]> git.ipfire.org Git - thirdparty/linux.git/blame - fs/btrfs/inode.c
btrfs: clean BTRFS_I usage in btrfs_destroy_inode
[thirdparty/linux.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
f8e66081 31#include <linux/migrate.h>
b1c16ac9 32#include <linux/sched/mm.h>
f85781fb 33#include <linux/iomap.h>
92d32170 34#include <asm/unaligned.h>
602cbe91 35#include "misc.h"
39279cc3
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
39279cc3 40#include "print-tree.h"
e6dcd2dc 41#include "ordered-data.h"
95819c05 42#include "xattr.h"
e02119d5 43#include "tree-log.h"
4a54c8c1 44#include "volumes.h"
c8b97818 45#include "compression.h"
b4ce94de 46#include "locking.h"
dc89e982 47#include "free-space-cache.h"
581bb050 48#include "inode-map.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
86736342 51#include "delalloc-space.h"
aac0023c 52#include "block-group.h"
467dc47e 53#include "space-info.h"
39279cc3
CM
54
55struct btrfs_iget_args {
0202e83f 56 u64 ino;
39279cc3
CM
57 struct btrfs_root *root;
58};
59
f28a4928 60struct btrfs_dio_data {
f28a4928 61 u64 reserve;
f85781fb
GR
62 loff_t length;
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
0eb79294 65 bool sync;
f28a4928
FM
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
70static const struct inode_operations btrfs_special_inode_operations;
71static const struct inode_operations btrfs_file_inode_operations;
7f09410b 72static const struct address_space_operations btrfs_aops;
828c0950 73static const struct file_operations btrfs_dir_file_operations;
20e5506b 74static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
75
76static struct kmem_cache *btrfs_inode_cachep;
77struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 78struct kmem_cache *btrfs_path_cachep;
dc89e982 79struct kmem_cache *btrfs_free_space_cachep;
3acd4850 80struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 81
3972f260 82static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 83static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 84static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 85static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 86 struct page *locked_page,
74e9194a 87 u64 start, u64 end, int *page_started,
330a5827 88 unsigned long *nr_written, int unlock);
4b67c11d
NB
89static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
90 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
91 u64 block_len, u64 orig_block_len,
92 u64 ram_bytes, int compress_type,
93 int type);
7b128766 94
b672b5c1 95static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
96 const u64 offset, const u64 bytes,
97 const bool uptodate);
98
99/*
100 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 101 * from the btrfs_run_delalloc_range() callback.
52427260
QW
102 *
103 * NOTE: caller must ensure that when an error happens, it can not call
104 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
105 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
106 * to be released, which we want to happen only when finishing the ordered
d1051d6e 107 * extent (btrfs_finish_ordered_io()).
52427260 108 */
64e1db56 109static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
110 struct page *locked_page,
111 u64 offset, u64 bytes)
52427260 112{
63d71450
NA
113 unsigned long index = offset >> PAGE_SHIFT;
114 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
115 u64 page_start = page_offset(locked_page);
116 u64 page_end = page_start + PAGE_SIZE - 1;
117
63d71450
NA
118 struct page *page;
119
120 while (index <= end_index) {
64e1db56 121 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
122 index++;
123 if (!page)
124 continue;
125 ClearPagePrivate2(page);
126 put_page(page);
127 }
d1051d6e
NB
128
129 /*
130 * In case this page belongs to the delalloc range being instantiated
131 * then skip it, since the first page of a range is going to be
132 * properly cleaned up by the caller of run_delalloc_range
133 */
134 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
135 offset += PAGE_SIZE;
136 bytes -= PAGE_SIZE;
137 }
138
64e1db56 139 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
982f1f5d
JJB
184 ASSERT((compressed_size > 0 && compressed_pages) ||
185 (compressed_size == 0 && !compressed_pages));
186
fe3f566c 187 if (compressed_size && compressed_pages)
c8b97818 188 cur_size = compressed_size;
c8b97818 189
1acae57b 190 inode_add_bytes(inode, size);
c8b97818 191
1acae57b
FDBM
192 if (!extent_inserted) {
193 struct btrfs_key key;
194 size_t datasize;
c8b97818 195
4a0cc7ca 196 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 197 key.offset = start;
962a298f 198 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 199
1acae57b
FDBM
200 datasize = btrfs_file_extent_calc_inline_size(cur_size);
201 path->leave_spinning = 1;
202 ret = btrfs_insert_empty_item(trans, root, path, &key,
203 datasize);
79b4f4c6 204 if (ret)
1acae57b 205 goto fail;
c8b97818
CM
206 }
207 leaf = path->nodes[0];
208 ei = btrfs_item_ptr(leaf, path->slots[0],
209 struct btrfs_file_extent_item);
210 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
211 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
212 btrfs_set_file_extent_encryption(leaf, ei, 0);
213 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
214 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
215 ptr = btrfs_file_extent_inline_start(ei);
216
261507a0 217 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
218 struct page *cpage;
219 int i = 0;
d397712b 220 while (compressed_size > 0) {
c8b97818 221 cpage = compressed_pages[i];
5b050f04 222 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 223 PAGE_SIZE);
c8b97818 224
7ac687d9 225 kaddr = kmap_atomic(cpage);
c8b97818 226 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 227 kunmap_atomic(kaddr);
c8b97818
CM
228
229 i++;
230 ptr += cur_size;
231 compressed_size -= cur_size;
232 }
233 btrfs_set_file_extent_compression(leaf, ei,
261507a0 234 compress_type);
c8b97818
CM
235 } else {
236 page = find_get_page(inode->i_mapping,
09cbfeaf 237 start >> PAGE_SHIFT);
c8b97818 238 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 239 kaddr = kmap_atomic(page);
7073017a 240 offset = offset_in_page(start);
c8b97818 241 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 242 kunmap_atomic(kaddr);
09cbfeaf 243 put_page(page);
c8b97818
CM
244 }
245 btrfs_mark_buffer_dirty(leaf);
1acae57b 246 btrfs_release_path(path);
c8b97818 247
9ddc959e
JB
248 /*
249 * We align size to sectorsize for inline extents just for simplicity
250 * sake.
251 */
252 size = ALIGN(size, root->fs_info->sectorsize);
253 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
254 if (ret)
255 goto fail;
256
c2167754
YZ
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
c8b97818 266 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 267 ret = btrfs_update_inode(trans, root, inode);
c2167754 268
c8b97818 269fail:
79b4f4c6 270 return ret;
c8b97818
CM
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
a0349401 279static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
280 u64 end, size_t compressed_size,
281 int compress_type,
282 struct page **compressed_pages)
c8b97818 283{
a0349401 284 struct btrfs_root *root = inode->root;
0b246afa 285 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 286 struct btrfs_trans_handle *trans;
a0349401 287 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
0b246afa 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
291 u64 data_len = inline_len;
292 int ret;
1acae57b
FDBM
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
c8b97818
CM
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
0b246afa
JM
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 303 (!compressed_size &&
0b246afa 304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 305 end + 1 < isize ||
0b246afa 306 data_len > fs_info->max_inline) {
c8b97818
CM
307 return 1;
308 }
309
1acae57b
FDBM
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
00361589 314 trans = btrfs_join_transaction(root);
1acae57b
FDBM
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
00361589 317 return PTR_ERR(trans);
1acae57b 318 }
a0349401 319 trans->block_rsv = &inode->block_rsv;
00361589 320
1acae57b
FDBM
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
a0349401
NB
328 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
329 NULL, 1, 1, extent_item_size,
330 &extent_inserted);
00361589 331 if (ret) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589
JB
333 goto out;
334 }
c8b97818
CM
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
1acae57b 338 ret = insert_inline_extent(trans, path, extent_inserted,
a0349401 339 root, &inode->vfs_inode, start,
c8b97818 340 inline_len, compressed_size,
fe3f566c 341 compress_type, compressed_pages);
2adcac1a 342 if (ret && ret != -ENOSPC) {
66642832 343 btrfs_abort_transaction(trans, ret);
00361589 344 goto out;
2adcac1a 345 } else if (ret == -ENOSPC) {
00361589
JB
346 ret = 1;
347 goto out;
79787eaa 348 }
2adcac1a 349
a0349401
NB
350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
351 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 352out:
94ed938a
QW
353 /*
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
358 */
a0349401 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 360 btrfs_free_path(path);
3a45bb20 361 btrfs_end_transaction(trans);
00361589 362 return ret;
c8b97818
CM
363}
364
771ed689
CM
365struct async_extent {
366 u64 start;
367 u64 ram_size;
368 u64 compressed_size;
369 struct page **pages;
370 unsigned long nr_pages;
261507a0 371 int compress_type;
771ed689
CM
372 struct list_head list;
373};
374
97db1204 375struct async_chunk {
771ed689 376 struct inode *inode;
771ed689
CM
377 struct page *locked_page;
378 u64 start;
379 u64 end;
f82b7359 380 unsigned int write_flags;
771ed689 381 struct list_head extents;
ec39f769 382 struct cgroup_subsys_state *blkcg_css;
771ed689 383 struct btrfs_work work;
97db1204 384 atomic_t *pending;
771ed689
CM
385};
386
97db1204
NB
387struct async_cow {
388 /* Number of chunks in flight; must be first in the structure */
389 atomic_t num_chunks;
390 struct async_chunk chunks[];
771ed689
CM
391};
392
97db1204 393static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
394 u64 start, u64 ram_size,
395 u64 compressed_size,
396 struct page **pages,
261507a0
LZ
397 unsigned long nr_pages,
398 int compress_type)
771ed689
CM
399{
400 struct async_extent *async_extent;
401
402 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 403 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
404 async_extent->start = start;
405 async_extent->ram_size = ram_size;
406 async_extent->compressed_size = compressed_size;
407 async_extent->pages = pages;
408 async_extent->nr_pages = nr_pages;
261507a0 409 async_extent->compress_type = compress_type;
771ed689
CM
410 list_add_tail(&async_extent->list, &cow->extents);
411 return 0;
412}
413
42c16da6
QW
414/*
415 * Check if the inode has flags compatible with compression
416 */
99c88dc7 417static inline bool inode_can_compress(struct btrfs_inode *inode)
42c16da6 418{
99c88dc7
NB
419 if (inode->flags & BTRFS_INODE_NODATACOW ||
420 inode->flags & BTRFS_INODE_NODATASUM)
42c16da6
QW
421 return false;
422 return true;
423}
424
425/*
426 * Check if the inode needs to be submitted to compression, based on mount
427 * options, defragmentation, properties or heuristics.
428 */
808a1292
NB
429static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
430 u64 end)
f79707b0 431{
808a1292 432 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 433
808a1292 434 if (!inode_can_compress(inode)) {
42c16da6
QW
435 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
436 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 437 btrfs_ino(inode));
42c16da6
QW
438 return 0;
439 }
f79707b0 440 /* force compress */
0b246afa 441 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 442 return 1;
eec63c65 443 /* defrag ioctl */
808a1292 444 if (inode->defrag_compress)
eec63c65 445 return 1;
f79707b0 446 /* bad compression ratios */
808a1292 447 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 448 return 0;
0b246afa 449 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
450 inode->flags & BTRFS_INODE_COMPRESS ||
451 inode->prop_compress)
452 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
453 return 0;
454}
455
6158e1ce 456static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
457 u64 start, u64 end, u64 num_bytes, u64 small_write)
458{
459 /* If this is a small write inside eof, kick off a defrag */
460 if (num_bytes < small_write &&
6158e1ce 461 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
462 btrfs_add_inode_defrag(NULL, inode);
463}
464
d352ac68 465/*
771ed689
CM
466 * we create compressed extents in two phases. The first
467 * phase compresses a range of pages that have already been
468 * locked (both pages and state bits are locked).
c8b97818 469 *
771ed689
CM
470 * This is done inside an ordered work queue, and the compression
471 * is spread across many cpus. The actual IO submission is step
472 * two, and the ordered work queue takes care of making sure that
473 * happens in the same order things were put onto the queue by
474 * writepages and friends.
c8b97818 475 *
771ed689
CM
476 * If this code finds it can't get good compression, it puts an
477 * entry onto the work queue to write the uncompressed bytes. This
478 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
479 * are written in the same order that the flusher thread sent them
480 * down.
d352ac68 481 */
ac3e9933 482static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 483{
1368c6da 484 struct inode *inode = async_chunk->inode;
0b246afa 485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 486 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
487 u64 start = async_chunk->start;
488 u64 end = async_chunk->end;
c8b97818 489 u64 actual_end;
d98da499 490 u64 i_size;
e6dcd2dc 491 int ret = 0;
c8b97818
CM
492 struct page **pages = NULL;
493 unsigned long nr_pages;
c8b97818
CM
494 unsigned long total_compressed = 0;
495 unsigned long total_in = 0;
c8b97818
CM
496 int i;
497 int will_compress;
0b246afa 498 int compress_type = fs_info->compress_type;
ac3e9933 499 int compressed_extents = 0;
4adaa611 500 int redirty = 0;
b888db2b 501
6158e1ce
NB
502 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
503 SZ_16K);
4cb5300b 504
d98da499
JB
505 /*
506 * We need to save i_size before now because it could change in between
507 * us evaluating the size and assigning it. This is because we lock and
508 * unlock the page in truncate and fallocate, and then modify the i_size
509 * later on.
510 *
511 * The barriers are to emulate READ_ONCE, remove that once i_size_read
512 * does that for us.
513 */
514 barrier();
515 i_size = i_size_read(inode);
516 barrier();
517 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
518again:
519 will_compress = 0;
09cbfeaf 520 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
521 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
522 nr_pages = min_t(unsigned long, nr_pages,
523 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 524
f03d9301
CM
525 /*
526 * we don't want to send crud past the end of i_size through
527 * compression, that's just a waste of CPU time. So, if the
528 * end of the file is before the start of our current
529 * requested range of bytes, we bail out to the uncompressed
530 * cleanup code that can deal with all of this.
531 *
532 * It isn't really the fastest way to fix things, but this is a
533 * very uncommon corner.
534 */
535 if (actual_end <= start)
536 goto cleanup_and_bail_uncompressed;
537
c8b97818
CM
538 total_compressed = actual_end - start;
539
4bcbb332
SW
540 /*
541 * skip compression for a small file range(<=blocksize) that
01327610 542 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
543 */
544 if (total_compressed <= blocksize &&
545 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
546 goto cleanup_and_bail_uncompressed;
547
069eac78
DS
548 total_compressed = min_t(unsigned long, total_compressed,
549 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
550 total_in = 0;
551 ret = 0;
db94535d 552
771ed689
CM
553 /*
554 * we do compression for mount -o compress and when the
555 * inode has not been flagged as nocompress. This flag can
556 * change at any time if we discover bad compression ratios.
c8b97818 557 */
808a1292 558 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 559 WARN_ON(pages);
31e818fe 560 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
561 if (!pages) {
562 /* just bail out to the uncompressed code */
3527a018 563 nr_pages = 0;
560f7d75
LZ
564 goto cont;
565 }
c8b97818 566
eec63c65
DS
567 if (BTRFS_I(inode)->defrag_compress)
568 compress_type = BTRFS_I(inode)->defrag_compress;
569 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 570 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 571
4adaa611
CM
572 /*
573 * we need to call clear_page_dirty_for_io on each
574 * page in the range. Otherwise applications with the file
575 * mmap'd can wander in and change the page contents while
576 * we are compressing them.
577 *
578 * If the compression fails for any reason, we set the pages
579 * dirty again later on.
e9679de3
TT
580 *
581 * Note that the remaining part is redirtied, the start pointer
582 * has moved, the end is the original one.
4adaa611 583 */
e9679de3
TT
584 if (!redirty) {
585 extent_range_clear_dirty_for_io(inode, start, end);
586 redirty = 1;
587 }
f51d2b59
DS
588
589 /* Compression level is applied here and only here */
590 ret = btrfs_compress_pages(
591 compress_type | (fs_info->compress_level << 4),
261507a0 592 inode->i_mapping, start,
38c31464 593 pages,
4d3a800e 594 &nr_pages,
261507a0 595 &total_in,
e5d74902 596 &total_compressed);
c8b97818
CM
597
598 if (!ret) {
7073017a 599 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 600 struct page *page = pages[nr_pages - 1];
c8b97818
CM
601 char *kaddr;
602
603 /* zero the tail end of the last page, we might be
604 * sending it down to disk
605 */
606 if (offset) {
7ac687d9 607 kaddr = kmap_atomic(page);
c8b97818 608 memset(kaddr + offset, 0,
09cbfeaf 609 PAGE_SIZE - offset);
7ac687d9 610 kunmap_atomic(kaddr);
c8b97818
CM
611 }
612 will_compress = 1;
613 }
614 }
560f7d75 615cont:
c8b97818
CM
616 if (start == 0) {
617 /* lets try to make an inline extent */
6018ba0a 618 if (ret || total_in < actual_end) {
c8b97818 619 /* we didn't compress the entire range, try
771ed689 620 * to make an uncompressed inline extent.
c8b97818 621 */
a0349401
NB
622 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
623 0, BTRFS_COMPRESS_NONE,
624 NULL);
c8b97818 625 } else {
771ed689 626 /* try making a compressed inline extent */
a0349401 627 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
628 total_compressed,
629 compress_type, pages);
c8b97818 630 }
79787eaa 631 if (ret <= 0) {
151a41bc 632 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
633 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
634 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
635 unsigned long page_error_op;
636
e6eb4314 637 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 638
771ed689 639 /*
79787eaa
JM
640 * inline extent creation worked or returned error,
641 * we don't need to create any more async work items.
642 * Unlock and free up our temp pages.
8b62f87b
JB
643 *
644 * We use DO_ACCOUNTING here because we need the
645 * delalloc_release_metadata to be done _after_ we drop
646 * our outstanding extent for clearing delalloc for this
647 * range.
771ed689 648 */
ad7ff17b
NB
649 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
650 NULL,
74e9194a 651 clear_flags,
ba8b04c1 652 PAGE_UNLOCK |
c2790a2e
JB
653 PAGE_CLEAR_DIRTY |
654 PAGE_SET_WRITEBACK |
e6eb4314 655 page_error_op |
c2790a2e 656 PAGE_END_WRITEBACK);
cecc8d90 657
1e6e238c
QW
658 /*
659 * Ensure we only free the compressed pages if we have
660 * them allocated, as we can still reach here with
661 * inode_need_compress() == false.
662 */
663 if (pages) {
664 for (i = 0; i < nr_pages; i++) {
665 WARN_ON(pages[i]->mapping);
666 put_page(pages[i]);
667 }
668 kfree(pages);
cecc8d90 669 }
cecc8d90 670 return 0;
c8b97818
CM
671 }
672 }
673
674 if (will_compress) {
675 /*
676 * we aren't doing an inline extent round the compressed size
677 * up to a block size boundary so the allocator does sane
678 * things
679 */
fda2832f 680 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
681
682 /*
683 * one last check to make sure the compression is really a
170607eb
TT
684 * win, compare the page count read with the blocks on disk,
685 * compression must free at least one sector size
c8b97818 686 */
09cbfeaf 687 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 688 if (total_compressed + blocksize <= total_in) {
ac3e9933 689 compressed_extents++;
c8bb0c8b
AS
690
691 /*
692 * The async work queues will take care of doing actual
693 * allocation on disk for these compressed pages, and
694 * will submit them to the elevator.
695 */
b5326271 696 add_async_extent(async_chunk, start, total_in,
4d3a800e 697 total_compressed, pages, nr_pages,
c8bb0c8b
AS
698 compress_type);
699
1170862d
TT
700 if (start + total_in < end) {
701 start += total_in;
c8bb0c8b
AS
702 pages = NULL;
703 cond_resched();
704 goto again;
705 }
ac3e9933 706 return compressed_extents;
c8b97818
CM
707 }
708 }
c8bb0c8b 709 if (pages) {
c8b97818
CM
710 /*
711 * the compression code ran but failed to make things smaller,
712 * free any pages it allocated and our page pointer array
713 */
4d3a800e 714 for (i = 0; i < nr_pages; i++) {
70b99e69 715 WARN_ON(pages[i]->mapping);
09cbfeaf 716 put_page(pages[i]);
c8b97818
CM
717 }
718 kfree(pages);
719 pages = NULL;
720 total_compressed = 0;
4d3a800e 721 nr_pages = 0;
c8b97818
CM
722
723 /* flag the file so we don't compress in the future */
0b246afa 724 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 725 !(BTRFS_I(inode)->prop_compress)) {
a555f810 726 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 727 }
c8b97818 728 }
f03d9301 729cleanup_and_bail_uncompressed:
c8bb0c8b
AS
730 /*
731 * No compression, but we still need to write the pages in the file
732 * we've been given so far. redirty the locked page if it corresponds
733 * to our extent and set things up for the async work queue to run
734 * cow_file_range to do the normal delalloc dance.
735 */
1d53c9e6
CM
736 if (async_chunk->locked_page &&
737 (page_offset(async_chunk->locked_page) >= start &&
738 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 739 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 740 /* unlocked later on in the async handlers */
1d53c9e6 741 }
c8bb0c8b
AS
742
743 if (redirty)
744 extent_range_redirty_for_io(inode, start, end);
b5326271 745 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 746 BTRFS_COMPRESS_NONE);
ac3e9933 747 compressed_extents++;
3b951516 748
ac3e9933 749 return compressed_extents;
771ed689 750}
771ed689 751
40ae837b
FM
752static void free_async_extent_pages(struct async_extent *async_extent)
753{
754 int i;
755
756 if (!async_extent->pages)
757 return;
758
759 for (i = 0; i < async_extent->nr_pages; i++) {
760 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 761 put_page(async_extent->pages[i]);
40ae837b
FM
762 }
763 kfree(async_extent->pages);
764 async_extent->nr_pages = 0;
765 async_extent->pages = NULL;
771ed689
CM
766}
767
768/*
769 * phase two of compressed writeback. This is the ordered portion
770 * of the code, which only gets called in the order the work was
771 * queued. We walk all the async extents created by compress_file_range
772 * and send them down to the disk.
773 */
b5326271 774static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 775{
a0ff10dc
NB
776 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
777 struct btrfs_fs_info *fs_info = inode->root->fs_info;
771ed689
CM
778 struct async_extent *async_extent;
779 u64 alloc_hint = 0;
771ed689
CM
780 struct btrfs_key ins;
781 struct extent_map *em;
a0ff10dc
NB
782 struct btrfs_root *root = inode->root;
783 struct extent_io_tree *io_tree = &inode->io_tree;
f5a84ee3 784 int ret = 0;
771ed689 785
3e04e7f1 786again:
b5326271
NB
787 while (!list_empty(&async_chunk->extents)) {
788 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
789 struct async_extent, list);
790 list_del(&async_extent->list);
c8b97818 791
f5a84ee3 792retry:
7447555f
NB
793 lock_extent(io_tree, async_extent->start,
794 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
795 /* did the compression code fall back to uncompressed IO? */
796 if (!async_extent->pages) {
797 int page_started = 0;
798 unsigned long nr_written = 0;
799
771ed689 800 /* allocate blocks */
a0ff10dc 801 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
802 async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1,
330a5827 805 &page_started, &nr_written, 0);
771ed689 806
79787eaa
JM
807 /* JDM XXX */
808
771ed689
CM
809 /*
810 * if page_started, cow_file_range inserted an
811 * inline extent and took care of all the unlocking
812 * and IO for us. Otherwise, we need to submit
813 * all those pages down to the drive.
814 */
f5a84ee3 815 if (!page_started && !ret)
a0ff10dc 816 extent_write_locked_range(&inode->vfs_inode,
5e3ee236 817 async_extent->start,
d397712b 818 async_extent->start +
771ed689 819 async_extent->ram_size - 1,
771ed689 820 WB_SYNC_ALL);
1d53c9e6 821 else if (ret && async_chunk->locked_page)
b5326271 822 unlock_page(async_chunk->locked_page);
771ed689
CM
823 kfree(async_extent);
824 cond_resched();
825 continue;
826 }
827
18513091 828 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
829 async_extent->compressed_size,
830 async_extent->compressed_size,
e570fd27 831 0, alloc_hint, &ins, 1, 1);
f5a84ee3 832 if (ret) {
40ae837b 833 free_async_extent_pages(async_extent);
3e04e7f1 834
fdf8e2ea
JB
835 if (ret == -ENOSPC) {
836 unlock_extent(io_tree, async_extent->start,
837 async_extent->start +
838 async_extent->ram_size - 1);
ce62003f
LB
839
840 /*
841 * we need to redirty the pages if we decide to
842 * fallback to uncompressed IO, otherwise we
843 * will not submit these pages down to lower
844 * layers.
845 */
a0ff10dc 846 extent_range_redirty_for_io(&inode->vfs_inode,
ce62003f
LB
847 async_extent->start,
848 async_extent->start +
849 async_extent->ram_size - 1);
850
79787eaa 851 goto retry;
fdf8e2ea 852 }
3e04e7f1 853 goto out_free;
f5a84ee3 854 }
c2167754
YZ
855 /*
856 * here we're doing allocation and writeback of the
857 * compressed pages
858 */
a0ff10dc 859 em = create_io_em(inode, async_extent->start,
6f9994db
LB
860 async_extent->ram_size, /* len */
861 async_extent->start, /* orig_start */
862 ins.objectid, /* block_start */
863 ins.offset, /* block_len */
864 ins.offset, /* orig_block_len */
865 async_extent->ram_size, /* ram_bytes */
866 async_extent->compress_type,
867 BTRFS_ORDERED_COMPRESSED);
868 if (IS_ERR(em))
869 /* ret value is not necessary due to void function */
3e04e7f1 870 goto out_free_reserve;
6f9994db 871 free_extent_map(em);
3e04e7f1 872
a0ff10dc 873 ret = btrfs_add_ordered_extent_compress(inode,
261507a0
LZ
874 async_extent->start,
875 ins.objectid,
876 async_extent->ram_size,
877 ins.offset,
878 BTRFS_ORDERED_COMPRESSED,
879 async_extent->compress_type);
d9f85963 880 if (ret) {
a0ff10dc 881 btrfs_drop_extent_cache(inode, async_extent->start,
d9f85963
FM
882 async_extent->start +
883 async_extent->ram_size - 1, 0);
3e04e7f1 884 goto out_free_reserve;
d9f85963 885 }
0b246afa 886 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 887
771ed689
CM
888 /*
889 * clear dirty, set writeback and unlock the pages.
890 */
a0ff10dc 891 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
892 async_extent->start +
893 async_extent->ram_size - 1,
151a41bc
JB
894 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
895 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 896 PAGE_SET_WRITEBACK);
a0ff10dc 897 if (btrfs_submit_compressed_write(inode, async_extent->start,
d397712b
CM
898 async_extent->ram_size,
899 ins.objectid,
900 ins.offset, async_extent->pages,
f82b7359 901 async_extent->nr_pages,
ec39f769
CM
902 async_chunk->write_flags,
903 async_chunk->blkcg_css)) {
fce2a4e6
FM
904 struct page *p = async_extent->pages[0];
905 const u64 start = async_extent->start;
906 const u64 end = start + async_extent->ram_size - 1;
907
a0ff10dc 908 p->mapping = inode->vfs_inode.i_mapping;
c629732d 909 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 910
fce2a4e6 911 p->mapping = NULL;
a0ff10dc 912 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
fce2a4e6
FM
913 PAGE_END_WRITEBACK |
914 PAGE_SET_ERROR);
40ae837b 915 free_async_extent_pages(async_extent);
fce2a4e6 916 }
771ed689
CM
917 alloc_hint = ins.objectid + ins.offset;
918 kfree(async_extent);
919 cond_resched();
920 }
dec8f175 921 return;
3e04e7f1 922out_free_reserve:
0b246afa 923 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 924 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 925out_free:
a0ff10dc 926 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
927 async_extent->start +
928 async_extent->ram_size - 1,
c2790a2e 929 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 930 EXTENT_DELALLOC_NEW |
151a41bc
JB
931 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
932 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
933 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
934 PAGE_SET_ERROR);
40ae837b 935 free_async_extent_pages(async_extent);
79787eaa 936 kfree(async_extent);
3e04e7f1 937 goto again;
771ed689
CM
938}
939
43c69849 940static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
941 u64 num_bytes)
942{
43c69849 943 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
944 struct extent_map *em;
945 u64 alloc_hint = 0;
946
947 read_lock(&em_tree->lock);
948 em = search_extent_mapping(em_tree, start, num_bytes);
949 if (em) {
950 /*
951 * if block start isn't an actual block number then find the
952 * first block in this inode and use that as a hint. If that
953 * block is also bogus then just don't worry about it.
954 */
955 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
956 free_extent_map(em);
957 em = search_extent_mapping(em_tree, 0, 0);
958 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
959 alloc_hint = em->block_start;
960 if (em)
961 free_extent_map(em);
962 } else {
963 alloc_hint = em->block_start;
964 free_extent_map(em);
965 }
966 }
967 read_unlock(&em_tree->lock);
968
969 return alloc_hint;
970}
971
771ed689
CM
972/*
973 * when extent_io.c finds a delayed allocation range in the file,
974 * the call backs end up in this code. The basic idea is to
975 * allocate extents on disk for the range, and create ordered data structs
976 * in ram to track those extents.
977 *
978 * locked_page is the page that writepage had locked already. We use
979 * it to make sure we don't do extra locks or unlocks.
980 *
981 * *page_started is set to one if we unlock locked_page and do everything
982 * required to start IO on it. It may be clean and already done with
983 * IO when we return.
984 */
6e26c442 985static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 986 struct page *locked_page,
74e9194a 987 u64 start, u64 end, int *page_started,
330a5827 988 unsigned long *nr_written, int unlock)
771ed689 989{
6e26c442
NB
990 struct btrfs_root *root = inode->root;
991 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
992 u64 alloc_hint = 0;
993 u64 num_bytes;
994 unsigned long ram_size;
a315e68f 995 u64 cur_alloc_size = 0;
432cd2a1 996 u64 min_alloc_size;
0b246afa 997 u64 blocksize = fs_info->sectorsize;
771ed689
CM
998 struct btrfs_key ins;
999 struct extent_map *em;
a315e68f
FM
1000 unsigned clear_bits;
1001 unsigned long page_ops;
1002 bool extent_reserved = false;
771ed689
CM
1003 int ret = 0;
1004
6e26c442 1005 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 1006 WARN_ON_ONCE(1);
29bce2f3
JB
1007 ret = -EINVAL;
1008 goto out_unlock;
02ecd2c2 1009 }
771ed689 1010
fda2832f 1011 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1012 num_bytes = max(blocksize, num_bytes);
566b1760 1013 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1014
6e26c442 1015 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1016
771ed689
CM
1017 if (start == 0) {
1018 /* lets try to make an inline extent */
6e26c442 1019 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1020 BTRFS_COMPRESS_NONE, NULL);
771ed689 1021 if (ret == 0) {
8b62f87b
JB
1022 /*
1023 * We use DO_ACCOUNTING here because we need the
1024 * delalloc_release_metadata to be run _after_ we drop
1025 * our outstanding extent for clearing delalloc for this
1026 * range.
1027 */
6e26c442 1028 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1029 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1030 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1031 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1032 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1033 PAGE_END_WRITEBACK);
771ed689 1034 *nr_written = *nr_written +
09cbfeaf 1035 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1036 *page_started = 1;
771ed689 1037 goto out;
79787eaa 1038 } else if (ret < 0) {
79787eaa 1039 goto out_unlock;
771ed689
CM
1040 }
1041 }
1042
6e26c442
NB
1043 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1044 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1045
432cd2a1
FM
1046 /*
1047 * Relocation relies on the relocated extents to have exactly the same
1048 * size as the original extents. Normally writeback for relocation data
1049 * extents follows a NOCOW path because relocation preallocates the
1050 * extents. However, due to an operation such as scrub turning a block
1051 * group to RO mode, it may fallback to COW mode, so we must make sure
1052 * an extent allocated during COW has exactly the requested size and can
1053 * not be split into smaller extents, otherwise relocation breaks and
1054 * fails during the stage where it updates the bytenr of file extent
1055 * items.
1056 */
1057 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1058 min_alloc_size = num_bytes;
1059 else
1060 min_alloc_size = fs_info->sectorsize;
1061
3752d22f
AJ
1062 while (num_bytes > 0) {
1063 cur_alloc_size = num_bytes;
18513091 1064 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1065 min_alloc_size, 0, alloc_hint,
e570fd27 1066 &ins, 1, 1);
00361589 1067 if (ret < 0)
79787eaa 1068 goto out_unlock;
a315e68f
FM
1069 cur_alloc_size = ins.offset;
1070 extent_reserved = true;
d397712b 1071
771ed689 1072 ram_size = ins.offset;
6e26c442 1073 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1074 start, /* orig_start */
1075 ins.objectid, /* block_start */
1076 ins.offset, /* block_len */
1077 ins.offset, /* orig_block_len */
1078 ram_size, /* ram_bytes */
1079 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1080 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1081 if (IS_ERR(em)) {
1082 ret = PTR_ERR(em);
ace68bac 1083 goto out_reserve;
090a127a 1084 }
6f9994db 1085 free_extent_map(em);
e6dcd2dc 1086
6e26c442
NB
1087 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1088 ram_size, cur_alloc_size, 0);
ace68bac 1089 if (ret)
d9f85963 1090 goto out_drop_extent_cache;
c8b97818 1091
17d217fe
YZ
1092 if (root->root_key.objectid ==
1093 BTRFS_DATA_RELOC_TREE_OBJECTID) {
6e26c442 1094 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1095 cur_alloc_size);
4dbd80fb
QW
1096 /*
1097 * Only drop cache here, and process as normal.
1098 *
1099 * We must not allow extent_clear_unlock_delalloc()
1100 * at out_unlock label to free meta of this ordered
1101 * extent, as its meta should be freed by
1102 * btrfs_finish_ordered_io().
1103 *
1104 * So we must continue until @start is increased to
1105 * skip current ordered extent.
1106 */
00361589 1107 if (ret)
6e26c442 1108 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1109 start + ram_size - 1, 0);
17d217fe
YZ
1110 }
1111
0b246afa 1112 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1113
c8b97818
CM
1114 /* we're not doing compressed IO, don't unlock the first
1115 * page (which the caller expects to stay locked), don't
1116 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1117 *
1118 * Do set the Private2 bit so we know this page was properly
1119 * setup for writepage
c8b97818 1120 */
a315e68f
FM
1121 page_ops = unlock ? PAGE_UNLOCK : 0;
1122 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1123
6e26c442 1124 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1125 locked_page,
c2790a2e 1126 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1127 page_ops);
3752d22f
AJ
1128 if (num_bytes < cur_alloc_size)
1129 num_bytes = 0;
4dbd80fb 1130 else
3752d22f 1131 num_bytes -= cur_alloc_size;
c59f8951
CM
1132 alloc_hint = ins.objectid + ins.offset;
1133 start += cur_alloc_size;
a315e68f 1134 extent_reserved = false;
4dbd80fb
QW
1135
1136 /*
1137 * btrfs_reloc_clone_csums() error, since start is increased
1138 * extent_clear_unlock_delalloc() at out_unlock label won't
1139 * free metadata of current ordered extent, we're OK to exit.
1140 */
1141 if (ret)
1142 goto out_unlock;
b888db2b 1143 }
79787eaa 1144out:
be20aa9d 1145 return ret;
b7d5b0a8 1146
d9f85963 1147out_drop_extent_cache:
6e26c442 1148 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1149out_reserve:
0b246afa 1150 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1151 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1152out_unlock:
a7e3b975
FM
1153 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1154 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1155 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1156 PAGE_END_WRITEBACK;
1157 /*
1158 * If we reserved an extent for our delalloc range (or a subrange) and
1159 * failed to create the respective ordered extent, then it means that
1160 * when we reserved the extent we decremented the extent's size from
1161 * the data space_info's bytes_may_use counter and incremented the
1162 * space_info's bytes_reserved counter by the same amount. We must make
1163 * sure extent_clear_unlock_delalloc() does not try to decrement again
1164 * the data space_info's bytes_may_use counter, therefore we do not pass
1165 * it the flag EXTENT_CLEAR_DATA_RESV.
1166 */
1167 if (extent_reserved) {
6e26c442 1168 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1169 start + cur_alloc_size - 1,
a315e68f
FM
1170 locked_page,
1171 clear_bits,
1172 page_ops);
1173 start += cur_alloc_size;
1174 if (start >= end)
1175 goto out;
1176 }
6e26c442 1177 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1178 clear_bits | EXTENT_CLEAR_DATA_RESV,
1179 page_ops);
79787eaa 1180 goto out;
771ed689 1181}
c8b97818 1182
771ed689
CM
1183/*
1184 * work queue call back to started compression on a file and pages
1185 */
1186static noinline void async_cow_start(struct btrfs_work *work)
1187{
b5326271 1188 struct async_chunk *async_chunk;
ac3e9933 1189 int compressed_extents;
771ed689 1190
b5326271 1191 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1192
ac3e9933
NB
1193 compressed_extents = compress_file_range(async_chunk);
1194 if (compressed_extents == 0) {
b5326271
NB
1195 btrfs_add_delayed_iput(async_chunk->inode);
1196 async_chunk->inode = NULL;
8180ef88 1197 }
771ed689
CM
1198}
1199
1200/*
1201 * work queue call back to submit previously compressed pages
1202 */
1203static noinline void async_cow_submit(struct btrfs_work *work)
1204{
c5a68aec
NB
1205 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1206 work);
1207 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1208 unsigned long nr_pages;
1209
b5326271 1210 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1211 PAGE_SHIFT;
771ed689 1212
093258e6 1213 /* atomic_sub_return implies a barrier */
0b246afa 1214 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1215 5 * SZ_1M)
1216 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1217
4546d178 1218 /*
b5326271 1219 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1220 * in which case we don't have anything to submit, yet we need to
1221 * always adjust ->async_delalloc_pages as its paired with the init
1222 * happening in cow_file_range_async
1223 */
b5326271
NB
1224 if (async_chunk->inode)
1225 submit_compressed_extents(async_chunk);
771ed689 1226}
c8b97818 1227
771ed689
CM
1228static noinline void async_cow_free(struct btrfs_work *work)
1229{
b5326271 1230 struct async_chunk *async_chunk;
97db1204 1231
b5326271
NB
1232 async_chunk = container_of(work, struct async_chunk, work);
1233 if (async_chunk->inode)
1234 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1235 if (async_chunk->blkcg_css)
1236 css_put(async_chunk->blkcg_css);
97db1204
NB
1237 /*
1238 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1239 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1240 */
b5326271 1241 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1242 kvfree(async_chunk->pending);
771ed689
CM
1243}
1244
751b6431 1245static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1246 struct writeback_control *wbc,
1247 struct page *locked_page,
771ed689 1248 u64 start, u64 end, int *page_started,
fac07d2b 1249 unsigned long *nr_written)
771ed689 1250{
751b6431 1251 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1252 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1253 struct async_cow *ctx;
1254 struct async_chunk *async_chunk;
771ed689
CM
1255 unsigned long nr_pages;
1256 u64 cur_end;
97db1204
NB
1257 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1258 int i;
1259 bool should_compress;
b1c16ac9 1260 unsigned nofs_flag;
fac07d2b 1261 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1262
751b6431 1263 unlock_extent(&inode->io_tree, start, end);
97db1204 1264
751b6431 1265 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1266 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1267 num_chunks = 1;
1268 should_compress = false;
1269 } else {
1270 should_compress = true;
1271 }
1272
b1c16ac9
NB
1273 nofs_flag = memalloc_nofs_save();
1274 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1275 memalloc_nofs_restore(nofs_flag);
1276
97db1204
NB
1277 if (!ctx) {
1278 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1279 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1280 EXTENT_DO_ACCOUNTING;
1281 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1282 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1283 PAGE_SET_ERROR;
1284
751b6431
NB
1285 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1286 clear_bits, page_ops);
97db1204
NB
1287 return -ENOMEM;
1288 }
1289
1290 async_chunk = ctx->chunks;
1291 atomic_set(&ctx->num_chunks, num_chunks);
1292
1293 for (i = 0; i < num_chunks; i++) {
1294 if (should_compress)
1295 cur_end = min(end, start + SZ_512K - 1);
1296 else
1297 cur_end = end;
771ed689 1298
bd4691a0
NB
1299 /*
1300 * igrab is called higher up in the call chain, take only the
1301 * lightweight reference for the callback lifetime
1302 */
751b6431 1303 ihold(&inode->vfs_inode);
97db1204 1304 async_chunk[i].pending = &ctx->num_chunks;
751b6431 1305 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1306 async_chunk[i].start = start;
1307 async_chunk[i].end = cur_end;
97db1204
NB
1308 async_chunk[i].write_flags = write_flags;
1309 INIT_LIST_HEAD(&async_chunk[i].extents);
1310
1d53c9e6
CM
1311 /*
1312 * The locked_page comes all the way from writepage and its
1313 * the original page we were actually given. As we spread
1314 * this large delalloc region across multiple async_chunk
1315 * structs, only the first struct needs a pointer to locked_page
1316 *
1317 * This way we don't need racey decisions about who is supposed
1318 * to unlock it.
1319 */
1320 if (locked_page) {
ec39f769
CM
1321 /*
1322 * Depending on the compressibility, the pages might or
1323 * might not go through async. We want all of them to
1324 * be accounted against wbc once. Let's do it here
1325 * before the paths diverge. wbc accounting is used
1326 * only for foreign writeback detection and doesn't
1327 * need full accuracy. Just account the whole thing
1328 * against the first page.
1329 */
1330 wbc_account_cgroup_owner(wbc, locked_page,
1331 cur_end - start);
1d53c9e6
CM
1332 async_chunk[i].locked_page = locked_page;
1333 locked_page = NULL;
1334 } else {
1335 async_chunk[i].locked_page = NULL;
1336 }
1337
ec39f769
CM
1338 if (blkcg_css != blkcg_root_css) {
1339 css_get(blkcg_css);
1340 async_chunk[i].blkcg_css = blkcg_css;
1341 } else {
1342 async_chunk[i].blkcg_css = NULL;
1343 }
1344
a0cac0ec
OS
1345 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1346 async_cow_submit, async_cow_free);
771ed689 1347
97db1204 1348 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1349 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1350
97db1204 1351 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1352
771ed689
CM
1353 *nr_written += nr_pages;
1354 start = cur_end + 1;
1355 }
1356 *page_started = 1;
1357 return 0;
be20aa9d
CM
1358}
1359
2ff7e61e 1360static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1361 u64 bytenr, u64 num_bytes)
1362{
1363 int ret;
1364 struct btrfs_ordered_sum *sums;
1365 LIST_HEAD(list);
1366
0b246afa 1367 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1368 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1369 if (ret == 0 && list_empty(&list))
1370 return 0;
1371
1372 while (!list_empty(&list)) {
1373 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1374 list_del(&sums->list);
1375 kfree(sums);
1376 }
58113753
LB
1377 if (ret < 0)
1378 return ret;
17d217fe
YZ
1379 return 1;
1380}
1381
8ba96f3d 1382static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1383 const u64 start, const u64 end,
1384 int *page_started, unsigned long *nr_written)
1385{
8ba96f3d
NB
1386 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1387 const bool is_reloc_ino = (inode->root->root_key.objectid ==
6bd335b4 1388 BTRFS_DATA_RELOC_TREE_OBJECTID);
2166e5ed 1389 const u64 range_bytes = end + 1 - start;
8ba96f3d 1390 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1391 u64 range_start = start;
1392 u64 count;
1393
1394 /*
1395 * If EXTENT_NORESERVE is set it means that when the buffered write was
1396 * made we had not enough available data space and therefore we did not
1397 * reserve data space for it, since we though we could do NOCOW for the
1398 * respective file range (either there is prealloc extent or the inode
1399 * has the NOCOW bit set).
