]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/inode.c
btrfs: pass the ino via truncate control
[thirdparty/linux.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
348332e0 9#include <linux/blk-cgroup.h>
f2eb0a24 10#include <linux/file.h>
39279cc3
CM
11#include <linux/fs.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
39279cc3 17#include <linux/backing-dev.h>
39279cc3 18#include <linux/writeback.h>
39279cc3 19#include <linux/compat.h>
5103e947 20#include <linux/xattr.h>
33268eaf 21#include <linux/posix_acl.h>
d899e052 22#include <linux/falloc.h>
5a0e3ad6 23#include <linux/slab.h>
7a36ddec 24#include <linux/ratelimit.h>
55e301fd 25#include <linux/btrfs.h>
53b381b3 26#include <linux/blkdev.h>
f23b5a59 27#include <linux/posix_acl_xattr.h>
e2e40f2c 28#include <linux/uio.h>
69fe2d75 29#include <linux/magic.h>
ae5e165d 30#include <linux/iversion.h>
ed46ff3d 31#include <linux/swap.h>
f8e66081 32#include <linux/migrate.h>
b1c16ac9 33#include <linux/sched/mm.h>
f85781fb 34#include <linux/iomap.h>
92d32170 35#include <asm/unaligned.h>
14605409 36#include <linux/fsverity.h>
602cbe91 37#include "misc.h"
39279cc3
CM
38#include "ctree.h"
39#include "disk-io.h"
40#include "transaction.h"
41#include "btrfs_inode.h"
39279cc3 42#include "print-tree.h"
e6dcd2dc 43#include "ordered-data.h"
95819c05 44#include "xattr.h"
e02119d5 45#include "tree-log.h"
4a54c8c1 46#include "volumes.h"
c8b97818 47#include "compression.h"
b4ce94de 48#include "locking.h"
dc89e982 49#include "free-space-cache.h"
63541927 50#include "props.h"
31193213 51#include "qgroup.h"
86736342 52#include "delalloc-space.h"
aac0023c 53#include "block-group.h"
467dc47e 54#include "space-info.h"
d8e3fb10 55#include "zoned.h"
b945a463 56#include "subpage.h"
26c2c454 57#include "inode-item.h"
39279cc3
CM
58
59struct btrfs_iget_args {
0202e83f 60 u64 ino;
39279cc3
CM
61 struct btrfs_root *root;
62};
63
f28a4928 64struct btrfs_dio_data {
f85781fb
GR
65 ssize_t submitted;
66 struct extent_changeset *data_reserved;
f28a4928
FM
67};
68
6e1d5dcc
AD
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b 73static const struct address_space_operations btrfs_aops;
828c0950 74static const struct file_operations btrfs_dir_file_operations;
39279cc3
CM
75
76static struct kmem_cache *btrfs_inode_cachep;
77struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 78struct kmem_cache *btrfs_path_cachep;
dc89e982 79struct kmem_cache *btrfs_free_space_cachep;
3acd4850 80struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 81
3972f260 82static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 83static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 84static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 85static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 86 struct page *locked_page,
74e9194a 87 u64 start, u64 end, int *page_started,
330a5827 88 unsigned long *nr_written, int unlock);
4b67c11d
NB
89static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
90 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
91 u64 block_len, u64 orig_block_len,
92 u64 ram_bytes, int compress_type,
93 int type);
7b128766 94
b672b5c1 95static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
96 const u64 offset, const u64 bytes,
97 const bool uptodate);
98
a14b78ad
GR
99/*
100 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
101 *
102 * ilock_flags can have the following bit set:
103 *
104 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
105 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
106 * return -EAGAIN
8318ba79 107 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
a14b78ad
GR
108 */
109int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
110{
111 if (ilock_flags & BTRFS_ILOCK_SHARED) {
112 if (ilock_flags & BTRFS_ILOCK_TRY) {
113 if (!inode_trylock_shared(inode))
114 return -EAGAIN;
115 else
116 return 0;
117 }
118 inode_lock_shared(inode);
119 } else {
120 if (ilock_flags & BTRFS_ILOCK_TRY) {
121 if (!inode_trylock(inode))
122 return -EAGAIN;
123 else
124 return 0;
125 }
126 inode_lock(inode);
127 }
8318ba79
JB
128 if (ilock_flags & BTRFS_ILOCK_MMAP)
129 down_write(&BTRFS_I(inode)->i_mmap_lock);
a14b78ad
GR
130 return 0;
131}
132
133/*
134 * btrfs_inode_unlock - unock inode i_rwsem
135 *
136 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
137 * to decide whether the lock acquired is shared or exclusive.
138 */
139void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
140{
8318ba79
JB
141 if (ilock_flags & BTRFS_ILOCK_MMAP)
142 up_write(&BTRFS_I(inode)->i_mmap_lock);
a14b78ad
GR
143 if (ilock_flags & BTRFS_ILOCK_SHARED)
144 inode_unlock_shared(inode);
145 else
146 inode_unlock(inode);
147}
148
52427260
QW
149/*
150 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 151 * from the btrfs_run_delalloc_range() callback.
52427260
QW
152 *
153 * NOTE: caller must ensure that when an error happens, it can not call
154 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
155 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
156 * to be released, which we want to happen only when finishing the ordered
d1051d6e 157 * extent (btrfs_finish_ordered_io()).
52427260 158 */
64e1db56 159static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
160 struct page *locked_page,
161 u64 offset, u64 bytes)
52427260 162{
63d71450
NA
163 unsigned long index = offset >> PAGE_SHIFT;
164 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
165 u64 page_start = page_offset(locked_page);
166 u64 page_end = page_start + PAGE_SIZE - 1;
167
63d71450
NA
168 struct page *page;
169
170 while (index <= end_index) {
968f2566
QW
171 /*
172 * For locked page, we will call end_extent_writepage() on it
173 * in run_delalloc_range() for the error handling. That
174 * end_extent_writepage() function will call
175 * btrfs_mark_ordered_io_finished() to clear page Ordered and
176 * run the ordered extent accounting.
177 *
178 * Here we can't just clear the Ordered bit, or
179 * btrfs_mark_ordered_io_finished() would skip the accounting
180 * for the page range, and the ordered extent will never finish.
181 */
182 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
183 index++;
184 continue;
185 }
64e1db56 186 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
187 index++;
188 if (!page)
189 continue;
968f2566
QW
190
191 /*
192 * Here we just clear all Ordered bits for every page in the
193 * range, then __endio_write_update_ordered() will handle
194 * the ordered extent accounting for the range.
195 */
b945a463
QW
196 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
197 offset, bytes);
63d71450
NA
198 put_page(page);
199 }
d1051d6e 200
b945a463
QW
201 /* The locked page covers the full range, nothing needs to be done */
202 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
203 return;
d1051d6e
NB
204 /*
205 * In case this page belongs to the delalloc range being instantiated
206 * then skip it, since the first page of a range is going to be
207 * properly cleaned up by the caller of run_delalloc_range
208 */
209 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
b945a463
QW
210 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
211 offset = page_offset(locked_page) + PAGE_SIZE;
d1051d6e
NB
212 }
213
64e1db56 214 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
215}
216
48a3b636 217static int btrfs_dirty_inode(struct inode *inode);
7b128766 218
f34f57a3 219static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
220 struct inode *inode, struct inode *dir,
221 const struct qstr *qstr)
0279b4cd
JO
222{
223 int err;
224
f34f57a3 225 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 226 if (!err)
2a7dba39 227 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
228 return err;
229}
230
c8b97818
CM
231/*
232 * this does all the hard work for inserting an inline extent into
233 * the btree. The caller should have done a btrfs_drop_extents so that
234 * no overlapping inline items exist in the btree
235 */
40f76580 236static int insert_inline_extent(struct btrfs_trans_handle *trans,
5893dfb9 237 struct btrfs_path *path, bool extent_inserted,
c8b97818
CM
238 struct btrfs_root *root, struct inode *inode,
239 u64 start, size_t size, size_t compressed_size,
fe3f566c 240 int compress_type,
c8b97818
CM
241 struct page **compressed_pages)
242{
c8b97818
CM
243 struct extent_buffer *leaf;
244 struct page *page = NULL;
245 char *kaddr;
246 unsigned long ptr;
247 struct btrfs_file_extent_item *ei;
c8b97818
CM
248 int ret;
249 size_t cur_size = size;
c8b97818 250 unsigned long offset;
c8b97818 251
982f1f5d
JJB
252 ASSERT((compressed_size > 0 && compressed_pages) ||
253 (compressed_size == 0 && !compressed_pages));
254
fe3f566c 255 if (compressed_size && compressed_pages)
c8b97818 256 cur_size = compressed_size;
c8b97818 257
1acae57b
FDBM
258 if (!extent_inserted) {
259 struct btrfs_key key;
260 size_t datasize;
c8b97818 261
4a0cc7ca 262 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 263 key.offset = start;
962a298f 264 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 265
1acae57b 266 datasize = btrfs_file_extent_calc_inline_size(cur_size);
1acae57b
FDBM
267 ret = btrfs_insert_empty_item(trans, root, path, &key,
268 datasize);
79b4f4c6 269 if (ret)
1acae57b 270 goto fail;
c8b97818
CM
271 }
272 leaf = path->nodes[0];
273 ei = btrfs_item_ptr(leaf, path->slots[0],
274 struct btrfs_file_extent_item);
275 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
276 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
277 btrfs_set_file_extent_encryption(leaf, ei, 0);
278 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
279 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
280 ptr = btrfs_file_extent_inline_start(ei);
281
261507a0 282 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
283 struct page *cpage;
284 int i = 0;
d397712b 285 while (compressed_size > 0) {
c8b97818 286 cpage = compressed_pages[i];
5b050f04 287 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 288 PAGE_SIZE);
c8b97818 289
3a60f653 290 kaddr = kmap_atomic(cpage);
c8b97818 291 write_extent_buffer(leaf, kaddr, ptr, cur_size);
3a60f653 292 kunmap_atomic(kaddr);
c8b97818
CM
293
294 i++;
295 ptr += cur_size;
296 compressed_size -= cur_size;
297 }
298 btrfs_set_file_extent_compression(leaf, ei,
261507a0 299 compress_type);
c8b97818
CM
300 } else {
301 page = find_get_page(inode->i_mapping,
09cbfeaf 302 start >> PAGE_SHIFT);
c8b97818 303 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 304 kaddr = kmap_atomic(page);
7073017a 305 offset = offset_in_page(start);
c8b97818 306 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 307 kunmap_atomic(kaddr);
09cbfeaf 308 put_page(page);
c8b97818
CM
309 }
310 btrfs_mark_buffer_dirty(leaf);
1acae57b 311 btrfs_release_path(path);
c8b97818 312
9ddc959e
JB
313 /*
314 * We align size to sectorsize for inline extents just for simplicity
315 * sake.
316 */
317 size = ALIGN(size, root->fs_info->sectorsize);
318 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
319 if (ret)
320 goto fail;
321
c2167754
YZ
322 /*
323 * we're an inline extent, so nobody can
324 * extend the file past i_size without locking
325 * a page we already have locked.
326 *
327 * We must do any isize and inode updates
328 * before we unlock the pages. Otherwise we
329 * could end up racing with unlink.
330 */
c8b97818 331 BTRFS_I(inode)->disk_i_size = inode->i_size;
c8b97818 332fail:
79b4f4c6 333 return ret;
c8b97818
CM
334}
335
336
337/*
338 * conditionally insert an inline extent into the file. This
339 * does the checks required to make sure the data is small enough
340 * to fit as an inline extent.
341 */
a0349401 342static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
343 u64 end, size_t compressed_size,
344 int compress_type,
345 struct page **compressed_pages)
c8b97818 346{
5893dfb9 347 struct btrfs_drop_extents_args drop_args = { 0 };
a0349401 348 struct btrfs_root *root = inode->root;
0b246afa 349 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 350 struct btrfs_trans_handle *trans;
a0349401 351 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
352 u64 actual_end = min(end + 1, isize);
353 u64 inline_len = actual_end - start;
0b246afa 354 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
355 u64 data_len = inline_len;
356 int ret;
1acae57b 357 struct btrfs_path *path;
c8b97818
CM
358
359 if (compressed_size)
360 data_len = compressed_size;
361
362 if (start > 0 ||
0b246afa
JM
363 actual_end > fs_info->sectorsize ||
364 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 365 (!compressed_size &&
0b246afa 366 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 367 end + 1 < isize ||
0b246afa 368 data_len > fs_info->max_inline) {
c8b97818
CM
369 return 1;
370 }
371
1acae57b
FDBM
372 path = btrfs_alloc_path();
373 if (!path)
374 return -ENOMEM;
375
00361589 376 trans = btrfs_join_transaction(root);
1acae57b
FDBM
377 if (IS_ERR(trans)) {
378 btrfs_free_path(path);
00361589 379 return PTR_ERR(trans);
1acae57b 380 }
a0349401 381 trans->block_rsv = &inode->block_rsv;
00361589 382
5893dfb9
FM
383 drop_args.path = path;
384 drop_args.start = start;
385 drop_args.end = aligned_end;
386 drop_args.drop_cache = true;
387 drop_args.replace_extent = true;
388
1acae57b 389 if (compressed_size && compressed_pages)
5893dfb9 390 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
1acae57b
FDBM
391 compressed_size);
392 else
5893dfb9 393 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
1acae57b
FDBM
394 inline_len);
395
5893dfb9 396 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
00361589 397 if (ret) {
66642832 398 btrfs_abort_transaction(trans, ret);
00361589
JB
399 goto out;
400 }
c8b97818
CM
401
402 if (isize > actual_end)
403 inline_len = min_t(u64, isize, actual_end);
5893dfb9 404 ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
a0349401 405 root, &inode->vfs_inode, start,
c8b97818 406 inline_len, compressed_size,
fe3f566c 407 compress_type, compressed_pages);
2adcac1a 408 if (ret && ret != -ENOSPC) {
66642832 409 btrfs_abort_transaction(trans, ret);
00361589 410 goto out;
2adcac1a 411 } else if (ret == -ENOSPC) {
00361589
JB
412 ret = 1;
413 goto out;
79787eaa 414 }
2adcac1a 415
2766ff61 416 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
9a56fcd1 417 ret = btrfs_update_inode(trans, root, inode);
2766ff61
FM
418 if (ret && ret != -ENOSPC) {
419 btrfs_abort_transaction(trans, ret);
420 goto out;
421 } else if (ret == -ENOSPC) {
422 ret = 1;
423 goto out;
424 }
425
a0349401 426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
00361589 427out:
94ed938a
QW
428 /*
429 * Don't forget to free the reserved space, as for inlined extent
430 * it won't count as data extent, free them directly here.
431 * And at reserve time, it's always aligned to page size, so
432 * just free one page here.
433 */
a0349401 434 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 435 btrfs_free_path(path);
3a45bb20 436 btrfs_end_transaction(trans);
00361589 437 return ret;
c8b97818
CM
438}
439
771ed689
CM
440struct async_extent {
441 u64 start;
442 u64 ram_size;
443 u64 compressed_size;
444 struct page **pages;
445 unsigned long nr_pages;
261507a0 446 int compress_type;
771ed689
CM
447 struct list_head list;
448};
449
97db1204 450struct async_chunk {
771ed689 451 struct inode *inode;
771ed689
CM
452 struct page *locked_page;
453 u64 start;
454 u64 end;
f82b7359 455 unsigned int write_flags;
771ed689 456 struct list_head extents;
ec39f769 457 struct cgroup_subsys_state *blkcg_css;
771ed689 458 struct btrfs_work work;
9e895a8f 459 struct async_cow *async_cow;
771ed689
CM
460};
461
97db1204 462struct async_cow {
97db1204
NB
463 atomic_t num_chunks;
464 struct async_chunk chunks[];
771ed689
CM
465};
466
97db1204 467static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
468 u64 start, u64 ram_size,
469 u64 compressed_size,
470 struct page **pages,
261507a0
LZ
471 unsigned long nr_pages,
472 int compress_type)
771ed689
CM
473{
474 struct async_extent *async_extent;
475
476 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 477 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
478 async_extent->start = start;
479 async_extent->ram_size = ram_size;
480 async_extent->compressed_size = compressed_size;
481 async_extent->pages = pages;
482 async_extent->nr_pages = nr_pages;
261507a0 483 async_extent->compress_type = compress_type;
771ed689
CM
484 list_add_tail(&async_extent->list, &cow->extents);
485 return 0;
486}
487
42c16da6
QW
488/*
489 * Check if the inode has flags compatible with compression
490 */
99c88dc7 491static inline bool inode_can_compress(struct btrfs_inode *inode)
42c16da6 492{
99c88dc7
NB
493 if (inode->flags & BTRFS_INODE_NODATACOW ||
494 inode->flags & BTRFS_INODE_NODATASUM)
42c16da6
QW
495 return false;
496 return true;
497}
498
499/*
500 * Check if the inode needs to be submitted to compression, based on mount
501 * options, defragmentation, properties or heuristics.
502 */
808a1292
NB
503static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
504 u64 end)
f79707b0 505{
808a1292 506 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 507
808a1292 508 if (!inode_can_compress(inode)) {
42c16da6
QW
509 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
510 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 511 btrfs_ino(inode));
42c16da6
QW
512 return 0;
513 }
0cf9b244
QW
514 /*
515 * Special check for subpage.
516 *
517 * We lock the full page then run each delalloc range in the page, thus
518 * for the following case, we will hit some subpage specific corner case:
519 *
520 * 0 32K 64K
521 * | |///////| |///////|
522 * \- A \- B
523 *
524 * In above case, both range A and range B will try to unlock the full
525 * page [0, 64K), causing the one finished later will have page
526 * unlocked already, triggering various page lock requirement BUG_ON()s.
527 *
528 * So here we add an artificial limit that subpage compression can only
529 * if the range is fully page aligned.
530 *
531 * In theory we only need to ensure the first page is fully covered, but
532 * the tailing partial page will be locked until the full compression
533 * finishes, delaying the write of other range.
534 *
535 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
536 * first to prevent any submitted async extent to unlock the full page.
537 * By this, we can ensure for subpage case that only the last async_cow
538 * will unlock the full page.
539 */
540 if (fs_info->sectorsize < PAGE_SIZE) {
541 if (!IS_ALIGNED(start, PAGE_SIZE) ||
542 !IS_ALIGNED(end + 1, PAGE_SIZE))
543 return 0;
544 }
545
f79707b0 546 /* force compress */
0b246afa 547 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 548 return 1;
eec63c65 549 /* defrag ioctl */
808a1292 550 if (inode->defrag_compress)
eec63c65 551 return 1;
f79707b0 552 /* bad compression ratios */
808a1292 553 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 554 return 0;
0b246afa 555 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
556 inode->flags & BTRFS_INODE_COMPRESS ||
557 inode->prop_compress)
558 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
559 return 0;
560}
561
6158e1ce 562static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
563 u64 start, u64 end, u64 num_bytes, u64 small_write)
564{
565 /* If this is a small write inside eof, kick off a defrag */
566 if (num_bytes < small_write &&
6158e1ce 567 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
568 btrfs_add_inode_defrag(NULL, inode);
569}
570
d352ac68 571/*
771ed689
CM
572 * we create compressed extents in two phases. The first
573 * phase compresses a range of pages that have already been
574 * locked (both pages and state bits are locked).
c8b97818 575 *
771ed689
CM
576 * This is done inside an ordered work queue, and the compression
577 * is spread across many cpus. The actual IO submission is step
578 * two, and the ordered work queue takes care of making sure that
579 * happens in the same order things were put onto the queue by
580 * writepages and friends.
c8b97818 581 *
771ed689
CM
582 * If this code finds it can't get good compression, it puts an
583 * entry onto the work queue to write the uncompressed bytes. This
584 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
585 * are written in the same order that the flusher thread sent them
586 * down.
d352ac68 587 */
ac3e9933 588static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 589{
1368c6da 590 struct inode *inode = async_chunk->inode;
0b246afa 591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 592 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
593 u64 start = async_chunk->start;
594 u64 end = async_chunk->end;
c8b97818 595 u64 actual_end;
d98da499 596 u64 i_size;
e6dcd2dc 597 int ret = 0;
c8b97818
CM
598 struct page **pages = NULL;
599 unsigned long nr_pages;
c8b97818
CM
600 unsigned long total_compressed = 0;
601 unsigned long total_in = 0;
c8b97818
CM
602 int i;
603 int will_compress;
0b246afa 604 int compress_type = fs_info->compress_type;
ac3e9933 605 int compressed_extents = 0;
4adaa611 606 int redirty = 0;
b888db2b 607
6158e1ce
NB
608 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
609 SZ_16K);
4cb5300b 610
d98da499
JB
611 /*
612 * We need to save i_size before now because it could change in between
613 * us evaluating the size and assigning it. This is because we lock and
614 * unlock the page in truncate and fallocate, and then modify the i_size
615 * later on.
616 *
617 * The barriers are to emulate READ_ONCE, remove that once i_size_read
618 * does that for us.
619 */
620 barrier();
621 i_size = i_size_read(inode);
622 barrier();
623 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
624again:
625 will_compress = 0;
09cbfeaf 626 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
627 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
628 nr_pages = min_t(unsigned long, nr_pages,
629 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 630
f03d9301
CM
631 /*
632 * we don't want to send crud past the end of i_size through
633 * compression, that's just a waste of CPU time. So, if the
634 * end of the file is before the start of our current
635 * requested range of bytes, we bail out to the uncompressed
636 * cleanup code that can deal with all of this.
637 *
638 * It isn't really the fastest way to fix things, but this is a
639 * very uncommon corner.
640 */
641 if (actual_end <= start)
642 goto cleanup_and_bail_uncompressed;
643
c8b97818
CM
644 total_compressed = actual_end - start;
645
4bcbb332 646 /*
0cf9b244 647 * Skip compression for a small file range(<=blocksize) that
01327610 648 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
649 */
650 if (total_compressed <= blocksize &&
651 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
652 goto cleanup_and_bail_uncompressed;
653
0cf9b244
QW
654 /*
655 * For subpage case, we require full page alignment for the sector
656 * aligned range.
657 * Thus we must also check against @actual_end, not just @end.
658 */
659 if (blocksize < PAGE_SIZE) {
660 if (!IS_ALIGNED(start, PAGE_SIZE) ||
661 !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
662 goto cleanup_and_bail_uncompressed;
663 }
664
069eac78
DS
665 total_compressed = min_t(unsigned long, total_compressed,
666 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
667 total_in = 0;
668 ret = 0;
db94535d 669
771ed689
CM
670 /*
671 * we do compression for mount -o compress and when the
672 * inode has not been flagged as nocompress. This flag can
673 * change at any time if we discover bad compression ratios.
c8b97818 674 */
4e965576 675 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 676 WARN_ON(pages);
31e818fe 677 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
678 if (!pages) {
679 /* just bail out to the uncompressed code */
3527a018 680 nr_pages = 0;
560f7d75
LZ
681 goto cont;
682 }
c8b97818 683
eec63c65
DS
684 if (BTRFS_I(inode)->defrag_compress)
685 compress_type = BTRFS_I(inode)->defrag_compress;
686 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 687 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 688
4adaa611
CM
689 /*
690 * we need to call clear_page_dirty_for_io on each
691 * page in the range. Otherwise applications with the file
692 * mmap'd can wander in and change the page contents while
693 * we are compressing them.
694 *
695 * If the compression fails for any reason, we set the pages
696 * dirty again later on.
e9679de3
TT
697 *
698 * Note that the remaining part is redirtied, the start pointer
699 * has moved, the end is the original one.
4adaa611 700 */
e9679de3
TT
701 if (!redirty) {
702 extent_range_clear_dirty_for_io(inode, start, end);
703 redirty = 1;
704 }
f51d2b59
DS
705
706 /* Compression level is applied here and only here */
707 ret = btrfs_compress_pages(
708 compress_type | (fs_info->compress_level << 4),
261507a0 709 inode->i_mapping, start,
38c31464 710 pages,
4d3a800e 711 &nr_pages,
261507a0 712 &total_in,
e5d74902 713 &total_compressed);
c8b97818
CM
714
715 if (!ret) {
7073017a 716 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 717 struct page *page = pages[nr_pages - 1];
c8b97818
CM
718
719 /* zero the tail end of the last page, we might be
720 * sending it down to disk
721 */
d048b9c2
IW
722 if (offset)
723 memzero_page(page, offset, PAGE_SIZE - offset);
c8b97818
CM
724 will_compress = 1;
725 }
726 }
560f7d75 727cont:
7367253a
QW
728 /*
729 * Check cow_file_range() for why we don't even try to create inline
730 * extent for subpage case.
731 */
732 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
c8b97818 733 /* lets try to make an inline extent */
6018ba0a 734 if (ret || total_in < actual_end) {
c8b97818 735 /* we didn't compress the entire range, try
771ed689 736 * to make an uncompressed inline extent.
c8b97818 737 */
a0349401
NB
738 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
739 0, BTRFS_COMPRESS_NONE,
740 NULL);
c8b97818 741 } else {
771ed689 742 /* try making a compressed inline extent */
a0349401 743 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
744 total_compressed,
745 compress_type, pages);
c8b97818 746 }
79787eaa 747 if (ret <= 0) {
151a41bc 748 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
749 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
750 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
751 unsigned long page_error_op;
752
e6eb4314 753 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 754
771ed689 755 /*
79787eaa
JM
756 * inline extent creation worked or returned error,
757 * we don't need to create any more async work items.
758 * Unlock and free up our temp pages.
8b62f87b
JB
759 *
760 * We use DO_ACCOUNTING here because we need the
761 * delalloc_release_metadata to be done _after_ we drop
762 * our outstanding extent for clearing delalloc for this
763 * range.
771ed689 764 */
ad7ff17b
NB
765 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
766 NULL,
74e9194a 767 clear_flags,
ba8b04c1 768 PAGE_UNLOCK |
6869b0a8 769 PAGE_START_WRITEBACK |
e6eb4314 770 page_error_op |
c2790a2e 771 PAGE_END_WRITEBACK);
cecc8d90 772
1e6e238c
QW
773 /*
774 * Ensure we only free the compressed pages if we have
775 * them allocated, as we can still reach here with
776 * inode_need_compress() == false.
777 */
778 if (pages) {
779 for (i = 0; i < nr_pages; i++) {
780 WARN_ON(pages[i]->mapping);
781 put_page(pages[i]);
782 }
783 kfree(pages);
cecc8d90 784 }
cecc8d90 785 return 0;
c8b97818
CM
786 }
787 }
788
789 if (will_compress) {
790 /*
791 * we aren't doing an inline extent round the compressed size
792 * up to a block size boundary so the allocator does sane
793 * things
794 */
fda2832f 795 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
796
797 /*
798 * one last check to make sure the compression is really a
170607eb
TT
799 * win, compare the page count read with the blocks on disk,
800 * compression must free at least one sector size
c8b97818 801 */
4c162778 802 total_in = round_up(total_in, fs_info->sectorsize);
170607eb 803 if (total_compressed + blocksize <= total_in) {
ac3e9933 804 compressed_extents++;
c8bb0c8b
AS
805
806 /*
807 * The async work queues will take care of doing actual
808 * allocation on disk for these compressed pages, and
809 * will submit them to the elevator.
810 */
b5326271 811 add_async_extent(async_chunk, start, total_in,
4d3a800e 812 total_compressed, pages, nr_pages,
c8bb0c8b
AS
813 compress_type);
814
1170862d
TT
815 if (start + total_in < end) {
816 start += total_in;
c8bb0c8b
AS
817 pages = NULL;
818 cond_resched();
819 goto again;
820 }
ac3e9933 821 return compressed_extents;
c8b97818
CM
822 }
823 }
c8bb0c8b 824 if (pages) {
c8b97818
CM
825 /*
826 * the compression code ran but failed to make things smaller,
827 * free any pages it allocated and our page pointer array
828 */
4d3a800e 829 for (i = 0; i < nr_pages; i++) {
70b99e69 830 WARN_ON(pages[i]->mapping);
09cbfeaf 831 put_page(pages[i]);
c8b97818
CM
832 }
833 kfree(pages);
834 pages = NULL;
835 total_compressed = 0;
4d3a800e 836 nr_pages = 0;
c8b97818
CM
837
838 /* flag the file so we don't compress in the future */
0b246afa 839 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 840 !(BTRFS_I(inode)->prop_compress)) {
a555f810 841 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 842 }
c8b97818 843 }
f03d9301 844cleanup_and_bail_uncompressed:
c8bb0c8b
AS
845 /*
846 * No compression, but we still need to write the pages in the file
847 * we've been given so far. redirty the locked page if it corresponds
848 * to our extent and set things up for the async work queue to run
849 * cow_file_range to do the normal delalloc dance.
850 */
1d53c9e6
CM
851 if (async_chunk->locked_page &&
852 (page_offset(async_chunk->locked_page) >= start &&
853 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 854 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 855 /* unlocked later on in the async handlers */
1d53c9e6 856 }
c8bb0c8b
AS
857
858 if (redirty)
859 extent_range_redirty_for_io(inode, start, end);
b5326271 860 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 861 BTRFS_COMPRESS_NONE);
ac3e9933 862 compressed_extents++;
3b951516 863
ac3e9933 864 return compressed_extents;
771ed689 865}
771ed689 866
40ae837b
FM
867static void free_async_extent_pages(struct async_extent *async_extent)
868{
869 int i;
870
871 if (!async_extent->pages)
872 return;
873
874 for (i = 0; i < async_extent->nr_pages; i++) {
875 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 876 put_page(async_extent->pages[i]);
40ae837b
FM
877 }
878 kfree(async_extent->pages);
879 async_extent->nr_pages = 0;
880 async_extent->pages = NULL;
771ed689
CM
881}
882
2b83a0ee
QW
883static int submit_uncompressed_range(struct btrfs_inode *inode,
884 struct async_extent *async_extent,
885 struct page *locked_page)
771ed689 886{
2b83a0ee
QW
887 u64 start = async_extent->start;
888 u64 end = async_extent->start + async_extent->ram_size - 1;
889 unsigned long nr_written = 0;
890 int page_started = 0;
891 int ret;
771ed689 892
2b83a0ee
QW
893 /*
894 * Call cow_file_range() to run the delalloc range directly, since we
895 * won't go to NOCOW or async path again.
896 *
897 * Also we call cow_file_range() with @unlock_page == 0, so that we
898 * can directly submit them without interruption.
899 */
900 ret = cow_file_range(inode, locked_page, start, end, &page_started,
901 &nr_written, 0);
902 /* Inline extent inserted, page gets unlocked and everything is done */
903 if (page_started) {
904 ret = 0;
905 goto out;
906 }
907 if (ret < 0) {
908 if (locked_page)
909 unlock_page(locked_page);
910 goto out;
911 }
771ed689 912
2b83a0ee
QW
913 ret = extent_write_locked_range(&inode->vfs_inode, start, end);
914 /* All pages will be unlocked, including @locked_page */
915out:
916 kfree(async_extent);
917 return ret;
918}
79787eaa 919
b4ccace8
QW
920static int submit_one_async_extent(struct btrfs_inode *inode,
921 struct async_chunk *async_chunk,
922 struct async_extent *async_extent,
923 u64 *alloc_hint)
771ed689 924{
b4ccace8
QW
925 struct extent_io_tree *io_tree = &inode->io_tree;
926 struct btrfs_root *root = inode->root;
927 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689 928 struct btrfs_key ins;
2b83a0ee 929 struct page *locked_page = NULL;
771ed689 930 struct extent_map *em;
f5a84ee3 931 int ret = 0;
b4ccace8
QW
932 u64 start = async_extent->start;
933 u64 end = async_extent->start + async_extent->ram_size - 1;
771ed689 934
2b83a0ee
QW
935 /*
936 * If async_chunk->locked_page is in the async_extent range, we need to
937 * handle it.
938 */
939 if (async_chunk->locked_page) {
940 u64 locked_page_start = page_offset(async_chunk->locked_page);
941 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
3e04e7f1 942
2b83a0ee
QW
943 if (!(start >= locked_page_end || end <= locked_page_start))
944 locked_page = async_chunk->locked_page;
b4ccace8 945 }
2b83a0ee 946 lock_extent(io_tree, start, end);
ce62003f 947
2b83a0ee
QW
948 /* We have fall back to uncompressed write */
949 if (!async_extent->pages)
950 return submit_uncompressed_range(inode, async_extent, locked_page);
ce62003f 951
b4ccace8
QW
952 ret = btrfs_reserve_extent(root, async_extent->ram_size,
953 async_extent->compressed_size,
954 async_extent->compressed_size,
955 0, *alloc_hint, &ins, 1, 1);
956 if (ret) {
957 free_async_extent_pages(async_extent);
c2167754 958 /*
b4ccace8
QW
959 * Here we used to try again by going back to non-compressed
960 * path for ENOSPC. But we can't reserve space even for
961 * compressed size, how could it work for uncompressed size
962 * which requires larger size? So here we directly go error
963 * path.
c2167754 964 */
b4ccace8
QW
965 goto out_free;
966 }
967
968 /* Here we're doing allocation and writeback of the compressed pages */
969 em = create_io_em(inode, start,
970 async_extent->ram_size, /* len */
971 start, /* orig_start */
972 ins.objectid, /* block_start */
973 ins.offset, /* block_len */
974 ins.offset, /* orig_block_len */
975 async_extent->ram_size, /* ram_bytes */
976 async_extent->compress_type,
977 BTRFS_ORDERED_COMPRESSED);
978 if (IS_ERR(em)) {
979 ret = PTR_ERR(em);
980 goto out_free_reserve;
981 }
982 free_extent_map(em);
771ed689 983
b4ccace8
QW
984 ret = btrfs_add_ordered_extent_compress(inode, start, /* file_offset */
985 ins.objectid, /* disk_bytenr */
986 async_extent->ram_size, /* num_bytes */
987 ins.offset, /* disk_num_bytes */
988 async_extent->compress_type);
989 if (ret) {
990 btrfs_drop_extent_cache(inode, start, end, 0);
991 goto out_free_reserve;
771ed689 992 }
b4ccace8
QW
993 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
994
995 /* Clear dirty, set writeback and unlock the pages. */
996 extent_clear_unlock_delalloc(inode, start, end,
997 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
998 PAGE_UNLOCK | PAGE_START_WRITEBACK);
999 if (btrfs_submit_compressed_write(inode, start, /* file_offset */
1000 async_extent->ram_size, /* num_bytes */
1001 ins.objectid, /* disk_bytenr */
1002 ins.offset, /* compressed_len */
1003 async_extent->pages, /* compressed_pages */
1004 async_extent->nr_pages,
1005 async_chunk->write_flags,
1006 async_chunk->blkcg_css)) {
1007 const u64 start = async_extent->start;
1008 const u64 end = start + async_extent->ram_size - 1;
1009
1010 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1011
1012 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1013 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1014 free_async_extent_pages(async_extent);
771ed689 1015 }
b4ccace8
QW
1016 *alloc_hint = ins.objectid + ins.offset;
1017 kfree(async_extent);
1018 return ret;
1019
3e04e7f1 1020out_free_reserve:
0b246afa 1021 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1022 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1023out_free:
b4ccace8 1024 extent_clear_unlock_delalloc(inode, start, end,
c2790a2e 1025 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 1026 EXTENT_DELALLOC_NEW |
151a41bc 1027 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
6869b0a8
QW
1028 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1029 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
40ae837b 1030 free_async_extent_pages(async_extent);
79787eaa 1031 kfree(async_extent);
b4ccace8
QW
1032 return ret;
1033}
1034
1035/*
1036 * Phase two of compressed writeback. This is the ordered portion of the code,
1037 * which only gets called in the order the work was queued. We walk all the
1038 * async extents created by compress_file_range and send them down to the disk.
1039 */
1040static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1041{
1042 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1043 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1044 struct async_extent *async_extent;
1045 u64 alloc_hint = 0;
1046 int ret = 0;
1047
1048 while (!list_empty(&async_chunk->extents)) {
1049 u64 extent_start;
1050 u64 ram_size;
1051
1052 async_extent = list_entry(async_chunk->extents.next,
1053 struct async_extent, list);
1054 list_del(&async_extent->list);
1055 extent_start = async_extent->start;
1056 ram_size = async_extent->ram_size;
1057
1058 ret = submit_one_async_extent(inode, async_chunk, async_extent,
1059 &alloc_hint);
1060 btrfs_debug(fs_info,
1061"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1062 inode->root->root_key.objectid,
1063 btrfs_ino(inode), extent_start, ram_size, ret);
1064 }
771ed689
CM
1065}
1066
43c69849 1067static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
1068 u64 num_bytes)
1069{
43c69849 1070 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
1071 struct extent_map *em;
1072 u64 alloc_hint = 0;
1073
1074 read_lock(&em_tree->lock);
1075 em = search_extent_mapping(em_tree, start, num_bytes);
1076 if (em) {
1077 /*
1078 * if block start isn't an actual block number then find the
1079 * first block in this inode and use that as a hint. If that
1080 * block is also bogus then just don't worry about it.
1081 */
1082 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1083 free_extent_map(em);
1084 em = search_extent_mapping(em_tree, 0, 0);
1085 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1086 alloc_hint = em->block_start;
1087 if (em)
1088 free_extent_map(em);
1089 } else {
1090 alloc_hint = em->block_start;
1091 free_extent_map(em);
1092 }
1093 }
1094 read_unlock(&em_tree->lock);
1095
1096 return alloc_hint;
1097}
1098
771ed689
CM
1099/*
1100 * when extent_io.c finds a delayed allocation range in the file,
1101 * the call backs end up in this code. The basic idea is to
1102 * allocate extents on disk for the range, and create ordered data structs
1103 * in ram to track those extents.
1104 *
1105 * locked_page is the page that writepage had locked already. We use
1106 * it to make sure we don't do extra locks or unlocks.
1107 *
1108 * *page_started is set to one if we unlock locked_page and do everything
1109 * required to start IO on it. It may be clean and already done with
1110 * IO when we return.
1111 */
6e26c442 1112static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 1113 struct page *locked_page,
74e9194a 1114 u64 start, u64 end, int *page_started,
330a5827 1115 unsigned long *nr_written, int unlock)
771ed689 1116{
6e26c442
NB
1117 struct btrfs_root *root = inode->root;
1118 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
1119 u64 alloc_hint = 0;
1120 u64 num_bytes;
1121 unsigned long ram_size;
a315e68f 1122 u64 cur_alloc_size = 0;
432cd2a1 1123 u64 min_alloc_size;
0b246afa 1124 u64 blocksize = fs_info->sectorsize;
771ed689
CM
1125 struct btrfs_key ins;
1126 struct extent_map *em;
a315e68f
FM
1127 unsigned clear_bits;
1128 unsigned long page_ops;
1129 bool extent_reserved = false;
771ed689
CM
1130 int ret = 0;
1131
6e26c442 1132 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 1133 WARN_ON_ONCE(1);
29bce2f3
JB
1134 ret = -EINVAL;
1135 goto out_unlock;
02ecd2c2 1136 }
771ed689 1137
fda2832f 1138 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1139 num_bytes = max(blocksize, num_bytes);
566b1760 1140 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1141
6e26c442 1142 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1143
7367253a
QW
1144 /*
1145 * Due to the page size limit, for subpage we can only trigger the
1146 * writeback for the dirty sectors of page, that means data writeback
1147 * is doing more writeback than what we want.
1148 *
1149 * This is especially unexpected for some call sites like fallocate,
1150 * where we only increase i_size after everything is done.
1151 * This means we can trigger inline extent even if we didn't want to.
1152 * So here we skip inline extent creation completely.
1153 */
1154 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
771ed689 1155 /* lets try to make an inline extent */
6e26c442 1156 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1157 BTRFS_COMPRESS_NONE, NULL);
771ed689 1158 if (ret == 0) {
8b62f87b
JB
1159 /*
1160 * We use DO_ACCOUNTING here because we need the
1161 * delalloc_release_metadata to be run _after_ we drop
1162 * our outstanding extent for clearing delalloc for this
1163 * range.
1164 */
4750af3b
QW
1165 extent_clear_unlock_delalloc(inode, start, end,
1166 locked_page,
c2790a2e 1167 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1168 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1169 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 1170 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
771ed689 1171 *nr_written = *nr_written +
09cbfeaf 1172 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1173 *page_started = 1;
4750af3b
QW
1174 /*
1175 * locked_page is locked by the caller of
1176 * writepage_delalloc(), not locked by
1177 * __process_pages_contig().
1178 *
1179 * We can't let __process_pages_contig() to unlock it,
1180 * as it doesn't have any subpage::writers recorded.
1181 *
1182 * Here we manually unlock the page, since the caller
1183 * can't use page_started to determine if it's an
1184 * inline extent or a compressed extent.
1185 */
1186 unlock_page(locked_page);
771ed689 1187 goto out;
79787eaa 1188 } else if (ret < 0) {
79787eaa 1189 goto out_unlock;
771ed689
CM
1190 }
1191 }
1192
6e26c442
NB
1193 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1194 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1195
432cd2a1
FM
1196 /*
1197 * Relocation relies on the relocated extents to have exactly the same
1198 * size as the original extents. Normally writeback for relocation data
1199 * extents follows a NOCOW path because relocation preallocates the
1200 * extents. However, due to an operation such as scrub turning a block
1201 * group to RO mode, it may fallback to COW mode, so we must make sure
1202 * an extent allocated during COW has exactly the requested size and can
1203 * not be split into smaller extents, otherwise relocation breaks and
1204 * fails during the stage where it updates the bytenr of file extent
1205 * items.
1206 */
37f00a6d 1207 if (btrfs_is_data_reloc_root(root))
432cd2a1
FM
1208 min_alloc_size = num_bytes;
1209 else
1210 min_alloc_size = fs_info->sectorsize;
1211
3752d22f
AJ
1212 while (num_bytes > 0) {
1213 cur_alloc_size = num_bytes;
18513091 1214 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1215 min_alloc_size, 0, alloc_hint,
e570fd27 1216 &ins, 1, 1);
00361589 1217 if (ret < 0)
79787eaa 1218 goto out_unlock;
a315e68f
FM
1219 cur_alloc_size = ins.offset;
1220 extent_reserved = true;
d397712b 1221
771ed689 1222 ram_size = ins.offset;
6e26c442 1223 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1224 start, /* orig_start */
1225 ins.objectid, /* block_start */
1226 ins.offset, /* block_len */
1227 ins.offset, /* orig_block_len */
1228 ram_size, /* ram_bytes */
1229 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1230 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1231 if (IS_ERR(em)) {
1232 ret = PTR_ERR(em);
ace68bac 1233 goto out_reserve;
090a127a 1234 }
6f9994db 1235 free_extent_map(em);
e6dcd2dc 1236
6e26c442 1237 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
3c198fe0
QW
1238 ram_size, cur_alloc_size,
1239 BTRFS_ORDERED_REGULAR);
ace68bac 1240 if (ret)
d9f85963 1241 goto out_drop_extent_cache;
c8b97818 1242
37f00a6d 1243 if (btrfs_is_data_reloc_root(root)) {
6e26c442 1244 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1245 cur_alloc_size);
4dbd80fb
QW
1246 /*
1247 * Only drop cache here, and process as normal.
1248 *
1249 * We must not allow extent_clear_unlock_delalloc()
1250 * at out_unlock label to free meta of this ordered
1251 * extent, as its meta should be freed by
1252 * btrfs_finish_ordered_io().
1253 *
1254 * So we must continue until @start is increased to
1255 * skip current ordered extent.
1256 */
00361589 1257 if (ret)
6e26c442 1258 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1259 start + ram_size - 1, 0);
17d217fe
YZ
1260 }
1261
0b246afa 1262 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1263
f57ad937
QW
1264 /*
1265 * We're not doing compressed IO, don't unlock the first page
1266 * (which the caller expects to stay locked), don't clear any
1267 * dirty bits and don't set any writeback bits
8b62b72b 1268 *
f57ad937
QW
1269 * Do set the Ordered (Private2) bit so we know this page was
1270 * properly setup for writepage.
c8b97818 1271 */
a315e68f 1272 page_ops = unlock ? PAGE_UNLOCK : 0;
f57ad937 1273 page_ops |= PAGE_SET_ORDERED;
a791e35e 1274
6e26c442 1275 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1276 locked_page,
c2790a2e 1277 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1278 page_ops);
3752d22f
AJ
1279 if (num_bytes < cur_alloc_size)
1280 num_bytes = 0;
4dbd80fb 1281 else
3752d22f 1282 num_bytes -= cur_alloc_size;
c59f8951
CM
1283 alloc_hint = ins.objectid + ins.offset;
1284 start += cur_alloc_size;
a315e68f 1285 extent_reserved = false;
4dbd80fb
QW
1286
1287 /*
1288 * btrfs_reloc_clone_csums() error, since start is increased
1289 * extent_clear_unlock_delalloc() at out_unlock label won't
1290 * free metadata of current ordered extent, we're OK to exit.
1291 */
1292 if (ret)
1293 goto out_unlock;
b888db2b 1294 }
79787eaa 1295out:
be20aa9d 1296 return ret;
b7d5b0a8 1297
d9f85963 1298out_drop_extent_cache:
6e26c442 1299 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1300out_reserve:
0b246afa 1301 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1302 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1303out_unlock:
a7e3b975
FM
1304 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1305 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
6869b0a8 1306 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
a315e68f
FM
1307 /*
1308 * If we reserved an extent for our delalloc range (or a subrange) and
1309 * failed to create the respective ordered extent, then it means that
1310 * when we reserved the extent we decremented the extent's size from
1311 * the data space_info's bytes_may_use counter and incremented the
1312 * space_info's bytes_reserved counter by the same amount. We must make
1313 * sure extent_clear_unlock_delalloc() does not try to decrement again
1314 * the data space_info's bytes_may_use counter, therefore we do not pass
1315 * it the flag EXTENT_CLEAR_DATA_RESV.
