293 * 1) We need to reserve space to update our inode.
fcb80c2a 8294 *
f7e9e8fc 8295 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8296 * be free'd up by the truncate operation, but also have some slack
8297 * space reserved in case it uses space during the truncate (thank you
8298 * very much snapshotting).
8299 *
f7e9e8fc 8300 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8301 * space doing the truncate, and we have no earthly idea how much space
01327610 8302 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8303 * doesn't end up using space reserved for updating the inode. We also
8304 * need to be able to stop the transaction and start a new one, which
8305 * means we need to be able to update the inode several times, and we
8306 * have no idea of knowing how many times that will be, so we can't just
8307 * reserve 1 item for the entirety of the operation, so that has to be
8308 * done separately as well.
fcb80c2a
JB
8309 *
8310 * So that leaves us with
8311 *
f7e9e8fc 8312 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8313 * transaction reservation.
f7e9e8fc 8314 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8315 * updating the inode.
8316 */
2ff7e61e 8317 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8318 if (!rsv)
8319 return -ENOMEM;
4a338542 8320 rsv->size = min_size;
710d5921 8321 rsv->failfast = true;
f0cd846e 8322
907cbceb 8323 /*
07127184 8324 * 1 for the truncate slack space
907cbceb
JB
8325 * 1 for updating the inode.
8326 */
f3fe820c 8327 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8328 if (IS_ERR(trans)) {
ad7e1a74 8329 ret = PTR_ERR(trans);
fcb80c2a
JB
8330 goto out;
8331 }
f0cd846e 8332
907cbceb 8333 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8334 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8335 min_size, false);
6822b3f7
FM
8336 /*
8337 * We have reserved 2 metadata units when we started the transaction and
8338 * min_size matches 1 unit, so this should never fail, but if it does,
8339 * it's not critical we just fail truncation.
8340 */
8341 if (WARN_ON(ret)) {
8342 btrfs_end_transaction(trans);
8343 goto out;
8344 }
f0cd846e 8345
ca7e70f5 8346 trans->block_rsv = rsv;
907cbceb 8347
8082510e 8348 while (1) {
9a4a1429 8349 struct extent_state *cached_state = NULL;
d9dcae67 8350 const u64 new_size = inode->vfs_inode.i_size;
9a4a1429
JB
8351 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8352
d9ac19c3 8353 control.new_size = new_size;
d9dcae67 8354 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
9a4a1429
JB
8355 /*
8356 * We want to drop from the next block forward in case this new
8357 * size is not block aligned since we will be keeping the last
8358 * block of the extent just the way it is.
8359 */
d9dcae67 8360 btrfs_drop_extent_map_range(inode,
4c0c8cfc
FM
8361 ALIGN(new_size, fs_info->sectorsize),
8362 (u64)-1, false);
9a4a1429 8363
71d18b53 8364 ret = btrfs_truncate_inode_items(trans, root, &control);
c2ddb612 8365
d9dcae67
DS
8366 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8367 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
c2ddb612 8368
d9dcae67 8369 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
9a4a1429 8370
ddfae63c 8371 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8372 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8373 break;
39279cc3 8374
8b9d0322 8375 ret = btrfs_update_inode(trans, inode);
ad7e1a74 8376 if (ret)
3893e33b 8377 break;
ca7e70f5 8378
3a45bb20 8379 btrfs_end_transaction(trans);
2ff7e61e 8380 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8381
8382 trans = btrfs_start_transaction(root, 2);
8383 if (IS_ERR(trans)) {
ad7e1a74 8384 ret = PTR_ERR(trans);
ca7e70f5
JB
8385 trans = NULL;
8386 break;
8387 }
8388
63f018be 8389 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8390 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8391 rsv, min_size, false);
6822b3f7
FM
8392 /*
8393 * We have reserved 2 metadata units when we started the
8394 * transaction and min_size matches 1 unit, so this should never
8395 * fail, but if it does, it's not critical we just fail truncation.
8396 */
8397 if (WARN_ON(ret))
8398 break;
8399
ca7e70f5 8400 trans->block_rsv = rsv;
8082510e
YZ
8401 }
8402
ddfae63c
JB
8403 /*
8404 * We can't call btrfs_truncate_block inside a trans handle as we could
54f03ab1
JB
8405 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8406 * know we've truncated everything except the last little bit, and can
8407 * do btrfs_truncate_block and then update the disk_i_size.
ddfae63c 8408 */
54f03ab1 8409 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
ddfae63c
JB
8410 btrfs_end_transaction(trans);
8411 btrfs_btree_balance_dirty(fs_info);
8412
d9dcae67 8413 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
ddfae63c
JB
8414 if (ret)
8415 goto out;
8416 trans = btrfs_start_transaction(root, 1);
8417 if (IS_ERR(trans)) {
8418 ret = PTR_ERR(trans);
8419 goto out;
8420 }
d9dcae67 8421 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8422 }
8423
917c16b2 8424 if (trans) {
ad7e1a74
OS
8425 int ret2;
8426
0b246afa 8427 trans->block_rsv = &fs_info->trans_block_rsv;
8b9d0322 8428 ret2 = btrfs_update_inode(trans, inode);
ad7e1a74
OS
8429 if (ret2 && !ret)
8430 ret = ret2;
7b128766 8431
ad7e1a74
OS
8432 ret2 = btrfs_end_transaction(trans);
8433 if (ret2 && !ret)
8434 ret = ret2;
2ff7e61e 8435 btrfs_btree_balance_dirty(fs_info);
917c16b2 8436 }
fcb80c2a 8437out:
2ff7e61e 8438 btrfs_free_block_rsv(fs_info, rsv);
0d7d3165
FM
8439 /*
8440 * So if we truncate and then write and fsync we normally would just
8441 * write the extents that changed, which is a problem if we need to
8442 * first truncate that entire inode. So set this flag so we write out
8443 * all of the extents in the inode to the sync log so we're completely
8444 * safe.
8445 *
8446 * If no extents were dropped or trimmed we don't need to force the next
8447 * fsync to truncate all the inode's items from the log and re-log them
8448 * all. This means the truncate operation did not change the file size,
8449 * or changed it to a smaller size but there was only an implicit hole
8450 * between the old i_size and the new i_size, and there were no prealloc
8451 * extents beyond i_size to drop.
8452 */
d9ac19c3 8453 if (control.extents_found > 0)
d9dcae67 8454 btrfs_set_inode_full_sync(inode);
fcb80c2a 8455
ad7e1a74 8456 return ret;
39279cc3
CM
8457}
8458
f2d40141 8459struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
a1fd0c35
OS
8460 struct inode *dir)
8461{
8462 struct inode *inode;
8463
8464 inode = new_inode(dir->i_sb);
8465 if (inode) {
8466 /*
8467 * Subvolumes don't inherit the sgid bit or the parent's gid if
8468 * the parent's sgid bit is set. This is probably a bug.
8469 */
f2d40141 8470 inode_init_owner(idmap, inode, NULL,
a1fd0c35
OS
8471 S_IFDIR | (~current_umask() & S_IRWXUGO));
8472 inode->i_op = &btrfs_dir_inode_operations;
8473 inode->i_fop = &btrfs_dir_file_operations;
8474 }
8475 return inode;
8476}
8477
39279cc3
CM
8478struct inode *btrfs_alloc_inode(struct super_block *sb)
8479{
69fe2d75 8480 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8481 struct btrfs_inode *ei;
2ead6ae7 8482 struct inode *inode;
637e6e0f
DS
8483 struct extent_io_tree *file_extent_tree = NULL;
8484
8485 /* Self tests may pass a NULL fs_info. */
8486 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8487 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8488 if (!file_extent_tree)
8489 return NULL;
8490 }
39279cc3 8491
fd60b288 8492 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
637e6e0f
DS
8493 if (!ei) {
8494 kfree(file_extent_tree);
39279cc3 8495 return NULL;
637e6e0f 8496 }
2ead6ae7
YZ
8497
8498 ei->root = NULL;
2ead6ae7 8499 ei->generation = 0;
15ee9bc7 8500 ei->last_trans = 0;
257c62e1 8501 ei->last_sub_trans = 0;
e02119d5 8502 ei->logged_trans = 0;
2ead6ae7 8503 ei->delalloc_bytes = 0;
a7e3b975 8504 ei->new_delalloc_bytes = 0;
47059d93 8505 ei->defrag_bytes = 0;
2ead6ae7
YZ
8506 ei->disk_i_size = 0;
8507 ei->flags = 0;
77eea05e 8508 ei->ro_flags = 0;
7709cde3 8509 ei->csum_bytes = 0;
2ead6ae7 8510 ei->index_cnt = (u64)-1;
67de1176 8511 ei->dir_index = 0;
2ead6ae7 8512 ei->last_unlink_trans = 0;
3ebac17c 8513 ei->last_reflink_trans = 0;
46d8bc34 8514 ei->last_log_commit = 0;
2ead6ae7 8515
9e0baf60
JB
8516 spin_lock_init(&ei->lock);
8517 ei->outstanding_extents = 0;
69fe2d75
JB
8518 if (sb->s_magic != BTRFS_TEST_MAGIC)
8519 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8520 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8521 ei->runtime_flags = 0;
b52aa8c9 8522 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8523 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8524
16cdcec7
MX
8525 ei->delayed_node = NULL;
8526
c6e8f898
DS
8527 ei->i_otime_sec = 0;
8528 ei->i_otime_nsec = 0;
9cc97d64 8529
2ead6ae7 8530 inode = &ei->vfs_inode;
a8067e02 8531 extent_map_tree_init(&ei->extent_tree);
738290c0
DS
8532
8533 /* This io tree sets the valid inode. */
35da5a7e 8534 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
0988fc7b 8535 ei->io_tree.inode = ei;
738290c0 8536
637e6e0f
DS
8537 ei->file_extent_tree = file_extent_tree;
8538 if (file_extent_tree) {
8539 extent_io_tree_init(fs_info, ei->file_extent_tree,
8540 IO_TREE_INODE_FILE_EXTENT);
8541 /* Lockdep class is set only for the file extent tree. */
8542 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8543 }
2ead6ae7 8544 mutex_init(&ei->log_mutex);
54c65371
DS
8545 spin_lock_init(&ei->ordered_tree_lock);
8546 ei->ordered_tree = RB_ROOT;
8547 ei->ordered_tree_last = NULL;
2ead6ae7 8548 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8549 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8550 RB_CLEAR_NODE(&ei->rb_node);
8318ba79 8551 init_rwsem(&ei->i_mmap_lock);
2ead6ae7
YZ
8552
8553 return inode;
39279cc3
CM
8554}
8555
aaedb55b
JB
8556#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8557void btrfs_test_destroy_inode(struct inode *inode)
8558{
4c0c8cfc 8559 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
637e6e0f 8560 kfree(BTRFS_I(inode)->file_extent_tree);
aaedb55b
JB
8561 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8562}
8563#endif
8564
26602cab 8565void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8566{
637e6e0f 8567 kfree(BTRFS_I(inode)->file_extent_tree);
fa0d7e3d
NP
8568 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8569}
8570
633cc816 8571void btrfs_destroy_inode(struct inode *vfs_inode)
39279cc3 8572{
e6dcd2dc 8573 struct btrfs_ordered_extent *ordered;
633cc816
NB
8574 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8575 struct btrfs_root *root = inode->root;
5f4403e1 8576 bool freespace_inode;
5a3f23d5 8577
633cc816
NB
8578 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8579 WARN_ON(vfs_inode->i_data.nrpages);
8580 WARN_ON(inode->block_rsv.reserved);
8581 WARN_ON(inode->block_rsv.size);
8582 WARN_ON(inode->outstanding_extents);
dc287224
FM
8583 if (!S_ISDIR(vfs_inode->i_mode)) {
8584 WARN_ON(inode->delalloc_bytes);
8585 WARN_ON(inode->new_delalloc_bytes);
8586 }
633cc816
NB
8587 WARN_ON(inode->csum_bytes);
8588 WARN_ON(inode->defrag_bytes);
39279cc3 8589
a6dbd429
JB
8590 /*
8591 * This can happen where we create an inode, but somebody else also
8592 * created the same inode and we need to destroy the one we already
8593 * created.
8594 */
8595 if (!root)
26602cab 8596 return;
a6dbd429 8597
5f4403e1
IA
8598 /*
8599 * If this is a free space inode do not take the ordered extents lockdep
8600 * map.