1400 *
1401 * However when we need to fallback to COW mode (because for example the
1402 * block group for the corresponding extent was turned to RO mode by a
1403 * scrub or relocation) we need to do the following:
1404 *
1405 * 1) We increment the bytes_may_use counter of the data space info.
1406 * If COW succeeds, it allocates a new data extent and after doing
1407 * that it decrements the space info's bytes_may_use counter and
1408 * increments its bytes_reserved counter by the same amount (we do
1409 * this at btrfs_add_reserved_bytes()). So we need to increment the
1410 * bytes_may_use counter to compensate (when space is reserved at
1411 * buffered write time, the bytes_may_use counter is incremented);
1412 *
1413 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1414 * that if the COW path fails for any reason, it decrements (through
1415 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1416 * data space info, which we incremented in the step above.
2166e5ed
FM
1417 *
1418 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1419 * space cache inode or an inode of the data relocation tree, we must
1420 * also increment bytes_may_use of the data space_info for the same
1421 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1422 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1423 * group that contains that extent to RO mode and therefore force COW
1424 * when starting writeback.
467dc47e 1425 */
2166e5ed 1426 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1427 EXTENT_NORESERVE, 0);
6bd335b4
FM
1428 if (count > 0 || is_space_ino || is_reloc_ino) {
1429 u64 bytes = count;
8ba96f3d 1430 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1431 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1432
6bd335b4
FM
1433 if (is_space_ino || is_reloc_ino)
1434 bytes = range_bytes;
1435
467dc47e 1436 spin_lock(&sinfo->lock);
2166e5ed 1437 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1438 spin_unlock(&sinfo->lock);
1439
2166e5ed
FM
1440 if (count > 0)
1441 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1442 0, 0, NULL);
467dc47e
FM
1443 }
1444
8ba96f3d
NB
1445 return cow_file_range(inode, locked_page, start, end, page_started,
1446 nr_written, 1);
467dc47e
FM
1447}
1448
d352ac68
CM
1449/*
1450 * when nowcow writeback call back. This checks for snapshots or COW copies
1451 * of the extents that exist in the file, and COWs the file as required.
1452 *
1453 * If no cow copies or snapshots exist, we write directly to the existing
1454 * blocks on disk
1455 */
968322c8 1456static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1457 struct page *locked_page,
3e024846
NB
1458 const u64 start, const u64 end,
1459 int *page_started, int force,
1460 unsigned long *nr_written)
be20aa9d 1461{
968322c8
NB
1462 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1463 struct btrfs_root *root = inode->root;
be20aa9d 1464 struct btrfs_path *path;
3e024846
NB
1465 u64 cow_start = (u64)-1;
1466 u64 cur_offset = start;
8ecebf4d 1467 int ret;
3e024846 1468 bool check_prev = true;
968322c8
NB
1469 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1470 u64 ino = btrfs_ino(inode);
762bf098
NB
1471 bool nocow = false;
1472 u64 disk_bytenr = 0;
be20aa9d
CM
1473
1474 path = btrfs_alloc_path();
17ca04af 1475 if (!path) {
968322c8 1476 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1477 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1478 EXTENT_DO_ACCOUNTING |
1479 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1480 PAGE_CLEAR_DIRTY |
1481 PAGE_SET_WRITEBACK |
1482 PAGE_END_WRITEBACK);
d8926bb3 1483 return -ENOMEM;
17ca04af 1484 }
82d5902d 1485
80ff3856 1486 while (1) {
3e024846
NB
1487 struct btrfs_key found_key;
1488 struct btrfs_file_extent_item *fi;
1489 struct extent_buffer *leaf;
1490 u64 extent_end;
1491 u64 extent_offset;
3e024846
NB
1492 u64 num_bytes = 0;
1493 u64 disk_num_bytes;
3e024846
NB
1494 u64 ram_bytes;
1495 int extent_type;
762bf098
NB
1496
1497 nocow = false;
3e024846 1498
e4c3b2dc 1499 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1500 cur_offset, 0);
d788a349 1501 if (ret < 0)
79787eaa 1502 goto error;
a6bd9cd1
NB
1503
1504 /*
1505 * If there is no extent for our range when doing the initial
1506 * search, then go back to the previous slot as it will be the
1507 * one containing the search offset
1508 */
80ff3856
YZ
1509 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1510 leaf = path->nodes[0];
1511 btrfs_item_key_to_cpu(leaf, &found_key,
1512 path->slots[0] - 1);
33345d01 1513 if (found_key.objectid == ino &&
80ff3856
YZ
1514 found_key.type == BTRFS_EXTENT_DATA_KEY)
1515 path->slots[0]--;
1516 }
3e024846 1517 check_prev = false;
80ff3856 1518next_slot:
a6bd9cd1 1519 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1520 leaf = path->nodes[0];
1521 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1522 ret = btrfs_next_leaf(root, path);
e8916699
LB
1523 if (ret < 0) {
1524 if (cow_start != (u64)-1)
1525 cur_offset = cow_start;
79787eaa 1526 goto error;
e8916699 1527 }
80ff3856
YZ
1528 if (ret > 0)
1529 break;
1530 leaf = path->nodes[0];
1531 }
be20aa9d 1532
80ff3856
YZ
1533 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1534
a6bd9cd1 1535 /* Didn't find anything for our INO */
1d512cb7
FM
1536 if (found_key.objectid > ino)
1537 break;
a6bd9cd1
NB
1538 /*
1539 * Keep searching until we find an EXTENT_ITEM or there are no
1540 * more extents for this inode
1541 */
1d512cb7
FM
1542 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1543 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1544 path->slots[0]++;
1545 goto next_slot;
1546 }
a6bd9cd1
NB
1547
1548 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1549 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1550 found_key.offset > end)
1551 break;
1552
a6bd9cd1
NB
1553 /*
1554 * If the found extent starts after requested offset, then
1555 * adjust extent_end to be right before this extent begins
1556 */
80ff3856
YZ
1557 if (found_key.offset > cur_offset) {
1558 extent_end = found_key.offset;
e9061e21 1559 extent_type = 0;
80ff3856
YZ
1560 goto out_check;
1561 }
1562
a6bd9cd1
NB
1563 /*
1564 * Found extent which begins before our range and potentially
1565 * intersect it
1566 */
80ff3856
YZ
1567 fi = btrfs_item_ptr(leaf, path->slots[0],
1568 struct btrfs_file_extent_item);
1569 extent_type = btrfs_file_extent_type(leaf, fi);
1570
cc95bef6 1571 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1572 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1573 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1574 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1575 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1576 extent_end = found_key.offset +
1577 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1578 disk_num_bytes =
1579 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1580 /*
de7999af
FM
1581 * If the extent we got ends before our current offset,
1582 * skip to the next extent.
a6bd9cd1 1583 */
de7999af 1584 if (extent_end <= cur_offset) {
80ff3856
YZ
1585 path->slots[0]++;
1586 goto next_slot;
1587 }
a6bd9cd1 1588 /* Skip holes */
17d217fe
YZ
1589 if (disk_bytenr == 0)
1590 goto out_check;
a6bd9cd1 1591 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1592 if (btrfs_file_extent_compression(leaf, fi) ||
1593 btrfs_file_extent_encryption(leaf, fi) ||
1594 btrfs_file_extent_other_encoding(leaf, fi))
1595 goto out_check;
78d4295b 1596 /*
a6bd9cd1
NB
1597 * If extent is created before the last volume's snapshot
1598 * this implies the extent is shared, hence we can't do
1599 * nocow. This is the same check as in
1600 * btrfs_cross_ref_exist but without calling
1601 * btrfs_search_slot.
78d4295b 1602 */
3e024846 1603 if (!freespace_inode &&
27a7ff55 1604 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1605 btrfs_root_last_snapshot(&root->root_item))
1606 goto out_check;
d899e052
YZ
1607 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1608 goto out_check;
a6bd9cd1 1609 /* If extent is RO, we must COW it */
2ff7e61e 1610 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1611 goto out_check;
58113753
LB
1612 ret = btrfs_cross_ref_exist(root, ino,
1613 found_key.offset -
a84d5d42 1614 extent_offset, disk_bytenr, false);
58113753
LB
1615 if (ret) {
1616 /*
1617 * ret could be -EIO if the above fails to read
1618 * metadata.
1619 */
1620 if (ret < 0) {
1621 if (cow_start != (u64)-1)
1622 cur_offset = cow_start;
1623 goto error;
1624 }
1625
3e024846 1626 WARN_ON_ONCE(freespace_inode);
17d217fe 1627 goto out_check;
58113753 1628 }
5d4f98a2 1629 disk_bytenr += extent_offset;
17d217fe
YZ
1630 disk_bytenr += cur_offset - found_key.offset;
1631 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1632 /*
a6bd9cd1
NB
1633 * If there are pending snapshots for this root, we
1634 * fall into common COW way
e9894fd3 1635 */
3e024846 1636 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1637 goto out_check;
17d217fe
YZ
1638 /*
1639 * force cow if csum exists in the range.
1640 * this ensure that csum for a given extent are
1641 * either valid or do not exist.
1642 */
58113753
LB
1643 ret = csum_exist_in_range(fs_info, disk_bytenr,
1644 num_bytes);
1645 if (ret) {
58113753
LB
1646 /*
1647 * ret could be -EIO if the above fails to read
1648 * metadata.
1649 */
1650 if (ret < 0) {
1651 if (cow_start != (u64)-1)
1652 cur_offset = cow_start;
1653 goto error;
1654 }
3e024846 1655 WARN_ON_ONCE(freespace_inode);
17d217fe 1656 goto out_check;
91e1f56a 1657 }
8ecebf4d 1658 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1659 goto out_check;
3e024846 1660 nocow = true;
80ff3856 1661 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1662 extent_end = found_key.offset + ram_bytes;
1663 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1664 /* Skip extents outside of our requested range */
1665 if (extent_end <= start) {
1666 path->slots[0]++;
1667 goto next_slot;
1668 }
80ff3856 1669 } else {
e8e21007 1670 /* If this triggers then we have a memory corruption */
290342f6 1671 BUG();
80ff3856
YZ
1672 }
1673out_check:
a6bd9cd1
NB
1674 /*
1675 * If nocow is false then record the beginning of the range
1676 * that needs to be COWed
1677 */
80ff3856
YZ
1678 if (!nocow) {
1679 if (cow_start == (u64)-1)
1680 cow_start = cur_offset;
1681 cur_offset = extent_end;
1682 if (cur_offset > end)
1683 break;
1684 path->slots[0]++;
1685 goto next_slot;
7ea394f1
YZ
1686 }
1687
b3b4aa74 1688 btrfs_release_path(path);
a6bd9cd1
NB
1689
1690 /*
1691 * COW range from cow_start to found_key.offset - 1. As the key
1692 * will contain the beginning of the first extent that can be
1693 * NOCOW, following one which needs to be COW'ed
1694 */
80ff3856 1695 if (cow_start != (u64)-1) {
968322c8 1696 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 1697 cow_start, found_key.offset - 1,
467dc47e 1698 page_started, nr_written);
230ed397 1699 if (ret)
79787eaa 1700 goto error;
80ff3856 1701 cow_start = (u64)-1;
7ea394f1 1702 }
80ff3856 1703
d899e052 1704 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1705 u64 orig_start = found_key.offset - extent_offset;
3e024846 1706 struct extent_map *em;
6f9994db 1707
968322c8 1708 em = create_io_em(inode, cur_offset, num_bytes,
6f9994db
LB
1709 orig_start,
1710 disk_bytenr, /* block_start */
1711 num_bytes, /* block_len */
1712 disk_num_bytes, /* orig_block_len */
1713 ram_bytes, BTRFS_COMPRESS_NONE,
1714 BTRFS_ORDERED_PREALLOC);
1715 if (IS_ERR(em)) {
6f9994db
LB
1716 ret = PTR_ERR(em);
1717 goto error;
d899e052 1718 }
6f9994db 1719 free_extent_map(em);
968322c8 1720 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1721 disk_bytenr, num_bytes,
1722 num_bytes,
1723 BTRFS_ORDERED_PREALLOC);
762bf098 1724 if (ret) {
968322c8 1725 btrfs_drop_extent_cache(inode, cur_offset,
762bf098
NB
1726 cur_offset + num_bytes - 1,
1727 0);
1728 goto error;
1729 }
d899e052 1730 } else {
968322c8 1731 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1732 disk_bytenr, num_bytes,
1733 num_bytes,
1734 BTRFS_ORDERED_NOCOW);
762bf098
NB
1735 if (ret)
1736 goto error;
d899e052 1737 }
80ff3856 1738
f78c436c 1739 if (nocow)
0b246afa 1740 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1741 nocow = false;
771ed689 1742
efa56464 1743 if (root->root_key.objectid ==
4dbd80fb
QW
1744 BTRFS_DATA_RELOC_TREE_OBJECTID)
1745 /*
1746 * Error handled later, as we must prevent
1747 * extent_clear_unlock_delalloc() in error handler
1748 * from freeing metadata of created ordered extent.
1749 */
968322c8 1750 ret = btrfs_reloc_clone_csums(inode, cur_offset,
efa56464 1751 num_bytes);
efa56464 1752
968322c8 1753 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1754 cur_offset + num_bytes - 1,
c2790a2e 1755 locked_page, EXTENT_LOCKED |
18513091
WX
1756 EXTENT_DELALLOC |
1757 EXTENT_CLEAR_DATA_RESV,
1758 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1759
80ff3856 1760 cur_offset = extent_end;
4dbd80fb
QW
1761
1762 /*
1763 * btrfs_reloc_clone_csums() error, now we're OK to call error
1764 * handler, as metadata for created ordered extent will only
1765 * be freed by btrfs_finish_ordered_io().
1766 */
1767 if (ret)
1768 goto error;
80ff3856
YZ
1769 if (cur_offset > end)
1770 break;
be20aa9d 1771 }
b3b4aa74 1772 btrfs_release_path(path);
80ff3856 1773
506481b2 1774 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1775 cow_start = cur_offset;
17ca04af 1776
80ff3856 1777 if (cow_start != (u64)-1) {
506481b2 1778 cur_offset = end;
968322c8
NB
1779 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1780 page_started, nr_written);
d788a349 1781 if (ret)
79787eaa 1782 goto error;
80ff3856
YZ
1783 }
1784
79787eaa 1785error:
762bf098
NB
1786 if (nocow)
1787 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1788
17ca04af 1789 if (ret && cur_offset < end)
968322c8 1790 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1791 locked_page, EXTENT_LOCKED |
151a41bc
JB
1792 EXTENT_DELALLOC | EXTENT_DEFRAG |
1793 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1794 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1795 PAGE_SET_WRITEBACK |
1796 PAGE_END_WRITEBACK);
7ea394f1 1797 btrfs_free_path(path);
79787eaa 1798 return ret;
be20aa9d
CM
1799}
1800
0c494225 1801static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93
WS
1802{
1803
0c494225
NB
1804 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1805 !(inode->flags & BTRFS_INODE_PREALLOC))
47059d93
WS
1806 return 0;
1807
1808 /*
1809 * @defrag_bytes is a hint value, no spinlock held here,
1810 * if is not zero, it means the file is defragging.
1811 * Force cow if given extent needs to be defragged.
1812 */
0c494225
NB
1813 if (inode->defrag_bytes &&
1814 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
47059d93
WS
1815 return 1;
1816
1817 return 0;
1818}
1819
d352ac68 1820/*
5eaad97a
NB
1821 * Function to process delayed allocation (create CoW) for ranges which are
1822 * being touched for the first time.
d352ac68 1823 */
98456b9c 1824int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
1825 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1826 struct writeback_control *wbc)
be20aa9d 1827{
be20aa9d 1828 int ret;
98456b9c 1829 int force_cow = need_force_cow(inode, start, end);
a2135011 1830
98456b9c
NB
1831 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1832 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1833 page_started, 1, nr_written);
98456b9c
NB
1834 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1835 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1836 page_started, 0, nr_written);
98456b9c
NB
1837 } else if (!inode_can_compress(inode) ||
1838 !inode_need_compress(inode, start, end)) {
1839 ret = cow_file_range(inode, locked_page, start, end,
1840 page_started, nr_written, 1);
7ddf5a42 1841 } else {
98456b9c
NB
1842 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1843 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1844 page_started, nr_written);
7ddf5a42 1845 }
52427260 1846 if (ret)
98456b9c 1847 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 1848 end - start + 1);
b888db2b
CM
1849 return ret;
1850}
1851
abbb55f4
NB
1852void btrfs_split_delalloc_extent(struct inode *inode,
1853 struct extent_state *orig, u64 split)
9ed74f2d 1854{
dcab6a3b
JB
1855 u64 size;
1856
0ca1f7ce 1857 /* not delalloc, ignore it */
9ed74f2d 1858 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1859 return;
9ed74f2d 1860
dcab6a3b
JB
1861 size = orig->end - orig->start + 1;
1862 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1863 u32 num_extents;
dcab6a3b
JB
1864 u64 new_size;
1865
1866 /*
5c848198 1867 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1868 * applies here, just in reverse.
dcab6a3b
JB
1869 */
1870 new_size = orig->end - split + 1;
823bb20a 1871 num_extents = count_max_extents(new_size);
ba117213 1872 new_size = split - orig->start;
823bb20a
DS
1873 num_extents += count_max_extents(new_size);
1874 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1875 return;
1876 }
1877
9e0baf60 1878 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1879 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1880 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1881}
1882
1883/*
5c848198
NB
1884 * Handle merged delayed allocation extents so we can keep track of new extents
1885 * that are just merged onto old extents, such as when we are doing sequential
1886 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1887 */
5c848198
NB
1888void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1889 struct extent_state *other)
9ed74f2d 1890{
dcab6a3b 1891 u64 new_size, old_size;
823bb20a 1892 u32 num_extents;
dcab6a3b 1893
9ed74f2d
JB
1894 /* not delalloc, ignore it */
1895 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1896 return;
9ed74f2d 1897
8461a3de
JB
1898 if (new->start > other->start)
1899 new_size = new->end - other->start + 1;
1900 else
1901 new_size = other->end - new->start + 1;
dcab6a3b
JB
1902
1903 /* we're not bigger than the max, unreserve the space and go */
1904 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1905 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1906 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1907 spin_unlock(&BTRFS_I(inode)->lock);
1908 return;
1909 }
1910
1911 /*
ba117213
JB
1912 * We have to add up either side to figure out how many extents were
1913 * accounted for before we merged into one big extent. If the number of
1914 * extents we accounted for is <= the amount we need for the new range
1915 * then we can return, otherwise drop. Think of it like this
1916 *
1917 * [ 4k][MAX_SIZE]
1918 *
1919 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1920 * need 2 outstanding extents, on one side we have 1 and the other side
1921 * we have 1 so they are == and we can return. But in this case
1922 *
1923 * [MAX_SIZE+4k][MAX_SIZE+4k]
1924 *
1925 * Each range on their own accounts for 2 extents, but merged together
1926 * they are only 3 extents worth of accounting, so we need to drop in
1927 * this case.
dcab6a3b 1928 */
ba117213 1929 old_size = other->end - other->start + 1;
823bb20a 1930 num_extents = count_max_extents(old_size);
ba117213 1931 old_size = new->end - new->start + 1;
823bb20a
DS
1932 num_extents += count_max_extents(old_size);
1933 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1934 return;
1935
9e0baf60 1936 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1937 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1938 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1939}
1940
eb73c1b7
MX
1941static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1942 struct inode *inode)
1943{
0b246afa
JM
1944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1945
eb73c1b7
MX
1946 spin_lock(&root->delalloc_lock);
1947 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1948 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1949 &root->delalloc_inodes);
1950 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1951 &BTRFS_I(inode)->runtime_flags);
1952 root->nr_delalloc_inodes++;
1953 if (root->nr_delalloc_inodes == 1) {
0b246afa 1954 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1955 BUG_ON(!list_empty(&root->delalloc_root));
1956 list_add_tail(&root->delalloc_root,
0b246afa
JM
1957 &fs_info->delalloc_roots);
1958 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1959 }
1960 }
1961 spin_unlock(&root->delalloc_lock);
1962}
1963
2b877331
NB
1964
1965void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1966 struct btrfs_inode *inode)
eb73c1b7 1967{
3ffbd68c 1968 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1969
9e3e97f4
NB
1970 if (!list_empty(&inode->delalloc_inodes)) {
1971 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1972 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1973 &inode->runtime_flags);
eb73c1b7
MX
1974 root->nr_delalloc_inodes--;
1975 if (!root->nr_delalloc_inodes) {
7c8a0d36 1976 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1977 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1978 BUG_ON(list_empty(&root->delalloc_root));
1979 list_del_init(&root->delalloc_root);
0b246afa 1980 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1981 }
1982 }
2b877331
NB
1983}
1984
1985static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1986 struct btrfs_inode *inode)
1987{
1988 spin_lock(&root->delalloc_lock);
1989 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1990 spin_unlock(&root->delalloc_lock);
1991}
1992
d352ac68 1993/*
e06a1fc9
NB
1994 * Properly track delayed allocation bytes in the inode and to maintain the
1995 * list of inodes that have pending delalloc work to be done.
d352ac68 1996 */
e06a1fc9
NB
1997void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1998 unsigned *bits)
291d673e 1999{
0b246afa
JM
2000 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2001
47059d93
WS
2002 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2003 WARN_ON(1);
75eff68e
CM
2004 /*
2005 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2006 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2007 * bit, which is only set or cleared with irqs on
2008 */
0ca1f7ce 2009 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2010 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2011 u64 len = state->end + 1 - state->start;
8b62f87b 2012 u32 num_extents = count_max_extents(len);
70ddc553 2013 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2014
8b62f87b
JB
2015 spin_lock(&BTRFS_I(inode)->lock);
2016 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2017 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2018
6a3891c5 2019 /* For sanity tests */
0b246afa 2020 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2021 return;
2022
104b4e51
NB
2023 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2024 fs_info->delalloc_batch);
df0af1a5 2025 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2026 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2027 if (*bits & EXTENT_DEFRAG)
2028 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2029 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2030 &BTRFS_I(inode)->runtime_flags))
2031 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2032 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2033 }
a7e3b975
FM
2034
2035 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2036 (*bits & EXTENT_DELALLOC_NEW)) {
2037 spin_lock(&BTRFS_I(inode)->lock);
2038 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2039 state->start;
2040 spin_unlock(&BTRFS_I(inode)->lock);
2041 }
291d673e
CM
2042}
2043
d352ac68 2044/*
a36bb5f9
NB
2045 * Once a range is no longer delalloc this function ensures that proper
2046 * accounting happens.
d352ac68 2047 */
a36bb5f9
NB
2048void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2049 struct extent_state *state, unsigned *bits)
291d673e 2050{
a36bb5f9
NB
2051 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2052 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2053 u64 len = state->end + 1 - state->start;
823bb20a 2054 u32 num_extents = count_max_extents(len);
47059d93 2055
4a4b964f
FM
2056 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2057 spin_lock(&inode->lock);
6fc0ef68 2058 inode->defrag_bytes -= len;
4a4b964f
FM
2059 spin_unlock(&inode->lock);
2060 }
47059d93 2061
75eff68e
CM
2062 /*
2063 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2064 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2065 * bit, which is only set or cleared with irqs on
2066 */
0ca1f7ce 2067 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2068 struct btrfs_root *root = inode->root;
83eea1f1 2069 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2070
8b62f87b
JB
2071 spin_lock(&inode->lock);
2072 btrfs_mod_outstanding_extents(inode, -num_extents);
2073 spin_unlock(&inode->lock);
0ca1f7ce 2074
b6d08f06
JB
2075 /*
2076 * We don't reserve metadata space for space cache inodes so we
52042d8e 2077 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2078 * error.
2079 */
a315e68f 2080 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2081 root != fs_info->tree_root)
43b18595 2082 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2083
6a3891c5 2084 /* For sanity tests. */
0b246afa 2085 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2086 return;
2087
a315e68f
FM
2088 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2089 do_list && !(state->state & EXTENT_NORESERVE) &&
2090 (*bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2091 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2092
104b4e51
NB
2093 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2094 fs_info->delalloc_batch);
6fc0ef68
NB
2095 spin_lock(&inode->lock);
2096 inode->delalloc_bytes -= len;
2097 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2098 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2099 &inode->runtime_flags))
eb73c1b7 2100 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2101 spin_unlock(&inode->lock);
291d673e 2102 }
a7e3b975
FM
2103
2104 if ((state->state & EXTENT_DELALLOC_NEW) &&
2105 (*bits & EXTENT_DELALLOC_NEW)) {
2106 spin_lock(&inode->lock);
2107 ASSERT(inode->new_delalloc_bytes >= len);
2108 inode->new_delalloc_bytes -= len;
2109 spin_unlock(&inode->lock);
2110 }
291d673e
CM
2111}
2112
d352ac68 2113/*
da12fe54
NB
2114 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2115 * in a chunk's stripe. This function ensures that bios do not span a
2116 * stripe/chunk
6f034ece 2117 *
da12fe54
NB
2118 * @page - The page we are about to add to the bio
2119 * @size - size we want to add to the bio
2120 * @bio - bio we want to ensure is smaller than a stripe
2121 * @bio_flags - flags of the bio
2122 *
2123 * return 1 if page cannot be added to the bio
2124 * return 0 if page can be added to the bio
6f034ece 2125 * return error otherwise
d352ac68 2126 */
da12fe54
NB
2127int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2128 unsigned long bio_flags)
239b14b3 2129{
0b246afa
JM
2130 struct inode *inode = page->mapping->host;
2131 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2132 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2133 u64 length = 0;
2134 u64 map_length;
239b14b3 2135 int ret;
89b798ad 2136 struct btrfs_io_geometry geom;
239b14b3 2137
771ed689
CM
2138 if (bio_flags & EXTENT_BIO_COMPRESSED)
2139 return 0;
2140
4f024f37 2141 length = bio->bi_iter.bi_size;
239b14b3 2142 map_length = length;
89b798ad
NB
2143 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2144 &geom);
6f034ece
LB
2145 if (ret < 0)
2146 return ret;
89b798ad
NB
2147
2148 if (geom.len < length + size)
239b14b3 2149 return 1;
3444a972 2150 return 0;
239b14b3
CM
2151}
2152
d352ac68
CM
2153/*
2154 * in order to insert checksums into the metadata in large chunks,
2155 * we wait until bio submission time. All the pages in the bio are
2156 * checksummed and sums are attached onto the ordered extent record.
2157 *
2158 * At IO completion time the cums attached on the ordered extent record
2159 * are inserted into the btree
2160 */
d0ee3934 2161static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2162 u64 bio_offset)
065631f6 2163{
c6100a4b 2164 struct inode *inode = private_data;
e015640f 2165
c965d640 2166 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
4a69a410 2167}
e015640f 2168
d352ac68 2169/*
cad321ad 2170 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2171 * on write, or reading the csums from the tree before a read.
2172 *
2173 * Rules about async/sync submit,
2174 * a) read: sync submit
2175 *
2176 * b) write without checksum: sync submit
2177 *
2178 * c) write with checksum:
2179 * c-1) if bio is issued by fsync: sync submit
2180 * (sync_writers != 0)
2181 *
2182 * c-2) if root is reloc root: sync submit
2183 * (only in case of buffered IO)
2184 *
2185 * c-3) otherwise: async submit
d352ac68 2186 */
a56b1c7b 2187static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2188 int mirror_num,
2189 unsigned long bio_flags)
2190
44b8bd7e 2191{
0b246afa 2192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2193 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2194 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2195 blk_status_t ret = 0;
19b9bdb0 2196 int skip_sum;
b812ce28 2197 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2198
6cbff00f 2199 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2200
70ddc553 2201 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2202 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2203
37226b21 2204 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2205 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2206 if (ret)
61891923 2207 goto out;
5fd02043 2208
d20f7043 2209 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2210 ret = btrfs_submit_compressed_read(inode, bio,
2211 mirror_num,
2212 bio_flags);
2213 goto out;
c2db1073 2214 } else if (!skip_sum) {
db72e47f 2215 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
c2db1073 2216 if (ret)
61891923 2217 goto out;
c2db1073 2218 }
4d1b5fb4 2219 goto mapit;
b812ce28 2220 } else if (async && !skip_sum) {
17d217fe
YZ
2221 /* csum items have already been cloned */
2222 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2223 goto mapit;
19b9bdb0 2224 /* we're doing a write, do the async checksumming */
c6100a4b 2225 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2226 0, inode, btrfs_submit_bio_start);
61891923 2227 goto out;
b812ce28 2228 } else if (!skip_sum) {
bd242a08 2229 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2230 if (ret)
2231 goto out;
19b9bdb0
CM
2232 }
2233
0b86a832 2234mapit:
08635bae 2235 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2236
2237out:
4e4cbee9
CH
2238 if (ret) {
2239 bio->bi_status = ret;
4246a0b6
CH
2240 bio_endio(bio);
2241 }
61891923 2242 return ret;
065631f6 2243}
6885f308 2244
d352ac68
CM
2245/*
2246 * given a list of ordered sums record them in the inode. This happens
2247 * at IO completion time based on sums calculated at bio submission time.
2248 */
ba1da2f4 2249static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2250 struct inode *inode, struct list_head *list)
e6dcd2dc 2251{
e6dcd2dc 2252 struct btrfs_ordered_sum *sum;
ac01f26a 2253 int ret;
e6dcd2dc 2254
c6e30871 2255 list_for_each_entry(sum, list, list) {
7c2871a2 2256 trans->adding_csums = true;
ac01f26a 2257 ret = btrfs_csum_file_blocks(trans,
d20f7043 2258 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2259 trans->adding_csums = false;
ac01f26a
NB
2260 if (ret)
2261 return ret;
e6dcd2dc
CM
2262 }
2263 return 0;
2264}
2265
c2566f22 2266int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2267 unsigned int extra_bits,
330a5827 2268 struct extent_state **cached_state)
ea8c2819 2269{
fdb1e121 2270 WARN_ON(PAGE_ALIGNED(end));
c2566f22
NB
2271 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2272 cached_state);
ea8c2819
CM
2273}
2274
d352ac68 2275/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2276struct btrfs_writepage_fixup {
2277 struct page *page;
f4b1363c 2278 struct inode *inode;
247e743c
CM
2279 struct btrfs_work work;
2280};
2281
b2950863 2282static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2283{
2284 struct btrfs_writepage_fixup *fixup;
2285 struct btrfs_ordered_extent *ordered;
2ac55d41 2286 struct extent_state *cached_state = NULL;
364ecf36 2287 struct extent_changeset *data_reserved = NULL;
247e743c 2288 struct page *page;
65d87f79 2289 struct btrfs_inode *inode;
247e743c
CM
2290 u64 page_start;
2291 u64 page_end;
25f3c502 2292 int ret = 0;
f4b1363c 2293 bool free_delalloc_space = true;
247e743c
CM
2294
2295 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2296 page = fixup->page;
65d87f79 2297 inode = BTRFS_I(fixup->inode);
f4b1363c
JB
2298 page_start = page_offset(page);
2299 page_end = page_offset(page) + PAGE_SIZE - 1;
2300
2301 /*
2302 * This is similar to page_mkwrite, we need to reserve the space before
2303 * we take the page lock.
2304 */
65d87f79
NB
2305 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2306 PAGE_SIZE);
4a096752 2307again:
247e743c 2308 lock_page(page);
25f3c502
CM
2309
2310 /*
2311 * Before we queued this fixup, we took a reference on the page.
2312 * page->mapping may go NULL, but it shouldn't be moved to a different
2313 * address space.
2314 */
f4b1363c
JB
2315 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2316 /*
2317 * Unfortunately this is a little tricky, either
2318 *
2319 * 1) We got here and our page had already been dealt with and
2320 * we reserved our space, thus ret == 0, so we need to just
2321 * drop our space reservation and bail. This can happen the
2322 * first time we come into the fixup worker, or could happen
2323 * while waiting for the ordered extent.
2324 * 2) Our page was already dealt with, but we happened to get an
2325 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2326 * this case we obviously don't have anything to release, but
2327 * because the page was already dealt with we don't want to
2328 * mark the page with an error, so make sure we're resetting
2329 * ret to 0. This is why we have this check _before_ the ret
2330 * check, because we do not want to have a surprise ENOSPC
2331 * when the page was already properly dealt with.
2332 */
2333 if (!ret) {
65d87f79
NB
2334 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2335 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2336 page_start, PAGE_SIZE,
2337 true);
2338 }
2339 ret = 0;
247e743c 2340 goto out_page;
f4b1363c 2341 }
247e743c 2342
25f3c502 2343 /*
f4b1363c
JB
2344 * We can't mess with the page state unless it is locked, so now that
2345 * it is locked bail if we failed to make our space reservation.
25f3c502 2346 */
f4b1363c
JB
2347 if (ret)
2348 goto out_page;
247e743c 2349
65d87f79 2350 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2351
2352 /* already ordered? We're done */
8b62b72b 2353 if (PagePrivate2(page))
f4b1363c 2354 goto out_reserved;
4a096752 2355
65d87f79 2356 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2357 if (ordered) {
65d87f79
NB
2358 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2359 &cached_state);
4a096752 2360 unlock_page(page);
65d87f79 2361 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
87826df0 2362 btrfs_put_ordered_extent(ordered);
4a096752
CM
2363 goto again;
2364 }
247e743c 2365
65d87f79 2366 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2367 &cached_state);
25f3c502 2368 if (ret)
53687007 2369 goto out_reserved;
f3038ee3 2370
25f3c502
CM
2371 /*
2372 * Everything went as planned, we're now the owner of a dirty page with
2373 * delayed allocation bits set and space reserved for our COW
2374 * destination.
2375 *
2376 * The page was dirty when we started, nothing should have cleaned it.
2377 */
2378 BUG_ON(!PageDirty(page));
f4b1363c 2379 free_delalloc_space = false;
53687007 2380out_reserved:
65d87f79 2381 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2382 if (free_delalloc_space)
65d87f79
NB
2383 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2384 PAGE_SIZE, true);
2385 unlock_extent_cached(&inode->io_tree, page_start, page_end,
e43bbe5e 2386 &cached_state);
247e743c 2387out_page:
25f3c502
CM
2388 if (ret) {
2389 /*
2390 * We hit ENOSPC or other errors. Update the mapping and page
2391 * to reflect the errors and clean the page.
2392 */
2393 mapping_set_error(page->mapping, ret);
2394 end_extent_writepage(page, ret, page_start, page_end);
2395 clear_page_dirty_for_io(page);
2396 SetPageError(page);
2397 }
2398 ClearPageChecked(page);
247e743c 2399 unlock_page(page);
09cbfeaf 2400 put_page(page);
b897abec 2401 kfree(fixup);
364ecf36 2402 extent_changeset_free(data_reserved);
f4b1363c
JB
2403 /*
2404 * As a precaution, do a delayed iput in case it would be the last iput
2405 * that could need flushing space. Recursing back to fixup worker would
2406 * deadlock.
2407 */
65d87f79 2408 btrfs_add_delayed_iput(&inode->vfs_inode);
247e743c
CM
2409}
2410
2411/*
2412 * There are a few paths in the higher layers of the kernel that directly
2413 * set the page dirty bit without asking the filesystem if it is a
2414 * good idea. This causes problems because we want to make sure COW
2415 * properly happens and the data=ordered rules are followed.
2416 *
c8b97818 2417 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2418 * hasn't been properly setup for IO. We kick off an async process
2419 * to fix it up. The async helper will wait for ordered extents, set
2420 * the delalloc bit and make it safe to write the page.
2421 */
d75855b4 2422int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2423{
2424 struct inode *inode = page->mapping->host;
0b246afa 2425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2426 struct btrfs_writepage_fixup *fixup;
247e743c 2427
8b62b72b
CM
2428 /* this page is properly in the ordered list */
2429 if (TestClearPagePrivate2(page))
247e743c
CM
2430 return 0;
2431
25f3c502
CM
2432 /*
2433 * PageChecked is set below when we create a fixup worker for this page,
2434 * don't try to create another one if we're already PageChecked()
2435 *
2436 * The extent_io writepage code will redirty the page if we send back
2437 * EAGAIN.
2438 */
247e743c
CM
2439 if (PageChecked(page))
2440 return -EAGAIN;
2441
2442 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2443 if (!fixup)
2444 return -EAGAIN;
f421950f 2445
f4b1363c
JB
2446 /*
2447 * We are already holding a reference to this inode from
2448 * write_cache_pages. We need to hold it because the space reservation
2449 * takes place outside of the page lock, and we can't trust
2450 * page->mapping outside of the page lock.
2451 */
2452 ihold(inode);
247e743c 2453 SetPageChecked(page);
09cbfeaf 2454 get_page(page);
a0cac0ec 2455 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2456 fixup->page = page;
f4b1363c 2457 fixup->inode = inode;
0b246afa 2458 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2459
2460 return -EAGAIN;
247e743c
CM
2461}
2462
d899e052 2463static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2464 struct btrfs_inode *inode, u64 file_pos,
9729f10a
QW
2465 struct btrfs_file_extent_item *stack_fi,
2466 u64 qgroup_reserved)
d899e052 2467{
c553f94d 2468 struct btrfs_root *root = inode->root;
d899e052
YZ
2469 struct btrfs_path *path;
2470 struct extent_buffer *leaf;
2471 struct btrfs_key ins;
203f44c5
QW
2472 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2473 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2474 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2475 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
1acae57b 2476 int extent_inserted = 0;
d899e052
YZ
2477 int ret;
2478
2479 path = btrfs_alloc_path();
d8926bb3
MF
2480 if (!path)
2481 return -ENOMEM;
d899e052 2482
a1ed835e
CM
2483 /*
2484 * we may be replacing one extent in the tree with another.
2485 * The new extent is pinned in the extent map, and we don't want
2486 * to drop it from the cache until it is completely in the btree.
2487 *
2488 * So, tell btrfs_drop_extents to leave this extent in the cache.
2489 * the caller is expected to unpin it and allow it to be merged
2490 * with the others.
2491 */
c553f94d 2492 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1acae57b 2493 file_pos + num_bytes, NULL, 0,
203f44c5 2494 1, sizeof(*stack_fi), &extent_inserted);
79787eaa
JM
2495 if (ret)
2496 goto out;
d899e052 2497
1acae57b 2498 if (!extent_inserted) {
c553f94d 2499 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2500 ins.offset = file_pos;
2501 ins.type = BTRFS_EXTENT_DATA_KEY;
2502
2503 path->leave_spinning = 1;
2504 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2505 sizeof(*stack_fi));
1acae57b
FDBM
2506 if (ret)
2507 goto out;
2508 }
d899e052 2509 leaf = path->nodes[0];
203f44c5
QW
2510 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2511 write_extent_buffer(leaf, stack_fi,
2512 btrfs_item_ptr_offset(leaf, path->slots[0]),
2513 sizeof(struct btrfs_file_extent_item));
b9473439 2514
d899e052 2515 btrfs_mark_buffer_dirty(leaf);
ce195332 2516 btrfs_release_path(path);
d899e052 2517
c553f94d 2518 inode_add_bytes(&inode->vfs_inode, num_bytes);
d899e052
YZ
2519
2520 ins.objectid = disk_bytenr;
2521 ins.offset = disk_num_bytes;
2522 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2523
c553f94d 2524 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2525 if (ret)
2526 goto out;
2527
c553f94d 2528 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
9729f10a 2529 file_pos, qgroup_reserved, &ins);
79787eaa 2530out:
d899e052 2531 btrfs_free_path(path);
b9473439 2532
79787eaa 2533 return ret;
d899e052
YZ
2534}
2535
2ff7e61e 2536static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2537 u64 start, u64 len)
2538{
32da5386 2539 struct btrfs_block_group *cache;
e570fd27 2540
0b246afa 2541 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2542 ASSERT(cache);
2543
2544 spin_lock(&cache->lock);
2545 cache->delalloc_bytes -= len;
2546 spin_unlock(&cache->lock);
2547
2548 btrfs_put_block_group(cache);
2549}
2550
203f44c5
QW
2551static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2552 struct inode *inode,
2553 struct btrfs_ordered_extent *oe)
2554{
2555 struct btrfs_file_extent_item stack_fi;
2556 u64 logical_len;
2557
2558 memset(&stack_fi, 0, sizeof(stack_fi));
2559 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2560 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2561 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2562 oe->disk_num_bytes);
2563 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2564 logical_len = oe->truncated_len;
2565 else
2566 logical_len = oe->num_bytes;
2567 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2568 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2569 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2570 /* Encryption and other encoding is reserved and all 0 */
2571
c553f94d 2572 return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
7dbeaad0 2573 &stack_fi, oe->qgroup_rsv);
203f44c5
QW
2574}
2575
2576/*
2577 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
2578 * an ordered extent if the range of bytes in the file it covers are
2579 * fully written.