1316 */
1317 if (extent_reserved) {
6e26c442 1318 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1319 start + cur_alloc_size - 1,
a315e68f
FM
1320 locked_page,
1321 clear_bits,
1322 page_ops);
1323 start += cur_alloc_size;
1324 if (start >= end)
1325 goto out;
1326 }
6e26c442 1327 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1328 clear_bits | EXTENT_CLEAR_DATA_RESV,
1329 page_ops);
79787eaa 1330 goto out;
771ed689 1331}
c8b97818 1332
771ed689
CM
1333/*
1334 * work queue call back to started compression on a file and pages
1335 */
1336static noinline void async_cow_start(struct btrfs_work *work)
1337{
b5326271 1338 struct async_chunk *async_chunk;
ac3e9933 1339 int compressed_extents;
771ed689 1340
b5326271 1341 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1342
ac3e9933
NB
1343 compressed_extents = compress_file_range(async_chunk);
1344 if (compressed_extents == 0) {
b5326271
NB
1345 btrfs_add_delayed_iput(async_chunk->inode);
1346 async_chunk->inode = NULL;
8180ef88 1347 }
771ed689
CM
1348}
1349
1350/*
1351 * work queue call back to submit previously compressed pages
1352 */
1353static noinline void async_cow_submit(struct btrfs_work *work)
1354{
c5a68aec
NB
1355 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1356 work);
1357 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1358 unsigned long nr_pages;
1359
b5326271 1360 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1361 PAGE_SHIFT;
771ed689 1362
4546d178 1363 /*
b5326271 1364 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1365 * in which case we don't have anything to submit, yet we need to
1366 * always adjust ->async_delalloc_pages as its paired with the init
1367 * happening in cow_file_range_async
1368 */
b5326271
NB
1369 if (async_chunk->inode)
1370 submit_compressed_extents(async_chunk);
ac98141d
JB
1371
1372 /* atomic_sub_return implies a barrier */
1373 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1374 5 * SZ_1M)
1375 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1376}
c8b97818 1377
771ed689
CM
1378static noinline void async_cow_free(struct btrfs_work *work)
1379{
b5326271 1380 struct async_chunk *async_chunk;
9e895a8f 1381 struct async_cow *async_cow;
97db1204 1382
b5326271
NB
1383 async_chunk = container_of(work, struct async_chunk, work);
1384 if (async_chunk->inode)
1385 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1386 if (async_chunk->blkcg_css)
1387 css_put(async_chunk->blkcg_css);
9e895a8f
QW
1388
1389 async_cow = async_chunk->async_cow;
1390 if (atomic_dec_and_test(&async_cow->num_chunks))
1391 kvfree(async_cow);
771ed689
CM
1392}
1393
751b6431 1394static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1395 struct writeback_control *wbc,
1396 struct page *locked_page,
771ed689 1397 u64 start, u64 end, int *page_started,
fac07d2b 1398 unsigned long *nr_written)
771ed689 1399{
751b6431 1400 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1401 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1402 struct async_cow *ctx;
1403 struct async_chunk *async_chunk;
771ed689
CM
1404 unsigned long nr_pages;
1405 u64 cur_end;
97db1204
NB
1406 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1407 int i;
1408 bool should_compress;
b1c16ac9 1409 unsigned nofs_flag;
fac07d2b 1410 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1411
751b6431 1412 unlock_extent(&inode->io_tree, start, end);
97db1204 1413
751b6431 1414 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1415 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1416 num_chunks = 1;
1417 should_compress = false;
1418 } else {
1419 should_compress = true;
1420 }
1421
b1c16ac9
NB
1422 nofs_flag = memalloc_nofs_save();
1423 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1424 memalloc_nofs_restore(nofs_flag);
1425
97db1204
NB
1426 if (!ctx) {
1427 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1428 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1429 EXTENT_DO_ACCOUNTING;
6869b0a8
QW
1430 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1431 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
97db1204 1432
751b6431
NB
1433 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1434 clear_bits, page_ops);
97db1204
NB
1435 return -ENOMEM;
1436 }
1437
1438 async_chunk = ctx->chunks;
1439 atomic_set(&ctx->num_chunks, num_chunks);
1440
1441 for (i = 0; i < num_chunks; i++) {
1442 if (should_compress)
1443 cur_end = min(end, start + SZ_512K - 1);
1444 else
1445 cur_end = end;
771ed689 1446
bd4691a0
NB
1447 /*
1448 * igrab is called higher up in the call chain, take only the
1449 * lightweight reference for the callback lifetime
1450 */
751b6431 1451 ihold(&inode->vfs_inode);
9e895a8f 1452 async_chunk[i].async_cow = ctx;
751b6431 1453 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1454 async_chunk[i].start = start;
1455 async_chunk[i].end = cur_end;
97db1204
NB
1456 async_chunk[i].write_flags = write_flags;
1457 INIT_LIST_HEAD(&async_chunk[i].extents);
1458
1d53c9e6
CM
1459 /*
1460 * The locked_page comes all the way from writepage and its
1461 * the original page we were actually given. As we spread
1462 * this large delalloc region across multiple async_chunk
1463 * structs, only the first struct needs a pointer to locked_page
1464 *
1465 * This way we don't need racey decisions about who is supposed
1466 * to unlock it.
1467 */
1468 if (locked_page) {
ec39f769
CM
1469 /*
1470 * Depending on the compressibility, the pages might or
1471 * might not go through async. We want all of them to
1472 * be accounted against wbc once. Let's do it here
1473 * before the paths diverge. wbc accounting is used
1474 * only for foreign writeback detection and doesn't
1475 * need full accuracy. Just account the whole thing
1476 * against the first page.
1477 */
1478 wbc_account_cgroup_owner(wbc, locked_page,
1479 cur_end - start);
1d53c9e6
CM
1480 async_chunk[i].locked_page = locked_page;
1481 locked_page = NULL;
1482 } else {
1483 async_chunk[i].locked_page = NULL;
1484 }
1485
ec39f769
CM
1486 if (blkcg_css != blkcg_root_css) {
1487 css_get(blkcg_css);
1488 async_chunk[i].blkcg_css = blkcg_css;
1489 } else {
1490 async_chunk[i].blkcg_css = NULL;
1491 }
1492
a0cac0ec
OS
1493 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1494 async_cow_submit, async_cow_free);
771ed689 1495
97db1204 1496 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1497 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1498
97db1204 1499 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1500
771ed689
CM
1501 *nr_written += nr_pages;
1502 start = cur_end + 1;
1503 }
1504 *page_started = 1;
1505 return 0;
be20aa9d
CM
1506}
1507
42c01100
NA
1508static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1509 struct page *locked_page, u64 start,
1510 u64 end, int *page_started,
1511 unsigned long *nr_written)
1512{
1513 int ret;
1514
1515 ret = cow_file_range(inode, locked_page, start, end, page_started,
1516 nr_written, 0);
1517 if (ret)
1518 return ret;
1519
1520 if (*page_started)
1521 return 0;
1522
1523 __set_page_dirty_nobuffers(locked_page);
1524 account_page_redirty(locked_page);
2bd0fc93 1525 extent_write_locked_range(&inode->vfs_inode, start, end);
42c01100
NA
1526 *page_started = 1;
1527
1528 return 0;
1529}
1530
2ff7e61e 1531static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1532 u64 bytenr, u64 num_bytes)
1533{
fc28b25e 1534 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
17d217fe 1535 struct btrfs_ordered_sum *sums;
fc28b25e 1536 int ret;
17d217fe
YZ
1537 LIST_HEAD(list);
1538
fc28b25e 1539 ret = btrfs_lookup_csums_range(csum_root, bytenr,
a2de733c 1540 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1541 if (ret == 0 && list_empty(&list))
1542 return 0;
1543
1544 while (!list_empty(&list)) {
1545 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1546 list_del(&sums->list);
1547 kfree(sums);
1548 }
58113753
LB
1549 if (ret < 0)
1550 return ret;
17d217fe
YZ
1551 return 1;
1552}
1553
8ba96f3d 1554static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1555 const u64 start, const u64 end,
1556 int *page_started, unsigned long *nr_written)
1557{
8ba96f3d 1558 const bool is_space_ino = btrfs_is_free_space_inode(inode);
37f00a6d 1559 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
2166e5ed 1560 const u64 range_bytes = end + 1 - start;
8ba96f3d 1561 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1562 u64 range_start = start;
1563 u64 count;
1564
1565 /*
1566 * If EXTENT_NORESERVE is set it means that when the buffered write was
1567 * made we had not enough available data space and therefore we did not
1568 * reserve data space for it, since we though we could do NOCOW for the
1569 * respective file range (either there is prealloc extent or the inode
1570 * has the NOCOW bit set).
1571 *
1572 * However when we need to fallback to COW mode (because for example the
1573 * block group for the corresponding extent was turned to RO mode by a
1574 * scrub or relocation) we need to do the following:
1575 *
1576 * 1) We increment the bytes_may_use counter of the data space info.
1577 * If COW succeeds, it allocates a new data extent and after doing
1578 * that it decrements the space info's bytes_may_use counter and
1579 * increments its bytes_reserved counter by the same amount (we do
1580 * this at btrfs_add_reserved_bytes()). So we need to increment the
1581 * bytes_may_use counter to compensate (when space is reserved at
1582 * buffered write time, the bytes_may_use counter is incremented);
1583 *
1584 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1585 * that if the COW path fails for any reason, it decrements (through
1586 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1587 * data space info, which we incremented in the step above.
2166e5ed
FM
1588 *
1589 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1590 * space cache inode or an inode of the data relocation tree, we must
1591 * also increment bytes_may_use of the data space_info for the same
1592 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1593 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1594 * group that contains that extent to RO mode and therefore force COW
1595 * when starting writeback.
467dc47e 1596 */
2166e5ed 1597 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1598 EXTENT_NORESERVE, 0);
6bd335b4
FM
1599 if (count > 0 || is_space_ino || is_reloc_ino) {
1600 u64 bytes = count;
8ba96f3d 1601 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1602 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1603
6bd335b4
FM
1604 if (is_space_ino || is_reloc_ino)
1605 bytes = range_bytes;
1606
467dc47e 1607 spin_lock(&sinfo->lock);
2166e5ed 1608 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1609 spin_unlock(&sinfo->lock);
1610
2166e5ed
FM
1611 if (count > 0)
1612 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1613 0, 0, NULL);
467dc47e
FM
1614 }
1615
8ba96f3d
NB
1616 return cow_file_range(inode, locked_page, start, end, page_started,
1617 nr_written, 1);
467dc47e
FM
1618}
1619
d352ac68
CM
1620/*
1621 * when nowcow writeback call back. This checks for snapshots or COW copies
1622 * of the extents that exist in the file, and COWs the file as required.
1623 *
1624 * If no cow copies or snapshots exist, we write directly to the existing
1625 * blocks on disk
1626 */
968322c8 1627static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1628 struct page *locked_page,
3e024846 1629 const u64 start, const u64 end,
6e65ae76 1630 int *page_started,
3e024846 1631 unsigned long *nr_written)
be20aa9d 1632{
968322c8
NB
1633 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1634 struct btrfs_root *root = inode->root;
be20aa9d 1635 struct btrfs_path *path;
3e024846
NB
1636 u64 cow_start = (u64)-1;
1637 u64 cur_offset = start;
8ecebf4d 1638 int ret;
3e024846 1639 bool check_prev = true;
968322c8
NB
1640 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1641 u64 ino = btrfs_ino(inode);
762bf098
NB
1642 bool nocow = false;
1643 u64 disk_bytenr = 0;
6e65ae76 1644 const bool force = inode->flags & BTRFS_INODE_NODATACOW;
be20aa9d
CM
1645
1646 path = btrfs_alloc_path();
17ca04af 1647 if (!path) {
968322c8 1648 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1649 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1650 EXTENT_DO_ACCOUNTING |
1651 EXTENT_DEFRAG, PAGE_UNLOCK |
6869b0a8 1652 PAGE_START_WRITEBACK |
c2790a2e 1653 PAGE_END_WRITEBACK);
d8926bb3 1654 return -ENOMEM;
17ca04af 1655 }
82d5902d 1656
80ff3856 1657 while (1) {
3e024846
NB
1658 struct btrfs_key found_key;
1659 struct btrfs_file_extent_item *fi;
1660 struct extent_buffer *leaf;
1661 u64 extent_end;
1662 u64 extent_offset;
3e024846
NB
1663 u64 num_bytes = 0;
1664 u64 disk_num_bytes;
3e024846
NB
1665 u64 ram_bytes;
1666 int extent_type;
762bf098
NB
1667
1668 nocow = false;
3e024846 1669
e4c3b2dc 1670 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1671 cur_offset, 0);
d788a349 1672 if (ret < 0)
79787eaa 1673 goto error;
a6bd9cd1
NB
1674
1675 /*
1676 * If there is no extent for our range when doing the initial
1677 * search, then go back to the previous slot as it will be the
1678 * one containing the search offset
1679 */
80ff3856
YZ
1680 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1681 leaf = path->nodes[0];
1682 btrfs_item_key_to_cpu(leaf, &found_key,
1683 path->slots[0] - 1);
33345d01 1684 if (found_key.objectid == ino &&
80ff3856
YZ
1685 found_key.type == BTRFS_EXTENT_DATA_KEY)
1686 path->slots[0]--;
1687 }
3e024846 1688 check_prev = false;
80ff3856 1689next_slot:
a6bd9cd1 1690 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1691 leaf = path->nodes[0];
1692 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1693 ret = btrfs_next_leaf(root, path);
e8916699
LB
1694 if (ret < 0) {
1695 if (cow_start != (u64)-1)
1696 cur_offset = cow_start;
79787eaa 1697 goto error;
e8916699 1698 }
80ff3856
YZ
1699 if (ret > 0)
1700 break;
1701 leaf = path->nodes[0];
1702 }
be20aa9d 1703
80ff3856
YZ
1704 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1705
a6bd9cd1 1706 /* Didn't find anything for our INO */
1d512cb7
FM
1707 if (found_key.objectid > ino)
1708 break;
a6bd9cd1
NB
1709 /*
1710 * Keep searching until we find an EXTENT_ITEM or there are no
1711 * more extents for this inode
1712 */
1d512cb7
FM
1713 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1714 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1715 path->slots[0]++;
1716 goto next_slot;
1717 }
a6bd9cd1
NB
1718
1719 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1720 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1721 found_key.offset > end)
1722 break;
1723
a6bd9cd1
NB
1724 /*
1725 * If the found extent starts after requested offset, then
1726 * adjust extent_end to be right before this extent begins
1727 */
80ff3856
YZ
1728 if (found_key.offset > cur_offset) {
1729 extent_end = found_key.offset;
e9061e21 1730 extent_type = 0;
80ff3856
YZ
1731 goto out_check;
1732 }
1733
a6bd9cd1
NB
1734 /*
1735 * Found extent which begins before our range and potentially
1736 * intersect it
1737 */
80ff3856
YZ
1738 fi = btrfs_item_ptr(leaf, path->slots[0],
1739 struct btrfs_file_extent_item);
1740 extent_type = btrfs_file_extent_type(leaf, fi);
1741
cc95bef6 1742 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1743 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1744 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1745 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1746 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1747 extent_end = found_key.offset +
1748 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1749 disk_num_bytes =
1750 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1751 /*
de7999af
FM
1752 * If the extent we got ends before our current offset,
1753 * skip to the next extent.
a6bd9cd1 1754 */
de7999af 1755 if (extent_end <= cur_offset) {
80ff3856
YZ
1756 path->slots[0]++;
1757 goto next_slot;
1758 }
a6bd9cd1 1759 /* Skip holes */
17d217fe
YZ
1760 if (disk_bytenr == 0)
1761 goto out_check;
a6bd9cd1 1762 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1763 if (btrfs_file_extent_compression(leaf, fi) ||
1764 btrfs_file_extent_encryption(leaf, fi) ||
1765 btrfs_file_extent_other_encoding(leaf, fi))
1766 goto out_check;
78d4295b 1767 /*
a6bd9cd1
NB
1768 * If extent is created before the last volume's snapshot
1769 * this implies the extent is shared, hence we can't do
1770 * nocow. This is the same check as in
1771 * btrfs_cross_ref_exist but without calling
1772 * btrfs_search_slot.
78d4295b 1773 */
3e024846 1774 if (!freespace_inode &&
27a7ff55 1775 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1776 btrfs_root_last_snapshot(&root->root_item))
1777 goto out_check;
d899e052
YZ
1778 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1779 goto out_check;
c65ca98f
FM
1780
1781 /*
1782 * The following checks can be expensive, as they need to
1783 * take other locks and do btree or rbtree searches, so
1784 * release the path to avoid blocking other tasks for too
1785 * long.
1786 */
1787 btrfs_release_path(path);
1788
58113753
LB
1789 ret = btrfs_cross_ref_exist(root, ino,
1790 found_key.offset -
a84d5d42 1791 extent_offset, disk_bytenr, false);
58113753
LB
1792 if (ret) {
1793 /*
1794 * ret could be -EIO if the above fails to read
1795 * metadata.
1796 */
1797 if (ret < 0) {
1798 if (cow_start != (u64)-1)
1799 cur_offset = cow_start;
1800 goto error;
1801 }
1802
3e024846 1803 WARN_ON_ONCE(freespace_inode);
17d217fe 1804 goto out_check;
58113753 1805 }
5d4f98a2 1806 disk_bytenr += extent_offset;
17d217fe
YZ
1807 disk_bytenr += cur_offset - found_key.offset;
1808 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1809 /*
a6bd9cd1
NB
1810 * If there are pending snapshots for this root, we
1811 * fall into common COW way
e9894fd3 1812 */
3e024846 1813 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1814 goto out_check;
17d217fe
YZ
1815 /*
1816 * force cow if csum exists in the range.
1817 * this ensure that csum for a given extent are
1818 * either valid or do not exist.
1819 */
58113753
LB
1820 ret = csum_exist_in_range(fs_info, disk_bytenr,
1821 num_bytes);
1822 if (ret) {
58113753
LB
1823 /*
1824 * ret could be -EIO if the above fails to read
1825 * metadata.
1826 */
1827 if (ret < 0) {
1828 if (cow_start != (u64)-1)
1829 cur_offset = cow_start;
1830 goto error;
1831 }
3e024846 1832 WARN_ON_ONCE(freespace_inode);
17d217fe 1833 goto out_check;
91e1f56a 1834 }
20903032 1835 /* If the extent's block group is RO, we must COW */
8ecebf4d 1836 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1837 goto out_check;
3e024846 1838 nocow = true;
80ff3856 1839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1840 extent_end = found_key.offset + ram_bytes;
1841 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1842 /* Skip extents outside of our requested range */
1843 if (extent_end <= start) {
1844 path->slots[0]++;
1845 goto next_slot;
1846 }
80ff3856 1847 } else {
e8e21007 1848 /* If this triggers then we have a memory corruption */
290342f6 1849 BUG();
80ff3856
YZ
1850 }
1851out_check:
a6bd9cd1
NB
1852 /*
1853 * If nocow is false then record the beginning of the range
1854 * that needs to be COWed
1855 */
80ff3856
YZ
1856 if (!nocow) {
1857 if (cow_start == (u64)-1)
1858 cow_start = cur_offset;
1859 cur_offset = extent_end;
1860 if (cur_offset > end)
1861 break;
c65ca98f
FM
1862 if (!path->nodes[0])
1863 continue;
80ff3856
YZ
1864 path->slots[0]++;
1865 goto next_slot;
7ea394f1
YZ
1866 }
1867
a6bd9cd1
NB
1868 /*
1869 * COW range from cow_start to found_key.offset - 1. As the key
1870 * will contain the beginning of the first extent that can be
1871 * NOCOW, following one which needs to be COW'ed
1872 */
80ff3856 1873 if (cow_start != (u64)-1) {
968322c8 1874 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 1875 cow_start, found_key.offset - 1,
467dc47e 1876 page_started, nr_written);
230ed397 1877 if (ret)
79787eaa 1878 goto error;
80ff3856 1879 cow_start = (u64)-1;
7ea394f1 1880 }
80ff3856 1881
d899e052 1882 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1883 u64 orig_start = found_key.offset - extent_offset;
3e024846 1884 struct extent_map *em;
6f9994db 1885
968322c8 1886 em = create_io_em(inode, cur_offset, num_bytes,
6f9994db
LB
1887 orig_start,
1888 disk_bytenr, /* block_start */
1889 num_bytes, /* block_len */
1890 disk_num_bytes, /* orig_block_len */
1891 ram_bytes, BTRFS_COMPRESS_NONE,
1892 BTRFS_ORDERED_PREALLOC);
1893 if (IS_ERR(em)) {
6f9994db
LB
1894 ret = PTR_ERR(em);
1895 goto error;
d899e052 1896 }
6f9994db 1897 free_extent_map(em);
968322c8 1898 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1899 disk_bytenr, num_bytes,
1900 num_bytes,
1901 BTRFS_ORDERED_PREALLOC);
762bf098 1902 if (ret) {
968322c8 1903 btrfs_drop_extent_cache(inode, cur_offset,
762bf098
NB
1904 cur_offset + num_bytes - 1,
1905 0);
1906 goto error;
1907 }
d899e052 1908 } else {
968322c8 1909 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1910 disk_bytenr, num_bytes,
1911 num_bytes,
1912 BTRFS_ORDERED_NOCOW);
762bf098
NB
1913 if (ret)
1914 goto error;
d899e052 1915 }
80ff3856 1916
f78c436c 1917 if (nocow)
0b246afa 1918 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1919 nocow = false;
771ed689 1920
37f00a6d 1921 if (btrfs_is_data_reloc_root(root))
4dbd80fb
QW
1922 /*
1923 * Error handled later, as we must prevent
1924 * extent_clear_unlock_delalloc() in error handler
1925 * from freeing metadata of created ordered extent.
1926 */
968322c8 1927 ret = btrfs_reloc_clone_csums(inode, cur_offset,
efa56464 1928 num_bytes);
efa56464 1929
968322c8 1930 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1931 cur_offset + num_bytes - 1,
c2790a2e 1932 locked_page, EXTENT_LOCKED |
18513091
WX
1933 EXTENT_DELALLOC |
1934 EXTENT_CLEAR_DATA_RESV,
f57ad937 1935 PAGE_UNLOCK | PAGE_SET_ORDERED);
18513091 1936
80ff3856 1937 cur_offset = extent_end;
4dbd80fb
QW
1938
1939 /*
1940 * btrfs_reloc_clone_csums() error, now we're OK to call error
1941 * handler, as metadata for created ordered extent will only
1942 * be freed by btrfs_finish_ordered_io().
1943 */
1944 if (ret)
1945 goto error;
80ff3856
YZ
1946 if (cur_offset > end)
1947 break;
be20aa9d 1948 }
b3b4aa74 1949 btrfs_release_path(path);
80ff3856 1950
506481b2 1951 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1952 cow_start = cur_offset;
17ca04af 1953
80ff3856 1954 if (cow_start != (u64)-1) {
506481b2 1955 cur_offset = end;
968322c8
NB
1956 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1957 page_started, nr_written);
d788a349 1958 if (ret)
79787eaa 1959 goto error;
80ff3856
YZ
1960 }
1961
79787eaa 1962error:
762bf098
NB
1963 if (nocow)
1964 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1965
17ca04af 1966 if (ret && cur_offset < end)
968322c8 1967 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1968 locked_page, EXTENT_LOCKED |
151a41bc
JB
1969 EXTENT_DELALLOC | EXTENT_DEFRAG |
1970 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 1971 PAGE_START_WRITEBACK |
c2790a2e 1972 PAGE_END_WRITEBACK);
7ea394f1 1973 btrfs_free_path(path);
79787eaa 1974 return ret;
be20aa9d
CM
1975}
1976
6e65ae76 1977static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93 1978{
6e65ae76
GR
1979 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1980 if (inode->defrag_bytes &&
1981 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1982 0, NULL))
1983 return false;
1984 return true;
1985 }
1986 return false;
47059d93
WS
1987}
1988
d352ac68 1989/*
5eaad97a
NB
1990 * Function to process delayed allocation (create CoW) for ranges which are
1991 * being touched for the first time.
d352ac68 1992 */
98456b9c 1993int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
1994 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1995 struct writeback_control *wbc)
be20aa9d 1996{
be20aa9d 1997 int ret;
42c01100 1998 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
a2135011 1999
2749f7ef
QW
2000 /*
2001 * The range must cover part of the @locked_page, or the returned
2002 * @page_started can confuse the caller.
2003 */
2004 ASSERT(!(end <= page_offset(locked_page) ||
2005 start >= page_offset(locked_page) + PAGE_SIZE));
2006
6e65ae76 2007 if (should_nocow(inode, start, end)) {
2adada88
JT
2008 /*
2009 * Normally on a zoned device we're only doing COW writes, but
2010 * in case of relocation on a zoned filesystem we have taken
2011 * precaution, that we're only writing sequentially. It's safe
2012 * to use run_delalloc_nocow() here, like for regular
2013 * preallocated inodes.
2014 */
2015 ASSERT(!zoned ||
2016 (zoned && btrfs_is_data_reloc_root(inode->root)));
98456b9c 2017 ret = run_delalloc_nocow(inode, locked_page, start, end,
6e65ae76 2018 page_started, nr_written);
98456b9c
NB
2019 } else if (!inode_can_compress(inode) ||
2020 !inode_need_compress(inode, start, end)) {
42c01100
NA
2021 if (zoned)
2022 ret = run_delalloc_zoned(inode, locked_page, start, end,
2023 page_started, nr_written);
2024 else
2025 ret = cow_file_range(inode, locked_page, start, end,
2026 page_started, nr_written, 1);
7ddf5a42 2027 } else {
98456b9c
NB
2028 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2029 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 2030 page_started, nr_written);
7ddf5a42 2031 }
7361b4ae 2032 ASSERT(ret <= 0);
52427260 2033 if (ret)
98456b9c 2034 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 2035 end - start + 1);
b888db2b
CM
2036 return ret;
2037}
2038
abbb55f4
NB
2039void btrfs_split_delalloc_extent(struct inode *inode,
2040 struct extent_state *orig, u64 split)
9ed74f2d 2041{
dcab6a3b
JB
2042 u64 size;
2043
0ca1f7ce 2044 /* not delalloc, ignore it */
9ed74f2d 2045 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 2046 return;
9ed74f2d 2047
dcab6a3b
JB
2048 size = orig->end - orig->start + 1;
2049 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 2050 u32 num_extents;
dcab6a3b
JB
2051 u64 new_size;
2052
2053 /*
5c848198 2054 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 2055 * applies here, just in reverse.
dcab6a3b
JB
2056 */
2057 new_size = orig->end - split + 1;
823bb20a 2058 num_extents = count_max_extents(new_size);
ba117213 2059 new_size = split - orig->start;
823bb20a
DS
2060 num_extents += count_max_extents(new_size);
2061 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
2062 return;
2063 }
2064
9e0baf60 2065 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 2066 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 2067 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
2068}
2069
2070/*
5c848198
NB
2071 * Handle merged delayed allocation extents so we can keep track of new extents
2072 * that are just merged onto old extents, such as when we are doing sequential
2073 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 2074 */
5c848198
NB
2075void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2076 struct extent_state *other)
9ed74f2d 2077{
dcab6a3b 2078 u64 new_size, old_size;
823bb20a 2079 u32 num_extents;
dcab6a3b 2080
9ed74f2d
JB
2081 /* not delalloc, ignore it */
2082 if (!(other->state & EXTENT_DELALLOC))
1bf85046 2083 return;
9ed74f2d 2084
8461a3de
JB
2085 if (new->start > other->start)
2086 new_size = new->end - other->start + 1;
2087 else
2088 new_size = other->end - new->start + 1;
dcab6a3b
JB
2089
2090 /* we're not bigger than the max, unreserve the space and go */
2091 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2092 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 2093 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
2094 spin_unlock(&BTRFS_I(inode)->lock);
2095 return;
2096 }
2097
2098 /*
ba117213
JB
2099 * We have to add up either side to figure out how many extents were
2100 * accounted for before we merged into one big extent. If the number of
2101 * extents we accounted for is <= the amount we need for the new range
2102 * then we can return, otherwise drop. Think of it like this
2103 *
2104 * [ 4k][MAX_SIZE]
2105 *
2106 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2107 * need 2 outstanding extents, on one side we have 1 and the other side
2108 * we have 1 so they are == and we can return. But in this case
2109 *
2110 * [MAX_SIZE+4k][MAX_SIZE+4k]
2111 *
2112 * Each range on their own accounts for 2 extents, but merged together
2113 * they are only 3 extents worth of accounting, so we need to drop in
2114 * this case.
dcab6a3b 2115 */
ba117213 2116 old_size = other->end - other->start + 1;
823bb20a 2117 num_extents = count_max_extents(old_size);
ba117213 2118 old_size = new->end - new->start + 1;
823bb20a
DS
2119 num_extents += count_max_extents(old_size);
2120 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
2121 return;
2122
9e0baf60 2123 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 2124 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 2125 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
2126}
2127
eb73c1b7
MX
2128static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2129 struct inode *inode)
2130{
0b246afa
JM
2131 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2132
eb73c1b7
MX
2133 spin_lock(&root->delalloc_lock);
2134 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2135 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2136 &root->delalloc_inodes);
2137 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2138 &BTRFS_I(inode)->runtime_flags);
2139 root->nr_delalloc_inodes++;
2140 if (root->nr_delalloc_inodes == 1) {
0b246afa 2141 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2142 BUG_ON(!list_empty(&root->delalloc_root));
2143 list_add_tail(&root->delalloc_root,
0b246afa
JM
2144 &fs_info->delalloc_roots);
2145 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2146 }
2147 }
2148 spin_unlock(&root->delalloc_lock);
2149}
2150
2b877331
NB
2151
2152void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2153 struct btrfs_inode *inode)
eb73c1b7 2154{
3ffbd68c 2155 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 2156
9e3e97f4
NB
2157 if (!list_empty(&inode->delalloc_inodes)) {
2158 list_del_init(&inode->delalloc_inodes);
eb73c1b7 2159 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2160 &inode->runtime_flags);
eb73c1b7
MX
2161 root->nr_delalloc_inodes--;
2162 if (!root->nr_delalloc_inodes) {
7c8a0d36 2163 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 2164 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2165 BUG_ON(list_empty(&root->delalloc_root));
2166 list_del_init(&root->delalloc_root);
0b246afa 2167 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2168 }
2169 }
2b877331
NB
2170}
2171
2172static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2173 struct btrfs_inode *inode)
2174{
2175 spin_lock(&root->delalloc_lock);
2176 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
2177 spin_unlock(&root->delalloc_lock);
2178}
2179
d352ac68 2180/*
e06a1fc9
NB
2181 * Properly track delayed allocation bytes in the inode and to maintain the
2182 * list of inodes that have pending delalloc work to be done.
d352ac68 2183 */
e06a1fc9
NB
2184void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2185 unsigned *bits)
291d673e 2186{
0b246afa
JM
2187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2188
47059d93
WS
2189 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2190 WARN_ON(1);
75eff68e
CM
2191 /*
2192 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2193 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2194 * bit, which is only set or cleared with irqs on
2195 */
0ca1f7ce 2196 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2197 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2198 u64 len = state->end + 1 - state->start;
8b62f87b 2199 u32 num_extents = count_max_extents(len);
70ddc553 2200 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2201
8b62f87b
JB
2202 spin_lock(&BTRFS_I(inode)->lock);
2203 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2204 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2205
6a3891c5 2206 /* For sanity tests */
0b246afa 2207 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2208 return;
2209
104b4e51
NB
2210 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2211 fs_info->delalloc_batch);
df0af1a5 2212 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2213 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2214 if (*bits & EXTENT_DEFRAG)
2215 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2216 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2217 &BTRFS_I(inode)->runtime_flags))
2218 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2219 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2220 }
a7e3b975
FM
2221
2222 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2223 (*bits & EXTENT_DELALLOC_NEW)) {
2224 spin_lock(&BTRFS_I(inode)->lock);
2225 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2226 state->start;
2227 spin_unlock(&BTRFS_I(inode)->lock);
2228 }
291d673e
CM
2229}
2230
d352ac68 2231/*
a36bb5f9
NB
2232 * Once a range is no longer delalloc this function ensures that proper
2233 * accounting happens.
d352ac68 2234 */
a36bb5f9
NB
2235void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2236 struct extent_state *state, unsigned *bits)
291d673e 2237{
a36bb5f9
NB
2238 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2239 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2240 u64 len = state->end + 1 - state->start;
823bb20a 2241 u32 num_extents = count_max_extents(len);
47059d93 2242
4a4b964f
FM
2243 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2244 spin_lock(&inode->lock);
6fc0ef68 2245 inode->defrag_bytes -= len;
4a4b964f
FM
2246 spin_unlock(&inode->lock);
2247 }
47059d93 2248
75eff68e
CM
2249 /*
2250 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2251 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2252 * bit, which is only set or cleared with irqs on
2253 */
0ca1f7ce 2254 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2255 struct btrfs_root *root = inode->root;
83eea1f1 2256 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2257
8b62f87b
JB
2258 spin_lock(&inode->lock);
2259 btrfs_mod_outstanding_extents(inode, -num_extents);
2260 spin_unlock(&inode->lock);
0ca1f7ce 2261
b6d08f06
JB
2262 /*
2263 * We don't reserve metadata space for space cache inodes so we
52042d8e 2264 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2265 * error.
2266 */
a315e68f 2267 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2268 root != fs_info->tree_root)
43b18595 2269 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2270
6a3891c5 2271 /* For sanity tests. */
0b246afa 2272 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2273 return;
2274
37f00a6d 2275 if (!btrfs_is_data_reloc_root(root) &&
a315e68f
FM
2276 do_list && !(state->state & EXTENT_NORESERVE) &&
2277 (*bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2278 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2279
104b4e51
NB
2280 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2281 fs_info->delalloc_batch);
6fc0ef68
NB
2282 spin_lock(&inode->lock);
2283 inode->delalloc_bytes -= len;
2284 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2285 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2286 &inode->runtime_flags))
eb73c1b7 2287 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2288 spin_unlock(&inode->lock);
291d673e 2289 }
a7e3b975
FM
2290
2291 if ((state->state & EXTENT_DELALLOC_NEW) &&
2292 (*bits & EXTENT_DELALLOC_NEW)) {
2293 spin_lock(&inode->lock);
2294 ASSERT(inode->new_delalloc_bytes >= len);
2295 inode->new_delalloc_bytes -= len;
2766ff61
FM
2296 if (*bits & EXTENT_ADD_INODE_BYTES)
2297 inode_add_bytes(&inode->vfs_inode, len);
a7e3b975
FM
2298 spin_unlock(&inode->lock);
2299 }
291d673e
CM
2300}
2301
d352ac68
CM
2302/*
2303 * in order to insert checksums into the metadata in large chunks,
2304 * we wait until bio submission time. All the pages in the bio are
2305 * checksummed and sums are attached onto the ordered extent record.
2306 *
2307 * At IO completion time the cums attached on the ordered extent record
2308 * are inserted into the btree
2309 */
8896a08d 2310static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 2311 u64 dio_file_offset)
065631f6 2312{
c965d640 2313 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
4a69a410 2314}
e015640f 2315
abb99cfd
NA
2316/*
2317 * Split an extent_map at [start, start + len]
2318 *
2319 * This function is intended to be used only for extract_ordered_extent().
2320 */
2321static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2322 u64 pre, u64 post)
2323{
2324 struct extent_map_tree *em_tree = &inode->extent_tree;
2325 struct extent_map *em;
2326 struct extent_map *split_pre = NULL;
2327 struct extent_map *split_mid = NULL;
2328 struct extent_map *split_post = NULL;
2329 int ret = 0;
abb99cfd
NA
2330 unsigned long flags;
2331
2332 /* Sanity check */
2333 if (pre == 0 && post == 0)
2334 return 0;
2335
2336 split_pre = alloc_extent_map();
2337 if (pre)
2338 split_mid = alloc_extent_map();
2339 if (post)
2340 split_post = alloc_extent_map();
2341 if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2342 ret = -ENOMEM;
2343 goto out;
2344 }
2345
2346 ASSERT(pre + post < len);
2347
2348 lock_extent(&inode->io_tree, start, start + len - 1);
2349 write_lock(&em_tree->lock);
2350 em = lookup_extent_mapping(em_tree, start, len);
2351 if (!em) {
2352 ret = -EIO;
2353 goto out_unlock;
2354 }
2355
2356 ASSERT(em->len == len);
2357 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2358 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
63fb5879
NA
2359 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2360 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2361 ASSERT(!list_empty(&em->list));
abb99cfd
NA
2362
2363 flags = em->flags;
2364 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
abb99cfd
NA
2365
2366 /* First, replace the em with a new extent_map starting from * em->start */
2367 split_pre->start = em->start;
2368 split_pre->len = (pre ? pre : em->len - post);
2369 split_pre->orig_start = split_pre->start;
2370 split_pre->block_start = em->block_start;
2371 split_pre->block_len = split_pre->len;
2372 split_pre->orig_block_len = split_pre->block_len;
2373 split_pre->ram_bytes = split_pre->len;
2374 split_pre->flags = flags;
2375 split_pre->compress_type = em->compress_type;
2376 split_pre->generation = em->generation;
2377
63fb5879 2378 replace_extent_mapping(em_tree, em, split_pre, 1);
abb99cfd
NA
2379
2380 /*
2381 * Now we only have an extent_map at:
2382 * [em->start, em->start + pre] if pre != 0
2383 * [em->start, em->start + em->len - post] if pre == 0
2384 */
2385
2386 if (pre) {
2387 /* Insert the middle extent_map */
2388 split_mid->start = em->start + pre;
2389 split_mid->len = em->len - pre - post;
2390 split_mid->orig_start = split_mid->start;
2391 split_mid->block_start = em->block_start + pre;
2392 split_mid->block_len = split_mid->len;
2393 split_mid->orig_block_len = split_mid->block_len;
2394 split_mid->ram_bytes = split_mid->len;
2395 split_mid->flags = flags;
2396 split_mid->compress_type = em->compress_type;
2397 split_mid->generation = em->generation;
63fb5879 2398 add_extent_mapping(em_tree, split_mid, 1);
abb99cfd
NA
2399 }
2400
2401 if (post) {
2402 split_post->start = em->start + em->len - post;
2403 split_post->len = post;
2404 split_post->orig_start = split_post->start;
2405 split_post->block_start = em->block_start + em->len - post;
2406 split_post->block_len = split_post->len;
2407 split_post->orig_block_len = split_post->block_len;
2408 split_post->ram_bytes = split_post->len;
2409 split_post->flags = flags;
2410 split_post->compress_type = em->compress_type;
2411 split_post->generation = em->generation;
63fb5879 2412 add_extent_mapping(em_tree, split_post, 1);
abb99cfd
NA
2413 }
2414
2415 /* Once for us */
2416 free_extent_map(em);
2417 /* Once for the tree */
2418 free_extent_map(em);
2419
2420out_unlock:
2421 write_unlock(&em_tree->lock);
2422 unlock_extent(&inode->io_tree, start, start + len - 1);
2423out:
2424 free_extent_map(split_pre);
2425 free_extent_map(split_mid);
2426 free_extent_map(split_post);
2427
2428 return ret;
2429}
2430
d22002fd
NA
2431static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2432 struct bio *bio, loff_t file_offset)
2433{
2434 struct btrfs_ordered_extent *ordered;
d22002fd 2435 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
abb99cfd 2436 u64 file_len;
d22002fd
NA
2437 u64 len = bio->bi_iter.bi_size;
2438 u64 end = start + len;
2439 u64 ordered_end;
2440 u64 pre, post;
2441 int ret = 0;
2442
2443 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2444 if (WARN_ON_ONCE(!ordered))
2445 return BLK_STS_IOERR;
2446
2447 /* No need to split */
2448 if (ordered->disk_num_bytes == len)
2449 goto out;
2450
2451 /* We cannot split once end_bio'd ordered extent */
2452 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2453 ret = -EINVAL;
2454 goto out;
2455 }
2456
2457 /* We cannot split a compressed ordered extent */
2458 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2459 ret = -EINVAL;
2460 goto out;
2461 }
2462
2463 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2464 /* bio must be in one ordered extent */
2465 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2466 ret = -EINVAL;
2467 goto out;
2468 }
2469
2470 /* Checksum list should be empty */
2471 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2472 ret = -EINVAL;
2473 goto out;
2474 }
2475
abb99cfd 2476 file_len = ordered->num_bytes;
d22002fd
NA
2477 pre = start - ordered->disk_bytenr;
2478 post = ordered_end - end;
2479
2480 ret = btrfs_split_ordered_extent(ordered, pre, post);
2481 if (ret)
2482 goto out;
abb99cfd 2483 ret = split_zoned_em(inode, file_offset, file_len, pre, post);
d22002fd
NA
2484
2485out:
d22002fd
NA
2486 btrfs_put_ordered_extent(ordered);
2487
2488 return errno_to_blk_status(ret);
2489}
2490
d352ac68 2491/*
cad321ad 2492 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2493 * on write, or reading the csums from the tree before a read.
2494 *
2495 * Rules about async/sync submit,
2496 * a) read: sync submit
2497 *
2498 * b) write without checksum: sync submit
2499 *
2500 * c) write with checksum:
2501 * c-1) if bio is issued by fsync: sync submit
2502 * (sync_writers != 0)
2503 *
2504 * c-2) if root is reloc root: sync submit
2505 * (only in case of buffered IO)
2506 *
2507 * c-3) otherwise: async submit
d352ac68 2508 */
908930f3
NB
2509blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2510 int mirror_num, unsigned long bio_flags)
50489a57 2511
44b8bd7e 2512{
0b246afa 2513 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2514 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2515 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2516 blk_status_t ret = 0;
19b9bdb0 2517 int skip_sum;
b812ce28 2518 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2519
42437a63 2520 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
056c8311 2521 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
cad321ad 2522
70ddc553 2523 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2524 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2525
d22002fd
NA
2526 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2527 struct page *page = bio_first_bvec_all(bio)->bv_page;
2528 loff_t file_offset = page_offset(page);
2529
2530 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2531 if (ret)
2532 goto out;
2533 }
2534
cfe94440 2535 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
0b246afa 2536 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2537 if (ret)
61891923 2538 goto out;
5fd02043 2539
d20f7043 2540 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2541 ret = btrfs_submit_compressed_read(inode, bio,
2542 mirror_num,
2543 bio_flags);
2544 goto out;
334c16d8
JB
2545 } else {
2546 /*
2547 * Lookup bio sums does extra checks around whether we
2548 * need to csum or not, which is why we ignore skip_sum
2549 * here.
2550 */
6275193e 2551 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2552 if (ret)
61891923 2553 goto out;
c2db1073 2554 }
4d1b5fb4 2555 goto mapit;
b812ce28 2556 } else if (async && !skip_sum) {
17d217fe 2557 /* csum items have already been cloned */
37f00a6d 2558 if (btrfs_is_data_reloc_root(root))
17d217fe 2559 goto mapit;
19b9bdb0 2560 /* we're doing a write, do the async checksumming */
8896a08d
QW
2561 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2562 0, btrfs_submit_bio_start);
61891923 2563 goto out;
b812ce28 2564 } else if (!skip_sum) {
bd242a08 2565 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2566 if (ret)
2567 goto out;
19b9bdb0
CM
2568 }
2569
0b86a832 2570mapit:
08635bae 2571 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2572
2573out:
4e4cbee9
CH
2574 if (ret) {
2575 bio->bi_status = ret;
4246a0b6
CH
2576 bio_endio(bio);
2577 }
61891923 2578 return ret;
065631f6 2579}
6885f308 2580
d352ac68
CM
2581/*
2582 * given a list of ordered sums record them in the inode. This happens
2583 * at IO completion time based on sums calculated at bio submission time.
2584 */
510f85ed
NB
2585static int add_pending_csums(struct btrfs_trans_handle *trans,
2586 struct list_head *list)
e6dcd2dc 2587{
e6dcd2dc 2588 struct btrfs_ordered_sum *sum;
fc28b25e 2589 struct btrfs_root *csum_root = NULL;
ac01f26a 2590 int ret;
e6dcd2dc 2591
c6e30871 2592 list_for_each_entry(sum, list, list) {
7c2871a2 2593 trans->adding_csums = true;
fc28b25e
JB
2594 if (!csum_root)
2595 csum_root = btrfs_csum_root(trans->fs_info,
2596 sum->bytenr);
2597 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
7c2871a2 2598 trans->adding_csums = false;
ac01f26a
NB
2599 if (ret)
2600 return ret;
e6dcd2dc
CM
2601 }
2602 return 0;
2603}
2604
c3347309
FM
2605static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2606 const u64 start,
2607 const u64 len,
2608 struct extent_state **cached_state)
2609{
2610 u64 search_start = start;
2611 const u64 end = start + len - 1;
2612
2613 while (search_start < end) {
2614 const u64 search_len = end - search_start + 1;
2615 struct extent_map *em;
2616 u64 em_len;
2617 int ret = 0;
2618
2619 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2620 if (IS_ERR(em))
2621 return PTR_ERR(em);
2622
2623 if (em->block_start != EXTENT_MAP_HOLE)
2624 goto next;
2625
2626 em_len = em->len;
2627 if (em->start < search_start)
2628 em_len -= search_start - em->start;
2629 if (em_len > search_len)
2630 em_len = search_len;
2631
2632 ret = set_extent_bit(&inode->io_tree, search_start,
2633 search_start + em_len - 1,
1cab5e72
NB
2634 EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2635 GFP_NOFS, NULL);
c3347309
FM
2636next:
2637 search_start = extent_map_end(em);
2638 free_extent_map(em);
2639 if (ret)
2640 return ret;
2641 }
2642 return 0;
2643}
2644
c2566f22 2645int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2646 unsigned int extra_bits,
330a5827 2647 struct extent_state **cached_state)
ea8c2819 2648{
fdb1e121 2649 WARN_ON(PAGE_ALIGNED(end));
c3347309
FM
2650
2651 if (start >= i_size_read(&inode->vfs_inode) &&
2652 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2653 /*
2654 * There can't be any extents following eof in this case so just
2655 * set the delalloc new bit for the range directly.