8601 */
8602 freespace_inode = btrfs_is_free_space_inode(inode);
8603
d397712b 8604 while (1) {
633cc816 8605 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
e6dcd2dc
CM
8606 if (!ordered)
8607 break;
8608 else {
633cc816 8609 btrfs_err(root->fs_info,
5d163e0e 8610 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8611 ordered->file_offset, ordered->num_bytes);
5f4403e1
IA
8612
8613 if (!freespace_inode)
8614 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8615
71fe0a55 8616 btrfs_remove_ordered_extent(inode, ordered);
e6dcd2dc
CM
8617 btrfs_put_ordered_extent(ordered);
8618 btrfs_put_ordered_extent(ordered);
8619 }
8620 }
633cc816
NB
8621 btrfs_qgroup_check_reserved_leak(inode);
8622 inode_tree_del(inode);
4c0c8cfc 8623 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
633cc816
NB
8624 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8625 btrfs_put_root(inode->root);
39279cc3
CM
8626}
8627
45321ac5 8628int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8629{
8630 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8631
6379ef9f
NA
8632 if (root == NULL)
8633 return 1;
8634
fa6ac876 8635 /* the snap/subvol tree is on deleting */
69e9c6c6 8636 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8637 return 1;
76dda93c 8638 else
45321ac5 8639 return generic_drop_inode(inode);
76dda93c
YZ
8640}
8641
0ee0fda0 8642static void init_once(void *foo)
39279cc3 8643{
0d031dc4 8644 struct btrfs_inode *ei = foo;
39279cc3
CM
8645
8646 inode_init_once(&ei->vfs_inode);
8647}
8648
e67c718b 8649void __cold btrfs_destroy_cachep(void)
39279cc3 8650{
8c0a8537
KS
8651 /*
8652 * Make sure all delayed rcu free inodes are flushed before we
8653 * destroy cache.
8654 */
8655 rcu_barrier();
642c5d34 8656 bioset_exit(&btrfs_dio_bioset);
5598e900 8657 kmem_cache_destroy(btrfs_inode_cachep);
39279cc3
CM
8658}
8659
f5c29bd9 8660int __init btrfs_init_cachep(void)
39279cc3 8661{
837e1972 8662 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8663 sizeof(struct btrfs_inode), 0,
5d097056
VD
8664 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8665 init_once);
39279cc3
CM
8666 if (!btrfs_inode_cachep)
8667 goto fail;
9601e3f6 8668
642c5d34 8669 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
67d66982 8670 offsetof(struct btrfs_dio_private, bbio.bio),
642c5d34
CH
8671 BIOSET_NEED_BVECS))
8672 goto fail;
8673
39279cc3
CM
8674 return 0;
8675fail:
8676 btrfs_destroy_cachep();
8677 return -ENOMEM;
8678}
8679
b74d24f7 8680static int btrfs_getattr(struct mnt_idmap *idmap,
549c7297 8681 const struct path *path, struct kstat *stat,
a528d35e 8682 u32 request_mask, unsigned int flags)
39279cc3 8683{
df0af1a5 8684 u64 delalloc_bytes;
2766ff61 8685 u64 inode_bytes;
a528d35e 8686 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8687 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34 8688 u32 bi_flags = BTRFS_I(inode)->flags;
14605409 8689 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
04a87e34
YS
8690
8691 stat->result_mask |= STATX_BTIME;
c6e8f898
DS
8692 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8693 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
04a87e34
YS
8694 if (bi_flags & BTRFS_INODE_APPEND)
8695 stat->attributes |= STATX_ATTR_APPEND;
8696 if (bi_flags & BTRFS_INODE_COMPRESS)
8697 stat->attributes |= STATX_ATTR_COMPRESSED;
8698 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8699 stat->attributes |= STATX_ATTR_IMMUTABLE;
8700 if (bi_flags & BTRFS_INODE_NODUMP)
8701 stat->attributes |= STATX_ATTR_NODUMP;
14605409
BB
8702 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8703 stat->attributes |= STATX_ATTR_VERITY;
04a87e34
YS
8704
8705 stat->attributes_mask |= (STATX_ATTR_APPEND |
8706 STATX_ATTR_COMPRESSED |
8707 STATX_ATTR_IMMUTABLE |
8708 STATX_ATTR_NODUMP);
fadc0d8b 8709
0d72b928 8710 generic_fillattr(idmap, request_mask, inode, stat);
0ee5dc67 8711 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8712
8713 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8714 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
2766ff61 8715 inode_bytes = inode_get_bytes(inode);
df0af1a5 8716 spin_unlock(&BTRFS_I(inode)->lock);
2766ff61 8717 stat->blocks = (ALIGN(inode_bytes, blocksize) +
29e70be2 8718 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
39279cc3
CM
8719 return 0;
8720}
8721
cdd1fedf
DF
8722static int btrfs_rename_exchange(struct inode *old_dir,
8723 struct dentry *old_dentry,
8724 struct inode *new_dir,
8725 struct dentry *new_dentry)
8726{
0b246afa 8727 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf 8728 struct btrfs_trans_handle *trans;
c1621871 8729 unsigned int trans_num_items;
cdd1fedf
DF
8730 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8731 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8732 struct inode *new_inode = new_dentry->d_inode;
8733 struct inode *old_inode = old_dentry->d_inode;
88d2beec
FM
8734 struct btrfs_rename_ctx old_rename_ctx;
8735 struct btrfs_rename_ctx new_rename_ctx;
4a0cc7ca
NB
8736 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8737 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8738 u64 old_idx = 0;
8739 u64 new_idx = 0;
cdd1fedf 8740 int ret;
75b463d2 8741 int ret2;
dc09ef35 8742 bool need_abort = false;
ab3c5c18 8743 struct fscrypt_name old_fname, new_fname;
6db75318 8744 struct fscrypt_str *old_name, *new_name;
cdd1fedf 8745
3f79f6f6
N
8746 /*
8747 * For non-subvolumes allow exchange only within one subvolume, in the
8748 * same inode namespace. Two subvolumes (represented as directory) can
8749 * be exchanged as they're a logical link and have a fixed inode number.
8750 */
8751 if (root != dest &&
8752 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8753 new_ino != BTRFS_FIRST_FREE_OBJECTID))
cdd1fedf
DF
8754 return -EXDEV;
8755
ab3c5c18
STD
8756 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8757 if (ret)
8758 return ret;
8759
8760 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8761 if (ret) {
8762 fscrypt_free_filename(&old_fname);
8763 return ret;
8764 }
8765
6db75318
STD
8766 old_name = &old_fname.disk_name;
8767 new_name = &new_fname.disk_name;
ab3c5c18 8768
cdd1fedf 8769 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8770 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8771 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8772 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8773
8774 /*
c1621871
OS
8775 * For each inode:
8776 * 1 to remove old dir item
8777 * 1 to remove old dir index
8778 * 1 to add new dir item
8779 * 1 to add new dir index
8780 * 1 to update parent inode
8781 *
8782 * If the parents are the same, we only need to account for one
cdd1fedf 8783 */
c1621871
OS
8784 trans_num_items = (old_dir == new_dir ? 9 : 10);
8785 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8786 /*
8787 * 1 to remove old root ref
8788 * 1 to remove old root backref
8789 * 1 to add new root ref
8790 * 1 to add new root backref
8791 */
8792 trans_num_items += 4;
8793 } else {
8794 /*
8795 * 1 to update inode item
8796 * 1 to remove old inode ref
8797 * 1 to add new inode ref
8798 */
8799 trans_num_items += 3;
8800 }
8801 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8802 trans_num_items += 4;
8803 else
8804 trans_num_items += 3;
8805 trans = btrfs_start_transaction(root, trans_num_items);
cdd1fedf
DF
8806 if (IS_ERR(trans)) {
8807 ret = PTR_ERR(trans);
8808 goto out_notrans;
8809 }
8810
00aa8e87
JB
8811 if (dest != root) {
8812 ret = btrfs_record_root_in_trans(trans, dest);
8813 if (ret)
8814 goto out_fail;
8815 }
3e174099 8816
cdd1fedf
DF
8817 /*
8818 * We need to find a free sequence number both in the source and
8819 * in the destination directory for the exchange.
8820 */
877574e2 8821 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8822 if (ret)
8823 goto out_fail;
877574e2 8824 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8825 if (ret)
8826 goto out_fail;
8827
8828 BTRFS_I(old_inode)->dir_index = 0ULL;
8829 BTRFS_I(new_inode)->dir_index = 0ULL;
8830
8831 /* Reference for the source. */
8832 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8833 /* force full log commit if subvolume involved. */
90787766 8834 btrfs_set_log_full_commit(trans);
cdd1fedf 8835 } else {
6db75318 8836 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
f85b7379
DS
8837 btrfs_ino(BTRFS_I(new_dir)),
8838 old_idx);
cdd1fedf
DF
8839 if (ret)
8840 goto out_fail;
dc09ef35 8841 need_abort = true;
cdd1fedf
DF
8842 }
8843
8844 /* And now for the dest. */
8845 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8846 /* force full log commit if subvolume involved. */
90787766 8847 btrfs_set_log_full_commit(trans);
cdd1fedf 8848 } else {
6db75318 8849 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
f85b7379
DS
8850 btrfs_ino(BTRFS_I(old_dir)),
8851 new_idx);
dc09ef35
JB
8852 if (ret) {
8853 if (need_abort)
8854 btrfs_abort_transaction(trans, ret);
cdd1fedf 8855 goto out_fail;
dc09ef35 8856 }
cdd1fedf
DF
8857 }
8858
8859 /* Update inode version and ctime/mtime. */
8860 inode_inc_iversion(old_dir);
8861 inode_inc_iversion(new_dir);
8862 inode_inc_iversion(old_inode);
8863 inode_inc_iversion(new_inode);
130f1eca 8864 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
cdd1fedf
DF
8865
8866 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379 8867 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
59fcf388 8868 BTRFS_I(old_inode), true);
f85b7379 8869 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
59fcf388 8870 BTRFS_I(new_inode), true);
cdd1fedf
DF
8871 }
8872
8873 /* src is a subvolume */
8874 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
5b7544cb 8875 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
cdd1fedf 8876 } else { /* src is an inode */
4467af88 8877 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
4ec5934e 8878 BTRFS_I(old_dentry->d_inode),
6db75318 8879 old_name, &old_rename_ctx);
cdd1fedf 8880 if (!ret)
8b9d0322 8881 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
cdd1fedf
DF
8882 }
8883 if (ret) {
66642832 8884 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8885 goto out_fail;
8886 }
8887
8888 /* dest is a subvolume */
8889 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
5b7544cb 8890 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
cdd1fedf 8891 } else { /* dest is an inode */
4467af88 8892 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 8893 BTRFS_I(new_dentry->d_inode),
6db75318 8894 new_name, &new_rename_ctx);
cdd1fedf 8895 if (!ret)
8b9d0322 8896 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
cdd1fedf
DF
8897 }
8898 if (ret) {
66642832 8899 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8900 goto out_fail;
8901 }
8902
db0a669f 8903 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
6db75318 8904 new_name, 0, old_idx);
cdd1fedf 8905 if (ret) {
66642832 8906 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8907 goto out_fail;
8908 }
8909
db0a669f 8910 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
6db75318 8911 old_name, 0, new_idx);
cdd1fedf 8912 if (ret) {
66642832 8913 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8914 goto out_fail;
8915 }
8916
8917 if (old_inode->i_nlink == 1)
8918 BTRFS_I(old_inode)->dir_index = old_idx;
8919 if (new_inode->i_nlink == 1)
8920 BTRFS_I(new_inode)->dir_index = new_idx;
8921
259c4b96
FM
8922 /*
8923 * Now pin the logs of the roots. We do it to ensure that no other task
8924 * can sync the logs while we are in progress with the rename, because
8925 * that could result in an inconsistency in case any of the inodes that
8926 * are part of this rename operation were logged before.