2580 */
5fd02043 2581static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2582{
5fd02043 2583 struct inode *inode = ordered_extent->inode;
0b246afa 2584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2585 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2586 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2587 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2588 struct extent_state *cached_state = NULL;
bffe633e 2589 u64 start, end;
261507a0 2590 int compress_type = 0;
77cef2ec 2591 int ret = 0;
bffe633e 2592 u64 logical_len = ordered_extent->num_bytes;
8d510121 2593 bool freespace_inode;
77cef2ec 2594 bool truncated = false;
a7e3b975
FM
2595 bool range_locked = false;
2596 bool clear_new_delalloc_bytes = false;
49940bdd 2597 bool clear_reserved_extent = true;
313facc5 2598 unsigned int clear_bits;
a7e3b975 2599
bffe633e
OS
2600 start = ordered_extent->file_offset;
2601 end = start + ordered_extent->num_bytes - 1;
2602
a7e3b975
FM
2603 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2604 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2605 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2606 clear_new_delalloc_bytes = true;
e6dcd2dc 2607
8d510121 2608 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2609
5fd02043
JB
2610 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2611 ret = -EIO;
2612 goto out;
2613 }
2614
bffe633e 2615 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
f612496b 2616
77cef2ec
JB
2617 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2618 truncated = true;
2619 logical_len = ordered_extent->truncated_len;
2620 /* Truncated the entire extent, don't bother adding */
2621 if (!logical_len)
2622 goto out;
2623 }
2624
c2167754 2625 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2626 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 2627
d923afe9 2628 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
2629 if (freespace_inode)
2630 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
2631 else
2632 trans = btrfs_join_transaction(root);
2633 if (IS_ERR(trans)) {
2634 ret = PTR_ERR(trans);
2635 trans = NULL;
2636 goto out;
c2167754 2637 }
69fe2d75 2638 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2639 ret = btrfs_update_inode_fallback(trans, root, inode);
2640 if (ret) /* -ENOMEM or corruption */
66642832 2641 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2642 goto out;
2643 }
e6dcd2dc 2644
a7e3b975 2645 range_locked = true;
bffe633e 2646 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 2647
8d510121
NB
2648 if (freespace_inode)
2649 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 2650 else
7a7eaa40 2651 trans = btrfs_join_transaction(root);
79787eaa
JM
2652 if (IS_ERR(trans)) {
2653 ret = PTR_ERR(trans);
2654 trans = NULL;
a7e3b975 2655 goto out;
79787eaa 2656 }
a79b7d4b 2657
69fe2d75 2658 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2659
c8b97818 2660 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2661 compress_type = ordered_extent->compress_type;
d899e052 2662 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2663 BUG_ON(compress_type);
7a6d7067 2664 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2665 ordered_extent->file_offset,
2666 ordered_extent->file_offset +
77cef2ec 2667 logical_len);
d899e052 2668 } else {
0b246afa 2669 BUG_ON(root == fs_info->tree_root);
203f44c5
QW
2670 ret = insert_ordered_extent_file_extent(trans, inode,
2671 ordered_extent);
49940bdd
JB
2672 if (!ret) {
2673 clear_reserved_extent = false;
2ff7e61e 2674 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
2675 ordered_extent->disk_bytenr,
2676 ordered_extent->disk_num_bytes);
49940bdd 2677 }
d899e052 2678 }
5dc562c5 2679 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
bffe633e
OS
2680 ordered_extent->file_offset,
2681 ordered_extent->num_bytes, trans->transid);
79787eaa 2682 if (ret < 0) {
66642832 2683 btrfs_abort_transaction(trans, ret);
a7e3b975 2684 goto out;
79787eaa 2685 }
2ac55d41 2686
ac01f26a
NB
2687 ret = add_pending_csums(trans, inode, &ordered_extent->list);
2688 if (ret) {
2689 btrfs_abort_transaction(trans, ret);
2690 goto out;
2691 }
e6dcd2dc 2692
d923afe9 2693 btrfs_inode_safe_disk_i_size_write(inode, 0);
6c760c07
JB
2694 ret = btrfs_update_inode_fallback(trans, root, inode);
2695 if (ret) { /* -ENOMEM or corruption */
66642832 2696 btrfs_abort_transaction(trans, ret);
a7e3b975 2697 goto out;
1ef30be1
JB
2698 }
2699 ret = 0;
c2167754 2700out:
313facc5
OS
2701 clear_bits = EXTENT_DEFRAG;
2702 if (range_locked)
2703 clear_bits |= EXTENT_LOCKED;
2704 if (clear_new_delalloc_bytes)
2705 clear_bits |= EXTENT_DELALLOC_NEW;
bffe633e
OS
2706 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2707 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 2708 &cached_state);
a7e3b975 2709
a698d075 2710 if (trans)
3a45bb20 2711 btrfs_end_transaction(trans);
0cb59c99 2712
77cef2ec 2713 if (ret || truncated) {
bffe633e 2714 u64 unwritten_start = start;
77cef2ec
JB
2715
2716 if (truncated)
bffe633e
OS
2717 unwritten_start += logical_len;
2718 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
2719
2720 /* Drop the cache for the part of the extent we didn't write. */
bffe633e 2721 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
5fd02043 2722
0bec9ef5
JB
2723 /*
2724 * If the ordered extent had an IOERR or something else went
2725 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2726 * back to the allocator. We only free the extent in the
2727 * truncated case if we didn't write out the extent at all.
49940bdd
JB
2728 *
2729 * If we made it past insert_reserved_file_extent before we
2730 * errored out then we don't need to do this as the accounting
2731 * has already been done.
0bec9ef5 2732 */
77cef2ec 2733 if ((ret || !logical_len) &&
49940bdd 2734 clear_reserved_extent &&
77cef2ec 2735 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
2736 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2737 /*
2738 * Discard the range before returning it back to the
2739 * free space pool
2740 */
46b27f50 2741 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 2742 btrfs_discard_extent(fs_info,
bffe633e
OS
2743 ordered_extent->disk_bytenr,
2744 ordered_extent->disk_num_bytes,
2745 NULL);
2ff7e61e 2746 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
2747 ordered_extent->disk_bytenr,
2748 ordered_extent->disk_num_bytes, 1);
4eaaec24 2749 }
0bec9ef5
JB
2750 }
2751
5fd02043 2752 /*
8bad3c02
LB
2753 * This needs to be done to make sure anybody waiting knows we are done
2754 * updating everything for this ordered extent.
5fd02043
JB
2755 */
2756 btrfs_remove_ordered_extent(inode, ordered_extent);
2757
e6dcd2dc
CM
2758 /* once for us */
2759 btrfs_put_ordered_extent(ordered_extent);
2760 /* once for the tree */
2761 btrfs_put_ordered_extent(ordered_extent);
2762
5fd02043
JB
2763 return ret;
2764}
2765
2766static void finish_ordered_fn(struct btrfs_work *work)
2767{
2768 struct btrfs_ordered_extent *ordered_extent;
2769 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2770 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2771}
2772
c629732d
NB
2773void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2774 u64 end, int uptodate)
211f90e6 2775{
3347c48f
NB
2776 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2777 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5fd02043 2778 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 2779 struct btrfs_workqueue *wq;
5fd02043 2780
1abe9b8a 2781 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2782
8b62b72b 2783 ClearPagePrivate2(page);
3347c48f
NB
2784 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2785 end - start + 1, uptodate))
c3988d63 2786 return;
5fd02043 2787
3347c48f 2788 if (btrfs_is_free_space_inode(inode))
0b246afa 2789 wq = fs_info->endio_freespace_worker;
a0cac0ec 2790 else
0b246afa 2791 wq = fs_info->endio_write_workers;
5fd02043 2792
a0cac0ec 2793 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 2794 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
2795}
2796
47df7765
OS
2797static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2798 int icsum, struct page *page, int pgoff, u64 start,
2799 size_t len)
dc380aea 2800{
d5178578
JT
2801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2802 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 2803 char *kaddr;
d5178578
JT
2804 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2805 u8 *csum_expected;
2806 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 2807
d5178578 2808 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
2809
2810 kaddr = kmap_atomic(page);
d5178578
JT
2811 shash->tfm = fs_info->csum_shash;
2812
fd08001f 2813 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
2814
2815 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
2816 goto zeroit;
2817
2818 kunmap_atomic(kaddr);
2819 return 0;
2820zeroit:
ea41d6b2
JT
2821 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2822 io_bio->mirror_num);
814723e0
NB
2823 if (io_bio->device)
2824 btrfs_dev_stat_inc_and_print(io_bio->device,
2825 BTRFS_DEV_STAT_CORRUPTION_ERRS);
dc380aea
MX
2826 memset(kaddr + pgoff, 1, len);
2827 flush_dcache_page(page);
2828 kunmap_atomic(kaddr);
dc380aea
MX
2829 return -EIO;
2830}
2831
d352ac68
CM
2832/*
2833 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2834 * if there's a match, we allow the bio to finish. If not, the code in
2835 * extent_io.c will try to find good copies for us.
d352ac68 2836 */
facc8a22
MX
2837static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2838 u64 phy_offset, struct page *page,
2839 u64 start, u64 end, int mirror)
07157aac 2840{
4eee4fa4 2841 size_t offset = start - page_offset(page);
07157aac 2842 struct inode *inode = page->mapping->host;
d1310b2e 2843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2844 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2845
d20f7043
CM
2846 if (PageChecked(page)) {
2847 ClearPageChecked(page);
dc380aea 2848 return 0;
d20f7043 2849 }
6cbff00f
CH
2850
2851 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2852 return 0;
17d217fe
YZ
2853
2854 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2855 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 2856 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 2857 return 0;
17d217fe 2858 }
d20f7043 2859
facc8a22 2860 phy_offset >>= inode->i_sb->s_blocksize_bits;
47df7765
OS
2861 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2862 (size_t)(end - start + 1));
07157aac 2863}
b888db2b 2864
c1c3fac2
NB
2865/*
2866 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2867 *
2868 * @inode: The inode we want to perform iput on
2869 *
2870 * This function uses the generic vfs_inode::i_count to track whether we should
2871 * just decrement it (in case it's > 1) or if this is the last iput then link
2872 * the inode to the delayed iput machinery. Delayed iputs are processed at
2873 * transaction commit time/superblock commit/cleaner kthread.
2874 */
24bbcf04
YZ
2875void btrfs_add_delayed_iput(struct inode *inode)
2876{
0b246afa 2877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 2878 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
2879
2880 if (atomic_add_unless(&inode->i_count, -1, 1))
2881 return;
2882
034f784d 2883 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 2884 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
2885 ASSERT(list_empty(&binode->delayed_iput));
2886 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 2887 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
2888 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2889 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
2890}
2891
63611e73
JB
2892static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2893 struct btrfs_inode *inode)
2894{
2895 list_del_init(&inode->delayed_iput);
2896 spin_unlock(&fs_info->delayed_iput_lock);
2897 iput(&inode->vfs_inode);
2898 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2899 wake_up(&fs_info->delayed_iputs_wait);
2900 spin_lock(&fs_info->delayed_iput_lock);
2901}
2902
2903static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2904 struct btrfs_inode *inode)
2905{
2906 if (!list_empty(&inode->delayed_iput)) {
2907 spin_lock(&fs_info->delayed_iput_lock);
2908 if (!list_empty(&inode->delayed_iput))
2909 run_delayed_iput_locked(fs_info, inode);
2910 spin_unlock(&fs_info->delayed_iput_lock);
2911 }
2912}
2913
2ff7e61e 2914void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 2915{
24bbcf04 2916
24bbcf04 2917 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
2918 while (!list_empty(&fs_info->delayed_iputs)) {
2919 struct btrfs_inode *inode;
2920
2921 inode = list_first_entry(&fs_info->delayed_iputs,
2922 struct btrfs_inode, delayed_iput);
63611e73 2923 run_delayed_iput_locked(fs_info, inode);
24bbcf04 2924 }
8089fe62 2925 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
2926}
2927
034f784d
JB
2928/**
2929 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2930 * @fs_info - the fs_info for this fs
2931 * @return - EINTR if we were killed, 0 if nothing's pending
2932 *
2933 * This will wait on any delayed iputs that are currently running with KILLABLE
2934 * set. Once they are all done running we will return, unless we are killed in
2935 * which case we return EINTR. This helps in user operations like fallocate etc
2936 * that might get blocked on the iputs.
2937 */
2938int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2939{
2940 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2941 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2942 if (ret)
2943 return -EINTR;
2944 return 0;
2945}
2946
7b128766 2947/*
f7e9e8fc
OS
2948 * This creates an orphan entry for the given inode in case something goes wrong
2949 * in the middle of an unlink.
7b128766 2950 */
73f2e545 2951int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 2952 struct btrfs_inode *inode)
7b128766 2953{
d68fc57b 2954 int ret;
7b128766 2955
27919067
OS
2956 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2957 if (ret && ret != -EEXIST) {
2958 btrfs_abort_transaction(trans, ret);
2959 return ret;
d68fc57b
YZ
2960 }
2961
d68fc57b 2962 return 0;
7b128766
JB
2963}
2964
2965/*
f7e9e8fc
OS
2966 * We have done the delete so we can go ahead and remove the orphan item for
2967 * this particular inode.
7b128766 2968 */
48a3b636 2969static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 2970 struct btrfs_inode *inode)
7b128766 2971{
27919067 2972 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
2973}
2974
2975/*
2976 * this cleans up any orphans that may be left on the list from the last use
2977 * of this root.
2978 */
66b4ffd1 2979int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 2980{
0b246afa 2981 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
2982 struct btrfs_path *path;
2983 struct extent_buffer *leaf;
7b128766
JB
2984 struct btrfs_key key, found_key;
2985 struct btrfs_trans_handle *trans;
2986 struct inode *inode;
8f6d7f4f 2987 u64 last_objectid = 0;
f7e9e8fc 2988 int ret = 0, nr_unlink = 0;
7b128766 2989
d68fc57b 2990 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2991 return 0;
c71bf099
YZ
2992
2993 path = btrfs_alloc_path();
66b4ffd1
JB
2994 if (!path) {
2995 ret = -ENOMEM;
2996 goto out;
2997 }
e4058b54 2998 path->reada = READA_BACK;
7b128766
JB
2999
3000 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3001 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3002 key.offset = (u64)-1;
3003
7b128766
JB
3004 while (1) {
3005 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3006 if (ret < 0)
3007 goto out;
7b128766
JB
3008
3009 /*
3010 * if ret == 0 means we found what we were searching for, which
25985edc 3011 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3012 * find the key and see if we have stuff that matches
3013 */
3014 if (ret > 0) {
66b4ffd1 3015 ret = 0;
7b128766
JB
3016 if (path->slots[0] == 0)
3017 break;
3018 path->slots[0]--;
3019 }
3020
3021 /* pull out the item */
3022 leaf = path->nodes[0];
7b128766
JB
3023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3024
3025 /* make sure the item matches what we want */
3026 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3027 break;
962a298f 3028 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3029 break;
3030
3031 /* release the path since we're done with it */
b3b4aa74 3032 btrfs_release_path(path);
7b128766
JB
3033
3034 /*
3035 * this is where we are basically btrfs_lookup, without the
3036 * crossing root thing. we store the inode number in the
3037 * offset of the orphan item.
3038 */
8f6d7f4f
JB
3039
3040 if (found_key.offset == last_objectid) {
0b246afa
JM
3041 btrfs_err(fs_info,
3042 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3043 ret = -EINVAL;
3044 goto out;
3045 }
3046
3047 last_objectid = found_key.offset;
3048
5d4f98a2
YZ
3049 found_key.objectid = found_key.offset;
3050 found_key.type = BTRFS_INODE_ITEM_KEY;
3051 found_key.offset = 0;
0202e83f 3052 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3053 ret = PTR_ERR_OR_ZERO(inode);
67710892 3054 if (ret && ret != -ENOENT)
66b4ffd1 3055 goto out;
7b128766 3056
0b246afa 3057 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0 3058 struct btrfs_root *dead_root;
f8e9e0b0
AJ
3059 int is_dead_root = 0;
3060
3061 /*
3062 * this is an orphan in the tree root. Currently these
3063 * could come from 2 sources:
3064 * a) a snapshot deletion in progress
3065 * b) a free space cache inode
3066 * We need to distinguish those two, as the snapshot
3067 * orphan must not get deleted.
3068 * find_dead_roots already ran before us, so if this
3069 * is a snapshot deletion, we should find the root
a619b3c7 3070 * in the fs_roots radix tree.
f8e9e0b0 3071 */
a619b3c7
RK
3072
3073 spin_lock(&fs_info->fs_roots_radix_lock);
3074 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3075 (unsigned long)found_key.objectid);
3076 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3077 is_dead_root = 1;
3078 spin_unlock(&fs_info->fs_roots_radix_lock);
3079
f8e9e0b0
AJ
3080 if (is_dead_root) {
3081 /* prevent this orphan from being found again */
3082 key.offset = found_key.objectid - 1;
3083 continue;
3084 }
f7e9e8fc 3085
f8e9e0b0 3086 }
f7e9e8fc 3087
7b128766 3088 /*
f7e9e8fc
OS
3089 * If we have an inode with links, there are a couple of
3090 * possibilities. Old kernels (before v3.12) used to create an
3091 * orphan item for truncate indicating that there were possibly
3092 * extent items past i_size that needed to be deleted. In v3.12,
3093 * truncate was changed to update i_size in sync with the extent
3094 * items, but the (useless) orphan item was still created. Since
3095 * v4.18, we don't create the orphan item for truncate at all.
3096 *
3097 * So, this item could mean that we need to do a truncate, but
3098 * only if this filesystem was last used on a pre-v3.12 kernel
3099 * and was not cleanly unmounted. The odds of that are quite
3100 * slim, and it's a pain to do the truncate now, so just delete
3101 * the orphan item.
3102 *
3103 * It's also possible that this orphan item was supposed to be
3104 * deleted but wasn't. The inode number may have been reused,
3105 * but either way, we can delete the orphan item.
7b128766 3106 */
f7e9e8fc
OS
3107 if (ret == -ENOENT || inode->i_nlink) {
3108 if (!ret)
3109 iput(inode);
a8c9e576 3110 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3111 if (IS_ERR(trans)) {
3112 ret = PTR_ERR(trans);
3113 goto out;
3114 }
0b246afa
JM
3115 btrfs_debug(fs_info, "auto deleting %Lu",
3116 found_key.objectid);
a8c9e576
JB
3117 ret = btrfs_del_orphan_item(trans, root,
3118 found_key.objectid);
3a45bb20 3119 btrfs_end_transaction(trans);
4ef31a45
JB
3120 if (ret)
3121 goto out;
7b128766
JB
3122 continue;
3123 }
3124
f7e9e8fc 3125 nr_unlink++;
7b128766
JB
3126
3127 /* this will do delete_inode and everything for us */
3128 iput(inode);
3129 }
3254c876
MX
3130 /* release the path since we're done with it */
3131 btrfs_release_path(path);
3132
d68fc57b
YZ
3133 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3134
a575ceeb 3135 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3136 trans = btrfs_join_transaction(root);
66b4ffd1 3137 if (!IS_ERR(trans))
3a45bb20 3138 btrfs_end_transaction(trans);
d68fc57b 3139 }
7b128766
JB
3140
3141 if (nr_unlink)
0b246afa 3142 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3143
3144out:
3145 if (ret)
0b246afa 3146 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3147 btrfs_free_path(path);
3148 return ret;
7b128766
JB
3149}
3150
46a53cca
CM
3151/*
3152 * very simple check to peek ahead in the leaf looking for xattrs. If we
3153 * don't find any xattrs, we know there can't be any acls.
3154 *
3155 * slot is the slot the inode is in, objectid is the objectid of the inode
3156 */
3157static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3158 int slot, u64 objectid,
3159 int *first_xattr_slot)
46a53cca
CM
3160{
3161 u32 nritems = btrfs_header_nritems(leaf);
3162 struct btrfs_key found_key;
f23b5a59
JB
3163 static u64 xattr_access = 0;
3164 static u64 xattr_default = 0;
46a53cca
CM
3165 int scanned = 0;
3166
f23b5a59 3167 if (!xattr_access) {
97d79299
AG
3168 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3169 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3170 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3171 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3172 }
3173
46a53cca 3174 slot++;
63541927 3175 *first_xattr_slot = -1;
46a53cca
CM
3176 while (slot < nritems) {
3177 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3178
3179 /* we found a different objectid, there must not be acls */
3180 if (found_key.objectid != objectid)
3181 return 0;
3182
3183 /* we found an xattr, assume we've got an acl */
f23b5a59 3184 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3185 if (*first_xattr_slot == -1)
3186 *first_xattr_slot = slot;
f23b5a59
JB
3187 if (found_key.offset == xattr_access ||
3188 found_key.offset == xattr_default)
3189 return 1;
3190 }
46a53cca
CM
3191
3192 /*
3193 * we found a key greater than an xattr key, there can't
3194 * be any acls later on
3195 */
3196 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3197 return 0;
3198
3199 slot++;
3200 scanned++;
3201
3202 /*
3203 * it goes inode, inode backrefs, xattrs, extents,
3204 * so if there are a ton of hard links to an inode there can
3205 * be a lot of backrefs. Don't waste time searching too hard,
3206 * this is just an optimization
3207 */
3208 if (scanned >= 8)
3209 break;
3210 }
3211 /* we hit the end of the leaf before we found an xattr or
3212 * something larger than an xattr. We have to assume the inode
3213 * has acls
3214 */
63541927
FDBM
3215 if (*first_xattr_slot == -1)
3216 *first_xattr_slot = slot;
46a53cca
CM
3217 return 1;
3218}
3219
d352ac68
CM
3220/*
3221 * read an inode from the btree into the in-memory inode
3222 */
4222ea71
FM
3223static int btrfs_read_locked_inode(struct inode *inode,
3224 struct btrfs_path *in_path)
39279cc3 3225{
0b246afa 3226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3227 struct btrfs_path *path = in_path;
5f39d397 3228 struct extent_buffer *leaf;
39279cc3
CM
3229 struct btrfs_inode_item *inode_item;
3230 struct btrfs_root *root = BTRFS_I(inode)->root;
3231 struct btrfs_key location;
67de1176 3232 unsigned long ptr;
46a53cca 3233 int maybe_acls;
618e21d5 3234 u32 rdev;
39279cc3 3235 int ret;
2f7e33d4 3236 bool filled = false;
63541927 3237 int first_xattr_slot;
2f7e33d4
MX
3238
3239 ret = btrfs_fill_inode(inode, &rdev);
3240 if (!ret)
3241 filled = true;
39279cc3 3242
4222ea71
FM
3243 if (!path) {
3244 path = btrfs_alloc_path();
3245 if (!path)
3246 return -ENOMEM;
3247 }
1748f843 3248
39279cc3 3249 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3250
39279cc3 3251 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3252 if (ret) {
4222ea71
FM
3253 if (path != in_path)
3254 btrfs_free_path(path);
f5b3a417 3255 return ret;
67710892 3256 }
39279cc3 3257
5f39d397 3258 leaf = path->nodes[0];
2f7e33d4
MX
3259
3260 if (filled)
67de1176 3261 goto cache_index;
2f7e33d4 3262
5f39d397
CM
3263 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3264 struct btrfs_inode_item);
5f39d397 3265 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3266 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3267 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3268 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3269 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3270 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3271 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3272
a937b979
DS
3273 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3274 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3275
a937b979
DS
3276 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3277 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3278
a937b979
DS
3279 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3280 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3281
9cc97d64 3282 BTRFS_I(inode)->i_otime.tv_sec =
3283 btrfs_timespec_sec(leaf, &inode_item->otime);
3284 BTRFS_I(inode)->i_otime.tv_nsec =
3285 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3286
a76a3cd4 3287 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3288 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3289 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3290
c7f88c4e
JL
3291 inode_set_iversion_queried(inode,
3292 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3293 inode->i_generation = BTRFS_I(inode)->generation;
3294 inode->i_rdev = 0;
3295 rdev = btrfs_inode_rdev(leaf, inode_item);
3296
3297 BTRFS_I(inode)->index_cnt = (u64)-1;
3298 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3299
3300cache_index:
5dc562c5
JB
3301 /*
3302 * If we were modified in the current generation and evicted from memory
3303 * and then re-read we need to do a full sync since we don't have any
3304 * idea about which extents were modified before we were evicted from
3305 * cache.
6e17d30b
YD
3306 *
3307 * This is required for both inode re-read from disk and delayed inode
3308 * in delayed_nodes_tree.
5dc562c5 3309 */
0b246afa 3310 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3311 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3312 &BTRFS_I(inode)->runtime_flags);
3313
bde6c242
FM
3314 /*
3315 * We don't persist the id of the transaction where an unlink operation
3316 * against the inode was last made. So here we assume the inode might
3317 * have been evicted, and therefore the exact value of last_unlink_trans
3318 * lost, and set it to last_trans to avoid metadata inconsistencies
3319 * between the inode and its parent if the inode is fsync'ed and the log
3320 * replayed. For example, in the scenario:
3321 *
3322 * touch mydir/foo
3323 * ln mydir/foo mydir/bar
3324 * sync
3325 * unlink mydir/bar
3326 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3327 * xfs_io -c fsync mydir/foo
3328 * <power failure>
3329 * mount fs, triggers fsync log replay
3330 *
3331 * We must make sure that when we fsync our inode foo we also log its
3332 * parent inode, otherwise after log replay the parent still has the
3333 * dentry with the "bar" name but our inode foo has a link count of 1
3334 * and doesn't have an inode ref with the name "bar" anymore.
3335 *
3336 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3337 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3338 * transaction commits on fsync if our inode is a directory, or if our
3339 * inode is not a directory, logging its parent unnecessarily.
3340 */
3341 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3342
3ebac17c
FM
3343 /*
3344 * Same logic as for last_unlink_trans. We don't persist the generation
3345 * of the last transaction where this inode was used for a reflink
3346 * operation, so after eviction and reloading the inode we must be
3347 * pessimistic and assume the last transaction that modified the inode.
3348 */
3349 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3350
67de1176
MX
3351 path->slots[0]++;
3352 if (inode->i_nlink != 1 ||
3353 path->slots[0] >= btrfs_header_nritems(leaf))
3354 goto cache_acl;
3355
3356 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3357 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3358 goto cache_acl;
3359
3360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3361 if (location.type == BTRFS_INODE_REF_KEY) {
3362 struct btrfs_inode_ref *ref;
3363
3364 ref = (struct btrfs_inode_ref *)ptr;
3365 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3366 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3367 struct btrfs_inode_extref *extref;
3368
3369 extref = (struct btrfs_inode_extref *)ptr;
3370 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3371 extref);
3372 }
2f7e33d4 3373cache_acl:
46a53cca
CM
3374 /*
3375 * try to precache a NULL acl entry for files that don't have
3376 * any xattrs or acls
3377 */
33345d01 3378 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3379 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3380 if (first_xattr_slot != -1) {
3381 path->slots[0] = first_xattr_slot;
3382 ret = btrfs_load_inode_props(inode, path);
3383 if (ret)
0b246afa 3384 btrfs_err(fs_info,
351fd353 3385 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3386 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3387 root->root_key.objectid, ret);
3388 }
4222ea71
FM
3389 if (path != in_path)
3390 btrfs_free_path(path);
63541927 3391
72c04902
AV
3392 if (!maybe_acls)
3393 cache_no_acl(inode);
46a53cca 3394
39279cc3 3395 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3396 case S_IFREG:
3397 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3398 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3399 inode->i_fop = &btrfs_file_operations;
3400 inode->i_op = &btrfs_file_inode_operations;
3401 break;
3402 case S_IFDIR:
3403 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3404 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3405 break;
3406 case S_IFLNK:
3407 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3408 inode_nohighmem(inode);
4779cc04 3409 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3410 break;
618e21d5 3411 default:
0279b4cd 3412 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3413 init_special_inode(inode, inode->i_mode, rdev);
3414 break;
39279cc3 3415 }
6cbff00f 3416
7b6a221e 3417 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3418 return 0;
39279cc3
CM
3419}
3420
d352ac68
CM
3421/*
3422 * given a leaf and an inode, copy the inode fields into the leaf
3423 */
e02119d5
CM
3424static void fill_inode_item(struct btrfs_trans_handle *trans,
3425 struct extent_buffer *leaf,
5f39d397 3426 struct btrfs_inode_item *item,
39279cc3
CM
3427 struct inode *inode)
3428{
51fab693
LB
3429 struct btrfs_map_token token;
3430
c82f823c 3431 btrfs_init_map_token(&token, leaf);
5f39d397 3432
cc4c13d5
DS
3433 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3434 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3435 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3436 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3437 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3438
3439 btrfs_set_token_timespec_sec(&token, &item->atime,
3440 inode->i_atime.tv_sec);
3441 btrfs_set_token_timespec_nsec(&token, &item->atime,
3442 inode->i_atime.tv_nsec);
3443
3444 btrfs_set_token_timespec_sec(&token, &item->mtime,
3445 inode->i_mtime.tv_sec);
3446 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3447 inode->i_mtime.tv_nsec);
3448
3449 btrfs_set_token_timespec_sec(&token, &item->ctime,
3450 inode->i_ctime.tv_sec);
3451 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3452 inode->i_ctime.tv_nsec);
3453
3454 btrfs_set_token_timespec_sec(&token, &item->otime,
3455 BTRFS_I(inode)->i_otime.tv_sec);
3456 btrfs_set_token_timespec_nsec(&token, &item->otime,
3457 BTRFS_I(inode)->i_otime.tv_nsec);
3458
3459 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3460 btrfs_set_token_inode_generation(&token, item,
3461 BTRFS_I(inode)->generation);
3462 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3463 btrfs_set_token_inode_transid(&token, item, trans->transid);
3464 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3465 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3466 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3467}
3468
d352ac68
CM
3469/*
3470 * copy everything in the in-memory inode into the btree.
3471 */
2115133f 3472static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3473 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3474{
3475 struct btrfs_inode_item *inode_item;
3476 struct btrfs_path *path;
5f39d397 3477 struct extent_buffer *leaf;
39279cc3
CM
3478 int ret;
3479
3480 path = btrfs_alloc_path();
16cdcec7
MX
3481 if (!path)
3482 return -ENOMEM;
3483
b9473439 3484 path->leave_spinning = 1;
16cdcec7
MX
3485 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3486 1);
39279cc3
CM
3487 if (ret) {
3488 if (ret > 0)
3489 ret = -ENOENT;
3490 goto failed;
3491 }
3492
5f39d397
CM
3493 leaf = path->nodes[0];
3494 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3495 struct btrfs_inode_item);
39279cc3 3496
e02119d5 3497 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3498 btrfs_mark_buffer_dirty(leaf);
d9094414 3499 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
39279cc3
CM
3500 ret = 0;
3501failed:
39279cc3
CM
3502 btrfs_free_path(path);
3503 return ret;
3504}
3505
2115133f
CM
3506/*
3507 * copy everything in the in-memory inode into the btree.
3508 */
3509noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root, struct inode *inode)
3511{
0b246afa 3512 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3513 int ret;
3514
3515 /*
3516 * If the inode is a free space inode, we can deadlock during commit
3517 * if we put it into the delayed code.
3518 *
3519 * The data relocation inode should also be directly updated
3520 * without delay
3521 */
70ddc553 3522 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3523 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3524 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3525 btrfs_update_root_times(trans, root);
3526
2115133f
CM
3527 ret = btrfs_delayed_update_inode(trans, root, inode);
3528 if (!ret)
d9094414 3529 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
2115133f
CM
3530 return ret;
3531 }
3532
3533 return btrfs_update_inode_item(trans, root, inode);
3534}
3535
be6aef60
JB
3536noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root,
3538 struct inode *inode)
2115133f
CM
3539{
3540 int ret;
3541
3542 ret = btrfs_update_inode(trans, root, inode);
3543 if (ret == -ENOSPC)
3544 return btrfs_update_inode_item(trans, root, inode);
3545 return ret;
3546}
3547
d352ac68
CM
3548/*
3549 * unlink helper that gets used here in inode.c and in the tree logging
3550 * recovery code. It remove a link in a directory with a given name, and
3551 * also drops the back refs in the inode to the directory
3552 */
92986796
AV
3553static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *root,
4ec5934e
NB
3555 struct btrfs_inode *dir,
3556 struct btrfs_inode *inode,
92986796 3557 const char *name, int name_len)
39279cc3 3558{
0b246afa 3559 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3560 struct btrfs_path *path;
39279cc3 3561 int ret = 0;
39279cc3 3562 struct btrfs_dir_item *di;
aec7477b 3563 u64 index;
33345d01
LZ
3564 u64 ino = btrfs_ino(inode);
3565 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3566
3567 path = btrfs_alloc_path();
54aa1f4d
CM
3568 if (!path) {
3569 ret = -ENOMEM;
554233a6 3570 goto out;
54aa1f4d
CM
3571 }
3572
b9473439 3573 path->leave_spinning = 1;
33345d01 3574 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3575 name, name_len, -1);
3cf5068f
LB
3576 if (IS_ERR_OR_NULL(di)) {
3577 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3578 goto err;
3579 }
39279cc3 3580 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3581 if (ret)
3582 goto err;
b3b4aa74 3583 btrfs_release_path(path);
39279cc3 3584
67de1176
MX
3585 /*
3586 * If we don't have dir index, we have to get it by looking up
3587 * the inode ref, since we get the inode ref, remove it directly,
3588 * it is unnecessary to do delayed deletion.
3589 *
3590 * But if we have dir index, needn't search inode ref to get it.
3591 * Since the inode ref is close to the inode item, it is better
3592 * that we delay to delete it, and just do this deletion when
3593 * we update the inode item.
3594 */
4ec5934e 3595 if (inode->dir_index) {
67de1176
MX
3596 ret = btrfs_delayed_delete_inode_ref(inode);
3597 if (!ret) {
4ec5934e 3598 index = inode->dir_index;
67de1176
MX
3599 goto skip_backref;
3600 }
3601 }
3602
33345d01
LZ
3603 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3604 dir_ino, &index);
aec7477b 3605 if (ret) {
0b246afa 3606 btrfs_info(fs_info,
c2cf52eb 3607 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3608 name_len, name, ino, dir_ino);
66642832 3609 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3610 goto err;
3611 }
67de1176 3612skip_backref:
9add2945 3613 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3614 if (ret) {
66642832 3615 btrfs_abort_transaction(trans, ret);
39279cc3 3616 goto err;
79787eaa 3617 }
39279cc3 3618
4ec5934e
NB
3619 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3620 dir_ino);
79787eaa 3621 if (ret != 0 && ret != -ENOENT) {
66642832 3622 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3623 goto err;
3624 }
e02119d5 3625
4ec5934e
NB
3626 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3627 index);
6418c961
CM
3628 if (ret == -ENOENT)
3629 ret = 0;
d4e3991b 3630 else if (ret)
66642832 3631 btrfs_abort_transaction(trans, ret);
63611e73
JB
3632
3633 /*
3634 * If we have a pending delayed iput we could end up with the final iput
3635 * being run in btrfs-cleaner context. If we have enough of these built
3636 * up we can end up burning a lot of time in btrfs-cleaner without any
3637 * way to throttle the unlinks. Since we're currently holding a ref on
3638 * the inode we can run the delayed iput here without any issues as the
3639 * final iput won't be done until after we drop the ref we're currently
3640 * holding.
3641 */
3642 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
3643err:
3644 btrfs_free_path(path);
e02119d5
CM
3645 if (ret)
3646 goto out;
3647
6ef06d27 3648 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3649 inode_inc_iversion(&inode->vfs_inode);
3650 inode_inc_iversion(&dir->vfs_inode);
3651 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3652 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3653 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3654out:
39279cc3
CM
3655 return ret;
3656}
3657
92986796
AV
3658int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3659 struct btrfs_root *root,
4ec5934e 3660 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3661 const char *name, int name_len)
3662{
3663 int ret;
3664 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3665 if (!ret) {
4ec5934e
NB
3666 drop_nlink(&inode->vfs_inode);
3667 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3668 }
3669 return ret;
3670}
39279cc3 3671
a22285a6
YZ
3672/*
3673 * helper to start transaction for unlink and rmdir.
3674 *
d52be818
JB
3675 * unlink and rmdir are special in btrfs, they do not always free space, so
3676 * if we cannot make our reservations the normal way try and see if there is
3677 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3678 * allow the unlink to occur.
a22285a6 3679 */
d52be818 3680static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3681{
a22285a6 3682 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3683
e70bea5f
JB
3684 /*
3685 * 1 for the possible orphan item
3686 * 1 for the dir item
3687 * 1 for the dir index
3688 * 1 for the inode ref
e70bea5f
JB
3689 * 1 for the inode
3690 */
7f9fe614 3691 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
3692}
3693
3694static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3695{
3696 struct btrfs_root *root = BTRFS_I(dir)->root;
3697 struct btrfs_trans_handle *trans;
2b0143b5 3698 struct inode *inode = d_inode(dentry);
a22285a6 3699 int ret;
a22285a6 3700
d52be818 3701 trans = __unlink_start_trans(dir);
a22285a6
YZ
3702 if (IS_ERR(trans))
3703 return PTR_ERR(trans);
5f39d397 3704
4ec5934e
NB
3705 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3706 0);
12fcfd22 3707
4ec5934e
NB
3708 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3709 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3710 dentry->d_name.len);
b532402e
TI
3711 if (ret)
3712 goto out;
7b128766 3713
a22285a6 3714 if (inode->i_nlink == 0) {
73f2e545 3715 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
3716 if (ret)
3717 goto out;
a22285a6 3718 }
7b128766 3719
b532402e 3720out:
3a45bb20 3721 btrfs_end_transaction(trans);
2ff7e61e 3722 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
3723 return ret;
3724}
3725
f60a2364 3726static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 3727 struct inode *dir, struct dentry *dentry)
4df27c4d 3728{
401b3b19 3729 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 3730 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
3731 struct btrfs_path *path;
3732 struct extent_buffer *leaf;
3733 struct btrfs_dir_item *di;
3734 struct btrfs_key key;
045d3967
JB
3735 const char *name = dentry->d_name.name;
3736 int name_len = dentry->d_name.len;
4df27c4d
YZ
3737 u64 index;
3738 int ret;
045d3967 3739 u64 objectid;
4a0cc7ca 3740 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 3741
045d3967
JB
3742 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3743 objectid = inode->root->root_key.objectid;
3744 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3745 objectid = inode->location.objectid;
3746 } else {
3747 WARN_ON(1);
3748 return -EINVAL;
3749 }
3750
4df27c4d
YZ
3751 path = btrfs_alloc_path();
3752 if (!path)
3753 return -ENOMEM;
3754
33345d01 3755 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3756 name, name_len, -1);
79787eaa 3757 if (IS_ERR_OR_NULL(di)) {
3cf5068f 3758 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
3759 goto out;
3760 }
4df27c4d
YZ
3761
3762 leaf = path->nodes[0];
3763 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3764 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3765 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 3766 if (ret) {
66642832 3767 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3768 goto out;
3769 }
b3b4aa74 3770 btrfs_release_path(path);
4df27c4d 3771
d49d3287
JB
3772 /*
3773 * This is a placeholder inode for a subvolume we didn't have a
3774 * reference to at the time of the snapshot creation. In the meantime
3775 * we could have renamed the real subvol link into our snapshot, so
3776 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3777 * Instead simply lookup the dir_index_item for this entry so we can
3778 * remove it. Otherwise we know we have a ref to the root and we can
3779 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3780 */
3781 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 3782 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3783 name, name_len);
79787eaa
JM
3784 if (IS_ERR_OR_NULL(di)) {
3785 if (!di)
3786 ret = -ENOENT;
3787 else
3788 ret = PTR_ERR(di);
66642832 3789 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3790 goto out;
3791 }
4df27c4d
YZ
3792
3793 leaf = path->nodes[0];
3794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 3795 index = key.offset;
d49d3287
JB
3796 btrfs_release_path(path);
3797 } else {
3798 ret = btrfs_del_root_ref(trans, objectid,
3799 root->root_key.objectid, dir_ino,
3800 &index, name, name_len);
3801 if (ret) {
3802 btrfs_abort_transaction(trans, ret);
3803 goto out;
3804 }
4df27c4d
YZ
3805 }
3806
9add2945 3807 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 3808 if (ret) {
66642832 3809 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3810 goto out;
3811 }
4df27c4d 3812
6ef06d27 3813 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 3814 inode_inc_iversion(dir);
c2050a45 3815 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 3816 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 3817 if (ret)
66642832 3818 btrfs_abort_transaction(trans, ret);
79787eaa 3819out:
71d7aed0 3820 btrfs_free_path(path);
79787eaa 3821 return ret;
4df27c4d
YZ
3822}
3823
ec42f167
MT
3824/*
3825 * Helper to check if the subvolume references other subvolumes or if it's
3826 * default.
3827 */
f60a2364 3828static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
3829{
3830 struct btrfs_fs_info *fs_info = root->fs_info;
3831 struct btrfs_path *path;
3832 struct btrfs_dir_item *di;
3833 struct btrfs_key key;
3834 u64 dir_id;
3835 int ret;
3836
3837 path = btrfs_alloc_path();
3838 if (!path)
3839 return -ENOMEM;
3840
3841 /* Make sure this root isn't set as the default subvol */
3842 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3843 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3844 dir_id, "default", 7, 0);
3845 if (di && !IS_ERR(di)) {
3846 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3847 if (key.objectid == root->root_key.objectid) {
3848 ret = -EPERM;
3849 btrfs_err(fs_info,
3850 "deleting default subvolume %llu is not allowed",
3851 key.objectid);
3852 goto out;
3853 }
3854 btrfs_release_path(path);
3855 }
3856
3857 key.objectid = root->root_key.objectid;
3858 key.type = BTRFS_ROOT_REF_KEY;
3859 key.offset = (u64)-1;
3860
3861 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3862 if (ret < 0)
3863 goto out;
3864 BUG_ON(ret == 0);
3865
3866 ret = 0;
3867 if (path->slots[0] > 0) {
3868 path->slots[0]--;
3869 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3870 if (key.objectid == root->root_key.objectid &&
3871 key.type == BTRFS_ROOT_REF_KEY)
3872 ret = -ENOTEMPTY;
3873 }
3874out:
3875 btrfs_free_path(path);
3876 return ret;
3877}
3878
20a68004
NB
3879/* Delete all dentries for inodes belonging to the root */
3880static void btrfs_prune_dentries(struct btrfs_root *root)
3881{
3882 struct btrfs_fs_info *fs_info = root->fs_info;
3883 struct rb_node *node;
3884 struct rb_node *prev;
3885 struct btrfs_inode *entry;
3886 struct inode *inode;
3887 u64 objectid = 0;
3888
3889 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3890 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3891
3892 spin_lock(&root->inode_lock);
3893again:
3894 node = root->inode_tree.rb_node;
3895 prev = NULL;
3896 while (node) {
3897 prev = node;
3898 entry = rb_entry(node, struct btrfs_inode, rb_node);
3899
37508515 3900 if (objectid < btrfs_ino(entry))
20a68004 3901 node = node->rb_left;
37508515 3902 else if (objectid > btrfs_ino(entry))
20a68004
NB
3903 node = node->rb_right;
3904 else
3905 break;
3906 }
3907 if (!node) {
3908 while (prev) {
3909 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 3910 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
3911 node = prev;
3912 break;
3913 }
3914 prev = rb_next(prev);
3915 }
3916 }
3917 while (node) {
3918 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 3919 objectid = btrfs_ino(entry) + 1;
20a68004
NB
3920 inode = igrab(&entry->vfs_inode);
3921 if (inode) {
3922 spin_unlock(&root->inode_lock);
3923 if (atomic_read(&inode->i_count) > 1)
3924 d_prune_aliases(inode);
3925 /*
3926 * btrfs_drop_inode will have it removed from the inode
3927 * cache when its usage count hits zero.