2656 */
2657 extra_bits |= EXTENT_DELALLOC_NEW;
2658 } else {
2659 int ret;
2660
2661 ret = btrfs_find_new_delalloc_bytes(inode, start,
2662 end + 1 - start,
2663 cached_state);
2664 if (ret)
2665 return ret;
2666 }
2667
c2566f22
NB
2668 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2669 cached_state);
ea8c2819
CM
2670}
2671
d352ac68 2672/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2673struct btrfs_writepage_fixup {
2674 struct page *page;
f4b1363c 2675 struct inode *inode;
247e743c
CM
2676 struct btrfs_work work;
2677};
2678
b2950863 2679static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2680{
2681 struct btrfs_writepage_fixup *fixup;
2682 struct btrfs_ordered_extent *ordered;
2ac55d41 2683 struct extent_state *cached_state = NULL;
364ecf36 2684 struct extent_changeset *data_reserved = NULL;
247e743c 2685 struct page *page;
65d87f79 2686 struct btrfs_inode *inode;
247e743c
CM
2687 u64 page_start;
2688 u64 page_end;
25f3c502 2689 int ret = 0;
f4b1363c 2690 bool free_delalloc_space = true;
247e743c
CM
2691
2692 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2693 page = fixup->page;
65d87f79 2694 inode = BTRFS_I(fixup->inode);
f4b1363c
JB
2695 page_start = page_offset(page);
2696 page_end = page_offset(page) + PAGE_SIZE - 1;
2697
2698 /*
2699 * This is similar to page_mkwrite, we need to reserve the space before
2700 * we take the page lock.
2701 */
65d87f79
NB
2702 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2703 PAGE_SIZE);
4a096752 2704again:
247e743c 2705 lock_page(page);
25f3c502
CM
2706
2707 /*
2708 * Before we queued this fixup, we took a reference on the page.
2709 * page->mapping may go NULL, but it shouldn't be moved to a different
2710 * address space.
2711 */
f4b1363c
JB
2712 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2713 /*
2714 * Unfortunately this is a little tricky, either
2715 *
2716 * 1) We got here and our page had already been dealt with and
2717 * we reserved our space, thus ret == 0, so we need to just
2718 * drop our space reservation and bail. This can happen the
2719 * first time we come into the fixup worker, or could happen
2720 * while waiting for the ordered extent.
2721 * 2) Our page was already dealt with, but we happened to get an
2722 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2723 * this case we obviously don't have anything to release, but
2724 * because the page was already dealt with we don't want to
2725 * mark the page with an error, so make sure we're resetting
2726 * ret to 0. This is why we have this check _before_ the ret
2727 * check, because we do not want to have a surprise ENOSPC
2728 * when the page was already properly dealt with.
2729 */
2730 if (!ret) {
65d87f79
NB
2731 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2732 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2733 page_start, PAGE_SIZE,
2734 true);
2735 }
2736 ret = 0;
247e743c 2737 goto out_page;
f4b1363c 2738 }
247e743c 2739
25f3c502 2740 /*
f4b1363c
JB
2741 * We can't mess with the page state unless it is locked, so now that
2742 * it is locked bail if we failed to make our space reservation.
25f3c502 2743 */
f4b1363c
JB
2744 if (ret)
2745 goto out_page;
247e743c 2746
65d87f79 2747 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2748
2749 /* already ordered? We're done */
f57ad937 2750 if (PageOrdered(page))
f4b1363c 2751 goto out_reserved;
4a096752 2752
65d87f79 2753 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2754 if (ordered) {
65d87f79
NB
2755 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2756 &cached_state);
4a096752 2757 unlock_page(page);
c0a43603 2758 btrfs_start_ordered_extent(ordered, 1);
87826df0 2759 btrfs_put_ordered_extent(ordered);
4a096752
CM
2760 goto again;
2761 }
247e743c 2762
65d87f79 2763 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2764 &cached_state);
25f3c502 2765 if (ret)
53687007 2766 goto out_reserved;
f3038ee3 2767
25f3c502
CM
2768 /*
2769 * Everything went as planned, we're now the owner of a dirty page with
2770 * delayed allocation bits set and space reserved for our COW
2771 * destination.
2772 *
2773 * The page was dirty when we started, nothing should have cleaned it.
2774 */
2775 BUG_ON(!PageDirty(page));
f4b1363c 2776 free_delalloc_space = false;
53687007 2777out_reserved:
65d87f79 2778 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2779 if (free_delalloc_space)
65d87f79
NB
2780 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2781 PAGE_SIZE, true);
2782 unlock_extent_cached(&inode->io_tree, page_start, page_end,
e43bbe5e 2783 &cached_state);
247e743c 2784out_page:
25f3c502
CM
2785 if (ret) {
2786 /*
2787 * We hit ENOSPC or other errors. Update the mapping and page
2788 * to reflect the errors and clean the page.
2789 */
2790 mapping_set_error(page->mapping, ret);
2791 end_extent_writepage(page, ret, page_start, page_end);
2792 clear_page_dirty_for_io(page);
2793 SetPageError(page);
2794 }
e4f94347 2795 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
247e743c 2796 unlock_page(page);
09cbfeaf 2797 put_page(page);
b897abec 2798 kfree(fixup);
364ecf36 2799 extent_changeset_free(data_reserved);
f4b1363c
JB
2800 /*
2801 * As a precaution, do a delayed iput in case it would be the last iput
2802 * that could need flushing space. Recursing back to fixup worker would
2803 * deadlock.
2804 */
65d87f79 2805 btrfs_add_delayed_iput(&inode->vfs_inode);
247e743c
CM
2806}
2807
2808/*
2809 * There are a few paths in the higher layers of the kernel that directly
2810 * set the page dirty bit without asking the filesystem if it is a
2811 * good idea. This causes problems because we want to make sure COW
2812 * properly happens and the data=ordered rules are followed.
2813 *
c8b97818 2814 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2815 * hasn't been properly setup for IO. We kick off an async process
2816 * to fix it up. The async helper will wait for ordered extents, set
2817 * the delalloc bit and make it safe to write the page.
2818 */
a129ffb8 2819int btrfs_writepage_cow_fixup(struct page *page)
247e743c
CM
2820{
2821 struct inode *inode = page->mapping->host;
0b246afa 2822 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2823 struct btrfs_writepage_fixup *fixup;
247e743c 2824
f57ad937
QW
2825 /* This page has ordered extent covering it already */
2826 if (PageOrdered(page))
247e743c
CM
2827 return 0;
2828
25f3c502
CM
2829 /*
2830 * PageChecked is set below when we create a fixup worker for this page,
2831 * don't try to create another one if we're already PageChecked()
2832 *
2833 * The extent_io writepage code will redirty the page if we send back
2834 * EAGAIN.
2835 */
247e743c
CM
2836 if (PageChecked(page))
2837 return -EAGAIN;
2838
2839 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2840 if (!fixup)
2841 return -EAGAIN;
f421950f 2842
f4b1363c
JB
2843 /*
2844 * We are already holding a reference to this inode from
2845 * write_cache_pages. We need to hold it because the space reservation
2846 * takes place outside of the page lock, and we can't trust
2847 * page->mapping outside of the page lock.
2848 */
2849 ihold(inode);
e4f94347 2850 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
09cbfeaf 2851 get_page(page);
a0cac0ec 2852 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2853 fixup->page = page;
f4b1363c 2854 fixup->inode = inode;
0b246afa 2855 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2856
2857 return -EAGAIN;
247e743c
CM
2858}
2859
d899e052 2860static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2861 struct btrfs_inode *inode, u64 file_pos,
9729f10a 2862 struct btrfs_file_extent_item *stack_fi,
2766ff61 2863 const bool update_inode_bytes,
9729f10a 2864 u64 qgroup_reserved)
d899e052 2865{
c553f94d 2866 struct btrfs_root *root = inode->root;
2766ff61 2867 const u64 sectorsize = root->fs_info->sectorsize;
d899e052
YZ
2868 struct btrfs_path *path;
2869 struct extent_buffer *leaf;
2870 struct btrfs_key ins;
203f44c5
QW
2871 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2872 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2873 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2874 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
5893dfb9 2875 struct btrfs_drop_extents_args drop_args = { 0 };
d899e052
YZ
2876 int ret;
2877
2878 path = btrfs_alloc_path();
d8926bb3
MF
2879 if (!path)
2880 return -ENOMEM;
d899e052 2881
a1ed835e
CM
2882 /*
2883 * we may be replacing one extent in the tree with another.
2884 * The new extent is pinned in the extent map, and we don't want
2885 * to drop it from the cache until it is completely in the btree.
2886 *
2887 * So, tell btrfs_drop_extents to leave this extent in the cache.
2888 * the caller is expected to unpin it and allow it to be merged
2889 * with the others.
2890 */
5893dfb9
FM
2891 drop_args.path = path;
2892 drop_args.start = file_pos;
2893 drop_args.end = file_pos + num_bytes;
2894 drop_args.replace_extent = true;
2895 drop_args.extent_item_size = sizeof(*stack_fi);
2896 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
79787eaa
JM
2897 if (ret)
2898 goto out;
d899e052 2899
5893dfb9 2900 if (!drop_args.extent_inserted) {
c553f94d 2901 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2902 ins.offset = file_pos;
2903 ins.type = BTRFS_EXTENT_DATA_KEY;
2904
1acae57b 2905 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2906 sizeof(*stack_fi));
1acae57b
FDBM
2907 if (ret)
2908 goto out;
2909 }
d899e052 2910 leaf = path->nodes[0];
203f44c5
QW
2911 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2912 write_extent_buffer(leaf, stack_fi,
2913 btrfs_item_ptr_offset(leaf, path->slots[0]),
2914 sizeof(struct btrfs_file_extent_item));
b9473439 2915
d899e052 2916 btrfs_mark_buffer_dirty(leaf);
ce195332 2917 btrfs_release_path(path);
d899e052 2918
2766ff61
FM
2919 /*
2920 * If we dropped an inline extent here, we know the range where it is
2921 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
1a9fd417 2922 * number of bytes only for that range containing the inline extent.
2766ff61
FM
2923 * The remaining of the range will be processed when clearning the
2924 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2925 */
2926 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2927 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2928
2929 inline_size = drop_args.bytes_found - inline_size;
2930 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2931 drop_args.bytes_found -= inline_size;
2932 num_bytes -= sectorsize;
2933 }
2934
2935 if (update_inode_bytes)
2936 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
d899e052
YZ
2937
2938 ins.objectid = disk_bytenr;
2939 ins.offset = disk_num_bytes;
2940 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2941
c553f94d 2942 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2943 if (ret)
2944 goto out;
2945
c553f94d 2946 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
9729f10a 2947 file_pos, qgroup_reserved, &ins);
79787eaa 2948out:
d899e052 2949 btrfs_free_path(path);
b9473439 2950
79787eaa 2951 return ret;
d899e052
YZ
2952}
2953
2ff7e61e 2954static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2955 u64 start, u64 len)
2956{
32da5386 2957 struct btrfs_block_group *cache;
e570fd27 2958
0b246afa 2959 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2960 ASSERT(cache);
2961
2962 spin_lock(&cache->lock);
2963 cache->delalloc_bytes -= len;
2964 spin_unlock(&cache->lock);
2965
2966 btrfs_put_block_group(cache);
2967}
2968
203f44c5 2969static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
203f44c5
QW
2970 struct btrfs_ordered_extent *oe)
2971{
2972 struct btrfs_file_extent_item stack_fi;
2973 u64 logical_len;
2766ff61 2974 bool update_inode_bytes;
203f44c5
QW
2975
2976 memset(&stack_fi, 0, sizeof(stack_fi));
2977 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2978 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2979 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2980 oe->disk_num_bytes);
2981 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2982 logical_len = oe->truncated_len;
2983 else
2984 logical_len = oe->num_bytes;
2985 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2986 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2987 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2988 /* Encryption and other encoding is reserved and all 0 */
2989
2766ff61
FM
2990 /*
2991 * For delalloc, when completing an ordered extent we update the inode's
2992 * bytes when clearing the range in the inode's io tree, so pass false
2993 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2994 * except if the ordered extent was truncated.
2995 */
2996 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2997 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2998
3c38c877
NB
2999 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3000 oe->file_offset, &stack_fi,
2766ff61 3001 update_inode_bytes, oe->qgroup_rsv);
203f44c5
QW
3002}
3003
3004/*
3005 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
3006 * an ordered extent if the range of bytes in the file it covers are
3007 * fully written.
3008 */
5fd02043 3009static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 3010{
72e7e6ed
NB
3011 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3012 struct btrfs_root *root = inode->root;
3013 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 3014 struct btrfs_trans_handle *trans = NULL;
72e7e6ed 3015 struct extent_io_tree *io_tree = &inode->io_tree;
2ac55d41 3016 struct extent_state *cached_state = NULL;
bffe633e 3017 u64 start, end;
261507a0 3018 int compress_type = 0;
77cef2ec 3019 int ret = 0;
bffe633e 3020 u64 logical_len = ordered_extent->num_bytes;
8d510121 3021 bool freespace_inode;
77cef2ec 3022 bool truncated = false;
49940bdd 3023 bool clear_reserved_extent = true;
2766ff61 3024 unsigned int clear_bits = EXTENT_DEFRAG;
a7e3b975 3025
bffe633e
OS
3026 start = ordered_extent->file_offset;
3027 end = start + ordered_extent->num_bytes - 1;
3028
a7e3b975
FM
3029 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3030 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3031 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2766ff61 3032 clear_bits |= EXTENT_DELALLOC_NEW;
e6dcd2dc 3033
72e7e6ed 3034 freespace_inode = btrfs_is_free_space_inode(inode);
0cb59c99 3035
5fd02043
JB
3036 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3037 ret = -EIO;
3038 goto out;
3039 }
3040
be1a1d7a
NA
3041 /* A valid bdev implies a write on a sequential zone */
3042 if (ordered_extent->bdev) {
d8e3fb10 3043 btrfs_rewrite_logical_zoned(ordered_extent);
be1a1d7a
NA
3044 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3045 ordered_extent->disk_num_bytes);
3046 }
d8e3fb10 3047
72e7e6ed 3048 btrfs_free_io_failure_record(inode, start, end);
f612496b 3049
77cef2ec
JB
3050 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3051 truncated = true;
3052 logical_len = ordered_extent->truncated_len;
3053 /* Truncated the entire extent, don't bother adding */
3054 if (!logical_len)
3055 goto out;
3056 }
3057
c2167754 3058 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3059 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 3060
72e7e6ed 3061 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
3062 if (freespace_inode)
3063 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
3064 else
3065 trans = btrfs_join_transaction(root);
3066 if (IS_ERR(trans)) {
3067 ret = PTR_ERR(trans);
3068 trans = NULL;
3069 goto out;
c2167754 3070 }
72e7e6ed 3071 trans->block_rsv = &inode->block_rsv;
729f7961 3072 ret = btrfs_update_inode_fallback(trans, root, inode);
6c760c07 3073 if (ret) /* -ENOMEM or corruption */
66642832 3074 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3075 goto out;
3076 }
e6dcd2dc 3077
2766ff61 3078 clear_bits |= EXTENT_LOCKED;
bffe633e 3079 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 3080
8d510121
NB
3081 if (freespace_inode)
3082 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 3083 else
7a7eaa40 3084 trans = btrfs_join_transaction(root);
79787eaa
JM
3085 if (IS_ERR(trans)) {
3086 ret = PTR_ERR(trans);
3087 trans = NULL;
a7e3b975 3088 goto out;
79787eaa 3089 }
a79b7d4b 3090
72e7e6ed 3091 trans->block_rsv = &inode->block_rsv;
c2167754 3092
c8b97818 3093 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3094 compress_type = ordered_extent->compress_type;
d899e052 3095 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3096 BUG_ON(compress_type);
72e7e6ed 3097 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
3098 ordered_extent->file_offset,
3099 ordered_extent->file_offset +
77cef2ec 3100 logical_len);
d899e052 3101 } else {
0b246afa 3102 BUG_ON(root == fs_info->tree_root);
3c38c877 3103 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
49940bdd
JB
3104 if (!ret) {
3105 clear_reserved_extent = false;
2ff7e61e 3106 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
3107 ordered_extent->disk_bytenr,
3108 ordered_extent->disk_num_bytes);
49940bdd 3109 }
d899e052 3110 }
72e7e6ed 3111 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
bffe633e 3112 ordered_extent->num_bytes, trans->transid);
79787eaa 3113 if (ret < 0) {
66642832 3114 btrfs_abort_transaction(trans, ret);
a7e3b975 3115 goto out;
79787eaa 3116 }
2ac55d41 3117
510f85ed 3118 ret = add_pending_csums(trans, &ordered_extent->list);
ac01f26a
NB
3119 if (ret) {
3120 btrfs_abort_transaction(trans, ret);
3121 goto out;
3122 }
e6dcd2dc 3123
2766ff61
FM
3124 /*
3125 * If this is a new delalloc range, clear its new delalloc flag to
3126 * update the inode's number of bytes. This needs to be done first
3127 * before updating the inode item.
3128 */
3129 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3130 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
72e7e6ed 3131 clear_extent_bit(&inode->io_tree, start, end,
2766ff61
FM
3132 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3133 0, 0, &cached_state);
3134
72e7e6ed 3135 btrfs_inode_safe_disk_i_size_write(inode, 0);
729f7961 3136 ret = btrfs_update_inode_fallback(trans, root, inode);
6c760c07 3137 if (ret) { /* -ENOMEM or corruption */
66642832 3138 btrfs_abort_transaction(trans, ret);
a7e3b975 3139 goto out;
1ef30be1
JB
3140 }
3141 ret = 0;
c2167754 3142out:
72e7e6ed 3143 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
bffe633e 3144 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 3145 &cached_state);
a7e3b975 3146
a698d075 3147 if (trans)
3a45bb20 3148 btrfs_end_transaction(trans);
0cb59c99 3149
77cef2ec 3150 if (ret || truncated) {
bffe633e 3151 u64 unwritten_start = start;
77cef2ec 3152
d61bec08
JB
3153 /*
3154 * If we failed to finish this ordered extent for any reason we
3155 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3156 * extent, and mark the inode with the error if it wasn't
3157 * already set. Any error during writeback would have already
3158 * set the mapping error, so we need to set it if we're the ones
3159 * marking this ordered extent as failed.
3160 */
3161 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3162 &ordered_extent->flags))
3163 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3164
77cef2ec 3165 if (truncated)
bffe633e
OS
3166 unwritten_start += logical_len;
3167 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
3168
3169 /* Drop the cache for the part of the extent we didn't write. */
72e7e6ed 3170 btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
5fd02043 3171
0bec9ef5
JB
3172 /*
3173 * If the ordered extent had an IOERR or something else went
3174 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3175 * back to the allocator. We only free the extent in the
3176 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3177 *
3178 * If we made it past insert_reserved_file_extent before we
3179 * errored out then we don't need to do this as the accounting
3180 * has already been done.
0bec9ef5 3181 */
77cef2ec 3182 if ((ret || !logical_len) &&
49940bdd 3183 clear_reserved_extent &&
77cef2ec 3184 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
3185 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3186 /*
3187 * Discard the range before returning it back to the
3188 * free space pool
3189 */
46b27f50 3190 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 3191 btrfs_discard_extent(fs_info,
bffe633e
OS
3192 ordered_extent->disk_bytenr,
3193 ordered_extent->disk_num_bytes,
3194 NULL);
2ff7e61e 3195 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
3196 ordered_extent->disk_bytenr,
3197 ordered_extent->disk_num_bytes, 1);
4eaaec24 3198 }
0bec9ef5
JB
3199 }
3200
5fd02043 3201 /*
8bad3c02
LB
3202 * This needs to be done to make sure anybody waiting knows we are done
3203 * updating everything for this ordered extent.
5fd02043 3204 */
72e7e6ed 3205 btrfs_remove_ordered_extent(inode, ordered_extent);
5fd02043 3206
e6dcd2dc
CM
3207 /* once for us */
3208 btrfs_put_ordered_extent(ordered_extent);
3209 /* once for the tree */
3210 btrfs_put_ordered_extent(ordered_extent);
3211
5fd02043
JB
3212 return ret;
3213}
3214
3215static void finish_ordered_fn(struct btrfs_work *work)
3216{
3217 struct btrfs_ordered_extent *ordered_extent;
3218 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3219 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3220}
3221
38a39ac7
QW
3222void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3223 struct page *page, u64 start,
25c1252a 3224 u64 end, bool uptodate)
211f90e6 3225{
38a39ac7 3226 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
1abe9b8a 3227
e65f152e
QW
3228 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3229 finish_ordered_fn, uptodate);
211f90e6
CM
3230}
3231
265d4ac0
QW
3232/*
3233 * check_data_csum - verify checksum of one sector of uncompressed data
7ffd27e3 3234 * @inode: inode
265d4ac0 3235 * @io_bio: btrfs_io_bio which contains the csum
7ffd27e3 3236 * @bio_offset: offset to the beginning of the bio (in bytes)
265d4ac0
QW
3237 * @page: page where is the data to be verified
3238 * @pgoff: offset inside the page
c1d6abda 3239 * @start: logical offset in the file
265d4ac0
QW
3240 *
3241 * The length of such check is always one sector size.
3242 */
c3a3b19b 3243static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
c1d6abda
OS
3244 u32 bio_offset, struct page *page, u32 pgoff,
3245 u64 start)
dc380aea 3246{
d5178578
JT
3247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3248 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 3249 char *kaddr;
265d4ac0 3250 u32 len = fs_info->sectorsize;
223486c2 3251 const u32 csum_size = fs_info->csum_size;
7ffd27e3 3252 unsigned int offset_sectors;
d5178578
JT
3253 u8 *csum_expected;
3254 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3255
265d4ac0
QW
3256 ASSERT(pgoff + len <= PAGE_SIZE);
3257
7ffd27e3 3258 offset_sectors = bio_offset >> fs_info->sectorsize_bits;
c3a3b19b 3259 csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
dc380aea
MX
3260
3261 kaddr = kmap_atomic(page);
d5178578
JT
3262 shash->tfm = fs_info->csum_shash;
3263
fd08001f 3264 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
3265
3266 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
3267 goto zeroit;
3268
3269 kunmap_atomic(kaddr);
3270 return 0;
3271zeroit:
c1d6abda 3272 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
c3a3b19b
QW
3273 bbio->mirror_num);
3274 if (bbio->device)
3275 btrfs_dev_stat_inc_and_print(bbio->device,
814723e0 3276 BTRFS_DEV_STAT_CORRUPTION_ERRS);
dc380aea
MX
3277 memset(kaddr + pgoff, 1, len);
3278 flush_dcache_page(page);
3279 kunmap_atomic(kaddr);
dc380aea
MX
3280 return -EIO;
3281}
3282
d352ac68 3283/*
7ffd27e3 3284 * When reads are done, we need to check csums to verify the data is correct.
4a54c8c1
JS
3285 * if there's a match, we allow the bio to finish. If not, the code in
3286 * extent_io.c will try to find good copies for us.
7ffd27e3
QW
3287 *
3288 * @bio_offset: offset to the beginning of the bio (in bytes)
3289 * @start: file offset of the range start
3290 * @end: file offset of the range end (inclusive)
08508fea
QW
3291 *
3292 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3293 * csum match.
d352ac68 3294 */
c3a3b19b
QW
3295unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3296 u32 bio_offset, struct page *page,
3297 u64 start, u64 end)
07157aac 3298{
07157aac 3299 struct inode *inode = page->mapping->host;
e4f94347 3300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d1310b2e 3301 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3302 struct btrfs_root *root = BTRFS_I(inode)->root;
f44cf410
QW
3303 const u32 sectorsize = root->fs_info->sectorsize;
3304 u32 pg_off;
08508fea 3305 unsigned int result = 0;
d1310b2e 3306
e4f94347
QW
3307 if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3308 btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
dc380aea 3309 return 0;
d20f7043 3310 }
6cbff00f 3311
3670e645 3312 /*
e4f94347
QW
3313 * This only happens for NODATASUM or compressed read.
3314 * Normally this should be covered by above check for compressed read
3315 * or the next check for NODATASUM. Just do a quicker exit here.
3670e645 3316 */
c3a3b19b 3317 if (bbio->csum == NULL)
dc380aea 3318 return 0;
17d217fe 3319
6cbff00f 3320 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
42437a63
JB
3321 return 0;
3322
056c8311 3323 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
b6cda9bc 3324 return 0;
d20f7043 3325
f44cf410
QW
3326 ASSERT(page_offset(page) <= start &&
3327 end <= page_offset(page) + PAGE_SIZE - 1);
3328 for (pg_off = offset_in_page(start);
3329 pg_off < offset_in_page(end);
3330 pg_off += sectorsize, bio_offset += sectorsize) {
e3c62324 3331 u64 file_offset = pg_off + page_offset(page);
f44cf410
QW
3332 int ret;
3333
37f00a6d 3334 if (btrfs_is_data_reloc_root(root) &&
e3c62324
QW
3335 test_range_bit(io_tree, file_offset,
3336 file_offset + sectorsize - 1,
3337 EXTENT_NODATASUM, 1, NULL)) {
3338 /* Skip the range without csum for data reloc inode */
3339 clear_extent_bits(io_tree, file_offset,
3340 file_offset + sectorsize - 1,
3341 EXTENT_NODATASUM);
3342 continue;
3343 }
c3a3b19b 3344 ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
c1d6abda 3345 page_offset(page) + pg_off);
08508fea
QW
3346 if (ret < 0) {
3347 const int nr_bit = (pg_off - offset_in_page(start)) >>
3348 root->fs_info->sectorsize_bits;
3349
3350 result |= (1U << nr_bit);
3351 }
f44cf410 3352 }
08508fea 3353 return result;
07157aac 3354}
b888db2b 3355
c1c3fac2
NB
3356/*
3357 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3358 *
3359 * @inode: The inode we want to perform iput on
3360 *
3361 * This function uses the generic vfs_inode::i_count to track whether we should
3362 * just decrement it (in case it's > 1) or if this is the last iput then link
3363 * the inode to the delayed iput machinery. Delayed iputs are processed at
3364 * transaction commit time/superblock commit/cleaner kthread.
3365 */
24bbcf04
YZ
3366void btrfs_add_delayed_iput(struct inode *inode)
3367{
0b246afa 3368 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3369 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3370
3371 if (atomic_add_unless(&inode->i_count, -1, 1))
3372 return;
3373
034f784d 3374 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 3375 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3376 ASSERT(list_empty(&binode->delayed_iput));
3377 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 3378 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
3379 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3380 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3381}
3382
63611e73
JB
3383static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3384 struct btrfs_inode *inode)
3385{
3386 list_del_init(&inode->delayed_iput);
3387 spin_unlock(&fs_info->delayed_iput_lock);
3388 iput(&inode->vfs_inode);
3389 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3390 wake_up(&fs_info->delayed_iputs_wait);
3391 spin_lock(&fs_info->delayed_iput_lock);
3392}
3393
3394static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3395 struct btrfs_inode *inode)
3396{
3397 if (!list_empty(&inode->delayed_iput)) {
3398 spin_lock(&fs_info->delayed_iput_lock);
3399 if (!list_empty(&inode->delayed_iput))
3400 run_delayed_iput_locked(fs_info, inode);
3401 spin_unlock(&fs_info->delayed_iput_lock);
3402 }
3403}
3404
2ff7e61e 3405void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3406{
24bbcf04 3407
24bbcf04 3408 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3409 while (!list_empty(&fs_info->delayed_iputs)) {
3410 struct btrfs_inode *inode;
3411
3412 inode = list_first_entry(&fs_info->delayed_iputs,
3413 struct btrfs_inode, delayed_iput);
63611e73 3414 run_delayed_iput_locked(fs_info, inode);
71795ee5 3415 cond_resched_lock(&fs_info->delayed_iput_lock);
24bbcf04 3416 }
8089fe62 3417 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3418}
3419
034f784d 3420/**
2639631d
NB
3421 * Wait for flushing all delayed iputs
3422 *
3423 * @fs_info: the filesystem
034f784d
JB
3424 *
3425 * This will wait on any delayed iputs that are currently running with KILLABLE
3426 * set. Once they are all done running we will return, unless we are killed in
3427 * which case we return EINTR. This helps in user operations like fallocate etc
3428 * that might get blocked on the iputs.
2639631d
NB
3429 *
3430 * Return EINTR if we were killed, 0 if nothing's pending
034f784d
JB
3431 */
3432int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3433{
3434 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3435 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3436 if (ret)
3437 return -EINTR;
3438 return 0;
3439}
3440
7b128766 3441/*
f7e9e8fc
OS
3442 * This creates an orphan entry for the given inode in case something goes wrong
3443 * in the middle of an unlink.
7b128766 3444 */
73f2e545 3445int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3446 struct btrfs_inode *inode)
7b128766 3447{
d68fc57b 3448 int ret;
7b128766 3449
27919067
OS
3450 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3451 if (ret && ret != -EEXIST) {
3452 btrfs_abort_transaction(trans, ret);
3453 return ret;
d68fc57b
YZ
3454 }
3455
d68fc57b 3456 return 0;
7b128766
JB
3457}
3458
3459/*
f7e9e8fc
OS
3460 * We have done the delete so we can go ahead and remove the orphan item for
3461 * this particular inode.
7b128766 3462 */
48a3b636 3463static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3464 struct btrfs_inode *inode)
7b128766 3465{
27919067 3466 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3467}
3468
3469/*
3470 * this cleans up any orphans that may be left on the list from the last use
3471 * of this root.
3472 */
66b4ffd1 3473int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3474{
0b246afa 3475 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3476 struct btrfs_path *path;
3477 struct extent_buffer *leaf;
7b128766
JB
3478 struct btrfs_key key, found_key;
3479 struct btrfs_trans_handle *trans;
3480 struct inode *inode;
8f6d7f4f 3481 u64 last_objectid = 0;
f7e9e8fc 3482 int ret = 0, nr_unlink = 0;
7b128766 3483
54230013 3484 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
66b4ffd1 3485 return 0;
c71bf099
YZ
3486
3487 path = btrfs_alloc_path();
66b4ffd1
JB
3488 if (!path) {
3489 ret = -ENOMEM;
3490 goto out;
3491 }
e4058b54 3492 path->reada = READA_BACK;
7b128766
JB
3493
3494 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3495 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3496 key.offset = (u64)-1;
3497
7b128766
JB
3498 while (1) {
3499 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3500 if (ret < 0)
3501 goto out;
7b128766
JB
3502
3503 /*
3504 * if ret == 0 means we found what we were searching for, which
25985edc 3505 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3506 * find the key and see if we have stuff that matches
3507 */
3508 if (ret > 0) {
66b4ffd1 3509 ret = 0;
7b128766
JB
3510 if (path->slots[0] == 0)
3511 break;
3512 path->slots[0]--;
3513 }
3514
3515 /* pull out the item */
3516 leaf = path->nodes[0];
7b128766
JB
3517 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3518
3519 /* make sure the item matches what we want */
3520 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3521 break;
962a298f 3522 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3523 break;
3524
3525 /* release the path since we're done with it */
b3b4aa74 3526 btrfs_release_path(path);
7b128766
JB
3527
3528 /*
3529 * this is where we are basically btrfs_lookup, without the
3530 * crossing root thing. we store the inode number in the
3531 * offset of the orphan item.
3532 */
8f6d7f4f
JB
3533
3534 if (found_key.offset == last_objectid) {
0b246afa
JM
3535 btrfs_err(fs_info,
3536 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3537 ret = -EINVAL;
3538 goto out;
3539 }
3540
3541 last_objectid = found_key.offset;
3542
5d4f98a2
YZ
3543 found_key.objectid = found_key.offset;
3544 found_key.type = BTRFS_INODE_ITEM_KEY;
3545 found_key.offset = 0;
0202e83f 3546 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3547 ret = PTR_ERR_OR_ZERO(inode);
67710892 3548 if (ret && ret != -ENOENT)
66b4ffd1 3549 goto out;
7b128766 3550
0b246afa 3551 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0 3552 struct btrfs_root *dead_root;
f8e9e0b0
AJ
3553 int is_dead_root = 0;
3554
3555 /*
0c0218e9 3556 * This is an orphan in the tree root. Currently these
f8e9e0b0 3557 * could come from 2 sources:
0c0218e9 3558 * a) a root (snapshot/subvolume) deletion in progress
f8e9e0b0 3559 * b) a free space cache inode
0c0218e9
FM
3560 * We need to distinguish those two, as the orphan item
3561 * for a root must not get deleted before the deletion
3562 * of the snapshot/subvolume's tree completes.
3563 *
3564 * btrfs_find_orphan_roots() ran before us, which has
3565 * found all deleted roots and loaded them into
3566 * fs_info->fs_roots_radix. So here we can find if an
3567 * orphan item corresponds to a deleted root by looking
3568 * up the root from that radix tree.
f8e9e0b0 3569 */
a619b3c7
RK
3570
3571 spin_lock(&fs_info->fs_roots_radix_lock);
3572 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3573 (unsigned long)found_key.objectid);
3574 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3575 is_dead_root = 1;
3576 spin_unlock(&fs_info->fs_roots_radix_lock);
3577
f8e9e0b0
AJ
3578 if (is_dead_root) {
3579 /* prevent this orphan from being found again */
3580 key.offset = found_key.objectid - 1;
3581 continue;
3582 }
f7e9e8fc 3583
f8e9e0b0 3584 }
f7e9e8fc 3585
7b128766 3586 /*
f7e9e8fc 3587 * If we have an inode with links, there are a couple of
70524253
BB
3588 * possibilities:
3589 *
3590 * 1. We were halfway through creating fsverity metadata for the
3591 * file. In that case, the orphan item represents incomplete
3592 * fsverity metadata which must be cleaned up with
3593 * btrfs_drop_verity_items and deleting the orphan item.
3594
3595 * 2. Old kernels (before v3.12) used to create an
f7e9e8fc
OS
3596 * orphan item for truncate indicating that there were possibly
3597 * extent items past i_size that needed to be deleted. In v3.12,
3598 * truncate was changed to update i_size in sync with the extent
3599 * items, but the (useless) orphan item was still created. Since
3600 * v4.18, we don't create the orphan item for truncate at all.
3601 *
3602 * So, this item could mean that we need to do a truncate, but
3603 * only if this filesystem was last used on a pre-v3.12 kernel
3604 * and was not cleanly unmounted. The odds of that are quite
3605 * slim, and it's a pain to do the truncate now, so just delete
3606 * the orphan item.
3607 *
3608 * It's also possible that this orphan item was supposed to be
3609 * deleted but wasn't. The inode number may have been reused,
3610 * but either way, we can delete the orphan item.
7b128766 3611 */
f7e9e8fc 3612 if (ret == -ENOENT || inode->i_nlink) {
70524253
BB
3613 if (!ret) {
3614 ret = btrfs_drop_verity_items(BTRFS_I(inode));
f7e9e8fc 3615 iput(inode);
70524253
BB
3616 if (ret)
3617 goto out;
3618 }
a8c9e576 3619 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3620 if (IS_ERR(trans)) {
3621 ret = PTR_ERR(trans);
3622 goto out;
3623 }
0b246afa
JM
3624 btrfs_debug(fs_info, "auto deleting %Lu",
3625 found_key.objectid);
a8c9e576
JB
3626 ret = btrfs_del_orphan_item(trans, root,
3627 found_key.objectid);
3a45bb20 3628 btrfs_end_transaction(trans);
4ef31a45
JB
3629 if (ret)
3630 goto out;
7b128766
JB
3631 continue;
3632 }
3633
f7e9e8fc 3634 nr_unlink++;
7b128766
JB
3635
3636 /* this will do delete_inode and everything for us */
3637 iput(inode);
3638 }
3254c876
MX
3639 /* release the path since we're done with it */
3640 btrfs_release_path(path);
3641
a575ceeb 3642 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3643 trans = btrfs_join_transaction(root);
66b4ffd1 3644 if (!IS_ERR(trans))
3a45bb20 3645 btrfs_end_transaction(trans);
d68fc57b 3646 }
7b128766
JB
3647
3648 if (nr_unlink)
0b246afa 3649 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3650
3651out:
3652 if (ret)
0b246afa 3653 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3654 btrfs_free_path(path);
3655 return ret;
7b128766
JB
3656}
3657
46a53cca
CM
3658/*
3659 * very simple check to peek ahead in the leaf looking for xattrs. If we
3660 * don't find any xattrs, we know there can't be any acls.
3661 *
3662 * slot is the slot the inode is in, objectid is the objectid of the inode
3663 */
3664static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3665 int slot, u64 objectid,
3666 int *first_xattr_slot)
46a53cca
CM
3667{
3668 u32 nritems = btrfs_header_nritems(leaf);
3669 struct btrfs_key found_key;
f23b5a59
JB
3670 static u64 xattr_access = 0;
3671 static u64 xattr_default = 0;
46a53cca
CM
3672 int scanned = 0;
3673
f23b5a59 3674 if (!xattr_access) {
97d79299
AG
3675 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3676 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3677 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3678 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3679 }
3680
46a53cca 3681 slot++;
63541927 3682 *first_xattr_slot = -1;
46a53cca
CM
3683 while (slot < nritems) {
3684 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3685
3686 /* we found a different objectid, there must not be acls */
3687 if (found_key.objectid != objectid)
3688 return 0;
3689
3690 /* we found an xattr, assume we've got an acl */
f23b5a59 3691 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3692 if (*first_xattr_slot == -1)
3693 *first_xattr_slot = slot;
f23b5a59
JB
3694 if (found_key.offset == xattr_access ||
3695 found_key.offset == xattr_default)
3696 return 1;
3697 }
46a53cca
CM
3698
3699 /*
3700 * we found a key greater than an xattr key, there can't
3701 * be any acls later on
3702 */
3703 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3704 return 0;
3705
3706 slot++;
3707 scanned++;
3708
3709 /*
3710 * it goes inode, inode backrefs, xattrs, extents,
3711 * so if there are a ton of hard links to an inode there can
3712 * be a lot of backrefs. Don't waste time searching too hard,
3713 * this is just an optimization
3714 */
3715 if (scanned >= 8)
3716 break;
3717 }
3718 /* we hit the end of the leaf before we found an xattr or
3719 * something larger than an xattr. We have to assume the inode
3720 * has acls
3721 */
63541927
FDBM
3722 if (*first_xattr_slot == -1)
3723 *first_xattr_slot = slot;
46a53cca
CM
3724 return 1;
3725}
3726
d352ac68
CM
3727/*
3728 * read an inode from the btree into the in-memory inode
3729 */
4222ea71
FM
3730static int btrfs_read_locked_inode(struct inode *inode,
3731 struct btrfs_path *in_path)
39279cc3 3732{
0b246afa 3733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3734 struct btrfs_path *path = in_path;
5f39d397 3735 struct extent_buffer *leaf;
39279cc3
CM
3736 struct btrfs_inode_item *inode_item;
3737 struct btrfs_root *root = BTRFS_I(inode)->root;
3738 struct btrfs_key location;
67de1176 3739 unsigned long ptr;
46a53cca 3740 int maybe_acls;
618e21d5 3741 u32 rdev;
39279cc3 3742 int ret;
2f7e33d4 3743 bool filled = false;
63541927 3744 int first_xattr_slot;
2f7e33d4
MX
3745
3746 ret = btrfs_fill_inode(inode, &rdev);
3747 if (!ret)
3748 filled = true;
39279cc3 3749
4222ea71
FM
3750 if (!path) {
3751 path = btrfs_alloc_path();
3752 if (!path)
3753 return -ENOMEM;
3754 }
1748f843 3755
39279cc3 3756 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3757
39279cc3 3758 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3759 if (ret) {
4222ea71
FM
3760 if (path != in_path)
3761 btrfs_free_path(path);
f5b3a417 3762 return ret;
67710892 3763 }
39279cc3 3764
5f39d397 3765 leaf = path->nodes[0];
2f7e33d4
MX
3766
3767 if (filled)
67de1176 3768 goto cache_index;
2f7e33d4 3769
5f39d397
CM
3770 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3771 struct btrfs_inode_item);
5f39d397 3772 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3773 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3774 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3775 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3776 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3777 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3778 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3779
a937b979
DS
3780 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3781 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3782
a937b979
DS
3783 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3784 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3785
a937b979
DS
3786 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3787 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3788
9cc97d64 3789 BTRFS_I(inode)->i_otime.tv_sec =
3790 btrfs_timespec_sec(leaf, &inode_item->otime);
3791 BTRFS_I(inode)->i_otime.tv_nsec =
3792 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3793
a76a3cd4 3794 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3795 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3796 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3797
c7f88c4e
JL
3798 inode_set_iversion_queried(inode,
3799 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3800 inode->i_generation = BTRFS_I(inode)->generation;
3801 inode->i_rdev = 0;
3802 rdev = btrfs_inode_rdev(leaf, inode_item);
3803
3804 BTRFS_I(inode)->index_cnt = (u64)-1;
77eea05e
BB
3805 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3806 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
6e17d30b
YD
3807
3808cache_index:
5dc562c5
JB
3809 /*
3810 * If we were modified in the current generation and evicted from memory
3811 * and then re-read we need to do a full sync since we don't have any
3812 * idea about which extents were modified before we were evicted from
3813 * cache.
6e17d30b
YD
3814 *
3815 * This is required for both inode re-read from disk and delayed inode
3816 * in delayed_nodes_tree.
5dc562c5 3817 */
0b246afa 3818 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3819 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3820 &BTRFS_I(inode)->runtime_flags);
3821
bde6c242
FM
3822 /*
3823 * We don't persist the id of the transaction where an unlink operation
3824 * against the inode was last made. So here we assume the inode might
3825 * have been evicted, and therefore the exact value of last_unlink_trans
3826 * lost, and set it to last_trans to avoid metadata inconsistencies
3827 * between the inode and its parent if the inode is fsync'ed and the log
3828 * replayed. For example, in the scenario:
3829 *
3830 * touch mydir/foo
3831 * ln mydir/foo mydir/bar
3832 * sync
3833 * unlink mydir/bar
3834 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3835 * xfs_io -c fsync mydir/foo
3836 * <power failure>
3837 * mount fs, triggers fsync log replay
3838 *
3839 * We must make sure that when we fsync our inode foo we also log its
3840 * parent inode, otherwise after log replay the parent still has the
3841 * dentry with the "bar" name but our inode foo has a link count of 1
3842 * and doesn't have an inode ref with the name "bar" anymore.
3843 *
3844 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3845 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3846 * transaction commits on fsync if our inode is a directory, or if our
3847 * inode is not a directory, logging its parent unnecessarily.
3848 */
3849 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3850
3ebac17c
FM
3851 /*
3852 * Same logic as for last_unlink_trans. We don't persist the generation
3853 * of the last transaction where this inode was used for a reflink
3854 * operation, so after eviction and reloading the inode we must be
3855 * pessimistic and assume the last transaction that modified the inode.
3856 */
3857 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3858
67de1176
MX
3859 path->slots[0]++;
3860 if (inode->i_nlink != 1 ||
3861 path->slots[0] >= btrfs_header_nritems(leaf))
3862 goto cache_acl;
3863
3864 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3865 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3866 goto cache_acl;
3867
3868 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3869 if (location.type == BTRFS_INODE_REF_KEY) {
3870 struct btrfs_inode_ref *ref;
3871
3872 ref = (struct btrfs_inode_ref *)ptr;
3873 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3874 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3875 struct btrfs_inode_extref *extref;
3876
3877 extref = (struct btrfs_inode_extref *)ptr;
3878 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3879 extref);
3880 }
2f7e33d4 3881cache_acl:
46a53cca
CM
3882 /*
3883 * try to precache a NULL acl entry for files that don't have
3884 * any xattrs or acls
3885 */
33345d01 3886 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3887 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3888 if (first_xattr_slot != -1) {
3889 path->slots[0] = first_xattr_slot;
3890 ret = btrfs_load_inode_props(inode, path);
3891 if (ret)
0b246afa 3892 btrfs_err(fs_info,
351fd353 3893 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3894 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3895 root->root_key.objectid, ret);
3896 }
4222ea71
FM
3897 if (path != in_path)
3898 btrfs_free_path(path);
63541927 3899
72c04902
AV
3900 if (!maybe_acls)
3901 cache_no_acl(inode);
46a53cca 3902
39279cc3 3903 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3904 case S_IFREG:
3905 inode->i_mapping->a_ops = &btrfs_aops;
3906 inode->i_fop = &btrfs_file_operations;
3907 inode->i_op = &btrfs_file_inode_operations;
3908 break;
3909 case S_IFDIR:
3910 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3911 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3912 break;
3913 case S_IFLNK:
3914 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3915 inode_nohighmem(inode);
4779cc04 3916 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3917 break;
618e21d5 3918 default:
0279b4cd 3919 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3920 init_special_inode(inode, inode->i_mode, rdev);
3921 break;
39279cc3 3922 }
6cbff00f 3923
7b6a221e 3924 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3925 return 0;
39279cc3
CM
3926}
3927
d352ac68
CM
3928/*
3929 * given a leaf and an inode, copy the inode fields into the leaf
3930 */
e02119d5
CM
3931static void fill_inode_item(struct btrfs_trans_handle *trans,
3932 struct extent_buffer *leaf,
5f39d397 3933 struct btrfs_inode_item *item,
39279cc3
CM
3934 struct inode *inode)
3935{
51fab693 3936 struct btrfs_map_token token;
77eea05e 3937 u64 flags;
51fab693 3938
c82f823c 3939 btrfs_init_map_token(&token, leaf);
5f39d397 3940
cc4c13d5
DS
3941 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3942 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3943 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3944 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3945 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3946
3947 btrfs_set_token_timespec_sec(&token, &item->atime,
3948 inode->i_atime.tv_sec);
3949 btrfs_set_token_timespec_nsec(&token, &item->atime,
3950 inode->i_atime.tv_nsec);
3951
3952 btrfs_set_token_timespec_sec(&token, &item->mtime,
3953 inode->i_mtime.tv_sec);
3954 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3955 inode->i_mtime.tv_nsec);
3956
3957 btrfs_set_token_timespec_sec(&token, &item->ctime,
3958 inode->i_ctime.tv_sec);
3959 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3960 inode->i_ctime.tv_nsec);
3961
3962 btrfs_set_token_timespec_sec(&token, &item->otime,
3963 BTRFS_I(inode)->i_otime.tv_sec);
3964 btrfs_set_token_timespec_nsec(&token, &item->otime,
3965 BTRFS_I(inode)->i_otime.tv_nsec);
3966
3967 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3968 btrfs_set_token_inode_generation(&token, item,
3969 BTRFS_I(inode)->generation);
3970 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3971 btrfs_set_token_inode_transid(&token, item, trans->transid);
3972 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
3973 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3974 BTRFS_I(inode)->ro_flags);
3975 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 3976 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3977}
3978
d352ac68
CM
3979/*
3980 * copy everything in the in-memory inode into the btree.