8927 */
8928 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8929 btrfs_pin_log_trans(root);
8930 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8931 btrfs_pin_log_trans(dest);
8932
8933 /* Do the log updates for all inodes. */
8934 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 8935 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
88d2beec 8936 old_rename_ctx.index, new_dentry->d_parent);
259c4b96 8937 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 8938 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
88d2beec 8939 new_rename_ctx.index, old_dentry->d_parent);
259c4b96
FM
8940
8941 /* Now unpin the logs. */
8942 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8943 btrfs_end_log_trans(root);
8944 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
cdd1fedf 8945 btrfs_end_log_trans(dest);
cdd1fedf 8946out_fail:
75b463d2
FM
8947 ret2 = btrfs_end_transaction(trans);
8948 ret = ret ? ret : ret2;
cdd1fedf 8949out_notrans:
943eb3bf
JB
8950 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8951 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8952 up_read(&fs_info->subvol_sem);
cdd1fedf 8953
ab3c5c18
STD
8954 fscrypt_free_filename(&new_fname);
8955 fscrypt_free_filename(&old_fname);
cdd1fedf
DF
8956 return ret;
8957}
8958
f2d40141 8959static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
a1fd0c35
OS
8960 struct inode *dir)
8961{
8962 struct inode *inode;
8963
8964 inode = new_inode(dir->i_sb);
8965 if (inode) {
f2d40141 8966 inode_init_owner(idmap, inode, dir,
a1fd0c35
OS
8967 S_IFCHR | WHITEOUT_MODE);
8968 inode->i_op = &btrfs_special_inode_operations;
8969 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8970 }
8971 return inode;
8972}
8973
f2d40141 8974static int btrfs_rename(struct mnt_idmap *idmap,
ca07274c
CB
8975 struct inode *old_dir, struct dentry *old_dentry,
8976 struct inode *new_dir, struct dentry *new_dentry,
8977 unsigned int flags)
39279cc3 8978{
0b246afa 8979 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
3538d68d
OS
8980 struct btrfs_new_inode_args whiteout_args = {
8981 .dir = old_dir,
8982 .dentry = old_dentry,
8983 };
39279cc3 8984 struct btrfs_trans_handle *trans;
5062af35 8985 unsigned int trans_num_items;
39279cc3 8986 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8987 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
8988 struct inode *new_inode = d_inode(new_dentry);
8989 struct inode *old_inode = d_inode(old_dentry);
88d2beec 8990 struct btrfs_rename_ctx rename_ctx;
00e4e6b3 8991 u64 index = 0;
39279cc3 8992 int ret;
75b463d2 8993 int ret2;
4a0cc7ca 8994 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
ab3c5c18 8995 struct fscrypt_name old_fname, new_fname;
39279cc3 8996
4a0cc7ca 8997 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8998 return -EPERM;
8999
4df27c4d 9000 /* we only allow rename subvolume link between subvolumes */
33345d01 9001 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9002 return -EXDEV;
9003
33345d01 9004 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9005 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9006 return -ENOTEMPTY;
5f39d397 9007
4df27c4d
YZ
9008 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9009 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9010 return -ENOTEMPTY;
9c52057c 9011
ab3c5c18
STD
9012 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9013 if (ret)
9014 return ret;
9c52057c 9015
ab3c5c18
STD
9016 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9017 if (ret) {
9018 fscrypt_free_filename(&old_fname);
9019 return ret;
9020 }
9c52057c 9021
9c52057c 9022 /* check for collisions, even if the name isn't there */
6db75318 9023 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9c52057c
CM
9024 if (ret) {
9025 if (ret == -EEXIST) {
9026 /* we shouldn't get
9027 * eexist without a new_inode */
fae7f21c 9028 if (WARN_ON(!new_inode)) {
ab3c5c18 9029 goto out_fscrypt_names;
9c52057c
CM
9030 }
9031 } else {
9032 /* maybe -EOVERFLOW */
ab3c5c18 9033 goto out_fscrypt_names;
9c52057c
CM
9034 }
9035 }
9036 ret = 0;
9037
5a3f23d5 9038 /*
8d875f95
CM
9039 * we're using rename to replace one file with another. Start IO on it
9040 * now so we don't add too much work to the end of the transaction
5a3f23d5 9041 */
8d875f95 9042 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9043 filemap_flush(old_inode->i_mapping);
9044
a1fd0c35 9045 if (flags & RENAME_WHITEOUT) {
f2d40141 9046 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
abe3bf74
CJ
9047 if (!whiteout_args.inode) {
9048 ret = -ENOMEM;
9049 goto out_fscrypt_names;
9050 }
3538d68d
OS
9051 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9052 if (ret)
9053 goto out_whiteout_inode;
9054 } else {
9055 /* 1 to update the old parent inode. */
9056 trans_num_items = 1;
a1fd0c35
OS
9057 }
9058
c1621871
OS
9059 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9060 /* Close the race window with snapshot create/destroy ioctl */
0b246afa 9061 down_read(&fs_info->subvol_sem);
c1621871
OS
9062 /*
9063 * 1 to remove old root ref
9064 * 1 to remove old root backref
9065 * 1 to add new root ref
9066 * 1 to add new root backref
9067 */
3538d68d 9068 trans_num_items += 4;
c1621871
OS
9069 } else {
9070 /*
9071 * 1 to update inode
9072 * 1 to remove old inode ref
9073 * 1 to add new inode ref
9074 */
3538d68d 9075 trans_num_items += 3;
c1621871 9076 }
a22285a6 9077 /*
c1621871
OS
9078 * 1 to remove old dir item
9079 * 1 to remove old dir index
c1621871
OS
9080 * 1 to add new dir item
9081 * 1 to add new dir index
a22285a6 9082 */
3538d68d
OS
9083 trans_num_items += 4;
9084 /* 1 to update new parent inode if it's not the same as the old parent */
c1621871
OS
9085 if (new_dir != old_dir)
9086 trans_num_items++;
9087 if (new_inode) {
9088 /*
9089 * 1 to update inode
9090 * 1 to remove inode ref
9091 * 1 to remove dir item
9092 * 1 to remove dir index
9093 * 1 to possibly add orphan item
9094 */
9095 trans_num_items += 5;
9096 }
5062af35 9097 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9098 if (IS_ERR(trans)) {
cdd1fedf
DF
9099 ret = PTR_ERR(trans);
9100 goto out_notrans;
9101 }
76dda93c 9102
b0fec6fd
JB
9103 if (dest != root) {
9104 ret = btrfs_record_root_in_trans(trans, dest);
9105 if (ret)
9106 goto out_fail;
9107 }
5f39d397 9108
877574e2 9109 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9110 if (ret)
9111 goto out_fail;
5a3f23d5 9112
67de1176 9113 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9114 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9115 /* force full log commit if subvolume involved. */
90787766 9116 btrfs_set_log_full_commit(trans);
4df27c4d 9117 } else {
6db75318
STD
9118 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9119 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9120 index);
a5719521
YZ
9121 if (ret)
9122 goto out_fail;
4df27c4d 9123 }
5a3f23d5 9124
0c4d2d95
JB
9125 inode_inc_iversion(old_dir);
9126 inode_inc_iversion(new_dir);
9127 inode_inc_iversion(old_inode);
130f1eca 9128 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
5f39d397 9129
12fcfd22 9130 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379 9131 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
59fcf388 9132 BTRFS_I(old_inode), true);
12fcfd22 9133
33345d01 9134 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5b7544cb 9135 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
4df27c4d 9136 } else {
4467af88 9137 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
e43eec81 9138 BTRFS_I(d_inode(old_dentry)),
6db75318 9139 &old_fname.disk_name, &rename_ctx);
92986796 9140 if (!ret)
8b9d0322 9141 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
4df27c4d 9142 }
79787eaa 9143 if (ret) {
66642832 9144 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9145 goto out_fail;
9146 }
39279cc3
CM
9147
9148 if (new_inode) {
0c4d2d95 9149 inode_inc_iversion(new_inode);
4a0cc7ca 9150 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9151 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5b7544cb 9152 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
4df27c4d
YZ
9153 BUG_ON(new_inode->i_nlink == 0);
9154 } else {
4467af88 9155 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 9156 BTRFS_I(d_inode(new_dentry)),
6db75318 9157 &new_fname.disk_name);
4df27c4d 9158 }
4ef31a45 9159 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9160 ret = btrfs_orphan_add(trans,
9161 BTRFS_I(d_inode(new_dentry)));
79787eaa 9162 if (ret) {
66642832 9163 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9164 goto out_fail;
9165 }
39279cc3 9166 }
aec7477b 9167
db0a669f 9168 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
6db75318 9169 &new_fname.disk_name, 0, index);
79787eaa 9170 if (ret) {
66642832 9171 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9172 goto out_fail;
9173 }
39279cc3 9174
67de1176
MX
9175 if (old_inode->i_nlink == 1)
9176 BTRFS_I(old_inode)->dir_index = index;
9177
259c4b96 9178 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 9179 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
88d2beec 9180 rename_ctx.index, new_dentry->d_parent);
cdd1fedf
DF
9181
9182 if (flags & RENAME_WHITEOUT) {
caae78e0 9183 ret = btrfs_create_new_inode(trans, &whiteout_args);
cdd1fedf 9184 if (ret) {
66642832 9185 btrfs_abort_transaction(trans, ret);
cdd1fedf 9186 goto out_fail;
caae78e0
OS
9187 } else {
9188 unlock_new_inode(whiteout_args.inode);
9189 iput(whiteout_args.inode);
9190 whiteout_args.inode = NULL;
cdd1fedf 9191 }
4df27c4d 9192 }
39279cc3 9193out_fail:
75b463d2
FM
9194 ret2 = btrfs_end_transaction(trans);
9195 ret = ret ? ret : ret2;
b44c59a8 9196out_notrans:
33345d01 9197 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9198 up_read(&fs_info->subvol_sem);
a1fd0c35 9199 if (flags & RENAME_WHITEOUT)
3538d68d
OS
9200 btrfs_new_inode_args_destroy(&whiteout_args);
9201out_whiteout_inode:
9202 if (flags & RENAME_WHITEOUT)
9203 iput(whiteout_args.inode);
ab3c5c18
STD
9204out_fscrypt_names:
9205 fscrypt_free_filename(&old_fname);
9206 fscrypt_free_filename(&new_fname);
39279cc3
CM
9207 return ret;
9208}
9209
e18275ae 9210static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
549c7297
CB
9211 struct dentry *old_dentry, struct inode *new_dir,
9212 struct dentry *new_dentry, unsigned int flags)
80ace85c 9213{
ca6dee6b
FM
9214 int ret;
9215
cdd1fedf 9216 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9217 return -EINVAL;
9218
cdd1fedf 9219 if (flags & RENAME_EXCHANGE)
ca6dee6b
FM
9220 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9221 new_dentry);
9222 else
f2d40141 9223 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
ca6dee6b 9224 new_dentry, flags);
cdd1fedf 9225
ca6dee6b
FM
9226 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9227
9228 return ret;
80ace85c
MS
9229}
9230
3a2f8c07
NB
9231struct btrfs_delalloc_work {
9232 struct inode *inode;
9233 struct completion completion;
9234 struct list_head list;
9235 struct btrfs_work work;
9236};
9237
8ccf6f19
MX
9238static void btrfs_run_delalloc_work(struct btrfs_work *work)
9239{
9240 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9241 struct inode *inode;
8ccf6f19
MX
9242
9243 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9244 work);
9f23e289 9245 inode = delalloc_work->inode;
30424601
DS
9246 filemap_flush(inode->i_mapping);
9247 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9248 &BTRFS_I(inode)->runtime_flags))
9f23e289 9249 filemap_flush(inode->i_mapping);
8ccf6f19 9250
076da91c 9251 iput(inode);
8ccf6f19
MX
9252 complete(&delalloc_work->completion);
9253}
9254
3a2f8c07 9255static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9256{
9257 struct btrfs_delalloc_work *work;
9258
100d5702 9259 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9260 if (!work)
9261 return NULL;
9262
9263 init_completion(&work->completion);
9264 INIT_LIST_HEAD(&work->list);
9265 work->inode = inode;
078b8b90 9266 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8ccf6f19
MX
9267
9268 return work;
9269}
9270
d352ac68
CM
9271/*
9272 * some fairly slow code that needs optimization. This walks the list
9273 * of all the inodes with pending delalloc and forces them to disk.