3928 */
3929 iput(inode);
3930 cond_resched();
3931 spin_lock(&root->inode_lock);
3932 goto again;
3933 }
3934
3935 if (cond_resched_lock(&root->inode_lock))
3936 goto again;
3937
3938 node = rb_next(node);
3939 }
3940 spin_unlock(&root->inode_lock);
3941}
3942
f60a2364
MT
3943int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3944{
3945 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3946 struct btrfs_root *root = BTRFS_I(dir)->root;
3947 struct inode *inode = d_inode(dentry);
3948 struct btrfs_root *dest = BTRFS_I(inode)->root;
3949 struct btrfs_trans_handle *trans;
3950 struct btrfs_block_rsv block_rsv;
3951 u64 root_flags;
f60a2364
MT
3952 int ret;
3953 int err;
3954
3955 /*
3956 * Don't allow to delete a subvolume with send in progress. This is
3957 * inside the inode lock so the error handling that has to drop the bit
3958 * again is not run concurrently.
3959 */
3960 spin_lock(&dest->root_item_lock);
a7176f74 3961 if (dest->send_in_progress) {
f60a2364
MT
3962 spin_unlock(&dest->root_item_lock);
3963 btrfs_warn(fs_info,
3964 "attempt to delete subvolume %llu during send",
3965 dest->root_key.objectid);
3966 return -EPERM;
3967 }
a7176f74
LF
3968 root_flags = btrfs_root_flags(&dest->root_item);
3969 btrfs_set_root_flags(&dest->root_item,
3970 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3971 spin_unlock(&dest->root_item_lock);
f60a2364
MT
3972
3973 down_write(&fs_info->subvol_sem);
3974
3975 err = may_destroy_subvol(dest);
3976 if (err)
3977 goto out_up_write;
3978
3979 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3980 /*
3981 * One for dir inode,
3982 * two for dir entries,
3983 * two for root ref/backref.
3984 */
c4c129db 3985 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
3986 if (err)
3987 goto out_up_write;
3988
3989 trans = btrfs_start_transaction(root, 0);
3990 if (IS_ERR(trans)) {
3991 err = PTR_ERR(trans);
3992 goto out_release;
3993 }
3994 trans->block_rsv = &block_rsv;
3995 trans->bytes_reserved = block_rsv.size;
3996
3997 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3998
045d3967 3999 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364
MT
4000 if (ret) {
4001 err = ret;
4002 btrfs_abort_transaction(trans, ret);
4003 goto out_end_trans;
4004 }
4005
4006 btrfs_record_root_in_trans(trans, dest);
4007
4008 memset(&dest->root_item.drop_progress, 0,
4009 sizeof(dest->root_item.drop_progress));
4010 dest->root_item.drop_level = 0;
4011 btrfs_set_root_refs(&dest->root_item, 0);
4012
4013 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4014 ret = btrfs_insert_orphan_item(trans,
4015 fs_info->tree_root,
4016 dest->root_key.objectid);
4017 if (ret) {
4018 btrfs_abort_transaction(trans, ret);
4019 err = ret;
4020 goto out_end_trans;
4021 }
4022 }
4023
d1957791 4024 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4025 BTRFS_UUID_KEY_SUBVOL,
4026 dest->root_key.objectid);
4027 if (ret && ret != -ENOENT) {
4028 btrfs_abort_transaction(trans, ret);
4029 err = ret;
4030 goto out_end_trans;
4031 }
4032 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4033 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4034 dest->root_item.received_uuid,
4035 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4036 dest->root_key.objectid);
4037 if (ret && ret != -ENOENT) {
4038 btrfs_abort_transaction(trans, ret);
4039 err = ret;
4040 goto out_end_trans;
4041 }
4042 }
4043
082b6c97
QW
4044 free_anon_bdev(dest->anon_dev);
4045 dest->anon_dev = 0;
f60a2364
MT
4046out_end_trans:
4047 trans->block_rsv = NULL;
4048 trans->bytes_reserved = 0;
4049 ret = btrfs_end_transaction(trans);
4050 if (ret && !err)
4051 err = ret;
4052 inode->i_flags |= S_DEAD;
4053out_release:
e85fde51 4054 btrfs_subvolume_release_metadata(root, &block_rsv);
f60a2364
MT
4055out_up_write:
4056 up_write(&fs_info->subvol_sem);
4057 if (err) {
4058 spin_lock(&dest->root_item_lock);
4059 root_flags = btrfs_root_flags(&dest->root_item);
4060 btrfs_set_root_flags(&dest->root_item,
4061 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4062 spin_unlock(&dest->root_item_lock);
4063 } else {
4064 d_invalidate(dentry);
20a68004 4065 btrfs_prune_dentries(dest);
f60a2364
MT
4066 ASSERT(dest->send_in_progress == 0);
4067
4068 /* the last ref */
4069 if (dest->ino_cache_inode) {
4070 iput(dest->ino_cache_inode);
4071 dest->ino_cache_inode = NULL;
4072 }
4073 }
4074
4075 return err;
4076}
4077
39279cc3
CM
4078static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4079{
2b0143b5 4080 struct inode *inode = d_inode(dentry);
1832a6d5 4081 int err = 0;
39279cc3 4082 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4083 struct btrfs_trans_handle *trans;
44f714da 4084 u64 last_unlink_trans;
39279cc3 4085
b3ae244e 4086 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4087 return -ENOTEMPTY;
4a0cc7ca 4088 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4089 return btrfs_delete_subvolume(dir, dentry);
134d4512 4090
d52be818 4091 trans = __unlink_start_trans(dir);
a22285a6 4092 if (IS_ERR(trans))
5df6a9f6 4093 return PTR_ERR(trans);
5df6a9f6 4094
4a0cc7ca 4095 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4096 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4097 goto out;
4098 }
4099
73f2e545 4100 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4101 if (err)
4df27c4d 4102 goto out;
7b128766 4103
44f714da
FM
4104 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4105
39279cc3 4106 /* now the directory is empty */
4ec5934e
NB
4107 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4108 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4109 dentry->d_name.len);
44f714da 4110 if (!err) {
6ef06d27 4111 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4112 /*
4113 * Propagate the last_unlink_trans value of the deleted dir to
4114 * its parent directory. This is to prevent an unrecoverable
4115 * log tree in the case we do something like this:
4116 * 1) create dir foo
4117 * 2) create snapshot under dir foo
4118 * 3) delete the snapshot
4119 * 4) rmdir foo
4120 * 5) mkdir foo
4121 * 6) fsync foo or some file inside foo
4122 */
4123 if (last_unlink_trans >= trans->transid)
4124 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4125 }
4df27c4d 4126out:
3a45bb20 4127 btrfs_end_transaction(trans);
2ff7e61e 4128 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4129
39279cc3
CM
4130 return err;
4131}
4132
ddfae63c
JB
4133/*
4134 * Return this if we need to call truncate_block for the last bit of the
4135 * truncate.
4136 */
4137#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4138
39279cc3
CM
4139/*
4140 * this can truncate away extent items, csum items and directory items.
4141 * It starts at a high offset and removes keys until it can't find
d352ac68 4142 * any higher than new_size
39279cc3
CM
4143 *
4144 * csum items that cross the new i_size are truncated to the new size
4145 * as well.
7b128766
JB
4146 *
4147 * min_type is the minimum key type to truncate down to. If set to 0, this
4148 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4149 */
8082510e
YZ
4150int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4151 struct btrfs_root *root,
4152 struct inode *inode,
4153 u64 new_size, u32 min_type)
39279cc3 4154{
0b246afa 4155 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4156 struct btrfs_path *path;
5f39d397 4157 struct extent_buffer *leaf;
39279cc3 4158 struct btrfs_file_extent_item *fi;
8082510e
YZ
4159 struct btrfs_key key;
4160 struct btrfs_key found_key;
39279cc3 4161 u64 extent_start = 0;
db94535d 4162 u64 extent_num_bytes = 0;
5d4f98a2 4163 u64 extent_offset = 0;
39279cc3 4164 u64 item_end = 0;
c1aa4575 4165 u64 last_size = new_size;
8082510e 4166 u32 found_type = (u8)-1;
39279cc3
CM
4167 int found_extent;
4168 int del_item;
85e21bac
CM
4169 int pending_del_nr = 0;
4170 int pending_del_slot = 0;
179e29e4 4171 int extent_type = -1;
8082510e 4172 int ret;
4a0cc7ca 4173 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4174 u64 bytes_deleted = 0;
897ca819
TM
4175 bool be_nice = false;
4176 bool should_throttle = false;
28553fa9
FM
4177 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4178 struct extent_state *cached_state = NULL;
8082510e
YZ
4179
4180 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4181
28ed1345 4182 /*
92a7cc42
QW
4183 * For non-free space inodes and non-shareable roots, we want to back
4184 * off from time to time. This means all inodes in subvolume roots,
4185 * reloc roots, and data reloc roots.
28ed1345 4186 */
70ddc553 4187 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
92a7cc42 4188 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
897ca819 4189 be_nice = true;
28ed1345 4190
0eb0e19c
MF
4191 path = btrfs_alloc_path();
4192 if (!path)
4193 return -ENOMEM;
e4058b54 4194 path->reada = READA_BACK;
0eb0e19c 4195
82028e0a 4196 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
a5ae50de
FM
4197 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4198 &cached_state);
28553fa9 4199
82028e0a
QW
4200 /*
4201 * We want to drop from the next block forward in case this
4202 * new size is not block aligned since we will be keeping the
4203 * last block of the extent just the way it is.
4204 */
dcdbc059 4205 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4206 fs_info->sectorsize),
da17066c 4207 (u64)-1, 0);
82028e0a 4208 }
8082510e 4209
16cdcec7
MX
4210 /*
4211 * This function is also used to drop the items in the log tree before
4212 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4213 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4214 * items.
4215 */
4216 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4217 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4218
33345d01 4219 key.objectid = ino;
39279cc3 4220 key.offset = (u64)-1;
5f39d397
CM
4221 key.type = (u8)-1;
4222
85e21bac 4223search_again:
28ed1345
CM
4224 /*
4225 * with a 16K leaf size and 128MB extents, you can actually queue
4226 * up a huge file in a single leaf. Most of the time that
4227 * bytes_deleted is > 0, it will be huge by the time we get here
4228 */
fd86a3a3
OS
4229 if (be_nice && bytes_deleted > SZ_32M &&
4230 btrfs_should_end_transaction(trans)) {
4231 ret = -EAGAIN;
4232 goto out;
28ed1345
CM
4233 }
4234
85e21bac 4235 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4236 if (ret < 0)
8082510e 4237 goto out;
d397712b 4238
85e21bac 4239 if (ret > 0) {
fd86a3a3 4240 ret = 0;
e02119d5
CM
4241 /* there are no items in the tree for us to truncate, we're
4242 * done
4243 */
8082510e
YZ
4244 if (path->slots[0] == 0)
4245 goto out;
85e21bac
CM
4246 path->slots[0]--;
4247 }
4248
d397712b 4249 while (1) {
9ddc959e
JB
4250 u64 clear_start = 0, clear_len = 0;
4251
39279cc3 4252 fi = NULL;
5f39d397
CM
4253 leaf = path->nodes[0];
4254 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4255 found_type = found_key.type;
39279cc3 4256
33345d01 4257 if (found_key.objectid != ino)
39279cc3 4258 break;
5f39d397 4259
85e21bac 4260 if (found_type < min_type)
39279cc3
CM
4261 break;
4262
5f39d397 4263 item_end = found_key.offset;
39279cc3 4264 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4265 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4266 struct btrfs_file_extent_item);
179e29e4
CM
4267 extent_type = btrfs_file_extent_type(leaf, fi);
4268 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4269 item_end +=
db94535d 4270 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4271
4272 trace_btrfs_truncate_show_fi_regular(
4273 BTRFS_I(inode), leaf, fi,
4274 found_key.offset);
179e29e4 4275 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4276 item_end += btrfs_file_extent_ram_bytes(leaf,
4277 fi);
09ed2f16
LB
4278
4279 trace_btrfs_truncate_show_fi_inline(
4280 BTRFS_I(inode), leaf, fi, path->slots[0],
4281 found_key.offset);
39279cc3 4282 }
008630c1 4283 item_end--;
39279cc3 4284 }
8082510e
YZ
4285 if (found_type > min_type) {
4286 del_item = 1;
4287 } else {
76b42abb 4288 if (item_end < new_size)
b888db2b 4289 break;
8082510e
YZ
4290 if (found_key.offset >= new_size)
4291 del_item = 1;
4292 else
4293 del_item = 0;
39279cc3 4294 }
39279cc3 4295 found_extent = 0;
39279cc3 4296 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4297 if (found_type != BTRFS_EXTENT_DATA_KEY)
4298 goto delete;
4299
4300 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4301 u64 num_dec;
9ddc959e
JB
4302
4303 clear_start = found_key.offset;
db94535d 4304 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4305 if (!del_item) {
db94535d
CM
4306 u64 orig_num_bytes =
4307 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4308 extent_num_bytes = ALIGN(new_size -
4309 found_key.offset,
0b246afa 4310 fs_info->sectorsize);
9ddc959e 4311 clear_start = ALIGN(new_size, fs_info->sectorsize);
db94535d
CM
4312 btrfs_set_file_extent_num_bytes(leaf, fi,
4313 extent_num_bytes);
4314 num_dec = (orig_num_bytes -
9069218d 4315 extent_num_bytes);
92a7cc42 4316 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70
MX
4317 &root->state) &&
4318 extent_start != 0)
a76a3cd4 4319 inode_sub_bytes(inode, num_dec);
5f39d397 4320 btrfs_mark_buffer_dirty(leaf);
39279cc3 4321 } else {
db94535d
CM
4322 extent_num_bytes =
4323 btrfs_file_extent_disk_num_bytes(leaf,
4324 fi);
5d4f98a2
YZ
4325 extent_offset = found_key.offset -
4326 btrfs_file_extent_offset(leaf, fi);
4327
39279cc3 4328 /* FIXME blocksize != 4096 */
9069218d 4329 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4330 if (extent_start != 0) {
4331 found_extent = 1;
92a7cc42 4332 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70 4333 &root->state))
a76a3cd4 4334 inode_sub_bytes(inode, num_dec);
e02119d5 4335 }
39279cc3 4336 }
9ddc959e 4337 clear_len = num_dec;
9069218d 4338 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4339 /*
4340 * we can't truncate inline items that have had
4341 * special encodings
4342 */
4343 if (!del_item &&
c8b97818 4344 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4345 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4346 btrfs_file_extent_compression(leaf, fi) == 0) {
4347 u32 size = (u32)(new_size - found_key.offset);
4348
4349 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4350 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4351 btrfs_truncate_item(path, size, 1);
ddfae63c 4352 } else if (!del_item) {
514ac8ad 4353 /*
ddfae63c
JB
4354 * We have to bail so the last_size is set to
4355 * just before this extent.
514ac8ad 4356 */
fd86a3a3 4357 ret = NEED_TRUNCATE_BLOCK;
ddfae63c 4358 break;
9ddc959e
JB
4359 } else {
4360 /*
4361 * Inline extents are special, we just treat
4362 * them as a full sector worth in the file
4363 * extent tree just for simplicity sake.
4364 */
4365 clear_len = fs_info->sectorsize;
ddfae63c 4366 }
0305cd5f 4367
92a7cc42 4368 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0305cd5f 4369 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4370 }
179e29e4 4371delete:
9ddc959e
JB
4372 /*
4373 * We use btrfs_truncate_inode_items() to clean up log trees for
4374 * multiple fsyncs, and in this case we don't want to clear the
4375 * file extent range because it's just the log.
4376 */
4377 if (root == BTRFS_I(inode)->root) {
4378 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4379 clear_start, clear_len);
4380 if (ret) {
4381 btrfs_abort_transaction(trans, ret);
4382 break;
4383 }
4384 }
4385
ddfae63c
JB
4386 if (del_item)
4387 last_size = found_key.offset;
4388 else
4389 last_size = new_size;
39279cc3 4390 if (del_item) {
85e21bac
CM
4391 if (!pending_del_nr) {
4392 /* no pending yet, add ourselves */
4393 pending_del_slot = path->slots[0];
4394 pending_del_nr = 1;
4395 } else if (pending_del_nr &&
4396 path->slots[0] + 1 == pending_del_slot) {
4397 /* hop on the pending chunk */
4398 pending_del_nr++;
4399 pending_del_slot = path->slots[0];
4400 } else {
d397712b 4401 BUG();
85e21bac 4402 }
39279cc3
CM
4403 } else {
4404 break;
4405 }
897ca819 4406 should_throttle = false;
28f75a0e 4407
27cdeb70 4408 if (found_extent &&
82028e0a 4409 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ffd4bb2a
QW
4410 struct btrfs_ref ref = { 0 };
4411
28ed1345 4412 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4413
4414 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4415 extent_start, extent_num_bytes, 0);
4416 ref.real_root = root->root_key.objectid;
4417 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4418 ino, extent_offset);
4419 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4420 if (ret) {
4421 btrfs_abort_transaction(trans, ret);
4422 break;
4423 }
28f75a0e 4424 if (be_nice) {
7c861627 4425 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4426 should_throttle = true;
28f75a0e 4427 }
39279cc3 4428 }
85e21bac 4429
8082510e
YZ
4430 if (found_type == BTRFS_INODE_ITEM_KEY)
4431 break;
4432
4433 if (path->slots[0] == 0 ||
1262133b 4434 path->slots[0] != pending_del_slot ||
28bad212 4435 should_throttle) {
8082510e
YZ
4436 if (pending_del_nr) {
4437 ret = btrfs_del_items(trans, root, path,
4438 pending_del_slot,
4439 pending_del_nr);
79787eaa 4440 if (ret) {
66642832 4441 btrfs_abort_transaction(trans, ret);
fd86a3a3 4442 break;
79787eaa 4443 }
8082510e
YZ
4444 pending_del_nr = 0;
4445 }
b3b4aa74 4446 btrfs_release_path(path);
28bad212 4447
28f75a0e 4448 /*
28bad212
JB
4449 * We can generate a lot of delayed refs, so we need to
4450 * throttle every once and a while and make sure we're
4451 * adding enough space to keep up with the work we are
4452 * generating. Since we hold a transaction here we
4453 * can't flush, and we don't want to FLUSH_LIMIT because
4454 * we could have generated too many delayed refs to
4455 * actually allocate, so just bail if we're short and
4456 * let the normal reservation dance happen higher up.
28f75a0e 4457 */
28bad212
JB
4458 if (should_throttle) {
4459 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4460 BTRFS_RESERVE_NO_FLUSH);
4461 if (ret) {
4462 ret = -EAGAIN;
4463 break;
4464 }
28f75a0e 4465 }
85e21bac 4466 goto search_again;
8082510e
YZ
4467 } else {
4468 path->slots[0]--;
85e21bac 4469 }
39279cc3 4470 }
8082510e 4471out:
fd86a3a3
OS
4472 if (ret >= 0 && pending_del_nr) {
4473 int err;
4474
4475 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4476 pending_del_nr);
fd86a3a3
OS
4477 if (err) {
4478 btrfs_abort_transaction(trans, err);
4479 ret = err;
4480 }
85e21bac 4481 }
76b42abb
FM
4482 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4483 ASSERT(last_size >= new_size);
fd86a3a3 4484 if (!ret && last_size > new_size)
76b42abb 4485 last_size = new_size;
d923afe9 4486 btrfs_inode_safe_disk_i_size_write(inode, last_size);
a5ae50de
FM
4487 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4488 (u64)-1, &cached_state);
76b42abb 4489 }
28ed1345 4490
39279cc3 4491 btrfs_free_path(path);
fd86a3a3 4492 return ret;
39279cc3
CM
4493}
4494
4495/*
9703fefe 4496 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4497 * @inode - inode that we're zeroing
4498 * @from - the offset to start zeroing
4499 * @len - the length to zero, 0 to zero the entire range respective to the
4500 * offset
4501 * @front - zero up to the offset instead of from the offset on
4502 *
9703fefe 4503 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4504 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4505 */
9703fefe 4506int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4507 int front)
39279cc3 4508{
0b246afa 4509 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4510 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4511 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4512 struct btrfs_ordered_extent *ordered;
2ac55d41 4513 struct extent_state *cached_state = NULL;
364ecf36 4514 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4515 char *kaddr;
6d4572a9 4516 bool only_release_metadata = false;
0b246afa 4517 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4518 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4519 unsigned offset = from & (blocksize - 1);
39279cc3 4520 struct page *page;
3b16a4e3 4521 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4522 size_t write_bytes = blocksize;
39279cc3 4523 int ret = 0;
9703fefe
CR
4524 u64 block_start;
4525 u64 block_end;
39279cc3 4526
b03ebd99
NB
4527 if (IS_ALIGNED(offset, blocksize) &&
4528 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4529 goto out;
9703fefe 4530
8b62f87b
JB
4531 block_start = round_down(from, blocksize);
4532 block_end = block_start + blocksize - 1;
4533
36ea6f3e
NB
4534 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4535 block_start, blocksize);
6d4572a9 4536 if (ret < 0) {
38d37aa9
QW
4537 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4538 &write_bytes) > 0) {
6d4572a9
QW
4539 /* For nocow case, no need to reserve data space */
4540 only_release_metadata = true;
4541 } else {
4542 goto out;
4543 }
4544 }
4545 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4546 if (ret < 0) {
4547 if (!only_release_metadata)
25ce28ca
NB
4548 btrfs_free_reserved_data_space(BTRFS_I(inode),
4549 data_reserved, block_start, blocksize);
6d4572a9
QW
4550 goto out;
4551 }
211c17f5 4552again:
3b16a4e3 4553 page = find_or_create_page(mapping, index, mask);
5d5e103a 4554 if (!page) {
86d52921 4555 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
43b18595 4556 block_start, blocksize, true);
8702ba93 4557 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4558 ret = -ENOMEM;
39279cc3 4559 goto out;
5d5e103a 4560 }
e6dcd2dc 4561
39279cc3 4562 if (!PageUptodate(page)) {
9ebefb18 4563 ret = btrfs_readpage(NULL, page);
39279cc3 4564 lock_page(page);
211c17f5
CM
4565 if (page->mapping != mapping) {
4566 unlock_page(page);
09cbfeaf 4567 put_page(page);
211c17f5
CM
4568 goto again;
4569 }
39279cc3
CM
4570 if (!PageUptodate(page)) {
4571 ret = -EIO;
89642229 4572 goto out_unlock;
39279cc3
CM
4573 }
4574 }
211c17f5 4575 wait_on_page_writeback(page);
e6dcd2dc 4576
9703fefe 4577 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4578 set_page_extent_mapped(page);
4579
c3504372 4580 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
e6dcd2dc 4581 if (ordered) {
9703fefe 4582 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4583 &cached_state);
e6dcd2dc 4584 unlock_page(page);
09cbfeaf 4585 put_page(page);
eb84ae03 4586 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4587 btrfs_put_ordered_extent(ordered);
4588 goto again;
4589 }
4590
9703fefe 4591 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
4592 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4593 0, 0, &cached_state);
5d5e103a 4594
c2566f22 4595 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
330a5827 4596 &cached_state);
9ed74f2d 4597 if (ret) {
9703fefe 4598 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4599 &cached_state);
9ed74f2d
JB
4600 goto out_unlock;
4601 }
4602
9703fefe 4603 if (offset != blocksize) {
2aaa6655 4604 if (!len)
9703fefe 4605 len = blocksize - offset;
e6dcd2dc 4606 kaddr = kmap(page);
2aaa6655 4607 if (front)
9703fefe
CR
4608 memset(kaddr + (block_start - page_offset(page)),
4609 0, offset);
2aaa6655 4610 else
9703fefe
CR
4611 memset(kaddr + (block_start - page_offset(page)) + offset,
4612 0, len);
e6dcd2dc
CM
4613 flush_dcache_page(page);
4614 kunmap(page);
4615 }
247e743c 4616 ClearPageChecked(page);
e6dcd2dc 4617 set_page_dirty(page);
e43bbe5e 4618 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4619
6d4572a9
QW
4620 if (only_release_metadata)
4621 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4622 block_end, EXTENT_NORESERVE, NULL, NULL,
4623 GFP_NOFS);
4624
89642229 4625out_unlock:
6d4572a9
QW
4626 if (ret) {
4627 if (only_release_metadata)
4628 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4629 blocksize, true);
4630 else
86d52921 4631 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
6d4572a9
QW
4632 block_start, blocksize, true);
4633 }
8702ba93 4634 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4635 unlock_page(page);
09cbfeaf 4636 put_page(page);
39279cc3 4637out:
6d4572a9 4638 if (only_release_metadata)
38d37aa9 4639 btrfs_check_nocow_unlock(BTRFS_I(inode));
364ecf36 4640 extent_changeset_free(data_reserved);
39279cc3
CM
4641 return ret;
4642}
4643
16e7549f
JB
4644static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4645 u64 offset, u64 len)
4646{
0b246afa 4647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4648 struct btrfs_trans_handle *trans;
4649 int ret;
4650
4651 /*
4652 * Still need to make sure the inode looks like it's been updated so
4653 * that any holes get logged if we fsync.
4654 */
0b246afa
JM
4655 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4656 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4657 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4658 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4659 return 0;
4660 }
4661
4662 /*
4663 * 1 - for the one we're dropping
4664 * 1 - for the one we're adding
4665 * 1 - for updating the inode.
4666 */
4667 trans = btrfs_start_transaction(root, 3);
4668 if (IS_ERR(trans))
4669 return PTR_ERR(trans);
4670
4671 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4672 if (ret) {
66642832 4673 btrfs_abort_transaction(trans, ret);
3a45bb20 4674 btrfs_end_transaction(trans);
16e7549f
JB
4675 return ret;
4676 }
4677
f85b7379
DS
4678 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4679 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4680 if (ret)
66642832 4681 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4682 else
4683 btrfs_update_inode(trans, root, inode);
3a45bb20 4684 btrfs_end_transaction(trans);
16e7549f
JB
4685 return ret;
4686}
4687
695a0d0d
JB
4688/*
4689 * This function puts in dummy file extents for the area we're creating a hole
4690 * for. So if we are truncating this file to a larger size we need to insert
4691 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4692 * the range between oldsize and size
4693 */
a41ad394 4694int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4695{
0b246afa 4696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4697 struct btrfs_root *root = BTRFS_I(inode)->root;
4698 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4699 struct extent_map *em = NULL;
2ac55d41 4700 struct extent_state *cached_state = NULL;
5dc562c5 4701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4702 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4703 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4704 u64 last_byte;
4705 u64 cur_offset;
4706 u64 hole_size;
9ed74f2d 4707 int err = 0;
39279cc3 4708
a71754fc 4709 /*
9703fefe
CR
4710 * If our size started in the middle of a block we need to zero out the
4711 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4712 * expose stale data.
4713 */
9703fefe 4714 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4715 if (err)
4716 return err;
4717
9036c102
YZ
4718 if (size <= hole_start)
4719 return 0;
4720
b272ae22 4721 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
23d31bd4 4722 block_end - 1, &cached_state);
9036c102
YZ
4723 cur_offset = hole_start;
4724 while (1) {
fc4f21b1 4725 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 4726 block_end - cur_offset);
79787eaa
JM
4727 if (IS_ERR(em)) {
4728 err = PTR_ERR(em);
f2767956 4729 em = NULL;
79787eaa
JM
4730 break;
4731 }
9036c102 4732 last_byte = min(extent_map_end(em), block_end);
0b246afa 4733 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4734 hole_size = last_byte - cur_offset;
4735
8082510e 4736 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4737 struct extent_map *hole_em;
9ed74f2d 4738
16e7549f
JB
4739 err = maybe_insert_hole(root, inode, cur_offset,
4740 hole_size);
4741 if (err)
3893e33b 4742 break;
9ddc959e
JB
4743
4744 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4745 cur_offset, hole_size);
4746 if (err)
4747 break;
4748
dcdbc059 4749 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4750 cur_offset + hole_size - 1, 0);
4751 hole_em = alloc_extent_map();
4752 if (!hole_em) {
4753 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4754 &BTRFS_I(inode)->runtime_flags);
4755 goto next;
4756 }
4757 hole_em->start = cur_offset;
4758 hole_em->len = hole_size;
4759 hole_em->orig_start = cur_offset;
8082510e 4760
5dc562c5
JB
4761 hole_em->block_start = EXTENT_MAP_HOLE;
4762 hole_em->block_len = 0;
b4939680 4763 hole_em->orig_block_len = 0;
cc95bef6 4764 hole_em->ram_bytes = hole_size;
5dc562c5 4765 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4766 hole_em->generation = fs_info->generation;
8082510e 4767
5dc562c5
JB
4768 while (1) {
4769 write_lock(&em_tree->lock);
09a2a8f9 4770 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4771 write_unlock(&em_tree->lock);
4772 if (err != -EEXIST)
4773 break;
dcdbc059
NB
4774 btrfs_drop_extent_cache(BTRFS_I(inode),
4775 cur_offset,
5dc562c5
JB
4776 cur_offset +
4777 hole_size - 1, 0);
4778 }
4779 free_extent_map(hole_em);
9ddc959e
JB
4780 } else {
4781 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4782 cur_offset, hole_size);
4783 if (err)
4784 break;
9036c102 4785 }
16e7549f 4786next:
9036c102 4787 free_extent_map(em);
a22285a6 4788 em = NULL;
9036c102 4789 cur_offset = last_byte;
8082510e 4790 if (cur_offset >= block_end)
9036c102
YZ
4791 break;
4792 }
a22285a6 4793 free_extent_map(em);
e43bbe5e 4794 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4795 return err;
4796}
39279cc3 4797
3972f260 4798static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4799{
f4a2f4c5
MX
4800 struct btrfs_root *root = BTRFS_I(inode)->root;
4801 struct btrfs_trans_handle *trans;
a41ad394 4802 loff_t oldsize = i_size_read(inode);
3972f260
ES
4803 loff_t newsize = attr->ia_size;
4804 int mask = attr->ia_valid;
8082510e
YZ
4805 int ret;
4806
3972f260
ES
4807 /*
4808 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4809 * special case where we need to update the times despite not having
4810 * these flags set. For all other operations the VFS set these flags
4811 * explicitly if it wants a timestamp update.
4812 */
dff6efc3
CH
4813 if (newsize != oldsize) {
4814 inode_inc_iversion(inode);
4815 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4816 inode->i_ctime = inode->i_mtime =
c2050a45 4817 current_time(inode);
dff6efc3 4818 }
3972f260 4819
a41ad394 4820 if (newsize > oldsize) {
9ea24bbe 4821 /*
ea14b57f 4822 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4823 * This is to ensure the snapshot captures a fully consistent
4824 * state of this file - if the snapshot captures this expanding
4825 * truncation, it must capture all writes that happened before
4826 * this truncation.
4827 */
dcc3eb96 4828 btrfs_drew_write_lock(&root->snapshot_lock);
a41ad394 4829 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 4830 if (ret) {
dcc3eb96 4831 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4832 return ret;
9ea24bbe 4833 }
8082510e 4834
f4a2f4c5 4835 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4836 if (IS_ERR(trans)) {
dcc3eb96 4837 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4838 return PTR_ERR(trans);
9ea24bbe 4839 }
f4a2f4c5
MX
4840
4841 i_size_write(inode, newsize);
d923afe9 4842 btrfs_inode_safe_disk_i_size_write(inode, 0);
27772b68 4843 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4844 ret = btrfs_update_inode(trans, root, inode);
dcc3eb96 4845 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4846 btrfs_end_transaction(trans);
a41ad394 4847 } else {
8082510e 4848
a41ad394
JB
4849 /*
4850 * We're truncating a file that used to have good data down to
4851 * zero. Make sure it gets into the ordered flush list so that
4852 * any new writes get down to disk quickly.
4853 */
4854 if (newsize == 0)
72ac3c0d
JB
4855 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4856 &BTRFS_I(inode)->runtime_flags);
8082510e 4857
a41ad394 4858 truncate_setsize(inode, newsize);
2e60a51e 4859
8e0fa5d7
DS
4860 /* Disable nonlocked read DIO to avoid the endless truncate */
4861 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 4862 inode_dio_wait(inode);
8e0fa5d7 4863 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 4864
213e8c55 4865 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4866 if (ret && inode->i_nlink) {
4867 int err;
4868
4869 /*
f7e9e8fc
OS
4870 * Truncate failed, so fix up the in-memory size. We
4871 * adjusted disk_i_size down as we removed extents, so
4872 * wait for disk_i_size to be stable and then update the
4873 * in-memory size to match.
7f4f6e0a 4874 */
f7e9e8fc 4875 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 4876 if (err)
f7e9e8fc
OS
4877 return err;
4878 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 4879 }
8082510e
YZ
4880 }
4881
a41ad394 4882 return ret;
8082510e
YZ
4883}
4884
9036c102
YZ
4885static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4886{
2b0143b5 4887 struct inode *inode = d_inode(dentry);
b83cc969 4888 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4889 int err;
39279cc3 4890
b83cc969
LZ
4891 if (btrfs_root_readonly(root))
4892 return -EROFS;
4893
31051c85 4894 err = setattr_prepare(dentry, attr);
9036c102
YZ
4895 if (err)
4896 return err;
2bf5a725 4897
5a3f23d5 4898 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4899 err = btrfs_setsize(inode, attr);
8082510e
YZ
4900 if (err)
4901 return err;
39279cc3 4902 }
9036c102 4903
1025774c
CH
4904 if (attr->ia_valid) {
4905 setattr_copy(inode, attr);
0c4d2d95 4906 inode_inc_iversion(inode);
22c44fe6 4907 err = btrfs_dirty_inode(inode);
1025774c 4908
22c44fe6 4909 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4910 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4911 }
33268eaf 4912
39279cc3
CM
4913 return err;
4914}
61295eb8 4915
131e404a
FDBM
4916/*
4917 * While truncating the inode pages during eviction, we get the VFS calling
4918 * btrfs_invalidatepage() against each page of the inode. This is slow because
4919 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4920 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4921 * extent_state structures over and over, wasting lots of time.
4922 *
4923 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4924 * those expensive operations on a per page basis and do only the ordered io
4925 * finishing, while we release here the extent_map and extent_state structures,
4926 * without the excessive merging and splitting.
4927 */
4928static void evict_inode_truncate_pages(struct inode *inode)
4929{
4930 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4931 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4932 struct rb_node *node;
4933
4934 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4935 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4936
4937 write_lock(&map_tree->lock);
07e1ce09 4938 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
4939 struct extent_map *em;
4940
07e1ce09 4941 node = rb_first_cached(&map_tree->map);
131e404a 4942 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4943 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4944 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4945 remove_extent_mapping(map_tree, em);
4946 free_extent_map(em);
7064dd5c
FM
4947 if (need_resched()) {
4948 write_unlock(&map_tree->lock);
4949 cond_resched();
4950 write_lock(&map_tree->lock);
4951 }
131e404a
FDBM
4952 }
4953 write_unlock(&map_tree->lock);
4954
6ca07097
FM
4955 /*
4956 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
4957 * We can have ongoing bios started by readahead that have
4958 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
4959 * still in progress (unlocked the pages in the bio but did not yet
4960 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
4961 * ranges can still be locked and eviction started because before
4962 * submitting those bios, which are executed by a separate task (work
4963 * queue kthread), inode references (inode->i_count) were not taken
4964 * (which would be dropped in the end io callback of each bio).
4965 * Therefore here we effectively end up waiting for those bios and
4966 * anyone else holding locked ranges without having bumped the inode's
4967 * reference count - if we don't do it, when they access the inode's
4968 * io_tree to unlock a range it may be too late, leading to an
4969 * use-after-free issue.
4970 */
131e404a
FDBM
4971 spin_lock(&io_tree->lock);
4972 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4973 struct extent_state *state;
4974 struct extent_state *cached_state = NULL;
6ca07097
FM
4975 u64 start;
4976 u64 end;
421f0922 4977 unsigned state_flags;
131e404a
FDBM
4978
4979 node = rb_first(&io_tree->state);
4980 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
4981 start = state->start;
4982 end = state->end;
421f0922 4983 state_flags = state->state;
131e404a
FDBM
4984 spin_unlock(&io_tree->lock);
4985
ff13db41 4986 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
4987
4988 /*
4989 * If still has DELALLOC flag, the extent didn't reach disk,
4990 * and its reserved space won't be freed by delayed_ref.
4991 * So we need to free its reserved space here.
4992 * (Refer to comment in btrfs_invalidatepage, case 2)
4993 *
4994 * Note, end is the bytenr of last byte, so we need + 1 here.
4995 */
421f0922 4996 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
4997 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4998 end - start + 1);
b9d0b389 4999
6ca07097 5000 clear_extent_bit(io_tree, start, end,
e182163d
OS
5001 EXTENT_LOCKED | EXTENT_DELALLOC |
5002 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5003 &cached_state);
131e404a 5004
7064dd5c 5005 cond_resched();
131e404a
FDBM
5006 spin_lock(&io_tree->lock);
5007 }
5008 spin_unlock(&io_tree->lock);
5009}
5010
4b9d7b59 5011static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5012 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5013{
5014 struct btrfs_fs_info *fs_info = root->fs_info;
5015 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5016 struct btrfs_trans_handle *trans;
2bd36e7b 5017 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5018 int ret;
4b9d7b59 5019
d3984c90
JB
5020 /*
5021 * Eviction should be taking place at some place safe because of our
5022 * delayed iputs. However the normal flushing code will run delayed
5023 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5024 *
5025 * We reserve the delayed_refs_extra here again because we can't use
5026 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5027 * above. We reserve our extra bit here because we generate a ton of
5028 * delayed refs activity by truncating.
5029 *
5030 * If we cannot make our reservation we'll attempt to steal from the
5031 * global reserve, because we really want to be able to free up space.
5032 */
5033 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5034 BTRFS_RESERVE_FLUSH_EVICT);
5035 if (ret) {
4b9d7b59
OS
5036 /*
5037 * Try to steal from the global reserve if there is space for
5038 * it.
5039 */
d3984c90
JB
5040 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5041 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5042 btrfs_warn(fs_info,
5043 "could not allocate space for delete; will truncate on mount");
5044 return ERR_PTR(-ENOSPC);
5045 }
5046 delayed_refs_extra = 0;
5047 }
4b9d7b59 5048
d3984c90
JB
5049 trans = btrfs_join_transaction(root);
5050 if (IS_ERR(trans))
5051 return trans;
5052
5053 if (delayed_refs_extra) {
5054 trans->block_rsv = &fs_info->trans_block_rsv;
5055 trans->bytes_reserved = delayed_refs_extra;
5056 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5057 delayed_refs_extra, 1);
4b9d7b59 5058 }
d3984c90 5059 return trans;
4b9d7b59
OS
5060}
5061
bd555975 5062void btrfs_evict_inode(struct inode *inode)
39279cc3 5063{
0b246afa 5064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5065 struct btrfs_trans_handle *trans;
5066 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5067 struct btrfs_block_rsv *rsv;
39279cc3
CM
5068 int ret;
5069
1abe9b8a 5070 trace_btrfs_inode_evict(inode);
5071
3d48d981 5072 if (!root) {
e8f1bc14 5073 clear_inode(inode);
3d48d981
NB
5074 return;
5075 }
5076
131e404a
FDBM
5077 evict_inode_truncate_pages(inode);
5078
69e9c6c6
SB
5079 if (inode->i_nlink &&
5080 ((btrfs_root_refs(&root->root_item) != 0 &&
5081 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5082 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5083 goto no_delete;
5084
27919067 5085 if (is_bad_inode(inode))
39279cc3 5086 goto no_delete;
5f39d397 5087
7ab7956e 5088 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5089
7b40b695 5090 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5091 goto no_delete;
c71bf099 5092
76dda93c 5093 if (inode->i_nlink > 0) {
69e9c6c6
SB
5094 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5095 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5096 goto no_delete;
5097 }
5098
aa79021f 5099 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5100 if (ret)
0e8c36a9 5101 goto no_delete;
0e8c36a9 5102
2ff7e61e 5103 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5104 if (!rsv)
4289a667 5105 goto no_delete;
2bd36e7b 5106 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5107 rsv->failfast = 1;
4289a667 5108
6ef06d27 5109 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5110
8082510e 5111 while (1) {
ad80cf50 5112 trans = evict_refill_and_join(root, rsv);
27919067
OS
5113 if (IS_ERR(trans))
5114 goto free_rsv;
7b128766 5115
4289a667
JB
5116 trans->block_rsv = rsv;
5117
d68fc57b 5118 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5119 trans->block_rsv = &fs_info->trans_block_rsv;
5120 btrfs_end_transaction(trans);
5121 btrfs_btree_balance_dirty(fs_info);
5122 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5123 goto free_rsv;
5124 else if (!ret)
8082510e 5125 break;
8082510e 5126 }
5f39d397 5127
4ef31a45 5128 /*
27919067
OS
5129 * Errors here aren't a big deal, it just means we leave orphan items in
5130 * the tree. They will be cleaned up on the next mount. If the inode
5131 * number gets reused, cleanup deletes the orphan item without doing
5132 * anything, and unlink reuses the existing orphan item.
5133 *
5134 * If it turns out that we are dropping too many of these, we might want
5135 * to add a mechanism for retrying these after a commit.
4ef31a45 5136 */
ad80cf50 5137 trans = evict_refill_and_join(root, rsv);
27919067
OS
5138 if (!IS_ERR(trans)) {
5139 trans->block_rsv = rsv;
5140 btrfs_orphan_del(trans, BTRFS_I(inode));
5141 trans->block_rsv = &fs_info->trans_block_rsv;
5142 btrfs_end_transaction(trans);
5143 }
54aa1f4d 5144
0b246afa 5145 if (!(root == fs_info->tree_root ||
581bb050 5146 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5147 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5148
27919067
OS
5149free_rsv:
5150 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5151no_delete:
27919067
OS
5152 /*
5153 * If we didn't successfully delete, the orphan item will still be in
5154 * the tree and we'll retry on the next mount. Again, we might also want
5155 * to retry these periodically in the future.
5156 */
f48d1cf5 5157 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5158 clear_inode(inode);
39279cc3
CM
5159}
5160
5161/*
6bf9e4bd
QW
5162 * Return the key found in the dir entry in the location pointer, fill @type
5163 * with BTRFS_FT_*, and return 0.
5164 *
005d6712
SY
5165 * If no dir entries were found, returns -ENOENT.