3981 */
2115133f 3982static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
dfeb9e7c
NB
3983 struct btrfs_root *root,
3984 struct btrfs_inode *inode)
39279cc3
CM
3985{
3986 struct btrfs_inode_item *inode_item;
3987 struct btrfs_path *path;
5f39d397 3988 struct extent_buffer *leaf;
39279cc3
CM
3989 int ret;
3990
3991 path = btrfs_alloc_path();
16cdcec7
MX
3992 if (!path)
3993 return -ENOMEM;
3994
dfeb9e7c 3995 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
39279cc3
CM
3996 if (ret) {
3997 if (ret > 0)
3998 ret = -ENOENT;
3999 goto failed;
4000 }
4001
5f39d397
CM
4002 leaf = path->nodes[0];
4003 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4004 struct btrfs_inode_item);
39279cc3 4005
dfeb9e7c 4006 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
5f39d397 4007 btrfs_mark_buffer_dirty(leaf);
dfeb9e7c 4008 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4009 ret = 0;
4010failed:
39279cc3
CM
4011 btrfs_free_path(path);
4012 return ret;
4013}
4014
2115133f
CM
4015/*
4016 * copy everything in the in-memory inode into the btree.
4017 */
4018noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
9a56fcd1
NB
4019 struct btrfs_root *root,
4020 struct btrfs_inode *inode)
2115133f 4021{
0b246afa 4022 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4023 int ret;
4024
4025 /*
4026 * If the inode is a free space inode, we can deadlock during commit
4027 * if we put it into the delayed code.
4028 *
4029 * The data relocation inode should also be directly updated
4030 * without delay
4031 */
9a56fcd1 4032 if (!btrfs_is_free_space_inode(inode)
37f00a6d 4033 && !btrfs_is_data_reloc_root(root)
0b246afa 4034 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4035 btrfs_update_root_times(trans, root);
4036
9a56fcd1 4037 ret = btrfs_delayed_update_inode(trans, root, inode);
2115133f 4038 if (!ret)
9a56fcd1 4039 btrfs_set_inode_last_trans(trans, inode);
2115133f
CM
4040 return ret;
4041 }
4042
9a56fcd1 4043 return btrfs_update_inode_item(trans, root, inode);
2115133f
CM
4044}
4045
729f7961
NB
4046int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4047 struct btrfs_root *root, struct btrfs_inode *inode)
2115133f
CM
4048{
4049 int ret;
4050
729f7961 4051 ret = btrfs_update_inode(trans, root, inode);
2115133f 4052 if (ret == -ENOSPC)
729f7961 4053 return btrfs_update_inode_item(trans, root, inode);
2115133f
CM
4054 return ret;
4055}
4056
d352ac68
CM
4057/*
4058 * unlink helper that gets used here in inode.c and in the tree logging
4059 * recovery code. It remove a link in a directory with a given name, and
4060 * also drops the back refs in the inode to the directory
4061 */
92986796 4062static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e
NB
4063 struct btrfs_inode *dir,
4064 struct btrfs_inode *inode,
92986796 4065 const char *name, int name_len)
39279cc3 4066{
4467af88 4067 struct btrfs_root *root = dir->root;
0b246afa 4068 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4069 struct btrfs_path *path;
39279cc3 4070 int ret = 0;
39279cc3 4071 struct btrfs_dir_item *di;
aec7477b 4072 u64 index;
33345d01
LZ
4073 u64 ino = btrfs_ino(inode);
4074 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4075
4076 path = btrfs_alloc_path();
54aa1f4d
CM
4077 if (!path) {
4078 ret = -ENOMEM;
554233a6 4079 goto out;
54aa1f4d
CM
4080 }
4081
33345d01 4082 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 4083 name, name_len, -1);
3cf5068f
LB
4084 if (IS_ERR_OR_NULL(di)) {
4085 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
4086 goto err;
4087 }
39279cc3 4088 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4089 if (ret)
4090 goto err;
b3b4aa74 4091 btrfs_release_path(path);
39279cc3 4092
67de1176
MX
4093 /*
4094 * If we don't have dir index, we have to get it by looking up
4095 * the inode ref, since we get the inode ref, remove it directly,
4096 * it is unnecessary to do delayed deletion.
4097 *
4098 * But if we have dir index, needn't search inode ref to get it.
4099 * Since the inode ref is close to the inode item, it is better
4100 * that we delay to delete it, and just do this deletion when
4101 * we update the inode item.
4102 */
4ec5934e 4103 if (inode->dir_index) {
67de1176
MX
4104 ret = btrfs_delayed_delete_inode_ref(inode);
4105 if (!ret) {
4ec5934e 4106 index = inode->dir_index;
67de1176
MX
4107 goto skip_backref;
4108 }
4109 }
4110
33345d01
LZ
4111 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4112 dir_ino, &index);
aec7477b 4113 if (ret) {
0b246afa 4114 btrfs_info(fs_info,
c2cf52eb 4115 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4116 name_len, name, ino, dir_ino);
66642832 4117 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4118 goto err;
4119 }
67de1176 4120skip_backref:
9add2945 4121 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4122 if (ret) {
66642832 4123 btrfs_abort_transaction(trans, ret);
39279cc3 4124 goto err;
79787eaa 4125 }
39279cc3 4126
9a35fc95
JB
4127 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4128 dir_ino);
4129 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, index);
63611e73
JB
4130
4131 /*
4132 * If we have a pending delayed iput we could end up with the final iput
4133 * being run in btrfs-cleaner context. If we have enough of these built
4134 * up we can end up burning a lot of time in btrfs-cleaner without any
4135 * way to throttle the unlinks. Since we're currently holding a ref on
4136 * the inode we can run the delayed iput here without any issues as the
4137 * final iput won't be done until after we drop the ref we're currently
4138 * holding.
4139 */
4140 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
4141err:
4142 btrfs_free_path(path);
e02119d5
CM
4143 if (ret)
4144 goto out;
4145
6ef06d27 4146 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4147 inode_inc_iversion(&inode->vfs_inode);
4148 inode_inc_iversion(&dir->vfs_inode);
4149 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4150 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
9a56fcd1 4151 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4152out:
39279cc3
CM
4153 return ret;
4154}
4155
92986796 4156int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e 4157 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4158 const char *name, int name_len)
4159{
4160 int ret;
4467af88 4161 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len);
92986796 4162 if (!ret) {
4ec5934e 4163 drop_nlink(&inode->vfs_inode);
4467af88 4164 ret = btrfs_update_inode(trans, inode->root, inode);
92986796
AV
4165 }
4166 return ret;
4167}
39279cc3 4168
a22285a6
YZ
4169/*
4170 * helper to start transaction for unlink and rmdir.
4171 *
d52be818
JB
4172 * unlink and rmdir are special in btrfs, they do not always free space, so
4173 * if we cannot make our reservations the normal way try and see if there is
4174 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4175 * allow the unlink to occur.
a22285a6 4176 */
d52be818 4177static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4178{
a22285a6 4179 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4180
e70bea5f
JB
4181 /*
4182 * 1 for the possible orphan item
4183 * 1 for the dir item
4184 * 1 for the dir index
4185 * 1 for the inode ref
e70bea5f
JB
4186 * 1 for the inode
4187 */
7f9fe614 4188 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
4189}
4190
4191static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4192{
a22285a6 4193 struct btrfs_trans_handle *trans;
2b0143b5 4194 struct inode *inode = d_inode(dentry);
a22285a6 4195 int ret;
a22285a6 4196
d52be818 4197 trans = __unlink_start_trans(dir);
a22285a6
YZ
4198 if (IS_ERR(trans))
4199 return PTR_ERR(trans);
5f39d397 4200
4ec5934e
NB
4201 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4202 0);
12fcfd22 4203
4467af88 4204 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4ec5934e
NB
4205 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4206 dentry->d_name.len);
b532402e
TI
4207 if (ret)
4208 goto out;
7b128766 4209
a22285a6 4210 if (inode->i_nlink == 0) {
73f2e545 4211 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4212 if (ret)
4213 goto out;
a22285a6 4214 }
7b128766 4215
b532402e 4216out:
3a45bb20 4217 btrfs_end_transaction(trans);
4467af88 4218 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
39279cc3
CM
4219 return ret;
4220}
4221
f60a2364 4222static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 4223 struct inode *dir, struct dentry *dentry)
4df27c4d 4224{
401b3b19 4225 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 4226 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
4227 struct btrfs_path *path;
4228 struct extent_buffer *leaf;
4229 struct btrfs_dir_item *di;
4230 struct btrfs_key key;
045d3967
JB
4231 const char *name = dentry->d_name.name;
4232 int name_len = dentry->d_name.len;
4df27c4d
YZ
4233 u64 index;
4234 int ret;
045d3967 4235 u64 objectid;
4a0cc7ca 4236 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 4237
045d3967
JB
4238 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4239 objectid = inode->root->root_key.objectid;
4240 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4241 objectid = inode->location.objectid;
4242 } else {
4243 WARN_ON(1);
4244 return -EINVAL;
4245 }
4246
4df27c4d
YZ
4247 path = btrfs_alloc_path();
4248 if (!path)
4249 return -ENOMEM;
4250
33345d01 4251 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4252 name, name_len, -1);
79787eaa 4253 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4254 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4255 goto out;
4256 }
4df27c4d
YZ
4257
4258 leaf = path->nodes[0];
4259 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4260 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4261 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4262 if (ret) {
66642832 4263 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4264 goto out;
4265 }
b3b4aa74 4266 btrfs_release_path(path);
4df27c4d 4267
d49d3287
JB
4268 /*
4269 * This is a placeholder inode for a subvolume we didn't have a
4270 * reference to at the time of the snapshot creation. In the meantime
4271 * we could have renamed the real subvol link into our snapshot, so
1a9fd417 4272 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
d49d3287
JB
4273 * Instead simply lookup the dir_index_item for this entry so we can
4274 * remove it. Otherwise we know we have a ref to the root and we can
4275 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4276 */
4277 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 4278 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4279 name, name_len);
79787eaa
JM
4280 if (IS_ERR_OR_NULL(di)) {
4281 if (!di)
4282 ret = -ENOENT;
4283 else
4284 ret = PTR_ERR(di);
66642832 4285 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4286 goto out;
4287 }
4df27c4d
YZ
4288
4289 leaf = path->nodes[0];
4290 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 4291 index = key.offset;
d49d3287
JB
4292 btrfs_release_path(path);
4293 } else {
4294 ret = btrfs_del_root_ref(trans, objectid,
4295 root->root_key.objectid, dir_ino,
4296 &index, name, name_len);
4297 if (ret) {
4298 btrfs_abort_transaction(trans, ret);
4299 goto out;
4300 }
4df27c4d
YZ
4301 }
4302
9add2945 4303 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4304 if (ret) {
66642832 4305 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4306 goto out;
4307 }
4df27c4d 4308
6ef06d27 4309 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4310 inode_inc_iversion(dir);
c2050a45 4311 dir->i_mtime = dir->i_ctime = current_time(dir);
729f7961 4312 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
79787eaa 4313 if (ret)
66642832 4314 btrfs_abort_transaction(trans, ret);
79787eaa 4315out:
71d7aed0 4316 btrfs_free_path(path);
79787eaa 4317 return ret;
4df27c4d
YZ
4318}
4319
ec42f167
MT
4320/*
4321 * Helper to check if the subvolume references other subvolumes or if it's
4322 * default.
4323 */
f60a2364 4324static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4325{
4326 struct btrfs_fs_info *fs_info = root->fs_info;
4327 struct btrfs_path *path;
4328 struct btrfs_dir_item *di;
4329 struct btrfs_key key;
4330 u64 dir_id;
4331 int ret;
4332
4333 path = btrfs_alloc_path();
4334 if (!path)
4335 return -ENOMEM;
4336
4337 /* Make sure this root isn't set as the default subvol */
4338 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4339 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4340 dir_id, "default", 7, 0);
4341 if (di && !IS_ERR(di)) {
4342 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4343 if (key.objectid == root->root_key.objectid) {
4344 ret = -EPERM;
4345 btrfs_err(fs_info,
4346 "deleting default subvolume %llu is not allowed",
4347 key.objectid);
4348 goto out;
4349 }
4350 btrfs_release_path(path);
4351 }
4352
4353 key.objectid = root->root_key.objectid;
4354 key.type = BTRFS_ROOT_REF_KEY;
4355 key.offset = (u64)-1;
4356
4357 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4358 if (ret < 0)
4359 goto out;
4360 BUG_ON(ret == 0);
4361
4362 ret = 0;
4363 if (path->slots[0] > 0) {
4364 path->slots[0]--;
4365 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4366 if (key.objectid == root->root_key.objectid &&
4367 key.type == BTRFS_ROOT_REF_KEY)
4368 ret = -ENOTEMPTY;
4369 }
4370out:
4371 btrfs_free_path(path);
4372 return ret;
4373}
4374
20a68004
NB
4375/* Delete all dentries for inodes belonging to the root */
4376static void btrfs_prune_dentries(struct btrfs_root *root)
4377{
4378 struct btrfs_fs_info *fs_info = root->fs_info;
4379 struct rb_node *node;
4380 struct rb_node *prev;
4381 struct btrfs_inode *entry;
4382 struct inode *inode;
4383 u64 objectid = 0;
4384
84961539 4385 if (!BTRFS_FS_ERROR(fs_info))
20a68004
NB
4386 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4387
4388 spin_lock(&root->inode_lock);
4389again:
4390 node = root->inode_tree.rb_node;
4391 prev = NULL;
4392 while (node) {
4393 prev = node;
4394 entry = rb_entry(node, struct btrfs_inode, rb_node);
4395
37508515 4396 if (objectid < btrfs_ino(entry))
20a68004 4397 node = node->rb_left;
37508515 4398 else if (objectid > btrfs_ino(entry))
20a68004
NB
4399 node = node->rb_right;
4400 else
4401 break;
4402 }
4403 if (!node) {
4404 while (prev) {
4405 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4406 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4407 node = prev;
4408 break;
4409 }
4410 prev = rb_next(prev);
4411 }
4412 }
4413 while (node) {
4414 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4415 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4416 inode = igrab(&entry->vfs_inode);
4417 if (inode) {
4418 spin_unlock(&root->inode_lock);
4419 if (atomic_read(&inode->i_count) > 1)
4420 d_prune_aliases(inode);
4421 /*
4422 * btrfs_drop_inode will have it removed from the inode
4423 * cache when its usage count hits zero.
4424 */
4425 iput(inode);
4426 cond_resched();
4427 spin_lock(&root->inode_lock);
4428 goto again;
4429 }
4430
4431 if (cond_resched_lock(&root->inode_lock))
4432 goto again;
4433
4434 node = rb_next(node);
4435 }
4436 spin_unlock(&root->inode_lock);
4437}
4438
f60a2364
MT
4439int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4440{
4441 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4442 struct btrfs_root *root = BTRFS_I(dir)->root;
4443 struct inode *inode = d_inode(dentry);
4444 struct btrfs_root *dest = BTRFS_I(inode)->root;
4445 struct btrfs_trans_handle *trans;
4446 struct btrfs_block_rsv block_rsv;
4447 u64 root_flags;
f60a2364 4448 int ret;
f60a2364
MT
4449
4450 /*
4451 * Don't allow to delete a subvolume with send in progress. This is
4452 * inside the inode lock so the error handling that has to drop the bit
4453 * again is not run concurrently.
4454 */
4455 spin_lock(&dest->root_item_lock);
a7176f74 4456 if (dest->send_in_progress) {
f60a2364
MT
4457 spin_unlock(&dest->root_item_lock);
4458 btrfs_warn(fs_info,
4459 "attempt to delete subvolume %llu during send",
4460 dest->root_key.objectid);
4461 return -EPERM;
4462 }
a7176f74
LF
4463 root_flags = btrfs_root_flags(&dest->root_item);
4464 btrfs_set_root_flags(&dest->root_item,
4465 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4466 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4467
4468 down_write(&fs_info->subvol_sem);
4469
ee0d904f
NB
4470 ret = may_destroy_subvol(dest);
4471 if (ret)
f60a2364
MT
4472 goto out_up_write;
4473
4474 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4475 /*
4476 * One for dir inode,
4477 * two for dir entries,
4478 * two for root ref/backref.
4479 */
ee0d904f
NB
4480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4481 if (ret)
f60a2364
MT
4482 goto out_up_write;
4483
4484 trans = btrfs_start_transaction(root, 0);
4485 if (IS_ERR(trans)) {
ee0d904f 4486 ret = PTR_ERR(trans);
f60a2364
MT
4487 goto out_release;
4488 }
4489 trans->block_rsv = &block_rsv;
4490 trans->bytes_reserved = block_rsv.size;
4491
4492 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4493
045d3967 4494 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364 4495 if (ret) {
f60a2364
MT
4496 btrfs_abort_transaction(trans, ret);
4497 goto out_end_trans;
4498 }
4499
2731f518
JB
4500 ret = btrfs_record_root_in_trans(trans, dest);
4501 if (ret) {
4502 btrfs_abort_transaction(trans, ret);
4503 goto out_end_trans;
4504 }
f60a2364
MT
4505
4506 memset(&dest->root_item.drop_progress, 0,
4507 sizeof(dest->root_item.drop_progress));
c8422684 4508 btrfs_set_root_drop_level(&dest->root_item, 0);
f60a2364
MT
4509 btrfs_set_root_refs(&dest->root_item, 0);
4510
4511 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4512 ret = btrfs_insert_orphan_item(trans,
4513 fs_info->tree_root,
4514 dest->root_key.objectid);
4515 if (ret) {
4516 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4517 goto out_end_trans;
4518 }
4519 }
4520
d1957791 4521 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4522 BTRFS_UUID_KEY_SUBVOL,
4523 dest->root_key.objectid);
4524 if (ret && ret != -ENOENT) {
4525 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4526 goto out_end_trans;
4527 }
4528 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4529 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4530 dest->root_item.received_uuid,
4531 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4532 dest->root_key.objectid);
4533 if (ret && ret != -ENOENT) {
4534 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4535 goto out_end_trans;
4536 }
4537 }
4538
082b6c97
QW
4539 free_anon_bdev(dest->anon_dev);
4540 dest->anon_dev = 0;
f60a2364
MT
4541out_end_trans:
4542 trans->block_rsv = NULL;
4543 trans->bytes_reserved = 0;
4544 ret = btrfs_end_transaction(trans);
f60a2364
MT
4545 inode->i_flags |= S_DEAD;
4546out_release:
e85fde51 4547 btrfs_subvolume_release_metadata(root, &block_rsv);
f60a2364
MT
4548out_up_write:
4549 up_write(&fs_info->subvol_sem);
ee0d904f 4550 if (ret) {
f60a2364
MT
4551 spin_lock(&dest->root_item_lock);
4552 root_flags = btrfs_root_flags(&dest->root_item);
4553 btrfs_set_root_flags(&dest->root_item,
4554 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4555 spin_unlock(&dest->root_item_lock);
4556 } else {
4557 d_invalidate(dentry);
20a68004 4558 btrfs_prune_dentries(dest);
f60a2364 4559 ASSERT(dest->send_in_progress == 0);
f60a2364
MT
4560 }
4561
ee0d904f 4562 return ret;
f60a2364
MT
4563}
4564
39279cc3
CM
4565static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4566{
2b0143b5 4567 struct inode *inode = d_inode(dentry);
1832a6d5 4568 int err = 0;
39279cc3 4569 struct btrfs_trans_handle *trans;
44f714da 4570 u64 last_unlink_trans;
39279cc3 4571
b3ae244e 4572 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4573 return -ENOTEMPTY;
4a0cc7ca 4574 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4575 return btrfs_delete_subvolume(dir, dentry);
134d4512 4576
d52be818 4577 trans = __unlink_start_trans(dir);
a22285a6 4578 if (IS_ERR(trans))
5df6a9f6 4579 return PTR_ERR(trans);
5df6a9f6 4580
4a0cc7ca 4581 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4582 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4583 goto out;
4584 }
4585
73f2e545 4586 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4587 if (err)
4df27c4d 4588 goto out;
7b128766 4589
44f714da
FM
4590 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4591
39279cc3 4592 /* now the directory is empty */
4467af88 4593 err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4ec5934e
NB
4594 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4595 dentry->d_name.len);
44f714da 4596 if (!err) {
6ef06d27 4597 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4598 /*
4599 * Propagate the last_unlink_trans value of the deleted dir to
4600 * its parent directory. This is to prevent an unrecoverable
4601 * log tree in the case we do something like this:
4602 * 1) create dir foo
4603 * 2) create snapshot under dir foo
4604 * 3) delete the snapshot
4605 * 4) rmdir foo
4606 * 5) mkdir foo
4607 * 6) fsync foo or some file inside foo
4608 */
4609 if (last_unlink_trans >= trans->transid)
4610 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4611 }
4df27c4d 4612out:
3a45bb20 4613 btrfs_end_transaction(trans);
4467af88 4614 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
3954401f 4615
39279cc3
CM
4616 return err;
4617}
4618
39279cc3 4619/*
9703fefe 4620 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4621 * @inode - inode that we're zeroing
4622 * @from - the offset to start zeroing
4623 * @len - the length to zero, 0 to zero the entire range respective to the
4624 * offset
4625 * @front - zero up to the offset instead of from the offset on
4626 *
9703fefe 4627 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4628 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4629 */
217f42eb
NB
4630int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4631 int front)
39279cc3 4632{
217f42eb
NB
4633 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4634 struct address_space *mapping = inode->vfs_inode.i_mapping;
4635 struct extent_io_tree *io_tree = &inode->io_tree;
e6dcd2dc 4636 struct btrfs_ordered_extent *ordered;
2ac55d41 4637 struct extent_state *cached_state = NULL;
364ecf36 4638 struct extent_changeset *data_reserved = NULL;
6d4572a9 4639 bool only_release_metadata = false;
0b246afa 4640 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4641 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4642 unsigned offset = from & (blocksize - 1);
39279cc3 4643 struct page *page;
3b16a4e3 4644 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4645 size_t write_bytes = blocksize;
39279cc3 4646 int ret = 0;
9703fefe
CR
4647 u64 block_start;
4648 u64 block_end;
39279cc3 4649
b03ebd99
NB
4650 if (IS_ALIGNED(offset, blocksize) &&
4651 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4652 goto out;
9703fefe 4653
8b62f87b
JB
4654 block_start = round_down(from, blocksize);
4655 block_end = block_start + blocksize - 1;
4656
217f42eb
NB
4657 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4658 blocksize);
6d4572a9 4659 if (ret < 0) {
217f42eb 4660 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
6d4572a9
QW
4661 /* For nocow case, no need to reserve data space */
4662 only_release_metadata = true;
4663 } else {
4664 goto out;
4665 }
4666 }
217f42eb 4667 ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
6d4572a9
QW
4668 if (ret < 0) {
4669 if (!only_release_metadata)
217f42eb
NB
4670 btrfs_free_reserved_data_space(inode, data_reserved,
4671 block_start, blocksize);
6d4572a9
QW
4672 goto out;
4673 }
211c17f5 4674again:
3b16a4e3 4675 page = find_or_create_page(mapping, index, mask);
5d5e103a 4676 if (!page) {
217f42eb
NB
4677 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4678 blocksize, true);
4679 btrfs_delalloc_release_extents(inode, blocksize);
ac6a2b36 4680 ret = -ENOMEM;
39279cc3 4681 goto out;
5d5e103a 4682 }
32443de3
QW
4683 ret = set_page_extent_mapped(page);
4684 if (ret < 0)
4685 goto out_unlock;
e6dcd2dc 4686
39279cc3 4687 if (!PageUptodate(page)) {
9ebefb18 4688 ret = btrfs_readpage(NULL, page);
39279cc3 4689 lock_page(page);
211c17f5
CM
4690 if (page->mapping != mapping) {
4691 unlock_page(page);
09cbfeaf 4692 put_page(page);
211c17f5
CM
4693 goto again;
4694 }
39279cc3
CM
4695 if (!PageUptodate(page)) {
4696 ret = -EIO;
89642229 4697 goto out_unlock;
39279cc3
CM
4698 }
4699 }
211c17f5 4700 wait_on_page_writeback(page);
e6dcd2dc 4701
9703fefe 4702 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc 4703
217f42eb 4704 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4705 if (ordered) {
9703fefe 4706 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4707 &cached_state);
e6dcd2dc 4708 unlock_page(page);
09cbfeaf 4709 put_page(page);
c0a43603 4710 btrfs_start_ordered_extent(ordered, 1);
e6dcd2dc
CM
4711 btrfs_put_ordered_extent(ordered);
4712 goto again;
4713 }
4714
217f42eb 4715 clear_extent_bit(&inode->io_tree, block_start, block_end,
e182163d
OS
4716 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4717 0, 0, &cached_state);
5d5e103a 4718
217f42eb 4719 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 4720 &cached_state);
9ed74f2d 4721 if (ret) {
9703fefe 4722 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4723 &cached_state);
9ed74f2d
JB
4724 goto out_unlock;
4725 }
4726
9703fefe 4727 if (offset != blocksize) {
2aaa6655 4728 if (!len)
9703fefe 4729 len = blocksize - offset;
2aaa6655 4730 if (front)
d048b9c2
IW
4731 memzero_page(page, (block_start - page_offset(page)),
4732 offset);
2aaa6655 4733 else
d048b9c2
IW
4734 memzero_page(page, (block_start - page_offset(page)) + offset,
4735 len);
e6dcd2dc 4736 flush_dcache_page(page);
e6dcd2dc 4737 }
e4f94347
QW
4738 btrfs_page_clear_checked(fs_info, page, block_start,
4739 block_end + 1 - block_start);
6c9ac8be 4740 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
e43bbe5e 4741 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4742
6d4572a9 4743 if (only_release_metadata)
217f42eb 4744 set_extent_bit(&inode->io_tree, block_start, block_end,
1cab5e72 4745 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
6d4572a9 4746
89642229 4747out_unlock:
6d4572a9
QW
4748 if (ret) {
4749 if (only_release_metadata)
217f42eb 4750 btrfs_delalloc_release_metadata(inode, blocksize, true);
6d4572a9 4751 else
217f42eb 4752 btrfs_delalloc_release_space(inode, data_reserved,
6d4572a9
QW
4753 block_start, blocksize, true);
4754 }
217f42eb 4755 btrfs_delalloc_release_extents(inode, blocksize);
39279cc3 4756 unlock_page(page);
09cbfeaf 4757 put_page(page);
39279cc3 4758out:
6d4572a9 4759 if (only_release_metadata)
217f42eb 4760 btrfs_check_nocow_unlock(inode);
364ecf36 4761 extent_changeset_free(data_reserved);
39279cc3
CM
4762 return ret;
4763}
4764
a4ba6cc0 4765static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
16e7549f
JB
4766 u64 offset, u64 len)
4767{
a4ba6cc0 4768 struct btrfs_fs_info *fs_info = root->fs_info;
16e7549f 4769 struct btrfs_trans_handle *trans;
5893dfb9 4770 struct btrfs_drop_extents_args drop_args = { 0 };
16e7549f
JB
4771 int ret;
4772
4773 /*
cceaa89f
FM
4774 * If NO_HOLES is enabled, we don't need to do anything.
4775 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4776 * or btrfs_update_inode() will be called, which guarantee that the next
4777 * fsync will know this inode was changed and needs to be logged.
16e7549f 4778 */
cceaa89f 4779 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f 4780 return 0;
16e7549f
JB
4781
4782 /*
4783 * 1 - for the one we're dropping
4784 * 1 - for the one we're adding
4785 * 1 - for updating the inode.
4786 */
4787 trans = btrfs_start_transaction(root, 3);
4788 if (IS_ERR(trans))
4789 return PTR_ERR(trans);
4790
5893dfb9
FM
4791 drop_args.start = offset;
4792 drop_args.end = offset + len;
4793 drop_args.drop_cache = true;
4794
a4ba6cc0 4795 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
16e7549f 4796 if (ret) {
66642832 4797 btrfs_abort_transaction(trans, ret);
3a45bb20 4798 btrfs_end_transaction(trans);
16e7549f
JB
4799 return ret;
4800 }
4801
a4ba6cc0 4802 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 4803 offset, 0, 0, len, 0, len, 0, 0, 0);
2766ff61 4804 if (ret) {
66642832 4805 btrfs_abort_transaction(trans, ret);
2766ff61 4806 } else {
a4ba6cc0
NB
4807 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4808 btrfs_update_inode(trans, root, inode);
2766ff61 4809 }
3a45bb20 4810 btrfs_end_transaction(trans);
16e7549f
JB
4811 return ret;
4812}
4813
695a0d0d
JB
4814/*
4815 * This function puts in dummy file extents for the area we're creating a hole
4816 * for. So if we are truncating this file to a larger size we need to insert
4817 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4818 * the range between oldsize and size
4819 */
b06359a3 4820int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
39279cc3 4821{
b06359a3
NB
4822 struct btrfs_root *root = inode->root;
4823 struct btrfs_fs_info *fs_info = root->fs_info;
4824 struct extent_io_tree *io_tree = &inode->io_tree;
a22285a6 4825 struct extent_map *em = NULL;
2ac55d41 4826 struct extent_state *cached_state = NULL;
b06359a3 4827 struct extent_map_tree *em_tree = &inode->extent_tree;
0b246afa
JM
4828 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4829 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4830 u64 last_byte;
4831 u64 cur_offset;
4832 u64 hole_size;
9ed74f2d 4833 int err = 0;
39279cc3 4834
a71754fc 4835 /*
9703fefe
CR
4836 * If our size started in the middle of a block we need to zero out the
4837 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4838 * expose stale data.
4839 */
b06359a3 4840 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4841 if (err)
4842 return err;
4843
9036c102
YZ
4844 if (size <= hole_start)
4845 return 0;
4846
b06359a3
NB
4847 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4848 &cached_state);
9036c102
YZ
4849 cur_offset = hole_start;
4850 while (1) {
b06359a3 4851 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
39b07b5d 4852 block_end - cur_offset);
79787eaa
JM
4853 if (IS_ERR(em)) {
4854 err = PTR_ERR(em);
f2767956 4855 em = NULL;
79787eaa
JM
4856 break;
4857 }
9036c102 4858 last_byte = min(extent_map_end(em), block_end);
0b246afa 4859 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4860 hole_size = last_byte - cur_offset;
4861
8082510e 4862 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4863 struct extent_map *hole_em;
9ed74f2d 4864
b06359a3
NB
4865 err = maybe_insert_hole(root, inode, cur_offset,
4866 hole_size);
16e7549f 4867 if (err)
3893e33b 4868 break;
9ddc959e 4869
b06359a3 4870 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
4871 cur_offset, hole_size);
4872 if (err)
4873 break;
4874
b06359a3 4875 btrfs_drop_extent_cache(inode, cur_offset,
5dc562c5
JB
4876 cur_offset + hole_size - 1, 0);
4877 hole_em = alloc_extent_map();
4878 if (!hole_em) {
4879 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
b06359a3 4880 &inode->runtime_flags);
5dc562c5
JB
4881 goto next;
4882 }
4883 hole_em->start = cur_offset;
4884 hole_em->len = hole_size;
4885 hole_em->orig_start = cur_offset;
8082510e 4886
5dc562c5
JB
4887 hole_em->block_start = EXTENT_MAP_HOLE;
4888 hole_em->block_len = 0;
b4939680 4889 hole_em->orig_block_len = 0;
cc95bef6 4890 hole_em->ram_bytes = hole_size;
5dc562c5 4891 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4892 hole_em->generation = fs_info->generation;
8082510e 4893
5dc562c5
JB
4894 while (1) {
4895 write_lock(&em_tree->lock);
09a2a8f9 4896 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4897 write_unlock(&em_tree->lock);
4898 if (err != -EEXIST)
4899 break;
b06359a3 4900 btrfs_drop_extent_cache(inode, cur_offset,
5dc562c5
JB
4901 cur_offset +
4902 hole_size - 1, 0);
4903 }
4904 free_extent_map(hole_em);
9ddc959e 4905 } else {
b06359a3 4906 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
4907 cur_offset, hole_size);
4908 if (err)
4909 break;
9036c102 4910 }
16e7549f 4911next:
9036c102 4912 free_extent_map(em);
a22285a6 4913 em = NULL;
9036c102 4914 cur_offset = last_byte;
8082510e 4915 if (cur_offset >= block_end)
9036c102
YZ
4916 break;
4917 }
a22285a6 4918 free_extent_map(em);
e43bbe5e 4919 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4920 return err;
4921}
39279cc3 4922
3972f260 4923static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4924{
f4a2f4c5
MX
4925 struct btrfs_root *root = BTRFS_I(inode)->root;
4926 struct btrfs_trans_handle *trans;
a41ad394 4927 loff_t oldsize = i_size_read(inode);
3972f260
ES
4928 loff_t newsize = attr->ia_size;
4929 int mask = attr->ia_valid;
8082510e
YZ
4930 int ret;
4931
3972f260
ES
4932 /*
4933 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4934 * special case where we need to update the times despite not having
4935 * these flags set. For all other operations the VFS set these flags
4936 * explicitly if it wants a timestamp update.
4937 */
dff6efc3
CH
4938 if (newsize != oldsize) {
4939 inode_inc_iversion(inode);
4940 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4941 inode->i_ctime = inode->i_mtime =
c2050a45 4942 current_time(inode);
dff6efc3 4943 }
3972f260 4944
a41ad394 4945 if (newsize > oldsize) {
9ea24bbe 4946 /*
ea14b57f 4947 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4948 * This is to ensure the snapshot captures a fully consistent
4949 * state of this file - if the snapshot captures this expanding
4950 * truncation, it must capture all writes that happened before
4951 * this truncation.
4952 */
dcc3eb96 4953 btrfs_drew_write_lock(&root->snapshot_lock);
b06359a3 4954 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
9ea24bbe 4955 if (ret) {
dcc3eb96 4956 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4957 return ret;
9ea24bbe 4958 }
8082510e 4959
f4a2f4c5 4960 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4961 if (IS_ERR(trans)) {
dcc3eb96 4962 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4963 return PTR_ERR(trans);
9ea24bbe 4964 }
f4a2f4c5
MX
4965
4966 i_size_write(inode, newsize);
76aea537 4967 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
27772b68 4968 pagecache_isize_extended(inode, oldsize, newsize);
9a56fcd1 4969 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
dcc3eb96 4970 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4971 btrfs_end_transaction(trans);
a41ad394 4972 } else {
24c0a722
NA
4973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4974
4975 if (btrfs_is_zoned(fs_info)) {
4976 ret = btrfs_wait_ordered_range(inode,
4977 ALIGN(newsize, fs_info->sectorsize),
4978 (u64)-1);
4979 if (ret)
4980 return ret;
4981 }
8082510e 4982
a41ad394
JB
4983 /*
4984 * We're truncating a file that used to have good data down to
1fd4033d
NB
4985 * zero. Make sure any new writes to the file get on disk
4986 * on close.
a41ad394
JB
4987 */
4988 if (newsize == 0)
1fd4033d 4989 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
72ac3c0d 4990 &BTRFS_I(inode)->runtime_flags);
8082510e 4991
a41ad394 4992 truncate_setsize(inode, newsize);
2e60a51e 4993
2e60a51e 4994 inode_dio_wait(inode);
2e60a51e 4995
213e8c55 4996 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4997 if (ret && inode->i_nlink) {
4998 int err;
4999
5000 /*
f7e9e8fc
OS
5001 * Truncate failed, so fix up the in-memory size. We
5002 * adjusted disk_i_size down as we removed extents, so
5003 * wait for disk_i_size to be stable and then update the
5004 * in-memory size to match.
7f4f6e0a 5005 */
f7e9e8fc 5006 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5007 if (err)
f7e9e8fc
OS
5008 return err;
5009 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5010 }
8082510e
YZ
5011 }
5012
a41ad394 5013 return ret;
8082510e
YZ
5014}
5015
549c7297
CB
5016static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5017 struct iattr *attr)
9036c102 5018{
2b0143b5 5019 struct inode *inode = d_inode(dentry);
b83cc969 5020 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5021 int err;
39279cc3 5022
b83cc969
LZ
5023 if (btrfs_root_readonly(root))
5024 return -EROFS;
5025
d4d09464 5026 err = setattr_prepare(mnt_userns, dentry, attr);
9036c102
YZ
5027 if (err)
5028 return err;
2bf5a725 5029
5a3f23d5 5030 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5031 err = btrfs_setsize(inode, attr);
8082510e
YZ
5032 if (err)
5033 return err;
39279cc3 5034 }
9036c102 5035
1025774c 5036 if (attr->ia_valid) {
d4d09464 5037 setattr_copy(mnt_userns, inode, attr);
0c4d2d95 5038 inode_inc_iversion(inode);
22c44fe6 5039 err = btrfs_dirty_inode(inode);
1025774c 5040
22c44fe6 5041 if (!err && attr->ia_valid & ATTR_MODE)
d4d09464 5042 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
1025774c 5043 }
33268eaf 5044
39279cc3
CM
5045 return err;
5046}
61295eb8 5047
131e404a
FDBM
5048/*
5049 * While truncating the inode pages during eviction, we get the VFS calling
5050 * btrfs_invalidatepage() against each page of the inode. This is slow because
5051 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5052 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5053 * extent_state structures over and over, wasting lots of time.
5054 *
5055 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5056 * those expensive operations on a per page basis and do only the ordered io
5057 * finishing, while we release here the extent_map and extent_state structures,
5058 * without the excessive merging and splitting.
5059 */
5060static void evict_inode_truncate_pages(struct inode *inode)
5061{
5062 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5063 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5064 struct rb_node *node;
5065
5066 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5067 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5068
5069 write_lock(&map_tree->lock);
07e1ce09 5070 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
5071 struct extent_map *em;
5072
07e1ce09 5073 node = rb_first_cached(&map_tree->map);
131e404a 5074 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5075 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5076 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5077 remove_extent_mapping(map_tree, em);
5078 free_extent_map(em);
7064dd5c
FM
5079 if (need_resched()) {
5080 write_unlock(&map_tree->lock);
5081 cond_resched();
5082 write_lock(&map_tree->lock);
5083 }
131e404a
FDBM
5084 }
5085 write_unlock(&map_tree->lock);
5086
6ca07097
FM
5087 /*
5088 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
5089 * We can have ongoing bios started by readahead that have
5090 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
5091 * still in progress (unlocked the pages in the bio but did not yet
5092 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5093 * ranges can still be locked and eviction started because before
5094 * submitting those bios, which are executed by a separate task (work
5095 * queue kthread), inode references (inode->i_count) were not taken
5096 * (which would be dropped in the end io callback of each bio).
5097 * Therefore here we effectively end up waiting for those bios and
5098 * anyone else holding locked ranges without having bumped the inode's
5099 * reference count - if we don't do it, when they access the inode's
5100 * io_tree to unlock a range it may be too late, leading to an
5101 * use-after-free issue.
5102 */
131e404a
FDBM
5103 spin_lock(&io_tree->lock);
5104 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5105 struct extent_state *state;
5106 struct extent_state *cached_state = NULL;
6ca07097
FM
5107 u64 start;
5108 u64 end;
421f0922 5109 unsigned state_flags;
131e404a
FDBM
5110
5111 node = rb_first(&io_tree->state);
5112 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5113 start = state->start;
5114 end = state->end;
421f0922 5115 state_flags = state->state;
131e404a
FDBM
5116 spin_unlock(&io_tree->lock);
5117
ff13db41 5118 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5119
5120 /*
5121 * If still has DELALLOC flag, the extent didn't reach disk,
5122 * and its reserved space won't be freed by delayed_ref.
5123 * So we need to free its reserved space here.
5124 * (Refer to comment in btrfs_invalidatepage, case 2)
5125 *
5126 * Note, end is the bytenr of last byte, so we need + 1 here.
5127 */
421f0922 5128 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
5129 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5130 end - start + 1);
b9d0b389 5131
6ca07097 5132 clear_extent_bit(io_tree, start, end,
e182163d
OS
5133 EXTENT_LOCKED | EXTENT_DELALLOC |
5134 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5135 &cached_state);
131e404a 5136
7064dd5c 5137 cond_resched();
131e404a
FDBM
5138 spin_lock(&io_tree->lock);
5139 }
5140 spin_unlock(&io_tree->lock);
5141}
5142
4b9d7b59 5143static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5144 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5145{
5146 struct btrfs_fs_info *fs_info = root->fs_info;
d3984c90 5147 struct btrfs_trans_handle *trans;
2bd36e7b 5148 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5149 int ret;
4b9d7b59 5150
d3984c90
JB
5151 /*
5152 * Eviction should be taking place at some place safe because of our
5153 * delayed iputs. However the normal flushing code will run delayed
5154 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5155 *
5156 * We reserve the delayed_refs_extra here again because we can't use
5157 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5158 * above. We reserve our extra bit here because we generate a ton of
5159 * delayed refs activity by truncating.
5160 *
ee6adbfd
JB
5161 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5162 * if we fail to make this reservation we can re-try without the
5163 * delayed_refs_extra so we can make some forward progress.
d3984c90 5164 */
9270501c 5165 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
d3984c90
JB
5166 BTRFS_RESERVE_FLUSH_EVICT);
5167 if (ret) {
9270501c 5168 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
ee6adbfd
JB
5169 BTRFS_RESERVE_FLUSH_EVICT);
5170 if (ret) {
d3984c90
JB
5171 btrfs_warn(fs_info,
5172 "could not allocate space for delete; will truncate on mount");
5173 return ERR_PTR(-ENOSPC);
5174 }
5175 delayed_refs_extra = 0;
5176 }
4b9d7b59 5177
d3984c90
JB
5178 trans = btrfs_join_transaction(root);
5179 if (IS_ERR(trans))
5180 return trans;
5181
5182 if (delayed_refs_extra) {
5183 trans->block_rsv = &fs_info->trans_block_rsv;
5184 trans->bytes_reserved = delayed_refs_extra;
5185 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5186 delayed_refs_extra, 1);
4b9d7b59 5187 }
d3984c90 5188 return trans;
4b9d7b59
OS
5189}
5190
bd555975 5191void btrfs_evict_inode(struct inode *inode)
39279cc3 5192{
0b246afa 5193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5194 struct btrfs_trans_handle *trans;
5195 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5196 struct btrfs_block_rsv *rsv;
39279cc3
CM
5197 int ret;
5198
1abe9b8a 5199 trace_btrfs_inode_evict(inode);
5200
3d48d981 5201 if (!root) {
14605409 5202 fsverity_cleanup_inode(inode);
e8f1bc14 5203 clear_inode(inode);
3d48d981
NB
5204 return;
5205 }
5206
131e404a
FDBM
5207 evict_inode_truncate_pages(inode);
5208
69e9c6c6
SB
5209 if (inode->i_nlink &&
5210 ((btrfs_root_refs(&root->root_item) != 0 &&
5211 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5212 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5213 goto no_delete;
5214
27919067 5215 if (is_bad_inode(inode))
39279cc3 5216 goto no_delete;
5f39d397 5217
7ab7956e 5218 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5219
7b40b695 5220 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5221 goto no_delete;
c71bf099 5222
76dda93c 5223 if (inode->i_nlink > 0) {
69e9c6c6
SB
5224 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5225 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5226 goto no_delete;
5227 }
5228
2adc75d6
JB
5229 /*
5230 * This makes sure the inode item in tree is uptodate and the space for
5231 * the inode update is released.
5232 */
aa79021f 5233 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5234 if (ret)
0e8c36a9 5235 goto no_delete;
0e8c36a9 5236
2adc75d6
JB
5237 /*
5238 * This drops any pending insert or delete operations we have for this
5239 * inode. We could have a delayed dir index deletion queued up, but
5240 * we're removing the inode completely so that'll be taken care of in
5241 * the truncate.
5242 */
5243 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5244
2ff7e61e 5245 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5246 if (!rsv)
4289a667 5247 goto no_delete;
2bd36e7b 5248 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5249 rsv->failfast = 1;
4289a667 5250
6ef06d27 5251 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5252
8082510e 5253 while (1) {
d9ac19c3 5254 struct btrfs_truncate_control control = {
487e81d2 5255 .ino = btrfs_ino(BTRFS_I(inode)),
d9ac19c3
JB
5256 .new_size = 0,
5257 .min_type = 0,
5258 };
5259
ad80cf50 5260 trans = evict_refill_and_join(root, rsv);
27919067
OS
5261 if (IS_ERR(trans))
5262 goto free_rsv;
7b128766 5263
4289a667
JB
5264 trans->block_rsv = rsv;
5265
50743398 5266 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
d9ac19c3 5267 &control);
27919067
OS
5268 trans->block_rsv = &fs_info->trans_block_rsv;
5269 btrfs_end_transaction(trans);
5270 btrfs_btree_balance_dirty(fs_info);
5271 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5272 goto free_rsv;
5273 else if (!ret)
8082510e 5274 break;
8082510e 5275 }
5f39d397 5276
4ef31a45 5277 /*
27919067
OS
5278 * Errors here aren't a big deal, it just means we leave orphan items in
5279 * the tree. They will be cleaned up on the next mount. If the inode
5280 * number gets reused, cleanup deletes the orphan item without doing
5281 * anything, and unlink reuses the existing orphan item.
5282 *
5283 * If it turns out that we are dropping too many of these, we might want
5284 * to add a mechanism for retrying these after a commit.
4ef31a45 5285 */
ad80cf50 5286 trans = evict_refill_and_join(root, rsv);
27919067
OS
5287 if (!IS_ERR(trans)) {
5288 trans->block_rsv = rsv;
5289 btrfs_orphan_del(trans, BTRFS_I(inode));
5290 trans->block_rsv = &fs_info->trans_block_rsv;
5291 btrfs_end_transaction(trans);
5292 }
54aa1f4d 5293
27919067
OS
5294free_rsv:
5295 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5296no_delete:
27919067
OS
5297 /*
5298 * If we didn't successfully delete, the orphan item will still be in
5299 * the tree and we'll retry on the next mount. Again, we might also want
5300 * to retry these periodically in the future.
5301 */
f48d1cf5 5302 btrfs_remove_delayed_node(BTRFS_I(inode));
14605409 5303 fsverity_cleanup_inode(inode);
dbd5768f 5304 clear_inode(inode);
39279cc3
CM
5305}
5306
5307/*
6bf9e4bd
QW
5308 * Return the key found in the dir entry in the location pointer, fill @type
5309 * with BTRFS_FT_*, and return 0.