9274 */
e076ab2a
JB
9275static int start_delalloc_inodes(struct btrfs_root *root,
9276 struct writeback_control *wbc, bool snapshot,
3d45f221 9277 bool in_reclaim_context)
ea8c2819 9278{
ea8c2819 9279 struct btrfs_inode *binode;
5b21f2ed 9280 struct inode *inode;
8ccf6f19 9281 struct btrfs_delalloc_work *work, *next;
84af994b
RJ
9282 LIST_HEAD(works);
9283 LIST_HEAD(splice);
8ccf6f19 9284 int ret = 0;
e076ab2a 9285 bool full_flush = wbc->nr_to_write == LONG_MAX;
ea8c2819 9286
573bfb72 9287 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9288 spin_lock(&root->delalloc_lock);
9289 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9290 while (!list_empty(&splice)) {
9291 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9292 delalloc_inodes);
1eafa6c7 9293
eb73c1b7
MX
9294 list_move_tail(&binode->delalloc_inodes,
9295 &root->delalloc_inodes);
3d45f221
FM
9296
9297 if (in_reclaim_context &&
9298 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9299 continue;
9300
5b21f2ed 9301 inode = igrab(&binode->vfs_inode);
df0af1a5 9302 if (!inode) {
eb73c1b7 9303 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9304 continue;
df0af1a5 9305 }
eb73c1b7 9306 spin_unlock(&root->delalloc_lock);
1eafa6c7 9307
3cd24c69
EL
9308 if (snapshot)
9309 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9310 &binode->runtime_flags);
e076ab2a
JB
9311 if (full_flush) {
9312 work = btrfs_alloc_delalloc_work(inode);
9313 if (!work) {
9314 iput(inode);
9315 ret = -ENOMEM;
9316 goto out;
9317 }
9318 list_add_tail(&work->list, &works);
9319 btrfs_queue_work(root->fs_info->flush_workers,
9320 &work->work);
9321 } else {
b3776305 9322 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
e55cf7ca 9323 btrfs_add_delayed_iput(BTRFS_I(inode));
e076ab2a 9324 if (ret || wbc->nr_to_write <= 0)
b4912139
JB
9325 goto out;
9326 }
5b21f2ed 9327 cond_resched();
eb73c1b7 9328 spin_lock(&root->delalloc_lock);
ea8c2819 9329 }
eb73c1b7 9330 spin_unlock(&root->delalloc_lock);
8c8bee1d 9331
a1ecaabb 9332out:
eb73c1b7
MX
9333 list_for_each_entry_safe(work, next, &works, list) {
9334 list_del_init(&work->list);
40012f96
NB
9335 wait_for_completion(&work->completion);
9336 kfree(work);
eb73c1b7
MX
9337 }
9338
81f1d390 9339 if (!list_empty(&splice)) {
eb73c1b7
MX
9340 spin_lock(&root->delalloc_lock);
9341 list_splice_tail(&splice, &root->delalloc_inodes);
9342 spin_unlock(&root->delalloc_lock);
9343 }
573bfb72 9344 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9345 return ret;
9346}
1eafa6c7 9347
f9baa501 9348int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
eb73c1b7 9349{
e076ab2a
JB
9350 struct writeback_control wbc = {
9351 .nr_to_write = LONG_MAX,
9352 .sync_mode = WB_SYNC_NONE,
9353 .range_start = 0,
9354 .range_end = LLONG_MAX,
9355 };
0b246afa 9356 struct btrfs_fs_info *fs_info = root->fs_info;
1eafa6c7 9357
84961539 9358 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9359 return -EROFS;
9360
f9baa501 9361 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
eb73c1b7
MX
9362}
9363
9db4dc24 9364int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3d45f221 9365 bool in_reclaim_context)
eb73c1b7 9366{
e076ab2a 9367 struct writeback_control wbc = {
9db4dc24 9368 .nr_to_write = nr,
e076ab2a
JB
9369 .sync_mode = WB_SYNC_NONE,
9370 .range_start = 0,
9371 .range_end = LLONG_MAX,
9372 };
eb73c1b7 9373 struct btrfs_root *root;
84af994b 9374 LIST_HEAD(splice);
eb73c1b7
MX
9375 int ret;
9376
84961539 9377 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9378 return -EROFS;
9379
573bfb72 9380 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9381 spin_lock(&fs_info->delalloc_root_lock);
9382 list_splice_init(&fs_info->delalloc_roots, &splice);
d7830b71 9383 while (!list_empty(&splice)) {
e076ab2a
JB
9384 /*
9385 * Reset nr_to_write here so we know that we're doing a full
9386 * flush.
9387 */
9db4dc24 9388 if (nr == LONG_MAX)
e076ab2a
JB
9389 wbc.nr_to_write = LONG_MAX;
9390
eb73c1b7
MX
9391 root = list_first_entry(&splice, struct btrfs_root,
9392 delalloc_root);
00246528 9393 root = btrfs_grab_root(root);
eb73c1b7
MX
9394 BUG_ON(!root);
9395 list_move_tail(&root->delalloc_root,
9396 &fs_info->delalloc_roots);
9397 spin_unlock(&fs_info->delalloc_root_lock);
9398
e076ab2a 9399 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
00246528 9400 btrfs_put_root(root);
e076ab2a 9401 if (ret < 0 || wbc.nr_to_write <= 0)
eb73c1b7 9402 goto out;
eb73c1b7 9403 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9404 }
eb73c1b7 9405 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9406
6c255e67 9407 ret = 0;
eb73c1b7 9408out:
81f1d390 9409 if (!list_empty(&splice)) {
eb73c1b7
MX
9410 spin_lock(&fs_info->delalloc_root_lock);
9411 list_splice_tail(&splice, &fs_info->delalloc_roots);
9412 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9413 }
573bfb72 9414 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9415 return ret;
ea8c2819
CM
9416}
9417
7a77db95 9418static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
549c7297 9419 struct dentry *dentry, const char *symname)
39279cc3 9420{
0b246afa 9421 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9422 struct btrfs_trans_handle *trans;
9423 struct btrfs_root *root = BTRFS_I(dir)->root;
9424 struct btrfs_path *path;
9425 struct btrfs_key key;
a1fd0c35 9426 struct inode *inode;
3538d68d
OS
9427 struct btrfs_new_inode_args new_inode_args = {
9428 .dir = dir,
9429 .dentry = dentry,
9430 };
9431 unsigned int trans_num_items;
39279cc3 9432 int err;
39279cc3
CM
9433 int name_len;
9434 int datasize;
5f39d397 9435 unsigned long ptr;
39279cc3 9436 struct btrfs_file_extent_item *ei;
5f39d397 9437 struct extent_buffer *leaf;
39279cc3 9438
f06becc4 9439 name_len = strlen(symname);
0b246afa 9440 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9441 return -ENAMETOOLONG;
1832a6d5 9442
a1fd0c35
OS
9443 inode = new_inode(dir->i_sb);
9444 if (!inode)
9445 return -ENOMEM;
f2d40141 9446 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
a1fd0c35
OS
9447 inode->i_op = &btrfs_symlink_inode_operations;
9448 inode_nohighmem(inode);
9449 inode->i_mapping->a_ops = &btrfs_aops;
caae78e0
OS
9450 btrfs_i_size_write(BTRFS_I(inode), name_len);
9451 inode_set_bytes(inode, name_len);
a1fd0c35 9452
3538d68d
OS
9453 new_inode_args.inode = inode;
9454 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
9455 if (err)
9456 goto out_inode;
3538d68d
OS
9457 /* 1 additional item for the inline extent */
9458 trans_num_items++;
9459
9460 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 9461 if (IS_ERR(trans)) {
3538d68d
OS
9462 err = PTR_ERR(trans);
9463 goto out_new_inode_args;
a1fd0c35 9464 }
1832a6d5 9465
caae78e0 9466 err = btrfs_create_new_inode(trans, &new_inode_args);
b0d5d10f 9467 if (err)
caae78e0 9468 goto out;
ad19db71 9469
39279cc3 9470 path = btrfs_alloc_path();
d8926bb3
MF
9471 if (!path) {
9472 err = -ENOMEM;
caae78e0
OS
9473 btrfs_abort_transaction(trans, err);
9474 discard_new_inode(inode);
9475 inode = NULL;
9476 goto out;
d8926bb3 9477 }
4a0cc7ca 9478 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9479 key.offset = 0;
962a298f 9480 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9481 datasize = btrfs_file_extent_calc_inline_size(name_len);
9482 err = btrfs_insert_empty_item(trans, root, path, &key,
9483 datasize);
54aa1f4d 9484 if (err) {
caae78e0 9485 btrfs_abort_transaction(trans, err);
b0839166 9486 btrfs_free_path(path);
caae78e0
OS
9487 discard_new_inode(inode);
9488 inode = NULL;
9489 goto out;
54aa1f4d 9490 }
5f39d397
CM
9491 leaf = path->nodes[0];
9492 ei = btrfs_item_ptr(leaf, path->slots[0],
9493 struct btrfs_file_extent_item);
9494 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9495 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9496 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9497 btrfs_set_file_extent_encryption(leaf, ei, 0);
9498 btrfs_set_file_extent_compression(leaf, ei, 0);
9499 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9500 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9501
39279cc3 9502 ptr = btrfs_file_extent_inline_start(ei);
5f39d397 9503 write_extent_buffer(leaf, symname, ptr, name_len);
50564b65 9504 btrfs_mark_buffer_dirty(trans, leaf);
39279cc3 9505 btrfs_free_path(path);
5f39d397 9506
1e2e547a 9507 d_instantiate_new(dentry, inode);
caae78e0
OS
9508 err = 0;
9509out:
3a45bb20 9510 btrfs_end_transaction(trans);
2ff7e61e 9511 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
9512out_new_inode_args:
9513 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
9514out_inode:
9515 if (err)
9516 iput(inode);
39279cc3
CM
9517 return err;
9518}
16432985 9519
8fccebfa
FM
9520static struct btrfs_trans_handle *insert_prealloc_file_extent(
9521 struct btrfs_trans_handle *trans_in,
90dffd0c
NB
9522 struct btrfs_inode *inode,
9523 struct btrfs_key *ins,
203f44c5
QW
9524 u64 file_offset)
9525{
9526 struct btrfs_file_extent_item stack_fi;
bf385648 9527 struct btrfs_replace_extent_info extent_info;
8fccebfa
FM
9528 struct btrfs_trans_handle *trans = trans_in;
9529 struct btrfs_path *path;
203f44c5
QW
9530 u64 start = ins->objectid;
9531 u64 len = ins->offset;
9e65bfca 9532 u64 qgroup_released = 0;
9729f10a 9533 int ret;
203f44c5
QW
9534
9535 memset(&stack_fi, 0, sizeof(stack_fi));
9536
9537 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9538 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9539 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9540 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9541 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9542 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9543 /* Encryption and other encoding is reserved and all 0 */
9544
9e65bfca
BB
9545 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9546 if (ret < 0)
9547 return ERR_PTR(ret);
8fccebfa
FM
9548
9549 if (trans) {
90dffd0c 9550 ret = insert_reserved_file_extent(trans, inode,
2766ff61 9551 file_offset, &stack_fi,
fbf48bb0 9552 true, qgroup_released);
8fccebfa 9553 if (ret)
a3ee79bd 9554 goto free_qgroup;
8fccebfa
FM
9555 return trans;
9556 }
9557
9558 extent_info.disk_offset = start;
9559 extent_info.disk_len = len;
9560 extent_info.data_offset = 0;
9561 extent_info.data_len = len;
9562 extent_info.file_offset = file_offset;
9563 extent_info.extent_buf = (char *)&stack_fi;
8fccebfa 9564 extent_info.is_new_extent = true;
983d8209 9565 extent_info.update_times = true;
fbf48bb0 9566 extent_info.qgroup_reserved = qgroup_released;
8fccebfa
FM
9567 extent_info.insertions = 0;
9568
9569 path = btrfs_alloc_path();
a3ee79bd
QW
9570 if (!path) {
9571 ret = -ENOMEM;
9572 goto free_qgroup;
9573 }
8fccebfa 9574
bfc78479 9575 ret = btrfs_replace_file_extents(inode, path, file_offset,
8fccebfa
FM
9576 file_offset + len - 1, &extent_info,
9577 &trans);
9578 btrfs_free_path(path);
9579 if (ret)
a3ee79bd 9580 goto free_qgroup;
8fccebfa 9581 return trans;
a3ee79bd
QW
9582
9583free_qgroup:
9584 /*
9585 * We have released qgroup data range at the beginning of the function,
9586 * and normally qgroup_released bytes will be freed when committing
9587 * transaction.
9588 * But if we error out early, we have to free what we have released
9589 * or we leak qgroup data reservation.