5166 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5167 */
5168static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5169 struct btrfs_key *location, u8 *type)
39279cc3
CM
5170{
5171 const char *name = dentry->d_name.name;
5172 int namelen = dentry->d_name.len;
5173 struct btrfs_dir_item *di;
5174 struct btrfs_path *path;
5175 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5176 int ret = 0;
39279cc3
CM
5177
5178 path = btrfs_alloc_path();
d8926bb3
MF
5179 if (!path)
5180 return -ENOMEM;
3954401f 5181
f85b7379
DS
5182 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5183 name, namelen, 0);
3cf5068f
LB
5184 if (IS_ERR_OR_NULL(di)) {
5185 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5186 goto out;
5187 }
d397712b 5188
5f39d397 5189 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5190 if (location->type != BTRFS_INODE_ITEM_KEY &&
5191 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5192 ret = -EUCLEAN;
56a0e706
LB
5193 btrfs_warn(root->fs_info,
5194"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5195 __func__, name, btrfs_ino(BTRFS_I(dir)),
5196 location->objectid, location->type, location->offset);
56a0e706 5197 }
6bf9e4bd
QW
5198 if (!ret)
5199 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5200out:
39279cc3
CM
5201 btrfs_free_path(path);
5202 return ret;
5203}
5204
5205/*
5206 * when we hit a tree root in a directory, the btrfs part of the inode
5207 * needs to be changed to reflect the root directory of the tree root. This
5208 * is kind of like crossing a mount point.
5209 */
2ff7e61e 5210static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5211 struct inode *dir,
5212 struct dentry *dentry,
5213 struct btrfs_key *location,
5214 struct btrfs_root **sub_root)
39279cc3 5215{
4df27c4d
YZ
5216 struct btrfs_path *path;
5217 struct btrfs_root *new_root;
5218 struct btrfs_root_ref *ref;
5219 struct extent_buffer *leaf;
1d4c08e0 5220 struct btrfs_key key;
4df27c4d
YZ
5221 int ret;
5222 int err = 0;
39279cc3 5223
4df27c4d
YZ
5224 path = btrfs_alloc_path();
5225 if (!path) {
5226 err = -ENOMEM;
5227 goto out;
5228 }
39279cc3 5229
4df27c4d 5230 err = -ENOENT;
1d4c08e0
DS
5231 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5232 key.type = BTRFS_ROOT_REF_KEY;
5233 key.offset = location->objectid;
5234
0b246afa 5235 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5236 if (ret) {
5237 if (ret < 0)
5238 err = ret;
5239 goto out;
5240 }
39279cc3 5241
4df27c4d
YZ
5242 leaf = path->nodes[0];
5243 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5244 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5245 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5246 goto out;
39279cc3 5247
4df27c4d
YZ
5248 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5249 (unsigned long)(ref + 1),
5250 dentry->d_name.len);
5251 if (ret)
5252 goto out;
5253
b3b4aa74 5254 btrfs_release_path(path);
4df27c4d 5255
56e9357a 5256 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5257 if (IS_ERR(new_root)) {
5258 err = PTR_ERR(new_root);
5259 goto out;
5260 }
5261
4df27c4d
YZ
5262 *sub_root = new_root;
5263 location->objectid = btrfs_root_dirid(&new_root->root_item);
5264 location->type = BTRFS_INODE_ITEM_KEY;
5265 location->offset = 0;
5266 err = 0;
5267out:
5268 btrfs_free_path(path);
5269 return err;
39279cc3
CM
5270}
5271
5d4f98a2
YZ
5272static void inode_tree_add(struct inode *inode)
5273{
5274 struct btrfs_root *root = BTRFS_I(inode)->root;
5275 struct btrfs_inode *entry;
03e860bd
NP
5276 struct rb_node **p;
5277 struct rb_node *parent;
cef21937 5278 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5279 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5280
1d3382cb 5281 if (inode_unhashed(inode))
76dda93c 5282 return;
e1409cef 5283 parent = NULL;
5d4f98a2 5284 spin_lock(&root->inode_lock);
e1409cef 5285 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5286 while (*p) {
5287 parent = *p;
5288 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5289
37508515 5290 if (ino < btrfs_ino(entry))
03e860bd 5291 p = &parent->rb_left;
37508515 5292 else if (ino > btrfs_ino(entry))
03e860bd 5293 p = &parent->rb_right;
5d4f98a2
YZ
5294 else {
5295 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5296 (I_WILL_FREE | I_FREEING)));
cef21937 5297 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
NP
5298 RB_CLEAR_NODE(parent);
5299 spin_unlock(&root->inode_lock);
cef21937 5300 return;
5d4f98a2
YZ
5301 }
5302 }
cef21937
FDBM
5303 rb_link_node(new, parent, p);
5304 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5305 spin_unlock(&root->inode_lock);
5306}
5307
b79b7249 5308static void inode_tree_del(struct btrfs_inode *inode)
5d4f98a2 5309{
b79b7249 5310 struct btrfs_root *root = inode->root;
76dda93c 5311 int empty = 0;
5d4f98a2 5312
03e860bd 5313 spin_lock(&root->inode_lock);
b79b7249
NB
5314 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5315 rb_erase(&inode->rb_node, &root->inode_tree);
5316 RB_CLEAR_NODE(&inode->rb_node);
76dda93c 5317 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5318 }
03e860bd 5319 spin_unlock(&root->inode_lock);
76dda93c 5320
69e9c6c6 5321 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5322 spin_lock(&root->inode_lock);
5323 empty = RB_EMPTY_ROOT(&root->inode_tree);
5324 spin_unlock(&root->inode_lock);
5325 if (empty)
5326 btrfs_add_dead_root(root);
5327 }
5328}
5329
5d4f98a2 5330
e02119d5
CM
5331static int btrfs_init_locked_inode(struct inode *inode, void *p)
5332{
5333 struct btrfs_iget_args *args = p;
0202e83f
DS
5334
5335 inode->i_ino = args->ino;
5336 BTRFS_I(inode)->location.objectid = args->ino;
5337 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5338 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5339 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5340 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5341 return 0;
5342}
5343
5344static int btrfs_find_actor(struct inode *inode, void *opaque)
5345{
5346 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5347
5348 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5349 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5350}
5351
0202e83f 5352static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5353 struct btrfs_root *root)
39279cc3
CM
5354{
5355 struct inode *inode;
5356 struct btrfs_iget_args args;
0202e83f 5357 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5358
0202e83f 5359 args.ino = ino;
39279cc3
CM
5360 args.root = root;
5361
778ba82b 5362 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5363 btrfs_init_locked_inode,
5364 (void *)&args);
5365 return inode;
5366}
5367
4c66e0d4 5368/*
0202e83f 5369 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5370 * Path can be preallocated to prevent recursing back to iget through
5371 * allocator. NULL is also valid but may require an additional allocation
5372 * later.
1a54ef8c 5373 */
0202e83f 5374struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5375 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5376{
5377 struct inode *inode;
5378
0202e83f 5379 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5380 if (!inode)
5d4f98a2 5381 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5382
5383 if (inode->i_state & I_NEW) {
67710892
FM
5384 int ret;
5385
4222ea71 5386 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5387 if (!ret) {
1748f843
MF
5388 inode_tree_add(inode);
5389 unlock_new_inode(inode);
1748f843 5390 } else {
f5b3a417
AV
5391 iget_failed(inode);
5392 /*
5393 * ret > 0 can come from btrfs_search_slot called by
5394 * btrfs_read_locked_inode, this means the inode item
5395 * was not found.
5396 */
5397 if (ret > 0)
5398 ret = -ENOENT;
5399 inode = ERR_PTR(ret);
1748f843
MF
5400 }
5401 }
5402
1a54ef8c
BR
5403 return inode;
5404}
5405
0202e83f 5406struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5407{
0202e83f 5408 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5409}
5410
4df27c4d
YZ
5411static struct inode *new_simple_dir(struct super_block *s,
5412 struct btrfs_key *key,
5413 struct btrfs_root *root)
5414{
5415 struct inode *inode = new_inode(s);
5416
5417 if (!inode)
5418 return ERR_PTR(-ENOMEM);
5419
5c8fd99f 5420 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5421 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5422 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5423
5424 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5425 /*
5426 * We only need lookup, the rest is read-only and there's no inode
5427 * associated with the dentry
5428 */
5429 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5430 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5431 inode->i_fop = &simple_dir_operations;
5432 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5433 inode->i_mtime = current_time(inode);
9cc97d64 5434 inode->i_atime = inode->i_mtime;
5435 inode->i_ctime = inode->i_mtime;
d3c6be6f 5436 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5437
5438 return inode;
5439}
5440
6bf9e4bd
QW
5441static inline u8 btrfs_inode_type(struct inode *inode)
5442{
5443 /*
5444 * Compile-time asserts that generic FT_* types still match
5445 * BTRFS_FT_* types
5446 */
5447 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5448 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5449 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5450 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5451 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5452 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5453 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5454 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5455
5456 return fs_umode_to_ftype(inode->i_mode);
5457}
5458
3de4586c 5459struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5460{
0b246afa 5461 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5462 struct inode *inode;
4df27c4d 5463 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5464 struct btrfs_root *sub_root = root;
5465 struct btrfs_key location;
6bf9e4bd 5466 u8 di_type = 0;
b4aff1f8 5467 int ret = 0;
39279cc3
CM
5468
5469 if (dentry->d_name.len > BTRFS_NAME_LEN)
5470 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5471
6bf9e4bd 5472 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5473 if (ret < 0)
5474 return ERR_PTR(ret);
5f39d397 5475
4df27c4d 5476 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5477 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5478 if (IS_ERR(inode))
5479 return inode;
5480
5481 /* Do extra check against inode mode with di_type */
5482 if (btrfs_inode_type(inode) != di_type) {
5483 btrfs_crit(fs_info,
5484"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5485 inode->i_mode, btrfs_inode_type(inode),
5486 di_type);
5487 iput(inode);
5488 return ERR_PTR(-EUCLEAN);
5489 }
4df27c4d
YZ
5490 return inode;
5491 }
5492
2ff7e61e 5493 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5494 &location, &sub_root);
5495 if (ret < 0) {
5496 if (ret != -ENOENT)
5497 inode = ERR_PTR(ret);
5498 else
5499 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5500 } else {
0202e83f 5501 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5502 }
8727002f 5503 if (root != sub_root)
00246528 5504 btrfs_put_root(sub_root);
76dda93c 5505
34d19bad 5506 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5507 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5508 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5509 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5510 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5511 if (ret) {
5512 iput(inode);
66b4ffd1 5513 inode = ERR_PTR(ret);
01cd3367 5514 }
c71bf099
YZ
5515 }
5516
3de4586c
CM
5517 return inode;
5518}
5519
fe15ce44 5520static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5521{
5522 struct btrfs_root *root;
2b0143b5 5523 struct inode *inode = d_inode(dentry);
76dda93c 5524
848cce0d 5525 if (!inode && !IS_ROOT(dentry))
2b0143b5 5526 inode = d_inode(dentry->d_parent);
76dda93c 5527
848cce0d
LZ
5528 if (inode) {
5529 root = BTRFS_I(inode)->root;
efefb143
YZ
5530 if (btrfs_root_refs(&root->root_item) == 0)
5531 return 1;
848cce0d 5532
4a0cc7ca 5533 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5534 return 1;
efefb143 5535 }
76dda93c
YZ
5536 return 0;
5537}
5538
3de4586c 5539static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5540 unsigned int flags)
3de4586c 5541{
3837d208 5542 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5543
3837d208
AV
5544 if (inode == ERR_PTR(-ENOENT))
5545 inode = NULL;
41d28bca 5546 return d_splice_alias(inode, dentry);
39279cc3
CM
5547}
5548
23b5ec74
JB
5549/*
5550 * All this infrastructure exists because dir_emit can fault, and we are holding
5551 * the tree lock when doing readdir. For now just allocate a buffer and copy
5552 * our information into that, and then dir_emit from the buffer. This is
5553 * similar to what NFS does, only we don't keep the buffer around in pagecache
5554 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5555 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5556 * tree lock.
5557 */
5558static int btrfs_opendir(struct inode *inode, struct file *file)
5559{
5560 struct btrfs_file_private *private;
5561
5562 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5563 if (!private)
5564 return -ENOMEM;
5565 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5566 if (!private->filldir_buf) {
5567 kfree(private);
5568 return -ENOMEM;
5569 }
5570 file->private_data = private;
5571 return 0;
5572}
5573
5574struct dir_entry {
5575 u64 ino;
5576 u64 offset;
5577 unsigned type;
5578 int name_len;
5579};
5580
5581static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5582{
5583 while (entries--) {
5584 struct dir_entry *entry = addr;
5585 char *name = (char *)(entry + 1);
5586
92d32170
DS
5587 ctx->pos = get_unaligned(&entry->offset);
5588 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5589 get_unaligned(&entry->ino),
5590 get_unaligned(&entry->type)))
23b5ec74 5591 return 1;
92d32170
DS
5592 addr += sizeof(struct dir_entry) +
5593 get_unaligned(&entry->name_len);
23b5ec74
JB
5594 ctx->pos++;
5595 }
5596 return 0;
5597}
5598
9cdda8d3 5599static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5600{
9cdda8d3 5601 struct inode *inode = file_inode(file);
39279cc3 5602 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5603 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5604 struct btrfs_dir_item *di;
5605 struct btrfs_key key;
5f39d397 5606 struct btrfs_key found_key;
39279cc3 5607 struct btrfs_path *path;
23b5ec74 5608 void *addr;
16cdcec7
MX
5609 struct list_head ins_list;
5610 struct list_head del_list;
39279cc3 5611 int ret;
5f39d397 5612 struct extent_buffer *leaf;
39279cc3 5613 int slot;
5f39d397
CM
5614 char *name_ptr;
5615 int name_len;
23b5ec74
JB
5616 int entries = 0;
5617 int total_len = 0;
02dbfc99 5618 bool put = false;
c2951f32 5619 struct btrfs_key location;
5f39d397 5620
9cdda8d3
AV
5621 if (!dir_emit_dots(file, ctx))
5622 return 0;
5623
49593bfa 5624 path = btrfs_alloc_path();
16cdcec7
MX
5625 if (!path)
5626 return -ENOMEM;
ff5714cc 5627
23b5ec74 5628 addr = private->filldir_buf;
e4058b54 5629 path->reada = READA_FORWARD;
49593bfa 5630
c2951f32
JM
5631 INIT_LIST_HEAD(&ins_list);
5632 INIT_LIST_HEAD(&del_list);
5633 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5634
23b5ec74 5635again:
c2951f32 5636 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5637 key.offset = ctx->pos;
4a0cc7ca 5638 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5639
39279cc3
CM
5640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5641 if (ret < 0)
5642 goto err;
49593bfa
DW
5643
5644 while (1) {
23b5ec74
JB
5645 struct dir_entry *entry;
5646
5f39d397 5647 leaf = path->nodes[0];
39279cc3 5648 slot = path->slots[0];
b9e03af0
LZ
5649 if (slot >= btrfs_header_nritems(leaf)) {
5650 ret = btrfs_next_leaf(root, path);
5651 if (ret < 0)
5652 goto err;
5653 else if (ret > 0)
5654 break;
5655 continue;
39279cc3 5656 }
3de4586c 5657
5f39d397
CM
5658 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5659
5660 if (found_key.objectid != key.objectid)
39279cc3 5661 break;
c2951f32 5662 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5663 break;
9cdda8d3 5664 if (found_key.offset < ctx->pos)
b9e03af0 5665 goto next;
c2951f32 5666 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5667 goto next;
39279cc3 5668 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5669 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5670 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5671 PAGE_SIZE) {
5672 btrfs_release_path(path);
5673 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5674 if (ret)
5675 goto nopos;
5676 addr = private->filldir_buf;
5677 entries = 0;
5678 total_len = 0;
5679 goto again;
c2951f32 5680 }
23b5ec74
JB
5681
5682 entry = addr;
92d32170 5683 put_unaligned(name_len, &entry->name_len);
23b5ec74 5684 name_ptr = (char *)(entry + 1);
c2951f32
JM
5685 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5686 name_len);
7d157c3d 5687 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5688 &entry->type);
c2951f32 5689 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5690 put_unaligned(location.objectid, &entry->ino);
5691 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5692 entries++;
5693 addr += sizeof(struct dir_entry) + name_len;
5694 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5695next:
5696 path->slots[0]++;
39279cc3 5697 }
23b5ec74
JB
5698 btrfs_release_path(path);
5699
5700 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5701 if (ret)
5702 goto nopos;
49593bfa 5703
d2fbb2b5 5704 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5705 if (ret)
bc4ef759
DS
5706 goto nopos;
5707
db62efbb
ZB
5708 /*
5709 * Stop new entries from being returned after we return the last
5710 * entry.
5711 *
5712 * New directory entries are assigned a strictly increasing
5713 * offset. This means that new entries created during readdir
5714 * are *guaranteed* to be seen in the future by that readdir.
5715 * This has broken buggy programs which operate on names as
5716 * they're returned by readdir. Until we re-use freed offsets
5717 * we have this hack to stop new entries from being returned
5718 * under the assumption that they'll never reach this huge
5719 * offset.
5720 *
5721 * This is being careful not to overflow 32bit loff_t unless the
5722 * last entry requires it because doing so has broken 32bit apps
5723 * in the past.
5724 */
c2951f32
JM
5725 if (ctx->pos >= INT_MAX)
5726 ctx->pos = LLONG_MAX;
5727 else
5728 ctx->pos = INT_MAX;
39279cc3
CM
5729nopos:
5730 ret = 0;
5731err:
02dbfc99
OS
5732 if (put)
5733 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5734 btrfs_free_path(path);
39279cc3
CM
5735 return ret;
5736}
5737
39279cc3 5738/*
54aa1f4d 5739 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5740 * inode changes. But, it is most likely to find the inode in cache.
5741 * FIXME, needs more benchmarking...there are no reasons other than performance
5742 * to keep or drop this code.
5743 */
48a3b636 5744static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5745{
2ff7e61e 5746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5747 struct btrfs_root *root = BTRFS_I(inode)->root;
5748 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5749 int ret;
5750
72ac3c0d 5751 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5752 return 0;
39279cc3 5753
7a7eaa40 5754 trans = btrfs_join_transaction(root);
22c44fe6
JB
5755 if (IS_ERR(trans))
5756 return PTR_ERR(trans);
8929ecfa
YZ
5757
5758 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5759 if (ret && ret == -ENOSPC) {
5760 /* whoops, lets try again with the full transaction */
3a45bb20 5761 btrfs_end_transaction(trans);
94b60442 5762 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5763 if (IS_ERR(trans))
5764 return PTR_ERR(trans);
8929ecfa 5765
94b60442 5766 ret = btrfs_update_inode(trans, root, inode);
94b60442 5767 }
3a45bb20 5768 btrfs_end_transaction(trans);
16cdcec7 5769 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5770 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5771
5772 return ret;
5773}
5774
5775/*
5776 * This is a copy of file_update_time. We need this so we can return error on
5777 * ENOSPC for updating the inode in the case of file write and mmap writes.
5778 */
95582b00 5779static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5780 int flags)
22c44fe6 5781{
2bc55652 5782 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5783 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5784
5785 if (btrfs_root_readonly(root))
5786 return -EROFS;
5787
e41f941a 5788 if (flags & S_VERSION)
3a8c7231 5789 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5790 if (flags & S_CTIME)
5791 inode->i_ctime = *now;
5792 if (flags & S_MTIME)
5793 inode->i_mtime = *now;
5794 if (flags & S_ATIME)
5795 inode->i_atime = *now;
3a8c7231 5796 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5797}
5798
d352ac68
CM
5799/*
5800 * find the highest existing sequence number in a directory
5801 * and then set the in-memory index_cnt variable to reflect
5802 * free sequence numbers
5803 */
4c570655 5804static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5805{
4c570655 5806 struct btrfs_root *root = inode->root;
aec7477b
JB
5807 struct btrfs_key key, found_key;
5808 struct btrfs_path *path;
5809 struct extent_buffer *leaf;
5810 int ret;
5811
4c570655 5812 key.objectid = btrfs_ino(inode);
962a298f 5813 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5814 key.offset = (u64)-1;
5815
5816 path = btrfs_alloc_path();
5817 if (!path)
5818 return -ENOMEM;
5819
5820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5821 if (ret < 0)
5822 goto out;
5823 /* FIXME: we should be able to handle this */
5824 if (ret == 0)
5825 goto out;
5826 ret = 0;
5827
5828 /*
5829 * MAGIC NUMBER EXPLANATION:
5830 * since we search a directory based on f_pos we have to start at 2
5831 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5832 * else has to start at 2
5833 */
5834 if (path->slots[0] == 0) {
4c570655 5835 inode->index_cnt = 2;
aec7477b
JB
5836 goto out;
5837 }
5838
5839 path->slots[0]--;
5840
5841 leaf = path->nodes[0];
5842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5843
4c570655 5844 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5845 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5846 inode->index_cnt = 2;
aec7477b
JB
5847 goto out;
5848 }
5849
4c570655 5850 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5851out:
5852 btrfs_free_path(path);
5853 return ret;
5854}
5855
d352ac68
CM
5856/*
5857 * helper to find a free sequence number in a given directory. This current
5858 * code is very simple, later versions will do smarter things in the btree
5859 */
877574e2 5860int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
5861{
5862 int ret = 0;
5863
877574e2
NB
5864 if (dir->index_cnt == (u64)-1) {
5865 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
5866 if (ret) {
5867 ret = btrfs_set_inode_index_count(dir);
5868 if (ret)
5869 return ret;
5870 }
aec7477b
JB
5871 }
5872
877574e2
NB
5873 *index = dir->index_cnt;
5874 dir->index_cnt++;
aec7477b
JB
5875
5876 return ret;
5877}
5878
b0d5d10f
CM
5879static int btrfs_insert_inode_locked(struct inode *inode)
5880{
5881 struct btrfs_iget_args args;
0202e83f
DS
5882
5883 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
5884 args.root = BTRFS_I(inode)->root;
5885
5886 return insert_inode_locked4(inode,
5887 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5888 btrfs_find_actor, &args);
5889}
5890
19aee8de
AJ
5891/*
5892 * Inherit flags from the parent inode.
5893 *
5894 * Currently only the compression flags and the cow flags are inherited.
5895 */
5896static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5897{
5898 unsigned int flags;
5899
5900 if (!dir)
5901 return;
5902
5903 flags = BTRFS_I(dir)->flags;
5904
5905 if (flags & BTRFS_INODE_NOCOMPRESS) {
5906 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5907 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5908 } else if (flags & BTRFS_INODE_COMPRESS) {
5909 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5910 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5911 }
5912
5913 if (flags & BTRFS_INODE_NODATACOW) {
5914 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5915 if (S_ISREG(inode->i_mode))
5916 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5917 }
5918
7b6a221e 5919 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
5920}
5921
39279cc3
CM
5922static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5923 struct btrfs_root *root,
aec7477b 5924 struct inode *dir,
9c58309d 5925 const char *name, int name_len,
175a4eb7
AV
5926 u64 ref_objectid, u64 objectid,
5927 umode_t mode, u64 *index)
39279cc3 5928{
0b246afa 5929 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 5930 struct inode *inode;
5f39d397 5931 struct btrfs_inode_item *inode_item;
39279cc3 5932 struct btrfs_key *location;
5f39d397 5933 struct btrfs_path *path;
9c58309d
CM
5934 struct btrfs_inode_ref *ref;
5935 struct btrfs_key key[2];
5936 u32 sizes[2];
ef3b9af5 5937 int nitems = name ? 2 : 1;
9c58309d 5938 unsigned long ptr;
11a19a90 5939 unsigned int nofs_flag;
39279cc3 5940 int ret;
39279cc3 5941
5f39d397 5942 path = btrfs_alloc_path();
d8926bb3
MF
5943 if (!path)
5944 return ERR_PTR(-ENOMEM);
5f39d397 5945
11a19a90 5946 nofs_flag = memalloc_nofs_save();
0b246afa 5947 inode = new_inode(fs_info->sb);
11a19a90 5948 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
5949 if (!inode) {
5950 btrfs_free_path(path);
39279cc3 5951 return ERR_PTR(-ENOMEM);
8fb27640 5952 }
39279cc3 5953
5762b5c9
FM
5954 /*
5955 * O_TMPFILE, set link count to 0, so that after this point,
5956 * we fill in an inode item with the correct link count.
5957 */
5958 if (!name)
5959 set_nlink(inode, 0);
5960
581bb050
LZ
5961 /*
5962 * we have to initialize this early, so we can reclaim the inode
5963 * number if we fail afterwards in this function.
5964 */
5965 inode->i_ino = objectid;
5966
ef3b9af5 5967 if (dir && name) {
1abe9b8a 5968 trace_btrfs_inode_request(dir);
5969
877574e2 5970 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 5971 if (ret) {
8fb27640 5972 btrfs_free_path(path);
09771430 5973 iput(inode);
aec7477b 5974 return ERR_PTR(ret);
09771430 5975 }
ef3b9af5
FM
5976 } else if (dir) {
5977 *index = 0;
aec7477b
JB
5978 }
5979 /*
5980 * index_cnt is ignored for everything but a dir,
df6703e1 5981 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
5982 * number
5983 */
5984 BTRFS_I(inode)->index_cnt = 2;
67de1176 5985 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 5986 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 5987 BTRFS_I(inode)->generation = trans->transid;
76195853 5988 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5989
5dc562c5
JB
5990 /*
5991 * We could have gotten an inode number from somebody who was fsynced
5992 * and then removed in this same transaction, so let's just set full
5993 * sync since it will be a full sync anyway and this will blow away the
5994 * old info in the log.
5995 */
5996 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5997
9c58309d 5998 key[0].objectid = objectid;
962a298f 5999 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6000 key[0].offset = 0;
6001
9c58309d 6002 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6003
6004 if (name) {
6005 /*
6006 * Start new inodes with an inode_ref. This is slightly more
6007 * efficient for small numbers of hard links since they will
6008 * be packed into one item. Extended refs will kick in if we
6009 * add more hard links than can fit in the ref item.
6010 */
6011 key[1].objectid = objectid;
962a298f 6012 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6013 key[1].offset = ref_objectid;
6014
6015 sizes[1] = name_len + sizeof(*ref);
6016 }
9c58309d 6017
b0d5d10f
CM
6018 location = &BTRFS_I(inode)->location;
6019 location->objectid = objectid;
6020 location->offset = 0;
962a298f 6021 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6022
6023 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6024 if (ret < 0) {
6025 iput(inode);
b0d5d10f 6026 goto fail;
32955c54 6027 }
b0d5d10f 6028
b9473439 6029 path->leave_spinning = 1;
ef3b9af5 6030 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6031 if (ret != 0)
b0d5d10f 6032 goto fail_unlock;
5f39d397 6033
ecc11fab 6034 inode_init_owner(inode, dir, mode);
a76a3cd4 6035 inode_set_bytes(inode, 0);
9cc97d64 6036
c2050a45 6037 inode->i_mtime = current_time(inode);
9cc97d64 6038 inode->i_atime = inode->i_mtime;
6039 inode->i_ctime = inode->i_mtime;
d3c6be6f 6040 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6041
5f39d397
CM
6042 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6043 struct btrfs_inode_item);
b159fa28 6044 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6045 sizeof(*inode_item));
e02119d5 6046 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6047
ef3b9af5
FM
6048 if (name) {
6049 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6050 struct btrfs_inode_ref);
6051 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6052 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6053 ptr = (unsigned long)(ref + 1);
6054 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6055 }
9c58309d 6056
5f39d397
CM
6057 btrfs_mark_buffer_dirty(path->nodes[0]);
6058 btrfs_free_path(path);
6059
6cbff00f
CH
6060 btrfs_inherit_iflags(inode, dir);
6061
569254b0 6062 if (S_ISREG(mode)) {
0b246afa 6063 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6064 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6065 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6066 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6067 BTRFS_INODE_NODATASUM;
94272164
CM
6068 }
6069
5d4f98a2 6070 inode_tree_add(inode);
1abe9b8a 6071
6072 trace_btrfs_inode_new(inode);
d9094414 6073 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6074
8ea05e3a
AB
6075 btrfs_update_root_times(trans, root);
6076
63541927
FDBM
6077 ret = btrfs_inode_inherit_props(trans, inode, dir);
6078 if (ret)
0b246afa 6079 btrfs_err(fs_info,
63541927 6080 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6081 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6082
39279cc3 6083 return inode;
b0d5d10f
CM
6084
6085fail_unlock:
32955c54 6086 discard_new_inode(inode);
5f39d397 6087fail:
ef3b9af5 6088 if (dir && name)
aec7477b 6089 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6090 btrfs_free_path(path);
6091 return ERR_PTR(ret);
39279cc3
CM
6092}
6093
d352ac68
CM
6094/*
6095 * utility function to add 'inode' into 'parent_inode' with
6096 * a give name and a given sequence number.
6097 * if 'add_backref' is true, also insert a backref from the
6098 * inode to the parent directory.
6099 */
e02119d5 6100int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6101 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6102 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6103{
4df27c4d 6104 int ret = 0;
39279cc3 6105 struct btrfs_key key;
db0a669f
NB
6106 struct btrfs_root *root = parent_inode->root;
6107 u64 ino = btrfs_ino(inode);
6108 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6109
33345d01 6110 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6111 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6112 } else {
33345d01 6113 key.objectid = ino;
962a298f 6114 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6115 key.offset = 0;
6116 }
6117
33345d01 6118 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6119 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6120 root->root_key.objectid, parent_ino,
6121 index, name, name_len);
4df27c4d 6122 } else if (add_backref) {
33345d01
LZ
6123 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6124 parent_ino, index);
4df27c4d 6125 }
39279cc3 6126
79787eaa
JM
6127 /* Nothing to clean up yet */
6128 if (ret)
6129 return ret;
4df27c4d 6130
684572df 6131 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6132 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6133 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6134 goto fail_dir_item;
6135 else if (ret) {
66642832 6136 btrfs_abort_transaction(trans, ret);
79787eaa 6137 return ret;
39279cc3 6138 }
79787eaa 6139
db0a669f 6140 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6141 name_len * 2);
db0a669f 6142 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6143 /*
6144 * If we are replaying a log tree, we do not want to update the mtime
6145 * and ctime of the parent directory with the current time, since the
6146 * log replay procedure is responsible for setting them to their correct
6147 * values (the ones it had when the fsync was done).
6148 */
6149 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6150 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6151
6152 parent_inode->vfs_inode.i_mtime = now;
6153 parent_inode->vfs_inode.i_ctime = now;
6154 }
db0a669f 6155 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6156 if (ret)
66642832 6157 btrfs_abort_transaction(trans, ret);
39279cc3 6158 return ret;
fe66a05a
CM
6159
6160fail_dir_item:
6161 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6162 u64 local_index;
6163 int err;
3ee1c553 6164 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6165 root->root_key.objectid, parent_ino,
6166 &local_index, name, name_len);
1690dd41
JT
6167 if (err)
6168 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6169 } else if (add_backref) {
6170 u64 local_index;
6171 int err;
6172
6173 err = btrfs_del_inode_ref(trans, root, name, name_len,
6174 ino, parent_ino, &local_index);
1690dd41
JT
6175 if (err)
6176 btrfs_abort_transaction(trans, err);
fe66a05a 6177 }
1690dd41
JT
6178
6179 /* Return the original error code */
fe66a05a 6180 return ret;
39279cc3
CM
6181}
6182
6183static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6184 struct btrfs_inode *dir, struct dentry *dentry,
6185 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6186{
a1b075d2
JB
6187 int err = btrfs_add_link(trans, dir, inode,
6188 dentry->d_name.name, dentry->d_name.len,
6189 backref, index);
39279cc3
CM
6190 if (err > 0)
6191 err = -EEXIST;
6192 return err;
6193}
6194
618e21d5 6195static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6196 umode_t mode, dev_t rdev)
618e21d5 6197{
2ff7e61e 6198 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6199 struct btrfs_trans_handle *trans;
6200 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6201 struct inode *inode = NULL;
618e21d5 6202 int err;
618e21d5 6203 u64 objectid;
00e4e6b3 6204 u64 index = 0;
618e21d5 6205
9ed74f2d
JB
6206 /*
6207 * 2 for inode item and ref
6208 * 2 for dir items
6209 * 1 for xattr if selinux is on
6210 */
a22285a6
YZ
6211 trans = btrfs_start_transaction(root, 5);
6212 if (IS_ERR(trans))
6213 return PTR_ERR(trans);
1832a6d5 6214
581bb050
LZ
6215 err = btrfs_find_free_ino(root, &objectid);
6216 if (err)
6217 goto out_unlock;
6218
aec7477b 6219 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6220 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6221 mode, &index);
7cf96da3
TI
6222 if (IS_ERR(inode)) {
6223 err = PTR_ERR(inode);
32955c54 6224 inode = NULL;
618e21d5 6225 goto out_unlock;
7cf96da3 6226 }
618e21d5 6227
ad19db71
CS
6228 /*
6229 * If the active LSM wants to access the inode during
6230 * d_instantiate it needs these. Smack checks to see
6231 * if the filesystem supports xattrs by looking at the
6232 * ops vector.
6233 */
ad19db71 6234 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6235 init_special_inode(inode, inode->i_mode, rdev);
6236
6237 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6238 if (err)
32955c54 6239 goto out_unlock;
b0d5d10f 6240
cef415af
NB
6241 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6242 0, index);
32955c54
AV
6243 if (err)
6244 goto out_unlock;
6245
6246 btrfs_update_inode(trans, root, inode);
6247 d_instantiate_new(dentry, inode);
b0d5d10f 6248
618e21d5 6249out_unlock:
3a45bb20 6250 btrfs_end_transaction(trans);
2ff7e61e 6251 btrfs_btree_balance_dirty(fs_info);
32955c54 6252 if (err && inode) {
618e21d5 6253 inode_dec_link_count(inode);
32955c54 6254 discard_new_inode(inode);
618e21d5 6255 }
618e21d5
JB
6256 return err;
6257}
6258
39279cc3 6259static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6260 umode_t mode, bool excl)
39279cc3 6261{
2ff7e61e 6262 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6263 struct btrfs_trans_handle *trans;
6264 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6265 struct inode *inode = NULL;
a22285a6 6266 int err;
39279cc3 6267 u64 objectid;
00e4e6b3 6268 u64 index = 0;
39279cc3 6269
9ed74f2d
JB
6270 /*
6271 * 2 for inode item and ref
6272 * 2 for dir items
6273 * 1 for xattr if selinux is on
6274 */
a22285a6
YZ
6275 trans = btrfs_start_transaction(root, 5);
6276 if (IS_ERR(trans))
6277 return PTR_ERR(trans);
9ed74f2d 6278
581bb050
LZ
6279 err = btrfs_find_free_ino(root, &objectid);
6280 if (err)
6281 goto out_unlock;
6282
aec7477b 6283 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6284 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6285 mode, &index);
7cf96da3
TI
6286 if (IS_ERR(inode)) {
6287 err = PTR_ERR(inode);
32955c54 6288 inode = NULL;
39279cc3 6289 goto out_unlock;
7cf96da3 6290 }
ad19db71
CS
6291 /*
6292 * If the active LSM wants to access the inode during
6293 * d_instantiate it needs these. Smack checks to see
6294 * if the filesystem supports xattrs by looking at the
6295 * ops vector.
6296 */
6297 inode->i_fop = &btrfs_file_operations;
6298 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6299 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6300
6301 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6302 if (err)
32955c54 6303 goto out_unlock;
b0d5d10f
CM
6304
6305 err = btrfs_update_inode(trans, root, inode);
6306 if (err)
32955c54 6307 goto out_unlock;
ad19db71 6308
cef415af
NB
6309 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6310 0, index);
39279cc3 6311 if (err)
32955c54 6312 goto out_unlock;
43baa579 6313
43baa579 6314 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6315 d_instantiate_new(dentry, inode);
43baa579 6316
39279cc3 6317out_unlock:
3a45bb20 6318 btrfs_end_transaction(trans);
32955c54 6319 if (err && inode) {
39279cc3 6320 inode_dec_link_count(inode);
32955c54 6321 discard_new_inode(inode);
39279cc3 6322 }
2ff7e61e 6323 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6324 return err;
6325}
6326
6327static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6328 struct dentry *dentry)
6329{
271dba45 6330 struct btrfs_trans_handle *trans = NULL;
39279cc3 6331 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6332 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6334 u64 index;
39279cc3
CM
6335 int err;
6336 int drop_inode = 0;
6337
4a8be425 6338 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6339 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6340 return -EXDEV;
4a8be425 6341
f186373f 6342 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6343 return -EMLINK;
4a8be425 6344
877574e2 6345 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6346 if (err)
6347 goto fail;
6348
a22285a6 6349 /*
7e6b6465 6350 * 2 items for inode and inode ref
a22285a6 6351 * 2 items for dir items
7e6b6465 6352 * 1 item for parent inode
399b0bbf 6353 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6354 */
399b0bbf 6355 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6356 if (IS_ERR(trans)) {
6357 err = PTR_ERR(trans);
271dba45 6358 trans = NULL;
a22285a6
YZ
6359 goto fail;
6360 }
5f39d397 6361
67de1176
MX
6362 /* There are several dir indexes for this inode, clear the cache. */
6363 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6364 inc_nlink(inode);
0c4d2d95 6365 inode_inc_iversion(inode);
c2050a45 6366 inode->i_ctime = current_time(inode);
7de9c6ee 6367 ihold(inode);
e9976151 6368 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6369
cef415af
NB
6370 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6371 1, index);
5f39d397 6372
a5719521 6373 if (err) {
54aa1f4d 6374 drop_inode = 1;
a5719521 6375 } else {
10d9f309 6376 struct dentry *parent = dentry->d_parent;
d4682ba0 6377
a5719521 6378 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6379 if (err)
6380 goto fail;
ef3b9af5
FM
6381 if (inode->i_nlink == 1) {
6382 /*
6383 * If new hard link count is 1, it's a file created
6384 * with open(2) O_TMPFILE flag.
6385 */
3d6ae7bb 6386 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6387 if (err)
6388 goto fail;
6389 }
08c422c2 6390 d_instantiate(dentry, inode);
75b463d2 6391 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6392 }
39279cc3 6393
1832a6d5 6394fail:
271dba45 6395 if (trans)
3a45bb20 6396 btrfs_end_transaction(trans);
39279cc3
CM
6397 if (drop_inode) {
6398 inode_dec_link_count(inode);
6399 iput(inode);
6400 }
2ff7e61e 6401 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6402 return err;
6403}
6404
18bb1db3 6405static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6406{
2ff7e61e 6407 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6408 struct inode *inode = NULL;
39279cc3
CM
6409 struct btrfs_trans_handle *trans;
6410 struct btrfs_root *root = BTRFS_I(dir)->root;
6411 int err = 0;
b9d86667 6412 u64 objectid = 0;
00e4e6b3 6413 u64 index = 0;
39279cc3 6414
9ed74f2d
JB
6415 /*
6416 * 2 items for inode and ref
6417 * 2 items for dir items
6418 * 1 for xattr if selinux is on
6419 */
a22285a6
YZ
6420 trans = btrfs_start_transaction(root, 5);
6421 if (IS_ERR(trans))
6422 return PTR_ERR(trans);
39279cc3 6423
581bb050
LZ
6424 err = btrfs_find_free_ino(root, &objectid);
6425 if (err)
6426 goto out_fail;
6427
aec7477b 6428 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6429 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6430 S_IFDIR | mode, &index);
39279cc3
CM
6431 if (IS_ERR(inode)) {
6432 err = PTR_ERR(inode);
32955c54 6433 inode = NULL;
39279cc3
CM
6434 goto out_fail;
6435 }
5f39d397 6436
b0d5d10f
CM
6437 /* these must be set before we unlock the inode */
6438 inode->i_op = &btrfs_dir_inode_operations;
6439 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6440
2a7dba39 6441 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6442 if (err)
32955c54 6443 goto out_fail;
39279cc3 6444
6ef06d27 6445 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6446 err = btrfs_update_inode(trans, root, inode);
6447 if (err)
32955c54 6448 goto out_fail;
5f39d397 6449
db0a669f
NB
6450 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6451 dentry->d_name.name,
6452 dentry->d_name.len, 0, index);
39279cc3 6453 if (err)
32955c54 6454 goto out_fail;
5f39d397 6455
1e2e547a 6456 d_instantiate_new(dentry, inode);
39279cc3
CM
6457
6458out_fail:
3a45bb20 6459 btrfs_end_transaction(trans);
32955c54 6460 if (err && inode) {
c7cfb8a5 6461 inode_dec_link_count(inode);
32955c54 6462 discard_new_inode(inode);
c7cfb8a5 6463 }
2ff7e61e 6464 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6465 return err;
6466}
6467
c8b97818 6468static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6469 struct page *page,
c8b97818
CM
6470 size_t pg_offset, u64 extent_offset,
6471 struct btrfs_file_extent_item *item)
6472{
6473 int ret;
6474 struct extent_buffer *leaf = path->nodes[0];
6475 char *tmp;
6476 size_t max_size;
6477 unsigned long inline_size;
6478 unsigned long ptr;
261507a0 6479 int compress_type;
c8b97818
CM
6480
6481 WARN_ON(pg_offset != 0);
261507a0 6482 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6483 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6484 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6485 btrfs_item_nr(path->slots[0]));
c8b97818 6486 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6487 if (!tmp)
6488 return -ENOMEM;
c8b97818
CM
6489 ptr = btrfs_file_extent_inline_start(item);
6490
6491 read_extent_buffer(leaf, tmp, ptr, inline_size);
6492
09cbfeaf 6493 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6494 ret = btrfs_decompress(compress_type, tmp, page,
6495 extent_offset, inline_size, max_size);
e1699d2d
ZB
6496
6497 /*
6498 * decompression code contains a memset to fill in any space between the end
6499 * of the uncompressed data and the end of max_size in case the decompressed
6500 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6501 * the end of an inline extent and the beginning of the next block, so we
6502 * cover that region here.
6503 */
6504
6505 if (max_size + pg_offset < PAGE_SIZE) {
6506 char *map = kmap(page);
6507 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6508 kunmap(page);
6509 }
c8b97818 6510 kfree(tmp);
166ae5a4 6511 return ret;
c8b97818
CM
6512}
6513
39b07b5d
OS
6514/**
6515 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6516 * @inode: file to search in
6517 * @page: page to read extent data into if the extent is inline
6518 * @pg_offset: offset into @page to copy to
6519 * @start: file offset
6520 * @len: length of range starting at @start
6521 *
6522 * This returns the first &struct extent_map which overlaps with the given
6523 * range, reading it from the B-tree and caching it if necessary. Note that
6524 * there may be more extents which overlap the given range after the returned
6525 * extent_map.
d352ac68 6526 *
39b07b5d
OS
6527 * If @page is not NULL and the extent is inline, this also reads the extent
6528 * data directly into the page and marks the extent up to date in the io_tree.