5310 *
005d6712
SY
5311 * If no dir entries were found, returns -ENOENT.
5312 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5313 */
5314static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5315 struct btrfs_key *location, u8 *type)
39279cc3
CM
5316{
5317 const char *name = dentry->d_name.name;
5318 int namelen = dentry->d_name.len;
5319 struct btrfs_dir_item *di;
5320 struct btrfs_path *path;
5321 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5322 int ret = 0;
39279cc3
CM
5323
5324 path = btrfs_alloc_path();
d8926bb3
MF
5325 if (!path)
5326 return -ENOMEM;
3954401f 5327
f85b7379
DS
5328 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5329 name, namelen, 0);
3cf5068f
LB
5330 if (IS_ERR_OR_NULL(di)) {
5331 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5332 goto out;
5333 }
d397712b 5334
5f39d397 5335 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5336 if (location->type != BTRFS_INODE_ITEM_KEY &&
5337 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5338 ret = -EUCLEAN;
56a0e706
LB
5339 btrfs_warn(root->fs_info,
5340"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5341 __func__, name, btrfs_ino(BTRFS_I(dir)),
5342 location->objectid, location->type, location->offset);
56a0e706 5343 }
6bf9e4bd
QW
5344 if (!ret)
5345 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5346out:
39279cc3
CM
5347 btrfs_free_path(path);
5348 return ret;
5349}
5350
5351/*
5352 * when we hit a tree root in a directory, the btrfs part of the inode
5353 * needs to be changed to reflect the root directory of the tree root. This
5354 * is kind of like crossing a mount point.
5355 */
2ff7e61e 5356static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5357 struct inode *dir,
5358 struct dentry *dentry,
5359 struct btrfs_key *location,
5360 struct btrfs_root **sub_root)
39279cc3 5361{
4df27c4d
YZ
5362 struct btrfs_path *path;
5363 struct btrfs_root *new_root;
5364 struct btrfs_root_ref *ref;
5365 struct extent_buffer *leaf;
1d4c08e0 5366 struct btrfs_key key;
4df27c4d
YZ
5367 int ret;
5368 int err = 0;
39279cc3 5369
4df27c4d
YZ
5370 path = btrfs_alloc_path();
5371 if (!path) {
5372 err = -ENOMEM;
5373 goto out;
5374 }
39279cc3 5375
4df27c4d 5376 err = -ENOENT;
1d4c08e0
DS
5377 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5378 key.type = BTRFS_ROOT_REF_KEY;
5379 key.offset = location->objectid;
5380
0b246afa 5381 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5382 if (ret) {
5383 if (ret < 0)
5384 err = ret;
5385 goto out;
5386 }
39279cc3 5387
4df27c4d
YZ
5388 leaf = path->nodes[0];
5389 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5390 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5391 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5392 goto out;
39279cc3 5393
4df27c4d
YZ
5394 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5395 (unsigned long)(ref + 1),
5396 dentry->d_name.len);
5397 if (ret)
5398 goto out;
5399
b3b4aa74 5400 btrfs_release_path(path);
4df27c4d 5401
56e9357a 5402 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5403 if (IS_ERR(new_root)) {
5404 err = PTR_ERR(new_root);
5405 goto out;
5406 }
5407
4df27c4d
YZ
5408 *sub_root = new_root;
5409 location->objectid = btrfs_root_dirid(&new_root->root_item);
5410 location->type = BTRFS_INODE_ITEM_KEY;
5411 location->offset = 0;
5412 err = 0;
5413out:
5414 btrfs_free_path(path);
5415 return err;
39279cc3
CM
5416}
5417
5d4f98a2
YZ
5418static void inode_tree_add(struct inode *inode)
5419{
5420 struct btrfs_root *root = BTRFS_I(inode)->root;
5421 struct btrfs_inode *entry;
03e860bd
NP
5422 struct rb_node **p;
5423 struct rb_node *parent;
cef21937 5424 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5425 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5426
1d3382cb 5427 if (inode_unhashed(inode))
76dda93c 5428 return;
e1409cef 5429 parent = NULL;
5d4f98a2 5430 spin_lock(&root->inode_lock);
e1409cef 5431 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5432 while (*p) {
5433 parent = *p;
5434 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5435
37508515 5436 if (ino < btrfs_ino(entry))
03e860bd 5437 p = &parent->rb_left;
37508515 5438 else if (ino > btrfs_ino(entry))
03e860bd 5439 p = &parent->rb_right;
5d4f98a2
YZ
5440 else {
5441 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5442 (I_WILL_FREE | I_FREEING)));
cef21937 5443 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5444 RB_CLEAR_NODE(parent);
5445 spin_unlock(&root->inode_lock);
cef21937 5446 return;
5d4f98a2
YZ
5447 }
5448 }
cef21937
FDBM
5449 rb_link_node(new, parent, p);
5450 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5451 spin_unlock(&root->inode_lock);
5452}
5453
b79b7249 5454static void inode_tree_del(struct btrfs_inode *inode)
5d4f98a2 5455{
b79b7249 5456 struct btrfs_root *root = inode->root;
76dda93c 5457 int empty = 0;
5d4f98a2 5458
03e860bd 5459 spin_lock(&root->inode_lock);
b79b7249
NB
5460 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5461 rb_erase(&inode->rb_node, &root->inode_tree);
5462 RB_CLEAR_NODE(&inode->rb_node);
76dda93c 5463 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5464 }
03e860bd 5465 spin_unlock(&root->inode_lock);
76dda93c 5466
69e9c6c6 5467 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5468 spin_lock(&root->inode_lock);
5469 empty = RB_EMPTY_ROOT(&root->inode_tree);
5470 spin_unlock(&root->inode_lock);
5471 if (empty)
5472 btrfs_add_dead_root(root);
5473 }
5474}
5475
5d4f98a2 5476
e02119d5
CM
5477static int btrfs_init_locked_inode(struct inode *inode, void *p)
5478{
5479 struct btrfs_iget_args *args = p;
0202e83f
DS
5480
5481 inode->i_ino = args->ino;
5482 BTRFS_I(inode)->location.objectid = args->ino;
5483 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5484 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5485 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5486 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5487 return 0;
5488}
5489
5490static int btrfs_find_actor(struct inode *inode, void *opaque)
5491{
5492 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5493
5494 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5495 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5496}
5497
0202e83f 5498static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5499 struct btrfs_root *root)
39279cc3
CM
5500{
5501 struct inode *inode;
5502 struct btrfs_iget_args args;
0202e83f 5503 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5504
0202e83f 5505 args.ino = ino;
39279cc3
CM
5506 args.root = root;
5507
778ba82b 5508 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5509 btrfs_init_locked_inode,
5510 (void *)&args);
5511 return inode;
5512}
5513
4c66e0d4 5514/*
0202e83f 5515 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5516 * Path can be preallocated to prevent recursing back to iget through
5517 * allocator. NULL is also valid but may require an additional allocation
5518 * later.
1a54ef8c 5519 */
0202e83f 5520struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5521 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5522{
5523 struct inode *inode;
5524
0202e83f 5525 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5526 if (!inode)
5d4f98a2 5527 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5528
5529 if (inode->i_state & I_NEW) {
67710892
FM
5530 int ret;
5531
4222ea71 5532 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5533 if (!ret) {
1748f843
MF
5534 inode_tree_add(inode);
5535 unlock_new_inode(inode);
1748f843 5536 } else {
f5b3a417
AV
5537 iget_failed(inode);
5538 /*
5539 * ret > 0 can come from btrfs_search_slot called by
5540 * btrfs_read_locked_inode, this means the inode item
5541 * was not found.
5542 */
5543 if (ret > 0)
5544 ret = -ENOENT;
5545 inode = ERR_PTR(ret);
1748f843
MF
5546 }
5547 }
5548
1a54ef8c
BR
5549 return inode;
5550}
5551
0202e83f 5552struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5553{
0202e83f 5554 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5555}
5556
4df27c4d
YZ
5557static struct inode *new_simple_dir(struct super_block *s,
5558 struct btrfs_key *key,
5559 struct btrfs_root *root)
5560{
5561 struct inode *inode = new_inode(s);
5562
5563 if (!inode)
5564 return ERR_PTR(-ENOMEM);
5565
5c8fd99f 5566 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5567 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5568 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5569
5570 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5571 /*
5572 * We only need lookup, the rest is read-only and there's no inode
5573 * associated with the dentry
5574 */
5575 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5576 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5577 inode->i_fop = &simple_dir_operations;
5578 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5579 inode->i_mtime = current_time(inode);
9cc97d64 5580 inode->i_atime = inode->i_mtime;
5581 inode->i_ctime = inode->i_mtime;
d3c6be6f 5582 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5583
5584 return inode;
5585}
5586
6bf9e4bd
QW
5587static inline u8 btrfs_inode_type(struct inode *inode)
5588{
5589 /*
5590 * Compile-time asserts that generic FT_* types still match
5591 * BTRFS_FT_* types
5592 */
5593 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5594 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5595 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5596 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5597 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5598 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5599 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5600 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5601
5602 return fs_umode_to_ftype(inode->i_mode);
5603}
5604
3de4586c 5605struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5606{
0b246afa 5607 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5608 struct inode *inode;
4df27c4d 5609 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5610 struct btrfs_root *sub_root = root;
5611 struct btrfs_key location;
6bf9e4bd 5612 u8 di_type = 0;
b4aff1f8 5613 int ret = 0;
39279cc3
CM
5614
5615 if (dentry->d_name.len > BTRFS_NAME_LEN)
5616 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5617
6bf9e4bd 5618 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5619 if (ret < 0)
5620 return ERR_PTR(ret);
5f39d397 5621
4df27c4d 5622 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5623 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5624 if (IS_ERR(inode))
5625 return inode;
5626
5627 /* Do extra check against inode mode with di_type */
5628 if (btrfs_inode_type(inode) != di_type) {
5629 btrfs_crit(fs_info,
5630"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5631 inode->i_mode, btrfs_inode_type(inode),
5632 di_type);
5633 iput(inode);
5634 return ERR_PTR(-EUCLEAN);
5635 }
4df27c4d
YZ
5636 return inode;
5637 }
5638
2ff7e61e 5639 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5640 &location, &sub_root);
5641 if (ret < 0) {
5642 if (ret != -ENOENT)
5643 inode = ERR_PTR(ret);
5644 else
5645 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5646 } else {
0202e83f 5647 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5648 }
8727002f 5649 if (root != sub_root)
00246528 5650 btrfs_put_root(sub_root);
76dda93c 5651
34d19bad 5652 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5653 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5654 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5655 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5656 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5657 if (ret) {
5658 iput(inode);
66b4ffd1 5659 inode = ERR_PTR(ret);
01cd3367 5660 }
c71bf099
YZ
5661 }
5662
3de4586c
CM
5663 return inode;
5664}
5665
fe15ce44 5666static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5667{
5668 struct btrfs_root *root;
2b0143b5 5669 struct inode *inode = d_inode(dentry);
76dda93c 5670
848cce0d 5671 if (!inode && !IS_ROOT(dentry))
2b0143b5 5672 inode = d_inode(dentry->d_parent);
76dda93c 5673
848cce0d
LZ
5674 if (inode) {
5675 root = BTRFS_I(inode)->root;
efefb143
YZ
5676 if (btrfs_root_refs(&root->root_item) == 0)
5677 return 1;
848cce0d 5678
4a0cc7ca 5679 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5680 return 1;
efefb143 5681 }
76dda93c
YZ
5682 return 0;
5683}
5684
3de4586c 5685static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5686 unsigned int flags)
3de4586c 5687{
3837d208 5688 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5689
3837d208
AV
5690 if (inode == ERR_PTR(-ENOENT))
5691 inode = NULL;
41d28bca 5692 return d_splice_alias(inode, dentry);
39279cc3
CM
5693}
5694
23b5ec74
JB
5695/*
5696 * All this infrastructure exists because dir_emit can fault, and we are holding
5697 * the tree lock when doing readdir. For now just allocate a buffer and copy
5698 * our information into that, and then dir_emit from the buffer. This is
5699 * similar to what NFS does, only we don't keep the buffer around in pagecache
5700 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5701 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5702 * tree lock.
5703 */
5704static int btrfs_opendir(struct inode *inode, struct file *file)
5705{
5706 struct btrfs_file_private *private;
5707
5708 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5709 if (!private)
5710 return -ENOMEM;
5711 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5712 if (!private->filldir_buf) {
5713 kfree(private);
5714 return -ENOMEM;
5715 }
5716 file->private_data = private;
5717 return 0;
5718}
5719
5720struct dir_entry {
5721 u64 ino;
5722 u64 offset;
5723 unsigned type;
5724 int name_len;
5725};
5726
5727static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5728{
5729 while (entries--) {
5730 struct dir_entry *entry = addr;
5731 char *name = (char *)(entry + 1);
5732
92d32170
DS
5733 ctx->pos = get_unaligned(&entry->offset);
5734 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5735 get_unaligned(&entry->ino),
5736 get_unaligned(&entry->type)))
23b5ec74 5737 return 1;
92d32170
DS
5738 addr += sizeof(struct dir_entry) +
5739 get_unaligned(&entry->name_len);
23b5ec74
JB
5740 ctx->pos++;
5741 }
5742 return 0;
5743}
5744
9cdda8d3 5745static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5746{
9cdda8d3 5747 struct inode *inode = file_inode(file);
39279cc3 5748 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5749 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5750 struct btrfs_dir_item *di;
5751 struct btrfs_key key;
5f39d397 5752 struct btrfs_key found_key;
39279cc3 5753 struct btrfs_path *path;
23b5ec74 5754 void *addr;
16cdcec7
MX
5755 struct list_head ins_list;
5756 struct list_head del_list;
39279cc3 5757 int ret;
5f39d397 5758 struct extent_buffer *leaf;
39279cc3 5759 int slot;
5f39d397
CM
5760 char *name_ptr;
5761 int name_len;
23b5ec74
JB
5762 int entries = 0;
5763 int total_len = 0;
02dbfc99 5764 bool put = false;
c2951f32 5765 struct btrfs_key location;
5f39d397 5766
9cdda8d3
AV
5767 if (!dir_emit_dots(file, ctx))
5768 return 0;
5769
49593bfa 5770 path = btrfs_alloc_path();
16cdcec7
MX
5771 if (!path)
5772 return -ENOMEM;
ff5714cc 5773
23b5ec74 5774 addr = private->filldir_buf;
e4058b54 5775 path->reada = READA_FORWARD;
49593bfa 5776
c2951f32
JM
5777 INIT_LIST_HEAD(&ins_list);
5778 INIT_LIST_HEAD(&del_list);
5779 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5780
23b5ec74 5781again:
c2951f32 5782 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5783 key.offset = ctx->pos;
4a0cc7ca 5784 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5785
39279cc3
CM
5786 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5787 if (ret < 0)
5788 goto err;
49593bfa
DW
5789
5790 while (1) {
23b5ec74
JB
5791 struct dir_entry *entry;
5792
5f39d397 5793 leaf = path->nodes[0];
39279cc3 5794 slot = path->slots[0];
b9e03af0
LZ
5795 if (slot >= btrfs_header_nritems(leaf)) {
5796 ret = btrfs_next_leaf(root, path);
5797 if (ret < 0)
5798 goto err;
5799 else if (ret > 0)
5800 break;
5801 continue;
39279cc3 5802 }
3de4586c 5803
5f39d397
CM
5804 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5805
5806 if (found_key.objectid != key.objectid)
39279cc3 5807 break;
c2951f32 5808 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5809 break;
9cdda8d3 5810 if (found_key.offset < ctx->pos)
b9e03af0 5811 goto next;
c2951f32 5812 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5813 goto next;
39279cc3 5814 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5815 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5816 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5817 PAGE_SIZE) {
5818 btrfs_release_path(path);
5819 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5820 if (ret)
5821 goto nopos;
5822 addr = private->filldir_buf;
5823 entries = 0;
5824 total_len = 0;
5825 goto again;
c2951f32 5826 }
23b5ec74
JB
5827
5828 entry = addr;
92d32170 5829 put_unaligned(name_len, &entry->name_len);
23b5ec74 5830 name_ptr = (char *)(entry + 1);
c2951f32
JM
5831 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5832 name_len);
7d157c3d 5833 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5834 &entry->type);
c2951f32 5835 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5836 put_unaligned(location.objectid, &entry->ino);
5837 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5838 entries++;
5839 addr += sizeof(struct dir_entry) + name_len;
5840 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5841next:
5842 path->slots[0]++;
39279cc3 5843 }
23b5ec74
JB
5844 btrfs_release_path(path);
5845
5846 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5847 if (ret)
5848 goto nopos;
49593bfa 5849
d2fbb2b5 5850 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5851 if (ret)
bc4ef759
DS
5852 goto nopos;
5853
db62efbb
ZB
5854 /*
5855 * Stop new entries from being returned after we return the last
5856 * entry.
5857 *
5858 * New directory entries are assigned a strictly increasing
5859 * offset. This means that new entries created during readdir
5860 * are *guaranteed* to be seen in the future by that readdir.
5861 * This has broken buggy programs which operate on names as
5862 * they're returned by readdir. Until we re-use freed offsets
5863 * we have this hack to stop new entries from being returned
5864 * under the assumption that they'll never reach this huge
5865 * offset.
5866 *
5867 * This is being careful not to overflow 32bit loff_t unless the
5868 * last entry requires it because doing so has broken 32bit apps
5869 * in the past.
5870 */
c2951f32
JM
5871 if (ctx->pos >= INT_MAX)
5872 ctx->pos = LLONG_MAX;
5873 else
5874 ctx->pos = INT_MAX;
39279cc3
CM
5875nopos:
5876 ret = 0;
5877err:
02dbfc99
OS
5878 if (put)
5879 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5880 btrfs_free_path(path);
39279cc3
CM
5881 return ret;
5882}
5883
39279cc3 5884/*
54aa1f4d 5885 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5886 * inode changes. But, it is most likely to find the inode in cache.
5887 * FIXME, needs more benchmarking...there are no reasons other than performance
5888 * to keep or drop this code.
5889 */
48a3b636 5890static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5891{
2ff7e61e 5892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5893 struct btrfs_root *root = BTRFS_I(inode)->root;
5894 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5895 int ret;
5896
72ac3c0d 5897 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5898 return 0;
39279cc3 5899
7a7eaa40 5900 trans = btrfs_join_transaction(root);
22c44fe6
JB
5901 if (IS_ERR(trans))
5902 return PTR_ERR(trans);
8929ecfa 5903
9a56fcd1 5904 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
4d14c5cd 5905 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
94b60442 5906 /* whoops, lets try again with the full transaction */
3a45bb20 5907 btrfs_end_transaction(trans);
94b60442 5908 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5909 if (IS_ERR(trans))
5910 return PTR_ERR(trans);
8929ecfa 5911
9a56fcd1 5912 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
94b60442 5913 }
3a45bb20 5914 btrfs_end_transaction(trans);
16cdcec7 5915 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5916 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5917
5918 return ret;
5919}
5920
5921/*
5922 * This is a copy of file_update_time. We need this so we can return error on
5923 * ENOSPC for updating the inode in the case of file write and mmap writes.
5924 */
95582b00 5925static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5926 int flags)
22c44fe6 5927{
2bc55652 5928 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5929 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5930
5931 if (btrfs_root_readonly(root))
5932 return -EROFS;
5933
e41f941a 5934 if (flags & S_VERSION)
3a8c7231 5935 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5936 if (flags & S_CTIME)
5937 inode->i_ctime = *now;
5938 if (flags & S_MTIME)
5939 inode->i_mtime = *now;
5940 if (flags & S_ATIME)
5941 inode->i_atime = *now;
3a8c7231 5942 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5943}
5944
d352ac68
CM
5945/*
5946 * find the highest existing sequence number in a directory
5947 * and then set the in-memory index_cnt variable to reflect
5948 * free sequence numbers
5949 */
4c570655 5950static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5951{
4c570655 5952 struct btrfs_root *root = inode->root;
aec7477b
JB
5953 struct btrfs_key key, found_key;
5954 struct btrfs_path *path;
5955 struct extent_buffer *leaf;
5956 int ret;
5957
4c570655 5958 key.objectid = btrfs_ino(inode);
962a298f 5959 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5960 key.offset = (u64)-1;
5961
5962 path = btrfs_alloc_path();
5963 if (!path)
5964 return -ENOMEM;
5965
5966 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5967 if (ret < 0)
5968 goto out;
5969 /* FIXME: we should be able to handle this */
5970 if (ret == 0)
5971 goto out;
5972 ret = 0;
5973
5974 /*
5975 * MAGIC NUMBER EXPLANATION:
5976 * since we search a directory based on f_pos we have to start at 2
5977 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5978 * else has to start at 2
5979 */
5980 if (path->slots[0] == 0) {
4c570655 5981 inode->index_cnt = 2;
aec7477b
JB
5982 goto out;
5983 }
5984
5985 path->slots[0]--;
5986
5987 leaf = path->nodes[0];
5988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5989
4c570655 5990 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5991 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5992 inode->index_cnt = 2;
aec7477b
JB
5993 goto out;
5994 }
5995
4c570655 5996 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5997out:
5998 btrfs_free_path(path);
5999 return ret;
6000}
6001
d352ac68
CM
6002/*
6003 * helper to find a free sequence number in a given directory. This current
6004 * code is very simple, later versions will do smarter things in the btree
6005 */
877574e2 6006int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6007{
6008 int ret = 0;
6009
877574e2
NB
6010 if (dir->index_cnt == (u64)-1) {
6011 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6012 if (ret) {
6013 ret = btrfs_set_inode_index_count(dir);
6014 if (ret)
6015 return ret;
6016 }
aec7477b
JB
6017 }
6018
877574e2
NB
6019 *index = dir->index_cnt;
6020 dir->index_cnt++;
aec7477b
JB
6021
6022 return ret;
6023}
6024
b0d5d10f
CM
6025static int btrfs_insert_inode_locked(struct inode *inode)
6026{
6027 struct btrfs_iget_args args;
0202e83f
DS
6028
6029 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
6030 args.root = BTRFS_I(inode)->root;
6031
6032 return insert_inode_locked4(inode,
6033 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6034 btrfs_find_actor, &args);
6035}
6036
19aee8de
AJ
6037/*
6038 * Inherit flags from the parent inode.
6039 *
6040 * Currently only the compression flags and the cow flags are inherited.
6041 */
6042static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6043{
6044 unsigned int flags;
6045
6046 if (!dir)
6047 return;
6048
6049 flags = BTRFS_I(dir)->flags;
6050
6051 if (flags & BTRFS_INODE_NOCOMPRESS) {
6052 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6053 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6054 } else if (flags & BTRFS_INODE_COMPRESS) {
6055 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6056 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6057 }
6058
6059 if (flags & BTRFS_INODE_NODATACOW) {
6060 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6061 if (S_ISREG(inode->i_mode))
6062 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6063 }
6064
7b6a221e 6065 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6066}
6067
39279cc3
CM
6068static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6069 struct btrfs_root *root,
b3b6f5b9 6070 struct user_namespace *mnt_userns,
aec7477b 6071 struct inode *dir,
9c58309d 6072 const char *name, int name_len,
175a4eb7
AV
6073 u64 ref_objectid, u64 objectid,
6074 umode_t mode, u64 *index)
39279cc3 6075{
0b246afa 6076 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6077 struct inode *inode;
5f39d397 6078 struct btrfs_inode_item *inode_item;
39279cc3 6079 struct btrfs_key *location;
5f39d397 6080 struct btrfs_path *path;
9c58309d
CM
6081 struct btrfs_inode_ref *ref;
6082 struct btrfs_key key[2];
6083 u32 sizes[2];
b7ef5f3a 6084 struct btrfs_item_batch batch;
9c58309d 6085 unsigned long ptr;
11a19a90 6086 unsigned int nofs_flag;
39279cc3 6087 int ret;
39279cc3 6088
5f39d397 6089 path = btrfs_alloc_path();
d8926bb3
MF
6090 if (!path)
6091 return ERR_PTR(-ENOMEM);
5f39d397 6092
11a19a90 6093 nofs_flag = memalloc_nofs_save();
0b246afa 6094 inode = new_inode(fs_info->sb);
11a19a90 6095 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
6096 if (!inode) {
6097 btrfs_free_path(path);
39279cc3 6098 return ERR_PTR(-ENOMEM);
8fb27640 6099 }
39279cc3 6100
5762b5c9
FM
6101 /*
6102 * O_TMPFILE, set link count to 0, so that after this point,
6103 * we fill in an inode item with the correct link count.
6104 */
6105 if (!name)
6106 set_nlink(inode, 0);
6107
581bb050
LZ
6108 /*
6109 * we have to initialize this early, so we can reclaim the inode
6110 * number if we fail afterwards in this function.
6111 */
6112 inode->i_ino = objectid;
6113
ef3b9af5 6114 if (dir && name) {
1abe9b8a 6115 trace_btrfs_inode_request(dir);
6116
877574e2 6117 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6118 if (ret) {
8fb27640 6119 btrfs_free_path(path);
09771430 6120 iput(inode);
aec7477b 6121 return ERR_PTR(ret);
09771430 6122 }
ef3b9af5
FM
6123 } else if (dir) {
6124 *index = 0;
aec7477b
JB
6125 }
6126 /*
6127 * index_cnt is ignored for everything but a dir,
df6703e1 6128 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6129 * number
6130 */
6131 BTRFS_I(inode)->index_cnt = 2;
67de1176 6132 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 6133 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 6134 BTRFS_I(inode)->generation = trans->transid;
76195853 6135 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6136
5dc562c5
JB
6137 /*
6138 * We could have gotten an inode number from somebody who was fsynced
6139 * and then removed in this same transaction, so let's just set full
6140 * sync since it will be a full sync anyway and this will blow away the
6141 * old info in the log.
6142 */
6143 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6144
9c58309d 6145 key[0].objectid = objectid;
962a298f 6146 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6147 key[0].offset = 0;
6148
9c58309d 6149 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6150
6151 if (name) {
6152 /*
6153 * Start new inodes with an inode_ref. This is slightly more
6154 * efficient for small numbers of hard links since they will
6155 * be packed into one item. Extended refs will kick in if we
6156 * add more hard links than can fit in the ref item.
6157 */
6158 key[1].objectid = objectid;
962a298f 6159 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6160 key[1].offset = ref_objectid;
6161
6162 sizes[1] = name_len + sizeof(*ref);
6163 }
9c58309d 6164
b0d5d10f
CM
6165 location = &BTRFS_I(inode)->location;
6166 location->objectid = objectid;
6167 location->offset = 0;
962a298f 6168 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6169
6170 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6171 if (ret < 0) {
6172 iput(inode);
b0d5d10f 6173 goto fail;
32955c54 6174 }
b0d5d10f 6175
b7ef5f3a
FM
6176 batch.keys = &key[0];
6177 batch.data_sizes = &sizes[0];
6178 batch.total_data_size = sizes[0] + (name ? sizes[1] : 0);
6179 batch.nr = name ? 2 : 1;
6180 ret = btrfs_insert_empty_items(trans, root, path, &batch);
9c58309d 6181 if (ret != 0)
b0d5d10f 6182 goto fail_unlock;
5f39d397 6183
b3b6f5b9 6184 inode_init_owner(mnt_userns, inode, dir, mode);
a76a3cd4 6185 inode_set_bytes(inode, 0);
9cc97d64 6186
c2050a45 6187 inode->i_mtime = current_time(inode);
9cc97d64 6188 inode->i_atime = inode->i_mtime;
6189 inode->i_ctime = inode->i_mtime;
d3c6be6f 6190 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6191
5f39d397
CM
6192 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6193 struct btrfs_inode_item);
b159fa28 6194 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6195 sizeof(*inode_item));
e02119d5 6196 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6197
ef3b9af5
FM
6198 if (name) {
6199 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6200 struct btrfs_inode_ref);
6201 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6202 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6203 ptr = (unsigned long)(ref + 1);
6204 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6205 }
9c58309d 6206
5f39d397
CM
6207 btrfs_mark_buffer_dirty(path->nodes[0]);
6208 btrfs_free_path(path);
6209
6cbff00f
CH
6210 btrfs_inherit_iflags(inode, dir);
6211
569254b0 6212 if (S_ISREG(mode)) {
0b246afa 6213 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6214 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6215 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6216 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6217 BTRFS_INODE_NODATASUM;
94272164
CM
6218 }
6219
5d4f98a2 6220 inode_tree_add(inode);
1abe9b8a 6221
6222 trace_btrfs_inode_new(inode);
d9094414 6223 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6224
8ea05e3a
AB
6225 btrfs_update_root_times(trans, root);
6226
63541927
FDBM
6227 ret = btrfs_inode_inherit_props(trans, inode, dir);
6228 if (ret)
0b246afa 6229 btrfs_err(fs_info,
63541927 6230 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6231 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6232
39279cc3 6233 return inode;
b0d5d10f
CM
6234
6235fail_unlock:
32955c54 6236 discard_new_inode(inode);
5f39d397 6237fail:
ef3b9af5 6238 if (dir && name)
aec7477b 6239 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6240 btrfs_free_path(path);
6241 return ERR_PTR(ret);
39279cc3
CM
6242}
6243
d352ac68
CM
6244/*
6245 * utility function to add 'inode' into 'parent_inode' with
6246 * a give name and a given sequence number.
6247 * if 'add_backref' is true, also insert a backref from the
6248 * inode to the parent directory.
6249 */
e02119d5 6250int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6251 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6252 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6253{
4df27c4d 6254 int ret = 0;
39279cc3 6255 struct btrfs_key key;
db0a669f
NB
6256 struct btrfs_root *root = parent_inode->root;
6257 u64 ino = btrfs_ino(inode);
6258 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6259
33345d01 6260 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6261 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6262 } else {
33345d01 6263 key.objectid = ino;
962a298f 6264 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6265 key.offset = 0;
6266 }
6267
33345d01 6268 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6269 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6270 root->root_key.objectid, parent_ino,
6271 index, name, name_len);
4df27c4d 6272 } else if (add_backref) {
33345d01
LZ
6273 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6274 parent_ino, index);
4df27c4d 6275 }
39279cc3 6276
79787eaa
JM
6277 /* Nothing to clean up yet */
6278 if (ret)
6279 return ret;
4df27c4d 6280
684572df 6281 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6282 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6283 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6284 goto fail_dir_item;
6285 else if (ret) {
66642832 6286 btrfs_abort_transaction(trans, ret);
79787eaa 6287 return ret;
39279cc3 6288 }
79787eaa 6289
db0a669f 6290 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6291 name_len * 2);
db0a669f 6292 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6293 /*
6294 * If we are replaying a log tree, we do not want to update the mtime
6295 * and ctime of the parent directory with the current time, since the
6296 * log replay procedure is responsible for setting them to their correct
6297 * values (the ones it had when the fsync was done).
6298 */
6299 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6300 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6301
6302 parent_inode->vfs_inode.i_mtime = now;
6303 parent_inode->vfs_inode.i_ctime = now;
6304 }
9a56fcd1 6305 ret = btrfs_update_inode(trans, root, parent_inode);
79787eaa 6306 if (ret)
66642832 6307 btrfs_abort_transaction(trans, ret);
39279cc3 6308 return ret;
fe66a05a
CM
6309
6310fail_dir_item:
6311 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6312 u64 local_index;
6313 int err;
3ee1c553 6314 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6315 root->root_key.objectid, parent_ino,
6316 &local_index, name, name_len);
1690dd41
JT
6317 if (err)
6318 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6319 } else if (add_backref) {
6320 u64 local_index;
6321 int err;
6322
6323 err = btrfs_del_inode_ref(trans, root, name, name_len,
6324 ino, parent_ino, &local_index);
1690dd41
JT
6325 if (err)
6326 btrfs_abort_transaction(trans, err);
fe66a05a 6327 }
1690dd41
JT
6328
6329 /* Return the original error code */
fe66a05a 6330 return ret;
39279cc3
CM
6331}
6332
6333static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6334 struct btrfs_inode *dir, struct dentry *dentry,
6335 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6336{
a1b075d2
JB
6337 int err = btrfs_add_link(trans, dir, inode,
6338 dentry->d_name.name, dentry->d_name.len,
6339 backref, index);
39279cc3
CM
6340 if (err > 0)
6341 err = -EEXIST;
6342 return err;
6343}
6344
549c7297
CB
6345static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6346 struct dentry *dentry, umode_t mode, dev_t rdev)
618e21d5 6347{
2ff7e61e 6348 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6349 struct btrfs_trans_handle *trans;
6350 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6351 struct inode *inode = NULL;
618e21d5 6352 int err;
618e21d5 6353 u64 objectid;
00e4e6b3 6354 u64 index = 0;
618e21d5 6355
9ed74f2d
JB
6356 /*
6357 * 2 for inode item and ref
6358 * 2 for dir items
6359 * 1 for xattr if selinux is on
6360 */
a22285a6
YZ
6361 trans = btrfs_start_transaction(root, 5);
6362 if (IS_ERR(trans))
6363 return PTR_ERR(trans);
1832a6d5 6364
543068a2 6365 err = btrfs_get_free_objectid(root, &objectid);
581bb050
LZ
6366 if (err)
6367 goto out_unlock;
6368
72105277 6369 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
b3b6f5b9
CB
6370 dentry->d_name.name, dentry->d_name.len,
6371 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
7cf96da3
TI
6372 if (IS_ERR(inode)) {
6373 err = PTR_ERR(inode);
32955c54 6374 inode = NULL;
618e21d5 6375 goto out_unlock;
7cf96da3 6376 }
618e21d5 6377
ad19db71
CS
6378 /*
6379 * If the active LSM wants to access the inode during
6380 * d_instantiate it needs these. Smack checks to see
6381 * if the filesystem supports xattrs by looking at the
6382 * ops vector.
6383 */
ad19db71 6384 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6385 init_special_inode(inode, inode->i_mode, rdev);
6386
6387 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6388 if (err)
32955c54 6389 goto out_unlock;
b0d5d10f 6390
cef415af
NB
6391 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6392 0, index);
32955c54
AV
6393 if (err)
6394 goto out_unlock;
6395
9a56fcd1 6396 btrfs_update_inode(trans, root, BTRFS_I(inode));
32955c54 6397 d_instantiate_new(dentry, inode);
b0d5d10f 6398
618e21d5 6399out_unlock:
3a45bb20 6400 btrfs_end_transaction(trans);
2ff7e61e 6401 btrfs_btree_balance_dirty(fs_info);
32955c54 6402 if (err && inode) {
618e21d5 6403 inode_dec_link_count(inode);
32955c54 6404 discard_new_inode(inode);
618e21d5 6405 }
618e21d5
JB
6406 return err;
6407}
6408
549c7297
CB
6409static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6410 struct dentry *dentry, umode_t mode, bool excl)
39279cc3 6411{
2ff7e61e 6412 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6413 struct btrfs_trans_handle *trans;
6414 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6415 struct inode *inode = NULL;
a22285a6 6416 int err;
39279cc3 6417 u64 objectid;
00e4e6b3 6418 u64 index = 0;
39279cc3 6419
9ed74f2d
JB
6420 /*
6421 * 2 for inode item and ref
6422 * 2 for dir items
6423 * 1 for xattr if selinux is on
6424 */
a22285a6
YZ
6425 trans = btrfs_start_transaction(root, 5);
6426 if (IS_ERR(trans))
6427 return PTR_ERR(trans);
9ed74f2d 6428
543068a2 6429 err = btrfs_get_free_objectid(root, &objectid);
581bb050
LZ
6430 if (err)
6431 goto out_unlock;
6432
e93ca491 6433 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
b3b6f5b9
CB
6434 dentry->d_name.name, dentry->d_name.len,
6435 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
7cf96da3
TI
6436 if (IS_ERR(inode)) {
6437 err = PTR_ERR(inode);
32955c54 6438 inode = NULL;
39279cc3 6439 goto out_unlock;
7cf96da3 6440 }
ad19db71
CS
6441 /*
6442 * If the active LSM wants to access the inode during
6443 * d_instantiate it needs these. Smack checks to see
6444 * if the filesystem supports xattrs by looking at the
6445 * ops vector.
6446 */
6447 inode->i_fop = &btrfs_file_operations;
6448 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6449 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6450
6451 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6452 if (err)
32955c54 6453 goto out_unlock;
b0d5d10f 6454
9a56fcd1 6455 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
b0d5d10f 6456 if (err)
32955c54 6457 goto out_unlock;
ad19db71 6458
cef415af
NB
6459 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6460 0, index);
39279cc3 6461 if (err)
32955c54 6462 goto out_unlock;
43baa579 6463
1e2e547a 6464 d_instantiate_new(dentry, inode);
43baa579 6465
39279cc3 6466out_unlock:
3a45bb20 6467 btrfs_end_transaction(trans);
32955c54 6468 if (err && inode) {
39279cc3 6469 inode_dec_link_count(inode);
32955c54 6470 discard_new_inode(inode);
39279cc3 6471 }
2ff7e61e 6472 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6473 return err;
6474}
6475
6476static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6477 struct dentry *dentry)
6478{
271dba45 6479 struct btrfs_trans_handle *trans = NULL;
39279cc3 6480 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6481 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6483 u64 index;
39279cc3
CM
6484 int err;
6485 int drop_inode = 0;
6486
4a8be425 6487 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6488 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6489 return -EXDEV;
4a8be425 6490
f186373f 6491 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6492 return -EMLINK;
4a8be425 6493
877574e2 6494 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6495 if (err)
6496 goto fail;
6497
a22285a6 6498 /*
7e6b6465 6499 * 2 items for inode and inode ref
a22285a6 6500 * 2 items for dir items
7e6b6465 6501 * 1 item for parent inode
399b0bbf 6502 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6503 */
399b0bbf 6504 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6505 if (IS_ERR(trans)) {
6506 err = PTR_ERR(trans);
271dba45 6507 trans = NULL;
a22285a6
YZ
6508 goto fail;
6509 }
5f39d397 6510
67de1176
MX
6511 /* There are several dir indexes for this inode, clear the cache. */
6512 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6513 inc_nlink(inode);
0c4d2d95 6514 inode_inc_iversion(inode);
c2050a45 6515 inode->i_ctime = current_time(inode);
7de9c6ee 6516 ihold(inode);
e9976151 6517 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6518
cef415af
NB
6519 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6520 1, index);
5f39d397 6521
a5719521 6522 if (err) {
54aa1f4d 6523 drop_inode = 1;
a5719521 6524 } else {
10d9f309 6525 struct dentry *parent = dentry->d_parent;
d4682ba0 6526
9a56fcd1 6527 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
79787eaa
JM
6528 if (err)
6529 goto fail;
ef3b9af5
FM
6530 if (inode->i_nlink == 1) {
6531 /*
6532 * If new hard link count is 1, it's a file created
6533 * with open(2) O_TMPFILE flag.
6534 */
3d6ae7bb 6535 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6536 if (err)
6537 goto fail;
6538 }
08c422c2 6539 d_instantiate(dentry, inode);
75b463d2 6540 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6541 }
39279cc3 6542
1832a6d5 6543fail:
271dba45 6544 if (trans)
3a45bb20 6545 btrfs_end_transaction(trans);
39279cc3
CM
6546 if (drop_inode) {
6547 inode_dec_link_count(inode);
6548 iput(inode);
6549 }
2ff7e61e 6550 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6551 return err;
6552}
6553
549c7297
CB
6554static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6555 struct dentry *dentry, umode_t mode)
39279cc3 6556{
2ff7e61e 6557 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6558 struct inode *inode = NULL;
39279cc3
CM
6559 struct btrfs_trans_handle *trans;
6560 struct btrfs_root *root = BTRFS_I(dir)->root;
6561 int err = 0;
b9d86667 6562 u64 objectid = 0;
00e4e6b3 6563 u64 index = 0;
39279cc3 6564
9ed74f2d
JB
6565 /*
6566 * 2 items for inode and ref
6567 * 2 items for dir items
6568 * 1 for xattr if selinux is on
6569 */
a22285a6
YZ
6570 trans = btrfs_start_transaction(root, 5);
6571 if (IS_ERR(trans))
6572 return PTR_ERR(trans);
39279cc3 6573
543068a2 6574 err = btrfs_get_free_objectid(root, &objectid);
581bb050
LZ
6575 if (err)
6576 goto out_fail;
6577
b0b3e44d 6578 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
b3b6f5b9
CB
6579 dentry->d_name.name, dentry->d_name.len,
6580 btrfs_ino(BTRFS_I(dir)), objectid,
f85b7379 6581 S_IFDIR | mode, &index);
39279cc3
CM
6582 if (IS_ERR(inode)) {
6583 err = PTR_ERR(inode);
32955c54 6584 inode = NULL;
39279cc3
CM
6585 goto out_fail;
6586 }
5f39d397 6587
b0d5d10f
CM
6588 /* these must be set before we unlock the inode */
6589 inode->i_op = &btrfs_dir_inode_operations;
6590 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6591
2a7dba39 6592 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6593 if (err)
32955c54 6594 goto out_fail;
39279cc3 6595
6ef06d27 6596 btrfs_i_size_write(BTRFS_I(inode), 0);
9a56fcd1 6597 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
39279cc3 6598 if (err)
32955c54 6599 goto out_fail;
5f39d397 6600
db0a669f
NB
6601 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6602 dentry->d_name.name,
6603 dentry->d_name.len, 0, index);
39279cc3 6604 if (err)
32955c54 6605 goto out_fail;
5f39d397 6606
1e2e547a 6607 d_instantiate_new(dentry, inode);
39279cc3
CM
6608
6609out_fail:
3a45bb20 6610 btrfs_end_transaction(trans);
32955c54 6611 if (err && inode) {
c7cfb8a5 6612 inode_dec_link_count(inode);
32955c54 6613 discard_new_inode(inode);
c7cfb8a5 6614 }
2ff7e61e 6615 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6616 return err;
6617}
6618
c8b97818 6619static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6620 struct page *page,
c8b97818
CM
6621 size_t pg_offset, u64 extent_offset,
6622 struct btrfs_file_extent_item *item)
6623{
6624 int ret;
6625 struct extent_buffer *leaf = path->nodes[0];
6626 char *tmp;
6627 size_t max_size;
6628 unsigned long inline_size;
6629 unsigned long ptr;
261507a0 6630 int compress_type;
c8b97818
CM
6631
6632 WARN_ON(pg_offset != 0);
261507a0 6633 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818 6634 max_size = btrfs_file_extent_ram_bytes(leaf, item);
437bd07e 6635 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
c8b97818 6636 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6637 if (!tmp)
6638 return -ENOMEM;
c8b97818
CM
6639 ptr = btrfs_file_extent_inline_start(item);
6640
6641 read_extent_buffer(leaf, tmp, ptr, inline_size);
6642
09cbfeaf 6643 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6644 ret = btrfs_decompress(compress_type, tmp, page,
6645 extent_offset, inline_size, max_size);
e1699d2d
ZB
6646
6647 /*
6648 * decompression code contains a memset to fill in any space between the end
6649 * of the uncompressed data and the end of max_size in case the decompressed
6650 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6651 * the end of an inline extent and the beginning of the next block, so we
6652 * cover that region here.
6653 */
6654
d048b9c2
IW
6655 if (max_size + pg_offset < PAGE_SIZE)
6656 memzero_page(page, pg_offset + max_size,
6657 PAGE_SIZE - max_size - pg_offset);
c8b97818 6658 kfree(tmp);
166ae5a4 6659 return ret;
c8b97818
CM
6660}
6661
39b07b5d
OS
6662/**
6663 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6664 * @inode: file to search in
6665 * @page: page to read extent data into if the extent is inline
6666 * @pg_offset: offset into @page to copy to
6667 * @start: file offset
6668 * @len: length of range starting at @start
6669 *
6670 * This returns the first &struct extent_map which overlaps with the given
6671 * range, reading it from the B-tree and caching it if necessary. Note that
6672 * there may be more extents which overlap the given range after the returned
6673 * extent_map.
d352ac68 6674 *
39b07b5d
OS
6675 * If @page is not NULL and the extent is inline, this also reads the extent
6676 * data directly into the page and marks the extent up to date in the io_tree.
6677 *
6678 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6679 */
fc4f21b1 6680struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6681 struct page *page, size_t pg_offset,
6682 u64 start, u64 len)
a52d9a80 6683{
3ffbd68c 6684 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1028d1c4 6685 int ret = 0;
a52d9a80
CM
6686 u64 extent_start = 0;
6687 u64 extent_end = 0;
fc4f21b1 6688 u64 objectid = btrfs_ino(inode);
7e74e235 6689 int extent_type = -1;
f421950f 6690 struct btrfs_path *path = NULL;
fc4f21b1 6691 struct btrfs_root *root = inode->root;
a52d9a80 6692 struct btrfs_file_extent_item *item;
5f39d397
CM
6693 struct extent_buffer *leaf;
6694 struct btrfs_key found_key;
a52d9a80 6695 struct extent_map *em = NULL;
fc4f21b1
NB
6696 struct extent_map_tree *em_tree = &inode->extent_tree;
6697 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6698
890871be 6699 read_lock(&em_tree->lock);
d1310b2e 6700 em = lookup_extent_mapping(em_tree, start, len);
890871be 6701 read_unlock(&em_tree->lock);
d1310b2e 6702
a52d9a80 6703 if (em) {
e1c4b745
CM
6704 if (em->start > start || em->start + em->len <= start)
6705 free_extent_map(em);
6706 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6707 free_extent_map(em);
6708 else
6709 goto out;
a52d9a80 6710 }
172ddd60 6711 em = alloc_extent_map();
a52d9a80 6712 if (!em) {
1028d1c4 6713 ret = -ENOMEM;
d1310b2e 6714 goto out;
a52d9a80 6715 }
d1310b2e 6716 em->start = EXTENT_MAP_HOLE;
445a6944 6717 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6718 em->len = (u64)-1;
c8b97818 6719 em->block_len = (u64)-1;
f421950f 6720
bee6ec82 6721 path = btrfs_alloc_path();
f421950f 6722 if (!path) {
1028d1c4 6723 ret = -ENOMEM;
bee6ec82 6724 goto out;
f421950f
CM
6725 }
6726
bee6ec82
LB
6727 /* Chances are we'll be called again, so go ahead and do readahead */
6728 path->reada = READA_FORWARD;
4d7240f0
JB
6729
6730 /*
6731 * The same explanation in load_free_space_cache applies here as well,
6732 * we only read when we're loading the free space cache, and at that
6733 * point the commit_root has everything we need.