9590 */
9591 btrfs_qgroup_free_refroot(inode->root->fs_info,
9592 inode->root->root_key.objectid, qgroup_released,
9593 BTRFS_QGROUP_RSV_DATA);
9594 return ERR_PTR(ret);
203f44c5 9595}
8fccebfa 9596
0af3d00b
JB
9597static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9598 u64 start, u64 num_bytes, u64 min_size,
9599 loff_t actual_len, u64 *alloc_hint,
9600 struct btrfs_trans_handle *trans)
d899e052 9601{
0b246afa 9602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5 9603 struct extent_map *em;
d899e052
YZ
9604 struct btrfs_root *root = BTRFS_I(inode)->root;
9605 struct btrfs_key ins;
d899e052 9606 u64 cur_offset = start;
b778cf96 9607 u64 clear_offset = start;
55a61d1d 9608 u64 i_size;
154ea289 9609 u64 cur_bytes;
0b670dc4 9610 u64 last_alloc = (u64)-1;
d899e052 9611 int ret = 0;
0af3d00b 9612 bool own_trans = true;
18513091 9613 u64 end = start + num_bytes - 1;
d899e052 9614
0af3d00b
JB
9615 if (trans)
9616 own_trans = false;
d899e052 9617 while (num_bytes > 0) {
ee22184b 9618 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9619 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9620 /*
9621 * If we are severely fragmented we could end up with really
9622 * small allocations, so if the allocator is returning small
9623 * chunks lets make its job easier by only searching for those
9624 * sized chunks.
9625 */
9626 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9627 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9628 min_size, 0, *alloc_hint, &ins, 1, 0);
8fccebfa 9629 if (ret)
a22285a6 9630 break;
b778cf96
JB
9631
9632 /*
9633 * We've reserved this space, and thus converted it from
9634 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9635 * from here on out we will only need to clear our reservation
9636 * for the remaining unreserved area, so advance our
9637 * clear_offset by our extent size.
9638 */
9639 clear_offset += ins.offset;
5a303d5d 9640
0b670dc4 9641 last_alloc = ins.offset;
90dffd0c
NB
9642 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9643 &ins, cur_offset);
1afc708d
FM
9644 /*
9645 * Now that we inserted the prealloc extent we can finally
9646 * decrement the number of reservations in the block group.
9647 * If we did it before, we could race with relocation and have
9648 * relocation miss the reserved extent, making it fail later.
9649 */
9650 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8fccebfa
FM
9651 if (IS_ERR(trans)) {
9652 ret = PTR_ERR(trans);
2ff7e61e 9653 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9654 ins.offset, 0);
79787eaa
JM
9655 break;
9656 }
31193213 9657
5dc562c5
JB
9658 em = alloc_extent_map();
9659 if (!em) {
a1ba4c08
FM
9660 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9661 cur_offset + ins.offset - 1, false);
23e3337f 9662 btrfs_set_inode_full_sync(BTRFS_I(inode));
5dc562c5
JB
9663 goto next;
9664 }
9665
9666 em->start = cur_offset;
9667 em->orig_start = cur_offset;
9668 em->len = ins.offset;
9669 em->block_start = ins.objectid;
9670 em->block_len = ins.offset;
b4939680 9671 em->orig_block_len = ins.offset;
cc95bef6 9672 em->ram_bytes = ins.offset;
f86f7a75 9673 em->flags |= EXTENT_FLAG_PREALLOC;
5dc562c5
JB
9674 em->generation = trans->transid;
9675
a1ba4c08 9676 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
5dc562c5
JB
9677 free_extent_map(em);
9678next:
d899e052
YZ
9679 num_bytes -= ins.offset;
9680 cur_offset += ins.offset;
efa56464 9681 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9682
0c4d2d95 9683 inode_inc_iversion(inode);
2a9462de 9684 inode_set_ctime_current(inode);
6cbff00f 9685 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9686 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9687 (actual_len > inode->i_size) &&
9688 (cur_offset > inode->i_size)) {
d1ea6a61 9689 if (cur_offset > actual_len)
55a61d1d 9690 i_size = actual_len;
d1ea6a61 9691 else
55a61d1d
JB
9692 i_size = cur_offset;
9693 i_size_write(inode, i_size);
76aea537 9694 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5a303d5d
YZ
9695 }
9696
8b9d0322 9697 ret = btrfs_update_inode(trans, BTRFS_I(inode));
79787eaa
JM
9698
9699 if (ret) {
66642832 9700 btrfs_abort_transaction(trans, ret);
79787eaa 9701 if (own_trans)
3a45bb20 9702 btrfs_end_transaction(trans);
79787eaa
JM
9703 break;
9704 }
d899e052 9705
8fccebfa 9706 if (own_trans) {
3a45bb20 9707 btrfs_end_transaction(trans);
8fccebfa
FM
9708 trans = NULL;
9709 }
5a303d5d 9710 }
b778cf96 9711 if (clear_offset < end)
25ce28ca 9712 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9713 end - clear_offset + 1);
d899e052
YZ
9714 return ret;
9715}
9716
0af3d00b
JB
9717int btrfs_prealloc_file_range(struct inode *inode, int mode,
9718 u64 start, u64 num_bytes, u64 min_size,
9719 loff_t actual_len, u64 *alloc_hint)
9720{
9721 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9722 min_size, actual_len, alloc_hint,
9723 NULL);
9724}
9725
9726int btrfs_prealloc_file_range_trans(struct inode *inode,
9727 struct btrfs_trans_handle *trans, int mode,
9728 u64 start, u64 num_bytes, u64 min_size,
9729 loff_t actual_len, u64 *alloc_hint)
9730{
9731 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9732 min_size, actual_len, alloc_hint, trans);
9733}
9734
4609e1f1 9735static int btrfs_permission(struct mnt_idmap *idmap,
549c7297 9736 struct inode *inode, int mask)
fdebe2bd 9737{
b83cc969 9738 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9739 umode_t mode = inode->i_mode;
b83cc969 9740
cb6db4e5
JM
9741 if (mask & MAY_WRITE &&
9742 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9743 if (btrfs_root_readonly(root))
9744 return -EROFS;
9745 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9746 return -EACCES;
9747 }
4609e1f1 9748 return generic_permission(idmap, inode, mask);
fdebe2bd 9749}
39279cc3 9750
011e2b71 9751static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
863f144f 9752 struct file *file, umode_t mode)
ef3b9af5 9753{
2ff7e61e 9754 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9755 struct btrfs_trans_handle *trans;
9756 struct btrfs_root *root = BTRFS_I(dir)->root;
a1fd0c35 9757 struct inode *inode;
3538d68d
OS
9758 struct btrfs_new_inode_args new_inode_args = {
9759 .dir = dir,
863f144f 9760 .dentry = file->f_path.dentry,
3538d68d
OS
9761 .orphan = true,
9762 };
9763 unsigned int trans_num_items;
a1fd0c35
OS
9764 int ret;
9765
9766 inode = new_inode(dir->i_sb);
9767 if (!inode)
9768 return -ENOMEM;
f2d40141 9769 inode_init_owner(idmap, inode, dir, mode);
a1fd0c35
OS
9770 inode->i_fop = &btrfs_file_operations;
9771 inode->i_op = &btrfs_file_inode_operations;
9772 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5 9773
3538d68d
OS
9774 new_inode_args.inode = inode;
9775 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
9776 if (ret)
9777 goto out_inode;
3538d68d
OS
9778
9779 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 9780 if (IS_ERR(trans)) {
3538d68d
OS
9781 ret = PTR_ERR(trans);
9782 goto out_new_inode_args;
a1fd0c35 9783 }
ef3b9af5 9784
caae78e0 9785 ret = btrfs_create_new_inode(trans, &new_inode_args);
ef3b9af5 9786
5762b5c9 9787 /*
3538d68d
OS
9788 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9789 * set it to 1 because d_tmpfile() will issue a warning if the count is
9790 * 0, through:
5762b5c9
FM
9791 *
9792 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9793 */
9794 set_nlink(inode, 1);
caae78e0
OS
9795
9796 if (!ret) {
863f144f 9797 d_tmpfile(file, inode);
caae78e0
OS
9798 unlock_new_inode(inode);
9799 mark_inode_dirty(inode);
9800 }
9801
3a45bb20 9802 btrfs_end_transaction(trans);
2ff7e61e 9803 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
9804out_new_inode_args:
9805 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
9806out_inode:
9807 if (ret)
9808 iput(inode);
863f144f 9809 return finish_open_simple(file, ret);
ef3b9af5
FM
9810}
9811
d2a91064 9812void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
c6100a4b 9813{
d2a91064 9814 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c6100a4b
JB
9815 unsigned long index = start >> PAGE_SHIFT;
9816 unsigned long end_index = end >> PAGE_SHIFT;
9817 struct page *page;
d2a91064 9818 u32 len;
c6100a4b 9819
d2a91064
QW
9820 ASSERT(end + 1 - start <= U32_MAX);
9821 len = end + 1 - start;
c6100a4b 9822 while (index <= end_index) {
d2a91064 9823 page = find_get_page(inode->vfs_inode.i_mapping, index);
c6100a4b 9824 ASSERT(page); /* Pages should be in the extent_io_tree */
d2a91064 9825
55151ea9
QW
9826 /* This is for data, which doesn't yet support larger folio. */
9827 ASSERT(folio_order(page_folio(page)) == 0);
9828 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
c6100a4b
JB
9829 put_page(page);
9830 index++;
9831 }
9832}
9833
3ea4dc5b
OS
9834int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9835 int compress_type)
1881fba8
OS
9836{
9837 switch (compress_type) {
9838 case BTRFS_COMPRESS_NONE:
9839 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9840 case BTRFS_COMPRESS_ZLIB:
9841 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9842 case BTRFS_COMPRESS_LZO:
9843 /*
9844 * The LZO format depends on the sector size. 64K is the maximum
9845 * sector size that we support.
9846 */
9847 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9848 return -EINVAL;
9849 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9850 (fs_info->sectorsize_bits - 12);
9851 case BTRFS_COMPRESS_ZSTD:
9852 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9853 default:
9854 return -EUCLEAN;
9855 }
9856}
9857
9858static ssize_t btrfs_encoded_read_inline(
9859 struct kiocb *iocb,
9860 struct iov_iter *iter, u64 start,
9861 u64 lockend,
9862 struct extent_state **cached_state,
9863 u64 extent_start, size_t count,
9864 struct btrfs_ioctl_encoded_io_args *encoded,
9865 bool *unlocked)
9866{
9867 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9868 struct btrfs_root *root = inode->root;
9869 struct btrfs_fs_info *fs_info = root->fs_info;
9870 struct extent_io_tree *io_tree = &inode->io_tree;
9871 struct btrfs_path *path;
9872 struct extent_buffer *leaf;
9873 struct btrfs_file_extent_item *item;
9874 u64 ram_bytes;
9875 unsigned long ptr;
9876 void *tmp;
9877 ssize_t ret;
9878
9879 path = btrfs_alloc_path();
9880 if (!path) {
9881 ret = -ENOMEM;
9882 goto out;
9883 }
9884 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9885 extent_start, 0);
9886 if (ret) {
9887 if (ret > 0) {
9888 /* The extent item disappeared? */
9889 ret = -EIO;
9890 }
9891 goto out;
9892 }
9893 leaf = path->nodes[0];
9894 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9895
9896 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9897 ptr = btrfs_file_extent_inline_start(item);
9898
9899 encoded->len = min_t(u64, extent_start + ram_bytes,
9900 inode->vfs_inode.i_size) - iocb->ki_pos;
9901 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9902 btrfs_file_extent_compression(leaf, item));
9903 if (ret < 0)
9904 goto out;
9905 encoded->compression = ret;
9906 if (encoded->compression) {
9907 size_t inline_size;
9908
9909 inline_size = btrfs_file_extent_inline_item_len(leaf,
9910 path->slots[0]);
9911 if (inline_size > count) {
9912 ret = -ENOBUFS;
9913 goto out;
9914 }
9915 count = inline_size;
9916 encoded->unencoded_len = ram_bytes;
9917 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9918 } else {
9919 count = min_t(u64, count, encoded->len);
9920 encoded->len = count;
9921 encoded->unencoded_len = count;
9922 ptr += iocb->ki_pos - extent_start;
9923 }
9924
9925 tmp = kmalloc(count, GFP_NOFS);
9926 if (!tmp) {
9927 ret = -ENOMEM;
9928 goto out;
9929 }
9930 read_extent_buffer(leaf, tmp, ptr, count);
9931 btrfs_release_path(path);
570eb97b 9932 unlock_extent(io_tree, start, lockend, cached_state);
e5d4d75b 9933 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
9934 *unlocked = true;
9935
9936 ret = copy_to_iter(tmp, count, iter);
9937 if (ret != count)
9938 ret = -EFAULT;
9939 kfree(tmp);
9940out:
9941 btrfs_free_path(path);
9942 return ret;
9943}
9944
9945struct btrfs_encoded_read_private {
1881fba8
OS
9946 wait_queue_head_t wait;
9947 atomic_t pending;
9948 blk_status_t status;
1881fba8
OS
9949};
9950
917f32a2 9951static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
1881fba8 9952{
917f32a2 9953 struct btrfs_encoded_read_private *priv = bbio->private;
1881fba8 9954
7609afac 9955 if (bbio->bio.bi_status) {
1881fba8
OS
9956 /*
9957 * The memory barrier implied by the atomic_dec_return() here
9958 * pairs with the memory barrier implied by the
9959 * atomic_dec_return() or io_wait_event() in
9960 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9961 * write is observed before the load of status in
9962 * btrfs_encoded_read_regular_fill_pages().