6529 *
6530 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6531 */
fc4f21b1 6532struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6533 struct page *page, size_t pg_offset,
6534 u64 start, u64 len)
a52d9a80 6535{
3ffbd68c 6536 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1028d1c4 6537 int ret = 0;
a52d9a80
CM
6538 u64 extent_start = 0;
6539 u64 extent_end = 0;
fc4f21b1 6540 u64 objectid = btrfs_ino(inode);
7e74e235 6541 int extent_type = -1;
f421950f 6542 struct btrfs_path *path = NULL;
fc4f21b1 6543 struct btrfs_root *root = inode->root;
a52d9a80 6544 struct btrfs_file_extent_item *item;
5f39d397
CM
6545 struct extent_buffer *leaf;
6546 struct btrfs_key found_key;
a52d9a80 6547 struct extent_map *em = NULL;
fc4f21b1
NB
6548 struct extent_map_tree *em_tree = &inode->extent_tree;
6549 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6550
890871be 6551 read_lock(&em_tree->lock);
d1310b2e 6552 em = lookup_extent_mapping(em_tree, start, len);
890871be 6553 read_unlock(&em_tree->lock);
d1310b2e 6554
a52d9a80 6555 if (em) {
e1c4b745
CM
6556 if (em->start > start || em->start + em->len <= start)
6557 free_extent_map(em);
6558 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6559 free_extent_map(em);
6560 else
6561 goto out;
a52d9a80 6562 }
172ddd60 6563 em = alloc_extent_map();
a52d9a80 6564 if (!em) {
1028d1c4 6565 ret = -ENOMEM;
d1310b2e 6566 goto out;
a52d9a80 6567 }
d1310b2e 6568 em->start = EXTENT_MAP_HOLE;
445a6944 6569 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6570 em->len = (u64)-1;
c8b97818 6571 em->block_len = (u64)-1;
f421950f 6572
bee6ec82 6573 path = btrfs_alloc_path();
f421950f 6574 if (!path) {
1028d1c4 6575 ret = -ENOMEM;
bee6ec82 6576 goto out;
f421950f
CM
6577 }
6578
bee6ec82
LB
6579 /* Chances are we'll be called again, so go ahead and do readahead */
6580 path->reada = READA_FORWARD;
6581
e49aabd9
LB
6582 /*
6583 * Unless we're going to uncompress the inline extent, no sleep would
6584 * happen.
6585 */
6586 path->leave_spinning = 1;
6587
51899412
JB
6588 path->recurse = btrfs_is_free_space_inode(inode);
6589
5c9a702e 6590 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80 6591 if (ret < 0) {
a52d9a80 6592 goto out;
b8eeab7f 6593 } else if (ret > 0) {
a52d9a80
CM
6594 if (path->slots[0] == 0)
6595 goto not_found;
6596 path->slots[0]--;
1028d1c4 6597 ret = 0;
a52d9a80
CM
6598 }
6599
5f39d397
CM
6600 leaf = path->nodes[0];
6601 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6602 struct btrfs_file_extent_item);
5f39d397 6603 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6604 if (found_key.objectid != objectid ||
694c12ed 6605 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6606 /*
6607 * If we backup past the first extent we want to move forward
6608 * and see if there is an extent in front of us, otherwise we'll
6609 * say there is a hole for our whole search range which can
6610 * cause problems.
6611 */
6612 extent_end = start;
6613 goto next;
a52d9a80
CM
6614 }
6615
694c12ed 6616 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6617 extent_start = found_key.offset;
a5eeb3d1 6618 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6619 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6620 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6621 /* Only regular file could have regular/prealloc extent */
6622 if (!S_ISREG(inode->vfs_inode.i_mode)) {
1028d1c4 6623 ret = -EUCLEAN;
6bf9e4bd
QW
6624 btrfs_crit(fs_info,
6625 "regular/prealloc extent found for non-regular inode %llu",
6626 btrfs_ino(inode));
6627 goto out;
6628 }
09ed2f16
LB
6629 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6630 extent_start);
694c12ed 6631 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6632 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6633 path->slots[0],
6634 extent_start);
9036c102 6635 }
25a50341 6636next:
9036c102
YZ
6637 if (start >= extent_end) {
6638 path->slots[0]++;
6639 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6640 ret = btrfs_next_leaf(root, path);
1028d1c4 6641 if (ret < 0)
9036c102 6642 goto out;
1028d1c4 6643 else if (ret > 0)
9036c102 6644 goto not_found;
1028d1c4 6645
9036c102 6646 leaf = path->nodes[0];
a52d9a80 6647 }
9036c102
YZ
6648 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6649 if (found_key.objectid != objectid ||
6650 found_key.type != BTRFS_EXTENT_DATA_KEY)
6651 goto not_found;
6652 if (start + len <= found_key.offset)
6653 goto not_found;
e2eca69d
WS
6654 if (start > found_key.offset)
6655 goto next;
02a033df
NB
6656
6657 /* New extent overlaps with existing one */
9036c102 6658 em->start = start;
70c8a91c 6659 em->orig_start = start;
9036c102 6660 em->len = found_key.offset - start;
02a033df
NB
6661 em->block_start = EXTENT_MAP_HOLE;
6662 goto insert;
9036c102
YZ
6663 }
6664
39b07b5d 6665 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6666
694c12ed
NB
6667 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6668 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6669 goto insert;
694c12ed 6670 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6671 unsigned long ptr;
a52d9a80 6672 char *map;
3326d1b0
CM
6673 size_t size;
6674 size_t extent_offset;
6675 size_t copy_size;
a52d9a80 6676
39b07b5d 6677 if (!page)
689f9346 6678 goto out;
5f39d397 6679
e41ca589 6680 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6681 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6682 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6683 size - extent_offset);
3326d1b0 6684 em->start = extent_start + extent_offset;
0b246afa 6685 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6686 em->orig_block_len = em->len;
70c8a91c 6687 em->orig_start = em->start;
689f9346 6688 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6689
6690 btrfs_set_path_blocking(path);
bf46f52d 6691 if (!PageUptodate(page)) {
261507a0
LZ
6692 if (btrfs_file_extent_compression(leaf, item) !=
6693 BTRFS_COMPRESS_NONE) {
e40da0e5 6694 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6695 extent_offset, item);
1028d1c4 6696 if (ret)
166ae5a4 6697 goto out;
c8b97818
CM
6698 } else {
6699 map = kmap(page);
6700 read_extent_buffer(leaf, map + pg_offset, ptr,
6701 copy_size);
09cbfeaf 6702 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6703 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6704 PAGE_SIZE - pg_offset -
93c82d57
CM
6705 copy_size);
6706 }
c8b97818
CM
6707 kunmap(page);
6708 }
179e29e4 6709 flush_dcache_page(page);
a52d9a80 6710 }
d1310b2e 6711 set_extent_uptodate(io_tree, em->start,
507903b8 6712 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6713 goto insert;
a52d9a80
CM
6714 }
6715not_found:
6716 em->start = start;
70c8a91c 6717 em->orig_start = start;
d1310b2e 6718 em->len = len;
5f39d397 6719 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6720insert:
1028d1c4 6721 ret = 0;
b3b4aa74 6722 btrfs_release_path(path);
d1310b2e 6723 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6724 btrfs_err(fs_info,
5d163e0e
JM
6725 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6726 em->start, em->len, start, len);
1028d1c4 6727 ret = -EIO;
a52d9a80
CM
6728 goto out;
6729 }
d1310b2e 6730
890871be 6731 write_lock(&em_tree->lock);
1028d1c4 6732 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6733 write_unlock(&em_tree->lock);
a52d9a80 6734out:
c6414280 6735 btrfs_free_path(path);
1abe9b8a 6736
fc4f21b1 6737 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6738
1028d1c4 6739 if (ret) {
a52d9a80 6740 free_extent_map(em);
1028d1c4 6741 return ERR_PTR(ret);
a52d9a80
CM
6742 }
6743 return em;
6744}
6745
fc4f21b1 6746struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6747 u64 start, u64 len)
ec29ed5b
CM
6748{
6749 struct extent_map *em;
6750 struct extent_map *hole_em = NULL;
f3714ef4 6751 u64 delalloc_start = start;
ec29ed5b 6752 u64 end;
f3714ef4
NB
6753 u64 delalloc_len;
6754 u64 delalloc_end;
ec29ed5b
CM
6755 int err = 0;
6756
39b07b5d 6757 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6758 if (IS_ERR(em))
6759 return em;
9986277e
DC
6760 /*
6761 * If our em maps to:
6762 * - a hole or
6763 * - a pre-alloc extent,
6764 * there might actually be delalloc bytes behind it.
6765 */
6766 if (em->block_start != EXTENT_MAP_HOLE &&
6767 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6768 return em;
6769 else
6770 hole_em = em;
ec29ed5b
CM
6771
6772 /* check to see if we've wrapped (len == -1 or similar) */
6773 end = start + len;
6774 if (end < start)
6775 end = (u64)-1;
6776 else
6777 end -= 1;
6778
6779 em = NULL;
6780
6781 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6782 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6783 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6784 delalloc_end = delalloc_start + delalloc_len;
6785 if (delalloc_end < delalloc_start)
6786 delalloc_end = (u64)-1;
ec29ed5b
CM
6787
6788 /*
f3714ef4
NB
6789 * We didn't find anything useful, return the original results from
6790 * get_extent()
ec29ed5b 6791 */
f3714ef4 6792 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6793 em = hole_em;
6794 hole_em = NULL;
6795 goto out;
6796 }
6797
f3714ef4
NB
6798 /*
6799 * Adjust the delalloc_start to make sure it doesn't go backwards from
6800 * the start they passed in
ec29ed5b 6801 */
f3714ef4
NB
6802 delalloc_start = max(start, delalloc_start);
6803 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6804
f3714ef4
NB
6805 if (delalloc_len > 0) {
6806 u64 hole_start;
02950af4 6807 u64 hole_len;
f3714ef4 6808 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6809
172ddd60 6810 em = alloc_extent_map();
ec29ed5b
CM
6811 if (!em) {
6812 err = -ENOMEM;
6813 goto out;
6814 }
f3714ef4
NB
6815
6816 ASSERT(hole_em);
ec29ed5b 6817 /*
f3714ef4
NB
6818 * When btrfs_get_extent can't find anything it returns one
6819 * huge hole
ec29ed5b 6820 *
f3714ef4
NB
6821 * Make sure what it found really fits our range, and adjust to
6822 * make sure it is based on the start from the caller
ec29ed5b 6823 */
f3714ef4
NB
6824 if (hole_end <= start || hole_em->start > end) {
6825 free_extent_map(hole_em);
6826 hole_em = NULL;
6827 } else {
6828 hole_start = max(hole_em->start, start);
6829 hole_len = hole_end - hole_start;
ec29ed5b 6830 }
f3714ef4
NB
6831
6832 if (hole_em && delalloc_start > hole_start) {
6833 /*
6834 * Our hole starts before our delalloc, so we have to
6835 * return just the parts of the hole that go until the
6836 * delalloc starts
ec29ed5b 6837 */
f3714ef4 6838 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6839 em->start = hole_start;
6840 em->orig_start = hole_start;
6841 /*
f3714ef4
NB
6842 * Don't adjust block start at all, it is fixed at
6843 * EXTENT_MAP_HOLE
ec29ed5b
CM
6844 */
6845 em->block_start = hole_em->block_start;
6846 em->block_len = hole_len;
f9e4fb53
LB
6847 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6848 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6849 } else {
f3714ef4
NB
6850 /*
6851 * Hole is out of passed range or it starts after
6852 * delalloc range
6853 */
6854 em->start = delalloc_start;
6855 em->len = delalloc_len;
6856 em->orig_start = delalloc_start;
ec29ed5b 6857 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 6858 em->block_len = delalloc_len;
ec29ed5b 6859 }
bf8d32b9 6860 } else {
ec29ed5b
CM
6861 return hole_em;
6862 }
6863out:
6864
6865 free_extent_map(hole_em);
6866 if (err) {
6867 free_extent_map(em);
6868 return ERR_PTR(err);
6869 }
6870 return em;
6871}
6872
64f54188 6873static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
6874 const u64 start,
6875 const u64 len,
6876 const u64 orig_start,
6877 const u64 block_start,
6878 const u64 block_len,
6879 const u64 orig_block_len,
6880 const u64 ram_bytes,
6881 const int type)
6882{
6883 struct extent_map *em = NULL;
6884 int ret;
6885
5f9a8a51 6886 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6887 em = create_io_em(inode, start, len, orig_start, block_start,
6888 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6889 BTRFS_COMPRESS_NONE, /* compress_type */
6890 type);
5f9a8a51
FM
6891 if (IS_ERR(em))
6892 goto out;
6893 }
64f54188
NB
6894 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6895 block_len, type);
5f9a8a51
FM
6896 if (ret) {
6897 if (em) {
6898 free_extent_map(em);
64f54188 6899 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5f9a8a51
FM
6900 }
6901 em = ERR_PTR(ret);
6902 }
6903 out:
5f9a8a51
FM
6904
6905 return em;
6906}
6907
9fc6f911 6908static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
6909 u64 start, u64 len)
6910{
9fc6f911
NB
6911 struct btrfs_root *root = inode->root;
6912 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 6913 struct extent_map *em;
4b46fce2
JB
6914 struct btrfs_key ins;
6915 u64 alloc_hint;
6916 int ret;
4b46fce2 6917
9fc6f911 6918 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 6919 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 6920 0, alloc_hint, &ins, 1, 1);
00361589
JB
6921 if (ret)
6922 return ERR_PTR(ret);
4b46fce2 6923
9fc6f911 6924 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 6925 ins.objectid, ins.offset, ins.offset,
6288d6ea 6926 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 6927 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 6928 if (IS_ERR(em))
9fc6f911
NB
6929 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6930 1);
de0ee0ed 6931
4b46fce2
JB
6932 return em;
6933}
6934
46bfbb5c 6935/*
e4ecaf90
QW
6936 * Check if we can do nocow write into the range [@offset, @offset + @len)
6937 *
6938 * @offset: File offset
6939 * @len: The length to write, will be updated to the nocow writeable
6940 * range
6941 * @orig_start: (optional) Return the original file offset of the file extent
6942 * @orig_len: (optional) Return the original on-disk length of the file extent
6943 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
6944 * @strict: if true, omit optimizations that might force us into unnecessary
6945 * cow. e.g., don't trust generation number.
e4ecaf90
QW
6946 *
6947 * This function will flush ordered extents in the range to ensure proper
6948 * nocow checks for (nowait == false) case.
6949 *
6950 * Return:
6951 * >0 and update @len if we can do nocow write
6952 * 0 if we can't do nocow write
6953 * <0 if error happened
6954 *
6955 * NOTE: This only checks the file extents, caller is responsible to wait for
6956 * any ordered extents.
46bfbb5c 6957 */
00361589 6958noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 6959 u64 *orig_start, u64 *orig_block_len,
a84d5d42 6960 u64 *ram_bytes, bool strict)
46bfbb5c 6961{
2ff7e61e 6962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
6963 struct btrfs_path *path;
6964 int ret;
6965 struct extent_buffer *leaf;
6966 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6967 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6968 struct btrfs_file_extent_item *fi;
6969 struct btrfs_key key;
6970 u64 disk_bytenr;
6971 u64 backref_offset;
6972 u64 extent_end;
6973 u64 num_bytes;
6974 int slot;
6975 int found_type;
7ee9e440 6976 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6977
46bfbb5c
CM
6978 path = btrfs_alloc_path();
6979 if (!path)
6980 return -ENOMEM;
6981
f85b7379
DS
6982 ret = btrfs_lookup_file_extent(NULL, root, path,
6983 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
6984 if (ret < 0)
6985 goto out;
6986
6987 slot = path->slots[0];
6988 if (ret == 1) {
6989 if (slot == 0) {
6990 /* can't find the item, must cow */
6991 ret = 0;
6992 goto out;
6993 }
6994 slot--;
6995 }
6996 ret = 0;
6997 leaf = path->nodes[0];
6998 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 6999 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7000 key.type != BTRFS_EXTENT_DATA_KEY) {
7001 /* not our file or wrong item type, must cow */
7002 goto out;
7003 }
7004
7005 if (key.offset > offset) {
7006 /* Wrong offset, must cow */
7007 goto out;
7008 }
7009
7010 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7011 found_type = btrfs_file_extent_type(leaf, fi);
7012 if (found_type != BTRFS_FILE_EXTENT_REG &&
7013 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7014 /* not a regular extent, must cow */
7015 goto out;
7016 }
7ee9e440
JB
7017
7018 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7019 goto out;
7020
e77751aa
MX
7021 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7022 if (extent_end <= offset)
7023 goto out;
7024
46bfbb5c 7025 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7026 if (disk_bytenr == 0)
7027 goto out;
7028
7029 if (btrfs_file_extent_compression(leaf, fi) ||
7030 btrfs_file_extent_encryption(leaf, fi) ||
7031 btrfs_file_extent_other_encoding(leaf, fi))
7032 goto out;
7033
78d4295b
EL
7034 /*
7035 * Do the same check as in btrfs_cross_ref_exist but without the
7036 * unnecessary search.
7037 */
a84d5d42
BB
7038 if (!strict &&
7039 (btrfs_file_extent_generation(leaf, fi) <=
7040 btrfs_root_last_snapshot(&root->root_item)))
78d4295b
EL
7041 goto out;
7042
46bfbb5c
CM
7043 backref_offset = btrfs_file_extent_offset(leaf, fi);
7044
7ee9e440
JB
7045 if (orig_start) {
7046 *orig_start = key.offset - backref_offset;
7047 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7048 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7049 }
eb384b55 7050
2ff7e61e 7051 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7052 goto out;
7b2b7085
MX
7053
7054 num_bytes = min(offset + *len, extent_end) - offset;
7055 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7056 u64 range_end;
7057
da17066c
JM
7058 range_end = round_up(offset + num_bytes,
7059 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7060 ret = test_range_bit(io_tree, offset, range_end,
7061 EXTENT_DELALLOC, 0, NULL);
7062 if (ret) {
7063 ret = -EAGAIN;
7064 goto out;
7065 }
7066 }
7067
1bda19eb 7068 btrfs_release_path(path);
46bfbb5c
CM
7069
7070 /*
7071 * look for other files referencing this extent, if we
7072 * find any we must cow
7073 */
00361589 7074
e4c3b2dc 7075 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
a84d5d42
BB
7076 key.offset - backref_offset, disk_bytenr,
7077 strict);
00361589
JB
7078 if (ret) {
7079 ret = 0;
7080 goto out;
7081 }
46bfbb5c
CM
7082
7083 /*
7084 * adjust disk_bytenr and num_bytes to cover just the bytes
7085 * in this extent we are about to write. If there
7086 * are any csums in that range we have to cow in order
7087 * to keep the csums correct
7088 */
7089 disk_bytenr += backref_offset;
7090 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7091 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7092 goto out;
46bfbb5c
CM
7093 /*
7094 * all of the above have passed, it is safe to overwrite this extent
7095 * without cow
7096 */
eb384b55 7097 *len = num_bytes;
46bfbb5c
CM
7098 ret = 1;
7099out:
7100 btrfs_free_path(path);
7101 return ret;
7102}
7103
eb838e73 7104static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
f85781fb 7105 struct extent_state **cached_state, bool writing)
eb838e73
JB
7106{
7107 struct btrfs_ordered_extent *ordered;
7108 int ret = 0;
7109
7110 while (1) {
7111 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7112 cached_state);
eb838e73
JB
7113 /*
7114 * We're concerned with the entire range that we're going to be
01327610 7115 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7116 * extents in this range.
7117 */
a776c6fa 7118 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7119 lockend - lockstart + 1);
7120
7121 /*
7122 * We need to make sure there are no buffered pages in this
7123 * range either, we could have raced between the invalidate in
7124 * generic_file_direct_write and locking the extent. The
7125 * invalidate needs to happen so that reads after a write do not
7126 * get stale data.
7127 */
fc4adbff 7128 if (!ordered &&
051c98eb
DS
7129 (!writing || !filemap_range_has_page(inode->i_mapping,
7130 lockstart, lockend)))
eb838e73
JB
7131 break;
7132
7133 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7134 cached_state);
eb838e73
JB
7135
7136 if (ordered) {
ade77029
FM
7137 /*
7138 * If we are doing a DIO read and the ordered extent we
7139 * found is for a buffered write, we can not wait for it
7140 * to complete and retry, because if we do so we can
7141 * deadlock with concurrent buffered writes on page
7142 * locks. This happens only if our DIO read covers more
7143 * than one extent map, if at this point has already
7144 * created an ordered extent for a previous extent map
7145 * and locked its range in the inode's io tree, and a
7146 * concurrent write against that previous extent map's
7147 * range and this range started (we unlock the ranges
7148 * in the io tree only when the bios complete and
7149 * buffered writes always lock pages before attempting
7150 * to lock range in the io tree).
7151 */
7152 if (writing ||
7153 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7154 btrfs_start_ordered_extent(inode, ordered, 1);
7155 else
7156 ret = -ENOTBLK;
eb838e73
JB
7157 btrfs_put_ordered_extent(ordered);
7158 } else {
eb838e73 7159 /*
b850ae14
FM
7160 * We could trigger writeback for this range (and wait
7161 * for it to complete) and then invalidate the pages for
7162 * this range (through invalidate_inode_pages2_range()),
7163 * but that can lead us to a deadlock with a concurrent
ba206a02 7164 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7165 * triggered a readahead) on a page lock due to an
7166 * ordered dio extent we created before but did not have
7167 * yet a corresponding bio submitted (whence it can not
ba206a02 7168 * complete), which makes readahead wait for that
b850ae14
FM
7169 * ordered extent to complete while holding a lock on
7170 * that page.
eb838e73 7171 */
b850ae14 7172 ret = -ENOTBLK;
eb838e73
JB
7173 }
7174
ade77029
FM
7175 if (ret)
7176 break;
7177
eb838e73
JB
7178 cond_resched();
7179 }
7180
7181 return ret;
7182}
7183
6f9994db 7184/* The callers of this must take lock_extent() */
4b67c11d
NB
7185static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7186 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7187 u64 block_len, u64 orig_block_len,
7188 u64 ram_bytes, int compress_type,
7189 int type)
69ffb543
JB
7190{
7191 struct extent_map_tree *em_tree;
7192 struct extent_map *em;
69ffb543
JB
7193 int ret;
7194
6f9994db
LB
7195 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7196 type == BTRFS_ORDERED_COMPRESSED ||
7197 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7198 type == BTRFS_ORDERED_REGULAR);
6f9994db 7199
4b67c11d 7200 em_tree = &inode->extent_tree;
69ffb543
JB
7201 em = alloc_extent_map();
7202 if (!em)
7203 return ERR_PTR(-ENOMEM);
7204
7205 em->start = start;
7206 em->orig_start = orig_start;
7207 em->len = len;
7208 em->block_len = block_len;
7209 em->block_start = block_start;
b4939680 7210 em->orig_block_len = orig_block_len;
cc95bef6 7211 em->ram_bytes = ram_bytes;
70c8a91c 7212 em->generation = -1;
69ffb543 7213 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7214 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7215 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7216 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7217 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7218 em->compress_type = compress_type;
7219 }
69ffb543
JB
7220
7221 do {
4b67c11d
NB
7222 btrfs_drop_extent_cache(inode, em->start,
7223 em->start + em->len - 1, 0);
69ffb543 7224 write_lock(&em_tree->lock);
09a2a8f9 7225 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7226 write_unlock(&em_tree->lock);
6f9994db
LB
7227 /*
7228 * The caller has taken lock_extent(), who could race with us
7229 * to add em?
7230 */
69ffb543
JB
7231 } while (ret == -EEXIST);
7232
7233 if (ret) {
7234 free_extent_map(em);
7235 return ERR_PTR(ret);
7236 }
7237
6f9994db 7238 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7239 return em;
7240}
7241
1c8d0175 7242
c5794e51 7243static int btrfs_get_blocks_direct_write(struct extent_map **map,
c5794e51
NB
7244 struct inode *inode,
7245 struct btrfs_dio_data *dio_data,
7246 u64 start, u64 len)
7247{
7248 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7249 struct extent_map *em = *map;
7250 int ret = 0;
7251
7252 /*
7253 * We don't allocate a new extent in the following cases
7254 *
7255 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7256 * existing extent.
7257 * 2) The extent is marked as PREALLOC. We're good to go here and can
7258 * just use the extent.
7259 *
7260 */
7261 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7262 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7263 em->block_start != EXTENT_MAP_HOLE)) {
7264 int type;
7265 u64 block_start, orig_start, orig_block_len, ram_bytes;
7266
7267 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7268 type = BTRFS_ORDERED_PREALLOC;
7269 else
7270 type = BTRFS_ORDERED_NOCOW;
7271 len = min(len, em->len - (start - em->start));
7272 block_start = em->block_start + (start - em->start);
7273
7274 if (can_nocow_extent(inode, start, &len, &orig_start,
a84d5d42 7275 &orig_block_len, &ram_bytes, false) == 1 &&
c5794e51
NB
7276 btrfs_inc_nocow_writers(fs_info, block_start)) {
7277 struct extent_map *em2;
7278
64f54188 7279 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
c5794e51
NB
7280 orig_start, block_start,
7281 len, orig_block_len,
7282 ram_bytes, type);
7283 btrfs_dec_nocow_writers(fs_info, block_start);
7284 if (type == BTRFS_ORDERED_PREALLOC) {
7285 free_extent_map(em);
7286 *map = em = em2;
7287 }
7288
7289 if (em2 && IS_ERR(em2)) {
7290 ret = PTR_ERR(em2);
7291 goto out;
7292 }
7293 /*
7294 * For inode marked NODATACOW or extent marked PREALLOC,
7295 * use the existing or preallocated extent, so does not
7296 * need to adjust btrfs_space_info's bytes_may_use.
7297 */
9db5d510 7298 btrfs_free_reserved_data_space_noquota(fs_info, len);
c5794e51
NB
7299 goto skip_cow;
7300 }
7301 }
7302
7303 /* this will cow the extent */
c5794e51 7304 free_extent_map(em);
9fc6f911 7305 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
c5794e51
NB
7306 if (IS_ERR(em)) {
7307 ret = PTR_ERR(em);
7308 goto out;
7309 }
7310
7311 len = min(len, em->len - (start - em->start));
7312
7313skip_cow:
c5794e51
NB
7314 /*
7315 * Need to update the i_size under the extent lock so buffered
7316 * readers will get the updated i_size when we unlock.
7317 */
f85781fb 7318 if (start + len > i_size_read(inode))
c5794e51
NB
7319 i_size_write(inode, start + len);
7320
c5794e51 7321 dio_data->reserve -= len;
c5794e51
NB
7322out:
7323 return ret;
7324}
7325
f85781fb
GR
7326static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7327 loff_t length, unsigned int flags, struct iomap *iomap,
7328 struct iomap *srcmap)
4b46fce2 7329{
0b246afa 7330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7331 struct extent_map *em;
eb838e73 7332 struct extent_state *cached_state = NULL;
50745b0a 7333 struct btrfs_dio_data *dio_data = NULL;
eb838e73 7334 u64 lockstart, lockend;
f85781fb 7335 const bool write = !!(flags & IOMAP_WRITE);
0934856d 7336 int ret = 0;
f85781fb
GR
7337 u64 len = length;
7338 bool unlock_extents = false;
0eb79294
JB
7339 bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB);
7340
7341 /*
7342 * We used current->journal_info here to see if we were sync, but
7343 * there's a lot of tests in the enospc machinery to not do flushing if
7344 * we have a journal_info set, so we need to clear this out and re-set
7345 * it in iomap_end.
7346 */
7347 ASSERT(current->journal_info == NULL ||
7348 current->journal_info == BTRFS_DIO_SYNC_STUB);
7349 current->journal_info = NULL;
eb838e73 7350
f85781fb 7351 if (!write)
0b246afa 7352 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7353
c329861d
JB
7354 lockstart = start;
7355 lockend = start + len - 1;
7356
f85781fb
GR
7357 /*
7358 * The generic stuff only does filemap_write_and_wait_range, which
7359 * isn't enough if we've written compressed pages to this area, so we
7360 * need to flush the dirty pages again to make absolutely sure that any
7361 * outstanding dirty pages are on disk.
7362 */
7363 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7364 &BTRFS_I(inode)->runtime_flags)) {
7365 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7366 start + length - 1);
7367 if (ret)
7368 return ret;
7369 }
7370
7371 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7372 if (!dio_data)
7373 return -ENOMEM;
7374
0eb79294 7375 dio_data->sync = sync;
f85781fb
GR
7376 dio_data->length = length;
7377 if (write) {
7378 dio_data->reserve = round_up(length, fs_info->sectorsize);
7379 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7380 &dio_data->data_reserved,
7381 start, dio_data->reserve);
7382 if (ret) {
7383 extent_changeset_free(dio_data->data_reserved);
7384 kfree(dio_data);
7385 return ret;
7386 }
e1cbbfa5 7387 }
f85781fb
GR
7388 iomap->private = dio_data;
7389
e1cbbfa5 7390
eb838e73
JB
7391 /*
7392 * If this errors out it's because we couldn't invalidate pagecache for
7393 * this range and we need to fallback to buffered.
7394 */
f85781fb 7395 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
9c9464cc
FM
7396 ret = -ENOTBLK;
7397 goto err;
7398 }
eb838e73 7399
39b07b5d 7400 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7401 if (IS_ERR(em)) {
7402 ret = PTR_ERR(em);
7403 goto unlock_err;
7404 }
4b46fce2
JB
7405
7406 /*
7407 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7408 * io. INLINE is special, and we could probably kludge it in here, but
7409 * it's still buffered so for safety lets just fall back to the generic
7410 * buffered path.
7411 *
7412 * For COMPRESSED we _have_ to read the entire extent in so we can
7413 * decompress it, so there will be buffering required no matter what we
7414 * do, so go ahead and fallback to buffered.
7415 *
01327610 7416 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7417 * to buffered IO. Don't blame me, this is the price we pay for using
7418 * the generic code.
7419 */
7420 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7421 em->block_start == EXTENT_MAP_INLINE) {
7422 free_extent_map(em);
eb838e73
JB
7423 ret = -ENOTBLK;
7424 goto unlock_err;
4b46fce2
JB
7425 }
7426
f85781fb
GR
7427 len = min(len, em->len - (start - em->start));
7428 if (write) {
7429 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7430 start, len);
c5794e51
NB
7431 if (ret < 0)
7432 goto unlock_err;
f85781fb
GR
7433 unlock_extents = true;
7434 /* Recalc len in case the new em is smaller than requested */
7435 len = min(len, em->len - (start - em->start));
c5794e51 7436 } else {
1c8d0175
NB
7437 /*
7438 * We need to unlock only the end area that we aren't using.
7439 * The rest is going to be unlocked by the endio routine.
7440 */
f85781fb
GR
7441 lockstart = start + len;
7442 if (lockstart < lockend)
7443 unlock_extents = true;
7444 }
7445
7446 if (unlock_extents)
7447 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7448 lockstart, lockend, &cached_state);
7449 else
7450 free_extent_state(cached_state);
7451
7452 /*
7453 * Translate extent map information to iomap.
7454 * We trim the extents (and move the addr) even though iomap code does
7455 * that, since we have locked only the parts we are performing I/O in.
7456 */
7457 if ((em->block_start == EXTENT_MAP_HOLE) ||
7458 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7459 iomap->addr = IOMAP_NULL_ADDR;
7460 iomap->type = IOMAP_HOLE;
7461 } else {
7462 iomap->addr = em->block_start + (start - em->start);
7463 iomap->type = IOMAP_MAPPED;
a43a67a2 7464 }
f85781fb
GR
7465 iomap->offset = start;
7466 iomap->bdev = fs_info->fs_devices->latest_bdev;
7467 iomap->length = len;
a43a67a2 7468
4b46fce2
JB
7469 free_extent_map(em);
7470
7471 return 0;
eb838e73
JB
7472
7473unlock_err:
e182163d
OS
7474 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7475 &cached_state);
9c9464cc 7476err:
f85781fb
GR
7477 if (dio_data) {
7478 btrfs_delalloc_release_space(BTRFS_I(inode),
7479 dio_data->data_reserved, start,
7480 dio_data->reserve, true);
7481 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7482 extent_changeset_free(dio_data->data_reserved);
7483 kfree(dio_data);
7484 }
7485 return ret;
7486}
7487
7488static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7489 ssize_t written, unsigned int flags, struct iomap *iomap)
7490{
7491 int ret = 0;
7492 struct btrfs_dio_data *dio_data = iomap->private;
7493 size_t submitted = dio_data->submitted;
7494 const bool write = !!(flags & IOMAP_WRITE);
7495
7496 if (!write && (iomap->type == IOMAP_HOLE)) {
7497 /* If reading from a hole, unlock and return */
7498 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7499 goto out;
7500 }
7501
7502 if (submitted < length) {
7503 pos += submitted;
7504 length -= submitted;
7505 if (write)
7506 __endio_write_update_ordered(BTRFS_I(inode), pos,
7507 length, false);
7508 else
7509 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7510 pos + length - 1);
7511 ret = -ENOTBLK;
7512 }
7513
7514 if (write) {
7515 if (dio_data->reserve)
7516 btrfs_delalloc_release_space(BTRFS_I(inode),
7517 dio_data->data_reserved, pos,
7518 dio_data->reserve, true);
7519 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7520 extent_changeset_free(dio_data->data_reserved);
7521 }
7522out:
0eb79294
JB
7523 /*
7524 * We're all done, we can re-set the current->journal_info now safely
7525 * for our endio.
7526 */
7527 if (dio_data->sync) {
7528 ASSERT(current->journal_info == NULL);
7529 current->journal_info = BTRFS_DIO_SYNC_STUB;
7530 }
f85781fb
GR
7531 kfree(dio_data);
7532 iomap->private = NULL;
7533
8b110e39
MX
7534 return ret;
7535}
7536
769b4f24 7537static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7538{
769b4f24
OS
7539 /*
7540 * This implies a barrier so that stores to dio_bio->bi_status before
7541 * this and loads of dio_bio->bi_status after this are fully ordered.
7542 */
7543 if (!refcount_dec_and_test(&dip->refs))
7544 return;
8b110e39 7545
769b4f24 7546 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
b672b5c1
NB
7547 __endio_write_update_ordered(BTRFS_I(dip->inode),
7548 dip->logical_offset,
769b4f24
OS
7549 dip->bytes,
7550 !dip->dio_bio->bi_status);
7551 } else {
7552 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7553 dip->logical_offset,
7554 dip->logical_offset + dip->bytes - 1);
8b110e39
MX
7555 }
7556
f85781fb 7557 bio_endio(dip->dio_bio);
769b4f24 7558 kfree(dip);
8b110e39
MX
7559}
7560
77d5d689
OS
7561static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7562 int mirror_num,
7563 unsigned long bio_flags)
8b110e39 7564{
77d5d689 7565 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7566 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7567 blk_status_t ret;
8b110e39 7568
37226b21 7569 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7570
5c047a69 7571 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7572 if (ret)
ea057f6d 7573 return ret;
8b110e39 7574
77d5d689 7575 refcount_inc(&dip->refs);
08635bae 7576 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7577 if (ret)
fd9d6670 7578 refcount_dec(&dip->refs);
77d5d689 7579 return ret;
8b110e39
MX
7580}
7581
fd9d6670
OS
7582static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7583 struct btrfs_io_bio *io_bio,
7584 const bool uptodate)
4b46fce2 7585{
fd9d6670
OS
7586 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7587 const u32 sectorsize = fs_info->sectorsize;
7588 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7589 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7590 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7591 struct bio_vec bvec;
7592 struct bvec_iter iter;
fd9d6670
OS
7593 u64 start = io_bio->logical;
7594 int icsum = 0;
58efbc9f 7595 blk_status_t err = BLK_STS_OK;
4b46fce2 7596
fd9d6670
OS
7597 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7598 unsigned int i, nr_sectors, pgoff;
8b110e39 7599
17347cec
LB
7600 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7601 pgoff = bvec.bv_offset;
fd9d6670 7602 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7603 ASSERT(pgoff < PAGE_SIZE);
fd9d6670
OS
7604 if (uptodate &&
7605 (!csum || !check_data_csum(inode, io_bio, icsum,
7606 bvec.bv_page, pgoff,
7607 start, sectorsize))) {
7608 clean_io_failure(fs_info, failure_tree, io_tree,
7609 start, bvec.bv_page,
7610 btrfs_ino(BTRFS_I(inode)),
7611 pgoff);
7612 } else {
7613 blk_status_t status;
7614
77d5d689
OS
7615 status = btrfs_submit_read_repair(inode,
7616 &io_bio->bio,
7617 start - io_bio->logical,
fd9d6670
OS
7618 bvec.bv_page, pgoff,
7619 start,
7620 start + sectorsize - 1,
77d5d689
OS
7621 io_bio->mirror_num,
7622 submit_dio_repair_bio);
fd9d6670
OS
7623 if (status)
7624 err = status;
7625 }
7626 start += sectorsize;
7627 icsum++;
2dabb324 7628 pgoff += sectorsize;
2dabb324 7629 }
2c30c71b 7630 }
c1dc0896
MX
7631 return err;
7632}
7633
b672b5c1 7634static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
7635 const u64 offset, const u64 bytes,
7636 const bool uptodate)
4b46fce2 7637{
b672b5c1 7638 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4b46fce2 7639 struct btrfs_ordered_extent *ordered = NULL;
52427260 7640 struct btrfs_workqueue *wq;
14543774
FM
7641 u64 ordered_offset = offset;
7642 u64 ordered_bytes = bytes;
67c003f9 7643 u64 last_offset;
4b46fce2 7644
b672b5c1 7645 if (btrfs_is_free_space_inode(inode))
52427260 7646 wq = fs_info->endio_freespace_worker;
a0cac0ec 7647 else
52427260 7648 wq = fs_info->endio_write_workers;
52427260 7649
b25f0d00
NB
7650 while (ordered_offset < offset + bytes) {
7651 last_offset = ordered_offset;
b672b5c1 7652 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7095821e
NB
7653 &ordered_offset,
7654 ordered_bytes,
7655 uptodate)) {
a0cac0ec
OS
7656 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7657 NULL);
b25f0d00
NB
7658 btrfs_queue_work(wq, &ordered->work);
7659 }
7660 /*
7661 * If btrfs_dec_test_ordered_pending does not find any ordered
7662 * extent in the range, we can exit.
7663 */
7664 if (ordered_offset == last_offset)
7665 return;
7666 /*
7667 * Our bio might span multiple ordered extents. In this case
52042d8e 7668 * we keep going until we have accounted the whole dio.
b25f0d00
NB
7669 */
7670 if (ordered_offset < offset + bytes) {
7671 ordered_bytes = offset + bytes - ordered_offset;
7672 ordered = NULL;
7673 }
163cf09c 7674 }
14543774
FM
7675}
7676
d0ee3934 7677static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 7678 struct bio *bio, u64 offset)
eaf25d93 7679{
c6100a4b 7680 struct inode *inode = private_data;
c965d640
JT
7681
7682 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
eaf25d93
CM
7683}
7684
4246a0b6 7685static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7686{
7687 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7688 blk_status_t err = bio->bi_status;
e65e1535 7689
8b110e39
MX
7690 if (err)
7691 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7692 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
7693 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7694 bio->bi_opf,
8b110e39
MX
7695 (unsigned long long)bio->bi_iter.bi_sector,
7696 bio->bi_iter.bi_size, err);
7697
769b4f24
OS
7698 if (bio_op(bio) == REQ_OP_READ) {
7699 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
fd9d6670 7700 !err);
e65e1535
MX
7701 }
7702
769b4f24
OS
7703 if (err)
7704 dip->dio_bio->bi_status = err;
e65e1535 7705
e65e1535 7706 bio_put(bio);
769b4f24 7707 btrfs_dio_private_put(dip);
c1dc0896
MX
7708}
7709
d0ee3934
DS
7710static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7711 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7712{
0b246afa 7713 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7714 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 7715 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 7716 blk_status_t ret;
e65e1535 7717
4c274bc6 7718 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7719 if (async_submit)
7720 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7721
5fd02043 7722 if (!write) {
0b246afa 7723 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7724 if (ret)
7725 goto err;
7726 }
e65e1535 7727
e6961cac 7728 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7729 goto map;
7730
7731 if (write && async_submit) {
c6100a4b
JB
7732 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7733 file_offset, inode,
e288c080 7734 btrfs_submit_bio_start_direct_io);
e65e1535 7735 goto err;
1ae39938
JB
7736 } else if (write) {
7737 /*
7738 * If we aren't doing async submit, calculate the csum of the
7739 * bio now.
7740 */
bd242a08 7741 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7742 if (ret)
7743 goto err;
23ea8e5a 7744 } else {
85879573
OS
7745 u64 csum_offset;
7746
7747 csum_offset = file_offset - dip->logical_offset;
7748 csum_offset >>= inode->i_sb->s_blocksize_bits;
7749 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7750 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7751 }
1ae39938 7752map:
08635bae 7753 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7754err:
e65e1535
MX
7755 return ret;
7756}
7757
c36cac28
OS
7758/*
7759 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7760 * or ordered extents whether or not we submit any bios.
7761 */
7762static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7763 struct inode *inode,
7764 loff_t file_offset)
e65e1535 7765{
c36cac28 7766 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573
OS
7767 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7768 size_t dip_size;
c36cac28 7769 struct btrfs_dio_private *dip;
c36cac28 7770
85879573
OS
7771 dip_size = sizeof(*dip);
7772 if (!write && csum) {
7773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7774 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7775 size_t nblocks;
7776
7777 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7778 dip_size += csum_size * nblocks;
7779 }
7780
7781 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7782 if (!dip)
7783 return NULL;
7784
c36cac28
OS
7785 dip->inode = inode;
7786 dip->logical_offset = file_offset;
7787 dip->bytes = dio_bio->bi_iter.bi_size;
7788 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
c36cac28 7789 dip->dio_bio = dio_bio;
e3b318d1 7790 refcount_set(&dip->refs, 1);
c36cac28
OS
7791 return dip;
7792}
7793
f85781fb
GR
7794static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7795 struct bio *dio_bio, loff_t file_offset)
c36cac28
OS
7796{
7797 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573 7798 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
0b246afa 7799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7800 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7801 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7802 struct btrfs_dio_private *dip;
e65e1535 7803 struct bio *bio;
c36cac28 7804 u64 start_sector;
1ae39938 7805 int async_submit = 0;
725130ba
LB
7806 u64 submit_len;
7807 int clone_offset = 0;
7808 int clone_len;
5f4dc8fc 7809 int ret;
58efbc9f 7810 blk_status_t status;
89b798ad 7811 struct btrfs_io_geometry geom;
f85781fb 7812 struct btrfs_dio_data *dio_data = iomap->private;
e65e1535 7813
c36cac28
OS
7814 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7815 if (!dip) {
7816 if (!write) {
7817 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7818 file_offset + dio_bio->bi_iter.bi_size - 1);
7819 }
7820 dio_bio->bi_status = BLK_STS_RESOURCE;
f85781fb
GR
7821 bio_endio(dio_bio);
7822 return BLK_QC_T_NONE;
c36cac28 7823 }
facc8a22 7824
85879573
OS
7825 if (!write && csum) {
7826 /*
7827 * Load the csums up front to reduce csum tree searches and
7828 * contention when submitting bios.