6734 */
6735 if (btrfs_is_free_space_inode(inode)) {
6736 path->search_commit_root = 1;
6737 path->skip_locking = 1;
6738 }
51899412 6739
5c9a702e 6740 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80 6741 if (ret < 0) {
a52d9a80 6742 goto out;
b8eeab7f 6743 } else if (ret > 0) {
a52d9a80
CM
6744 if (path->slots[0] == 0)
6745 goto not_found;
6746 path->slots[0]--;
1028d1c4 6747 ret = 0;
a52d9a80
CM
6748 }
6749
5f39d397
CM
6750 leaf = path->nodes[0];
6751 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6752 struct btrfs_file_extent_item);
5f39d397 6753 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6754 if (found_key.objectid != objectid ||
694c12ed 6755 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6756 /*
6757 * If we backup past the first extent we want to move forward
6758 * and see if there is an extent in front of us, otherwise we'll
6759 * say there is a hole for our whole search range which can
6760 * cause problems.
6761 */
6762 extent_end = start;
6763 goto next;
a52d9a80
CM
6764 }
6765
694c12ed 6766 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6767 extent_start = found_key.offset;
a5eeb3d1 6768 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6769 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6770 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6771 /* Only regular file could have regular/prealloc extent */
6772 if (!S_ISREG(inode->vfs_inode.i_mode)) {
1028d1c4 6773 ret = -EUCLEAN;
6bf9e4bd
QW
6774 btrfs_crit(fs_info,
6775 "regular/prealloc extent found for non-regular inode %llu",
6776 btrfs_ino(inode));
6777 goto out;
6778 }
09ed2f16
LB
6779 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6780 extent_start);
694c12ed 6781 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6782 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6783 path->slots[0],
6784 extent_start);
9036c102 6785 }
25a50341 6786next:
9036c102
YZ
6787 if (start >= extent_end) {
6788 path->slots[0]++;
6789 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6790 ret = btrfs_next_leaf(root, path);
1028d1c4 6791 if (ret < 0)
9036c102 6792 goto out;
1028d1c4 6793 else if (ret > 0)
9036c102 6794 goto not_found;
1028d1c4 6795
9036c102 6796 leaf = path->nodes[0];
a52d9a80 6797 }
9036c102
YZ
6798 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6799 if (found_key.objectid != objectid ||
6800 found_key.type != BTRFS_EXTENT_DATA_KEY)
6801 goto not_found;
6802 if (start + len <= found_key.offset)
6803 goto not_found;
e2eca69d
WS
6804 if (start > found_key.offset)
6805 goto next;
02a033df
NB
6806
6807 /* New extent overlaps with existing one */
9036c102 6808 em->start = start;
70c8a91c 6809 em->orig_start = start;
9036c102 6810 em->len = found_key.offset - start;
02a033df
NB
6811 em->block_start = EXTENT_MAP_HOLE;
6812 goto insert;
9036c102
YZ
6813 }
6814
39b07b5d 6815 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6816
694c12ed
NB
6817 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6818 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6819 goto insert;
694c12ed 6820 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6821 unsigned long ptr;
a52d9a80 6822 char *map;
3326d1b0
CM
6823 size_t size;
6824 size_t extent_offset;
6825 size_t copy_size;
a52d9a80 6826
39b07b5d 6827 if (!page)
689f9346 6828 goto out;
5f39d397 6829
e41ca589 6830 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6831 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6832 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6833 size - extent_offset);
3326d1b0 6834 em->start = extent_start + extent_offset;
0b246afa 6835 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6836 em->orig_block_len = em->len;
70c8a91c 6837 em->orig_start = em->start;
689f9346 6838 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9 6839
bf46f52d 6840 if (!PageUptodate(page)) {
261507a0
LZ
6841 if (btrfs_file_extent_compression(leaf, item) !=
6842 BTRFS_COMPRESS_NONE) {
e40da0e5 6843 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6844 extent_offset, item);
1028d1c4 6845 if (ret)
166ae5a4 6846 goto out;
c8b97818 6847 } else {
58c1a35c 6848 map = kmap_local_page(page);
c8b97818
CM
6849 read_extent_buffer(leaf, map + pg_offset, ptr,
6850 copy_size);
09cbfeaf 6851 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6852 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6853 PAGE_SIZE - pg_offset -
93c82d57
CM
6854 copy_size);
6855 }
58c1a35c 6856 kunmap_local(map);
c8b97818 6857 }
179e29e4 6858 flush_dcache_page(page);
a52d9a80 6859 }
d1310b2e 6860 set_extent_uptodate(io_tree, em->start,
507903b8 6861 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6862 goto insert;
a52d9a80
CM
6863 }
6864not_found:
6865 em->start = start;
70c8a91c 6866 em->orig_start = start;
d1310b2e 6867 em->len = len;
5f39d397 6868 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6869insert:
1028d1c4 6870 ret = 0;
b3b4aa74 6871 btrfs_release_path(path);
d1310b2e 6872 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6873 btrfs_err(fs_info,
5d163e0e
JM
6874 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6875 em->start, em->len, start, len);
1028d1c4 6876 ret = -EIO;
a52d9a80
CM
6877 goto out;
6878 }
d1310b2e 6879
890871be 6880 write_lock(&em_tree->lock);
1028d1c4 6881 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6882 write_unlock(&em_tree->lock);
a52d9a80 6883out:
c6414280 6884 btrfs_free_path(path);
1abe9b8a 6885
fc4f21b1 6886 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6887
1028d1c4 6888 if (ret) {
a52d9a80 6889 free_extent_map(em);
1028d1c4 6890 return ERR_PTR(ret);
a52d9a80
CM
6891 }
6892 return em;
6893}
6894
fc4f21b1 6895struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6896 u64 start, u64 len)
ec29ed5b
CM
6897{
6898 struct extent_map *em;
6899 struct extent_map *hole_em = NULL;
f3714ef4 6900 u64 delalloc_start = start;
ec29ed5b 6901 u64 end;
f3714ef4
NB
6902 u64 delalloc_len;
6903 u64 delalloc_end;
ec29ed5b
CM
6904 int err = 0;
6905
39b07b5d 6906 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6907 if (IS_ERR(em))
6908 return em;
9986277e
DC
6909 /*
6910 * If our em maps to:
6911 * - a hole or
6912 * - a pre-alloc extent,
6913 * there might actually be delalloc bytes behind it.
6914 */
6915 if (em->block_start != EXTENT_MAP_HOLE &&
6916 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6917 return em;
6918 else
6919 hole_em = em;
ec29ed5b
CM
6920
6921 /* check to see if we've wrapped (len == -1 or similar) */
6922 end = start + len;
6923 if (end < start)
6924 end = (u64)-1;
6925 else
6926 end -= 1;
6927
6928 em = NULL;
6929
6930 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6931 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6932 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6933 delalloc_end = delalloc_start + delalloc_len;
6934 if (delalloc_end < delalloc_start)
6935 delalloc_end = (u64)-1;
ec29ed5b
CM
6936
6937 /*
f3714ef4
NB
6938 * We didn't find anything useful, return the original results from
6939 * get_extent()
ec29ed5b 6940 */
f3714ef4 6941 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6942 em = hole_em;
6943 hole_em = NULL;
6944 goto out;
6945 }
6946
f3714ef4
NB
6947 /*
6948 * Adjust the delalloc_start to make sure it doesn't go backwards from
6949 * the start they passed in
ec29ed5b 6950 */
f3714ef4
NB
6951 delalloc_start = max(start, delalloc_start);
6952 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6953
f3714ef4
NB
6954 if (delalloc_len > 0) {
6955 u64 hole_start;
02950af4 6956 u64 hole_len;
f3714ef4 6957 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6958
172ddd60 6959 em = alloc_extent_map();
ec29ed5b
CM
6960 if (!em) {
6961 err = -ENOMEM;
6962 goto out;
6963 }
f3714ef4
NB
6964
6965 ASSERT(hole_em);
ec29ed5b 6966 /*
f3714ef4
NB
6967 * When btrfs_get_extent can't find anything it returns one
6968 * huge hole
ec29ed5b 6969 *
f3714ef4
NB
6970 * Make sure what it found really fits our range, and adjust to
6971 * make sure it is based on the start from the caller
ec29ed5b 6972 */
f3714ef4
NB
6973 if (hole_end <= start || hole_em->start > end) {
6974 free_extent_map(hole_em);
6975 hole_em = NULL;
6976 } else {
6977 hole_start = max(hole_em->start, start);
6978 hole_len = hole_end - hole_start;
ec29ed5b 6979 }
f3714ef4
NB
6980
6981 if (hole_em && delalloc_start > hole_start) {
6982 /*
6983 * Our hole starts before our delalloc, so we have to
6984 * return just the parts of the hole that go until the
6985 * delalloc starts
ec29ed5b 6986 */
f3714ef4 6987 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6988 em->start = hole_start;
6989 em->orig_start = hole_start;
6990 /*
f3714ef4
NB
6991 * Don't adjust block start at all, it is fixed at
6992 * EXTENT_MAP_HOLE
ec29ed5b
CM
6993 */
6994 em->block_start = hole_em->block_start;
6995 em->block_len = hole_len;
f9e4fb53
LB
6996 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6997 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6998 } else {
f3714ef4
NB
6999 /*
7000 * Hole is out of passed range or it starts after
7001 * delalloc range
7002 */
7003 em->start = delalloc_start;
7004 em->len = delalloc_len;
7005 em->orig_start = delalloc_start;
ec29ed5b 7006 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 7007 em->block_len = delalloc_len;
ec29ed5b 7008 }
bf8d32b9 7009 } else {
ec29ed5b
CM
7010 return hole_em;
7011 }
7012out:
7013
7014 free_extent_map(hole_em);
7015 if (err) {
7016 free_extent_map(em);
7017 return ERR_PTR(err);
7018 }
7019 return em;
7020}
7021
64f54188 7022static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
7023 const u64 start,
7024 const u64 len,
7025 const u64 orig_start,
7026 const u64 block_start,
7027 const u64 block_len,
7028 const u64 orig_block_len,
7029 const u64 ram_bytes,
7030 const int type)
7031{
7032 struct extent_map *em = NULL;
7033 int ret;
7034
5f9a8a51 7035 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
7036 em = create_io_em(inode, start, len, orig_start, block_start,
7037 block_len, orig_block_len, ram_bytes,
6f9994db
LB
7038 BTRFS_COMPRESS_NONE, /* compress_type */
7039 type);
5f9a8a51
FM
7040 if (IS_ERR(em))
7041 goto out;
7042 }
64f54188
NB
7043 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7044 block_len, type);
5f9a8a51
FM
7045 if (ret) {
7046 if (em) {
7047 free_extent_map(em);
64f54188 7048 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5f9a8a51
FM
7049 }
7050 em = ERR_PTR(ret);
7051 }
7052 out:
5f9a8a51
FM
7053
7054 return em;
7055}
7056
9fc6f911 7057static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
7058 u64 start, u64 len)
7059{
9fc6f911
NB
7060 struct btrfs_root *root = inode->root;
7061 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 7062 struct extent_map *em;
4b46fce2
JB
7063 struct btrfs_key ins;
7064 u64 alloc_hint;
7065 int ret;
4b46fce2 7066
9fc6f911 7067 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7068 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7069 0, alloc_hint, &ins, 1, 1);
00361589
JB
7070 if (ret)
7071 return ERR_PTR(ret);
4b46fce2 7072
9fc6f911 7073 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 7074 ins.objectid, ins.offset, ins.offset,
6288d6ea 7075 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7076 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7077 if (IS_ERR(em))
9fc6f911
NB
7078 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7079 1);
de0ee0ed 7080
4b46fce2
JB
7081 return em;
7082}
7083
f4639636 7084static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
05947ae1
AJ
7085{
7086 struct btrfs_block_group *block_group;
f4639636 7087 bool readonly = false;
05947ae1
AJ
7088
7089 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7090 if (!block_group || block_group->ro)
f4639636 7091 readonly = true;
05947ae1
AJ
7092 if (block_group)
7093 btrfs_put_block_group(block_group);
7094 return readonly;
7095}
7096
46bfbb5c 7097/*
e4ecaf90
QW
7098 * Check if we can do nocow write into the range [@offset, @offset + @len)
7099 *
7100 * @offset: File offset
7101 * @len: The length to write, will be updated to the nocow writeable
7102 * range
7103 * @orig_start: (optional) Return the original file offset of the file extent
7104 * @orig_len: (optional) Return the original on-disk length of the file extent
7105 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
7106 * @strict: if true, omit optimizations that might force us into unnecessary
7107 * cow. e.g., don't trust generation number.
e4ecaf90 7108 *
e4ecaf90
QW
7109 * Return:
7110 * >0 and update @len if we can do nocow write
7111 * 0 if we can't do nocow write
7112 * <0 if error happened
7113 *
7114 * NOTE: This only checks the file extents, caller is responsible to wait for
7115 * any ordered extents.
46bfbb5c 7116 */
00361589 7117noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 7118 u64 *orig_start, u64 *orig_block_len,
a84d5d42 7119 u64 *ram_bytes, bool strict)
46bfbb5c 7120{
2ff7e61e 7121 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7122 struct btrfs_path *path;
7123 int ret;
7124 struct extent_buffer *leaf;
7125 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7126 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7127 struct btrfs_file_extent_item *fi;
7128 struct btrfs_key key;
7129 u64 disk_bytenr;
7130 u64 backref_offset;
7131 u64 extent_end;
7132 u64 num_bytes;
7133 int slot;
7134 int found_type;
7ee9e440 7135 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7136
46bfbb5c
CM
7137 path = btrfs_alloc_path();
7138 if (!path)
7139 return -ENOMEM;
7140
f85b7379
DS
7141 ret = btrfs_lookup_file_extent(NULL, root, path,
7142 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7143 if (ret < 0)
7144 goto out;
7145
7146 slot = path->slots[0];
7147 if (ret == 1) {
7148 if (slot == 0) {
7149 /* can't find the item, must cow */
7150 ret = 0;
7151 goto out;
7152 }
7153 slot--;
7154 }
7155 ret = 0;
7156 leaf = path->nodes[0];
7157 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7158 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7159 key.type != BTRFS_EXTENT_DATA_KEY) {
7160 /* not our file or wrong item type, must cow */
7161 goto out;
7162 }
7163
7164 if (key.offset > offset) {
7165 /* Wrong offset, must cow */
7166 goto out;
7167 }
7168
7169 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7170 found_type = btrfs_file_extent_type(leaf, fi);
7171 if (found_type != BTRFS_FILE_EXTENT_REG &&
7172 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7173 /* not a regular extent, must cow */
7174 goto out;
7175 }
7ee9e440
JB
7176
7177 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7178 goto out;
7179
e77751aa
MX
7180 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7181 if (extent_end <= offset)
7182 goto out;
7183
46bfbb5c 7184 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7185 if (disk_bytenr == 0)
7186 goto out;
7187
7188 if (btrfs_file_extent_compression(leaf, fi) ||
7189 btrfs_file_extent_encryption(leaf, fi) ||
7190 btrfs_file_extent_other_encoding(leaf, fi))
7191 goto out;
7192
78d4295b
EL
7193 /*
7194 * Do the same check as in btrfs_cross_ref_exist but without the
7195 * unnecessary search.
7196 */
a84d5d42
BB
7197 if (!strict &&
7198 (btrfs_file_extent_generation(leaf, fi) <=
7199 btrfs_root_last_snapshot(&root->root_item)))
78d4295b
EL
7200 goto out;
7201
46bfbb5c
CM
7202 backref_offset = btrfs_file_extent_offset(leaf, fi);
7203
7ee9e440
JB
7204 if (orig_start) {
7205 *orig_start = key.offset - backref_offset;
7206 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7207 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7208 }
eb384b55 7209
2ff7e61e 7210 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7211 goto out;
7b2b7085
MX
7212
7213 num_bytes = min(offset + *len, extent_end) - offset;
7214 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7215 u64 range_end;
7216
da17066c
JM
7217 range_end = round_up(offset + num_bytes,
7218 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7219 ret = test_range_bit(io_tree, offset, range_end,
7220 EXTENT_DELALLOC, 0, NULL);
7221 if (ret) {
7222 ret = -EAGAIN;
7223 goto out;
7224 }
7225 }
7226
1bda19eb 7227 btrfs_release_path(path);
46bfbb5c
CM
7228
7229 /*
7230 * look for other files referencing this extent, if we
7231 * find any we must cow
7232 */
00361589 7233
e4c3b2dc 7234 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
a84d5d42
BB
7235 key.offset - backref_offset, disk_bytenr,
7236 strict);
00361589
JB
7237 if (ret) {
7238 ret = 0;
7239 goto out;
7240 }
46bfbb5c
CM
7241
7242 /*
7243 * adjust disk_bytenr and num_bytes to cover just the bytes
7244 * in this extent we are about to write. If there
7245 * are any csums in that range we have to cow in order
7246 * to keep the csums correct
7247 */
7248 disk_bytenr += backref_offset;
7249 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7250 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7251 goto out;
46bfbb5c
CM
7252 /*
7253 * all of the above have passed, it is safe to overwrite this extent
7254 * without cow
7255 */
eb384b55 7256 *len = num_bytes;
46bfbb5c
CM
7257 ret = 1;
7258out:
7259 btrfs_free_path(path);
7260 return ret;
7261}
7262
eb838e73 7263static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
f85781fb 7264 struct extent_state **cached_state, bool writing)
eb838e73
JB
7265{
7266 struct btrfs_ordered_extent *ordered;
7267 int ret = 0;
7268
7269 while (1) {
7270 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7271 cached_state);
eb838e73
JB
7272 /*
7273 * We're concerned with the entire range that we're going to be
01327610 7274 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7275 * extents in this range.
7276 */
a776c6fa 7277 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7278 lockend - lockstart + 1);
7279
7280 /*
7281 * We need to make sure there are no buffered pages in this
7282 * range either, we could have raced between the invalidate in
7283 * generic_file_direct_write and locking the extent. The
7284 * invalidate needs to happen so that reads after a write do not
7285 * get stale data.
7286 */
fc4adbff 7287 if (!ordered &&
051c98eb
DS
7288 (!writing || !filemap_range_has_page(inode->i_mapping,
7289 lockstart, lockend)))
eb838e73
JB
7290 break;
7291
7292 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7293 cached_state);
eb838e73
JB
7294
7295 if (ordered) {
ade77029
FM
7296 /*
7297 * If we are doing a DIO read and the ordered extent we
7298 * found is for a buffered write, we can not wait for it
7299 * to complete and retry, because if we do so we can
7300 * deadlock with concurrent buffered writes on page
7301 * locks. This happens only if our DIO read covers more
7302 * than one extent map, if at this point has already
7303 * created an ordered extent for a previous extent map
7304 * and locked its range in the inode's io tree, and a
7305 * concurrent write against that previous extent map's
7306 * range and this range started (we unlock the ranges
7307 * in the io tree only when the bios complete and
7308 * buffered writes always lock pages before attempting
7309 * to lock range in the io tree).
7310 */
7311 if (writing ||
7312 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
c0a43603 7313 btrfs_start_ordered_extent(ordered, 1);
ade77029
FM
7314 else
7315 ret = -ENOTBLK;
eb838e73
JB
7316 btrfs_put_ordered_extent(ordered);
7317 } else {
eb838e73 7318 /*
b850ae14
FM
7319 * We could trigger writeback for this range (and wait
7320 * for it to complete) and then invalidate the pages for
7321 * this range (through invalidate_inode_pages2_range()),
7322 * but that can lead us to a deadlock with a concurrent
ba206a02 7323 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7324 * triggered a readahead) on a page lock due to an
7325 * ordered dio extent we created before but did not have
7326 * yet a corresponding bio submitted (whence it can not
ba206a02 7327 * complete), which makes readahead wait for that
b850ae14
FM
7328 * ordered extent to complete while holding a lock on
7329 * that page.
eb838e73 7330 */
b850ae14 7331 ret = -ENOTBLK;
eb838e73
JB
7332 }
7333
ade77029
FM
7334 if (ret)
7335 break;
7336
eb838e73
JB
7337 cond_resched();
7338 }
7339
7340 return ret;
7341}
7342
6f9994db 7343/* The callers of this must take lock_extent() */
4b67c11d
NB
7344static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7345 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7346 u64 block_len, u64 orig_block_len,
7347 u64 ram_bytes, int compress_type,
7348 int type)
69ffb543
JB
7349{
7350 struct extent_map_tree *em_tree;
7351 struct extent_map *em;
69ffb543
JB
7352 int ret;
7353
6f9994db
LB
7354 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7355 type == BTRFS_ORDERED_COMPRESSED ||
7356 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7357 type == BTRFS_ORDERED_REGULAR);
6f9994db 7358
4b67c11d 7359 em_tree = &inode->extent_tree;
69ffb543
JB
7360 em = alloc_extent_map();
7361 if (!em)
7362 return ERR_PTR(-ENOMEM);
7363
7364 em->start = start;
7365 em->orig_start = orig_start;
7366 em->len = len;
7367 em->block_len = block_len;
7368 em->block_start = block_start;
b4939680 7369 em->orig_block_len = orig_block_len;
cc95bef6 7370 em->ram_bytes = ram_bytes;
70c8a91c 7371 em->generation = -1;
69ffb543 7372 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7373 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7374 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7375 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7376 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7377 em->compress_type = compress_type;
7378 }
69ffb543
JB
7379
7380 do {
4b67c11d
NB
7381 btrfs_drop_extent_cache(inode, em->start,
7382 em->start + em->len - 1, 0);
69ffb543 7383 write_lock(&em_tree->lock);
09a2a8f9 7384 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7385 write_unlock(&em_tree->lock);
6f9994db
LB
7386 /*
7387 * The caller has taken lock_extent(), who could race with us
7388 * to add em?
7389 */
69ffb543
JB
7390 } while (ret == -EEXIST);
7391
7392 if (ret) {
7393 free_extent_map(em);
7394 return ERR_PTR(ret);
7395 }
7396
6f9994db 7397 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7398 return em;
7399}
7400
1c8d0175 7401
c5794e51 7402static int btrfs_get_blocks_direct_write(struct extent_map **map,
c5794e51
NB
7403 struct inode *inode,
7404 struct btrfs_dio_data *dio_data,
7405 u64 start, u64 len)
7406{
7407 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7408 struct extent_map *em = *map;
f0bfa76a
FM
7409 int type;
7410 u64 block_start, orig_start, orig_block_len, ram_bytes;
7411 bool can_nocow = false;
7412 bool space_reserved = false;
c5794e51
NB
7413 int ret = 0;
7414
7415 /*
7416 * We don't allocate a new extent in the following cases
7417 *
7418 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7419 * existing extent.
7420 * 2) The extent is marked as PREALLOC. We're good to go here and can
7421 * just use the extent.
7422 *
7423 */
7424 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7425 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7426 em->block_start != EXTENT_MAP_HOLE)) {
c5794e51
NB
7427 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7428 type = BTRFS_ORDERED_PREALLOC;
7429 else
7430 type = BTRFS_ORDERED_NOCOW;
7431 len = min(len, em->len - (start - em->start));
7432 block_start = em->block_start + (start - em->start);
7433
7434 if (can_nocow_extent(inode, start, &len, &orig_start,
a84d5d42 7435 &orig_block_len, &ram_bytes, false) == 1 &&
f0bfa76a
FM
7436 btrfs_inc_nocow_writers(fs_info, block_start))
7437 can_nocow = true;
7438 }
c5794e51 7439
f0bfa76a
FM
7440 if (can_nocow) {
7441 struct extent_map *em2;
7442
7443 /* We can NOCOW, so only need to reserve metadata space. */
7444 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
7445 if (ret < 0) {
7446 /* Our caller expects us to free the input extent map. */
7447 free_extent_map(em);
7448 *map = NULL;
c5794e51 7449 btrfs_dec_nocow_writers(fs_info, block_start);
f0bfa76a
FM
7450 goto out;
7451 }
7452 space_reserved = true;
7453
7454 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7455 orig_start, block_start,
7456 len, orig_block_len,
7457 ram_bytes, type);
7458 btrfs_dec_nocow_writers(fs_info, block_start);
7459 if (type == BTRFS_ORDERED_PREALLOC) {
7460 free_extent_map(em);
7461 *map = em = em2;
7462 }
c5794e51 7463
f0bfa76a
FM
7464 if (IS_ERR(em2)) {
7465 ret = PTR_ERR(em2);
7466 goto out;
c5794e51 7467 }
f0bfa76a
FM
7468 } else {
7469 const u64 prev_len = len;
c5794e51 7470
f0bfa76a
FM
7471 /* Our caller expects us to free the input extent map. */
7472 free_extent_map(em);
7473 *map = NULL;
7474
7475 /* We have to COW, so need to reserve metadata and data space. */
7476 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7477 &dio_data->data_reserved,
7478 start, len);
7479 if (ret < 0)
7480 goto out;
7481 space_reserved = true;
7482
7483 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7484 if (IS_ERR(em)) {
7485 ret = PTR_ERR(em);
7486 goto out;
7487 }
7488 *map = em;
7489 len = min(len, em->len - (start - em->start));
7490 if (len < prev_len)
7491 btrfs_delalloc_release_space(BTRFS_I(inode),
7492 dio_data->data_reserved,
7493 start + len, prev_len - len,
7494 true);
c5794e51
NB
7495 }
7496
f0bfa76a
FM
7497 /*
7498 * We have created our ordered extent, so we can now release our reservation
7499 * for an outstanding extent.
7500 */
7501 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
c5794e51 7502
c5794e51
NB
7503 /*
7504 * Need to update the i_size under the extent lock so buffered
7505 * readers will get the updated i_size when we unlock.
7506 */
f85781fb 7507 if (start + len > i_size_read(inode))
c5794e51 7508 i_size_write(inode, start + len);
c5794e51 7509out:
f0bfa76a
FM
7510 if (ret && space_reserved) {
7511 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7512 if (can_nocow) {
7513 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7514 } else {
7515 btrfs_delalloc_release_space(BTRFS_I(inode),
7516 dio_data->data_reserved,
7517 start, len, true);
7518 extent_changeset_free(dio_data->data_reserved);
7519 dio_data->data_reserved = NULL;
7520 }
7521 }
c5794e51
NB
7522 return ret;
7523}
7524
f85781fb
GR
7525static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7526 loff_t length, unsigned int flags, struct iomap *iomap,
7527 struct iomap *srcmap)
4b46fce2 7528{
0b246afa 7529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7530 struct extent_map *em;
eb838e73 7531 struct extent_state *cached_state = NULL;
50745b0a 7532 struct btrfs_dio_data *dio_data = NULL;
eb838e73 7533 u64 lockstart, lockend;
f85781fb 7534 const bool write = !!(flags & IOMAP_WRITE);
0934856d 7535 int ret = 0;
f85781fb
GR
7536 u64 len = length;
7537 bool unlock_extents = false;
eb838e73 7538
f85781fb 7539 if (!write)
0b246afa 7540 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7541
c329861d
JB
7542 lockstart = start;
7543 lockend = start + len - 1;
7544
f85781fb
GR
7545 /*
7546 * The generic stuff only does filemap_write_and_wait_range, which
7547 * isn't enough if we've written compressed pages to this area, so we
7548 * need to flush the dirty pages again to make absolutely sure that any
7549 * outstanding dirty pages are on disk.
7550 */
7551 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7552 &BTRFS_I(inode)->runtime_flags)) {
7553 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7554 start + length - 1);
7555 if (ret)
7556 return ret;
7557 }
7558
7559 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7560 if (!dio_data)
7561 return -ENOMEM;
7562
f85781fb
GR
7563 iomap->private = dio_data;
7564
e1cbbfa5 7565
eb838e73
JB
7566 /*
7567 * If this errors out it's because we couldn't invalidate pagecache for
7568 * this range and we need to fallback to buffered.
7569 */
f85781fb 7570 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
9c9464cc
FM
7571 ret = -ENOTBLK;
7572 goto err;
7573 }
eb838e73 7574
39b07b5d 7575 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7576 if (IS_ERR(em)) {
7577 ret = PTR_ERR(em);
7578 goto unlock_err;
7579 }
4b46fce2
JB
7580
7581 /*
7582 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7583 * io. INLINE is special, and we could probably kludge it in here, but
7584 * it's still buffered so for safety lets just fall back to the generic
7585 * buffered path.
7586 *
7587 * For COMPRESSED we _have_ to read the entire extent in so we can
7588 * decompress it, so there will be buffering required no matter what we
7589 * do, so go ahead and fallback to buffered.
7590 *
01327610 7591 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7592 * to buffered IO. Don't blame me, this is the price we pay for using
7593 * the generic code.
7594 */
7595 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7596 em->block_start == EXTENT_MAP_INLINE) {
7597 free_extent_map(em);
eb838e73
JB
7598 ret = -ENOTBLK;
7599 goto unlock_err;
4b46fce2
JB
7600 }
7601
f85781fb
GR
7602 len = min(len, em->len - (start - em->start));
7603 if (write) {
7604 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7605 start, len);
c5794e51
NB
7606 if (ret < 0)
7607 goto unlock_err;
f85781fb
GR
7608 unlock_extents = true;
7609 /* Recalc len in case the new em is smaller than requested */
7610 len = min(len, em->len - (start - em->start));
c5794e51 7611 } else {
1c8d0175
NB
7612 /*
7613 * We need to unlock only the end area that we aren't using.
7614 * The rest is going to be unlocked by the endio routine.
7615 */
f85781fb
GR
7616 lockstart = start + len;
7617 if (lockstart < lockend)
7618 unlock_extents = true;
7619 }
7620
7621 if (unlock_extents)
7622 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7623 lockstart, lockend, &cached_state);
7624 else
7625 free_extent_state(cached_state);
7626
7627 /*
7628 * Translate extent map information to iomap.
7629 * We trim the extents (and move the addr) even though iomap code does
7630 * that, since we have locked only the parts we are performing I/O in.
7631 */
7632 if ((em->block_start == EXTENT_MAP_HOLE) ||
7633 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7634 iomap->addr = IOMAP_NULL_ADDR;
7635 iomap->type = IOMAP_HOLE;
7636 } else {
7637 iomap->addr = em->block_start + (start - em->start);
7638 iomap->type = IOMAP_MAPPED;
a43a67a2 7639 }
f85781fb 7640 iomap->offset = start;
d24fa5c1 7641 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
f85781fb 7642 iomap->length = len;
a43a67a2 7643
e380adfc 7644 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
544d24f9
NA
7645 iomap->flags |= IOMAP_F_ZONE_APPEND;
7646
4b46fce2
JB
7647 free_extent_map(em);
7648
7649 return 0;
eb838e73
JB
7650
7651unlock_err:
e182163d
OS
7652 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7653 &cached_state);
9c9464cc 7654err:
f0bfa76a
FM
7655 kfree(dio_data);
7656
f85781fb
GR
7657 return ret;
7658}
7659
7660static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7661 ssize_t written, unsigned int flags, struct iomap *iomap)
7662{
7663 int ret = 0;
7664 struct btrfs_dio_data *dio_data = iomap->private;
7665 size_t submitted = dio_data->submitted;
7666 const bool write = !!(flags & IOMAP_WRITE);
7667
7668 if (!write && (iomap->type == IOMAP_HOLE)) {
7669 /* If reading from a hole, unlock and return */
7670 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7671 goto out;
7672 }
7673
7674 if (submitted < length) {
7675 pos += submitted;
7676 length -= submitted;
7677 if (write)
7678 __endio_write_update_ordered(BTRFS_I(inode), pos,
7679 length, false);
7680 else
7681 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7682 pos + length - 1);
7683 ret = -ENOTBLK;
7684 }
7685
f0bfa76a 7686 if (write)
f85781fb 7687 extent_changeset_free(dio_data->data_reserved);
f85781fb
GR
7688out:
7689 kfree(dio_data);
7690 iomap->private = NULL;
7691
8b110e39
MX
7692 return ret;
7693}
7694
769b4f24 7695static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7696{
769b4f24
OS
7697 /*
7698 * This implies a barrier so that stores to dio_bio->bi_status before
7699 * this and loads of dio_bio->bi_status after this are fully ordered.
7700 */
7701 if (!refcount_dec_and_test(&dip->refs))
7702 return;
8b110e39 7703
cfe94440 7704 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
b672b5c1 7705 __endio_write_update_ordered(BTRFS_I(dip->inode),
47926ab5 7706 dip->file_offset,
769b4f24
OS
7707 dip->bytes,
7708 !dip->dio_bio->bi_status);
7709 } else {
7710 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
47926ab5
QW
7711 dip->file_offset,
7712 dip->file_offset + dip->bytes - 1);
8b110e39
MX
7713 }
7714
f85781fb 7715 bio_endio(dip->dio_bio);
769b4f24 7716 kfree(dip);
8b110e39
MX
7717}
7718
77d5d689
OS
7719static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7720 int mirror_num,
7721 unsigned long bio_flags)
8b110e39 7722{
77d5d689 7723 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7724 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7725 blk_status_t ret;
8b110e39 7726
37226b21 7727 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7728
5c047a69 7729 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7730 if (ret)
ea057f6d 7731 return ret;
8b110e39 7732
77d5d689 7733 refcount_inc(&dip->refs);
08635bae 7734 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7735 if (ret)
fd9d6670 7736 refcount_dec(&dip->refs);
77d5d689 7737 return ret;
8b110e39
MX
7738}
7739
f4f39fc5 7740static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
c3a3b19b 7741 struct btrfs_bio *bbio,
fd9d6670 7742 const bool uptodate)
4b46fce2 7743{
f4f39fc5 7744 struct inode *inode = dip->inode;
fd9d6670
OS
7745 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7746 const u32 sectorsize = fs_info->sectorsize;
7747 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7748 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7749 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7750 struct bio_vec bvec;
7751 struct bvec_iter iter;
f4f39fc5
QW
7752 const u64 orig_file_offset = dip->file_offset;
7753 u64 start = orig_file_offset;
7ffd27e3 7754 u32 bio_offset = 0;
58efbc9f 7755 blk_status_t err = BLK_STS_OK;
4b46fce2 7756
c3a3b19b 7757 __bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
fd9d6670 7758 unsigned int i, nr_sectors, pgoff;
8b110e39 7759
17347cec
LB
7760 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7761 pgoff = bvec.bv_offset;
fd9d6670 7762 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7763 ASSERT(pgoff < PAGE_SIZE);
fd9d6670 7764 if (uptodate &&
c3a3b19b 7765 (!csum || !check_data_csum(inode, bbio,
c1d6abda
OS
7766 bio_offset, bvec.bv_page,
7767 pgoff, start))) {
fd9d6670
OS
7768 clean_io_failure(fs_info, failure_tree, io_tree,
7769 start, bvec.bv_page,
7770 btrfs_ino(BTRFS_I(inode)),
7771 pgoff);
7772 } else {
150e4b05 7773 int ret;
fd9d6670 7774
f4f39fc5 7775 ASSERT((start - orig_file_offset) < UINT_MAX);
150e4b05 7776 ret = btrfs_repair_one_sector(inode,
c3a3b19b 7777 &bbio->bio,
f4f39fc5 7778 start - orig_file_offset,
150e4b05 7779 bvec.bv_page, pgoff,
c3a3b19b 7780 start, bbio->mirror_num,
150e4b05
QW
7781 submit_dio_repair_bio);
7782 if (ret)
7783 err = errno_to_blk_status(ret);
fd9d6670
OS
7784 }
7785 start += sectorsize;
7ffd27e3
QW
7786 ASSERT(bio_offset + sectorsize > bio_offset);
7787 bio_offset += sectorsize;
2dabb324 7788 pgoff += sectorsize;
2dabb324 7789 }
2c30c71b 7790 }
c1dc0896
MX
7791 return err;
7792}
7793
b672b5c1 7794static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
7795 const u64 offset, const u64 bytes,
7796 const bool uptodate)
4b46fce2 7797{
e65f152e
QW
7798 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
7799 finish_ordered_fn, uptodate);
14543774
FM
7800}
7801
8896a08d 7802static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
1941b64b
QW
7803 struct bio *bio,
7804 u64 dio_file_offset)
eaf25d93 7805{
1941b64b 7806 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
eaf25d93
CM
7807}
7808
4246a0b6 7809static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7810{
7811 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7812 blk_status_t err = bio->bi_status;
e65e1535 7813
8b110e39
MX
7814 if (err)
7815 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7816 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379 7817 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
1201b58b 7818 bio->bi_opf, bio->bi_iter.bi_sector,
8b110e39
MX
7819 bio->bi_iter.bi_size, err);
7820
f4f39fc5
QW
7821 if (bio_op(bio) == REQ_OP_READ)
7822 err = btrfs_check_read_dio_bio(dip, btrfs_bio(bio), !err);
e65e1535 7823
769b4f24
OS
7824 if (err)
7825 dip->dio_bio->bi_status = err;
e65e1535 7826
47926ab5 7827 btrfs_record_physical_zoned(dip->inode, dip->file_offset, bio);
544d24f9 7828
e65e1535 7829 bio_put(bio);
769b4f24 7830 btrfs_dio_private_put(dip);
c1dc0896
MX
7831}
7832
d0ee3934
DS
7833static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7834 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7835{
0b246afa 7836 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7837 struct btrfs_dio_private *dip = bio->bi_private;
cfe94440 7838 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
4e4cbee9 7839 blk_status_t ret;
e65e1535 7840
4c274bc6 7841 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7842 if (async_submit)
7843 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7844
5fd02043 7845 if (!write) {
0b246afa 7846 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7847 if (ret)
7848 goto err;
7849 }
e65e1535 7850
e6961cac 7851 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7852 goto map;
7853
7854 if (write && async_submit) {
1941b64b 7855 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
e288c080 7856 btrfs_submit_bio_start_direct_io);
e65e1535 7857 goto err;
1ae39938
JB
7858 } else if (write) {
7859 /*
7860 * If we aren't doing async submit, calculate the csum of the
7861 * bio now.
7862 */
bd242a08 7863 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7864 if (ret)
7865 goto err;
23ea8e5a 7866 } else {
85879573
OS
7867 u64 csum_offset;
7868
47926ab5 7869 csum_offset = file_offset - dip->file_offset;
265fdfa6 7870 csum_offset >>= fs_info->sectorsize_bits;
55fc29be 7871 csum_offset *= fs_info->csum_size;
c3a3b19b 7872 btrfs_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7873 }
1ae39938 7874map:
08635bae 7875 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7876err:
e65e1535
MX
7877 return ret;
7878}
7879
c36cac28
OS
7880/*
7881 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7882 * or ordered extents whether or not we submit any bios.
7883 */
7884static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7885 struct inode *inode,
7886 loff_t file_offset)
e65e1535 7887{
cfe94440 7888 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
85879573
OS
7889 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7890 size_t dip_size;
c36cac28 7891 struct btrfs_dio_private *dip;
c36cac28 7892
85879573
OS
7893 dip_size = sizeof(*dip);
7894 if (!write && csum) {
7895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
85879573
OS
7896 size_t nblocks;
7897
265fdfa6 7898 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
223486c2 7899 dip_size += fs_info->csum_size * nblocks;
85879573
OS
7900 }
7901
7902 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7903 if (!dip)
7904 return NULL;
7905
c36cac28 7906 dip->inode = inode;
47926ab5 7907 dip->file_offset = file_offset;
c36cac28 7908 dip->bytes = dio_bio->bi_iter.bi_size;
1201b58b 7909 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
c36cac28 7910 dip->dio_bio = dio_bio;
e3b318d1 7911 refcount_set(&dip->refs, 1);
c36cac28
OS
7912 return dip;
7913}
7914
3e08773c 7915static void btrfs_submit_direct(const struct iomap_iter *iter,
f85781fb 7916 struct bio *dio_bio, loff_t file_offset)
c36cac28 7917{
a6d3d495 7918 struct inode *inode = iter->inode;
cfe94440 7919 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
0b246afa 7920 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7921 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7922 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7923 struct btrfs_dio_private *dip;
e65e1535 7924 struct bio *bio;
c36cac28 7925 u64 start_sector;
1ae39938 7926 int async_submit = 0;
725130ba 7927 u64 submit_len;
42b5d73b
NA
7928 u64 clone_offset = 0;
7929 u64 clone_len;
42034313 7930 u64 logical;
5f4dc8fc 7931 int ret;
58efbc9f 7932 blk_status_t status;
89b798ad 7933 struct btrfs_io_geometry geom;
a6d3d495 7934 struct btrfs_dio_data *dio_data = iter->iomap.private;
42034313 7935 struct extent_map *em = NULL;
e65e1535 7936
c36cac28
OS
7937 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7938 if (!dip) {
7939 if (!write) {
7940 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7941 file_offset + dio_bio->bi_iter.bi_size - 1);
7942 }
7943 dio_bio->bi_status = BLK_STS_RESOURCE;
f85781fb 7944 bio_endio(dio_bio);
3e08773c 7945 return;
c36cac28 7946 }
facc8a22 7947
334c16d8 7948 if (!write) {
85879573
OS
7949 /*
7950 * Load the csums up front to reduce csum tree searches and
7951 * contention when submitting bios.
334c16d8
JB
7952 *
7953 * If we have csums disabled this will do nothing.
85879573 7954 */
6275193e 7955 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
85879573
OS
7956 if (status != BLK_STS_OK)
7957 goto out_err;
02f57c7a
JB
7958 }
7959
769b4f24
OS
7960 start_sector = dio_bio->bi_iter.bi_sector;
7961 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7962
3c91ee69 7963 do {
42034313
MR
7964 logical = start_sector << 9;
7965 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
7966 if (IS_ERR(em)) {
7967 status = errno_to_blk_status(PTR_ERR(em));
7968 em = NULL;
7969 goto out_err_em;
7970 }
7971 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
43c0d1a5 7972 logical, &geom);
769b4f24
OS
7973 if (ret) {
7974 status = errno_to_blk_status(ret);
42034313 7975 goto out_err_em;
769b4f24 7976 }
769b4f24 7977
42b5d73b
NA
7978 clone_len = min(submit_len, geom.len);
7979 ASSERT(clone_len <= UINT_MAX);
02f57c7a 7980
725130ba
LB
7981 /*
7982 * This will never fail as it's passing GPF_NOFS and
7983 * the allocation is backed by btrfs_bioset.
7984 */
769b4f24 7985 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7986 bio->bi_private = dip;
7987 bio->bi_end_io = btrfs_end_dio_bio;
725130ba 7988
544d24f9
NA
7989 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
7990 status = extract_ordered_extent(BTRFS_I(inode), bio,
7991 file_offset);
7992 if (status) {
7993 bio_put(bio);
7994 goto out_err;
7995 }
7996 }
7997
725130ba
LB
7998 ASSERT(submit_len >= clone_len);
7999 submit_len -= clone_len;
e65e1535 8000
725130ba
LB
8001 /*
8002 * Increase the count before we submit the bio so we know
8003 * the end IO handler won't happen before we increase the
8004 * count. Otherwise, the dip might get freed before we're
8005 * done setting it up.
769b4f24
OS
8006 *
8007 * We transfer the initial reference to the last bio, so we
8008 * don't need to increment the reference count for the last one.
725130ba 8009 */
769b4f24
OS
8010 if (submit_len > 0) {
8011 refcount_inc(&dip->refs);
8012 /*
8013 * If we are submitting more than one bio, submit them
8014 * all asynchronously. The exception is RAID 5 or 6, as
8015 * asynchronous checksums make it difficult to collect
8016 * full stripe writes.
8017 */
8018 if (!raid56)
8019 async_submit = 1;
8020 }
e65e1535 8021
d0ee3934 8022 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8023 async_submit);
8024 if (status) {
725130ba 8025 bio_put(bio);
769b4f24
OS
8026 if (submit_len > 0)
8027 refcount_dec(&dip->refs);
42034313 8028 goto out_err_em;
725130ba 8029 }
e65e1535 8030
f85781fb 8031 dio_data->submitted += clone_len;
725130ba
LB
8032 clone_offset += clone_len;
8033 start_sector += clone_len >> 9;
8034 file_offset += clone_len;
42034313
MR
8035
8036 free_extent_map(em);
3c91ee69 8037 } while (submit_len > 0);
3e08773c 8038 return;
e65e1535 8039
42034313
MR
8040out_err_em:
8041 free_extent_map(em);
e65e1535 8042out_err:
769b4f24
OS
8043 dip->dio_bio->bi_status = status;
8044 btrfs_dio_private_put(dip);
4b46fce2
JB
8045}
8046
4e4cabec 8047const struct iomap_ops btrfs_dio_iomap_ops = {
f85781fb
GR
8048 .iomap_begin = btrfs_dio_iomap_begin,
8049 .iomap_end = btrfs_dio_iomap_end,
8050};
8051
4e4cabec 8052const struct iomap_dio_ops btrfs_dio_ops = {
f85781fb
GR
8053 .submit_io = btrfs_submit_direct,
8054};
8055
1506fcc8 8056static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 8057 u64 start, u64 len)
1506fcc8 8058{
05dadc09
TI
8059 int ret;
8060
45dd052e 8061 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
8062 if (ret)
8063 return ret;
8064
facee0a0 8065 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
1506fcc8
YS
8066}
8067
a52d9a80 8068int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8069{
0f208812
NB
8070 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8071 u64 start = page_offset(page);
8072 u64 end = start + PAGE_SIZE - 1;
390ed29b 8073 struct btrfs_bio_ctrl bio_ctrl = { 0 };
c1be9c1a
NB
8074 int ret;
8075
0f208812
NB
8076 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8077
390ed29b
QW
8078 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8079 if (bio_ctrl.bio)
8080 ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
c1be9c1a 8081 return ret;
9ebefb18 8082}
1832a6d5 8083
a52d9a80 8084static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8085{
be7bd730
JB
8086 struct inode *inode = page->mapping->host;
8087 int ret;
b888db2b
CM
8088
8089 if (current->flags & PF_MEMALLOC) {
8090 redirty_page_for_writepage(wbc, page);
8091 unlock_page(page);
8092 return 0;
8093 }
be7bd730
JB
8094
8095 /*
8096 * If we are under memory pressure we will call this directly from the
8097 * VM, we need to make sure we have the inode referenced for the ordered
8098 * extent. If not just return like we didn't do anything.