9963 */
7609afac 9964 WRITE_ONCE(priv->status, bbio->bio.bi_status);
1881fba8
OS
9965 }
9966 if (!atomic_dec_return(&priv->pending))
9967 wake_up(&priv->wait);
917f32a2 9968 bio_put(&bbio->bio);
1881fba8
OS
9969}
9970
3ea4dc5b
OS
9971int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9972 u64 file_offset, u64 disk_bytenr,
9973 u64 disk_io_size, struct page **pages)
1881fba8 9974{
4317ff00 9975 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1881fba8 9976 struct btrfs_encoded_read_private priv = {
1881fba8 9977 .pending = ATOMIC_INIT(1),
1881fba8
OS
9978 };
9979 unsigned long i = 0;
b41bbd29 9980 struct btrfs_bio *bbio;
1881fba8
OS
9981
9982 init_waitqueue_head(&priv.wait);
1881fba8 9983
4317ff00
QW
9984 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9985 btrfs_encoded_read_endio, &priv);
b41bbd29 9986 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 9987 bbio->inode = inode;
1881fba8 9988
34f888ce
CH
9989 do {
9990 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9991
b41bbd29 9992 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
34f888ce 9993 atomic_inc(&priv.pending);
b41bbd29 9994 btrfs_submit_bio(bbio, 0);
34f888ce 9995
4317ff00 9996 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
b41bbd29
CH
9997 btrfs_encoded_read_endio, &priv);
9998 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 9999 bbio->inode = inode;
34f888ce 10000 continue;
1881fba8 10001 }
34f888ce
CH
10002
10003 i++;
10004 disk_bytenr += bytes;
10005 disk_io_size -= bytes;
10006 } while (disk_io_size);
10007
10008 atomic_inc(&priv.pending);
b41bbd29 10009 btrfs_submit_bio(bbio, 0);
1881fba8 10010
1881fba8
OS
10011 if (atomic_dec_return(&priv.pending))
10012 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10013 /* See btrfs_encoded_read_endio() for ordering. */
10014 return blk_status_to_errno(READ_ONCE(priv.status));
10015}
10016
10017static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10018 struct iov_iter *iter,
10019 u64 start, u64 lockend,
10020 struct extent_state **cached_state,
10021 u64 disk_bytenr, u64 disk_io_size,
10022 size_t count, bool compressed,
10023 bool *unlocked)
10024{
10025 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10026 struct extent_io_tree *io_tree = &inode->io_tree;
10027 struct page **pages;
10028 unsigned long nr_pages, i;
10029 u64 cur;
10030 size_t page_offset;
10031 ssize_t ret;
10032
10033 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10034 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10035 if (!pages)
10036 return -ENOMEM;
09e6cef1 10037 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
dd137dd1
STD
10038 if (ret) {
10039 ret = -ENOMEM;
10040 goto out;
1881fba8 10041 }
1881fba8
OS
10042
10043 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10044 disk_io_size, pages);
10045 if (ret)
10046 goto out;
10047
570eb97b 10048 unlock_extent(io_tree, start, lockend, cached_state);
e5d4d75b 10049 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10050 *unlocked = true;
10051
10052 if (compressed) {
10053 i = 0;
10054 page_offset = 0;
10055 } else {
10056 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10057 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10058 }
10059 cur = 0;
10060 while (cur < count) {
10061 size_t bytes = min_t(size_t, count - cur,
10062 PAGE_SIZE - page_offset);
10063
10064 if (copy_page_to_iter(pages[i], page_offset, bytes,
10065 iter) != bytes) {
10066 ret = -EFAULT;
10067 goto out;
10068 }
10069 i++;
10070 cur += bytes;
10071 page_offset = 0;
10072 }
10073 ret = count;
10074out:
10075 for (i = 0; i < nr_pages; i++) {
10076 if (pages[i])
10077 __free_page(pages[i]);
10078 }
10079 kfree(pages);
10080 return ret;
10081}
10082
10083ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10084 struct btrfs_ioctl_encoded_io_args *encoded)
10085{
10086 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10087 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10088 struct extent_io_tree *io_tree = &inode->io_tree;
10089 ssize_t ret;
10090 size_t count = iov_iter_count(iter);
10091 u64 start, lockend, disk_bytenr, disk_io_size;
10092 struct extent_state *cached_state = NULL;
10093 struct extent_map *em;
10094 bool unlocked = false;
10095
10096 file_accessed(iocb->ki_filp);
10097
29b6352b 10098 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10099
10100 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
e5d4d75b 10101 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10102 return 0;
10103 }
10104 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10105 /*
10106 * We don't know how long the extent containing iocb->ki_pos is, but if
10107 * it's compressed we know that it won't be longer than this.
10108 */
10109 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10110
10111 for (;;) {
10112 struct btrfs_ordered_extent *ordered;
10113
10114 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10115 lockend - start + 1);
10116 if (ret)
10117 goto out_unlock_inode;
570eb97b 10118 lock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10119 ordered = btrfs_lookup_ordered_range(inode, start,
10120 lockend - start + 1);
10121 if (!ordered)
10122 break;
10123 btrfs_put_ordered_extent(ordered);
570eb97b 10124 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10125 cond_resched();
10126 }
10127
10128 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10129 if (IS_ERR(em)) {
10130 ret = PTR_ERR(em);
10131 goto out_unlock_extent;
10132 }
10133
10134 if (em->block_start == EXTENT_MAP_INLINE) {
10135 u64 extent_start = em->start;
10136
10137 /*
10138 * For inline extents we get everything we need out of the
10139 * extent item.
10140 */
10141 free_extent_map(em);
10142 em = NULL;
10143 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10144 &cached_state, extent_start,
10145 count, encoded, &unlocked);
10146 goto out;
10147 }
10148
10149 /*
10150 * We only want to return up to EOF even if the extent extends beyond
10151 * that.
10152 */
10153 encoded->len = min_t(u64, extent_map_end(em),
10154 inode->vfs_inode.i_size) - iocb->ki_pos;
10155 if (em->block_start == EXTENT_MAP_HOLE ||
f86f7a75 10156 (em->flags & EXTENT_FLAG_PREALLOC)) {
1881fba8
OS
10157 disk_bytenr = EXTENT_MAP_HOLE;
10158 count = min_t(u64, count, encoded->len);
10159 encoded->len = count;
10160 encoded->unencoded_len = count;
f86f7a75 10161 } else if (extent_map_is_compressed(em)) {
1881fba8
OS
10162 disk_bytenr = em->block_start;
10163 /*
10164 * Bail if the buffer isn't large enough to return the whole
10165 * compressed extent.
10166 */
10167 if (em->block_len > count) {
10168 ret = -ENOBUFS;
10169 goto out_em;
10170 }
c1867eb3
DS
10171 disk_io_size = em->block_len;
10172 count = em->block_len;
1881fba8
OS
10173 encoded->unencoded_len = em->ram_bytes;
10174 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10175 ret = btrfs_encoded_io_compression_from_extent(fs_info,
f86f7a75 10176 extent_map_compression(em));
1881fba8
OS
10177 if (ret < 0)
10178 goto out_em;
10179 encoded->compression = ret;
10180 } else {
10181 disk_bytenr = em->block_start + (start - em->start);
10182 if (encoded->len > count)
10183 encoded->len = count;
10184 /*
10185 * Don't read beyond what we locked. This also limits the page
10186 * allocations that we'll do.
10187 */
10188 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10189 count = start + disk_io_size - iocb->ki_pos;
10190 encoded->len = count;
10191 encoded->unencoded_len = count;
10192 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10193 }
10194 free_extent_map(em);
10195 em = NULL;
10196
10197 if (disk_bytenr == EXTENT_MAP_HOLE) {
570eb97b 10198 unlock_extent(io_tree, start, lockend, &cached_state);
e5d4d75b 10199 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10200 unlocked = true;
10201 ret = iov_iter_zero(count, iter);
10202 if (ret != count)
10203 ret = -EFAULT;
10204 } else {
10205 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10206 &cached_state, disk_bytenr,
10207 disk_io_size, count,
10208 encoded->compression,
10209 &unlocked);
10210 }
10211
10212out:
10213 if (ret >= 0)
10214 iocb->ki_pos += encoded->len;
10215out_em:
10216 free_extent_map(em);
10217out_unlock_extent:
10218 if (!unlocked)
570eb97b 10219 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10220out_unlock_inode:
10221 if (!unlocked)
e5d4d75b 10222 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1881fba8
OS
10223 return ret;
10224}
10225
7c0c7269
OS
10226ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10227 const struct btrfs_ioctl_encoded_io_args *encoded)
10228{
10229 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10230 struct btrfs_root *root = inode->root;
10231 struct btrfs_fs_info *fs_info = root->fs_info;
10232 struct extent_io_tree *io_tree = &inode->io_tree;
10233 struct extent_changeset *data_reserved = NULL;
10234 struct extent_state *cached_state = NULL;
d611935b 10235 struct btrfs_ordered_extent *ordered;
7c0c7269
OS
10236 int compression;
10237 size_t orig_count;
10238 u64 start, end;
10239 u64 num_bytes, ram_bytes, disk_num_bytes;
10240 unsigned long nr_pages, i;
10241 struct page **pages;
10242 struct btrfs_key ins;
10243 bool extent_reserved = false;
10244 struct extent_map *em;
10245 ssize_t ret;
10246
10247 switch (encoded->compression) {
10248 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10249 compression = BTRFS_COMPRESS_ZLIB;
10250 break;
10251 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10252 compression = BTRFS_COMPRESS_ZSTD;
10253 break;
10254 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10255 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10256 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10257 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10258 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10259 /* The sector size must match for LZO. */
10260 if (encoded->compression -
10261 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10262 fs_info->sectorsize_bits)
10263 return -EINVAL;
10264 compression = BTRFS_COMPRESS_LZO;
10265 break;
10266 default:
10267 return -EINVAL;
10268 }
10269 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10270 return -EINVAL;
10271
10272 orig_count = iov_iter_count(from);
10273
10274 /* The extent size must be sane. */
10275 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10276 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10277 return -EINVAL;
10278
10279 /*
10280 * The compressed data must be smaller than the decompressed data.
10281 *
10282 * It's of course possible for data to compress to larger or the same
10283 * size, but the buffered I/O path falls back to no compression for such
10284 * data, and we don't want to break any assumptions by creating these
10285 * extents.
10286 *
10287 * Note that this is less strict than the current check we have that the
10288 * compressed data must be at least one sector smaller than the
10289 * decompressed data. We only want to enforce the weaker requirement
10290 * from old kernels that it is at least one byte smaller.
10291 */
10292 if (orig_count >= encoded->unencoded_len)
10293 return -EINVAL;
10294
10295 /* The extent must start on a sector boundary. */
10296 start = iocb->ki_pos;
10297 if (!IS_ALIGNED(start, fs_info->sectorsize))
10298 return -EINVAL;
10299
10300 /*
10301 * The extent must end on a sector boundary. However, we allow a write
10302 * which ends at or extends i_size to have an unaligned length; we round
10303 * up the extent size and set i_size to the unaligned end.
10304 */
10305 if (start + encoded->len < inode->vfs_inode.i_size &&
10306 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10307 return -EINVAL;
10308
10309 /* Finally, the offset in the unencoded data must be sector-aligned. */
10310 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10311 return -EINVAL;
10312
10313 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10314 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10315 end = start + num_bytes - 1;
10316
10317 /*
10318 * If the extent cannot be inline, the compressed data on disk must be
10319 * sector-aligned. For convenience, we extend it with zeroes if it
10320 * isn't.