7829 */
7830 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7831 dip->csums);
7832 if (status != BLK_STS_OK)
7833 goto out_err;
02f57c7a
JB
7834 }
7835
769b4f24
OS
7836 start_sector = dio_bio->bi_iter.bi_sector;
7837 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7838
3c91ee69 7839 do {
769b4f24
OS
7840 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7841 start_sector << 9, submit_len,
7842 &geom);
7843 if (ret) {
7844 status = errno_to_blk_status(ret);
7845 goto out_err;
7846 }
7847 ASSERT(geom.len <= INT_MAX);
7848
89b798ad 7849 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 7850
725130ba
LB
7851 /*
7852 * This will never fail as it's passing GPF_NOFS and
7853 * the allocation is backed by btrfs_bioset.
7854 */
769b4f24 7855 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7856 bio->bi_private = dip;
7857 bio->bi_end_io = btrfs_end_dio_bio;
7858 btrfs_io_bio(bio)->logical = file_offset;
7859
7860 ASSERT(submit_len >= clone_len);
7861 submit_len -= clone_len;
e65e1535 7862
725130ba
LB
7863 /*
7864 * Increase the count before we submit the bio so we know
7865 * the end IO handler won't happen before we increase the
7866 * count. Otherwise, the dip might get freed before we're
7867 * done setting it up.
769b4f24
OS
7868 *
7869 * We transfer the initial reference to the last bio, so we
7870 * don't need to increment the reference count for the last one.
725130ba 7871 */
769b4f24
OS
7872 if (submit_len > 0) {
7873 refcount_inc(&dip->refs);
7874 /*
7875 * If we are submitting more than one bio, submit them
7876 * all asynchronously. The exception is RAID 5 or 6, as
7877 * asynchronous checksums make it difficult to collect
7878 * full stripe writes.
7879 */
7880 if (!raid56)
7881 async_submit = 1;
7882 }
e65e1535 7883
d0ee3934 7884 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
7885 async_submit);
7886 if (status) {
725130ba 7887 bio_put(bio);
769b4f24
OS
7888 if (submit_len > 0)
7889 refcount_dec(&dip->refs);
725130ba
LB
7890 goto out_err;
7891 }
e65e1535 7892
f85781fb 7893 dio_data->submitted += clone_len;
725130ba
LB
7894 clone_offset += clone_len;
7895 start_sector += clone_len >> 9;
7896 file_offset += clone_len;
3c91ee69 7897 } while (submit_len > 0);
f85781fb 7898 return BLK_QC_T_NONE;
e65e1535 7899
e65e1535 7900out_err:
769b4f24
OS
7901 dip->dio_bio->bi_status = status;
7902 btrfs_dio_private_put(dip);
f85781fb 7903 return BLK_QC_T_NONE;
4b46fce2
JB
7904}
7905
f4c48b44
DS
7906static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7907 const struct iov_iter *iter, loff_t offset)
7908{
7909 int seg;
7910 int i;
7911 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7912 ssize_t retval = -EINVAL;
0934856d 7913
f4c48b44
DS
7914 if (offset & blocksize_mask)
7915 goto out;
7916
7917 if (iov_iter_alignment(iter) & blocksize_mask)
7918 goto out;
7919
7920 /* If this is a write we don't need to check anymore */
7921 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7922 return 0;
7923 /*
7924 * Check to make sure we don't have duplicate iov_base's in this
7925 * iovec, if so return EINVAL, otherwise we'll get csum errors
7926 * when reading back.
7927 */
7928 for (seg = 0; seg < iter->nr_segs; seg++) {
7929 for (i = seg + 1; i < iter->nr_segs; i++) {
7930 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7931 goto out;
7932 }
7933 }
7934 retval = 0;
7935out:
7936 return retval;
7937}
7938
0eb79294
JB
7939static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size,
7940 int error, unsigned flags)
7941{
7942 /*
7943 * Now if we're still in the context of our submitter we know we can't
7944 * safely run generic_write_sync(), so clear our flag here so that the
7945 * caller knows to follow up with a sync.
7946 */
7947 if (current->journal_info == BTRFS_DIO_SYNC_STUB) {
7948 current->journal_info = NULL;
7949 return error;
7950 }
7951
7952 if (error)
7953 return error;
7954
7955 if (size) {
7956 iocb->ki_flags |= IOCB_DSYNC;
7957 return generic_write_sync(iocb, size);
7958 }
7959
7960 return 0;
7961}
7962
f85781fb
GR
7963static const struct iomap_ops btrfs_dio_iomap_ops = {
7964 .iomap_begin = btrfs_dio_iomap_begin,
7965 .iomap_end = btrfs_dio_iomap_end,
7966};
7967
7968static const struct iomap_dio_ops btrfs_dio_ops = {
7969 .submit_io = btrfs_submit_direct,
7970};
7971
0eb79294
JB
7972static const struct iomap_dio_ops btrfs_sync_dops = {
7973 .submit_io = btrfs_submit_direct,
7974 .end_io = btrfs_maybe_fsync_end_io,
7975};
7976
f85781fb 7977ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
f4c48b44
DS
7978{
7979 struct file *file = iocb->ki_filp;
7980 struct inode *inode = file->f_mapping->host;
7981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7982 struct extent_changeset *data_reserved = NULL;
7983 loff_t offset = iocb->ki_pos;
7984 size_t count = 0;
7985 bool relock = false;
7986 ssize_t ret;
7987
7988 if (check_direct_IO(fs_info, iter, offset))
7989 return 0;
7990
7991 count = iov_iter_count(iter);
7992 if (iov_iter_rw(iter) == WRITE) {
7993 /*
7994 * If the write DIO is beyond the EOF, we need update
7995 * the isize, but it is protected by i_mutex. So we can
7996 * not unlock the i_mutex at this case.
7997 */
7998 if (offset + count <= inode->i_size) {
7999 inode_unlock(inode);
8000 relock = true;
f4c48b44
DS
8001 }
8002 down_read(&BTRFS_I(inode)->dio_sem);
8003 }
8004
0eb79294
JB
8005 /*
8006 * We have are actually a sync iocb, so we need our fancy endio to know
8007 * if we need to sync.
8008 */
8009 if (current->journal_info)
8010 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8011 &btrfs_sync_dops, is_sync_kiocb(iocb));
8012 else
8013 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8014 &btrfs_dio_ops, is_sync_kiocb(iocb));
f85781fb
GR
8015
8016 if (ret == -ENOTBLK)
8017 ret = 0;
8018
8019 if (iov_iter_rw(iter) == WRITE)
f4c48b44 8020 up_read(&BTRFS_I(inode)->dio_sem);
f85781fb 8021
f4c48b44
DS
8022 if (relock)
8023 inode_lock(inode);
55e20bd1 8024
f4c48b44
DS
8025 extent_changeset_free(data_reserved);
8026 return ret;
8027}
16432985 8028
1506fcc8 8029static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 8030 u64 start, u64 len)
1506fcc8 8031{
05dadc09
TI
8032 int ret;
8033
45dd052e 8034 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
8035 if (ret)
8036 return ret;
8037
facee0a0 8038 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
1506fcc8
YS
8039}
8040
a52d9a80 8041int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8042{
0f208812
NB
8043 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8044 u64 start = page_offset(page);
8045 u64 end = start + PAGE_SIZE - 1;
c1be9c1a 8046 unsigned long bio_flags = 0;
0f208812 8047 struct bio *bio = NULL;
c1be9c1a
NB
8048 int ret;
8049
0f208812
NB
8050 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8051
8052 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
c1be9c1a
NB
8053 if (bio)
8054 ret = submit_one_bio(bio, 0, bio_flags);
8055 return ret;
9ebefb18 8056}
1832a6d5 8057
a52d9a80 8058static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8059{
be7bd730
JB
8060 struct inode *inode = page->mapping->host;
8061 int ret;
b888db2b
CM
8062
8063 if (current->flags & PF_MEMALLOC) {
8064 redirty_page_for_writepage(wbc, page);
8065 unlock_page(page);
8066 return 0;
8067 }
be7bd730
JB
8068
8069 /*
8070 * If we are under memory pressure we will call this directly from the
8071 * VM, we need to make sure we have the inode referenced for the ordered
8072 * extent. If not just return like we didn't do anything.
8073 */
8074 if (!igrab(inode)) {
8075 redirty_page_for_writepage(wbc, page);
8076 return AOP_WRITEPAGE_ACTIVATE;
8077 }
0a9b0e53 8078 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8079 btrfs_add_delayed_iput(inode);
8080 return ret;
9ebefb18
CM
8081}
8082
48a3b636
ES
8083static int btrfs_writepages(struct address_space *mapping,
8084 struct writeback_control *wbc)
b293f02e 8085{
8ae225a8 8086 return extent_writepages(mapping, wbc);
b293f02e
CM
8087}
8088
ba206a02 8089static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8090{
ba206a02 8091 extent_readahead(rac);
3ab2fb5a 8092}
2a3ff0ad 8093
e6dcd2dc 8094static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8095{
477a30ba 8096 int ret = try_release_extent_mapping(page, gfp_flags);
d1b89bc0
GJ
8097 if (ret == 1)
8098 detach_page_private(page);
a52d9a80 8099 return ret;
39279cc3
CM
8100}
8101
e6dcd2dc
CM
8102static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8103{
98509cfc
CM
8104 if (PageWriteback(page) || PageDirty(page))
8105 return 0;
3ba7ab22 8106 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8107}
8108
f8e66081
RG
8109#ifdef CONFIG_MIGRATION
8110static int btrfs_migratepage(struct address_space *mapping,
8111 struct page *newpage, struct page *page,
8112 enum migrate_mode mode)
8113{
8114 int ret;
8115
8116 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8117 if (ret != MIGRATEPAGE_SUCCESS)
8118 return ret;
8119
d1b89bc0
GJ
8120 if (page_has_private(page))
8121 attach_page_private(newpage, detach_page_private(page));
f8e66081
RG
8122
8123 if (PagePrivate2(page)) {
8124 ClearPagePrivate2(page);
8125 SetPagePrivate2(newpage);
8126 }
8127
8128 if (mode != MIGRATE_SYNC_NO_COPY)
8129 migrate_page_copy(newpage, page);
8130 else
8131 migrate_page_states(newpage, page);
8132 return MIGRATEPAGE_SUCCESS;
8133}
8134#endif
8135
d47992f8
LC
8136static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8137 unsigned int length)
39279cc3 8138{
53ac7ead
NB
8139 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8140 struct extent_io_tree *tree = &inode->io_tree;
e6dcd2dc 8141 struct btrfs_ordered_extent *ordered;
2ac55d41 8142 struct extent_state *cached_state = NULL;
e6dcd2dc 8143 u64 page_start = page_offset(page);
09cbfeaf 8144 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8145 u64 start;
8146 u64 end;
53ac7ead 8147 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
39279cc3 8148
8b62b72b
CM
8149 /*
8150 * we have the page locked, so new writeback can't start,
8151 * and the dirty bit won't be cleared while we are here.
8152 *
8153 * Wait for IO on this page so that we can safely clear
8154 * the PagePrivate2 bit and do ordered accounting
8155 */
e6dcd2dc 8156 wait_on_page_writeback(page);
8b62b72b 8157
e6dcd2dc
CM
8158 if (offset) {
8159 btrfs_releasepage(page, GFP_NOFS);
8160 return;
8161 }
131e404a
FDBM
8162
8163 if (!inode_evicting)
ff13db41 8164 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8165again:
8166 start = page_start;
53ac7ead 8167 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
e6dcd2dc 8168 if (ordered) {
bffe633e
OS
8169 end = min(page_end,
8170 ordered->file_offset + ordered->num_bytes - 1);
eb84ae03
CM
8171 /*
8172 * IO on this page will never be started, so we need
8173 * to account for any ordered extents now
8174 */
131e404a 8175 if (!inode_evicting)
dbfdb6d1 8176 clear_extent_bit(tree, start, end,
e182163d 8177 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8178 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8179 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8180 /*
8181 * whoever cleared the private bit is responsible
8182 * for the finish_ordered_io
8183 */
77cef2ec
JB
8184 if (TestClearPagePrivate2(page)) {
8185 struct btrfs_ordered_inode_tree *tree;
8186 u64 new_len;
8187
53ac7ead 8188 tree = &inode->ordered_tree;
77cef2ec
JB
8189
8190 spin_lock_irq(&tree->lock);
8191 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8192 new_len = start - ordered->file_offset;
77cef2ec
JB
8193 if (new_len < ordered->truncated_len)
8194 ordered->truncated_len = new_len;
8195 spin_unlock_irq(&tree->lock);
8196
53ac7ead
NB
8197 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8198 start,
dbfdb6d1 8199 end - start + 1, 1))
77cef2ec 8200 btrfs_finish_ordered_io(ordered);
8b62b72b 8201 }
e6dcd2dc 8202 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8203 if (!inode_evicting) {
8204 cached_state = NULL;
dbfdb6d1 8205 lock_extent_bits(tree, start, end,
131e404a
FDBM
8206 &cached_state);
8207 }
dbfdb6d1
CR
8208
8209 start = end + 1;
8210 if (start < page_end)
8211 goto again;
131e404a
FDBM
8212 }
8213
b9d0b389
QW
8214 /*
8215 * Qgroup reserved space handler
8216 * Page here will be either
fa91e4aa
QW
8217 * 1) Already written to disk or ordered extent already submitted
8218 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8219 * Qgroup will be handled by its qgroup_record then.
8220 * btrfs_qgroup_free_data() call will do nothing here.
8221 *
8222 * 2) Not written to disk yet
8223 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8224 * bit of its io_tree, and free the qgroup reserved data space.
8225 * Since the IO will never happen for this page.
b9d0b389 8226 */
53ac7ead 8227 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a 8228 if (!inode_evicting) {
e182163d 8229 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8230 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8231 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8232 &cached_state);
131e404a
FDBM
8233
8234 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8235 }
e6dcd2dc 8236
4a096752 8237 ClearPageChecked(page);
d1b89bc0 8238 detach_page_private(page);
39279cc3
CM
8239}
8240
9ebefb18
CM
8241/*
8242 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8243 * called from a page fault handler when a page is first dirtied. Hence we must
8244 * be careful to check for EOF conditions here. We set the page up correctly
8245 * for a written page which means we get ENOSPC checking when writing into
8246 * holes and correct delalloc and unwritten extent mapping on filesystems that
8247 * support these features.
8248 *
8249 * We are not allowed to take the i_mutex here so we have to play games to
8250 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8251 * truncate_setsize() writes the inode size before removing pages, once we have
8252 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8253 * beyond EOF, then the page is guaranteed safe against truncation until we
8254 * unlock the page.
8255 */
a528a241 8256vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8257{
c2ec175c 8258 struct page *page = vmf->page;
11bac800 8259 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8261 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8262 struct btrfs_ordered_extent *ordered;
2ac55d41 8263 struct extent_state *cached_state = NULL;
364ecf36 8264 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8265 char *kaddr;
8266 unsigned long zero_start;
9ebefb18 8267 loff_t size;
a528a241
SJ
8268 vm_fault_t ret;
8269 int ret2;
9998eb70 8270 int reserved = 0;
d0b7da88 8271 u64 reserved_space;
a52d9a80 8272 u64 page_start;
e6dcd2dc 8273 u64 page_end;
d0b7da88
CR
8274 u64 end;
8275
09cbfeaf 8276 reserved_space = PAGE_SIZE;
9ebefb18 8277
b2b5ef5c 8278 sb_start_pagefault(inode->i_sb);
df480633 8279 page_start = page_offset(page);
09cbfeaf 8280 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8281 end = page_end;
df480633 8282
d0b7da88
CR
8283 /*
8284 * Reserving delalloc space after obtaining the page lock can lead to
8285 * deadlock. For example, if a dirty page is locked by this function
8286 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8287 * dirty page write out, then the btrfs_writepage() function could
8288 * end up waiting indefinitely to get a lock on the page currently
8289 * being processed by btrfs_page_mkwrite() function.
8290 */
e5b7231e
NB
8291 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8292 page_start, reserved_space);
a528a241
SJ
8293 if (!ret2) {
8294 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8295 reserved = 1;
8296 }
a528a241
SJ
8297 if (ret2) {
8298 ret = vmf_error(ret2);
9998eb70
CM
8299 if (reserved)
8300 goto out;
8301 goto out_noreserve;
56a76f82 8302 }
1832a6d5 8303
56a76f82 8304 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8305again:
9ebefb18 8306 lock_page(page);
9ebefb18 8307 size = i_size_read(inode);
a52d9a80 8308
9ebefb18 8309 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8310 (page_start >= size)) {
9ebefb18
CM
8311 /* page got truncated out from underneath us */
8312 goto out_unlock;
8313 }
e6dcd2dc
CM
8314 wait_on_page_writeback(page);
8315
ff13db41 8316 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8317 set_page_extent_mapped(page);
8318
eb84ae03
CM
8319 /*
8320 * we can't set the delalloc bits if there are pending ordered
8321 * extents. Drop our locks and wait for them to finish
8322 */
a776c6fa
NB
8323 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8324 PAGE_SIZE);
e6dcd2dc 8325 if (ordered) {
2ac55d41 8326 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8327 &cached_state);
e6dcd2dc 8328 unlock_page(page);
eb84ae03 8329 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8330 btrfs_put_ordered_extent(ordered);
8331 goto again;
8332 }
8333
09cbfeaf 8334 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8335 reserved_space = round_up(size - page_start,
0b246afa 8336 fs_info->sectorsize);
09cbfeaf 8337 if (reserved_space < PAGE_SIZE) {
d0b7da88 8338 end = page_start + reserved_space - 1;
86d52921
NB
8339 btrfs_delalloc_release_space(BTRFS_I(inode),
8340 data_reserved, page_start,
8341 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8342 }
8343 }
8344
fbf19087 8345 /*
5416034f
LB
8346 * page_mkwrite gets called when the page is firstly dirtied after it's
8347 * faulted in, but write(2) could also dirty a page and set delalloc
8348 * bits, thus in this case for space account reason, we still need to
8349 * clear any delalloc bits within this page range since we have to
8350 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8351 */
d0b7da88 8352 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8353 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8354 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8355
c2566f22 8356 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8357 &cached_state);
a528a241 8358 if (ret2) {
2ac55d41 8359 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8360 &cached_state);
9ed74f2d
JB
8361 ret = VM_FAULT_SIGBUS;
8362 goto out_unlock;
8363 }
9ebefb18
CM
8364
8365 /* page is wholly or partially inside EOF */
09cbfeaf 8366 if (page_start + PAGE_SIZE > size)
7073017a 8367 zero_start = offset_in_page(size);
9ebefb18 8368 else
09cbfeaf 8369 zero_start = PAGE_SIZE;
9ebefb18 8370
09cbfeaf 8371 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8372 kaddr = kmap(page);
09cbfeaf 8373 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8374 flush_dcache_page(page);
8375 kunmap(page);
8376 }
247e743c 8377 ClearPageChecked(page);
e6dcd2dc 8378 set_page_dirty(page);
50a9b214 8379 SetPageUptodate(page);
5a3f23d5 8380
0b246afa 8381 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8382 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8383 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8384
e43bbe5e 8385 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8386
76de60ed
YY
8387 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8388 sb_end_pagefault(inode->i_sb);
8389 extent_changeset_free(data_reserved);
8390 return VM_FAULT_LOCKED;
717beb96
CM
8391
8392out_unlock:
9ebefb18 8393 unlock_page(page);
1832a6d5 8394out:
8702ba93 8395 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8396 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8397 reserved_space, (ret != 0));
9998eb70 8398out_noreserve:
b2b5ef5c 8399 sb_end_pagefault(inode->i_sb);
364ecf36 8400 extent_changeset_free(data_reserved);
9ebefb18
CM
8401 return ret;
8402}
8403
213e8c55 8404static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8405{
0b246afa 8406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8407 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8408 struct btrfs_block_rsv *rsv;
ad7e1a74 8409 int ret;
39279cc3 8410 struct btrfs_trans_handle *trans;
0b246afa 8411 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8412 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8413
213e8c55
FM
8414 if (!skip_writeback) {
8415 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8416 (u64)-1);
8417 if (ret)
8418 return ret;
8419 }
39279cc3 8420
fcb80c2a 8421 /*
f7e9e8fc
OS
8422 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8423 * things going on here:
fcb80c2a 8424 *
f7e9e8fc 8425 * 1) We need to reserve space to update our inode.
fcb80c2a 8426 *
f7e9e8fc 8427 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8428 * be free'd up by the truncate operation, but also have some slack
8429 * space reserved in case it uses space during the truncate (thank you
8430 * very much snapshotting).
8431 *
f7e9e8fc 8432 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8433 * space doing the truncate, and we have no earthly idea how much space
01327610 8434 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8435 * doesn't end up using space reserved for updating the inode. We also
8436 * need to be able to stop the transaction and start a new one, which
8437 * means we need to be able to update the inode several times, and we
8438 * have no idea of knowing how many times that will be, so we can't just
8439 * reserve 1 item for the entirety of the operation, so that has to be
8440 * done separately as well.
fcb80c2a
JB
8441 *
8442 * So that leaves us with
8443 *
f7e9e8fc 8444 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8445 * transaction reservation.
f7e9e8fc 8446 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8447 * updating the inode.
8448 */
2ff7e61e 8449 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8450 if (!rsv)
8451 return -ENOMEM;
4a338542 8452 rsv->size = min_size;
ca7e70f5 8453 rsv->failfast = 1;
f0cd846e 8454
907cbceb 8455 /*
07127184 8456 * 1 for the truncate slack space
907cbceb
JB
8457 * 1 for updating the inode.
8458 */
f3fe820c 8459 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8460 if (IS_ERR(trans)) {
ad7e1a74 8461 ret = PTR_ERR(trans);
fcb80c2a
JB
8462 goto out;
8463 }
f0cd846e 8464
907cbceb 8465 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8466 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8467 min_size, false);
fcb80c2a 8468 BUG_ON(ret);
f0cd846e 8469
5dc562c5
JB
8470 /*
8471 * So if we truncate and then write and fsync we normally would just
8472 * write the extents that changed, which is a problem if we need to
8473 * first truncate that entire inode. So set this flag so we write out
8474 * all of the extents in the inode to the sync log so we're completely
8475 * safe.
8476 */
8477 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8478 trans->block_rsv = rsv;
907cbceb 8479
8082510e
YZ
8480 while (1) {
8481 ret = btrfs_truncate_inode_items(trans, root, inode,
8482 inode->i_size,
8483 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8484 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8485 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8486 break;
39279cc3 8487
8082510e 8488 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8489 if (ret)
3893e33b 8490 break;
ca7e70f5 8491
3a45bb20 8492 btrfs_end_transaction(trans);
2ff7e61e 8493 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8494
8495 trans = btrfs_start_transaction(root, 2);
8496 if (IS_ERR(trans)) {
ad7e1a74 8497 ret = PTR_ERR(trans);
ca7e70f5
JB
8498 trans = NULL;
8499 break;
8500 }
8501
63f018be 8502 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8503 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8504 rsv, min_size, false);
ca7e70f5
JB
8505 BUG_ON(ret); /* shouldn't happen */
8506 trans->block_rsv = rsv;
8082510e
YZ
8507 }
8508
ddfae63c
JB
8509 /*
8510 * We can't call btrfs_truncate_block inside a trans handle as we could
8511 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8512 * we've truncated everything except the last little bit, and can do
8513 * btrfs_truncate_block and then update the disk_i_size.
8514 */
8515 if (ret == NEED_TRUNCATE_BLOCK) {
8516 btrfs_end_transaction(trans);
8517 btrfs_btree_balance_dirty(fs_info);
8518
8519 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8520 if (ret)
8521 goto out;
8522 trans = btrfs_start_transaction(root, 1);
8523 if (IS_ERR(trans)) {
8524 ret = PTR_ERR(trans);
8525 goto out;
8526 }
d923afe9 8527 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8528 }
8529
917c16b2 8530 if (trans) {
ad7e1a74
OS
8531 int ret2;
8532
0b246afa 8533 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
8534 ret2 = btrfs_update_inode(trans, root, inode);
8535 if (ret2 && !ret)
8536 ret = ret2;
7b128766 8537
ad7e1a74
OS
8538 ret2 = btrfs_end_transaction(trans);
8539 if (ret2 && !ret)
8540 ret = ret2;
2ff7e61e 8541 btrfs_btree_balance_dirty(fs_info);
917c16b2 8542 }
fcb80c2a 8543out:
2ff7e61e 8544 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 8545
ad7e1a74 8546 return ret;
39279cc3
CM
8547}
8548
d352ac68
CM
8549/*
8550 * create a new subvolume directory/inode (helper for the ioctl).
8551 */
d2fb3437 8552int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8553 struct btrfs_root *new_root,
8554 struct btrfs_root *parent_root,
8555 u64 new_dirid)
39279cc3 8556{
39279cc3 8557 struct inode *inode;
76dda93c 8558 int err;
00e4e6b3 8559 u64 index = 0;
39279cc3 8560
12fc9d09
FA
8561 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8562 new_dirid, new_dirid,
8563 S_IFDIR | (~current_umask() & S_IRWXUGO),
8564 &index);
54aa1f4d 8565 if (IS_ERR(inode))
f46b5a66 8566 return PTR_ERR(inode);
39279cc3
CM
8567 inode->i_op = &btrfs_dir_inode_operations;
8568 inode->i_fop = &btrfs_dir_file_operations;
8569
bfe86848 8570 set_nlink(inode, 1);
6ef06d27 8571 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8572 unlock_new_inode(inode);
3b96362c 8573
63541927
FDBM
8574 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8575 if (err)
8576 btrfs_err(new_root->fs_info,
351fd353 8577 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8578 new_root->root_key.objectid, err);
8579
76dda93c 8580 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8581
76dda93c 8582 iput(inode);
ce598979 8583 return err;
39279cc3
CM
8584}
8585
39279cc3
CM
8586struct inode *btrfs_alloc_inode(struct super_block *sb)
8587{
69fe2d75 8588 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8589 struct btrfs_inode *ei;
2ead6ae7 8590 struct inode *inode;
39279cc3 8591
712e36c5 8592 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8593 if (!ei)
8594 return NULL;
2ead6ae7
YZ
8595
8596 ei->root = NULL;
2ead6ae7 8597 ei->generation = 0;
15ee9bc7 8598 ei->last_trans = 0;
257c62e1 8599 ei->last_sub_trans = 0;
e02119d5 8600 ei->logged_trans = 0;
2ead6ae7 8601 ei->delalloc_bytes = 0;
a7e3b975 8602 ei->new_delalloc_bytes = 0;
47059d93 8603 ei->defrag_bytes = 0;
2ead6ae7
YZ
8604 ei->disk_i_size = 0;
8605 ei->flags = 0;
7709cde3 8606 ei->csum_bytes = 0;
2ead6ae7 8607 ei->index_cnt = (u64)-1;
67de1176 8608 ei->dir_index = 0;
2ead6ae7 8609 ei->last_unlink_trans = 0;
3ebac17c 8610 ei->last_reflink_trans = 0;
46d8bc34 8611 ei->last_log_commit = 0;
2ead6ae7 8612
9e0baf60
JB
8613 spin_lock_init(&ei->lock);
8614 ei->outstanding_extents = 0;
69fe2d75
JB
8615 if (sb->s_magic != BTRFS_TEST_MAGIC)
8616 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8617 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8618 ei->runtime_flags = 0;
b52aa8c9 8619 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8620 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8621
16cdcec7
MX
8622 ei->delayed_node = NULL;
8623
9cc97d64 8624 ei->i_otime.tv_sec = 0;
8625 ei->i_otime.tv_nsec = 0;
8626
2ead6ae7 8627 inode = &ei->vfs_inode;
a8067e02 8628 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8629 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8630 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8631 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8632 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8633 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8634 ei->io_tree.track_uptodate = true;
8635 ei->io_failure_tree.track_uptodate = true;
b812ce28 8636 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8637 mutex_init(&ei->log_mutex);
e6dcd2dc 8638 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8639 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8640 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8641 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 8642 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
8643
8644 return inode;
39279cc3
CM
8645}
8646
aaedb55b
JB
8647#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8648void btrfs_test_destroy_inode(struct inode *inode)
8649{
dcdbc059 8650 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8651 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8652}
8653#endif
8654
26602cab 8655void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8656{
fa0d7e3d
NP
8657 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8658}
8659
633cc816 8660void btrfs_destroy_inode(struct inode *vfs_inode)
39279cc3 8661{
e6dcd2dc 8662 struct btrfs_ordered_extent *ordered;
633cc816
NB
8663 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8664 struct btrfs_root *root = inode->root;
5a3f23d5 8665
633cc816
NB
8666 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8667 WARN_ON(vfs_inode->i_data.nrpages);
8668 WARN_ON(inode->block_rsv.reserved);
8669 WARN_ON(inode->block_rsv.size);
8670 WARN_ON(inode->outstanding_extents);
8671 WARN_ON(inode->delalloc_bytes);
8672 WARN_ON(inode->new_delalloc_bytes);
8673 WARN_ON(inode->csum_bytes);
8674 WARN_ON(inode->defrag_bytes);
39279cc3 8675
a6dbd429
JB
8676 /*
8677 * This can happen where we create an inode, but somebody else also
8678 * created the same inode and we need to destroy the one we already
8679 * created.
8680 */
8681 if (!root)
26602cab 8682 return;
a6dbd429 8683
d397712b 8684 while (1) {
633cc816 8685 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
e6dcd2dc
CM
8686 if (!ordered)
8687 break;
8688 else {
633cc816 8689 btrfs_err(root->fs_info,
5d163e0e 8690 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8691 ordered->file_offset, ordered->num_bytes);
633cc816 8692 btrfs_remove_ordered_extent(vfs_inode, ordered);
e6dcd2dc
CM
8693 btrfs_put_ordered_extent(ordered);
8694 btrfs_put_ordered_extent(ordered);
8695 }
8696 }
633cc816
NB
8697 btrfs_qgroup_check_reserved_leak(inode);
8698 inode_tree_del(inode);
8699 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8700 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8701 btrfs_put_root(inode->root);
39279cc3
CM
8702}
8703
45321ac5 8704int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8705{
8706 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8707
6379ef9f
NA
8708 if (root == NULL)
8709 return 1;
8710
fa6ac876 8711 /* the snap/subvol tree is on deleting */
69e9c6c6 8712 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8713 return 1;
76dda93c 8714 else
45321ac5 8715 return generic_drop_inode(inode);
76dda93c
YZ
8716}
8717
0ee0fda0 8718static void init_once(void *foo)
39279cc3
CM
8719{
8720 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8721
8722 inode_init_once(&ei->vfs_inode);
8723}
8724
e67c718b 8725void __cold btrfs_destroy_cachep(void)
39279cc3 8726{
8c0a8537
KS
8727 /*
8728 * Make sure all delayed rcu free inodes are flushed before we
8729 * destroy cache.
8730 */
8731 rcu_barrier();
5598e900
KM
8732 kmem_cache_destroy(btrfs_inode_cachep);
8733 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8734 kmem_cache_destroy(btrfs_path_cachep);
8735 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8736 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8737}
8738
f5c29bd9 8739int __init btrfs_init_cachep(void)
39279cc3 8740{
837e1972 8741 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8742 sizeof(struct btrfs_inode), 0,
5d097056
VD
8743 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8744 init_once);
39279cc3
CM
8745 if (!btrfs_inode_cachep)
8746 goto fail;
9601e3f6 8747
837e1972 8748 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8749 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8750 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8751 if (!btrfs_trans_handle_cachep)
8752 goto fail;
9601e3f6 8753
837e1972 8754 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8755 sizeof(struct btrfs_path), 0,
fba4b697 8756 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8757 if (!btrfs_path_cachep)
8758 goto fail;
9601e3f6 8759
837e1972 8760 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8761 sizeof(struct btrfs_free_space), 0,
fba4b697 8762 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8763 if (!btrfs_free_space_cachep)
8764 goto fail;
8765
3acd4850
CL
8766 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8767 PAGE_SIZE, PAGE_SIZE,
8768 SLAB_RED_ZONE, NULL);
8769 if (!btrfs_free_space_bitmap_cachep)
8770 goto fail;
8771
39279cc3
CM
8772 return 0;
8773fail:
8774 btrfs_destroy_cachep();
8775 return -ENOMEM;
8776}
8777
a528d35e
DH
8778static int btrfs_getattr(const struct path *path, struct kstat *stat,
8779 u32 request_mask, unsigned int flags)
39279cc3 8780{
df0af1a5 8781 u64 delalloc_bytes;
a528d35e 8782 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8783 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
8784 u32 bi_flags = BTRFS_I(inode)->flags;
8785
8786 stat->result_mask |= STATX_BTIME;
8787 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8788 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8789 if (bi_flags & BTRFS_INODE_APPEND)
8790 stat->attributes |= STATX_ATTR_APPEND;
8791 if (bi_flags & BTRFS_INODE_COMPRESS)
8792 stat->attributes |= STATX_ATTR_COMPRESSED;
8793 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8794 stat->attributes |= STATX_ATTR_IMMUTABLE;
8795 if (bi_flags & BTRFS_INODE_NODUMP)
8796 stat->attributes |= STATX_ATTR_NODUMP;
8797
8798 stat->attributes_mask |= (STATX_ATTR_APPEND |
8799 STATX_ATTR_COMPRESSED |
8800 STATX_ATTR_IMMUTABLE |
8801 STATX_ATTR_NODUMP);
fadc0d8b 8802
39279cc3 8803 generic_fillattr(inode, stat);
0ee5dc67 8804 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8805
8806 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8807 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 8808 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8809 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8810 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8811 return 0;
8812}
8813
cdd1fedf
DF
8814static int btrfs_rename_exchange(struct inode *old_dir,
8815 struct dentry *old_dentry,
8816 struct inode *new_dir,
8817 struct dentry *new_dentry)
8818{
0b246afa 8819 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8820 struct btrfs_trans_handle *trans;
8821 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8822 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8823 struct inode *new_inode = new_dentry->d_inode;
8824 struct inode *old_inode = old_dentry->d_inode;
95582b00 8825 struct timespec64 ctime = current_time(old_inode);
4a0cc7ca
NB
8826 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8827 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8828 u64 old_idx = 0;
8829 u64 new_idx = 0;
cdd1fedf 8830 int ret;
75b463d2 8831 int ret2;
86e8aa0e
FM
8832 bool root_log_pinned = false;
8833 bool dest_log_pinned = false;
cdd1fedf
DF
8834
8835 /* we only allow rename subvolume link between subvolumes */
8836 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8837 return -EXDEV;
8838
8839 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8840 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8841 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8842 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8843
8844 /*
8845 * We want to reserve the absolute worst case amount of items. So if
8846 * both inodes are subvols and we need to unlink them then that would
8847 * require 4 item modifications, but if they are both normal inodes it
8848 * would require 5 item modifications, so we'll assume their normal
8849 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8850 * should cover the worst case number of items we'll modify.
8851 */
8852 trans = btrfs_start_transaction(root, 12);
8853 if (IS_ERR(trans)) {
8854 ret = PTR_ERR(trans);
8855 goto out_notrans;
8856 }
8857
3e174099
JB
8858 if (dest != root)
8859 btrfs_record_root_in_trans(trans, dest);
8860
cdd1fedf
DF
8861 /*
8862 * We need to find a free sequence number both in the source and
8863 * in the destination directory for the exchange.
8864 */
877574e2 8865 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8866 if (ret)
8867 goto out_fail;
877574e2 8868 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8869 if (ret)
8870 goto out_fail;
8871
8872 BTRFS_I(old_inode)->dir_index = 0ULL;
8873 BTRFS_I(new_inode)->dir_index = 0ULL;
8874
8875 /* Reference for the source. */
8876 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8877 /* force full log commit if subvolume involved. */
90787766 8878 btrfs_set_log_full_commit(trans);
cdd1fedf 8879 } else {
376e5a57
FM
8880 btrfs_pin_log_trans(root);
8881 root_log_pinned = true;
cdd1fedf
DF
8882 ret = btrfs_insert_inode_ref(trans, dest,
8883 new_dentry->d_name.name,
8884 new_dentry->d_name.len,
8885 old_ino,
f85b7379
DS
8886 btrfs_ino(BTRFS_I(new_dir)),
8887 old_idx);
cdd1fedf
DF
8888 if (ret)
8889 goto out_fail;
cdd1fedf
DF
8890 }
8891
8892 /* And now for the dest. */
8893 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8894 /* force full log commit if subvolume involved. */
90787766 8895 btrfs_set_log_full_commit(trans);
cdd1fedf 8896 } else {
376e5a57
FM
8897 btrfs_pin_log_trans(dest);
8898 dest_log_pinned = true;
cdd1fedf
DF
8899 ret = btrfs_insert_inode_ref(trans, root,
8900 old_dentry->d_name.name,
8901 old_dentry->d_name.len,
8902 new_ino,
f85b7379
DS
8903 btrfs_ino(BTRFS_I(old_dir)),
8904 new_idx);
cdd1fedf
DF
8905 if (ret)
8906 goto out_fail;
cdd1fedf
DF
8907 }
8908
8909 /* Update inode version and ctime/mtime. */
8910 inode_inc_iversion(old_dir);
8911 inode_inc_iversion(new_dir);
8912 inode_inc_iversion(old_inode);
8913 inode_inc_iversion(new_inode);
8914 old_dir->i_ctime = old_dir->i_mtime = ctime;
8915 new_dir->i_ctime = new_dir->i_mtime = ctime;
8916 old_inode->i_ctime = ctime;
8917 new_inode->i_ctime = ctime;
8918
8919 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
8920 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8921 BTRFS_I(old_inode), 1);
8922 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8923 BTRFS_I(new_inode), 1);
cdd1fedf
DF
8924 }
8925
8926 /* src is a subvolume */
8927 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8928 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 8929 } else { /* src is an inode */
4ec5934e
NB
8930 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8931 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
8932 old_dentry->d_name.name,
8933 old_dentry->d_name.len);
8934 if (!ret)
8935 ret = btrfs_update_inode(trans, root, old_inode);
8936 }
8937 if (ret) {
66642832 8938 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8939 goto out_fail;
8940 }
8941
8942 /* dest is a subvolume */
8943 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8944 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 8945 } else { /* dest is an inode */
4ec5934e
NB
8946 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8947 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
8948 new_dentry->d_name.name,
8949 new_dentry->d_name.len);
8950 if (!ret)
8951 ret = btrfs_update_inode(trans, dest, new_inode);
8952 }
8953 if (ret) {
66642832 8954 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8955 goto out_fail;
8956 }
8957
db0a669f 8958 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
8959 new_dentry->d_name.name,
8960 new_dentry->d_name.len, 0, old_idx);
8961 if (ret) {
66642832 8962 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8963 goto out_fail;
8964 }
8965
db0a669f 8966 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
8967 old_dentry->d_name.name,
8968 old_dentry->d_name.len, 0, new_idx);
8969 if (ret) {
66642832 8970 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8971 goto out_fail;
8972 }
8973
8974 if (old_inode->i_nlink == 1)
8975 BTRFS_I(old_inode)->dir_index = old_idx;
8976 if (new_inode->i_nlink == 1)
8977 BTRFS_I(new_inode)->dir_index = new_idx;
8978
86e8aa0e 8979 if (root_log_pinned) {
75b463d2
FM
8980 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
8981 new_dentry->d_parent);
cdd1fedf 8982 btrfs_end_log_trans(root);
86e8aa0e 8983 root_log_pinned = false;
cdd1fedf 8984 }
86e8aa0e 8985 if (dest_log_pinned) {
75b463d2
FM
8986 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
8987 old_dentry->d_parent);
cdd1fedf 8988 btrfs_end_log_trans(dest);
86e8aa0e 8989 dest_log_pinned = false;
cdd1fedf
DF
8990 }
8991out_fail:
86e8aa0e
FM
8992 /*
8993 * If we have pinned a log and an error happened, we unpin tasks
8994 * trying to sync the log and force them to fallback to a transaction
8995 * commit if the log currently contains any of the inodes involved in
8996 * this rename operation (to ensure we do not persist a log with an
8997 * inconsistent state for any of these inodes or leading to any
8998 * inconsistencies when replayed). If the transaction was aborted, the
8999 * abortion reason is propagated to userspace when attempting to commit
9000 * the transaction. If the log does not contain any of these inodes, we
9001 * allow the tasks to sync it.