8099 */
8100 if (!igrab(inode)) {
8101 redirty_page_for_writepage(wbc, page);
8102 return AOP_WRITEPAGE_ACTIVATE;
8103 }
0a9b0e53 8104 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8105 btrfs_add_delayed_iput(inode);
8106 return ret;
9ebefb18
CM
8107}
8108
48a3b636
ES
8109static int btrfs_writepages(struct address_space *mapping,
8110 struct writeback_control *wbc)
b293f02e 8111{
8ae225a8 8112 return extent_writepages(mapping, wbc);
b293f02e
CM
8113}
8114
ba206a02 8115static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8116{
ba206a02 8117 extent_readahead(rac);
3ab2fb5a 8118}
2a3ff0ad 8119
7c11d0ae
QW
8120/*
8121 * For releasepage() and invalidatepage() we have a race window where
8122 * end_page_writeback() is called but the subpage spinlock is not yet released.
8123 * If we continue to release/invalidate the page, we could cause use-after-free
8124 * for subpage spinlock. So this function is to spin and wait for subpage
8125 * spinlock.
8126 */
8127static void wait_subpage_spinlock(struct page *page)
8128{
8129 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8130 struct btrfs_subpage *subpage;
8131
8132 if (fs_info->sectorsize == PAGE_SIZE)
8133 return;
8134
8135 ASSERT(PagePrivate(page) && page->private);
8136 subpage = (struct btrfs_subpage *)page->private;
8137
8138 /*
8139 * This may look insane as we just acquire the spinlock and release it,
8140 * without doing anything. But we just want to make sure no one is
8141 * still holding the subpage spinlock.
8142 * And since the page is not dirty nor writeback, and we have page
8143 * locked, the only possible way to hold a spinlock is from the endio
8144 * function to clear page writeback.
8145 *
8146 * Here we just acquire the spinlock so that all existing callers
8147 * should exit and we're safe to release/invalidate the page.
8148 */
8149 spin_lock_irq(&subpage->lock);
8150 spin_unlock_irq(&subpage->lock);
8151}
8152
e6dcd2dc 8153static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8154{
477a30ba 8155 int ret = try_release_extent_mapping(page, gfp_flags);
7c11d0ae
QW
8156
8157 if (ret == 1) {
8158 wait_subpage_spinlock(page);
32443de3 8159 clear_page_extent_mapped(page);
7c11d0ae 8160 }
a52d9a80 8161 return ret;
39279cc3
CM
8162}
8163
e6dcd2dc
CM
8164static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8165{
98509cfc
CM
8166 if (PageWriteback(page) || PageDirty(page))
8167 return 0;
3ba7ab22 8168 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8169}
8170
f8e66081
RG
8171#ifdef CONFIG_MIGRATION
8172static int btrfs_migratepage(struct address_space *mapping,
8173 struct page *newpage, struct page *page,
8174 enum migrate_mode mode)
8175{
8176 int ret;
8177
8178 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8179 if (ret != MIGRATEPAGE_SUCCESS)
8180 return ret;
8181
d1b89bc0
GJ
8182 if (page_has_private(page))
8183 attach_page_private(newpage, detach_page_private(page));
f8e66081 8184
f57ad937
QW
8185 if (PageOrdered(page)) {
8186 ClearPageOrdered(page);
8187 SetPageOrdered(newpage);
f8e66081
RG
8188 }
8189
8190 if (mode != MIGRATE_SYNC_NO_COPY)
8191 migrate_page_copy(newpage, page);
8192 else
8193 migrate_page_states(newpage, page);
8194 return MIGRATEPAGE_SUCCESS;
8195}
8196#endif
8197
d47992f8
LC
8198static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8199 unsigned int length)
39279cc3 8200{
53ac7ead 8201 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
b945a463 8202 struct btrfs_fs_info *fs_info = inode->root->fs_info;
53ac7ead 8203 struct extent_io_tree *tree = &inode->io_tree;
2ac55d41 8204 struct extent_state *cached_state = NULL;
e6dcd2dc 8205 u64 page_start = page_offset(page);
09cbfeaf 8206 u64 page_end = page_start + PAGE_SIZE - 1;
3b835840 8207 u64 cur;
53ac7ead 8208 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
39279cc3 8209
8b62b72b 8210 /*
266a2586
QW
8211 * We have page locked so no new ordered extent can be created on this
8212 * page, nor bio can be submitted for this page.
8b62b72b 8213 *
266a2586 8214 * But already submitted bio can still be finished on this page.
f57ad937
QW
8215 * Furthermore, endio function won't skip page which has Ordered
8216 * (Private2) already cleared, so it's possible for endio and
8217 * invalidatepage to do the same ordered extent accounting twice
8218 * on one page.
266a2586
QW
8219 *
8220 * So here we wait for any submitted bios to finish, so that we won't
8221 * do double ordered extent accounting on the same page.
8b62b72b 8222 */
e6dcd2dc 8223 wait_on_page_writeback(page);
7c11d0ae 8224 wait_subpage_spinlock(page);
8b62b72b 8225
bcd77455
QW
8226 /*
8227 * For subpage case, we have call sites like
8228 * btrfs_punch_hole_lock_range() which passes range not aligned to
8229 * sectorsize.
8230 * If the range doesn't cover the full page, we don't need to and
8231 * shouldn't clear page extent mapped, as page->private can still
8232 * record subpage dirty bits for other part of the range.
8233 *
8234 * For cases that can invalidate the full even the range doesn't
8235 * cover the full page, like invalidating the last page, we're
8236 * still safe to wait for ordered extent to finish.
8237 */
8238 if (!(offset == 0 && length == PAGE_SIZE)) {
e6dcd2dc
CM
8239 btrfs_releasepage(page, GFP_NOFS);
8240 return;
8241 }
131e404a
FDBM
8242
8243 if (!inode_evicting)
ff13db41 8244 lock_extent_bits(tree, page_start, page_end, &cached_state);
951c80f8 8245
3b835840
QW
8246 cur = page_start;
8247 while (cur < page_end) {
8248 struct btrfs_ordered_extent *ordered;
8249 bool delete_states;
8250 u64 range_end;
b945a463 8251 u32 range_len;
3b835840
QW
8252
8253 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8254 page_end + 1 - cur);
8255 if (!ordered) {
8256 range_end = page_end;
8257 /*
8258 * No ordered extent covering this range, we are safe
8259 * to delete all extent states in the range.
8260 */
8261 delete_states = true;
8262 goto next;
8263 }
8264 if (ordered->file_offset > cur) {
8265 /*
8266 * There is a range between [cur, oe->file_offset) not
8267 * covered by any ordered extent.
8268 * We are safe to delete all extent states, and handle
8269 * the ordered extent in the next iteration.
8270 */
8271 range_end = ordered->file_offset - 1;
8272 delete_states = true;
8273 goto next;
8274 }
8275
8276 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8277 page_end);
b945a463
QW
8278 ASSERT(range_end + 1 - cur < U32_MAX);
8279 range_len = range_end + 1 - cur;
8280 if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) {
3b835840 8281 /*
f57ad937
QW
8282 * If Ordered (Private2) is cleared, it means endio has
8283 * already been executed for the range.
3b835840
QW
8284 * We can't delete the extent states as
8285 * btrfs_finish_ordered_io() may still use some of them.
8286 */
8287 delete_states = false;
8288 goto next;
8289 }
b945a463 8290 btrfs_page_clear_ordered(fs_info, page, cur, range_len);
3b835840 8291
eb84ae03 8292 /*
2766ff61
FM
8293 * IO on this page will never be started, so we need to account
8294 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8295 * here, must leave that up for the ordered extent completion.
3b835840
QW
8296 *
8297 * This will also unlock the range for incoming
8298 * btrfs_finish_ordered_io().
eb84ae03 8299 */
131e404a 8300 if (!inode_evicting)
3b835840 8301 clear_extent_bit(tree, cur, range_end,
2766ff61 8302 EXTENT_DELALLOC |
131e404a 8303 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8304 EXTENT_DEFRAG, 1, 0, &cached_state);
3b835840
QW
8305
8306 spin_lock_irq(&inode->ordered_tree.lock);
8307 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8308 ordered->truncated_len = min(ordered->truncated_len,
8309 cur - ordered->file_offset);
8310 spin_unlock_irq(&inode->ordered_tree.lock);
8311
8312 if (btrfs_dec_test_ordered_pending(inode, &ordered,
f41b6ba9 8313 cur, range_end + 1 - cur)) {
3b835840
QW
8314 btrfs_finish_ordered_io(ordered);
8315 /*
8316 * The ordered extent has finished, now we're again
8317 * safe to delete all extent states of the range.
8318 */
8319 delete_states = true;
8320 } else {
8321 /*
8322 * btrfs_finish_ordered_io() will get executed by endio
8323 * of other pages, thus we can't delete extent states
8324 * anymore
8325 */
8326 delete_states = false;
8327 }
8328next:
8329 if (ordered)
8330 btrfs_put_ordered_extent(ordered);
8b62b72b 8331 /*
3b835840
QW
8332 * Qgroup reserved space handler
8333 * Sector(s) here will be either:
266a2586 8334 *
3b835840
QW
8335 * 1) Already written to disk or bio already finished
8336 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8337 * Qgroup will be handled by its qgroup_record then.
8338 * btrfs_qgroup_free_data() call will do nothing here.
8339 *
8340 * 2) Not written to disk yet
8341 * Then btrfs_qgroup_free_data() call will clear the
8342 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8343 * reserved data space.
8344 * Since the IO will never happen for this page.
8b62b72b 8345 */
3b835840 8346 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
131e404a 8347 if (!inode_evicting) {
3b835840
QW
8348 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8349 EXTENT_DELALLOC | EXTENT_UPTODATE |
8350 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8351 delete_states, &cached_state);
131e404a 8352 }
3b835840 8353 cur = range_end + 1;
131e404a 8354 }
b9d0b389 8355 /*
3b835840 8356 * We have iterated through all ordered extents of the page, the page
f57ad937
QW
8357 * should not have Ordered (Private2) anymore, or the above iteration
8358 * did something wrong.
b9d0b389 8359 */
f57ad937 8360 ASSERT(!PageOrdered(page));
e4f94347 8361 btrfs_page_clear_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3b835840 8362 if (!inode_evicting)
131e404a 8363 __btrfs_releasepage(page, GFP_NOFS);
32443de3 8364 clear_page_extent_mapped(page);
39279cc3
CM
8365}
8366
9ebefb18
CM
8367/*
8368 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8369 * called from a page fault handler when a page is first dirtied. Hence we must
8370 * be careful to check for EOF conditions here. We set the page up correctly
8371 * for a written page which means we get ENOSPC checking when writing into
8372 * holes and correct delalloc and unwritten extent mapping on filesystems that
8373 * support these features.
8374 *
8375 * We are not allowed to take the i_mutex here so we have to play games to
8376 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8377 * truncate_setsize() writes the inode size before removing pages, once we have
8378 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8379 * beyond EOF, then the page is guaranteed safe against truncation until we
8380 * unlock the page.
8381 */
a528a241 8382vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8383{
c2ec175c 8384 struct page *page = vmf->page;
11bac800 8385 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8387 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8388 struct btrfs_ordered_extent *ordered;
2ac55d41 8389 struct extent_state *cached_state = NULL;
364ecf36 8390 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 8391 unsigned long zero_start;
9ebefb18 8392 loff_t size;
a528a241
SJ
8393 vm_fault_t ret;
8394 int ret2;
9998eb70 8395 int reserved = 0;
d0b7da88 8396 u64 reserved_space;
a52d9a80 8397 u64 page_start;
e6dcd2dc 8398 u64 page_end;
d0b7da88
CR
8399 u64 end;
8400
09cbfeaf 8401 reserved_space = PAGE_SIZE;
9ebefb18 8402
b2b5ef5c 8403 sb_start_pagefault(inode->i_sb);
df480633 8404 page_start = page_offset(page);
09cbfeaf 8405 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8406 end = page_end;
df480633 8407
d0b7da88
CR
8408 /*
8409 * Reserving delalloc space after obtaining the page lock can lead to
8410 * deadlock. For example, if a dirty page is locked by this function
8411 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8412 * dirty page write out, then the btrfs_writepage() function could
8413 * end up waiting indefinitely to get a lock on the page currently
8414 * being processed by btrfs_page_mkwrite() function.
8415 */
e5b7231e
NB
8416 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8417 page_start, reserved_space);
a528a241
SJ
8418 if (!ret2) {
8419 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8420 reserved = 1;
8421 }
a528a241
SJ
8422 if (ret2) {
8423 ret = vmf_error(ret2);
9998eb70
CM
8424 if (reserved)
8425 goto out;
8426 goto out_noreserve;
56a76f82 8427 }
1832a6d5 8428
56a76f82 8429 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8430again:
8318ba79 8431 down_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8432 lock_page(page);
9ebefb18 8433 size = i_size_read(inode);
a52d9a80 8434
9ebefb18 8435 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8436 (page_start >= size)) {
9ebefb18
CM
8437 /* page got truncated out from underneath us */
8438 goto out_unlock;
8439 }
e6dcd2dc
CM
8440 wait_on_page_writeback(page);
8441
ff13db41 8442 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8443 ret2 = set_page_extent_mapped(page);
8444 if (ret2 < 0) {
8445 ret = vmf_error(ret2);
8446 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8447 goto out_unlock;
8448 }
e6dcd2dc 8449
eb84ae03
CM
8450 /*
8451 * we can't set the delalloc bits if there are pending ordered
8452 * extents. Drop our locks and wait for them to finish
8453 */
a776c6fa
NB
8454 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8455 PAGE_SIZE);
e6dcd2dc 8456 if (ordered) {
2ac55d41 8457 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8458 &cached_state);
e6dcd2dc 8459 unlock_page(page);
8318ba79 8460 up_read(&BTRFS_I(inode)->i_mmap_lock);
c0a43603 8461 btrfs_start_ordered_extent(ordered, 1);
e6dcd2dc
CM
8462 btrfs_put_ordered_extent(ordered);
8463 goto again;
8464 }
8465
09cbfeaf 8466 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8467 reserved_space = round_up(size - page_start,
0b246afa 8468 fs_info->sectorsize);
09cbfeaf 8469 if (reserved_space < PAGE_SIZE) {
d0b7da88 8470 end = page_start + reserved_space - 1;
86d52921
NB
8471 btrfs_delalloc_release_space(BTRFS_I(inode),
8472 data_reserved, page_start,
8473 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8474 }
8475 }
8476
fbf19087 8477 /*
5416034f
LB
8478 * page_mkwrite gets called when the page is firstly dirtied after it's
8479 * faulted in, but write(2) could also dirty a page and set delalloc
8480 * bits, thus in this case for space account reason, we still need to
8481 * clear any delalloc bits within this page range since we have to
8482 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8483 */
d0b7da88 8484 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8485 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8486 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8487
c2566f22 8488 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8489 &cached_state);
a528a241 8490 if (ret2) {
2ac55d41 8491 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8492 &cached_state);
9ed74f2d
JB
8493 ret = VM_FAULT_SIGBUS;
8494 goto out_unlock;
8495 }
9ebefb18
CM
8496
8497 /* page is wholly or partially inside EOF */
09cbfeaf 8498 if (page_start + PAGE_SIZE > size)
7073017a 8499 zero_start = offset_in_page(size);
9ebefb18 8500 else
09cbfeaf 8501 zero_start = PAGE_SIZE;
9ebefb18 8502
09cbfeaf 8503 if (zero_start != PAGE_SIZE) {
d048b9c2 8504 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
e6dcd2dc 8505 flush_dcache_page(page);
e6dcd2dc 8506 }
e4f94347 8507 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2d8ec40e
QW
8508 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8509 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
5a3f23d5 8510
bc0939fc 8511 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
257c62e1 8512
e43bbe5e 8513 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8318ba79 8514 up_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8515
76de60ed
YY
8516 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8517 sb_end_pagefault(inode->i_sb);
8518 extent_changeset_free(data_reserved);
8519 return VM_FAULT_LOCKED;
717beb96
CM
8520
8521out_unlock:
9ebefb18 8522 unlock_page(page);
8318ba79 8523 up_read(&BTRFS_I(inode)->i_mmap_lock);
1832a6d5 8524out:
8702ba93 8525 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8526 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8527 reserved_space, (ret != 0));
9998eb70 8528out_noreserve:
b2b5ef5c 8529 sb_end_pagefault(inode->i_sb);
364ecf36 8530 extent_changeset_free(data_reserved);
9ebefb18
CM
8531 return ret;
8532}
8533
213e8c55 8534static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8535{
d9ac19c3 8536 struct btrfs_truncate_control control = {
487e81d2 8537 .ino = btrfs_ino(BTRFS_I(inode)),
d9ac19c3 8538 .min_type = BTRFS_EXTENT_DATA_KEY,
655807b8 8539 .clear_extent_range = true,
d9ac19c3 8540 };
0b246afa 8541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8542 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8543 struct btrfs_block_rsv *rsv;
ad7e1a74 8544 int ret;
39279cc3 8545 struct btrfs_trans_handle *trans;
0b246afa 8546 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8547 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8548
213e8c55
FM
8549 if (!skip_writeback) {
8550 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8551 (u64)-1);
8552 if (ret)
8553 return ret;
8554 }
39279cc3 8555
fcb80c2a 8556 /*
f7e9e8fc
OS
8557 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8558 * things going on here:
fcb80c2a 8559 *
f7e9e8fc 8560 * 1) We need to reserve space to update our inode.
fcb80c2a 8561 *
f7e9e8fc 8562 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8563 * be free'd up by the truncate operation, but also have some slack
8564 * space reserved in case it uses space during the truncate (thank you
8565 * very much snapshotting).
8566 *
f7e9e8fc 8567 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8568 * space doing the truncate, and we have no earthly idea how much space
01327610 8569 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8570 * doesn't end up using space reserved for updating the inode. We also
8571 * need to be able to stop the transaction and start a new one, which
8572 * means we need to be able to update the inode several times, and we
8573 * have no idea of knowing how many times that will be, so we can't just
8574 * reserve 1 item for the entirety of the operation, so that has to be
8575 * done separately as well.
fcb80c2a
JB
8576 *
8577 * So that leaves us with
8578 *
f7e9e8fc 8579 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8580 * transaction reservation.
f7e9e8fc 8581 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8582 * updating the inode.
8583 */
2ff7e61e 8584 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8585 if (!rsv)
8586 return -ENOMEM;
4a338542 8587 rsv->size = min_size;
ca7e70f5 8588 rsv->failfast = 1;
f0cd846e 8589
907cbceb 8590 /*
07127184 8591 * 1 for the truncate slack space
907cbceb
JB
8592 * 1 for updating the inode.
8593 */
f3fe820c 8594 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8595 if (IS_ERR(trans)) {
ad7e1a74 8596 ret = PTR_ERR(trans);
fcb80c2a
JB
8597 goto out;
8598 }
f0cd846e 8599
907cbceb 8600 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8601 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8602 min_size, false);
fcb80c2a 8603 BUG_ON(ret);
f0cd846e 8604
ca7e70f5 8605 trans->block_rsv = rsv;
907cbceb 8606
8082510e 8607 while (1) {
9a4a1429
JB
8608 struct extent_state *cached_state = NULL;
8609 const u64 new_size = inode->i_size;
8610 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8611
d9ac19c3 8612 control.new_size = new_size;
9a4a1429
JB
8613 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8614 &cached_state);
8615 /*
8616 * We want to drop from the next block forward in case this new
8617 * size is not block aligned since we will be keeping the last
8618 * block of the extent just the way it is.
8619 */
8620 btrfs_drop_extent_cache(BTRFS_I(inode),
8621 ALIGN(new_size, fs_info->sectorsize),
8622 (u64)-1, 0);
8623
50743398 8624 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
d9ac19c3 8625 &control);
c2ddb612 8626
462b728e 8627 inode_sub_bytes(inode, control.sub_bytes);
c2ddb612
JB
8628 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8629
9a4a1429
JB
8630 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8631 (u64)-1, &cached_state);
8632
ddfae63c 8633 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8634 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8635 break;
39279cc3 8636
9a56fcd1 8637 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
ad7e1a74 8638 if (ret)
3893e33b 8639 break;
ca7e70f5 8640
3a45bb20 8641 btrfs_end_transaction(trans);
2ff7e61e 8642 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8643
8644 trans = btrfs_start_transaction(root, 2);
8645 if (IS_ERR(trans)) {
ad7e1a74 8646 ret = PTR_ERR(trans);
ca7e70f5
JB
8647 trans = NULL;
8648 break;
8649 }
8650
63f018be 8651 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8652 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8653 rsv, min_size, false);
ca7e70f5
JB
8654 BUG_ON(ret); /* shouldn't happen */
8655 trans->block_rsv = rsv;
8082510e
YZ
8656 }
8657
ddfae63c
JB
8658 /*
8659 * We can't call btrfs_truncate_block inside a trans handle as we could
54f03ab1
JB
8660 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8661 * know we've truncated everything except the last little bit, and can
8662 * do btrfs_truncate_block and then update the disk_i_size.
ddfae63c 8663 */
54f03ab1 8664 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
ddfae63c
JB
8665 btrfs_end_transaction(trans);
8666 btrfs_btree_balance_dirty(fs_info);
8667
217f42eb 8668 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
ddfae63c
JB
8669 if (ret)
8670 goto out;
8671 trans = btrfs_start_transaction(root, 1);
8672 if (IS_ERR(trans)) {
8673 ret = PTR_ERR(trans);
8674 goto out;
8675 }
76aea537 8676 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
ddfae63c
JB
8677 }
8678
917c16b2 8679 if (trans) {
ad7e1a74
OS
8680 int ret2;
8681
0b246afa 8682 trans->block_rsv = &fs_info->trans_block_rsv;
9a56fcd1 8683 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
ad7e1a74
OS
8684 if (ret2 && !ret)
8685 ret = ret2;
7b128766 8686
ad7e1a74
OS
8687 ret2 = btrfs_end_transaction(trans);
8688 if (ret2 && !ret)
8689 ret = ret2;
2ff7e61e 8690 btrfs_btree_balance_dirty(fs_info);
917c16b2 8691 }
fcb80c2a 8692out:
2ff7e61e 8693 btrfs_free_block_rsv(fs_info, rsv);
0d7d3165
FM
8694 /*
8695 * So if we truncate and then write and fsync we normally would just
8696 * write the extents that changed, which is a problem if we need to
8697 * first truncate that entire inode. So set this flag so we write out
8698 * all of the extents in the inode to the sync log so we're completely
8699 * safe.
8700 *
8701 * If no extents were dropped or trimmed we don't need to force the next
8702 * fsync to truncate all the inode's items from the log and re-log them
8703 * all. This means the truncate operation did not change the file size,
8704 * or changed it to a smaller size but there was only an implicit hole
8705 * between the old i_size and the new i_size, and there were no prealloc
8706 * extents beyond i_size to drop.
8707 */
d9ac19c3 8708 if (control.extents_found > 0)
0d7d3165 8709 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
fcb80c2a 8710
ad7e1a74 8711 return ret;
39279cc3
CM
8712}
8713
d352ac68
CM
8714/*
8715 * create a new subvolume directory/inode (helper for the ioctl).
8716 */
d2fb3437 8717int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927 8718 struct btrfs_root *new_root,
4d4340c9
CB
8719 struct btrfs_root *parent_root,
8720 struct user_namespace *mnt_userns)
39279cc3 8721{
39279cc3 8722 struct inode *inode;
76dda93c 8723 int err;
00e4e6b3 8724 u64 index = 0;
23125104
NB
8725 u64 ino;
8726
8727 err = btrfs_get_free_objectid(new_root, &ino);
8728 if (err < 0)
8729 return err;
39279cc3 8730
4d4340c9 8731 inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
b3b6f5b9 8732 ino, ino,
12fc9d09
FA
8733 S_IFDIR | (~current_umask() & S_IRWXUGO),
8734 &index);
54aa1f4d 8735 if (IS_ERR(inode))
f46b5a66 8736 return PTR_ERR(inode);
39279cc3
CM
8737 inode->i_op = &btrfs_dir_inode_operations;
8738 inode->i_fop = &btrfs_dir_file_operations;
8739
bfe86848 8740 set_nlink(inode, 1);
6ef06d27 8741 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8742 unlock_new_inode(inode);
3b96362c 8743
63541927
FDBM
8744 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8745 if (err)
8746 btrfs_err(new_root->fs_info,
351fd353 8747 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8748 new_root->root_key.objectid, err);
8749
9a56fcd1 8750 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
cb8e7090 8751
76dda93c 8752 iput(inode);
ce598979 8753 return err;
39279cc3
CM
8754}
8755
39279cc3
CM
8756struct inode *btrfs_alloc_inode(struct super_block *sb)
8757{
69fe2d75 8758 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8759 struct btrfs_inode *ei;
2ead6ae7 8760 struct inode *inode;
39279cc3 8761
712e36c5 8762 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8763 if (!ei)
8764 return NULL;
2ead6ae7
YZ
8765
8766 ei->root = NULL;
2ead6ae7 8767 ei->generation = 0;
15ee9bc7 8768 ei->last_trans = 0;
257c62e1 8769 ei->last_sub_trans = 0;
e02119d5 8770 ei->logged_trans = 0;
2ead6ae7 8771 ei->delalloc_bytes = 0;
a7e3b975 8772 ei->new_delalloc_bytes = 0;
47059d93 8773 ei->defrag_bytes = 0;
2ead6ae7
YZ
8774 ei->disk_i_size = 0;
8775 ei->flags = 0;
77eea05e 8776 ei->ro_flags = 0;
7709cde3 8777 ei->csum_bytes = 0;
2ead6ae7 8778 ei->index_cnt = (u64)-1;
67de1176 8779 ei->dir_index = 0;
2ead6ae7 8780 ei->last_unlink_trans = 0;
3ebac17c 8781 ei->last_reflink_trans = 0;
46d8bc34 8782 ei->last_log_commit = 0;
2ead6ae7 8783
9e0baf60
JB
8784 spin_lock_init(&ei->lock);
8785 ei->outstanding_extents = 0;
69fe2d75
JB
8786 if (sb->s_magic != BTRFS_TEST_MAGIC)
8787 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8788 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8789 ei->runtime_flags = 0;
b52aa8c9 8790 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8791 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8792
16cdcec7
MX
8793 ei->delayed_node = NULL;
8794
9cc97d64 8795 ei->i_otime.tv_sec = 0;
8796 ei->i_otime.tv_nsec = 0;
8797
2ead6ae7 8798 inode = &ei->vfs_inode;
a8067e02 8799 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8800 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8801 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8802 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8803 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8804 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8805 ei->io_tree.track_uptodate = true;
8806 ei->io_failure_tree.track_uptodate = true;
b812ce28 8807 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8808 mutex_init(&ei->log_mutex);
e6dcd2dc 8809 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8810 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8811 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8812 RB_CLEAR_NODE(&ei->rb_node);
8318ba79 8813 init_rwsem(&ei->i_mmap_lock);
2ead6ae7
YZ
8814
8815 return inode;
39279cc3
CM
8816}
8817
aaedb55b
JB
8818#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8819void btrfs_test_destroy_inode(struct inode *inode)
8820{
dcdbc059 8821 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8822 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8823}
8824#endif
8825
26602cab 8826void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8827{
fa0d7e3d
NP
8828 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8829}
8830
633cc816 8831void btrfs_destroy_inode(struct inode *vfs_inode)
39279cc3 8832{
e6dcd2dc 8833 struct btrfs_ordered_extent *ordered;
633cc816
NB
8834 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8835 struct btrfs_root *root = inode->root;
5a3f23d5 8836
633cc816
NB
8837 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8838 WARN_ON(vfs_inode->i_data.nrpages);
8839 WARN_ON(inode->block_rsv.reserved);
8840 WARN_ON(inode->block_rsv.size);
8841 WARN_ON(inode->outstanding_extents);
dc287224
FM
8842 if (!S_ISDIR(vfs_inode->i_mode)) {
8843 WARN_ON(inode->delalloc_bytes);
8844 WARN_ON(inode->new_delalloc_bytes);
8845 }
633cc816
NB
8846 WARN_ON(inode->csum_bytes);
8847 WARN_ON(inode->defrag_bytes);
39279cc3 8848
a6dbd429
JB
8849 /*
8850 * This can happen where we create an inode, but somebody else also
8851 * created the same inode and we need to destroy the one we already
8852 * created.
8853 */
8854 if (!root)
26602cab 8855 return;
a6dbd429 8856
d397712b 8857 while (1) {
633cc816 8858 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
e6dcd2dc
CM
8859 if (!ordered)
8860 break;
8861 else {
633cc816 8862 btrfs_err(root->fs_info,
5d163e0e 8863 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8864 ordered->file_offset, ordered->num_bytes);
71fe0a55 8865 btrfs_remove_ordered_extent(inode, ordered);
e6dcd2dc
CM
8866 btrfs_put_ordered_extent(ordered);
8867 btrfs_put_ordered_extent(ordered);
8868 }
8869 }
633cc816
NB
8870 btrfs_qgroup_check_reserved_leak(inode);
8871 inode_tree_del(inode);
8872 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8873 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8874 btrfs_put_root(inode->root);
39279cc3
CM
8875}
8876
45321ac5 8877int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8878{
8879 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8880
6379ef9f
NA
8881 if (root == NULL)
8882 return 1;
8883
fa6ac876 8884 /* the snap/subvol tree is on deleting */
69e9c6c6 8885 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8886 return 1;
76dda93c 8887 else
45321ac5 8888 return generic_drop_inode(inode);
76dda93c
YZ
8889}
8890
0ee0fda0 8891static void init_once(void *foo)
39279cc3
CM
8892{
8893 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8894
8895 inode_init_once(&ei->vfs_inode);
8896}
8897
e67c718b 8898void __cold btrfs_destroy_cachep(void)
39279cc3 8899{
8c0a8537
KS
8900 /*
8901 * Make sure all delayed rcu free inodes are flushed before we
8902 * destroy cache.
8903 */
8904 rcu_barrier();
5598e900
KM
8905 kmem_cache_destroy(btrfs_inode_cachep);
8906 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8907 kmem_cache_destroy(btrfs_path_cachep);
8908 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8909 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8910}
8911
f5c29bd9 8912int __init btrfs_init_cachep(void)
39279cc3 8913{
837e1972 8914 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8915 sizeof(struct btrfs_inode), 0,
5d097056
VD
8916 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8917 init_once);
39279cc3
CM
8918 if (!btrfs_inode_cachep)
8919 goto fail;
9601e3f6 8920
837e1972 8921 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8922 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8923 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8924 if (!btrfs_trans_handle_cachep)
8925 goto fail;
9601e3f6 8926
837e1972 8927 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8928 sizeof(struct btrfs_path), 0,
fba4b697 8929 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8930 if (!btrfs_path_cachep)
8931 goto fail;
9601e3f6 8932
837e1972 8933 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8934 sizeof(struct btrfs_free_space), 0,
fba4b697 8935 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8936 if (!btrfs_free_space_cachep)
8937 goto fail;
8938
3acd4850
CL
8939 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8940 PAGE_SIZE, PAGE_SIZE,
34e49994 8941 SLAB_MEM_SPREAD, NULL);
3acd4850
CL
8942 if (!btrfs_free_space_bitmap_cachep)
8943 goto fail;
8944
39279cc3
CM
8945 return 0;
8946fail:
8947 btrfs_destroy_cachep();
8948 return -ENOMEM;
8949}
8950
549c7297
CB
8951static int btrfs_getattr(struct user_namespace *mnt_userns,
8952 const struct path *path, struct kstat *stat,
a528d35e 8953 u32 request_mask, unsigned int flags)
39279cc3 8954{
df0af1a5 8955 u64 delalloc_bytes;
2766ff61 8956 u64 inode_bytes;
a528d35e 8957 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8958 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34 8959 u32 bi_flags = BTRFS_I(inode)->flags;
14605409 8960 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
04a87e34
YS
8961
8962 stat->result_mask |= STATX_BTIME;
8963 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8964 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8965 if (bi_flags & BTRFS_INODE_APPEND)
8966 stat->attributes |= STATX_ATTR_APPEND;
8967 if (bi_flags & BTRFS_INODE_COMPRESS)
8968 stat->attributes |= STATX_ATTR_COMPRESSED;
8969 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8970 stat->attributes |= STATX_ATTR_IMMUTABLE;
8971 if (bi_flags & BTRFS_INODE_NODUMP)
8972 stat->attributes |= STATX_ATTR_NODUMP;
14605409
BB
8973 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8974 stat->attributes |= STATX_ATTR_VERITY;
04a87e34
YS
8975
8976 stat->attributes_mask |= (STATX_ATTR_APPEND |
8977 STATX_ATTR_COMPRESSED |
8978 STATX_ATTR_IMMUTABLE |
8979 STATX_ATTR_NODUMP);
fadc0d8b 8980
c020d2ea 8981 generic_fillattr(mnt_userns, inode, stat);
0ee5dc67 8982 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8983
8984 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8985 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
2766ff61 8986 inode_bytes = inode_get_bytes(inode);
df0af1a5 8987 spin_unlock(&BTRFS_I(inode)->lock);
2766ff61 8988 stat->blocks = (ALIGN(inode_bytes, blocksize) +
df0af1a5 8989 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8990 return 0;
8991}
8992
cdd1fedf
DF
8993static int btrfs_rename_exchange(struct inode *old_dir,
8994 struct dentry *old_dentry,
8995 struct inode *new_dir,
8996 struct dentry *new_dentry)
8997{
0b246afa 8998 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8999 struct btrfs_trans_handle *trans;
9000 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9001 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9002 struct inode *new_inode = new_dentry->d_inode;
9003 struct inode *old_inode = old_dentry->d_inode;
95582b00 9004 struct timespec64 ctime = current_time(old_inode);
4a0cc7ca
NB
9005 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9006 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9007 u64 old_idx = 0;
9008 u64 new_idx = 0;
cdd1fedf 9009 int ret;
75b463d2 9010 int ret2;
86e8aa0e
FM
9011 bool root_log_pinned = false;
9012 bool dest_log_pinned = false;
dc09ef35 9013 bool need_abort = false;
cdd1fedf 9014
3f79f6f6
N
9015 /*
9016 * For non-subvolumes allow exchange only within one subvolume, in the
9017 * same inode namespace. Two subvolumes (represented as directory) can
9018 * be exchanged as they're a logical link and have a fixed inode number.
9019 */
9020 if (root != dest &&
9021 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9022 new_ino != BTRFS_FIRST_FREE_OBJECTID))
cdd1fedf
DF
9023 return -EXDEV;
9024
9025 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
9026 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9027 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9028 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9029
9030 /*
9031 * We want to reserve the absolute worst case amount of items. So if
9032 * both inodes are subvols and we need to unlink them then that would
9033 * require 4 item modifications, but if they are both normal inodes it
9034 * would require 5 item modifications, so we'll assume their normal
9035 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9036 * should cover the worst case number of items we'll modify.
9037 */
9038 trans = btrfs_start_transaction(root, 12);
9039 if (IS_ERR(trans)) {
9040 ret = PTR_ERR(trans);
9041 goto out_notrans;
9042 }
9043
00aa8e87
JB
9044 if (dest != root) {
9045 ret = btrfs_record_root_in_trans(trans, dest);
9046 if (ret)
9047 goto out_fail;
9048 }
3e174099 9049
cdd1fedf
DF
9050 /*
9051 * We need to find a free sequence number both in the source and
9052 * in the destination directory for the exchange.
9053 */
877574e2 9054 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9055 if (ret)
9056 goto out_fail;
877574e2 9057 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9058 if (ret)
9059 goto out_fail;
9060
9061 BTRFS_I(old_inode)->dir_index = 0ULL;
9062 BTRFS_I(new_inode)->dir_index = 0ULL;
9063
9064 /* Reference for the source. */
9065 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9066 /* force full log commit if subvolume involved. */
90787766 9067 btrfs_set_log_full_commit(trans);
cdd1fedf
DF
9068 } else {
9069 ret = btrfs_insert_inode_ref(trans, dest,
9070 new_dentry->d_name.name,
9071 new_dentry->d_name.len,
9072 old_ino,
f85b7379
DS
9073 btrfs_ino(BTRFS_I(new_dir)),
9074 old_idx);
cdd1fedf
DF
9075 if (ret)
9076 goto out_fail;
dc09ef35 9077 need_abort = true;
cdd1fedf
DF
9078 }
9079
9080 /* And now for the dest. */
9081 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9082 /* force full log commit if subvolume involved. */
90787766 9083 btrfs_set_log_full_commit(trans);
cdd1fedf
DF
9084 } else {
9085 ret = btrfs_insert_inode_ref(trans, root,
9086 old_dentry->d_name.name,
9087 old_dentry->d_name.len,
9088 new_ino,
f85b7379
DS
9089 btrfs_ino(BTRFS_I(old_dir)),
9090 new_idx);
dc09ef35
JB
9091 if (ret) {
9092 if (need_abort)
9093 btrfs_abort_transaction(trans, ret);
cdd1fedf 9094 goto out_fail;
dc09ef35 9095 }
cdd1fedf
DF
9096 }
9097
9098 /* Update inode version and ctime/mtime. */
9099 inode_inc_iversion(old_dir);
9100 inode_inc_iversion(new_dir);
9101 inode_inc_iversion(old_inode);
9102 inode_inc_iversion(new_inode);
9103 old_dir->i_ctime = old_dir->i_mtime = ctime;
9104 new_dir->i_ctime = new_dir->i_mtime = ctime;
9105 old_inode->i_ctime = ctime;
9106 new_inode->i_ctime = ctime;
9107
9108 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9109 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9110 BTRFS_I(old_inode), 1);
9111 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9112 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9113 }
9114
bd54f381
FM
9115 /*
9116 * Now pin the logs of the roots. We do it to ensure that no other task
9117 * can sync the logs while we are in progress with the rename, because
9118 * that could result in an inconsistency in case any of the inodes that
9119 * are part of this rename operation were logged before.
9120 *
9121 * We pin the logs even if at this precise moment none of the inodes was
9122 * logged before. This is because right after we checked for that, some
9123 * other task fsyncing some other inode not involved with this rename
9124 * operation could log that one of our inodes exists.
9125 *
9126 * We don't need to pin the logs before the above calls to
9127 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9128 */
9129 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9130 btrfs_pin_log_trans(root);
9131 root_log_pinned = true;
9132 }
9133 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9134 btrfs_pin_log_trans(dest);
9135 dest_log_pinned = true;
9136 }
9137
cdd1fedf
DF
9138 /* src is a subvolume */
9139 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 9140 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 9141 } else { /* src is an inode */
4467af88 9142 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
4ec5934e 9143 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9144 old_dentry->d_name.name,
9145 old_dentry->d_name.len);
9146 if (!ret)
9a56fcd1 9147 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
cdd1fedf
DF
9148 }
9149 if (ret) {
66642832 9150 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9151 goto out_fail;
9152 }
9153
9154 /* dest is a subvolume */
9155 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 9156 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 9157 } else { /* dest is an inode */
4467af88 9158 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 9159 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9160 new_dentry->d_name.name,
9161 new_dentry->d_name.len);
9162 if (!ret)
9a56fcd1 9163 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
cdd1fedf
DF
9164 }
9165 if (ret) {
66642832 9166 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9167 goto out_fail;
9168 }
9169
db0a669f 9170 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9171 new_dentry->d_name.name,
9172 new_dentry->d_name.len, 0, old_idx);
9173 if (ret) {
66642832 9174 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9175 goto out_fail;
9176 }
9177
db0a669f 9178 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9179 old_dentry->d_name.name,
9180 old_dentry->d_name.len, 0, new_idx);
9181 if (ret) {
66642832 9182 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9183 goto out_fail;
9184 }
9185
9186 if (old_inode->i_nlink == 1)
9187 BTRFS_I(old_inode)->dir_index = old_idx;
9188 if (new_inode->i_nlink == 1)
9189 BTRFS_I(new_inode)->dir_index = new_idx;
9190
86e8aa0e 9191 if (root_log_pinned) {
75b463d2
FM
9192 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9193 new_dentry->d_parent);
cdd1fedf 9194 btrfs_end_log_trans(root);
86e8aa0e 9195 root_log_pinned = false;
cdd1fedf 9196 }
86e8aa0e 9197 if (dest_log_pinned) {
75b463d2
FM
9198 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9199 old_dentry->d_parent);
cdd1fedf 9200 btrfs_end_log_trans(dest);
86e8aa0e 9201 dest_log_pinned = false;
cdd1fedf
DF
9202 }
9203out_fail:
86e8aa0e
FM
9204 /*
9205 * If we have pinned a log and an error happened, we unpin tasks
9206 * trying to sync the log and force them to fallback to a transaction
9207 * commit if the log currently contains any of the inodes involved in
9208 * this rename operation (to ensure we do not persist a log with an
9209 * inconsistent state for any of these inodes or leading to any
9210 * inconsistencies when replayed). If the transaction was aborted, the
9211 * abortion reason is propagated to userspace when attempting to commit
9212 * the transaction. If the log does not contain any of these inodes, we
9213 * allow the tasks to sync it.
9214 */
9215 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9216 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9217 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9218 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
1c167b87 9219 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))
90787766 9220 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
9221
9222 if (root_log_pinned) {
9223 btrfs_end_log_trans(root);
9224 root_log_pinned = false;
9225 }
9226 if (dest_log_pinned) {
9227 btrfs_end_log_trans(dest);
9228 dest_log_pinned = false;
9229 }
9230 }
75b463d2
FM
9231 ret2 = btrfs_end_transaction(trans);
9232 ret = ret ? ret : ret2;
cdd1fedf 9233out_notrans:
943eb3bf
JB
9234 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9235 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9236 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9237
9238 return ret;
9239}
9240
9241static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9242 struct btrfs_root *root,
ca07274c 9243 struct user_namespace *mnt_userns,
cdd1fedf
DF
9244 struct inode *dir,
9245 struct dentry *dentry)
9246{
9247 int ret;
9248 struct inode *inode;
9249 u64 objectid;
9250 u64 index;
9251
543068a2 9252 ret = btrfs_get_free_objectid(root, &objectid);
cdd1fedf
DF
9253 if (ret)
9254 return ret;
9255
ca07274c 9256 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
cdd1fedf
DF
9257 dentry->d_name.name,
9258 dentry->d_name.len,
4a0cc7ca 9259 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9260 objectid,
9261 S_IFCHR | WHITEOUT_MODE,
9262 &index);
9263
9264 if (IS_ERR(inode)) {
9265 ret = PTR_ERR(inode);
9266 return ret;
9267 }
9268
9269 inode->i_op = &btrfs_special_inode_operations;
9270 init_special_inode(inode, inode->i_mode,
9271 WHITEOUT_DEV);
9272
9273 ret = btrfs_init_inode_security(trans, inode, dir,
9274 &dentry->d_name);
9275 if (ret)
c9901618 9276 goto out;
cdd1fedf 9277
cef415af
NB
9278 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9279 BTRFS_I(inode), 0, index);
cdd1fedf 9280 if (ret)
c9901618 9281 goto out;
cdd1fedf 9282
9a56fcd1 9283 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
c9901618 9284out:
cdd1fedf 9285 unlock_new_inode(inode);
c9901618
FM
9286 if (ret)
9287 inode_dec_link_count(inode);
cdd1fedf
DF
9288 iput(inode);
9289
c9901618 9290 return ret;
cdd1fedf
DF
9291}
9292
ca07274c
CB
9293static int btrfs_rename(struct user_namespace *mnt_userns,
9294 struct inode *old_dir, struct dentry *old_dentry,
9295 struct inode *new_dir, struct dentry *new_dentry,
9296 unsigned int flags)
39279cc3 9297{
0b246afa 9298 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9299 struct btrfs_trans_handle *trans;
5062af35 9300 unsigned int trans_num_items;
39279cc3 9301 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9302 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9303 struct inode *new_inode = d_inode(new_dentry);
9304 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9305 u64 index = 0;
39279cc3 9306 int ret;
75b463d2 9307 int ret2;
4a0cc7ca 9308 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9309 bool log_pinned = false;
39279cc3 9310
4a0cc7ca 9311 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9312 return -EPERM;
9313
4df27c4d 9314 /* we only allow rename subvolume link between subvolumes */
33345d01 9315 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9316 return -EXDEV;
9317
33345d01 9318 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9319 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9320 return -ENOTEMPTY;
5f39d397 9321
4df27c4d
YZ
9322 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9323 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9324 return -ENOTEMPTY;
9c52057c
CM
9325
9326
9327 /* check for collisions, even if the name isn't there */
4871c158 9328 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9329 new_dentry->d_name.name,
9330 new_dentry->d_name.len);
9331
9332 if (ret) {
9333 if (ret == -EEXIST) {
9334 /* we shouldn't get
9335 * eexist without a new_inode */
fae7f21c 9336 if (WARN_ON(!new_inode)) {
9c52057c
CM
9337 return ret;
9338 }
9339 } else {
9340 /* maybe -EOVERFLOW */
9341 return ret;
9342 }
9343 }
9344 ret = 0;
9345
5a3f23d5 9346 /*
8d875f95
CM
9347 * we're using rename to replace one file with another. Start IO on it
9348 * now so we don't add too much work to the end of the transaction
5a3f23d5 9349 */
8d875f95 9350 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9351 filemap_flush(old_inode->i_mapping);
9352
76dda93c 9353 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9354 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9355 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9356 /*
9357 * We want to reserve the absolute worst case amount of items. So if
9358 * both inodes are subvols and we need to unlink them then that would
9359 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9360 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9361 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9362 * should cover the worst case number of items we'll modify.