10321 */
10322 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10323 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10324 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10325 if (!pages)
10326 return -ENOMEM;
10327 for (i = 0; i < nr_pages; i++) {
10328 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10329 char *kaddr;
10330
10331 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10332 if (!pages[i]) {
10333 ret = -ENOMEM;
10334 goto out_pages;
10335 }
70826b6b 10336 kaddr = kmap_local_page(pages[i]);
7c0c7269 10337 if (copy_from_iter(kaddr, bytes, from) != bytes) {
70826b6b 10338 kunmap_local(kaddr);
7c0c7269
OS
10339 ret = -EFAULT;
10340 goto out_pages;
10341 }
10342 if (bytes < PAGE_SIZE)
10343 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
70826b6b 10344 kunmap_local(kaddr);
7c0c7269
OS
10345 }
10346
10347 for (;;) {
10348 struct btrfs_ordered_extent *ordered;
10349
10350 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10351 if (ret)
10352 goto out_pages;
10353 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10354 start >> PAGE_SHIFT,
10355 end >> PAGE_SHIFT);
10356 if (ret)
10357 goto out_pages;
570eb97b 10358 lock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10359 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10360 if (!ordered &&
10361 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10362 break;
10363 if (ordered)
10364 btrfs_put_ordered_extent(ordered);
570eb97b 10365 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10366 cond_resched();
10367 }
10368
10369 /*
10370 * We don't use the higher-level delalloc space functions because our
10371 * num_bytes and disk_num_bytes are different.
10372 */
10373 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10374 if (ret)
10375 goto out_unlock;
10376 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10377 if (ret)
10378 goto out_free_data_space;
d4135134
FM
10379 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10380 false);
7c0c7269
OS
10381 if (ret)
10382 goto out_qgroup_free_data;
10383
10384 /* Try an inline extent first. */
10385 if (start == 0 && encoded->unencoded_len == encoded->len &&
10386 encoded->unencoded_offset == 0) {
10387 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10388 compression, pages, true);
10389 if (ret <= 0) {
10390 if (ret == 0)
10391 ret = orig_count;
10392 goto out_delalloc_release;
10393 }
10394 }
10395
10396 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10397 disk_num_bytes, 0, 0, &ins, 1, 1);
10398 if (ret)
10399 goto out_delalloc_release;
10400 extent_reserved = true;
10401
10402 em = create_io_em(inode, start, num_bytes,
10403 start - encoded->unencoded_offset, ins.objectid,
10404 ins.offset, ins.offset, ram_bytes, compression,
10405 BTRFS_ORDERED_COMPRESSED);
10406 if (IS_ERR(em)) {
10407 ret = PTR_ERR(em);
10408 goto out_free_reserved;
10409 }
10410 free_extent_map(em);
10411
d611935b 10412 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
7c0c7269
OS
10413 ins.objectid, ins.offset,
10414 encoded->unencoded_offset,
10415 (1 << BTRFS_ORDERED_ENCODED) |
10416 (1 << BTRFS_ORDERED_COMPRESSED),
10417 compression);
d611935b 10418 if (IS_ERR(ordered)) {
4c0c8cfc 10419 btrfs_drop_extent_map_range(inode, start, end, false);
d611935b 10420 ret = PTR_ERR(ordered);
7c0c7269
OS
10421 goto out_free_reserved;
10422 }
10423 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10424
10425 if (start + encoded->len > inode->vfs_inode.i_size)
10426 i_size_write(&inode->vfs_inode, start + encoded->len);
10427
570eb97b 10428 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10429
10430 btrfs_delalloc_release_extents(inode, num_bytes);
10431
d611935b 10432 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
7c0c7269
OS
10433 ret = orig_count;
10434 goto out;
10435
10436out_free_reserved:
10437 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10438 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10439out_delalloc_release:
10440 btrfs_delalloc_release_extents(inode, num_bytes);
10441 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10442out_qgroup_free_data:
10443 if (ret < 0)
9e65bfca 10444 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
7c0c7269
OS
10445out_free_data_space:
10446 /*
10447 * If btrfs_reserve_extent() succeeded, then we already decremented
10448 * bytes_may_use.
10449 */
10450 if (!extent_reserved)
10451 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10452out_unlock:
570eb97b 10453 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10454out_pages:
10455 for (i = 0; i < nr_pages; i++) {
10456 if (pages[i])
10457 __free_page(pages[i]);
10458 }
10459 kvfree(pages);
10460out:
10461 if (ret >= 0)
10462 iocb->ki_pos += encoded->len;
10463 return ret;
10464}
10465
ed46ff3d
OS
10466#ifdef CONFIG_SWAP
10467/*
10468 * Add an entry indicating a block group or device which is pinned by a
10469 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10470 * negative errno on failure.
10471 */
10472static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10473 bool is_block_group)
10474{
10475 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10476 struct btrfs_swapfile_pin *sp, *entry;
10477 struct rb_node **p;
10478 struct rb_node *parent = NULL;
10479
10480 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10481 if (!sp)
10482 return -ENOMEM;
10483 sp->ptr = ptr;
10484 sp->inode = inode;
10485 sp->is_block_group = is_block_group;
195a49ea 10486 sp->bg_extent_count = 1;
ed46ff3d
OS
10487
10488 spin_lock(&fs_info->swapfile_pins_lock);
10489 p = &fs_info->swapfile_pins.rb_node;
10490 while (*p) {
10491 parent = *p;
10492 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10493 if (sp->ptr < entry->ptr ||
10494 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10495 p = &(*p)->rb_left;
10496 } else if (sp->ptr > entry->ptr ||
10497 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10498 p = &(*p)->rb_right;
10499 } else {
195a49ea
FM
10500 if (is_block_group)
10501 entry->bg_extent_count++;
ed46ff3d
OS
10502 spin_unlock(&fs_info->swapfile_pins_lock);
10503 kfree(sp);
10504 return 1;
10505 }
10506 }
10507 rb_link_node(&sp->node, parent, p);
10508 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10509 spin_unlock(&fs_info->swapfile_pins_lock);
10510 return 0;
10511}
10512
10513/* Free all of the entries pinned by this swapfile. */
10514static void btrfs_free_swapfile_pins(struct inode *inode)
10515{
10516 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10517 struct btrfs_swapfile_pin *sp;
10518 struct rb_node *node, *next;
10519
10520 spin_lock(&fs_info->swapfile_pins_lock);
10521 node = rb_first(&fs_info->swapfile_pins);
10522 while (node) {
10523 next = rb_next(node);
10524 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10525 if (sp->inode == inode) {
10526 rb_erase(&sp->node, &fs_info->swapfile_pins);
195a49ea
FM
10527 if (sp->is_block_group) {
10528 btrfs_dec_block_group_swap_extents(sp->ptr,
10529 sp->bg_extent_count);
ed46ff3d 10530 btrfs_put_block_group(sp->ptr);
195a49ea 10531 }
ed46ff3d
OS
10532 kfree(sp);
10533 }
10534 node = next;
10535 }
10536 spin_unlock(&fs_info->swapfile_pins_lock);
10537}
10538
10539struct btrfs_swap_info {
10540 u64 start;
10541 u64 block_start;
10542 u64 block_len;
10543 u64 lowest_ppage;
10544 u64 highest_ppage;
10545 unsigned long nr_pages;
10546 int nr_extents;
10547};
10548
10549static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10550 struct btrfs_swap_info *bsi)
10551{
10552 unsigned long nr_pages;
c2f82263 10553 unsigned long max_pages;
ed46ff3d
OS
10554 u64 first_ppage, first_ppage_reported, next_ppage;
10555 int ret;
10556
c2f82263
FM
10557 /*
10558 * Our swapfile may have had its size extended after the swap header was
10559 * written. In that case activating the swapfile should not go beyond
10560 * the max size set in the swap header.
10561 */
10562 if (bsi->nr_pages >= sis->max)
10563 return 0;
10564
10565 max_pages = sis->max - bsi->nr_pages;
ce394a7f
YZ
10566 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10567 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
ed46ff3d
OS
10568
10569 if (first_ppage >= next_ppage)
10570 return 0;
10571 nr_pages = next_ppage - first_ppage;
c2f82263 10572 nr_pages = min(nr_pages, max_pages);
ed46ff3d
OS
10573
10574 first_ppage_reported = first_ppage;
10575 if (bsi->start == 0)
10576 first_ppage_reported++;
10577 if (bsi->lowest_ppage > first_ppage_reported)
10578 bsi->lowest_ppage = first_ppage_reported;
10579 if (bsi->highest_ppage < (next_ppage - 1))
10580 bsi->highest_ppage = next_ppage - 1;
10581
10582 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10583 if (ret < 0)
10584 return ret;
10585 bsi->nr_extents += ret;
10586 bsi->nr_pages += nr_pages;
10587 return 0;
10588}
10589
10590static void btrfs_swap_deactivate(struct file *file)
10591{
10592 struct inode *inode = file_inode(file);
10593
10594 btrfs_free_swapfile_pins(inode);
10595 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10596}
10597
10598static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10599 sector_t *span)
10600{
10601 struct inode *inode = file_inode(file);
dd0734f2
FM
10602 struct btrfs_root *root = BTRFS_I(inode)->root;
10603 struct btrfs_fs_info *fs_info = root->fs_info;
ed46ff3d
OS
10604 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10605 struct extent_state *cached_state = NULL;
10606 struct extent_map *em = NULL;
7dc66abb 10607 struct btrfs_chunk_map *map = NULL;
ed46ff3d
OS
10608 struct btrfs_device *device = NULL;
10609 struct btrfs_swap_info bsi = {
10610 .lowest_ppage = (sector_t)-1ULL,
10611 };
10612 int ret = 0;
10613 u64 isize;
10614 u64 start;
10615
10616 /*
10617 * If the swap file was just created, make sure delalloc is done. If the
10618 * file changes again after this, the user is doing something stupid and
10619 * we don't really care.
10620 */
10621 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10622 if (ret)
10623 return ret;
10624
10625 /*
10626 * The inode is locked, so these flags won't change after we check them.
10627 */
10628 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10629 btrfs_warn(fs_info, "swapfile must not be compressed");
10630 return -EINVAL;
10631 }
10632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10633 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10634 return -EINVAL;
10635 }
10636 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10637 btrfs_warn(fs_info, "swapfile must not be checksummed");
10638 return -EINVAL;
10639 }
10640
10641 /*
10642 * Balance or device remove/replace/resize can move stuff around from
c3e1f96c
GR
10643 * under us. The exclop protection makes sure they aren't running/won't
10644 * run concurrently while we are mapping the swap extents, and
10645 * fs_info->swapfile_pins prevents them from running while the swap
10646 * file is active and moving the extents. Note that this also prevents
10647 * a concurrent device add which isn't actually necessary, but it's not
ed46ff3d
OS
10648 * really worth the trouble to allow it.
10649 */
c3e1f96c 10650 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
ed46ff3d
OS
10651 btrfs_warn(fs_info,
10652 "cannot activate swapfile while exclusive operation is running");
10653 return -EBUSY;
10654 }
dd0734f2
FM
10655
10656 /*
10657 * Prevent snapshot creation while we are activating the swap file.
10658 * We do not want to race with snapshot creation. If snapshot creation
10659 * already started before we bumped nr_swapfiles from 0 to 1 and
10660 * completes before the first write into the swap file after it is
10661 * activated, than that write would fallback to COW.
10662 */
10663 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10664 btrfs_exclop_finish(fs_info);
10665 btrfs_warn(fs_info,
10666 "cannot activate swapfile because snapshot creation is in progress");
10667 return -EINVAL;
10668 }
ed46ff3d
OS
10669 /*
10670 * Snapshots can create extents which require COW even if NODATACOW is
10671 * set. We use this counter to prevent snapshots. We must increment it
10672 * before walking the extents because we don't want a concurrent
10673 * snapshot to run after we've already checked the extents.