9002 */
9003 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9004 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9005 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9006 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9007 (new_inode &&
0f8939b8 9008 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9009 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
9010
9011 if (root_log_pinned) {
9012 btrfs_end_log_trans(root);
9013 root_log_pinned = false;
9014 }
9015 if (dest_log_pinned) {
9016 btrfs_end_log_trans(dest);
9017 dest_log_pinned = false;
9018 }
9019 }
75b463d2
FM
9020 ret2 = btrfs_end_transaction(trans);
9021 ret = ret ? ret : ret2;
cdd1fedf 9022out_notrans:
943eb3bf
JB
9023 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9024 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9025 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9026
9027 return ret;
9028}
9029
9030static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9031 struct btrfs_root *root,
9032 struct inode *dir,
9033 struct dentry *dentry)
9034{
9035 int ret;
9036 struct inode *inode;
9037 u64 objectid;
9038 u64 index;
9039
9040 ret = btrfs_find_free_ino(root, &objectid);
9041 if (ret)
9042 return ret;
9043
9044 inode = btrfs_new_inode(trans, root, dir,
9045 dentry->d_name.name,
9046 dentry->d_name.len,
4a0cc7ca 9047 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9048 objectid,
9049 S_IFCHR | WHITEOUT_MODE,
9050 &index);
9051
9052 if (IS_ERR(inode)) {
9053 ret = PTR_ERR(inode);
9054 return ret;
9055 }
9056
9057 inode->i_op = &btrfs_special_inode_operations;
9058 init_special_inode(inode, inode->i_mode,
9059 WHITEOUT_DEV);
9060
9061 ret = btrfs_init_inode_security(trans, inode, dir,
9062 &dentry->d_name);
9063 if (ret)
c9901618 9064 goto out;
cdd1fedf 9065
cef415af
NB
9066 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9067 BTRFS_I(inode), 0, index);
cdd1fedf 9068 if (ret)
c9901618 9069 goto out;
cdd1fedf
DF
9070
9071 ret = btrfs_update_inode(trans, root, inode);
c9901618 9072out:
cdd1fedf 9073 unlock_new_inode(inode);
c9901618
FM
9074 if (ret)
9075 inode_dec_link_count(inode);
cdd1fedf
DF
9076 iput(inode);
9077
c9901618 9078 return ret;
cdd1fedf
DF
9079}
9080
d397712b 9081static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9082 struct inode *new_dir, struct dentry *new_dentry,
9083 unsigned int flags)
39279cc3 9084{
0b246afa 9085 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9086 struct btrfs_trans_handle *trans;
5062af35 9087 unsigned int trans_num_items;
39279cc3 9088 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9089 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9090 struct inode *new_inode = d_inode(new_dentry);
9091 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9092 u64 index = 0;
39279cc3 9093 int ret;
75b463d2 9094 int ret2;
4a0cc7ca 9095 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9096 bool log_pinned = false;
39279cc3 9097
4a0cc7ca 9098 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9099 return -EPERM;
9100
4df27c4d 9101 /* we only allow rename subvolume link between subvolumes */
33345d01 9102 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9103 return -EXDEV;
9104
33345d01 9105 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9106 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9107 return -ENOTEMPTY;
5f39d397 9108
4df27c4d
YZ
9109 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9110 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9111 return -ENOTEMPTY;
9c52057c
CM
9112
9113
9114 /* check for collisions, even if the name isn't there */
4871c158 9115 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9116 new_dentry->d_name.name,
9117 new_dentry->d_name.len);
9118
9119 if (ret) {
9120 if (ret == -EEXIST) {
9121 /* we shouldn't get
9122 * eexist without a new_inode */
fae7f21c 9123 if (WARN_ON(!new_inode)) {
9c52057c
CM
9124 return ret;
9125 }
9126 } else {
9127 /* maybe -EOVERFLOW */
9128 return ret;
9129 }
9130 }
9131 ret = 0;
9132
5a3f23d5 9133 /*
8d875f95
CM
9134 * we're using rename to replace one file with another. Start IO on it
9135 * now so we don't add too much work to the end of the transaction
5a3f23d5 9136 */
8d875f95 9137 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9138 filemap_flush(old_inode->i_mapping);
9139
76dda93c 9140 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9141 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9142 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9143 /*
9144 * We want to reserve the absolute worst case amount of items. So if
9145 * both inodes are subvols and we need to unlink them then that would
9146 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9147 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9148 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9149 * should cover the worst case number of items we'll modify.
5062af35
FM
9150 * If our rename has the whiteout flag, we need more 5 units for the
9151 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9152 * when selinux is enabled).
a22285a6 9153 */
5062af35
FM
9154 trans_num_items = 11;
9155 if (flags & RENAME_WHITEOUT)
9156 trans_num_items += 5;
9157 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9158 if (IS_ERR(trans)) {
cdd1fedf
DF
9159 ret = PTR_ERR(trans);
9160 goto out_notrans;
9161 }
76dda93c 9162
4df27c4d
YZ
9163 if (dest != root)
9164 btrfs_record_root_in_trans(trans, dest);
5f39d397 9165
877574e2 9166 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9167 if (ret)
9168 goto out_fail;
5a3f23d5 9169
67de1176 9170 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9171 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9172 /* force full log commit if subvolume involved. */
90787766 9173 btrfs_set_log_full_commit(trans);
4df27c4d 9174 } else {
c4aba954
FM
9175 btrfs_pin_log_trans(root);
9176 log_pinned = true;
a5719521
YZ
9177 ret = btrfs_insert_inode_ref(trans, dest,
9178 new_dentry->d_name.name,
9179 new_dentry->d_name.len,
33345d01 9180 old_ino,
4a0cc7ca 9181 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9182 if (ret)
9183 goto out_fail;
4df27c4d 9184 }
5a3f23d5 9185
0c4d2d95
JB
9186 inode_inc_iversion(old_dir);
9187 inode_inc_iversion(new_dir);
9188 inode_inc_iversion(old_inode);
04b285f3
DD
9189 old_dir->i_ctime = old_dir->i_mtime =
9190 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9191 old_inode->i_ctime = current_time(old_dir);
5f39d397 9192
12fcfd22 9193 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9194 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9195 BTRFS_I(old_inode), 1);
12fcfd22 9196
33345d01 9197 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9198 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9199 } else {
4ec5934e
NB
9200 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9201 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9202 old_dentry->d_name.name,
9203 old_dentry->d_name.len);
9204 if (!ret)
9205 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9206 }
79787eaa 9207 if (ret) {
66642832 9208 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9209 goto out_fail;
9210 }
39279cc3
CM
9211
9212 if (new_inode) {
0c4d2d95 9213 inode_inc_iversion(new_inode);
c2050a45 9214 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9215 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9216 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9217 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9218 BUG_ON(new_inode->i_nlink == 0);
9219 } else {
4ec5934e
NB
9220 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9221 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9222 new_dentry->d_name.name,
9223 new_dentry->d_name.len);
9224 }
4ef31a45 9225 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9226 ret = btrfs_orphan_add(trans,
9227 BTRFS_I(d_inode(new_dentry)));
79787eaa 9228 if (ret) {
66642832 9229 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9230 goto out_fail;
9231 }
39279cc3 9232 }
aec7477b 9233
db0a669f 9234 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9235 new_dentry->d_name.name,
a5719521 9236 new_dentry->d_name.len, 0, index);
79787eaa 9237 if (ret) {
66642832 9238 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9239 goto out_fail;
9240 }
39279cc3 9241
67de1176
MX
9242 if (old_inode->i_nlink == 1)
9243 BTRFS_I(old_inode)->dir_index = index;
9244
3dc9e8f7 9245 if (log_pinned) {
75b463d2
FM
9246 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9247 new_dentry->d_parent);
4df27c4d 9248 btrfs_end_log_trans(root);
3dc9e8f7 9249 log_pinned = false;
4df27c4d 9250 }
cdd1fedf
DF
9251
9252 if (flags & RENAME_WHITEOUT) {
9253 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9254 old_dentry);
9255
9256 if (ret) {
66642832 9257 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9258 goto out_fail;
9259 }
4df27c4d 9260 }
39279cc3 9261out_fail:
3dc9e8f7
FM
9262 /*
9263 * If we have pinned the log and an error happened, we unpin tasks
9264 * trying to sync the log and force them to fallback to a transaction
9265 * commit if the log currently contains any of the inodes involved in
9266 * this rename operation (to ensure we do not persist a log with an
9267 * inconsistent state for any of these inodes or leading to any
9268 * inconsistencies when replayed). If the transaction was aborted, the
9269 * abortion reason is propagated to userspace when attempting to commit
9270 * the transaction. If the log does not contain any of these inodes, we
9271 * allow the tasks to sync it.
9272 */
9273 if (ret && log_pinned) {
0f8939b8
NB
9274 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9275 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9276 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9277 (new_inode &&
0f8939b8 9278 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9279 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9280
9281 btrfs_end_log_trans(root);
9282 log_pinned = false;
9283 }
75b463d2
FM
9284 ret2 = btrfs_end_transaction(trans);
9285 ret = ret ? ret : ret2;
b44c59a8 9286out_notrans:
33345d01 9287 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9288 up_read(&fs_info->subvol_sem);
9ed74f2d 9289
39279cc3
CM
9290 return ret;
9291}
9292
80ace85c
MS
9293static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9294 struct inode *new_dir, struct dentry *new_dentry,
9295 unsigned int flags)
9296{
cdd1fedf 9297 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9298 return -EINVAL;
9299
cdd1fedf
DF
9300 if (flags & RENAME_EXCHANGE)
9301 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9302 new_dentry);
9303
9304 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9305}
9306
3a2f8c07
NB
9307struct btrfs_delalloc_work {
9308 struct inode *inode;
9309 struct completion completion;
9310 struct list_head list;
9311 struct btrfs_work work;
9312};
9313
8ccf6f19
MX
9314static void btrfs_run_delalloc_work(struct btrfs_work *work)
9315{
9316 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9317 struct inode *inode;
8ccf6f19
MX
9318
9319 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9320 work);
9f23e289 9321 inode = delalloc_work->inode;
30424601
DS
9322 filemap_flush(inode->i_mapping);
9323 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9324 &BTRFS_I(inode)->runtime_flags))
9f23e289 9325 filemap_flush(inode->i_mapping);
8ccf6f19 9326
076da91c 9327 iput(inode);
8ccf6f19
MX
9328 complete(&delalloc_work->completion);
9329}
9330
3a2f8c07 9331static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9332{
9333 struct btrfs_delalloc_work *work;
9334
100d5702 9335 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9336 if (!work)
9337 return NULL;
9338
9339 init_completion(&work->completion);
9340 INIT_LIST_HEAD(&work->list);
9341 work->inode = inode;
a0cac0ec 9342 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9343
9344 return work;
9345}
9346
d352ac68
CM
9347/*
9348 * some fairly slow code that needs optimization. This walks the list
9349 * of all the inodes with pending delalloc and forces them to disk.
9350 */
b4912139 9351static int start_delalloc_inodes(struct btrfs_root *root, u64 *nr, bool snapshot)
ea8c2819 9352{
ea8c2819 9353 struct btrfs_inode *binode;
5b21f2ed 9354 struct inode *inode;
8ccf6f19
MX
9355 struct btrfs_delalloc_work *work, *next;
9356 struct list_head works;
1eafa6c7 9357 struct list_head splice;
8ccf6f19 9358 int ret = 0;
ea8c2819 9359
8ccf6f19 9360 INIT_LIST_HEAD(&works);
1eafa6c7 9361 INIT_LIST_HEAD(&splice);
63607cc8 9362
573bfb72 9363 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9364 spin_lock(&root->delalloc_lock);
9365 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9366 while (!list_empty(&splice)) {
9367 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9368 delalloc_inodes);
1eafa6c7 9369
eb73c1b7
MX
9370 list_move_tail(&binode->delalloc_inodes,
9371 &root->delalloc_inodes);
5b21f2ed 9372 inode = igrab(&binode->vfs_inode);
df0af1a5 9373 if (!inode) {
eb73c1b7 9374 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9375 continue;
df0af1a5 9376 }
eb73c1b7 9377 spin_unlock(&root->delalloc_lock);
1eafa6c7 9378
3cd24c69
EL
9379 if (snapshot)
9380 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9381 &binode->runtime_flags);
076da91c 9382 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9383 if (!work) {
4fbb5147 9384 iput(inode);
1eafa6c7 9385 ret = -ENOMEM;
a1ecaabb 9386 goto out;
5b21f2ed 9387 }
1eafa6c7 9388 list_add_tail(&work->list, &works);
a44903ab
QW
9389 btrfs_queue_work(root->fs_info->flush_workers,
9390 &work->work);
b4912139
JB
9391 if (*nr != U64_MAX) {
9392 (*nr)--;
9393 if (*nr == 0)
9394 goto out;
9395 }
5b21f2ed 9396 cond_resched();
eb73c1b7 9397 spin_lock(&root->delalloc_lock);
ea8c2819 9398 }
eb73c1b7 9399 spin_unlock(&root->delalloc_lock);
8c8bee1d 9400
a1ecaabb 9401out:
eb73c1b7
MX
9402 list_for_each_entry_safe(work, next, &works, list) {
9403 list_del_init(&work->list);
40012f96
NB
9404 wait_for_completion(&work->completion);
9405 kfree(work);
eb73c1b7
MX
9406 }
9407
81f1d390 9408 if (!list_empty(&splice)) {
eb73c1b7
MX
9409 spin_lock(&root->delalloc_lock);
9410 list_splice_tail(&splice, &root->delalloc_inodes);
9411 spin_unlock(&root->delalloc_lock);
9412 }
573bfb72 9413 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9414 return ret;
9415}
1eafa6c7 9416
3cd24c69 9417int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9418{
0b246afa 9419 struct btrfs_fs_info *fs_info = root->fs_info;
b4912139 9420 u64 nr = U64_MAX;
1eafa6c7 9421
0b246afa 9422 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9423 return -EROFS;
9424
b4912139 9425 return start_delalloc_inodes(root, &nr, true);
eb73c1b7
MX
9426}
9427
b4912139 9428int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr)
eb73c1b7
MX
9429{
9430 struct btrfs_root *root;
9431 struct list_head splice;
9432 int ret;
9433
2c21b4d7 9434 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9435 return -EROFS;
9436
9437 INIT_LIST_HEAD(&splice);
9438
573bfb72 9439 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9440 spin_lock(&fs_info->delalloc_root_lock);
9441 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9442 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9443 root = list_first_entry(&splice, struct btrfs_root,
9444 delalloc_root);
00246528 9445 root = btrfs_grab_root(root);
eb73c1b7
MX
9446 BUG_ON(!root);
9447 list_move_tail(&root->delalloc_root,
9448 &fs_info->delalloc_roots);
9449 spin_unlock(&fs_info->delalloc_root_lock);
9450
b4912139 9451 ret = start_delalloc_inodes(root, &nr, false);
00246528 9452 btrfs_put_root(root);
6c255e67 9453 if (ret < 0)
eb73c1b7 9454 goto out;
eb73c1b7 9455 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9456 }
eb73c1b7 9457 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9458
6c255e67 9459 ret = 0;
eb73c1b7 9460out:
81f1d390 9461 if (!list_empty(&splice)) {
eb73c1b7
MX
9462 spin_lock(&fs_info->delalloc_root_lock);
9463 list_splice_tail(&splice, &fs_info->delalloc_roots);
9464 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9465 }
573bfb72 9466 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9467 return ret;
ea8c2819
CM
9468}
9469
39279cc3
CM
9470static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9471 const char *symname)
9472{
0b246afa 9473 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9474 struct btrfs_trans_handle *trans;
9475 struct btrfs_root *root = BTRFS_I(dir)->root;
9476 struct btrfs_path *path;
9477 struct btrfs_key key;
1832a6d5 9478 struct inode *inode = NULL;
39279cc3 9479 int err;
39279cc3 9480 u64 objectid;
67871254 9481 u64 index = 0;
39279cc3
CM
9482 int name_len;
9483 int datasize;
5f39d397 9484 unsigned long ptr;
39279cc3 9485 struct btrfs_file_extent_item *ei;
5f39d397 9486 struct extent_buffer *leaf;
39279cc3 9487
f06becc4 9488 name_len = strlen(symname);
0b246afa 9489 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9490 return -ENAMETOOLONG;
1832a6d5 9491
9ed74f2d
JB
9492 /*
9493 * 2 items for inode item and ref
9494 * 2 items for dir items
9269d12b
FM
9495 * 1 item for updating parent inode item
9496 * 1 item for the inline extent item
9ed74f2d
JB
9497 * 1 item for xattr if selinux is on
9498 */
9269d12b 9499 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9500 if (IS_ERR(trans))
9501 return PTR_ERR(trans);
1832a6d5 9502
581bb050
LZ
9503 err = btrfs_find_free_ino(root, &objectid);
9504 if (err)
9505 goto out_unlock;
9506
aec7477b 9507 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
9508 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9509 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9510 if (IS_ERR(inode)) {
9511 err = PTR_ERR(inode);
32955c54 9512 inode = NULL;
39279cc3 9513 goto out_unlock;
7cf96da3 9514 }
39279cc3 9515
ad19db71
CS
9516 /*
9517 * If the active LSM wants to access the inode during
9518 * d_instantiate it needs these. Smack checks to see
9519 * if the filesystem supports xattrs by looking at the
9520 * ops vector.
9521 */
9522 inode->i_fop = &btrfs_file_operations;
9523 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9524 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9525 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9526
9527 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9528 if (err)
32955c54 9529 goto out_unlock;
ad19db71 9530
39279cc3 9531 path = btrfs_alloc_path();
d8926bb3
MF
9532 if (!path) {
9533 err = -ENOMEM;
32955c54 9534 goto out_unlock;
d8926bb3 9535 }
4a0cc7ca 9536 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9537 key.offset = 0;
962a298f 9538 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9539 datasize = btrfs_file_extent_calc_inline_size(name_len);
9540 err = btrfs_insert_empty_item(trans, root, path, &key,
9541 datasize);
54aa1f4d 9542 if (err) {
b0839166 9543 btrfs_free_path(path);
32955c54 9544 goto out_unlock;
54aa1f4d 9545 }
5f39d397
CM
9546 leaf = path->nodes[0];
9547 ei = btrfs_item_ptr(leaf, path->slots[0],
9548 struct btrfs_file_extent_item);
9549 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9550 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9551 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9552 btrfs_set_file_extent_encryption(leaf, ei, 0);
9553 btrfs_set_file_extent_compression(leaf, ei, 0);
9554 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9555 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9556
39279cc3 9557 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9558 write_extent_buffer(leaf, symname, ptr, name_len);
9559 btrfs_mark_buffer_dirty(leaf);
39279cc3 9560 btrfs_free_path(path);
5f39d397 9561
39279cc3 9562 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9563 inode_nohighmem(inode);
d899e052 9564 inode_set_bytes(inode, name_len);
6ef06d27 9565 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 9566 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9567 /*
9568 * Last step, add directory indexes for our symlink inode. This is the
9569 * last step to avoid extra cleanup of these indexes if an error happens
9570 * elsewhere above.
9571 */
9572 if (!err)
cef415af
NB
9573 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9574 BTRFS_I(inode), 0, index);
32955c54
AV
9575 if (err)
9576 goto out_unlock;
b0d5d10f 9577
1e2e547a 9578 d_instantiate_new(dentry, inode);
39279cc3
CM
9579
9580out_unlock:
3a45bb20 9581 btrfs_end_transaction(trans);
32955c54 9582 if (err && inode) {
39279cc3 9583 inode_dec_link_count(inode);
32955c54 9584 discard_new_inode(inode);
39279cc3 9585 }
2ff7e61e 9586 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9587 return err;
9588}
16432985 9589
8fccebfa
FM
9590static struct btrfs_trans_handle *insert_prealloc_file_extent(
9591 struct btrfs_trans_handle *trans_in,
203f44c5
QW
9592 struct inode *inode, struct btrfs_key *ins,
9593 u64 file_offset)
9594{
9595 struct btrfs_file_extent_item stack_fi;
bf385648 9596 struct btrfs_replace_extent_info extent_info;
8fccebfa
FM
9597 struct btrfs_trans_handle *trans = trans_in;
9598 struct btrfs_path *path;
203f44c5
QW
9599 u64 start = ins->objectid;
9600 u64 len = ins->offset;
9729f10a 9601 int ret;
203f44c5
QW
9602
9603 memset(&stack_fi, 0, sizeof(stack_fi));
9604
9605 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9606 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9607 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9608 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9609 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9610 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9611 /* Encryption and other encoding is reserved and all 0 */
9612
72b7d15b 9613 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9729f10a 9614 if (ret < 0)
8fccebfa
FM
9615 return ERR_PTR(ret);
9616
9617 if (trans) {
9618 ret = insert_reserved_file_extent(trans, BTRFS_I(inode),
9619 file_offset, &stack_fi, ret);
9620 if (ret)
9621 return ERR_PTR(ret);
9622 return trans;
9623 }
9624
9625 extent_info.disk_offset = start;
9626 extent_info.disk_len = len;
9627 extent_info.data_offset = 0;
9628 extent_info.data_len = len;
9629 extent_info.file_offset = file_offset;
9630 extent_info.extent_buf = (char *)&stack_fi;
8fccebfa
FM
9631 extent_info.is_new_extent = true;
9632 extent_info.qgroup_reserved = ret;
9633 extent_info.insertions = 0;
9634
9635 path = btrfs_alloc_path();
9636 if (!path)
9637 return ERR_PTR(-ENOMEM);
9638
306bfec0 9639 ret = btrfs_replace_file_extents(inode, path, file_offset,
8fccebfa
FM
9640 file_offset + len - 1, &extent_info,
9641 &trans);
9642 btrfs_free_path(path);
9643 if (ret)
9644 return ERR_PTR(ret);
9645
9646 return trans;
203f44c5 9647}
8fccebfa 9648
0af3d00b
JB
9649static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9650 u64 start, u64 num_bytes, u64 min_size,
9651 loff_t actual_len, u64 *alloc_hint,
9652 struct btrfs_trans_handle *trans)
d899e052 9653{
0b246afa 9654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9655 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9656 struct extent_map *em;
d899e052
YZ
9657 struct btrfs_root *root = BTRFS_I(inode)->root;
9658 struct btrfs_key ins;
d899e052 9659 u64 cur_offset = start;
b778cf96 9660 u64 clear_offset = start;
55a61d1d 9661 u64 i_size;
154ea289 9662 u64 cur_bytes;
0b670dc4 9663 u64 last_alloc = (u64)-1;
d899e052 9664 int ret = 0;
0af3d00b 9665 bool own_trans = true;
18513091 9666 u64 end = start + num_bytes - 1;
d899e052 9667
0af3d00b
JB
9668 if (trans)
9669 own_trans = false;
d899e052 9670 while (num_bytes > 0) {
ee22184b 9671 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9672 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9673 /*
9674 * If we are severely fragmented we could end up with really
9675 * small allocations, so if the allocator is returning small
9676 * chunks lets make its job easier by only searching for those
9677 * sized chunks.
9678 */
9679 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9680 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9681 min_size, 0, *alloc_hint, &ins, 1, 0);
8fccebfa 9682 if (ret)
a22285a6 9683 break;
b778cf96
JB
9684
9685 /*
9686 * We've reserved this space, and thus converted it from
9687 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9688 * from here on out we will only need to clear our reservation
9689 * for the remaining unreserved area, so advance our
9690 * clear_offset by our extent size.
9691 */
9692 clear_offset += ins.offset;
0b246afa 9693 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 9694
0b670dc4 9695 last_alloc = ins.offset;
8fccebfa
FM
9696 trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9697 if (IS_ERR(trans)) {
9698 ret = PTR_ERR(trans);
2ff7e61e 9699 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9700 ins.offset, 0);
79787eaa
JM
9701 break;
9702 }
31193213 9703
dcdbc059 9704 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9705 cur_offset + ins.offset -1, 0);
5a303d5d 9706
5dc562c5
JB
9707 em = alloc_extent_map();
9708 if (!em) {
9709 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9710 &BTRFS_I(inode)->runtime_flags);
9711 goto next;
9712 }
9713
9714 em->start = cur_offset;
9715 em->orig_start = cur_offset;
9716 em->len = ins.offset;
9717 em->block_start = ins.objectid;
9718 em->block_len = ins.offset;
b4939680 9719 em->orig_block_len = ins.offset;
cc95bef6 9720 em->ram_bytes = ins.offset;
5dc562c5
JB
9721 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9722 em->generation = trans->transid;
9723
9724 while (1) {
9725 write_lock(&em_tree->lock);
09a2a8f9 9726 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9727 write_unlock(&em_tree->lock);
9728 if (ret != -EEXIST)
9729 break;
dcdbc059 9730 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
9731 cur_offset + ins.offset - 1,
9732 0);
9733 }
9734 free_extent_map(em);
9735next:
d899e052
YZ
9736 num_bytes -= ins.offset;
9737 cur_offset += ins.offset;
efa56464 9738 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9739
0c4d2d95 9740 inode_inc_iversion(inode);
c2050a45 9741 inode->i_ctime = current_time(inode);
6cbff00f 9742 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9743 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9744 (actual_len > inode->i_size) &&
9745 (cur_offset > inode->i_size)) {
d1ea6a61 9746 if (cur_offset > actual_len)
55a61d1d 9747 i_size = actual_len;
d1ea6a61 9748 else
55a61d1d
JB
9749 i_size = cur_offset;
9750 i_size_write(inode, i_size);
d923afe9 9751 btrfs_inode_safe_disk_i_size_write(inode, 0);
5a303d5d
YZ
9752 }
9753
d899e052 9754 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9755
9756 if (ret) {
66642832 9757 btrfs_abort_transaction(trans, ret);
79787eaa 9758 if (own_trans)
3a45bb20 9759 btrfs_end_transaction(trans);
79787eaa
JM
9760 break;
9761 }
d899e052 9762
8fccebfa 9763 if (own_trans) {
3a45bb20 9764 btrfs_end_transaction(trans);
8fccebfa
FM
9765 trans = NULL;
9766 }
5a303d5d 9767 }
b778cf96 9768 if (clear_offset < end)
25ce28ca 9769 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9770 end - clear_offset + 1);
d899e052
YZ
9771 return ret;
9772}
9773
0af3d00b
JB
9774int btrfs_prealloc_file_range(struct inode *inode, int mode,
9775 u64 start, u64 num_bytes, u64 min_size,
9776 loff_t actual_len, u64 *alloc_hint)
9777{
9778 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9779 min_size, actual_len, alloc_hint,
9780 NULL);
9781}
9782
9783int btrfs_prealloc_file_range_trans(struct inode *inode,
9784 struct btrfs_trans_handle *trans, int mode,
9785 u64 start, u64 num_bytes, u64 min_size,
9786 loff_t actual_len, u64 *alloc_hint)
9787{
9788 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9789 min_size, actual_len, alloc_hint, trans);
9790}
9791
e6dcd2dc
CM
9792static int btrfs_set_page_dirty(struct page *page)
9793{
e6dcd2dc
CM
9794 return __set_page_dirty_nobuffers(page);
9795}
9796
10556cb2 9797static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9798{
b83cc969 9799 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9800 umode_t mode = inode->i_mode;
b83cc969 9801
cb6db4e5
JM
9802 if (mask & MAY_WRITE &&
9803 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9804 if (btrfs_root_readonly(root))
9805 return -EROFS;
9806 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9807 return -EACCES;
9808 }
2830ba7f 9809 return generic_permission(inode, mask);
fdebe2bd 9810}
39279cc3 9811
ef3b9af5
FM
9812static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9813{
2ff7e61e 9814 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9815 struct btrfs_trans_handle *trans;
9816 struct btrfs_root *root = BTRFS_I(dir)->root;
9817 struct inode *inode = NULL;
9818 u64 objectid;
9819 u64 index;
9820 int ret = 0;
9821
9822 /*
9823 * 5 units required for adding orphan entry
9824 */
9825 trans = btrfs_start_transaction(root, 5);
9826 if (IS_ERR(trans))
9827 return PTR_ERR(trans);
9828
9829 ret = btrfs_find_free_ino(root, &objectid);
9830 if (ret)
9831 goto out;
9832
9833 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 9834 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
9835 if (IS_ERR(inode)) {
9836 ret = PTR_ERR(inode);
9837 inode = NULL;
9838 goto out;
9839 }
9840
ef3b9af5
FM
9841 inode->i_fop = &btrfs_file_operations;
9842 inode->i_op = &btrfs_file_inode_operations;
9843
9844 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9845 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9846
b0d5d10f
CM
9847 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9848 if (ret)
32955c54 9849 goto out;
b0d5d10f
CM
9850
9851 ret = btrfs_update_inode(trans, root, inode);
9852 if (ret)
32955c54 9853 goto out;
73f2e545 9854 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 9855 if (ret)
32955c54 9856 goto out;
ef3b9af5 9857
5762b5c9
FM
9858 /*
9859 * We set number of links to 0 in btrfs_new_inode(), and here we set
9860 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9861 * through:
9862 *
9863 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9864 */
9865 set_nlink(inode, 1);
ef3b9af5 9866 d_tmpfile(dentry, inode);
32955c54 9867 unlock_new_inode(inode);
ef3b9af5 9868 mark_inode_dirty(inode);
ef3b9af5 9869out:
3a45bb20 9870 btrfs_end_transaction(trans);
32955c54
AV
9871 if (ret && inode)
9872 discard_new_inode(inode);
2ff7e61e 9873 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
9874 return ret;
9875}
9876
5cdc84bf 9877void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 9878{
5cdc84bf 9879 struct inode *inode = tree->private_data;
c6100a4b
JB
9880 unsigned long index = start >> PAGE_SHIFT;
9881 unsigned long end_index = end >> PAGE_SHIFT;
9882 struct page *page;
9883
9884 while (index <= end_index) {
9885 page = find_get_page(inode->i_mapping, index);
9886 ASSERT(page); /* Pages should be in the extent_io_tree */
9887 set_page_writeback(page);
9888 put_page(page);
9889 index++;
9890 }
9891}
9892
ed46ff3d
OS
9893#ifdef CONFIG_SWAP
9894/*
9895 * Add an entry indicating a block group or device which is pinned by a
9896 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9897 * negative errno on failure.
9898 */
9899static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9900 bool is_block_group)
9901{
9902 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9903 struct btrfs_swapfile_pin *sp, *entry;
9904 struct rb_node **p;
9905 struct rb_node *parent = NULL;
9906
9907 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9908 if (!sp)
9909 return -ENOMEM;
9910 sp->ptr = ptr;
9911 sp->inode = inode;
9912 sp->is_block_group = is_block_group;
9913
9914 spin_lock(&fs_info->swapfile_pins_lock);
9915 p = &fs_info->swapfile_pins.rb_node;
9916 while (*p) {
9917 parent = *p;
9918 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9919 if (sp->ptr < entry->ptr ||
9920 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9921 p = &(*p)->rb_left;
9922 } else if (sp->ptr > entry->ptr ||
9923 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9924 p = &(*p)->rb_right;
9925 } else {
9926 spin_unlock(&fs_info->swapfile_pins_lock);
9927 kfree(sp);
9928 return 1;
9929 }
9930 }
9931 rb_link_node(&sp->node, parent, p);
9932 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9933 spin_unlock(&fs_info->swapfile_pins_lock);
9934 return 0;
9935}
9936
9937/* Free all of the entries pinned by this swapfile. */
9938static void btrfs_free_swapfile_pins(struct inode *inode)
9939{
9940 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9941 struct btrfs_swapfile_pin *sp;
9942 struct rb_node *node, *next;
9943
9944 spin_lock(&fs_info->swapfile_pins_lock);
9945 node = rb_first(&fs_info->swapfile_pins);
9946 while (node) {
9947 next = rb_next(node);
9948 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9949 if (sp->inode == inode) {
9950 rb_erase(&sp->node, &fs_info->swapfile_pins);
9951 if (sp->is_block_group)
9952 btrfs_put_block_group(sp->ptr);
9953 kfree(sp);
9954 }
9955 node = next;
9956 }
9957 spin_unlock(&fs_info->swapfile_pins_lock);
9958}
9959
9960struct btrfs_swap_info {
9961 u64 start;
9962 u64 block_start;
9963 u64 block_len;
9964 u64 lowest_ppage;
9965 u64 highest_ppage;
9966 unsigned long nr_pages;
9967 int nr_extents;
9968};
9969
9970static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9971 struct btrfs_swap_info *bsi)
9972{
9973 unsigned long nr_pages;
9974 u64 first_ppage, first_ppage_reported, next_ppage;
9975 int ret;
9976
9977 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9978 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9979 PAGE_SIZE) >> PAGE_SHIFT;
9980
9981 if (first_ppage >= next_ppage)
9982 return 0;
9983 nr_pages = next_ppage - first_ppage;
9984
9985 first_ppage_reported = first_ppage;
9986 if (bsi->start == 0)
9987 first_ppage_reported++;
9988 if (bsi->lowest_ppage > first_ppage_reported)
9989 bsi->lowest_ppage = first_ppage_reported;
9990 if (bsi->highest_ppage < (next_ppage - 1))
9991 bsi->highest_ppage = next_ppage - 1;
9992
9993 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9994 if (ret < 0)
9995 return ret;
9996 bsi->nr_extents += ret;
9997 bsi->nr_pages += nr_pages;
9998 return 0;
9999}
10000
10001static void btrfs_swap_deactivate(struct file *file)
10002{
10003 struct inode *inode = file_inode(file);
10004
10005 btrfs_free_swapfile_pins(inode);
10006 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10007}
10008
10009static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10010 sector_t *span)
10011{
10012 struct inode *inode = file_inode(file);
10013 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10014 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10015 struct extent_state *cached_state = NULL;
10016 struct extent_map *em = NULL;
10017 struct btrfs_device *device = NULL;
10018 struct btrfs_swap_info bsi = {
10019 .lowest_ppage = (sector_t)-1ULL,
10020 };
10021 int ret = 0;
10022 u64 isize;
10023 u64 start;
10024
10025 /*
10026 * If the swap file was just created, make sure delalloc is done. If the
10027 * file changes again after this, the user is doing something stupid and
10028 * we don't really care.
10029 */
10030 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10031 if (ret)
10032 return ret;
10033
10034 /*
10035 * The inode is locked, so these flags won't change after we check them.
10036 */
10037 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10038 btrfs_warn(fs_info, "swapfile must not be compressed");
10039 return -EINVAL;
10040 }
10041 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10042 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10043 return -EINVAL;
10044 }
10045 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10046 btrfs_warn(fs_info, "swapfile must not be checksummed");
10047 return -EINVAL;
10048 }
10049
10050 /*
10051 * Balance or device remove/replace/resize can move stuff around from
c3e1f96c
GR
10052 * under us. The exclop protection makes sure they aren't running/won't
10053 * run concurrently while we are mapping the swap extents, and
10054 * fs_info->swapfile_pins prevents them from running while the swap
10055 * file is active and moving the extents. Note that this also prevents
10056 * a concurrent device add which isn't actually necessary, but it's not
ed46ff3d
OS
10057 * really worth the trouble to allow it.
10058 */
c3e1f96c 10059 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
ed46ff3d
OS
10060 btrfs_warn(fs_info,
10061 "cannot activate swapfile while exclusive operation is running");
10062 return -EBUSY;
10063 }
10064 /*
10065 * Snapshots can create extents which require COW even if NODATACOW is
10066 * set. We use this counter to prevent snapshots. We must increment it
10067 * before walking the extents because we don't want a concurrent
10068 * snapshot to run after we've already checked the extents.
10069 */
10070 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10071
10072 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10073
10074 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10075 start = 0;
10076 while (start < isize) {
10077 u64 logical_block_start, physical_block_start;
32da5386 10078 struct btrfs_block_group *bg;
ed46ff3d
OS
10079 u64 len = isize - start;
10080
39b07b5d 10081 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10082 if (IS_ERR(em)) {
10083 ret = PTR_ERR(em);
10084 goto out;
10085 }
10086
10087 if (em->block_start == EXTENT_MAP_HOLE) {
10088 btrfs_warn(fs_info, "swapfile must not have holes");
10089 ret = -EINVAL;
10090 goto out;
10091 }
10092 if (em->block_start == EXTENT_MAP_INLINE) {
10093 /*
10094 * It's unlikely we'll ever actually find ourselves
10095 * here, as a file small enough to fit inline won't be
10096 * big enough to store more than the swap header, but in
10097 * case something changes in the future, let's catch it
10098 * here rather than later.
10099 */
10100 btrfs_warn(fs_info, "swapfile must not be inline");
10101 ret = -EINVAL;
10102 goto out;
10103 }
10104 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10105 btrfs_warn(fs_info, "swapfile must not be compressed");
10106 ret = -EINVAL;
10107 goto out;
10108 }
10109
10110 logical_block_start = em->block_start + (start - em->start);
10111 len = min(len, em->len - (start - em->start));
10112 free_extent_map(em);
10113 em = NULL;
10114
a84d5d42 10115 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
ed46ff3d
OS
10116 if (ret < 0) {
10117 goto out;
10118 } else if (ret) {
10119 ret = 0;
10120 } else {
10121 btrfs_warn(fs_info,
10122 "swapfile must not be copy-on-write");
10123 ret = -EINVAL;
10124 goto out;
10125 }
10126
10127 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10128 if (IS_ERR(em)) {
10129 ret = PTR_ERR(em);
10130 goto out;
10131 }
10132
10133 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10134 btrfs_warn(fs_info,
10135 "swapfile must have single data profile");
10136 ret = -EINVAL;
10137 goto out;
10138 }
10139
10140 if (device == NULL) {
10141 device = em->map_lookup->stripes[0].dev;
10142 ret = btrfs_add_swapfile_pin(inode, device, false);
10143 if (ret == 1)
10144 ret = 0;
10145 else if (ret)
10146 goto out;
10147 } else if (device != em->map_lookup->stripes[0].dev) {
10148 btrfs_warn(fs_info, "swapfile must be on one device");
10149 ret = -EINVAL;
10150 goto out;
10151 }
10152
10153 physical_block_start = (em->map_lookup->stripes[0].physical +
10154 (logical_block_start - em->start));
10155 len = min(len, em->len - (logical_block_start - em->start));
10156 free_extent_map(em);
10157 em = NULL;
10158
10159 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10160 if (!bg) {
10161 btrfs_warn(fs_info,
10162 "could not find block group containing swapfile");
10163 ret = -EINVAL;
10164 goto out;
10165 }
10166
10167 ret = btrfs_add_swapfile_pin(inode, bg, true);
10168 if (ret) {
10169 btrfs_put_block_group(bg);
10170 if (ret == 1)
10171 ret = 0;
10172 else
10173 goto out;
10174 }
10175
10176 if (bsi.block_len &&
10177 bsi.block_start + bsi.block_len == physical_block_start) {
10178 bsi.block_len += len;
10179 } else {
10180 if (bsi.block_len) {
10181 ret = btrfs_add_swap_extent(sis, &bsi);
10182 if (ret)
10183 goto out;
10184 }
10185 bsi.start = start;
10186 bsi.block_start = physical_block_start;
10187 bsi.block_len = len;
10188 }
10189
10190 start += len;
10191 }
10192
10193 if (bsi.block_len)
10194 ret = btrfs_add_swap_extent(sis, &bsi);
10195
10196out:
10197 if (!IS_ERR_OR_NULL(em))
10198 free_extent_map(em);
10199
10200 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10201
10202 if (ret)
10203 btrfs_swap_deactivate(file);
10204
c3e1f96c 10205 btrfs_exclop_finish(fs_info);
ed46ff3d
OS
10206
10207 if (ret)
10208 return ret;
10209
10210 if (device)
10211 sis->bdev = device->bdev;
10212 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10213 sis->max = bsi.nr_pages;
10214 sis->pages = bsi.nr_pages - 1;
10215 sis->highest_bit = bsi.nr_pages - 1;
10216 return bsi.nr_extents;
10217}
10218#else
10219static void btrfs_swap_deactivate(struct file *file)
10220{
10221}
10222
10223static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10224 sector_t *span)
10225{
10226 return -EOPNOTSUPP;
10227}
10228#endif
10229
6e1d5dcc 10230static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10231 .getattr = btrfs_getattr,
39279cc3
CM
10232 .lookup = btrfs_lookup,
10233 .create = btrfs_create,
10234 .unlink = btrfs_unlink,
10235 .link = btrfs_link,
10236 .mkdir = btrfs_mkdir,
10237 .rmdir = btrfs_rmdir,
2773bf00 10238 .rename = btrfs_rename2,
39279cc3
CM
10239 .symlink = btrfs_symlink,
10240 .setattr = btrfs_setattr,
618e21d5 10241 .mknod = btrfs_mknod,
5103e947 10242 .listxattr = btrfs_listxattr,
fdebe2bd 10243 .permission = btrfs_permission,
4e34e719 10244 .get_acl = btrfs_get_acl,
996a710d 10245 .set_acl = btrfs_set_acl,
93fd63c2 10246 .update_time = btrfs_update_time,
ef3b9af5 10247 .tmpfile = btrfs_tmpfile,
39279cc3 10248};
76dda93c 10249
828c0950 10250static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10251 .llseek = generic_file_llseek,
10252 .read = generic_read_dir,
02dbfc99 10253 .iterate_shared = btrfs_real_readdir,
23b5ec74 10254 .open = btrfs_opendir,
34287aa3 10255 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10256#ifdef CONFIG_COMPAT
4c63c245 10257 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10258#endif
6bf13c0c 10259 .release = btrfs_release_file,
e02119d5 10260 .fsync = btrfs_sync_file,
39279cc3
CM
10261};
10262
20e5506b 10263static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10264 /* mandatory callbacks */
065631f6 10265 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10266 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10267};
10268
35054394
CM
10269/*
10270 * btrfs doesn't support the bmap operation because swapfiles
10271 * use bmap to make a mapping of extents in the file. They assume
10272 * these extents won't change over the life of the file and they
10273 * use the bmap result to do IO directly to the drive.
10274 *
10275 * the btrfs bmap call would return logical addresses that aren't
10276 * suitable for IO and they also will change frequently as COW
10277 * operations happen. So, swapfile + btrfs == corruption.
10278 *
10279 * For now we're avoiding this by dropping bmap.
10280 */
7f09410b 10281static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10282 .readpage = btrfs_readpage,
10283 .writepage = btrfs_writepage,
b293f02e 10284 .writepages = btrfs_writepages,
ba206a02 10285 .readahead = btrfs_readahead,
f85781fb 10286 .direct_IO = noop_direct_IO,
a52d9a80
CM
10287 .invalidatepage = btrfs_invalidatepage,
10288 .releasepage = btrfs_releasepage,
f8e66081
RG
10289#ifdef CONFIG_MIGRATION
10290 .migratepage = btrfs_migratepage,
10291#endif
e6dcd2dc 10292 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10293 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10294 .swap_activate = btrfs_swap_activate,
10295 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10296};
10297
6e1d5dcc 10298static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10299 .getattr = btrfs_getattr,
10300 .setattr = btrfs_setattr,
5103e947 10301 .listxattr = btrfs_listxattr,
fdebe2bd 10302 .permission = btrfs_permission,
1506fcc8 10303 .fiemap = btrfs_fiemap,
4e34e719 10304 .get_acl = btrfs_get_acl,
996a710d 10305 .set_acl = btrfs_set_acl,
e41f941a 10306 .update_time = btrfs_update_time,
39279cc3 10307};
6e1d5dcc 10308static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10309 .getattr = btrfs_getattr,
10310 .setattr = btrfs_setattr,
fdebe2bd 10311 .permission = btrfs_permission,
33268eaf 10312 .listxattr = btrfs_listxattr,
4e34e719 10313 .get_acl = btrfs_get_acl,
996a710d 10314 .set_acl = btrfs_set_acl,
e41f941a 10315 .update_time = btrfs_update_time,
618e21d5 10316};
6e1d5dcc 10317static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10318 .get_link = page_get_link,
f209561a 10319 .getattr = btrfs_getattr,
22c44fe6 10320 .setattr = btrfs_setattr,
fdebe2bd 10321 .permission = btrfs_permission,
0279b4cd 10322 .listxattr = btrfs_listxattr,
e41f941a 10323 .update_time = btrfs_update_time,
39279cc3 10324};
76dda93c 10325
82d339d9 10326const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10327 .d_delete = btrfs_dentry_delete,
10328};