5062af35
FM
9363 * If our rename has the whiteout flag, we need more 5 units for the
9364 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9365 * when selinux is enabled).
a22285a6 9366 */
5062af35
FM
9367 trans_num_items = 11;
9368 if (flags & RENAME_WHITEOUT)
9369 trans_num_items += 5;
9370 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9371 if (IS_ERR(trans)) {
cdd1fedf
DF
9372 ret = PTR_ERR(trans);
9373 goto out_notrans;
9374 }
76dda93c 9375
b0fec6fd
JB
9376 if (dest != root) {
9377 ret = btrfs_record_root_in_trans(trans, dest);
9378 if (ret)
9379 goto out_fail;
9380 }
5f39d397 9381
877574e2 9382 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9383 if (ret)
9384 goto out_fail;
5a3f23d5 9385
67de1176 9386 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9387 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9388 /* force full log commit if subvolume involved. */
90787766 9389 btrfs_set_log_full_commit(trans);
4df27c4d 9390 } else {
a5719521
YZ
9391 ret = btrfs_insert_inode_ref(trans, dest,
9392 new_dentry->d_name.name,
9393 new_dentry->d_name.len,
33345d01 9394 old_ino,
4a0cc7ca 9395 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9396 if (ret)
9397 goto out_fail;
4df27c4d 9398 }
5a3f23d5 9399
0c4d2d95
JB
9400 inode_inc_iversion(old_dir);
9401 inode_inc_iversion(new_dir);
9402 inode_inc_iversion(old_inode);
04b285f3
DD
9403 old_dir->i_ctime = old_dir->i_mtime =
9404 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9405 old_inode->i_ctime = current_time(old_dir);
5f39d397 9406
12fcfd22 9407 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9408 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9409 BTRFS_I(old_inode), 1);
12fcfd22 9410
33345d01 9411 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9412 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9413 } else {
bd54f381
FM
9414 /*
9415 * Now pin the log. We do it to ensure that no other task can
9416 * sync the log while we are in progress with the rename, as
9417 * that could result in an inconsistency in case any of the
9418 * inodes that are part of this rename operation were logged
9419 * before.
9420 *
9421 * We pin the log even if at this precise moment none of the
9422 * inodes was logged before. This is because right after we
9423 * checked for that, some other task fsyncing some other inode
9424 * not involved with this rename operation could log that one of
9425 * our inodes exists.
9426 *
9427 * We don't need to pin the logs before the above call to
9428 * btrfs_insert_inode_ref(), since that does not need to change
9429 * a log.
9430 */
9431 btrfs_pin_log_trans(root);
9432 log_pinned = true;
4467af88 9433 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
4ec5934e 9434 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9435 old_dentry->d_name.name,
9436 old_dentry->d_name.len);
9437 if (!ret)
9a56fcd1 9438 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
4df27c4d 9439 }
79787eaa 9440 if (ret) {
66642832 9441 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9442 goto out_fail;
9443 }
39279cc3
CM
9444
9445 if (new_inode) {
0c4d2d95 9446 inode_inc_iversion(new_inode);
c2050a45 9447 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9448 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9449 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9450 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9451 BUG_ON(new_inode->i_nlink == 0);
9452 } else {
4467af88 9453 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 9454 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9455 new_dentry->d_name.name,
9456 new_dentry->d_name.len);
9457 }
4ef31a45 9458 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9459 ret = btrfs_orphan_add(trans,
9460 BTRFS_I(d_inode(new_dentry)));
79787eaa 9461 if (ret) {
66642832 9462 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9463 goto out_fail;
9464 }
39279cc3 9465 }
aec7477b 9466
db0a669f 9467 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9468 new_dentry->d_name.name,
a5719521 9469 new_dentry->d_name.len, 0, index);
79787eaa 9470 if (ret) {
66642832 9471 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9472 goto out_fail;
9473 }
39279cc3 9474
67de1176
MX
9475 if (old_inode->i_nlink == 1)
9476 BTRFS_I(old_inode)->dir_index = index;
9477
3dc9e8f7 9478 if (log_pinned) {
75b463d2
FM
9479 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9480 new_dentry->d_parent);
4df27c4d 9481 btrfs_end_log_trans(root);
3dc9e8f7 9482 log_pinned = false;
4df27c4d 9483 }
cdd1fedf
DF
9484
9485 if (flags & RENAME_WHITEOUT) {
ca07274c
CB
9486 ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
9487 old_dir, old_dentry);
cdd1fedf
DF
9488
9489 if (ret) {
66642832 9490 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9491 goto out_fail;
9492 }
4df27c4d 9493 }
39279cc3 9494out_fail:
3dc9e8f7
FM
9495 /*
9496 * If we have pinned the log and an error happened, we unpin tasks
9497 * trying to sync the log and force them to fallback to a transaction
9498 * commit if the log currently contains any of the inodes involved in
9499 * this rename operation (to ensure we do not persist a log with an
9500 * inconsistent state for any of these inodes or leading to any
9501 * inconsistencies when replayed). If the transaction was aborted, the
9502 * abortion reason is propagated to userspace when attempting to commit
9503 * the transaction. If the log does not contain any of these inodes, we
9504 * allow the tasks to sync it.
9505 */
9506 if (ret && log_pinned) {
0f8939b8
NB
9507 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9508 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9509 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9510 (new_inode &&
0f8939b8 9511 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9512 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9513
9514 btrfs_end_log_trans(root);
9515 log_pinned = false;
9516 }
75b463d2
FM
9517 ret2 = btrfs_end_transaction(trans);
9518 ret = ret ? ret : ret2;
b44c59a8 9519out_notrans:
33345d01 9520 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9521 up_read(&fs_info->subvol_sem);
9ed74f2d 9522
39279cc3
CM
9523 return ret;
9524}
9525
549c7297
CB
9526static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9527 struct dentry *old_dentry, struct inode *new_dir,
9528 struct dentry *new_dentry, unsigned int flags)
80ace85c 9529{
cdd1fedf 9530 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9531 return -EINVAL;
9532
cdd1fedf
DF
9533 if (flags & RENAME_EXCHANGE)
9534 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9535 new_dentry);
9536
ca07274c
CB
9537 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9538 new_dentry, flags);
80ace85c
MS
9539}
9540
3a2f8c07
NB
9541struct btrfs_delalloc_work {
9542 struct inode *inode;
9543 struct completion completion;
9544 struct list_head list;
9545 struct btrfs_work work;
9546};
9547
8ccf6f19
MX
9548static void btrfs_run_delalloc_work(struct btrfs_work *work)
9549{
9550 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9551 struct inode *inode;
8ccf6f19
MX
9552
9553 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9554 work);
9f23e289 9555 inode = delalloc_work->inode;
30424601
DS
9556 filemap_flush(inode->i_mapping);
9557 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9558 &BTRFS_I(inode)->runtime_flags))
9f23e289 9559 filemap_flush(inode->i_mapping);
8ccf6f19 9560
076da91c 9561 iput(inode);
8ccf6f19
MX
9562 complete(&delalloc_work->completion);
9563}
9564
3a2f8c07 9565static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9566{
9567 struct btrfs_delalloc_work *work;
9568
100d5702 9569 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9570 if (!work)
9571 return NULL;
9572
9573 init_completion(&work->completion);
9574 INIT_LIST_HEAD(&work->list);
9575 work->inode = inode;
a0cac0ec 9576 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9577
9578 return work;
9579}
9580
d352ac68
CM
9581/*
9582 * some fairly slow code that needs optimization. This walks the list
9583 * of all the inodes with pending delalloc and forces them to disk.
9584 */
e076ab2a
JB
9585static int start_delalloc_inodes(struct btrfs_root *root,
9586 struct writeback_control *wbc, bool snapshot,
3d45f221 9587 bool in_reclaim_context)
ea8c2819 9588{
ea8c2819 9589 struct btrfs_inode *binode;
5b21f2ed 9590 struct inode *inode;
8ccf6f19
MX
9591 struct btrfs_delalloc_work *work, *next;
9592 struct list_head works;
1eafa6c7 9593 struct list_head splice;
8ccf6f19 9594 int ret = 0;
e076ab2a 9595 bool full_flush = wbc->nr_to_write == LONG_MAX;
ea8c2819 9596
8ccf6f19 9597 INIT_LIST_HEAD(&works);
1eafa6c7 9598 INIT_LIST_HEAD(&splice);
63607cc8 9599
573bfb72 9600 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9601 spin_lock(&root->delalloc_lock);
9602 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9603 while (!list_empty(&splice)) {
9604 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9605 delalloc_inodes);
1eafa6c7 9606
eb73c1b7
MX
9607 list_move_tail(&binode->delalloc_inodes,
9608 &root->delalloc_inodes);
3d45f221
FM
9609
9610 if (in_reclaim_context &&
9611 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9612 continue;
9613
5b21f2ed 9614 inode = igrab(&binode->vfs_inode);
df0af1a5 9615 if (!inode) {
eb73c1b7 9616 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9617 continue;
df0af1a5 9618 }
eb73c1b7 9619 spin_unlock(&root->delalloc_lock);
1eafa6c7 9620
3cd24c69
EL
9621 if (snapshot)
9622 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9623 &binode->runtime_flags);
e076ab2a
JB
9624 if (full_flush) {
9625 work = btrfs_alloc_delalloc_work(inode);
9626 if (!work) {
9627 iput(inode);
9628 ret = -ENOMEM;
9629 goto out;
9630 }
9631 list_add_tail(&work->list, &works);
9632 btrfs_queue_work(root->fs_info->flush_workers,
9633 &work->work);
9634 } else {
b3776305 9635 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
e076ab2a
JB
9636 btrfs_add_delayed_iput(inode);
9637 if (ret || wbc->nr_to_write <= 0)
b4912139
JB
9638 goto out;
9639 }
5b21f2ed 9640 cond_resched();
eb73c1b7 9641 spin_lock(&root->delalloc_lock);
ea8c2819 9642 }
eb73c1b7 9643 spin_unlock(&root->delalloc_lock);
8c8bee1d 9644
a1ecaabb 9645out:
eb73c1b7
MX
9646 list_for_each_entry_safe(work, next, &works, list) {
9647 list_del_init(&work->list);
40012f96
NB
9648 wait_for_completion(&work->completion);
9649 kfree(work);
eb73c1b7
MX
9650 }
9651
81f1d390 9652 if (!list_empty(&splice)) {
eb73c1b7
MX
9653 spin_lock(&root->delalloc_lock);
9654 list_splice_tail(&splice, &root->delalloc_inodes);
9655 spin_unlock(&root->delalloc_lock);
9656 }
573bfb72 9657 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9658 return ret;
9659}
1eafa6c7 9660
f9baa501 9661int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
eb73c1b7 9662{
e076ab2a
JB
9663 struct writeback_control wbc = {
9664 .nr_to_write = LONG_MAX,
9665 .sync_mode = WB_SYNC_NONE,
9666 .range_start = 0,
9667 .range_end = LLONG_MAX,
9668 };
0b246afa 9669 struct btrfs_fs_info *fs_info = root->fs_info;
1eafa6c7 9670
84961539 9671 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9672 return -EROFS;
9673
f9baa501 9674 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
eb73c1b7
MX
9675}
9676
9db4dc24 9677int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3d45f221 9678 bool in_reclaim_context)
eb73c1b7 9679{
e076ab2a 9680 struct writeback_control wbc = {
9db4dc24 9681 .nr_to_write = nr,
e076ab2a
JB
9682 .sync_mode = WB_SYNC_NONE,
9683 .range_start = 0,
9684 .range_end = LLONG_MAX,
9685 };
eb73c1b7
MX
9686 struct btrfs_root *root;
9687 struct list_head splice;
9688 int ret;
9689
84961539 9690 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9691 return -EROFS;
9692
9693 INIT_LIST_HEAD(&splice);
9694
573bfb72 9695 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9696 spin_lock(&fs_info->delalloc_root_lock);
9697 list_splice_init(&fs_info->delalloc_roots, &splice);
d7830b71 9698 while (!list_empty(&splice)) {
e076ab2a
JB
9699 /*
9700 * Reset nr_to_write here so we know that we're doing a full
9701 * flush.
9702 */
9db4dc24 9703 if (nr == LONG_MAX)
e076ab2a
JB
9704 wbc.nr_to_write = LONG_MAX;
9705
eb73c1b7
MX
9706 root = list_first_entry(&splice, struct btrfs_root,
9707 delalloc_root);
00246528 9708 root = btrfs_grab_root(root);
eb73c1b7
MX
9709 BUG_ON(!root);
9710 list_move_tail(&root->delalloc_root,
9711 &fs_info->delalloc_roots);
9712 spin_unlock(&fs_info->delalloc_root_lock);
9713
e076ab2a 9714 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
00246528 9715 btrfs_put_root(root);
e076ab2a 9716 if (ret < 0 || wbc.nr_to_write <= 0)
eb73c1b7 9717 goto out;
eb73c1b7 9718 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9719 }
eb73c1b7 9720 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9721
6c255e67 9722 ret = 0;
eb73c1b7 9723out:
81f1d390 9724 if (!list_empty(&splice)) {
eb73c1b7
MX
9725 spin_lock(&fs_info->delalloc_root_lock);
9726 list_splice_tail(&splice, &fs_info->delalloc_roots);
9727 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9728 }
573bfb72 9729 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9730 return ret;
ea8c2819
CM
9731}
9732
549c7297
CB
9733static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9734 struct dentry *dentry, const char *symname)
39279cc3 9735{
0b246afa 9736 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9737 struct btrfs_trans_handle *trans;
9738 struct btrfs_root *root = BTRFS_I(dir)->root;
9739 struct btrfs_path *path;
9740 struct btrfs_key key;
1832a6d5 9741 struct inode *inode = NULL;
39279cc3 9742 int err;
39279cc3 9743 u64 objectid;
67871254 9744 u64 index = 0;
39279cc3
CM
9745 int name_len;
9746 int datasize;
5f39d397 9747 unsigned long ptr;
39279cc3 9748 struct btrfs_file_extent_item *ei;
5f39d397 9749 struct extent_buffer *leaf;
39279cc3 9750
f06becc4 9751 name_len = strlen(symname);
0b246afa 9752 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9753 return -ENAMETOOLONG;
1832a6d5 9754
9ed74f2d
JB
9755 /*
9756 * 2 items for inode item and ref
9757 * 2 items for dir items
9269d12b
FM
9758 * 1 item for updating parent inode item
9759 * 1 item for the inline extent item
9ed74f2d
JB
9760 * 1 item for xattr if selinux is on
9761 */
9269d12b 9762 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9763 if (IS_ERR(trans))
9764 return PTR_ERR(trans);
1832a6d5 9765
543068a2 9766 err = btrfs_get_free_objectid(root, &objectid);
581bb050
LZ
9767 if (err)
9768 goto out_unlock;
9769
5a052108 9770 inode = btrfs_new_inode(trans, root, mnt_userns, dir,
b3b6f5b9
CB
9771 dentry->d_name.name, dentry->d_name.len,
9772 btrfs_ino(BTRFS_I(dir)), objectid,
9773 S_IFLNK | S_IRWXUGO, &index);
7cf96da3
TI
9774 if (IS_ERR(inode)) {
9775 err = PTR_ERR(inode);
32955c54 9776 inode = NULL;
39279cc3 9777 goto out_unlock;
7cf96da3 9778 }
39279cc3 9779
ad19db71
CS
9780 /*
9781 * If the active LSM wants to access the inode during
9782 * d_instantiate it needs these. Smack checks to see
9783 * if the filesystem supports xattrs by looking at the
9784 * ops vector.
9785 */
9786 inode->i_fop = &btrfs_file_operations;
9787 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9788 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9789
9790 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9791 if (err)
32955c54 9792 goto out_unlock;
ad19db71 9793
39279cc3 9794 path = btrfs_alloc_path();
d8926bb3
MF
9795 if (!path) {
9796 err = -ENOMEM;
32955c54 9797 goto out_unlock;
d8926bb3 9798 }
4a0cc7ca 9799 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9800 key.offset = 0;
962a298f 9801 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9802 datasize = btrfs_file_extent_calc_inline_size(name_len);
9803 err = btrfs_insert_empty_item(trans, root, path, &key,
9804 datasize);
54aa1f4d 9805 if (err) {
b0839166 9806 btrfs_free_path(path);
32955c54 9807 goto out_unlock;
54aa1f4d 9808 }
5f39d397
CM
9809 leaf = path->nodes[0];
9810 ei = btrfs_item_ptr(leaf, path->slots[0],
9811 struct btrfs_file_extent_item);
9812 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9813 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9814 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9815 btrfs_set_file_extent_encryption(leaf, ei, 0);
9816 btrfs_set_file_extent_compression(leaf, ei, 0);
9817 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9818 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9819
39279cc3 9820 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9821 write_extent_buffer(leaf, symname, ptr, name_len);
9822 btrfs_mark_buffer_dirty(leaf);
39279cc3 9823 btrfs_free_path(path);
5f39d397 9824
39279cc3 9825 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9826 inode_nohighmem(inode);
d899e052 9827 inode_set_bytes(inode, name_len);
6ef06d27 9828 btrfs_i_size_write(BTRFS_I(inode), name_len);
9a56fcd1 9829 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
d50866d0
FM
9830 /*
9831 * Last step, add directory indexes for our symlink inode. This is the
9832 * last step to avoid extra cleanup of these indexes if an error happens
9833 * elsewhere above.
9834 */
9835 if (!err)
cef415af
NB
9836 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9837 BTRFS_I(inode), 0, index);
32955c54
AV
9838 if (err)
9839 goto out_unlock;
b0d5d10f 9840
1e2e547a 9841 d_instantiate_new(dentry, inode);
39279cc3
CM
9842
9843out_unlock:
3a45bb20 9844 btrfs_end_transaction(trans);
32955c54 9845 if (err && inode) {
39279cc3 9846 inode_dec_link_count(inode);
32955c54 9847 discard_new_inode(inode);
39279cc3 9848 }
2ff7e61e 9849 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9850 return err;
9851}
16432985 9852
8fccebfa
FM
9853static struct btrfs_trans_handle *insert_prealloc_file_extent(
9854 struct btrfs_trans_handle *trans_in,
90dffd0c
NB
9855 struct btrfs_inode *inode,
9856 struct btrfs_key *ins,
203f44c5
QW
9857 u64 file_offset)
9858{
9859 struct btrfs_file_extent_item stack_fi;
bf385648 9860 struct btrfs_replace_extent_info extent_info;
8fccebfa
FM
9861 struct btrfs_trans_handle *trans = trans_in;
9862 struct btrfs_path *path;
203f44c5
QW
9863 u64 start = ins->objectid;
9864 u64 len = ins->offset;
fbf48bb0 9865 int qgroup_released;
9729f10a 9866 int ret;
203f44c5
QW
9867
9868 memset(&stack_fi, 0, sizeof(stack_fi));
9869
9870 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9871 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9872 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9873 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9874 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9875 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9876 /* Encryption and other encoding is reserved and all 0 */
9877
fbf48bb0
QW
9878 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9879 if (qgroup_released < 0)
9880 return ERR_PTR(qgroup_released);
8fccebfa
FM
9881
9882 if (trans) {
90dffd0c 9883 ret = insert_reserved_file_extent(trans, inode,
2766ff61 9884 file_offset, &stack_fi,
fbf48bb0 9885 true, qgroup_released);
8fccebfa 9886 if (ret)
a3ee79bd 9887 goto free_qgroup;
8fccebfa
FM
9888 return trans;
9889 }
9890
9891 extent_info.disk_offset = start;
9892 extent_info.disk_len = len;
9893 extent_info.data_offset = 0;
9894 extent_info.data_len = len;
9895 extent_info.file_offset = file_offset;
9896 extent_info.extent_buf = (char *)&stack_fi;
8fccebfa 9897 extent_info.is_new_extent = true;
fbf48bb0 9898 extent_info.qgroup_reserved = qgroup_released;
8fccebfa
FM
9899 extent_info.insertions = 0;
9900
9901 path = btrfs_alloc_path();
a3ee79bd
QW
9902 if (!path) {
9903 ret = -ENOMEM;
9904 goto free_qgroup;
9905 }
8fccebfa 9906
bfc78479 9907 ret = btrfs_replace_file_extents(inode, path, file_offset,
8fccebfa
FM
9908 file_offset + len - 1, &extent_info,
9909 &trans);
9910 btrfs_free_path(path);
9911 if (ret)
a3ee79bd 9912 goto free_qgroup;
8fccebfa 9913 return trans;
a3ee79bd
QW
9914
9915free_qgroup:
9916 /*
9917 * We have released qgroup data range at the beginning of the function,
9918 * and normally qgroup_released bytes will be freed when committing
9919 * transaction.
9920 * But if we error out early, we have to free what we have released
9921 * or we leak qgroup data reservation.
9922 */
9923 btrfs_qgroup_free_refroot(inode->root->fs_info,
9924 inode->root->root_key.objectid, qgroup_released,
9925 BTRFS_QGROUP_RSV_DATA);
9926 return ERR_PTR(ret);
203f44c5 9927}
8fccebfa 9928
0af3d00b
JB
9929static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9930 u64 start, u64 num_bytes, u64 min_size,
9931 loff_t actual_len, u64 *alloc_hint,
9932 struct btrfs_trans_handle *trans)
d899e052 9933{
0b246afa 9934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9936 struct extent_map *em;
d899e052
YZ
9937 struct btrfs_root *root = BTRFS_I(inode)->root;
9938 struct btrfs_key ins;
d899e052 9939 u64 cur_offset = start;
b778cf96 9940 u64 clear_offset = start;
55a61d1d 9941 u64 i_size;
154ea289 9942 u64 cur_bytes;
0b670dc4 9943 u64 last_alloc = (u64)-1;
d899e052 9944 int ret = 0;
0af3d00b 9945 bool own_trans = true;
18513091 9946 u64 end = start + num_bytes - 1;
d899e052 9947
0af3d00b
JB
9948 if (trans)
9949 own_trans = false;
d899e052 9950 while (num_bytes > 0) {
ee22184b 9951 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9952 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9953 /*
9954 * If we are severely fragmented we could end up with really
9955 * small allocations, so if the allocator is returning small
9956 * chunks lets make its job easier by only searching for those
9957 * sized chunks.
9958 */
9959 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9960 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9961 min_size, 0, *alloc_hint, &ins, 1, 0);
8fccebfa 9962 if (ret)
a22285a6 9963 break;
b778cf96
JB
9964
9965 /*
9966 * We've reserved this space, and thus converted it from
9967 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9968 * from here on out we will only need to clear our reservation
9969 * for the remaining unreserved area, so advance our
9970 * clear_offset by our extent size.
9971 */
9972 clear_offset += ins.offset;
5a303d5d 9973
0b670dc4 9974 last_alloc = ins.offset;
90dffd0c
NB
9975 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9976 &ins, cur_offset);
1afc708d
FM
9977 /*
9978 * Now that we inserted the prealloc extent we can finally
9979 * decrement the number of reservations in the block group.
9980 * If we did it before, we could race with relocation and have
9981 * relocation miss the reserved extent, making it fail later.
9982 */
9983 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8fccebfa
FM
9984 if (IS_ERR(trans)) {
9985 ret = PTR_ERR(trans);
2ff7e61e 9986 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9987 ins.offset, 0);
79787eaa
JM
9988 break;
9989 }
31193213 9990
dcdbc059 9991 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9992 cur_offset + ins.offset -1, 0);
5a303d5d 9993
5dc562c5
JB
9994 em = alloc_extent_map();
9995 if (!em) {
9996 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9997 &BTRFS_I(inode)->runtime_flags);
9998 goto next;
9999 }
10000
10001 em->start = cur_offset;
10002 em->orig_start = cur_offset;
10003 em->len = ins.offset;
10004 em->block_start = ins.objectid;
10005 em->block_len = ins.offset;
b4939680 10006 em->orig_block_len = ins.offset;
cc95bef6 10007 em->ram_bytes = ins.offset;
5dc562c5
JB
10008 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10009 em->generation = trans->transid;
10010
10011 while (1) {
10012 write_lock(&em_tree->lock);
09a2a8f9 10013 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10014 write_unlock(&em_tree->lock);
10015 if (ret != -EEXIST)
10016 break;
dcdbc059 10017 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10018 cur_offset + ins.offset - 1,
10019 0);
10020 }
10021 free_extent_map(em);
10022next:
d899e052
YZ
10023 num_bytes -= ins.offset;
10024 cur_offset += ins.offset;
efa56464 10025 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10026
0c4d2d95 10027 inode_inc_iversion(inode);
c2050a45 10028 inode->i_ctime = current_time(inode);
6cbff00f 10029 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10030 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10031 (actual_len > inode->i_size) &&
10032 (cur_offset > inode->i_size)) {
d1ea6a61 10033 if (cur_offset > actual_len)
55a61d1d 10034 i_size = actual_len;
d1ea6a61 10035 else
55a61d1d
JB
10036 i_size = cur_offset;
10037 i_size_write(inode, i_size);
76aea537 10038 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5a303d5d
YZ
10039 }
10040
9a56fcd1 10041 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
79787eaa
JM
10042
10043 if (ret) {
66642832 10044 btrfs_abort_transaction(trans, ret);
79787eaa 10045 if (own_trans)
3a45bb20 10046 btrfs_end_transaction(trans);
79787eaa
JM
10047 break;
10048 }
d899e052 10049
8fccebfa 10050 if (own_trans) {
3a45bb20 10051 btrfs_end_transaction(trans);
8fccebfa
FM
10052 trans = NULL;
10053 }
5a303d5d 10054 }
b778cf96 10055 if (clear_offset < end)
25ce28ca 10056 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 10057 end - clear_offset + 1);
d899e052
YZ
10058 return ret;
10059}
10060
0af3d00b
JB
10061int btrfs_prealloc_file_range(struct inode *inode, int mode,
10062 u64 start, u64 num_bytes, u64 min_size,
10063 loff_t actual_len, u64 *alloc_hint)
10064{
10065 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10066 min_size, actual_len, alloc_hint,
10067 NULL);
10068}
10069
10070int btrfs_prealloc_file_range_trans(struct inode *inode,
10071 struct btrfs_trans_handle *trans, int mode,
10072 u64 start, u64 num_bytes, u64 min_size,
10073 loff_t actual_len, u64 *alloc_hint)
10074{
10075 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10076 min_size, actual_len, alloc_hint, trans);
10077}
10078
e6dcd2dc
CM
10079static int btrfs_set_page_dirty(struct page *page)
10080{
e6dcd2dc
CM
10081 return __set_page_dirty_nobuffers(page);
10082}
10083
549c7297
CB
10084static int btrfs_permission(struct user_namespace *mnt_userns,
10085 struct inode *inode, int mask)
fdebe2bd 10086{
b83cc969 10087 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10088 umode_t mode = inode->i_mode;
b83cc969 10089
cb6db4e5
JM
10090 if (mask & MAY_WRITE &&
10091 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10092 if (btrfs_root_readonly(root))
10093 return -EROFS;
10094 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10095 return -EACCES;
10096 }
3bc71ba0 10097 return generic_permission(mnt_userns, inode, mask);
fdebe2bd 10098}
39279cc3 10099
549c7297
CB
10100static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10101 struct dentry *dentry, umode_t mode)
ef3b9af5 10102{
2ff7e61e 10103 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10104 struct btrfs_trans_handle *trans;
10105 struct btrfs_root *root = BTRFS_I(dir)->root;
10106 struct inode *inode = NULL;
10107 u64 objectid;
10108 u64 index;
10109 int ret = 0;
10110
10111 /*
10112 * 5 units required for adding orphan entry
10113 */
10114 trans = btrfs_start_transaction(root, 5);
10115 if (IS_ERR(trans))
10116 return PTR_ERR(trans);
10117
543068a2 10118 ret = btrfs_get_free_objectid(root, &objectid);
ef3b9af5
FM
10119 if (ret)
10120 goto out;
10121
98b6ab5f 10122 inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
f85b7379 10123 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10124 if (IS_ERR(inode)) {
10125 ret = PTR_ERR(inode);
10126 inode = NULL;
10127 goto out;
10128 }
10129
ef3b9af5
FM
10130 inode->i_fop = &btrfs_file_operations;
10131 inode->i_op = &btrfs_file_inode_operations;
10132
10133 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5 10134
b0d5d10f
CM
10135 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10136 if (ret)
32955c54 10137 goto out;
b0d5d10f 10138
9a56fcd1 10139 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
b0d5d10f 10140 if (ret)
32955c54 10141 goto out;
73f2e545 10142 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10143 if (ret)
32955c54 10144 goto out;
ef3b9af5 10145
5762b5c9
FM
10146 /*
10147 * We set number of links to 0 in btrfs_new_inode(), and here we set
10148 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10149 * through:
10150 *
10151 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10152 */
10153 set_nlink(inode, 1);
ef3b9af5 10154 d_tmpfile(dentry, inode);
32955c54 10155 unlock_new_inode(inode);
ef3b9af5 10156 mark_inode_dirty(inode);
ef3b9af5 10157out:
3a45bb20 10158 btrfs_end_transaction(trans);
32955c54
AV
10159 if (ret && inode)
10160 discard_new_inode(inode);
2ff7e61e 10161 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
10162 return ret;
10163}
10164
d2a91064 10165void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
c6100a4b 10166{
d2a91064 10167 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c6100a4b
JB
10168 unsigned long index = start >> PAGE_SHIFT;
10169 unsigned long end_index = end >> PAGE_SHIFT;
10170 struct page *page;
d2a91064 10171 u32 len;
c6100a4b 10172
d2a91064
QW
10173 ASSERT(end + 1 - start <= U32_MAX);
10174 len = end + 1 - start;
c6100a4b 10175 while (index <= end_index) {
d2a91064 10176 page = find_get_page(inode->vfs_inode.i_mapping, index);
c6100a4b 10177 ASSERT(page); /* Pages should be in the extent_io_tree */
d2a91064
QW
10178
10179 btrfs_page_set_writeback(fs_info, page, start, len);
c6100a4b
JB
10180 put_page(page);
10181 index++;
10182 }
10183}
10184
ed46ff3d
OS
10185#ifdef CONFIG_SWAP
10186/*
10187 * Add an entry indicating a block group or device which is pinned by a
10188 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10189 * negative errno on failure.
10190 */
10191static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10192 bool is_block_group)
10193{
10194 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10195 struct btrfs_swapfile_pin *sp, *entry;
10196 struct rb_node **p;
10197 struct rb_node *parent = NULL;
10198
10199 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10200 if (!sp)
10201 return -ENOMEM;
10202 sp->ptr = ptr;
10203 sp->inode = inode;
10204 sp->is_block_group = is_block_group;
195a49ea 10205 sp->bg_extent_count = 1;
ed46ff3d
OS
10206
10207 spin_lock(&fs_info->swapfile_pins_lock);
10208 p = &fs_info->swapfile_pins.rb_node;
10209 while (*p) {
10210 parent = *p;
10211 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10212 if (sp->ptr < entry->ptr ||
10213 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10214 p = &(*p)->rb_left;
10215 } else if (sp->ptr > entry->ptr ||
10216 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10217 p = &(*p)->rb_right;
10218 } else {
195a49ea
FM
10219 if (is_block_group)
10220 entry->bg_extent_count++;
ed46ff3d
OS
10221 spin_unlock(&fs_info->swapfile_pins_lock);
10222 kfree(sp);
10223 return 1;
10224 }
10225 }
10226 rb_link_node(&sp->node, parent, p);
10227 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10228 spin_unlock(&fs_info->swapfile_pins_lock);
10229 return 0;
10230}
10231
10232/* Free all of the entries pinned by this swapfile. */
10233static void btrfs_free_swapfile_pins(struct inode *inode)
10234{
10235 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10236 struct btrfs_swapfile_pin *sp;
10237 struct rb_node *node, *next;
10238
10239 spin_lock(&fs_info->swapfile_pins_lock);
10240 node = rb_first(&fs_info->swapfile_pins);
10241 while (node) {
10242 next = rb_next(node);
10243 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10244 if (sp->inode == inode) {
10245 rb_erase(&sp->node, &fs_info->swapfile_pins);
195a49ea
FM
10246 if (sp->is_block_group) {
10247 btrfs_dec_block_group_swap_extents(sp->ptr,
10248 sp->bg_extent_count);
ed46ff3d 10249 btrfs_put_block_group(sp->ptr);
195a49ea 10250 }
ed46ff3d
OS
10251 kfree(sp);
10252 }
10253 node = next;
10254 }
10255 spin_unlock(&fs_info->swapfile_pins_lock);
10256}
10257
10258struct btrfs_swap_info {
10259 u64 start;
10260 u64 block_start;
10261 u64 block_len;
10262 u64 lowest_ppage;
10263 u64 highest_ppage;
10264 unsigned long nr_pages;
10265 int nr_extents;
10266};
10267
10268static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10269 struct btrfs_swap_info *bsi)
10270{
10271 unsigned long nr_pages;
10272 u64 first_ppage, first_ppage_reported, next_ppage;
10273 int ret;
10274
10275 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10276 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10277 PAGE_SIZE) >> PAGE_SHIFT;
10278
10279 if (first_ppage >= next_ppage)
10280 return 0;
10281 nr_pages = next_ppage - first_ppage;
10282
10283 first_ppage_reported = first_ppage;
10284 if (bsi->start == 0)
10285 first_ppage_reported++;
10286 if (bsi->lowest_ppage > first_ppage_reported)
10287 bsi->lowest_ppage = first_ppage_reported;
10288 if (bsi->highest_ppage < (next_ppage - 1))
10289 bsi->highest_ppage = next_ppage - 1;
10290
10291 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10292 if (ret < 0)
10293 return ret;
10294 bsi->nr_extents += ret;
10295 bsi->nr_pages += nr_pages;
10296 return 0;
10297}
10298
10299static void btrfs_swap_deactivate(struct file *file)
10300{
10301 struct inode *inode = file_inode(file);
10302
10303 btrfs_free_swapfile_pins(inode);
10304 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10305}
10306
10307static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10308 sector_t *span)
10309{
10310 struct inode *inode = file_inode(file);
dd0734f2
FM
10311 struct btrfs_root *root = BTRFS_I(inode)->root;
10312 struct btrfs_fs_info *fs_info = root->fs_info;
ed46ff3d
OS
10313 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10314 struct extent_state *cached_state = NULL;
10315 struct extent_map *em = NULL;
10316 struct btrfs_device *device = NULL;
10317 struct btrfs_swap_info bsi = {
10318 .lowest_ppage = (sector_t)-1ULL,
10319 };
10320 int ret = 0;
10321 u64 isize;
10322 u64 start;
10323
10324 /*
10325 * If the swap file was just created, make sure delalloc is done. If the
10326 * file changes again after this, the user is doing something stupid and
10327 * we don't really care.
10328 */
10329 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10330 if (ret)
10331 return ret;
10332
10333 /*
10334 * The inode is locked, so these flags won't change after we check them.
10335 */
10336 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10337 btrfs_warn(fs_info, "swapfile must not be compressed");
10338 return -EINVAL;
10339 }
10340 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10341 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10342 return -EINVAL;
10343 }
10344 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10345 btrfs_warn(fs_info, "swapfile must not be checksummed");
10346 return -EINVAL;
10347 }
10348
10349 /*
10350 * Balance or device remove/replace/resize can move stuff around from
c3e1f96c
GR
10351 * under us. The exclop protection makes sure they aren't running/won't
10352 * run concurrently while we are mapping the swap extents, and
10353 * fs_info->swapfile_pins prevents them from running while the swap
10354 * file is active and moving the extents. Note that this also prevents
10355 * a concurrent device add which isn't actually necessary, but it's not
ed46ff3d
OS
10356 * really worth the trouble to allow it.
10357 */
c3e1f96c 10358 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
ed46ff3d
OS
10359 btrfs_warn(fs_info,
10360 "cannot activate swapfile while exclusive operation is running");
10361 return -EBUSY;
10362 }
dd0734f2
FM
10363
10364 /*
10365 * Prevent snapshot creation while we are activating the swap file.
10366 * We do not want to race with snapshot creation. If snapshot creation
10367 * already started before we bumped nr_swapfiles from 0 to 1 and
10368 * completes before the first write into the swap file after it is
10369 * activated, than that write would fallback to COW.
10370 */
10371 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10372 btrfs_exclop_finish(fs_info);
10373 btrfs_warn(fs_info,
10374 "cannot activate swapfile because snapshot creation is in progress");
10375 return -EINVAL;
10376 }
ed46ff3d
OS
10377 /*
10378 * Snapshots can create extents which require COW even if NODATACOW is
10379 * set. We use this counter to prevent snapshots. We must increment it
10380 * before walking the extents because we don't want a concurrent
10381 * snapshot to run after we've already checked the extents.
10382 */
dd0734f2 10383 atomic_inc(&root->nr_swapfiles);
ed46ff3d
OS
10384
10385 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10386
10387 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10388 start = 0;
10389 while (start < isize) {
10390 u64 logical_block_start, physical_block_start;
32da5386 10391 struct btrfs_block_group *bg;
ed46ff3d
OS
10392 u64 len = isize - start;
10393
39b07b5d 10394 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10395 if (IS_ERR(em)) {
10396 ret = PTR_ERR(em);
10397 goto out;
10398 }
10399
10400 if (em->block_start == EXTENT_MAP_HOLE) {
10401 btrfs_warn(fs_info, "swapfile must not have holes");
10402 ret = -EINVAL;
10403 goto out;
10404 }
10405 if (em->block_start == EXTENT_MAP_INLINE) {
10406 /*
10407 * It's unlikely we'll ever actually find ourselves
10408 * here, as a file small enough to fit inline won't be
10409 * big enough to store more than the swap header, but in
10410 * case something changes in the future, let's catch it
10411 * here rather than later.
10412 */
10413 btrfs_warn(fs_info, "swapfile must not be inline");
10414 ret = -EINVAL;
10415 goto out;
10416 }
10417 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10418 btrfs_warn(fs_info, "swapfile must not be compressed");
10419 ret = -EINVAL;
10420 goto out;
10421 }
10422
10423 logical_block_start = em->block_start + (start - em->start);
10424 len = min(len, em->len - (start - em->start));
10425 free_extent_map(em);
10426 em = NULL;
10427
a84d5d42 10428 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
ed46ff3d
OS
10429 if (ret < 0) {
10430 goto out;
10431 } else if (ret) {
10432 ret = 0;
10433 } else {
10434 btrfs_warn(fs_info,
10435 "swapfile must not be copy-on-write");
10436 ret = -EINVAL;
10437 goto out;
10438 }
10439
10440 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10441 if (IS_ERR(em)) {
10442 ret = PTR_ERR(em);
10443 goto out;
10444 }
10445
10446 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10447 btrfs_warn(fs_info,
10448 "swapfile must have single data profile");
10449 ret = -EINVAL;
10450 goto out;
10451 }
10452
10453 if (device == NULL) {
10454 device = em->map_lookup->stripes[0].dev;
10455 ret = btrfs_add_swapfile_pin(inode, device, false);
10456 if (ret == 1)
10457 ret = 0;
10458 else if (ret)
10459 goto out;
10460 } else if (device != em->map_lookup->stripes[0].dev) {
10461 btrfs_warn(fs_info, "swapfile must be on one device");
10462 ret = -EINVAL;
10463 goto out;
10464 }
10465
10466 physical_block_start = (em->map_lookup->stripes[0].physical +
10467 (logical_block_start - em->start));
10468 len = min(len, em->len - (logical_block_start - em->start));
10469 free_extent_map(em);
10470 em = NULL;
10471
10472 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10473 if (!bg) {
10474 btrfs_warn(fs_info,
10475 "could not find block group containing swapfile");
10476 ret = -EINVAL;
10477 goto out;
10478 }
10479
195a49ea
FM
10480 if (!btrfs_inc_block_group_swap_extents(bg)) {
10481 btrfs_warn(fs_info,
10482 "block group for swapfile at %llu is read-only%s",
10483 bg->start,
10484 atomic_read(&fs_info->scrubs_running) ?
10485 " (scrub running)" : "");
10486 btrfs_put_block_group(bg);
10487 ret = -EINVAL;
10488 goto out;
10489 }
10490
ed46ff3d
OS
10491 ret = btrfs_add_swapfile_pin(inode, bg, true);
10492 if (ret) {
10493 btrfs_put_block_group(bg);
10494 if (ret == 1)
10495 ret = 0;
10496 else
10497 goto out;
10498 }
10499
10500 if (bsi.block_len &&
10501 bsi.block_start + bsi.block_len == physical_block_start) {
10502 bsi.block_len += len;
10503 } else {
10504 if (bsi.block_len) {
10505 ret = btrfs_add_swap_extent(sis, &bsi);
10506 if (ret)
10507 goto out;
10508 }
10509 bsi.start = start;
10510 bsi.block_start = physical_block_start;
10511 bsi.block_len = len;
10512 }
10513
10514 start += len;
10515 }
10516
10517 if (bsi.block_len)
10518 ret = btrfs_add_swap_extent(sis, &bsi);
10519
10520out:
10521 if (!IS_ERR_OR_NULL(em))
10522 free_extent_map(em);
10523
10524 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10525
10526 if (ret)
10527 btrfs_swap_deactivate(file);
10528
dd0734f2
FM
10529 btrfs_drew_write_unlock(&root->snapshot_lock);
10530
c3e1f96c 10531 btrfs_exclop_finish(fs_info);
ed46ff3d
OS
10532
10533 if (ret)
10534 return ret;
10535
10536 if (device)
10537 sis->bdev = device->bdev;
10538 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10539 sis->max = bsi.nr_pages;
10540 sis->pages = bsi.nr_pages - 1;
10541 sis->highest_bit = bsi.nr_pages - 1;
10542 return bsi.nr_extents;
10543}
10544#else
10545static void btrfs_swap_deactivate(struct file *file)
10546{
10547}
10548
10549static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10550 sector_t *span)
10551{
10552 return -EOPNOTSUPP;
10553}
10554#endif
10555
2766ff61
FM
10556/*
10557 * Update the number of bytes used in the VFS' inode. When we replace extents in
10558 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10559 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10560 * always get a correct value.
10561 */
10562void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10563 const u64 add_bytes,
10564 const u64 del_bytes)
10565{
10566 if (add_bytes == del_bytes)
10567 return;
10568
10569 spin_lock(&inode->lock);
10570 if (del_bytes > 0)
10571 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10572 if (add_bytes > 0)
10573 inode_add_bytes(&inode->vfs_inode, add_bytes);
10574 spin_unlock(&inode->lock);
10575}
10576
6e1d5dcc 10577static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10578 .getattr = btrfs_getattr,
39279cc3
CM
10579 .lookup = btrfs_lookup,
10580 .create = btrfs_create,
10581 .unlink = btrfs_unlink,
10582 .link = btrfs_link,
10583 .mkdir = btrfs_mkdir,
10584 .rmdir = btrfs_rmdir,
2773bf00 10585 .rename = btrfs_rename2,
39279cc3
CM
10586 .symlink = btrfs_symlink,
10587 .setattr = btrfs_setattr,
618e21d5 10588 .mknod = btrfs_mknod,
5103e947 10589 .listxattr = btrfs_listxattr,
fdebe2bd 10590 .permission = btrfs_permission,
4e34e719 10591 .get_acl = btrfs_get_acl,
996a710d 10592 .set_acl = btrfs_set_acl,
93fd63c2 10593 .update_time = btrfs_update_time,
ef3b9af5 10594 .tmpfile = btrfs_tmpfile,
97fc2977
MS
10595 .fileattr_get = btrfs_fileattr_get,
10596 .fileattr_set = btrfs_fileattr_set,
39279cc3 10597};
76dda93c 10598
828c0950 10599static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10600 .llseek = generic_file_llseek,
10601 .read = generic_read_dir,
02dbfc99 10602 .iterate_shared = btrfs_real_readdir,
23b5ec74 10603 .open = btrfs_opendir,
34287aa3 10604 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10605#ifdef CONFIG_COMPAT
4c63c245 10606 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10607#endif
6bf13c0c 10608 .release = btrfs_release_file,
e02119d5 10609 .fsync = btrfs_sync_file,
39279cc3
CM
10610};
10611
35054394
CM
10612/*
10613 * btrfs doesn't support the bmap operation because swapfiles
10614 * use bmap to make a mapping of extents in the file. They assume
10615 * these extents won't change over the life of the file and they
10616 * use the bmap result to do IO directly to the drive.
10617 *
10618 * the btrfs bmap call would return logical addresses that aren't
10619 * suitable for IO and they also will change frequently as COW
10620 * operations happen. So, swapfile + btrfs == corruption.
10621 *
10622 * For now we're avoiding this by dropping bmap.
10623 */
7f09410b 10624static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10625 .readpage = btrfs_readpage,
10626 .writepage = btrfs_writepage,
b293f02e 10627 .writepages = btrfs_writepages,
ba206a02 10628 .readahead = btrfs_readahead,
f85781fb 10629 .direct_IO = noop_direct_IO,
a52d9a80
CM
10630 .invalidatepage = btrfs_invalidatepage,
10631 .releasepage = btrfs_releasepage,
f8e66081
RG
10632#ifdef CONFIG_MIGRATION
10633 .migratepage = btrfs_migratepage,
10634#endif
e6dcd2dc 10635 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10636 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10637 .swap_activate = btrfs_swap_activate,
10638 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10639};
10640
6e1d5dcc 10641static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10642 .getattr = btrfs_getattr,
10643 .setattr = btrfs_setattr,
5103e947 10644 .listxattr = btrfs_listxattr,
fdebe2bd 10645 .permission = btrfs_permission,
1506fcc8 10646 .fiemap = btrfs_fiemap,
4e34e719 10647 .get_acl = btrfs_get_acl,
996a710d 10648 .set_acl = btrfs_set_acl,
e41f941a 10649 .update_time = btrfs_update_time,
97fc2977
MS
10650 .fileattr_get = btrfs_fileattr_get,
10651 .fileattr_set = btrfs_fileattr_set,
39279cc3 10652};
6e1d5dcc 10653static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10654 .getattr = btrfs_getattr,
10655 .setattr = btrfs_setattr,
fdebe2bd 10656 .permission = btrfs_permission,
33268eaf 10657 .listxattr = btrfs_listxattr,
4e34e719 10658 .get_acl = btrfs_get_acl,
996a710d 10659 .set_acl = btrfs_set_acl,
e41f941a 10660 .update_time = btrfs_update_time,
618e21d5 10661};
6e1d5dcc 10662static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10663 .get_link = page_get_link,
f209561a 10664 .getattr = btrfs_getattr,
22c44fe6 10665 .setattr = btrfs_setattr,
fdebe2bd 10666 .permission = btrfs_permission,
0279b4cd 10667 .listxattr = btrfs_listxattr,
e41f941a 10668 .update_time = btrfs_update_time,
39279cc3 10669};
76dda93c 10670
82d339d9 10671const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10672 .d_delete = btrfs_dentry_delete,
10673};