60021bd7
KH
10674 *
10675 * It is possible that subvolume is marked for deletion but still not
10676 * removed yet. To prevent this race, we check the root status before
10677 * activating the swapfile.
ed46ff3d 10678 */
60021bd7
KH
10679 spin_lock(&root->root_item_lock);
10680 if (btrfs_root_dead(root)) {
10681 spin_unlock(&root->root_item_lock);
10682
10683 btrfs_exclop_finish(fs_info);
10684 btrfs_warn(fs_info,
10685 "cannot activate swapfile because subvolume %llu is being deleted",
10686 root->root_key.objectid);
10687 return -EPERM;
10688 }
dd0734f2 10689 atomic_inc(&root->nr_swapfiles);
60021bd7 10690 spin_unlock(&root->root_item_lock);
ed46ff3d
OS
10691
10692 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10693
570eb97b 10694 lock_extent(io_tree, 0, isize - 1, &cached_state);
ed46ff3d
OS
10695 start = 0;
10696 while (start < isize) {
10697 u64 logical_block_start, physical_block_start;
32da5386 10698 struct btrfs_block_group *bg;
ed46ff3d
OS
10699 u64 len = isize - start;
10700
39b07b5d 10701 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10702 if (IS_ERR(em)) {
10703 ret = PTR_ERR(em);
10704 goto out;
10705 }
10706
10707 if (em->block_start == EXTENT_MAP_HOLE) {
10708 btrfs_warn(fs_info, "swapfile must not have holes");
10709 ret = -EINVAL;
10710 goto out;
10711 }
10712 if (em->block_start == EXTENT_MAP_INLINE) {
10713 /*
10714 * It's unlikely we'll ever actually find ourselves
10715 * here, as a file small enough to fit inline won't be
10716 * big enough to store more than the swap header, but in
10717 * case something changes in the future, let's catch it
10718 * here rather than later.
10719 */
10720 btrfs_warn(fs_info, "swapfile must not be inline");
10721 ret = -EINVAL;
10722 goto out;
10723 }
f86f7a75 10724 if (extent_map_is_compressed(em)) {
ed46ff3d
OS
10725 btrfs_warn(fs_info, "swapfile must not be compressed");
10726 ret = -EINVAL;
10727 goto out;
10728 }
10729
10730 logical_block_start = em->block_start + (start - em->start);
10731 len = min(len, em->len - (start - em->start));
10732 free_extent_map(em);
10733 em = NULL;
10734
26ce9114 10735 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
ed46ff3d
OS
10736 if (ret < 0) {
10737 goto out;
10738 } else if (ret) {
10739 ret = 0;
10740 } else {
10741 btrfs_warn(fs_info,
10742 "swapfile must not be copy-on-write");
10743 ret = -EINVAL;
10744 goto out;
10745 }
10746
7dc66abb
FM
10747 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10748 if (IS_ERR(map)) {
10749 ret = PTR_ERR(map);
ed46ff3d
OS
10750 goto out;
10751 }
10752
7dc66abb 10753 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
ed46ff3d
OS
10754 btrfs_warn(fs_info,
10755 "swapfile must have single data profile");
10756 ret = -EINVAL;
10757 goto out;
10758 }
10759
10760 if (device == NULL) {
7dc66abb 10761 device = map->stripes[0].dev;
ed46ff3d
OS
10762 ret = btrfs_add_swapfile_pin(inode, device, false);
10763 if (ret == 1)
10764 ret = 0;
10765 else if (ret)
10766 goto out;
7dc66abb 10767 } else if (device != map->stripes[0].dev) {
ed46ff3d
OS
10768 btrfs_warn(fs_info, "swapfile must be on one device");
10769 ret = -EINVAL;
10770 goto out;
10771 }
10772
7dc66abb
FM
10773 physical_block_start = (map->stripes[0].physical +
10774 (logical_block_start - map->start));
10775 len = min(len, map->chunk_len - (logical_block_start - map->start));
10776 btrfs_free_chunk_map(map);
10777 map = NULL;
ed46ff3d
OS
10778
10779 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10780 if (!bg) {
10781 btrfs_warn(fs_info,
10782 "could not find block group containing swapfile");
10783 ret = -EINVAL;
10784 goto out;
10785 }
10786
195a49ea
FM
10787 if (!btrfs_inc_block_group_swap_extents(bg)) {
10788 btrfs_warn(fs_info,
10789 "block group for swapfile at %llu is read-only%s",
10790 bg->start,
10791 atomic_read(&fs_info->scrubs_running) ?
10792 " (scrub running)" : "");
10793 btrfs_put_block_group(bg);
10794 ret = -EINVAL;
10795 goto out;
10796 }
10797
ed46ff3d
OS
10798 ret = btrfs_add_swapfile_pin(inode, bg, true);
10799 if (ret) {
10800 btrfs_put_block_group(bg);
10801 if (ret == 1)
10802 ret = 0;
10803 else
10804 goto out;
10805 }
10806
10807 if (bsi.block_len &&
10808 bsi.block_start + bsi.block_len == physical_block_start) {
10809 bsi.block_len += len;
10810 } else {
10811 if (bsi.block_len) {
10812 ret = btrfs_add_swap_extent(sis, &bsi);
10813 if (ret)
10814 goto out;
10815 }
10816 bsi.start = start;
10817 bsi.block_start = physical_block_start;
10818 bsi.block_len = len;
10819 }
10820
10821 start += len;
10822 }
10823
10824 if (bsi.block_len)
10825 ret = btrfs_add_swap_extent(sis, &bsi);
10826
10827out:
10828 if (!IS_ERR_OR_NULL(em))
10829 free_extent_map(em);
7dc66abb
FM
10830 if (!IS_ERR_OR_NULL(map))
10831 btrfs_free_chunk_map(map);
ed46ff3d 10832
570eb97b 10833 unlock_extent(io_tree, 0, isize - 1, &cached_state);
ed46ff3d
OS
10834
10835 if (ret)
10836 btrfs_swap_deactivate(file);
10837
dd0734f2
FM
10838 btrfs_drew_write_unlock(&root->snapshot_lock);
10839
c3e1f96c 10840 btrfs_exclop_finish(fs_info);
ed46ff3d
OS
10841
10842 if (ret)
10843 return ret;
10844
10845 if (device)
10846 sis->bdev = device->bdev;
10847 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10848 sis->max = bsi.nr_pages;
10849 sis->pages = bsi.nr_pages - 1;
10850 sis->highest_bit = bsi.nr_pages - 1;
10851 return bsi.nr_extents;
10852}
10853#else
10854static void btrfs_swap_deactivate(struct file *file)
10855{
10856}
10857
10858static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10859 sector_t *span)
10860{
10861 return -EOPNOTSUPP;
10862}
10863#endif
10864
2766ff61
FM
10865/*
10866 * Update the number of bytes used in the VFS' inode. When we replace extents in
10867 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10868 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10869 * always get a correct value.
10870 */
10871void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10872 const u64 add_bytes,
10873 const u64 del_bytes)
10874{
10875 if (add_bytes == del_bytes)
10876 return;
10877
10878 spin_lock(&inode->lock);
10879 if (del_bytes > 0)
10880 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10881 if (add_bytes > 0)
10882 inode_add_bytes(&inode->vfs_inode, add_bytes);
10883 spin_unlock(&inode->lock);
10884}
10885
43dd529a 10886/*
63c34cb4
FM
10887 * Verify that there are no ordered extents for a given file range.
10888 *
10889 * @inode: The target inode.
10890 * @start: Start offset of the file range, should be sector size aligned.
10891 * @end: End offset (inclusive) of the file range, its value +1 should be
10892 * sector size aligned.
10893 *
10894 * This should typically be used for cases where we locked an inode's VFS lock in
10895 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10896 * we have flushed all delalloc in the range, we have waited for all ordered
10897 * extents in the range to complete and finally we have locked the file range in
10898 * the inode's io_tree.
10899 */
10900void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10901{
10902 struct btrfs_root *root = inode->root;
10903 struct btrfs_ordered_extent *ordered;
10904
10905 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10906 return;
10907
10908 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10909 if (ordered) {
10910 btrfs_err(root->fs_info,
10911"found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10912 start, end, btrfs_ino(inode), root->root_key.objectid,
10913 ordered->file_offset,
10914 ordered->file_offset + ordered->num_bytes - 1);
10915 btrfs_put_ordered_extent(ordered);
10916 }
10917
10918 ASSERT(ordered == NULL);
10919}
10920
6e1d5dcc 10921static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10922 .getattr = btrfs_getattr,
39279cc3
CM
10923 .lookup = btrfs_lookup,
10924 .create = btrfs_create,
10925 .unlink = btrfs_unlink,
10926 .link = btrfs_link,
10927 .mkdir = btrfs_mkdir,
10928 .rmdir = btrfs_rmdir,
2773bf00 10929 .rename = btrfs_rename2,
39279cc3
CM
10930 .symlink = btrfs_symlink,
10931 .setattr = btrfs_setattr,
618e21d5 10932 .mknod = btrfs_mknod,
5103e947 10933 .listxattr = btrfs_listxattr,
fdebe2bd 10934 .permission = btrfs_permission,
cac2f8b8 10935 .get_inode_acl = btrfs_get_acl,
996a710d 10936 .set_acl = btrfs_set_acl,
93fd63c2 10937 .update_time = btrfs_update_time,
ef3b9af5 10938 .tmpfile = btrfs_tmpfile,
97fc2977
MS
10939 .fileattr_get = btrfs_fileattr_get,
10940 .fileattr_set = btrfs_fileattr_set,
39279cc3 10941};
76dda93c 10942
828c0950 10943static const struct file_operations btrfs_dir_file_operations = {
e60aa5da 10944 .llseek = btrfs_dir_llseek,
39279cc3 10945 .read = generic_read_dir,
02dbfc99 10946 .iterate_shared = btrfs_real_readdir,
23b5ec74 10947 .open = btrfs_opendir,
34287aa3 10948 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10949#ifdef CONFIG_COMPAT
4c63c245 10950 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10951#endif
6bf13c0c 10952 .release = btrfs_release_file,
e02119d5 10953 .fsync = btrfs_sync_file,
39279cc3
CM
10954};
10955
35054394
CM
10956/*
10957 * btrfs doesn't support the bmap operation because swapfiles
10958 * use bmap to make a mapping of extents in the file. They assume
10959 * these extents won't change over the life of the file and they
10960 * use the bmap result to do IO directly to the drive.
10961 *
10962 * the btrfs bmap call would return logical addresses that aren't
10963 * suitable for IO and they also will change frequently as COW
10964 * operations happen. So, swapfile + btrfs == corruption.
10965 *
10966 * For now we're avoiding this by dropping bmap.
10967 */
7f09410b 10968static const struct address_space_operations btrfs_aops = {
fb12489b 10969 .read_folio = btrfs_read_folio,
b293f02e 10970 .writepages = btrfs_writepages,
ba206a02 10971 .readahead = btrfs_readahead,
895586eb 10972 .invalidate_folio = btrfs_invalidate_folio,
f913cff3 10973 .release_folio = btrfs_release_folio,
e7a60a17 10974 .migrate_folio = btrfs_migrate_folio,
187c82cb 10975 .dirty_folio = filemap_dirty_folio,
af7628d6 10976 .error_remove_folio = generic_error_remove_folio,
ed46ff3d
OS
10977 .swap_activate = btrfs_swap_activate,
10978 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10979};
10980
6e1d5dcc 10981static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10982 .getattr = btrfs_getattr,
10983 .setattr = btrfs_setattr,
5103e947 10984 .listxattr = btrfs_listxattr,
fdebe2bd 10985 .permission = btrfs_permission,
1506fcc8 10986 .fiemap = btrfs_fiemap,
cac2f8b8 10987 .get_inode_acl = btrfs_get_acl,
996a710d 10988 .set_acl = btrfs_set_acl,
e41f941a 10989 .update_time = btrfs_update_time,
97fc2977
MS
10990 .fileattr_get = btrfs_fileattr_get,
10991 .fileattr_set = btrfs_fileattr_set,
39279cc3 10992};
6e1d5dcc 10993static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10994 .getattr = btrfs_getattr,
10995 .setattr = btrfs_setattr,
fdebe2bd 10996 .permission = btrfs_permission,
33268eaf 10997 .listxattr = btrfs_listxattr,
cac2f8b8 10998 .get_inode_acl = btrfs_get_acl,
996a710d 10999 .set_acl = btrfs_set_acl,
e41f941a 11000 .update_time = btrfs_update_time,
618e21d5 11001};
6e1d5dcc 11002static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 11003 .get_link = page_get_link,
f209561a 11004 .getattr = btrfs_getattr,
22c44fe6 11005 .setattr = btrfs_setattr,
fdebe2bd 11006 .permission = btrfs_permission,
0279b4cd 11007 .listxattr = btrfs_listxattr,
e41f941a 11008 .update_time = btrfs_update_time,
39279cc3 11009};
76dda93c 11010
82d339d9 11011const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
11012 .d_delete = btrfs_dentry_delete,
11013};